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Introduction

Let G be a finite abelian group of order n ≥ 2. For any h ≥ 1, and nonempty subsets
A1, ..., Ah of G, the Minkowsi sum is defined as

A1 + ...+Ah = {a1 + ...+ ah : a1 ∈ A1, ..., ah ∈ Ah}.

We write hA for the Minkowsi sum whenever A1 = A2 = ... = Ah = A.

A subset A ⊆ G is called a basis of order h, or h-complete if hA = G. If hA ̸= G we
say that A is a nonbasis of order h, or h-incomplete. As an example, let G = Z3 × Z6 and
A = {(0, 0), (0, 4)}. We find that

2A = {(0, 0), (0, 4), (0, 2)} ≠ G,

and therefore A is 2-incomplete. Note that 2A in this case is the subgroup {0} × ⟨2⟩, where
⟨2⟩ is the subgroup of Z6 generated by 2. Since subgroups are closed under the operation of
G, we find that hA = 2A ̸= G for every h ≥ 2. So A is in this case h-incomplete for every
h ≥ 1.

The h-critical number χ(G, h) is defined as the smallest positive integer m such that all
subsets A ⊆ G such that |A| ≥ m are a basis of order h. In this bachelor thesis we provide the
h-critical number for every h. We also discuss the possible sizes of hA when A is a nonbasis of
order h of maximum size, so we look at |hA| whenever |A| = χ(G, h)− 1. We give a complete
answer for h = 2 and h = 3.

This thesis is based on the work of B. Bajnok and P. P. Pach [1, 2]. We start off with several
helpful results that will be used throughout the thesis. In the following section we determine
χ(G, h) for each h, and after that we provide the size of sumsets of nonbases of maximum size
for h = 2 and h = 3 respectively.
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1. Preliminary results

In this section we provide several helpful results that will be useful later. We start off with a
formal definition for the h-critical number.

Definition. For each finite abelian group G and h ≥ 1, the h-critical number is defined as

χ(G, h) = min{m ≥ 1 : A ⊆ G, |A| ≥ m =⇒ hA = G}.

Note that for all h, we have hG = G, so 1 ≤ χ(G, h) ≤ n. Therefore χ(G, h) is well defined.

Definition. Let G be a finite abelian group, and let χ(G, h) be the h-critical number. Then

S(G, h) = {|hA| : A ⊂ G, |A| = χ(G, h)− 1, hA ̸= G}

is the set of sizes of sumsets of nonbases of maximum size.

Recall that for any subset A of G, the stabilizer subgroup H of A is defined as

H = {g ∈ G : g +A = A}.

Our next theorem is a result that follows from a paper published in 1953 by Martin Kneser
[5]. It concerns the size of sumsets in relation to the stabilizer subgroup of the sumset.
Additonally, another proof can be found in a paper by Matt DeVos [3].

Theorem 1.1 [5]. Let G be a finite abelian group. Let A,B be nonempty subsets of G, and
let H be the stabilizer subgroup of A+B. Then

|A+B| ≥ |A+H|+ |B +H| − |H|.

Our next result is a corrolary which follows directly from Theorem 1.1.

Corollary 1.2. Let G be a finite abelian group. For h ≥ 1, let A1, ..., Ah be nonempty
subsets of G, and let H be the stabilizer subgroup of A1 + ...+Ah. Then

|A1 + ...+Ah| ≥ |A1|+ ...+ |Ah| − (h− 1)|H|.

Proof. Note that since H is a group, it contains the identity element. Therefore, |Ai +H| ≥
|Ai| for all 1 ≤ i ≤ h. We use induction on h. Let h = 1. Then

|A1| ≥ |A1| − (1− 1)|H| = |A1|.

Now assume that the claim holds for some h = k. Let H be the stabilizer subgroup of
A1 + ...+Ak +Ak+1. Using Theorem 1.1 we conclude that

|A1 + ...+Ak +Ak+1| ≥ |A1 + ...+Ak +H|+ |Ak+1 +H| − |H| ≥ |A1 + ...+Ak|+ |Ak+1|
−|H| ≥ |A1|+ ...+ |Ak| − (k − 1)|H|+ |Ak+1| − |H| = |A1|+ ...+ |Ak+1| − (k + 1− 1)|H|.

So for all h ≥ 1 we have

|A1 + ...+Ah| ≥ |A1|+ ...+ |Ah| − (h− 1)|H|.

This completes our proof.
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Our next result is a simple application of Corollary 1.2.

Lemma 1.3. Let G be a finite abelian group, h ≥ 1 and A a nonbasis of order h of maximum
size, i.e. |A| = χ(G, h) − 1. Let H be the stabilizer of hA. Then A and hA are unions of
cosets of H. If A and hA consist respectively of k1 and k2 distinct cosets of H, we have

k2 ≥ hk1 − h+ 1.

Proof. We look at the set A+H. Since A is h-incomplete we have

h(A+H) = hA+H = hA ̸= G.

Therefore A+H is h-incomplete. Since A is h-incomplete of maximum size, we have
|A+H| ≤ |A|. However, H is a subgroup and contains the identity element, so A ⊆ A+H.
Therefore

A = A+H =
⋃
a∈A

(a+H).

So A is a union of cosets of H. Similarly we see that hA is a union of cosets of H.

Let |A| = k1|H| and |hA| = k2|H|. With Corollary 1.2 we find that

k2|H| = |hA| ≥ h|A| − (h− 1)|H| = hk1|H| − (h− 1)|H|.

So k2 ≥ hk1 − h+ 1.

Lemma 1.4. Let G be a finite abelian group and h ≥ 1. Suppose that H is a subgroup of G
of index d for some d ≥ 1 and suppose that ϕ : G → G/H is the canonical map. Let B be a
subset of G/H, and let A = ϕ−1(B). Then |A| = n

d · |B| and |hA| = n
d · |hB|.

Proof. Let g +H ∈ G/H, and let A1 = ϕ−1({g +H}). Then A1 is a subset of G, specifically
it is a full coset of H, and therefore |A1| = n

d .

We write B = {b1, .., br} ⊆ G/H. Then |ϕ−1({bi})| = n
d for all 1 ≤ i ≤ r. Since

A =
⋃

1≤i≤r

ϕ−1({bi}),

and all of those sets are pairwise disjoint, it follows that |A| = n
d · |B|.

We will now show that hA = ϕ−1(hB). We take an arbitrary a1 + ...+ ah ∈ hA. Then

a1 + ...+ ah ∈ ϕ−1({a1 + ...+ ah +H}) = ϕ−1({a1 +H + ...+ ah +H}) ⊆ ϕ−1(hB).

So hA ⊆ ϕ−1(hB).

We take an arbitrary b ∈ ϕ−1(hB). Then b + H ∈ hB, and therefore, b + H = (b1 + H) +
... + (bh + H), where b1, ..., bh ∈ A. So b = b1 + ... + bh ∈ hA. So ϕ−1(hB) ⊆ hA. So
hA = ϕ−1(hB).

We write hB = {b1, .., br}. Then |ϕ−1({bi})| = n
d for all 1 ≤ i ≤ r. Since

hA =
⋃

1≤i≤r

ϕ−1({bi}),
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and all of those sets are disjoint, it follows that therefore |hA| = n
d · |hB|.

We will now briefly discuss the fundamental theorem of finite abelian groups [4, p. 158-166].
This theorem states that every finite abelian group G is isomorphic to a direct product of
finite cyclic groups. We write Zn = Z/nZ. Then G has a unique type (n1, ..., nr), where
r, n1, .., nr ∈ N such that n1 ≥ 2 and ni|ni+1 for all 1 ≤ i ≤ r − 1, and

G ∼= Zn1 × · · · × Znr .

We say that r is the rank of G, and nr the exponent of G. With this construction, G has a
natural ordering, which we will define using the following lemma.

Lemma 1.5. Let S = {x ∈ Z : 0 ≤ x ≤ n− 1}. Then the function ϕ : G → S given by

ϕ((q1, ..., qr)) =
r∑

i=1

qini+1 · · ·nr

is a bijection.

Proof. We first show that ϕ is injective. Let (a1, ..., ar), (b1, ..., br) ∈ G. Assume that
ϕ((a1, ..., ar)) = ϕ((b1, ..., br)), so

ar + nr

r−1∑
i=1

aini+1 · · ·nr−1 = br + nr

r−1∑
i=1

bini+1 · · ·nr−1.

Note that ar ≤ nr − 1. We first look at the case where nr
∑r−1

i=1 aini+1 · · ·nr−1 = 0. Then it
must be true that

nr

r−1∑
i=1

bini+1 · · ·nr−1 = 0,

since otherwise ϕ((b1, ..., br)) ≥ nr > ar = ϕ((a1, ..., ar)). So ar = br, and ai = bi = 0 for all
i ≥ 2. So (a1, ..., ar) = (b1, ..., br).

Now assume that nr
∑r−1

i=1 aini+1 · · ·nr−1 ≥ nr and that ar ̸= br. Then

ar − br = nr

(
r−1∑
i=1

(aini+1 · · ·nr−1 − bini+1 · · ·nr−1)

)
.

However −(nr − 1) ≤ ar − br ≤ nr − 1, and ar − br ̸= 0, so nr ∤ (ar − br), so this is a
contradiction. Therefore ar = br. Now we have

ar−1 + nr−1

r−2∑
i=1

aini+1 · · ·nr−2 = br−1 + nr−1

r−2∑
i=1

bini+1 · · ·nr−2,

and we can do the same thing to show that ar−1 = br−1. By induction it now follows that
whenever ak = bk for some 2 ≤ k ≤ r, we have ak−1 = bk−1. So (a1, ..., ar) = (b1, ..., br). So
ϕ is injective.

We prove that ϕ is surjective by induction. First let 0 = m ∈ S. We simply take (0, ..., 0) ∈ G
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and it follows that ϕ((0, ..., 0)) = 0. First note that

n−1 = n1 · · ·nr−1 = n1 · · ·nr+(n2 · · ·nr−n2 · · ·nr)+...+(nr−nr)−1 =

r∑
i=1

(ni−1)ni+1 · · ·nr.

So ϕ−1(n− 1) = (n1 − 1, ..., nr − 1). Now assume that for some k ∈ S \ {n− 1}, there exists
an element (q1, ..., qr) ∈ G such that k = ϕ((q1, ..., qr)). Since k < n − 1, there exists an
1 ≤ j ≤ r such that qj < nj − 1 and qi = ni − 1 for all j ≤ i ≤ r. So

k =

j∑
i=1

qini+1 · · ·nr +
r∑

i=j+1

(ni − 1)ni+1 · · ·nr.

Note that ∑r
i=j+1(ni − 1)ni+1 · · ·nr =

nj+1 · · ·nr + (nj+2 · · ·nr − nj+2 · · ·nr) + ...+ (nr − nr)− 1 = nj+1nj+2 · · ·nr − 1.

Therefore we find that

k+1 =

(
j∑

i=1

qini+1 · · ·nr

)
+nj+1nj+2 · · ·nr =

(
j−1∑
i=1

qini+1 · · ·nr

)
+(qj +1)nj+1nj+2 · · ·nr.

It follows that k + 1 = ϕ((q1, ..., qj−1, qj + 1, 0, ..., 0)). So ϕ is surjective, and therefore
bijective.

Now let 0 ≤ m ≤ n − 1. Since ϕ is bijective, there exists an unique element (q1, ..., qr) of G
such that ϕ((q1, ..., qr)) = m. We now introduce the ordering. Let (a1, ..., ar), (b1, ..., br) ∈ G.
Then (a1, ..., ar) ≤ (b1, ..., br) if and only if

ϕ((a1, ..., ar)) ≤ ϕ((b1, ..., br)).

Note that with this ordering (0, ..., 0) is the smallest element of G, while (n1 − 1, ..., nr − 1)
is the largest. If we assume that qr ≥ 1, the set of the first m elements of G is the set that
ranges from the zero element to the element (q1, ..., qr−1, qr − 1). It can be formally defined
as

I(G,m) = {g ∈ G : (0, ..., 0) ≤ g ≤ (q1, ..., qr−1, qr − 1)}.

We also introduce a variation of I(G,m), where the last element is replaced by the next one
in the order. If we assume that qr ≥ 3, this set is given by:

I∗(G,m) = I(G,m− 1) ∪ {(q1, ..., qr−1, qr)}.

By considering these sets, we can straightforwardly determine the h-fold sumset of them, as
long as hqi < ni for all 1 ≤ i ≤ r.

Proposition 1.6. Let G be a finite abelian group of type (n1, ..., nr). Let 0 ≤ m ≤ n − 1,
with unique integers q1, ..., qr, 0 ≤ qi ≤ ni − 1, such that

m =

r∑
i=1

qini+1 · · ·nr.

Furthermore, let h ≥ 1 such that hqi < ni for all 1 ≤ i ≤ r. Then
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(1) If qr ≥ 1, then |hI(G,m)| = hm− h+ 1.

(2) If qr ≥ 3, then |hI∗(G,m)| = hm.

Proof. Let qr ≥ 1, then I(G,m) is the set of elements from zero to the element
(q1, ..., qr−1, qr − 1). Since hqi < ni for all 1 ≤ i ≤ r, it follows by induction that hI(G,m) is
the set of elements from zero to the element (hq1, ..., hqr−1, hqr − h). Therefore, hI(G,m) =
I(G, hm− h+ 1), and |hI(G,m)| = hm− h+ 1.

Let qr ≥ 3, then
I∗(G,m) = I(G,m− 1) ∪ (q1, ..., qr−1, qr).

We deduce quickly that h{(q1, ..., qr−1, qr)} = {(hq1, ..., hqr−1, hqr)} ⊆ hI∗(G,m). We also
find that

hI(G,m− 1) = I(G, hm− 2h+ 1) ⊆ hI∗(G,m).

Note that I(G, hm− 2h+1) is the set of elements from zero to (hq1, ..., hqr−1, hqr − 2h). We
will use induction to show that for all hqr−2h+1 ≤ q ≤ hqr−2, we have (hq1, ..., hqr−1, q) ∈
hI∗(G,m).

We take an arbitrary 0 ≤ k ≤ 2h− 3. Assume that (hq1, ..., hqr−1, hqr − 2h+k) ∈ hI∗(G,m).
We will show that

(hq1, ..., hqr−1, hqr − 2h+ k + 1) ∈ hI∗(G,m).

Since (hq1, ..., hqr−1, hqr − 2h + k) ∈ hI∗(G,m), we know that hqr − 2h + k = a1 + ... + ah,
where ai ∈ {0, ..., qr − 2} ∪ {qr} for each 1 ≤ i ≤ h. We use proof by cases.

Case 1: Assume that there exists a 1 ≤ i ≤ h such that ai ≤ qr − 3.
Then (q1, ..., qr−1, ai + 1) ∈ I∗(G,m), and therefore

(hq1, ..., hqr−1, hqr − 2h+ k + 1) = (hq1, ..., hqr−1, 1 +

h∑
i=1

ai) ∈ hI∗(G,m).

Case 2: Let 1 ≤ s ≤ h and 1 ≤ t ≤ h, with s ̸= t such that as = at = qr − 2.
Assume that for all i ∈ {1, ..., h}/{s, t}, we have ai ∈ {qr − 2, qr}. Note that

hqr − 2h+ k + 1 = 1 + as + at +
∑

i∈{1,...,h}/{s,t}

ai = (qr − 3) + qr +
∑

i∈{1,...,h}/{s,t}

ai.

So
(hq1, ..., hqr−1, hqr − 2h+ k + 1) ∈ hI∗(G,m).

We have now distinguished all cases such that 0 ≤ k ≤ 2h − 3. With our inductive process
we conclude that for all hqr − 2h+ 1 ≤ q ≤ hqr − 2, we have (hq1, ..., hqr−1, q) ∈ hI∗(G,m).

We will show that (hq1, ..., hqr−1, hqr−1) /∈ hI∗(G,m). Assume the contrary. Than hqr−1 =
a1 + ...+ ah, where ai ∈ {0, ..., qr − 2} ∪ {qr} for each 1 ≤ i ≤ h. Note however, that

(h− 1)qr + qr − 2 < hqr − 1 < hqr,

and therefore both of the following statements must be true.

a. For all 1 ≤ i ≤ h, we have ai > qr − 2, so ai = qr for all i.

b. There exists a 1 ≤ i ≤ h such that ai < qr.
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This is a clear contradiction , so (hq1, ..., hqr−1, hqr − 1) /∈ hI∗(G,m).

Assume that there exists a (b1, ..., br) ∈ hI∗(G,m) such that (b1, ..., br) > (hq1, ..., hqr). Then
there exists some 1 ≤ i ≤ h such that bi > hqi and bj = hqj for all 1 ≤ j < i. But then
bi = a1 + ...+ ah, where 0 ≤ ai ≤ qi. Therefore bi ≤ hqi, which is a contradiction.

We conclude that

hI∗(G,m) = I(G, hm− 1) ∪ {(hq1, ..., hqr−1, hqr)}.

So |hI∗(G,m)| = hm.

Remark.
It is easy to see why, in part (1) of Proposition 1.6, we have the requirement that qr ≥ 1: In
this case the largest element of I(G,m) is (q1, ..., qr−1, qr − 1), which makes determining the
set hI(G,m) manageable.

Thus it might be confusing why, for part (2), we have the requirement that qr ≥ 3:

I∗(G,m) = I(G,m− 1) ∪ {(q1, ..., qr−1, qr)},

so for qr = 2 the largest element of I(G,m−1) would be (q1, ..., qr−1, qr−2) = (q1, ..., qr−1, 0),
which makes determining the set I∗(G,m) manageable. Note however, that in this case, for
all 1 ≤ k ≤ h− 1 we have

(hq1, ..., hqr−1, hqr − 2h+ 2k + 1) /∈ hI∗(G,m).

So

hI∗(G,m) = I(G, hm− 2h+ 1) ∪ {(hq1, ..., hqr−1, hqr − 2h+ 2k) : 1 ≤ k ≤ h}.

So |hI∗(G,m)| = hm− 2h+ 1 + h = hm− h+ 1.

We will now introduce a corollary, which is a slight variation of Proposition 1.6.

Corollary 1.7. Let G be a finite abelian group, 1 ≤ m ≤ n and h ≥ 1. Then

|hI(G,m)| ≤ hm− h+ 1.

Proof. Let

m =
r∑

i=1

qini+1 · · ·nr.

If qr ≥ 1 and hqk < nk for all 1 ≤ k ≤ r, we apply Proposition 1.6 to obtain the result.

Assume that qr ≥ 1 and that there exist 1 ≤ i ≤ r such that hqi ≥ ni, and k is the greatest
of these. We find that

hI(G,m) = {g ∈ G : (0, ..., 0) ≤ g ≤ (hq1, ..., hqk−1, nk − 1, hqk+1, ..., hqr − h)}.

So it follows that
|hI(G,m)| ≤ hm− h+ 1.

Assume that there exists a 1 ≤ i ≤ r such that qi−1 ̸= 0 and qk = 0 for all i ≤ k ≤ r. Then
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I(G,m) is the set of elements from 0 up to (q1, ..., qi−2, qi−1− 1, ni− 1, ..., nr − 1). Therefore,

hI(G,m) = {g ∈ G : (0, ..., 0) ≤ g ≤ (hq1, ..., hqi−2, hqi−1 − h, ni − 1, ..., nr − 1)}.

So |hI(G,m)| ≤ hm− h+ 1.

Since we have distinguished all the cases, we conclude that

|hI(G,m)| ≤ hm− h+ 1.

This establishes our proof.
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2. The h-critical number

In this section we will work towards a result that gives us χ(G, h) for each h.

Let
ρ(G,m, h) = min{|hA| : A ⊆ G, |A| = m}

and
u(n,m, h) = min{fd : d|n},

where n,m, h are positive integers and

fd(m,h) = (h⌈m/d⌉ − h+ 1)d.

The following result will help us determine χ(G, h).

Lemma 2.1. Let n,m, h be positive integers such that m ≤ n, and let G be a finite abelian
group with |G| = n. Then

ρ(G,m, h) = u(n,m, h).

Proof. We first show that ρ(G,m, h) ≥ u(n,m, h). Let A ⊆ G with |A| = m such that
|hA| = ρ(G,m, h). Let H be the stabilizer subgroup of hA. Then by Corollary 1.2, it follows
that

ρ(G,m, h) = |hA| ≥ h|A| − (h− 1)|H|.

Using Lemma 1.3, we know that |A| = k1|H| for some k1 ∈ N. Therefore

h|A| − (h− 1)|H| = hk1|H| − (h− 1)|H| = (hk1 − h+ 1)|H| = f|H| ≥ u(n,m, h).

We will now show that ρ(G,m, h) ≤ u(n,m, h). Let H ≤ G be a subgroup. Let ϕ : G → G/H
be the canonical map. Note that since G is abelian, so is G/H. Let r = ⌈m/|H|⌉. Using
the notation in Proposition 1.6, we consider the set I(G/H, r). Note that r ≤ |G/H|, since
m ≤ n = |G/H||H|, so m

|H| ≤ |G/H|. So I(G/H, r) is well-defined. From Corollary 1.7, it
follows that |hI(G/H, r)| ≤ hr − h+ 1.

Let A = ϕ−1(I(G/H, r)). From Lemma 1.4 we know that |A| = |H|⌈m/|H|⌉ ≥ m. Therefore
|hA| ≥ ρ(G,m, h), so

ρ(G,m, h) ≤ |hA| = |H| · |hI(G/H, r)| ≤ (h⌈m/|H|⌉ − h+ 1) · |H|.

Since G is abelian, there exists a subgroup of order d for all divisors d of n. (This follows from
the fundamental theorem of finite abelian groups.) Because of that, ρ(G,m, h) ≤ (h⌈m/d⌉ −
h+1) ·d for all d ∈ N such that d|n. So ρ(G,m, h) ≤ u(n,m, h). Since ρ(G,m, h) ≤ u(n,m, h)
and ρ(G,m, h) ≥ u(n,m, h), we have

ρ(G,m, h) = u(n,m, h),

which concludes our proof.

We write
v(n, h) = max

{(⌊
d− 2

h

⌋
+ 1

)
n

d
: d|n

}
.

With Lemma 2.1, we now have all the results we need to prove the following result:
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Theorem 2.2. Let G be an abelian group with |G| = n, and let h ≥ 1. Then

χ(G, h) = v(n, h) + 1.

Proof. Recall that

χ(G, h) = min{m ≥ 1 : A ⊆ G, |A| ≥ m =⇒ |hA| = n}.

Therefore, we want to show that whenever |A| = v(n, h) + 1, we have |hA| = n, but that
there exists a subset A ⊆ G such that |A| = v(n, h) and |hA| < n. This would show that any
subset of size v(n, h) + 1 is h-complete, and that v(n, h) + 1 is the smallest positive integer
with this property. From Lemma 2.1, we know that

min{|hA| : A ⊆ G, |A| = m} = ρ(G,m, h) = u(n,m, h).

We will therefore show that

n > min{|hA| : A ⊆ G, |A| = v(n, h)} = ρ(G, v(n, h), h) = u(n, v(n, h), h)

and that

n ≤ min{|hA| : A ⊆ G, |A| = v(n, h) + 1} = ρ(G, v(n, h) + 1, h) = u(n, v(n, h) + 1, h).

We start with the first inequality. Let d0|n such that

v(n, h) =

(⌊
d0 − 2

h

⌋
+ 1

)
n

d0
.

Note that u(n, v(n, h), h) ≤ fn/d0(v(n, h), h), where

fn/d0(v(n, h), h) =

h


(⌊

d0−2
h

⌋
+ 1
)

n
d0

n
d0

− h+ 1

 n

d0
=

(
h

⌊
d0 − 2

h

⌋
+ 1

)
n

d0
.

Therefore it follows that

u(n, v(n, h), h) ≤ fn/d0(v(n, h), h) =

(
h

⌊
d0 − 2

h

⌋
+ 1

)
n

d0
≤ (d0 − 1)

n

d0
< n.

This completes the first inequality.

For the second inequality, we need to show that for any d ∈ N such that d|n, we have

fd(v(n, h) + 1, h) =

h


(⌊

d0−2
h

⌋
+ 1
)

n
d0

+ 1

d

− h+ 1

 d ≥ n.

Note that n
d |n, so by our choice of d0 we obtain

v(n, h) =

(⌊
d0 − 2

h

⌋
+ 1

)
n

d0
≥
(⌊ n

d − 2

h

⌋
+ 1

)
n

n/d
.
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Therefore

fd(v(n, h) + 1, h)

d
= h


(⌊

d0−2
h

⌋
+ 1
)

n
d0

+ 1

d

−h+1 ≥ h


(⌊

n
d
−2

h

⌋
+ 1

)
n

n/d .+ 1

d

−h+1 =

h

⌈(⌊ n
d − 2

h

⌋
+ 1

)
+

1

d

⌉
− h+ 1 = h

(⌊ n
d − 2

h

⌋
+ 2

)
− h+ 1 ≥

h

( n
d − 2

h
− 1 +

1

h
+ 2

)
− h+ 1 =

n

d
.

So fd(v(n, h) + 1, h) ≥ n for all d|n. Therefore n ≤ u(n, v(n, h) + 1, h) = ρ(G, v(n, h) + 1, h).
It follows that for any subset of G with size v(n, h) + 1 is h-complete and that v(n, h) + 1 is
the smallest positive integer with this property. So χ(G, h) = v(n, h) + 1.

We will now prove a result that makes it easier to determine χ(G, h) for each h.

Lemma 2.3. Let n ∈ N and h ≥ 2. For each 2 ≤ i ≤ h − 1, let Pi(n) be the set of prime
divisors of n that leave a remainder of i when divided by h, so

Pi(n) = {p|n : p prime and p ≡ i (mod h)}.

Let I be the set of 2 ≤ i ≤ h− 1 such that Pi(n) ̸= ∅, and for each i ∈ I let pi be the smallest
element of Pi(n). Then

v(n, h) =

{
n
h max

{
1 + h−i

pi
: i ∈ I

}
if I ̸= ∅;⌊

n
h

⌋
if I = ∅.

Proof. We define

g(d) =

(⌊
d− 2

h

⌋
+ 1

)
n

d
.

Let d0|n such that v(n, h) = g(d0) and let 0 ≤ i0 ≤ h− 1 such that d0 ≡ i0 (mod h). We first
prove two claims.

Claim 1: Assume that i0 ≤ 1. Then g(d0) = ⌊nh⌋.

Proof of Claim 1: We write d0 = kh+ i0. Since i0 − 2 < 0, we have

v(n, h) = g(d0) =

(⌊
kh+ i0 − 2

h

⌋
+ 1

)
n

d0
= (k − 1 + 1)

n

d0
=

d0 − i0
d0

· n
h
≤ n

h
.

Also, we see that

v(n, h) ≥
(⌊

n− 2

h

⌋
+ 1

)
n

n
=

(⌊
n− 2

h

⌋
+ 1

)
≥
⌊n
h

⌋
.

Since ⌊nh⌋ ≤ v(n, h) ≤ n
h , we conclude that ⌊nh⌋ = v(n, h) = g(d0), which proves the claim.

Claim 2: Let i0 ≥ 2. Then d0 is prime.

Proof of claim 2: First, note that with this assumption h ̸= 2, since that would imply that
2 ≤ i0 ≤ 1 which is a contradiction. So h ≥ 3. Note that d0 has at least one prime divisor
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that leaves a remainder greater than 1 (mod h). Let p be the smallest prime divisor of d0
such that p ≡ i (mod h), for some 2 ≤ i ≤ h− 1.
We will show that

h− 2

p2
<

h− i

p
.

If p > h− 2, we have
h− 2

p2
<

h− 2

p(h− 2)
=

1

p
≤ h− i

p
,

since i ≤ h− 1. Let p ≤ h− 2. Since p ≡ i (mod h), we have i = p, so

h− 2

p2
=

hp− h(p− 1)− 2

p2
≤ hp− (p+ 2)(p− 1)− 2

p2
=

h− p− 1

p
<

h− p

p
=

h− i

p
.

So
h− 2

p2
<

h− i

p
.

Now assume that i ̸= i0. Then d0
p ̸≡ 1 (mod h), so d0

p has a prime divisor p′ that leaves a
remainder greater than 1 (mod h). Therefore p′ ≥ p, so d0 ≥ p2. We find that

g(d0) =

(⌊
d0 − 2

h

⌋
+ 1

)
n

d0
=

(
d0 − i0

h
+ 1

)
n

d0
=

n

h

(
1 +

h− i0
d0

)
≤ n

h

(
1 +

h− 2

p2

)
,

since i0 ≥ 2 and d0 ≥ p2. Since p ≡ i (mod h), and since 2 ≤ i ≤ h− 1, it follows that

n

h

(
1 +

h− 2

p2

)
<

n

h

(
1 +

h− i

p

)
=

n

p

(
p− i

h
+ 1

)
=

n

p

(⌊
p− 2

h

⌋
+ 1

)
= g(p).

So v(n, h) = g(d0) < g(p). However v(n, h) ≥ g(d) for all divisors d of n, so this is a
contradiction.
We conclude that i = i0, and

v(n, h) = g(d0) =
n

h

(
1 +

h− i0
d0

)
≤ n

h

(
1 +

h− i0
p

)
= g(p).

Since v(n, h) ≥ g(p), we find that g(d0) = v(n, h) = g(p), so d0 = p. So d0 is prime, which
completes the proof of our claim.

Now assume that I = ∅. Then for all 2 ≤ i ≤ h − 1, we know that n has no prime divisors
congruent to i (mod h). So all divisors of n are divisible by h or are congruent to 1 (mod h).
Since v(n, h) = g(d) for some d|n, we use the first claim and conclude that v(n, h) = ⌊nh⌋.

Assume that I ̸= ∅. Note that

g(d0) =
n

h

(
1 +

h− i0
d0

)
>
⌊n
h

⌋
,

whenever d0 ≡ i0 (mod h) with 2 ≤ i0 ≤ h− 1.
Therefore, with our second claim we conclude that

v(n, h) = max{g(d) : d|n} = max

{(⌊
p− 2

h

⌋
+ 1

)
n

p
: p|n and p prime

}
.
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Note that for two primes p1 ≤ p2 such that p1 ≡ p2 ≡ i (mod h), we have g(p1) ≥ g(p2), so

v(n, h) =
n

h
max

{
1 +

h− i

pi
: i ∈ I

}
.

This completes our proof.

For each h ∈ N, we can now determine the h-critical number without much effort, so we can
now move on to the size of sumsets.
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3. 2-fold sumsets

In this section we work out the case of h = 2. We first find the 2-critical number using
previous results, and then determine the size of 2-fold sumsets of nonbases of maximum size.

Corollary 3.1. Let G be an abelian group of order n. Then we have

χ(G, 2) =
⌊n
2

⌋
+ 1.

Proof. We know that χ(G, 2) = v(n, 2) + 1. Using the notation in Theorem 2.3, we let I be
the set of 2 ≤ i ≤ 1 such that Pi(n) ̸= ∅, therefore I = ∅. So

v(n, 2) =
⌊n
2

⌋
,

and
χ(G, 2) = v(n, 2) + 1 =

⌊n
2

⌋
+ 1.

This completes the proof.

Recall that the set of sizes of sumsets of nonbases of maximum size is given by

S(G, h) = {|hA| : A ⊂ G, |A| = χ(G, h)− 1, hA ̸= G}.

In the rest of this section, we work towards finding S(G, 2). We start with a result that will
be of help later in a specific case.

Lemma 3.2. Let G be a finite abelian group with even order n, such that the exponent of G
is not divisible by 4. Let A ⊆ G with A = n

2 . Then there exists a subgroup H ≤ G of order
|H| = n

2 such that
|A ∩H| ≠ |A ∩ (G \H)|.

Proof. Let A ⊆ G with |A| = n
2 . We assume, for contradiction, that each subgroup of order n

2
contains exactly half of the elements of A. We write G = G1 ×G2, where |G1| is odd and G2

is of type m1, ...,mt, with all mi even and not divisible by 4 for all 1 ≤ i ≤ t. We call C ⊆ G
a projection of G if it is of the form G1 ×B1 × · · · ×Bt, and for each i either Bi = Zmi or Bi

is a coset of the subgroup of index 2 in Zmi . Therefore, each projection of G has size n
2k

, for
some 0 ≤ k ≤ t. Using our assumption, we will show the following:

If C is a projection of G of size n
2k

, then |A ∩ C| = n
2k+1 .

We use induction over k. It is trivial that the claim holds for k = 0. For k = 1, we note that
any projection of size n

2 is either a subgroup of index 2 or a coset of that subgroup, and by
our assumption both contain n

4 elements of A. Now assume that the claim holds for k − 1
for some 1 ≤ k − 1 ≤ t. We prove our claim for k. Because of the symmetry of the direct
products of group, it suffices to only consider the projections in the set

S = {G1 ×B1 × · · · ×Bt : |Bi| =
ni

2
if 1 ≤ i ≤ k and |Bj | = ni if k + 1 ≤ j ≤ t}.

We will now introduce Gray-code ordering of Zk
2, which we will define by induction. First,

for Z2, let 0 < 1. Now let Zl
2 have Gray-code ordering for some 1 ≤ l ≤ k − 1 such that
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Zl
2 = {e0, ..., e2l−1}, and e0 < ... < e2l−1. Note that

Zl+1
2 = {{0} × e0, {1} × e0, {0} × e1, {1} × e1, ..., {0} × e2l−1, {1} × e2l−1}.

We apply it with the following ordering:

{0} × e0 < {0} × e1 < ... < {0} × e2l−1, {1} × e2l−1 < {1} × e2l−2 < ... < {1} × e0.

With this construction, we give Zk
2 = {e0, ..., e2k−1} Gray-code ordering, and write

e0 < e1 < ... < e2k−1.

Here e0 is the identity element, and ej and ej+1 differ in exactly one position for each 0 ≤
j ≤ 2k − 2. Also, e0 and e2k−1 differ in exacly one position.

We now arrange the elements of S in a corresponding sequence

S = {C0, ..., C2k−1}.

Here Cj = G1 × B1 × · · · × Bt, where for all 1 ≤ i ≤ k, we have Bi ≤ Zmi if and only if
the i-th component of ej is equal to 0, and otherwise (Zmi \ Bi) ≤ Zmi . Of course we have
Bi = Zmi whenever k + 1 ≤ i ≤ t.

Note that for all 0 ≤ j ≤ 2k − 1, we have |Cj ∪ Cj+1| = 2 · n
2k

= n
2k−1 , and Cj ∪ Cj+1 is a

projection of G. Therefore, by our inductive hypothesis, |(Cj ∪ Cj+1) ∩A| = n
2k

.

Since |(Cj ∪Cj+1)∩A| = |(Cj+1∪Cj+2)∩A| it follows that, if |C0∩A| = s, then |Cj ∩A| = s
if j is even, and |Cj ∩A| = n

2k
− s if j is odd. Now note that

H = C0 ∪ C2 ∪ ... ∪ C2k−2.

is a subgroup of G with index 2. So by our original assumption |H ∩A| = n
4 . Now note that

H ∩A = (C0 ∩A) ∪ (C2 ∩A) ∪ ... ∪ (C2k−2 ∩A).

Therefore, t · 2k

2 = n
4 , so t = n

2k+1 . So, by induction, for all 0 ≤ k ≤ t, if C is a projection of
G of size n

2k
, then |A ∩ C| = n

2k+1 .

Now let C be a projection of G of size n
2t . Then this result implies that |A ∩ C| = n

2t+1 .
However, all mi are not divisible by 4, so 2t+1 ∤ n, which is a contradiction, so our claim is
false. Since we were only ably to prove the claim using our original assumption, the assumption
is false, so |A ∩H| ≠ |A ∩ (G \H)|.

For determining S(G, 2), we make a distinction between the cases where n is even and n is
odd. We start with the case where n is even.

Theorem 3.3. Let G be a finite abelian group with |G| = n, where n is even. Let (n1, ..., nr)
be the unique type of G. If nr is divisible by 4, then

S(G, 2) = {n− n

d
: d|n, 2|d}.

If nr is not divisible by 4, then

S(G, 2) = {n− n

d
: d|n, 2|d, d ̸= 4}.
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Proof. Let A be a h-incomplete subset of G of maximum size. Using the notation of Lemma
1.3, let H denote the stabilizer subgroup of 2A. Then A and 2A consist respectively of k1
and k2 cosets of H. Let d be the index of H. Since n is even, and χ(G, 2) =

⌊
n
2

⌋
+1, we have

k1n

d
= k1|H| = |A| =

⌊n
2

⌋
=

n

2
.

So 2k1 = d, and therefore d is even. Using Lemma 1.3 again, we get

k2 ≥ 2k1 − 2 + 1 = 2k1 − 1 = d− 1.

Note that k2
n
d = |2A| < n, so d− 1 ≤ k2 < d. So k2 = d− 1, and

S(G, 2) ⊆ {n− n

d
: d|n, 2|d}.

Now let 4 ∤ nr. We show that n − n
4 /∈ S(G, 2). By Theorem 3.2, there exists a subgroup H

of index 2 such that
|A ∩H| ≠ |A ∩ (G \H)|.

Note that H has two cosets, namely H and G \H, so we write A = A1 ∪A2, where A1 ⊆ H,
A2 ⊆ G \H. Without loss of generality we assume that |A1| > n

4 , so 2A1 = H. If A2 = ∅,
then A = A1, so |2A| = |2A1| = n

2 ̸= 3n
4 . Otherwise |A1 +A2| ≥ |A1| > n

4 , so

|2A| ≥ |2A1|+ |A1 +A2| >
3n

4
.

So |2A| ≠ 3n
4 and 3n

4 /∈ S(G, 2).

We will now show that all other values are present in S(G, 2). Let A be a subgroup of index
2 of G, since subgroups are closed under the operation of G, we have |2A| = |A| = n

2 . So
n− n

2 = n
2 ∈ S(G, 2). Let 4|nr. We take the subgroup H = {Zn1 × Zn2 × · · ·Znr−1 × Znr

4
} of

index 4 of G. Let ϕ : G → G/H denote the canonical map. Note that

G/H = {H, (0, ..., 0, 1) +H, (0, ..., 0, 2) +H, (0, ..., 0, 3) +H},

and therefore G/H ∼= Z4. We take the subset B = {H, (0, ..., 0, 1) + H} of G/H, and note
that |2B| = 3. Using Lemma 1.4, we let A = ϕ−1(B), and find that |A| = n

4 |B| = n
2 , and

|2A| = n

4
|2B| = 3n

4
= n− n

4
.

So n− n
4 ∈ S(G, 2) whenever 4 ∤ nr.

Now let d|n, with d even and d > 4. Using the notation in Lemma 1.4, let H ≤ G be of index
d, and let ϕ : G → G/H be the canonical map. We construct a subset B of G/H, such that
|B| = d

2 and |2B| = d− 1. Let K be a subgroup of G/H of index 2. We define

B = (K \ {k}) ∪ {g},

where k ∈ K and g ∈ (G/H) \K are arbitrary elements. Note that K = 2(K \ {k}) ⊆ 2B,
and (g +K) \ {k + g} ⊆ B. So 2B = (G/H) \ {k + g}. Therefore |2B| = d− 1.
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Let A = ϕ−1(B). Then

|A| = n

d
|B| = n

d
· d
2
=

n

2
,

and
|2A| = n

d
|2B| = n

d
(d− 1) = n− n

d
,

which completes our proof.

We will now determine S(G, 2) for odd order.

Theorem 3.4. If G ∼= Z3,Z5 or Z2
3, we have S(G, 2) = {n − 2}. Otherwise, if G has odd

order, we have S(G, 2) = {n− 2, n− 1}.

Proof. Let A ⊆ G with |A| = χ(G, 2) − 1 = n−1
2 . Using the notation of Lemma 1.3, let H

denote the stabilizer subgroup of 2A. Then A and 2A consist respectively of k1 and k2 cosets
of H. Let d be the index of H. Then

n− 1

2
= |A| = k1n

d
,

Which implies that n
d divides n − 1. Since n

d |n, this is only possible if n
d = 1, so n = d and

k1 =
n−1
2 . Therefore

|2A| = k2 ≥ 2k1 − 2 + 1 = n− 2.

Since |2A| < n, we have S(G, 2) ⊆ {n− 2, n− 1}.

Since |G| is odd, G is of type (n1, ..., nr) for r, n1, ..., nr ∈ N with nk odd for all k. Then

n− 1

2
=

r∑
k=1

nk − 1

2
nk+1 · · ·nr.

This can be realized by noting that

r∑
k=1

(nk − 1)nk+1 · · ·nr = n− n

n1
+

n

n1
− n

n1n2
+

n

n1n2
− ...− nr + nr − 1 = n− 1.

Since ni|ni+1 for all 1 ≤ i ≤ r − 1, we have nr ≥ 3. So nr−1
2 ≥ 1. Using the notation of

Proposition 1.6, we have

|2I(G,
n− 1

2
)| = 2(n− 1)

2
− 2 + 1 = n− 2.

So n− 2 ∈ S(G, 2). Similarly, if nr−1
2 ≥ 3 we have

|2I∗(G,
n− 1

2
)| = 2(n− 1)

2
= n− 1.

So n− 1 ∈ S(G, 2) whenever nr ≥ 7.

That leaves us with Zr
3 and Zs

5. For r ≥ 3, we take

A =

(
I
(
Zr
3,
n− 1

2

)
\ {(1, 1, ..., 1, 0, 2, 2)}

)
∪ {(1, 1, ..., 1, 2, 0, 0)}.
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We then find that
2A = Zr

3 \ {(2, 2, ..., 2)}.

For s ≥ 2, we take

B = (I(Zr
5,
n− 1

2
\ {(2, 2, ..., 2, 1, 4)}) ∪ {(2, 2, ..., 2, 3, 0)}.

We then find
2B = Zr

5 \ {(4, 4, ..., 4)}.

For G ∼= Z3,Z5 or Z2
3, it can be verified that n− 1 /∈ S(G, 2).

Therefore S(G, 2) = {n− 2} if G ∼= Z3,Z5 or Z2
3, and for all other groups G of odd order we

have S(G, 2) = {n− 2, n− 1}.

We have now determined S(G, 2) for all G. In the next section we will consider h = 3.
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4. 3-fold sumsets

In this section we determine S(G, h) for h = 3. Once again we first give the h-critical number.

Corollary 4.1. Let G be an abelian group of order n. Then

χ(G, 3) =


(
1 + 1

p

)
n
3 + 1 if n has prime divisors congruent to 2 (mod 3),

and p is the smallest such divisor;⌊
n
3

⌋
+ 1 otherwise.

Proof. Note that χ(G, 3) = v(n, 3) + 1. Using the notation of Lemma 2.3, let

P2(n) = {p|n : p prime and p ≡ 2 (mod 3)}.

We then have

v(n, 3) =


(
1 + 1

p

)
n
3 if P2(n) ̸= ∅,

and p is the smallest element of P2(n);⌊
n
3

⌋
+ 1 if P2(n) = ∅.

This completes the proof.

We will now determine S(G, 3) by giving several theorems distinguishing all the possible cases.

Theorem 4.2. Let G be a finite abelian group with |G| = n. Assume that n has prime
divisors congruent to 2 (mod 3), and that p is the smallest of these. Then

S(G, 3) =

{
n− n

p

}
.

Proof. Let A be a 3-incomplete subset of maximum size of G. With the notation of Lemma
1.3, let H be the stabilizer subgroup of 3A. Let A and 3A consist respectively of k1 and k2
cosets of H. Let d denote the index of H. Then by Corollary 4.1,

(p+ 1)n

3p
= |A| = k1n

d
.

So k1 =
(p+1)d

3p , which implies that p|d, since p ∤ p+1
3 . Then we have

k2 ≥ 3k1 − 3 + 1 =
dp+ d

p
− 2 = d+

(
d

p
− 2

)
≥ d− 1,

with equality if and only if d = p. We find that

n > |3A| = k2n

d
≥ (d− 1)n

d
.

Therefore d > k2 ≥ d−1. We conclude that k2 = d−1, and d = p. So |3A| = (p−1)n
p = n− n

p .
It follows that

S(G, 3) =

{
n− n

p

}
.

This concludes our proof.
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Next we look at the case where n is divisible by 3, and has no prime divisors that are congruent
to 2 (mod 3).

Theorem 4.3. Let G be a finite abelelian group of order n, with exponent nr. Assume that
3|n, and n has no prime divisors congruent to 2 (mod 3). For any t ≥ 1, let

ν3(t) = max{m ≥ 0 : 3m = t}.

Then
S(G, 3) = {n− n

d
: d|n, 3|d, d ̸= 3} ∪ {n− 2n

d
: d|n, 1 ≤ ν3(d) ≤ ν3(nr)}.

With nr denoting the exponent of G.

Proof. By Corollary 4.1, we have χ(G, 3) = n
3 + 1. Let A be a subset of G with |A| = n

3 . We
show the result using five claims.

Claim 1: S(G, 3) ⊆ {n− cn
d : d|n, 3|d, c = 1, 2}.

Proof of Claim 1: With the notation of Lemma 1.3, let H be the stabilizer subgroup of 3A.
Let A and 3A consist respectively of k1 and k2 cosets of H. Let d denote the index of H.
Then

n

3
= |A| = k1n

d
,

so 3k1 = d, and 3|d. Furthermore, we have

k2 ≥ 3k1 − 3 + 1 = d− 2.

So
n > |3A| = k2n

d
≥ (d− 2)n

d
.

Therefore, k2 = d− 2 or k2 = d− 1, from which our claim follows.

Claim 2: Let d|n, 3|d, and d ̸= 3. Then n− n
d ∈ S(G, 3).

Proof of Claim 2: Using the notation in Lemma 1.4, let H ≤ G be of index d, and let
ϕ : G → G/H be the canonical map. We construct a subset B of G/H, such that |B| = d

3
and |3B| = d− 1. Let K be a subgroup of G/H of index 3. We define

B = (K \ {k}) ∪ {g},

where k ∈ K and g ∈ (G/H)\K are arbitrary elements. Note that d has no divisors congruent
to 2 (mod 3), since d divides n. Therefore 6 ∤ d, and d ≥ 9. It follows that d = 3 + 6k for
some k ∈ N, and

|K \ {k}| = d

3
− 1 = 2k ≥ k + 1 =

⌊
d

6

⌋
+ 1 = χ(K, 2).

So 2(K \ {k}) = K, and 3(K \ {k}) = K. So

3B = 3(K \ {k}) ∪ (2(K \ {k}) + g) ∪ ((K \ {k}) + 2g) = G \ {k + 2g}.

So |3B| = d − 1. Using the notation of Lemma 1.4, let A = ϕ−1(B). Then |A| = n
d |B| = n

3 ,
and

|3A| = n

d
|3B| = n− n

d
.
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This concludes the proof of our claim.

Claim 3: 2n
3 /∈ S(G, 3).

Proof of Claim 3: Let H be the stabilizer subgroup of 3A. With the notation of Lemma 1.3,
let A and 3A consist respectively of k1 and k2 cosets of H. Let d denote the index of H.
Assume that |3A| = 2n

3 . Just like before, we see that 3k1 = d, and k2 ≥ d− 2. We find

2n

3
=

k2n

d
≥ n− 2n

d
.

So d ≤ 6. Note however, that 3|d and d has no divisors congruent to 2 (mod 3). So d = 3.
Therefore k1 = 1, and A is a coset of H. This implies that 3A is also a coset of H, so k2 = 1.
It follows that |3A| = n

3 , which is a clear contradiction. So 2n
3 /∈ S(G, 3).

Claim 4: Let d|n such that ν3(d) > ν3(nr). Then n− 2n
d /∈ S(G, 3).

Proof of Claim 4: Assume, for contradiction, that |A| = n
3 and |3A| = n − 2n

d . With the
notation of Lemma 1.3, let H be the stabilizer subgroup of 3A. Let A, 3A consist respectively
of k1, k2 cosets of H. Let d1 denote the index of H. Then 3k1 = d1, and

n− 2n

d
= |3A| = k2n

d1
,

so d1 − 2d1
d = k2 ≥ 3k1 − 2 = d1 − 2. Therefore d|2d1, but d ≥ d1. This implies that d = d1

or d = 2d1. However, d is odd since all prime divisors are odd, so d ̸= 2d1. So d = d1.

Let ϕ : G → G/H be the canonical map. We write G′ = G/H and B = ϕ(A). Using Lemma
1.4 we get |G/H| = d, |B| = d

3 and |3B| = d− 2. Let {x, y} = G′ \ (3B). We will show that
the stabilizer subgroup H of 3B is trivial. For the sake of contradiction, let g ∈ H such that
g is not the identity element. Assume that x−g /∈ 3B. Then x−g = y, since x−g ̸= x. Note
that y − g ̸= y, while y − g ̸= y + g = x. Therefore y − g ∈ 3B, while g + y − g = y /∈ 3B.
This is a contradiction, so the stabilizer subgroup of 3B contains only the identity element
and is trivial.

Since the stabilizer of 3B is trivial, so is the stabilizer of 2B. By Corollary 1.2 it follows that
|2B| ≥ 2|B| − 1, so

|G′ \ (2B)| = |G′| − |2B| ≤ |G′| − 2|B|+ 1 =
d

3
+ 1.

Note that x − B ̸⊆ 2B, and therefore x − B ⊆ G′ \ (2B) and similarly y − B ⊆ G′ \ (2B).
Since |x−B| = |y −B| = d

3 , we know that

|(x−B) ∪ (y −B)| ≥ d

3
− 1.

Now let l = x− y, K = ⟨l⟩, and |K| = k. Then

|B ∩ (B + l)| = |(x−B) ∩ (y −B)| ≥ |B| − 1.

So either |B ∩ (B + l)| = |B| or |B ∩ (B + l)| = |B| − 1.

Let |B ∩ (B + l)| = |B|. Then B + l = B. We write B = {b1, ..., b d
3
}. Let 1 ≤ i ≤ d

3 . Then

there exists some 1 ≤ j ≤ d
3 such that l+ bi = bj . Therefore, bi, bi + l, bi + 2l, ..., bi + (k − 1)l

are distinct elements of B. It follows that B is a union of cosets of K.
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We say that some subset C ⊆ G is an arithmetic progression of difference l and size r if

C = {g + jl : r0 ≤ j ≤ r0 + r − 1},

for some 0 ≤ r0 ≤ k − r. Note that C is a coset of K if and only if r = k − 1. Let
|B ∩ (B + l)| = |B| − 1. Let g ∈ B \B + l. Then g, g+ l, ..., g+ (k− 1)l are distinct elements
of B, while B + l is a union of arithmetic progressions, each of difference l and all of them
size k.

Either way, we conclude that B is a union of arithmetic progressions, each of difference l and
at most one of them size less than k. Note that K is a subgroup generated by a single element,
therefore K ∼= Zk, and k|nr. Since ν3(d) > ν3(nr), we have nr|d3 , so k||B|. Therefore B is a
union of full cosets of K, and so is 3B. So d−2 is divisible by k, and d is divisible by k. Thus
k ≤ 2, but k is odd since all prime divisors of n are not congruent to 2 (mod 3). So k = 1,
which is a contradiction if x ̸= y. So n− 2n

d /∈ S(G, 3).

Claim 5: Let d|n such that 1 ≤ ν3(d) ≤ ν3(nr). Then n− 2n
d ∈ S(G, 3).

Proof of Claim 5: Let G be of type (n1, ..., nr). Note that d = 3ν3(d)pr11 pr22 · · · prkk , where for
all 1 ≤ i ≤ k, pi ≡ 1 (mod 3) is prime and ri ∈ N. Therefore, we can find positive integers
d1, ..., dr with the following properties:

a. dj |nj for each 1 ≤ j ≤ r, and 3ν3(d)|dr.

b. d1d2 · · · dr = d.

c. dj ≡ 1 (mod 3) for each 1 ≤ j ≤ r − 1.

We then have
d

3
=

dr
3

+
r−1∑
k=1

dk − 1

3
dk+1 · · · dr.

This can be realised by noting that

d = d1d2 · · · dr = d1d2 · · · dr − d2 · · · dr + d2 · · · dr − ...− dr + dr = dr +
r−1∑
k=1

(dk − 1)dk+1 · · · dr.

Now let H be a subgroup of G of type (n1
d1
, ..., nr

dr
). Then K = G/H is of type (d1, ..., dr). Let

ϕ : G → K be the corresponding canonical map. With the notation of Proposition 1.6, we
see that

|hI(K,
d

3
)| = d− 2.

Let A = ϕ−1(I(K, d3)). By Lemma 1.4, it follows that |A| = n
d
d
3 = n

3 . Also

|3A| = n

d
(d− 2) =

n− 2n

d
.

This concludes the proof of our claim.

Using every claim, we quickly realize that

S(G, 3) = {n− n

d
: d|n, 3|d, d ̸= 3} ∪ {n− 2n

d
: d|n, 1 ≤ ν3(d) ≤ ν3(nr)},

which concludes our proof.
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We will now distinguish the case where all divisors of n are congruent to 1 (mod 3) using two
theorems.

Theorem 4.4. Let G be a finite abelian group of order n. Assume that all divisors of n are
congruent to 1 (mod 3), and that G ̸∼= Zr

7 for all r ≥ 1. Then

S(G, 3) = {n− 3, n− 1}.

Proof. By Corollary 4.1, we have χ(G, 3) = n−1
3 + 1. Let A ⊆ G such that |A| = n−1

3 . We
show the result using three claims.

Claim 1: S(G, 3) ⊆ {n− 3, n− 2, n− 1}.

Proof of Claim 1: Using the notation of Lemma 1.3, let H be the stabilizer subgroup of
3A with index d, and let A and hA consist respectively of k1 and k2 cosets of H. Then
d(n−1)

3 = k1n, so n|
(
d · n−1

3

)
. Note that gcd(n, n−1

3 ) = 1, since the greatest common divisor
must divide both n and n− 1. Therefore we can apply Euclids lemma, from which it follows
that n|d. Therefore n = d and k1 =

n−1
3 . By Lemma 1.3, we have

|3A| = k2n

d
= k2 ≥ 3k1 − 2 = n− 3.

Since |3A| < n, we conclude that S(G, 3) ⊆ {n− 3, n− 2, n− 1}.

Claim 2: {n− 3, n− 1} ⊆ S(G, 3).

Proof of Claim 2: Let G be of type (n1, ..., nr). Note that for each 1 ≤ i ≤ r, we have ni ≡ 1
(mod 3), and therefore

n− 1

3
=

r∑
k=1

nk − 1

3
nk+1 · · ·nr.

Note that all divisors of nr are congruent to 1 (mod 3), and that nr ̸= 7, so nr ≥ 13, and
therefore nr−1

3 ≥ 3. By Proposition 1.6 we have |hI(G, n−1
3 )| = n − 3, and |hI∗(G, n−1

3 )| =
n− 1. So {n− 3, n− 1} ⊆ S(G, 3).

Claim 3: n− 2 /∈ S(G, 3).

Proof of Claim 3: Assume that |3A| = n − 2, while |A| = n−1
3 . We write 3A = G \ {x, y},

with some x, y ∈ G, x ̸= y. Let d be the size of the stabilizer subgroup of 3A. With Lemma
1.3, we see that d|n−1

3 , thus d|(n− 1), and that d|(n− 2). Therefore d = 1 and the stabilizer
subgroup is trivial. It follows that the stabilizer of 2A is also trivial, and with Corollary 1.2
we get |2A| ≥ 2|A| − 1. It follows that

|G \ 2A| = |G| − |2A| ≤ |G| − 2|A|+ 1 = n− 2n− 2

3
+ 1 = |A|+ 2.

Note that x − A ⊆ G \ 2A, since otherwise x ∈ 3A. Similarly y − A ⊆ G \ 2A. Since
|x−A| = |A| = |y−A|, and since (x−A)∪(y−A) ⊆ G\2A, we get |(x−A)∩(y−A)| ≥ |A|−2,
since otherwise we would have

|A|+ 2 < |(x−A) ∪ (y −A)| ≤ |G \ 2A| ≤ |A| − 2,

which is a contradiction. Now let l = x− y, K = ⟨l⟩ and |K| = k. Note that

|A ∩ (A+ l)| = |(x−A) ∩ (y −A)| ≥ |A| − 2.
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Therefore A is a union of arithmetic progressions, with difference l, and at most two of them
have size less than k. Now note that k|n, therefore k ≡ 1 (mod 3) and km = n for some
m ∈ N, so

|A| − k − 1

3
=

n− 1

3
− k − 1

3
=

km− k

3
= k

m− 1

3
.

So k|(|A| − k−1
3 ), and therefore |A| ≡ k−1

3 (mod k). This leaves us with the following cases
which we will all contradict.

Case 1: A is a union of full cosets of K, and one arithmetic progression of size k−1
3 .

Case 2: A is a union of full cosets of K, and two disjoint arithmetic progression in different
cosets. The sizes of these sets add up to k−1

3 or k + k−1
3 .

Case 3: A is a union of full cosets of K, and two disjoint arithmetic progression in the same
coset. The sizes of these sets add up to k−1

3 .

For Case 1, let C = {g + jl : r0 ≤ j ≤ r0 +
k−1
3 − 1} be the arithmetic progression. Then

3C = {3g + jl : 3r0 ≤ j ≤ 3r0 + k − 4}

We conclude that |3C| = k − 3, so |3A| ≡ k − 3 (mod k), since 3A is for the rest made up of
full cosets. However, |3A| = n− 2 ≡ k − 2 (mod k), so this is a contradiction.

For Case 2, let B1, B2 ⊆ G be two arithmetic progressions in different cosets, respectively of
size r1 and r2. We write

B1 = {b1 +m1l : s1 ≤ m1 ≤ s1 + r1 − 1}, B2 = {b2 +m2l : s2 ≤ m2 ≤ s2 + r2 − 1},

for some b1, b2 ∈ G with b1 ̸= b2 0 ≤ s1 ≤ k − r1 and 0 ≤ s2 ≤ k − r2. We find that

3B1 ⊆ 3b1 +K, 2B1 +B2 ⊆ 2b1 + b2 +K, B1 + 2B2 ⊆ b1 + 2b2 +K, 3B2 ⊆ 3b2 +K.

We find that all these sets are within distinct cosets of K. Note that |3B1| = 3r1 − 2,
|2B1 + B2| = 2r1 + r2 − 2, |B1 + 2B2| = r1 + 2r2 − 2 and |3B2| = 3r2 − 2. We assume that
r1 + r2 =

k−1
3 . Then each of these sets has size less than k, and therefore

|3B1|+ |2B1 +B2|+ |B1 + 2B2|+ |3B2| = 6(r1 + r2)− 8 = 2k − 10.

Note that

n− 2 = |3A| ≡ |3B1|+ |2B1 +B2|+ |B1 + 2B2|+ |3B2| (mod k),

and therefore n− 2 ≡ 2k− 10 ≡ −10 (mod k), so n+8 ≡ 0 (mod k), while k|n. This implies
that k|8, and since k ≡ 1 (mod 3) and k > 1 we know that k = 4. This implies however that
2|n, which is a contradiction since all divisors of n are congruent to 1 (mod 3).

Now we assume that r1+ r2 = k+ k−1
3 . Assume without loss of generality that r1 ≥ r2. Then

3r1 − 2 ≥ 2r1 + r2 − 2 ≥ r1 + 2r2 − 2 = k +
k − 1

3
+ r2 − 2 ≥ k.

Therefore |3B1| ≥ |2B1 + B2| ≥ |B1 + 2B2| ≥ k. So 3B1, 2B1 + B2, B1 + 2B2 are subsets
of cosets of K with size at least k. It follows that they have size k. Now assume that
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3r2 − 2 = |3B2| < k. Then

n− 2 = |3A| ≡ 3r2 − 2 (mod k).

Note however, that k ∤ 3r2, because otherwise k = 3r2 since 3r2 − 2 < k and k ≥ 7. But this
contradicts 3 ∤ k. Therefore k ∤ 3r2 while k|n, so this is a contradiction. Now assume that
3r2−2 ≥ k. Then n−2 ≡ 0 (mod k), and since k > 1 we have k = 2 which is a contradiction.
This completes our second case.

We now look at Case 3. Let B1, B2 be two disjoint arithmetic progressions that are in the same
coset, with |B1|+ |B2| = k−1

3 . Note that since K is cyclic, K ∼= Zk. Let I1, I2 be two disjoint
arithmetic progressions in Zk with |I1| + |I2| = k−1

3 . We will show that |3(I1 ∪ I2)| ̸= k − 2.
Without loss of generality, we assume that

I1 = {0, 1, ..., r1 − 1}, I2 = {s, s+ 1, ..., s+ r2 − 1},

for some r1, r2, s ∈ Zk such that r1 + r2 =
k−1
3 , r1 ≥ r2 and r1 + 1 ≤ s ≤ k − r2 − 1. We also

assume that s ≤ k−1
3 + r1 which interests the two gaps between I1 and I2. This makes it so

that
|{r1, r1 + 1, ..., s− 1}| ≤ |{s+ r2, s+ r2 + 1, ..., k − 1}|.

We can assume this without loss of generality since the case s < k−1
3 + r1 is equivalent to the

case s > k−1
3 + r1. The set |3(I1 ∪ I2)| ≠ k − 2 is now a union of the following sets:

3I1 = {0, 1, ..., 3r1 − 3},
2I1 + I2 = {s, s+ 1, ..., s+ 2r1 + r2 − 3},

I1 + 2I2 = {2s, 2s+ 1, ..., 2s+ r1 + 2r2 − 3},
3I2 = {3s, 3s+ 1, ..., 3s+ 3r2 − 3}.

We distinguish three subcases to show that |3(I1 ∪ I2)| ≠ k − 2.

Subcase 1: Let r1 + 1 ≤ s ≤ k−1
3 + r2 − 2. Since r1 + r2 = k−1

3 and r2 ≤ r1 we then obtain
the following inequalities:

s ≤ k−1
3 + r2 − 2 = r1 + 2r2 − 2 ≤ 3r1 − 2,

2s ≤ s+ k−1
3 + r2 − 2 = s+ r1 + 2r2 − 2 ≤ s+ 2r1 + r2 − 2,

3s ≤ 2s+ k−1
3 + r2 − 2 = 2s+ r1 + 2r2 − 2,

k − 1 = 3r1 + 3r2 ≤ 3s+ 3r2 − 3.

It follows that 3I1 ∪ (2I1 + I2)∪ (I1 + 2I2)∪ 3I2 = Zk, and therefore |3(I1 ∪ I2)| = k ̸= k− 2.
So this is a contradiction.

Subcase 2: Let k−1
3 + r2 − 1 ≤ s ≤ k−1

3 + r1 − 2. Then

s ≤ k−1
3 + r1 − 2 = 2r1 + r2 − 2 ≤ 3r1 − 2,

2s ≤ s+ k−1
3 + r1 − 2 = s+ 2r1 + r2 − 2.

So 3I1 ∪ (2I1 + I2) ∪ (I1 + 2I2) = {0, 1, ..., 2s+ r1 + 2r2 − 3}. Now we have

2s+ r1 + 2r2 − 3 ≥ 2k − 2

3
+ 2r2 − 2 + r1 + 2r2 − 3 = k + 3r2 − 6 ≥ k − 3.

If either of these inequalities is a strict inequality, we have 3I1∪(2I1+I2)∪(I1+2I2) = Zk\{k−
1} or 3I1∪(2I1+I2)∪(I1+2I2) = Zk, so |3(I1∪I2)| > k−2. If both inequalities are equalities,
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then r2 = 1, s = k−1
3 and r1 = k−4

3 . Therefore 3I2 = {k − 1}. So 3(I1 ∪ I2) = Zk \ {k − 2},
and |3(I1 ∪ I2)| ≠ k − 2.

Subcase 3: Let k−1
3 + r1 − 1 ≤ s. Note that from our assumption, s ≤ k−1

3 + r1 and that
r1 ≥ k−1

6 . First we look at the case where r1 ≥ k−1
6 + 1. Then s ≤ k−1

3 + r1 ≤ 2r1 − 2 + r1 =
3r1 − 2. Therefore

3I1 ∪ (2I1 + I2) = {0, 1, ..., s+ 2r1 + r2 − 3}.

If s+ r1 ≥ 2k−2
3 + 2, we have

s+ 2r1 + r2 − 3 ≥ 2k − 2

3
+ 2 +

k − 1

3
− 3 = k − 2,

so Zk \ {k − 1} ⊆ 3(I1 ∪ I2) and |3(I1 ∪ I2)| ≥ k − 1. If s+ r1 ≤ 2k−2
3 + 1, then

2k − 2

3
+ 1 ≥ s+ r1 ≥

k − 1

3
+ 2r1 − 1.

This is equivalent to k−1
6 + 1 ≥ r1, but k−1

6 + 1 ≤ r1, so k−1
6 + 1 = r1 and s = k−1

2 . We
conclude that 3I1∪(2I1+I2) = {0, 1, ..., s+2r1+r2−3} = {0, ..., k−3}, while k−1 ∈ I1+2I2.
So |3(I1 ∪ I2)| ≥ k − 1 > k − 2. So this is a contradiction.

Now we look at the case where r1 =
k−1
6 = r2. Then

k − 3

2
=

k − 1

3
+ r1 − 1 ≤ s ≤ k − 1

3
+ r1 ≤

k − 1

2
.

Therefore s = k−3
2 or s = k−1

2 . Assume that s = k−3
2 . We find that

3I1 = {0, ..., k−3
2 − 2},

2I1 + I3 = {k−3
2 , ..., k − 5},

I1 + 2I2 = {k − 3, ..., k + k−3
2 − 5},

3I2 = {k−3
2 − 3, ..., k − 8}.

For k = 7, this means that 3(I1 ∪ I2) = {0, 2, 4, 6}, so |3(I1 ∪ I2)| ≠ k − 2. We now look
at the elements that are not in these sets. When k > 7, we find that k−3

2 − 1 ∈ 3I2, and
k−3
3 − 4 ∈ 3I1. For 1 ≤ i ≤ 7 and i ̸= 4, we have k − i ∈ 2I1 + I2 or k − i ∈ I1 + 2I2, while

k − 4 is not present in any of these sets. We conclude that 3(I1 ∪ I2) = Zk \ {k − 4}.
Let s = k−1

2 . We find that

3I1 = {0, ..., k−1
2 − 3},

2I1 + I3 = {k−1
2 , ..., k − 4},

I1 + 2I2 = {k − 1, ..., k + k−1
2 − 4},

3I2 = {k−1
2 − 1, ..., k − 5}.

We look at the elements that are not in these sets. We find that k−1
2 −1 ∈ 3I2, and k−1

2 −3 ∈
3I1. Furthermore k− 4 ∈ 2I1+ I2, while k− 1 ∈ I1+2I2. We find that k−1

2 − 2, k− 3, k− 2 /∈
3(I1 ∪ I2), so 3(I1 ∪ I2) = Zk \ {k−1

2 − 2, k − 3, k − 2}.
So for each two disjoint arithmetic progressions I1, I2 ⊆ Zk with |I1| + |I2| = k−1

3 we have
|3(I1∪I2)| ≠ k−2. Since K ∼= Z, we can find such I1, I2 such that |3(B1∪B2)| = |3(I1∪I2)| ≠
k−2. This completes our proof for Case 3. Since we have distinguished all the cases, it follows
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that n− 2 /∈ S(G, 3). Using all our claims, we obtain

S(G, 3) = {n− 3, n− 1}.

This completes our proof.

The only groups left to treat are Zr
7 for r ∈ N. We have distinguished this case because part

(2) of Proposition 1.6 can not be applied. Since the type is (7, ..., 7), we find that

χ(Zr
7, 3)− 1 =

n− 1

3
=

r∑
k=1

qknk+1 · · ·nr =

r∑
k=1

2nk+1 · · ·nr.

So qr = 2 < 3, and part (2) is not applicable.

Theorem 4.5. Let G ∼= Zr
7 for some r ∈ N. Then

S(G, 3) = {n− 3}.

Proof. We first prove the following claim.
Claim. Let r ∈ N, and let 0 denote the identity element of G = Zr

7. Let A be a subset of G
such that |A| = 7r−1

3 and 0 /∈ 3A. Then there is an ascending chain of subgroups

{0} = H0 < H1 < · · · < Hr = G

and elements a0, a
′
0 ∈ H1, ak ∈ Hk+1 \Hk for 1 ≤ k ≤ r − 1, such that

A = {a0, a′0} ∪
r−1⋃
k=1

({ak, 2ak}+Hk).

Proof of Claim: First, we show that Zr
7 has 7r−1

6 subgroups of index 7. We identify with
the r-dimiensional vector space over Z7. For any 1 ≤ k ≤ r, the number of k-dimensional
subspaces is given by the Gaussian binomial coefficient [6](

r

k

)
7

=
(1− 7r)(1− 7r−1) · · · (1− 7r−k+1)

(1− 7k)(1− 7k−1) · · · (1− 7)
.

Now note that the number of subgroups of Zr
7 with index 7 is equal to the number of (r− 1)-

dimensional subspaces of the r-dimensional vector space over Z7. Therefore, we find that the
number of subgroups of index 7 is(

r

r − 1

)
7

=
(1− 7r)(1− 7r−1) · · · (1− 72)

(1− 7r−1)(1− 7k−1) · · · (1− 7)
=

1− 7r

1− 7
=

7r − 1

6
.

Let A ⊆ Zr
7 such that |A| = 7r−1

3 and 0 /∈ A. We show that for any subgroup H of G we have
|A ∩H| = |H|−1

3 . By Corollary 4.1 we have

χ(H, 3) =
|H| − 1

3
+ 1.

Note that |A∩H| ≤ |H|−1
3 , since otherwise we have H ⊆ A, which contradicts 0 /∈ 3A. So we
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need to show that |A ∩ H| ≥ |H|−1
3 . This holds trivially for |H| = 1. For |H| = 7, observe

that the collection of pierced lines

{H \ {0} : H ≤ G, |H| = 7}

forms a partition of G \ {0}. Note that G has 7r−1
6 subgroups of order 7. Since every

element g ∈ Zr
7 \ {0} has order 7, ⟨g⟩ is a unique subgroup of order 7. By not counting the

identity element, we obtain 7r−1
6 subgroups of order 7. For each such subgroup H, we have

|A ∩ (H \ {0})| = |A ∩H| ≤ |H|−1
3 = 2. Now assume that there exists some subgroup H of

order 7 of G, such that |H ∩A| < 2 . Then

7r − 1

3
= |A| = |A ∩ (G \ {0})| =

⋃
H≤g,|H|=7

|A ∩ (H \ {0})| < 2

(
7r − 1

6

)
,

which is a clear contradiction, so |A ∩ H| = 2 = |H|−1
3 for all subgroups H of size 7. Note

that for every subgroup H of G, H \ {0} is the disjoint union of |H|−1
6 pierced lines, each of

size 7− 1 = 6. It follows that

|A ∩H| = 2

(
|H| − 1

6

)
=

|H| − 1

3
.

We are now ready to prove our claim. For r = 1, we have {0} = H0 < H1 = Z7. Let A ⊆ Z7

with |A| = 2. We pick a0, a
′
0 ∈ A and find that A = {a0, a′0}, which completes this case.

We consider r = 2. Let A be a subset of Z2
7 of size 72−1

3 = 16, and let 0 /∈ 3A. Let H ≤ G
with index 7. We show that there are at most two distinct cosets of H that contain 3 or
more elements of A. Assume for contradiction that cosets C1, C2, C3 each contain at least 3
elements of A. Then χ(G/H, 3) = χ(Z7, 3) = 3, so any subset of G/H of size 3 is 3-complete.
Since {C1, C2, C3} ⊆ G/H has size 3, we find that 3{C1, C2, C3} = G/H. Since H ∈ G/H
we can find (not necessarily distinct) indices i, j, k ∈ {1, 2, 3} such that Ci + Cj + Ck = H.
We write Ai = A ∩ Ci, Aj = A ∩ Cj , Ak = A ∩ Ck, and let K be the stabilizer subgroup of
A1 + A2 + A3 in H. Since K is a subgroup of H, and |H| = 7, we know that either |K| = 7
or K is trivial. Note that 0 /∈ A, so 0 /∈ Ai +Aj +Ak, and that the sizes of these sets are all
greater or equal to 3. Therefore K ̸= H, so K is trivial. Then by Corollary 1.2 we have

6 ≥ |Ai +Aj +Ak| ≥ |Ai|+ |Aj |+ |Ak| − 2|K| = |Ai|+ |Aj |+ |Ak| − 2 ≥ 7,

which is a clear contradiction. So there are at most two distinct cosets of H that contain 3
or more elements of A.

Next we show that there exists a subgroup H of Z2
7 of order 7 such that one of its cosets

contains at least 4 elements of A. Assume the contrary. Then for each subgroup H of
order 7, two cosets contain 3 elements of A, while five cosets contain 2 elements of A, since
3 · 2 + 2 · 5 = 16 = |A|. We identify Z2

7 with the 2-dimensional vector space over Z7. Then
every subgroup of G of order 7 corresponds to a unique normal vector through (0, 0), unique
up to nonzero scalar multiplication. For example, lets look at H1 = ⟨(1, 2)⟩. We find that
this subgroup and its coset H1+(2, 0) corresponds to the following lines in the 2-dimensional
vector space over Z7:

29



We define an affine line as a coset of a subgroup of order 7. We find that the group G/H
is the set of affine lines corresponding to the lines parallel to H in the 2-dimensional vector
space over Z7. For every g ∈ G, there exists a subgroup of G containing g, so there exists
an unique affine line containing (0, 0) and g. Therefore, we find that for every two elements
g1, g2 ∈ G, there exists a unique affine line that contains both g1 and g2. We now look at the
set

S = {(C, a, a′) : C is an affine line in G; a, a′ ∈ C ∩A; a ̸= a′}.

After arbitrarily choosing a, a′ ∈ A such that a ̸= a′, there exists a unique affine line that
contains both a and a′. Therefore |S| = |A| · (|A| − 1) = 240.
On the other hand, there are 7r−1

6 = 72−1
6 = 8 subgroups of order 7. We partitioning the 56

affine lines into 8 parallel classes depending on which subgroup they correspond to. For each of
these classes, two affine lines contain 3 elements of A, while five affine lines contain 2 elements
of A. Therefore, for each class the number of suitable pairs a, a′ is 6+6+2+2+2+2+2 = 22,
so 240 = |S| = 8 · 22 = 176, which is a contradiction.
So there exists a subgroup H of Z2

7 of order 7 such that one of its cosets contains at least
4 elements of A. We choose c ∈ G \ H, and let Ci = ic + H for 0 ≤ i ≤ 6 be the distinct
cosets of H. Let Ai = Ci ∩ A. Note that |A ∩H| = |H|−1

3 = 2, so |A0| = 2. We may assume
without loss of generality that |A1| = max{|Ai|}, so |A1| ≥ 4. Let i, j, k ∈ {0, ..., 6} such that
i+ j + k ≡ 0 (mod 7), and assume that none of Ai, Aj or Ak is the emptyset. We show that
and |Ai|+|Aj |+Ak| ≤ 8. Assume the contrary. Note that Ci+Cj+Ck = c(i+j+k)+H = H,
so Ai +Aj +Ak ⊆ H. Also, the stabilizer subgroup K of Ai +Aj +Ak is either trivial or H,
but 0 /∈ Ai +Aj +Ak, while Ai +Aj +Ak ̸= ∅. So K is trivial. We conclude from Corollary
1.2 that

|Ai +Aj +Ak| ≥ |Ai|+ |Aj |+Ak| − 2|K| ≥ 9− 2 = 7.

So Ai+Aj +Ak = H, and 0 ∈ Ai+Aj +Ak, which is a contradiction, so |Ai|+ |Aj |+Ak| ≤ 8
whenever Ai, Aj , Ak are not empty. We then find the following results:

• If A5 ̸= ∅, we find that 8 ≥ 2|A1|+ |A5| ≥ 8 + |A5|, which implies that A5 = ∅.

• If A6 ̸= ∅, we have 8 ≥ |A0| + |A1| + |A6| = 2 + |A1| + |A6|. Note that if |A1| ≥ 6, we
must have that A6 = ∅, meaning that A6 ≤ max{0, 6−A1}.
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• If A3 ̸= ∅, we have |A1|+ 2|A3| ≤ 8, and thus |A3| ≤ 4− |A1|
2 .

• If A2 and A4 are not empty, then |A2|+ |A4| ≤ 8− |A1| ≤ |A1|, since 4 ≤ |A1|. If A2 or
A4 is empty, this holds trivially since |A1| ≤ 7.

With these results, we have

16 = |A| = |A0|+ |A1|+ |A3|+ |A5|+ |A6|+ (|A2|+ |A4| ≤
2 + |A1|+ 4− |A1|

2 + 0 +max{0, 6− |A1|}+ |A1|.

This is equivalent with
20 ≤ 3|A1|+ 2max{0, 6− |A1|}.

Now assume that |A1| ≤ 5. Then we find that 20 ≤ 15 + 2 = 17, which is a contradiction.
So |A1| ≥ 6, and therefore 20 ≤ 3|A1|, and |A1| = 7. Then our previous inequalities yield
A3 = A6 = ∅, and therefore 16 = |A| = |A0| + |A1| + |A2| + |A4| = 9 + |A2| + |A4|. So if
A2, A4 are both not empty we have 7 = |A2|+ |A4| ≤ 8− |A1| = 1. It follows either A2 or A4

is empty, and the other is a full coset. Assume without loss of generality that A2 = C2.
We now set H1 = H, {a0, a′0} = A0, and a1 = c. Then

A = A0 ∪ C1 ∪ C2 = {a0, a′0} ∪ ({a1, 2a1}+H1),

which completes our proof for the case r = 2.

We will now use induction to show that the claim holds for r ≥ 3. Assume that the statement
holds for r − 1, so for each subset B of size 7r−1−1

3 with 0 /∈ 3B there is an ascending chain
of subgroups of G

{0} = H0 < H1 < · · · < Hr−1

and elements a0, a
′
0 ∈ H1, ak ∈ Hk+1 \Hk for 1 ≤ k ≤ r − 2, such that

B = {a0, a′0} ∪
r−2⋃
k=1

({ak, 2ak}+Hk).

Recall that if a group G has type (n1, ..., ns), then s is the rank of G. We say that a flat
of type K is a coset of a subgroup K of rank r − 2 in Zr

7. We count the number of flats
contained in A as follows. Note that 0 /∈ A, and therefore subgroups are not contained in A.
So each flat F in A is no subgroup. Therefore F = g+K for some subgroup K of rank r− 2,
and some g /∈ K. Since g has order 7, F generates a unique subgroup ⟨F ⟩ of index 7. We
know that |⟨F ⟩ ∩ A| = ⟨F ⟩−1

3 = 7r−1

3 . Since ⟨F ⟩ ∩ A is a subset of size 7r−1

3 , we find that by
our induction hypotheses ⟨F ⟩ ∩ A consists of two full flats and a part of a third, all of the
same type. Therefore, ⟨F ⟩ ∩ A does not contain a third flat of any type, and thus contains
a total of two flats. Since there are 7r−1

6 subgroups of index 7 in G, we find that A contains
2 · 7r−1

6 = 7r−1
3 flats. We call these A-flats.

Note that not all A-flats are of the same type. Each subgroup of rank r − 2 has 49 cosets, of
which at most 48 are in A since 0 /∈ A. Whenever r ≥ 3, we find that 7r−1

3 ≥ 114 > 48, so
there exist A-flats of different types. Let F1 and F2 be A-flats of types K1 and K2 respectively,
with K1 ̸= K2. We write H = K1 +K2. Note that H is a subgroup of G of index 7, since
K1 +K2 = G implies that 2F1 + F2 = G, which contradicts 3A ̸= G. Let F be an arbitrary
A-flat of type K. Then K ≤ H, since otherwise K + H = G, so F + F1 + F2 = G, which
contradicts 3A ̸= G. So H contains every subgroup of rank r − 2 that has a flat in A.
Now let c ∈ G \ H. The cosets of H are then given by Ci = ic + H for 0 ≤ i ≤ 6. Since
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H contains every subgroup of rank r − 2 that has a flat in A, every A-flat is contained
entirely in one of the seven cosets of H. Let Fi be the union of A-flats in Ci. Note that
H ∩ A is a subgroup of size 7r−1−1

3 , so by our inductive hypothesis, H contains 2 A-flats,
and they are of the same type. However, there has to be at least one coset of H that has
at least two A-flats of different types: since all flats of the same type are disjoint, each coset
of H contains at most 7 A-flats of the same type, and we have more than 2 + 6 · 7 = 44
A-flats. Without loss of generality, assume that C1 contains at least two different types of
A-flats. Note that the sum of two flats of different types is an entire coset of H. Indeed, if
g1 + K3 and g2 + K4 are flats of different types K3 and K4 respectively, then their sum is
g1 + g2 + K3 + K4, and since K3,K4 ≤ H we have K3 + K4 = H, so this is a coset of H.
Therefore, F6 = ∅, since otherwise F0 + F1 + F6 = C0 = H, contradicting 0 /∈ 3A. Similarly,
since 1 + 3 + 3 ≡ 1 + 1 + 5 ≡ 1 + 2 + 4 ≡ 0 (mod 7), we get F3 = F5 = ∅, and at least one
of F2 or F4 is empty. So either C0 ∪ C1 ∪ C2 or C0 ∪ C1 ∪ C4 contain all A-flats. Assume
without loss of generality that C0 ∪ C1 ∪ C2 contains all A-flats. Note that H ∼= Zr−1

7 has
7r−1

6 subgroups of index 7, and each coset of H contains at maximum 7 A-flats of the same
type, so each coset of H has at maximum 7 · 7r−1

6 A-flats. Since C0 contains 2 A-flats, C1 and
C2 must both contain 7 · 7r−1

6 A-flats, since 2 + 2 · 7 · 7r−1

6 = 6
3 + 7r−7

3 = 7r−1
3 , which is the

amount of A-flats. Note that if a cost of H contains 7 A-flats of the same type, then it is the
disjoint union of these A-flats. Since C1 and C2 both contain 7 A-flats of the same type, we
find that A = (A∩H)∪C1 ∪C2 = (A∩H)∪ (c+H)∪ (2c+H). Since |A∩H| = 7r−1−1

3 we
can apply the inductive hypothesis, so there is an ascending chain of subgroups

{0} = H0 < H1 < · · · < Hr−1 < Hr = G

and elements a0, a
′
0 ∈ H1, ak ∈ Hk+1 \Hk for 1 ≤ k ≤ r − 2, such that

A ∩H = {a0, a′0} ∪
r−2⋃
k=1

({ak, 2ak}+Hk).

Note that ar−2 ∈ H, since otherwise we get ar−2 +Hr−2 ̸⊆ H while ar−2 +Hr−2 ⊆ H ∩ A.
So ar−2 ∈ H \Hr−2, and therefore Hr−1 = H. When then choose ar−1 = c and find that

A = (A ∩H) ∪ (c+H) ∪ (2c+H) = {a0, a′0} ∪
r−1⋃
k=1

({ak, 2ak}+Hk).

This completes the proof of our claim.

Now let A ⊆ G be 3-incomplete, so of size n−1
3 = 7r−1

3 . Since A is 3-incomplete, we know
that 3A ̸= G. Let g ∈ G \ 3A. Note that each element of G has order 7, so 7 · g = 0. We let
B = 2g + A. Then 3B = 6g + 3A, and since g /∈ 3A and since inverses are unique, we have
6 · g + g = 7 · g = 0 /∈ 3B. Note that |B| = |A|, while |3B| = |3A|. With our claim we let

B = {b0, b′0} ∪
r−1⋃
k=1

({bk, 2bk}+Hk)

for H0 < · · · < Hr, b0, b
′
0 ∈ H1 and bk ∈ Hk+1 \ Hk for 1 ≤ k ≤ r − 1. Now note that

3({bk, 2bk} + Hk) = {3bk, 4bk, 5bk, 6bk} + Hk for each k. Also, whenever i > j we have
bj , 2bj ∈ Hi, and Hj ⊆ Hi, so

({bi, 2bi}+Hi) + 2({bj , 2bj}+Hj) = (Hi + 2{bj , 2bj}+Hj) + {bi, 2bi} = Hi + {bi, 2bi}.
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So Hk+{bk, 2bk} ⊆ 3B for each k. Similarly, since b0, 2b0 ∈ Hk for each k, we have {b0, 2bi}+
{bk, 2bk}+Hk = {bk, 2bk}+Hk. We conclude that

3B = {3b0, 3b′0, 2b0 + b′0, b0 + 2b′0} ∪
r−1⋃
k=1

({bk, 2bk, 3bk, 4bk, 5bk, 6bk}+Hk).

Note that all these sets are disjoint. Therefore

|3B| = 4 +

r−1∑
k=1

6 · 7k = 6 ·
r−1∑
k=0

7k − 2 = 6 · 1− 7r

1− 7
− 2 = 7r − 3.

Note that |3A| = |3B| = 7r − 3. We conclude that for each subset A of Zr
7 of size 7r−1

3 we
have |3A| = 7r − 3 = n− 3. So S(G, 3) = {n− 3}.
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Conclusion

In conclusion, we have determined the h-critical number for every h ≥ 1, and the set of sizes
of sumsets of nonbases of maximum size for h = 2 and h = 3. It is likely that it is more work
to determining this set for greater h, since it is probable that more cases would have to be
distinguished, based on Lemma 2.3.

This thesis was heavily inspired the work of B. Bajnok and P. P. Pach [1, 2]. Specifically, the
lemmas and theorems concerning h-critical number are based on a paper by Béla Bajnok [1],
while the sizes of sumsets of nonbases of maximum size for h = 2 and h = 3 are based on a
paper by Béla Bajnok and Péter Pál Pach [2]. Results that I have provided myself include the
proofs for Corollary 1.2, Lemma 1.4, Lemma 1.5, Proposition 1.6, Corollary 1.7, and Lemma
2.1.
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