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Abstract

This thesis explores dominant strategies in a memory-two iterated Pris-

oner’s dilemma (IPD) using Markov chains and numerical simulations. By

focusing on the memory-2 IPD, where each player remembers the outcomes

of the previous two games, the research aims to identify optimal strategies.

The findings demonstrate how increased memory affects strategic interac-

tions and highlight common characteristics shared by dominant strategies.

This work extends the understanding of strategic behavior in IPD, building

upon prior studies on memory-one IPD.
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1 Introduction

1 Introduction

Created by M. Flood and M. Dreshner in the ’50s, the Prisoner’s dilemma

is the leading example for a 2-player strategic game, and for analyzing the

evolution of cooperative and defective behaviour. The two players of the

Prisoner’s dilemma have to choose between a strategy of cooperation (C) or

defection (D), where payoffs of the players depend on the choices of both

agents. Specifically, mutual cooperation yields a reward of R for each player,

while mutual defection results in a payoff of P. If one player defects while

the other cooperates, the defector gains T, and the cooperator receives S,

where the inequality T > R > P > S holds.

In the non-iterated version of the Prisoner’s dilemma, defection is known

to be the best strategy. However, this conclusion changes in the iterated

version of the Prisoner’s dilemma (IPD). In the iterated scenario, the same

two agents repeatedly play the Prisoner’s dilemma, adjusting their strate-

gies based on the payoffs received and the actions taken in previous rounds.

This iterative process allows the agents to learn from each other’s behavior

and adapt their strategies accordingly.

When players can recall the outcomes of the previous n games, the IPD is

referred to as a memory-n game. This thesis demonstrates that the memory-

n IPD can be modeled as a Markov chain. We will focus specifically on the

memory-2 IPD, where each player remembers the outcomes of the preced-

ing 2 games. Utilizing the Markovian properties of the memory-2 IPD, we

aim to calculate the average long-term payoff for each player through nu-

merical simulations.

The purpose of this paper is to find the best strategies for the memory-2

IPD, by using Markov chains and numerical simulations. We discuss these

results, and compare them to the memory-1 IPD, which has already been

studied in numerous works, such as "Strategies in the stochastic iterated pris-

oner’s dilemma" by S. Li, "A Strategy of win-stay, lose-shift that outperforms tit-

for-tat in the Prisoner’s dilemma" by M. Nowak and K. Sigmund [1] and ’Ef-

fects of increasing the number of players and memory size in the iterated Prisoner’s

dilemma: a numerical approach’ by CH. Hauert and H. G. Schuster [4].
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1 Introduction

In Section 1, we introduce the Prisoner’s dilemma, its significance in game

theory, and the transition from non-iterated to iterated versions. It sets the

stage for the focus on memory-2 IPD and outlines the purpose and scope of

the research.

Section 2 provides a detailed description of the formal setup of the IPD. It ex-

plains the theoretical underpinnings of the game, including payoff matrices

and strategy formulations. This section introduces the concept of Markov

chains and how they are utilized to model the memory-2 IPD. It discusses

the state space and transition probabilities in the context of memory-2 strate-

gies. Additionally, this section outlines the simulation approach, including

the design and implementation of the numerical simulations used to explore

the strategic interactions in memory-2 IPD.

Section 3 presents the outcomes of the numerical simulations, identifying

the dominant strategies in the memory-2 IPD. It includes a comparison of

these results with those from memory-1 IPD studies.

In Section 4, the main findings of the thesis are summarized and interpreted,

emphasizing the impact of increased memory on strategic interactions. It

discusses the shared characteristics of dominant strategies and suggests di-

rections for future research, highlighting that further advancements are lim-

ited by computational power.

5



2 Methodology and framework

2 Methodology and framework

2.1 Non-iterated Prisoner’s dilemma

Firstly, we describe the non-iterated Prisoner’s dilemma formally, to make

the reader familiar with this game. We will show what is the best strategy

in the non-iterated Prisoner’s dilemma as well. Recall from the introduc-

tion that both players can choose between a strategy of cooperation (C) or

a defective strategy (D). We keep track of the chosen actions and the corre-

sponding payoffs of both players in tuples (a1, a2) and (p1, p2) respectively,

where subscript 1 refers to the first agent and subscript 2 to the second. For

example, a chosen strategy of (a1, a2) = (C, C) will give (p1, p2) = (R, R) as

a payoff. Furthermore, we require1 that 2R > T + S. In table form:

a2 = C a2 = D

a1 = C (p1, p2) = (R, R) (p1, p2) = (S, T)

a1 = D (p1, p2) = (T, S) (p1, p2) = (P, P)

In this section, we introduce the notion of payoff function and Nash equilib-

rium, to provide a method of comparing payoffs and strategies.

Definition 2.1 (Payoff function for two players). Let Ai be the set of actions

player i can choose from. The payoff function for player i is a function ui(a1, a2) :

A1 × A2 → R, representing the payoff for player i considering the actions of both

players.

For the Prisoner’s dilemma, we have that A1 = A2 = {C, D}. For example,

u1(C, D) = S and u2(C, D) = T. To determine what is the best strategy in a

game, we introduce the definition of the Nash equilibrium:

1The payoff for two agents both cooperating in both rounds is 2R. The payoff of one
defecting agent exploiting the other in the first round and vice versa in the other round is
T + S. Therefore, to ensure mutual cooperation is optimal, we require 2R > T + S.
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2.1 Non-iterated Prisoner’s dilemma

Definition 2.2 (Nash equilibrium). Let A = A1 × · · · × AN be the cartesian

product of the sets of actions of all N players. We use the notation a∗−i to denote

the N − 1 strategies of all players except i. Let a∗ = (a∗i , a∗−i) ∈ A be a strategy

profile, consisting of 1 strategy for each player. The strategy profile a∗ ∈ A is a

Nash equilibrium if

ui(a∗i , a∗−i) ≥ ui(ai, a∗−i), ∀ai ∈ Ai.

A Nash equilibrium is a strict Nash equilibrium if the inequality is strict, i.e. there

is a unique best strategy.

Informally, a strategy profile is a Nash equilibrium if no player can gain

by unilaterally changing their own strategy. With this definition, we can

see that a∗ = (D, D) is a strict Nash equilibrium: no player can gain by

changing their strategy to C. Therefore, the best option is to always defect

from the opponent, and playing D guarantees the highest payoff, regardless

of what the other player chooses.

However, the IPD fundamentally changes the strategic landscape compared

to the non-iterated Prisoner’s Dilemma. In the one-shot game, defecting is

a dominant strategy for both players because it maximizes their immediate

payoff regardless of the opponent’s choice. The iterated version of the game

allows for the development of trust and reciprocity, leading to higher cu-

mulative payoffs from cooperation compared to the short-term gains from

defection.
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2.2 Markov chain

2.2 Markov chain

To facilitate the analysis of the IPD, it is useful to formulate the problem we

are dealing with mathematically. We will formulate the IPD using Markov

chain and its properties. As briefly remarked in the Introduction, the memory-

1 IPD is a Markov chain. The memory-2 IPD can be formulated as a Markov

chain as well. To show this, we introduce the definition of a Markov chain.

We will also define the transition matrix of a Markov chain, and show how

to describe the IPD as a Markov chain.

Definition 2.3 (State space, Markov chain). A Markov chain is a stochastic

process {Vn}n≥0. The possible values Vi can attain form a countable set S called

the state space. Furthermore, the Markov property is satisfied: If Vi is the state the

system attains in time step i:

P(Vi+1 = vi+1|Vi = vi, Vi−1 = vi−1, . . . , V1 = v1) = P(Vi+1 = vi+1|Vi = vi).

Often, the last attribute is informally stated as, "The future given the present

is not dependent on the past". Given a discrete Markov chain, we can intro-

duce the definition of transition matrix:

Definition 2.4 (one-step transition matrix). A transition matrix (or stochastic

matrix) is a square matrix representing the probabilities of changing from one state

to the other in a Markov chain. Specifically, if the state space of a Markov chain

is S = {s1, s2, . . . , sd}, and we define pij = P(Vn+1 = sj|Vn = si), then the

one-step transition matrix P ∈ [0, 1]d×d is given by

P =


p11 p12 . . . p1d

p21 p22 . . . p2d
...

... . . . ...

pd1 pd2 . . . pdd

 .

For simplicity, we sometimes write P(Vn+1 = sj|Vn = si) = P(si → sj).

It is also trivial to observe the following:

Corollary 2.5. The sum of any row, ∑d
j=1 pij, represents the probability of transi-
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2.2 Markov chain

tioning from state si to any other state including si itself. Therefore, the sum of the

rows of a transition matrix must be equal to one:

d

∑
j=1

pij =
d

∑
j=1

P(sj|si) = 1. (2.2.1)

The probability of the system being in a certain state can be completely de-

termined by the intial state and the one-step transition matrix: if the initial

state is a vector x0, the next state is given by

x1 = x0P.

We can calculate any n-step leap in a Markov chain using a transition matrix

as well, by left multiplying the state vector x0 with the transition matrix n

times. If we want to find the state vector xn, it can be calculated by

xn = x0Pn.
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2.3 IPD as a Markov chain

2.3 IPD as a Markov chain

Given these definitions, we can begin to construct the IPD as a Markov

chain. To make the reader familiar with the memory-2 case of the IPD, we

first start with a simpler variant, the memory-1 IPD.

2.3.1 Memory-1 IPD

We will need to keep track of the played games in the IPD. We denote the

played games by a sequence {Un}n≥1. We formulate every outcome of a

game by a two-letter sequence {CC, CD, DC, DD}, indicating the actions of

the two players. The first letter represents the action of player 1, and the

second letter that of player 2. Since Ui ∈ {CC, CD, DC, DD}, we have

S = {s1, s2, s3, s4}

= {CC, CD, DC, DD}.

U1 is the outcome of the first game, U2 that of the second, etc. These 4 ele-

ments are all the possible outcomes of 1 game. Since the outcome of the next

game is only dependent on the previous outcome, the sequence {Un}n≥1 is

a Markov chain.

To contruct the transition matrix associated with the memory-1 IPD, we de-

fine a vector p for player 1.

p = (p1, p2, p3, p4), pi ∈ [0, 1].

The elements of p correspond to the probability of playing C after observ-

ing an outcome in {CC, CD, DC, DD}; pi is the probability of cooperating

after a previous outcome of si ∈ S. We denote the played games from the

perspective of player 1. Therefore, the vector q of player 2 will look slightly

different:

q = (q1, q3, q2, q4), qi ∈ [0, 1].

For example, if the previous game played had an outcome of CD, player 1

will cooperate again with probablility p2. Since player 2 views the game in

their own perspective, they observed an outcome of DC. Hence, they will
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2.3 IPD as a Markov chain

cooperate again with a probablility of q3. The transition matrix P of this

game is now completely determined by the strategy vectors p and q. Since

there are 4 possible states for the system to be in, the transition matrix P will

be a 4 × 4 matrix:

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p34 p44

 .

Each element pij represents the probability of a transition from state si to

state sj. For instance, P(DC → DD) = p34 = (1 − p3)(1 − q2). Player 1

observed DC and plays D with probability (1− p3). From their perspective,

player 2 observed a previous game of CD. They will play D with a probabil-

ity of (1 − q2). By considering every transition like this, P becomes:


p1q1 p1(1 − q1) (1 − p1)q1 (1 − p1)(1 − q1)

p2q3 p2(1 − q3) (1 − p2)q3 (1 − p2)(1 − q3)

p3q2 p3(1 − q2) (1 − p3)q2 (1 − p3)(1 − q2)

p4q4 p4(1 − q4) (1 − p4)q4 (1 − p4)(1 − q4)

 .
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2.3 IPD as a Markov chain

2.3.2 Memory-2 IPD

The contruction of the memory-2 IPD shares similarities with the memory-

1 IPD. If we denote the sequence of played games by {Un}n≥1, as in the

memory-1 case, the memory-2 variant of the IPD is initially not a Markov

chain; the state Un+1 is not only dependent on the previous outcome Un, but

also on the second-to-last outcome Un−1.

The key insight to make the system Markovian is to consider the outcome of

the previous round and the outcome of the current round as a new process,

{Vn}n≥1. Since there are 4 possible outcomes of playing one game, there are

42 = 16 ways to play two games, and the state space of {Vn} contains 16

elements:

S = {s1, s2, . . . , s16}

= {CCCC, CCCD, CCDC, CCDD, CDCC, CDCD, CDDC, CDDD,

DCCC, DCCD, DCDC, DCDD, DDCC, DDCD, DDDC, DDDD}.

We use the notation e1e2e3e4 with ei ∈ {C, D} to represent a state where the

previous outcome was e1e2 and the current outcome is e3e4. This way, since

any element of the state space contains all the information of the previous 2

played rounds, the process {Un}n≥1 has become Markovian by converting

it to the new process {Vn}n≥1.

The next step is to construct a transition matrix P for the memory-2 IPD. To

do this, we want to keep track of the strategy of every player. We do this by

using a row vector p for player 1 and a row vector q for player 2, similar to

the memory-1 case. Since there are now 16 possible states to be considered,

p and q also contain 16 elements.

p = (p1, p2, . . . , p15, p16), pi ∈ [0, 1].

Similar to the memory-1 case, an outcome of e1e2e3e4 from the perspective

of player 1 will be an outcome of e2e1e4e3 from the perspective of player 2.

(For example, DDDC becomes DDCD in player 2’s perspective.) Therefore,
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2.3 IPD as a Markov chain

the row vector q will look slightly different:

q = (q1, q3, q2, q4, q9, q11, q10, q12, q5, q7, q6, q8, q13, q15, q14, q16), qi ∈ [0, 1].

With this adjustment, the ith element of p and the ith element of q are the

probabilities of cooperating after observing an outcome of si ∈ S, from the

perspective of player 1.

Every state in the process represents the outcome of the current and the

previous game, so there is an overlap of 1 played game between the states.

Therefore, our transition matrix P becomes sparse:

P(Vn+1 = e1e2e3e4|Vn = ẽ1ẽ2ẽ3ẽ4) = 0 if e1e2 ̸= ẽ3ẽ4.

Given the vectors p and q as above, the associated transition matrix P can

be constructed using

pij = P(si → sj). (2.3.1)

The result is shown on the next page.
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2.3 IPD as a Markov chain
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2.3 IPD as a Markov chain

2.3.3 Extension to memory-n case

One could extend the memory-2 IPD to a memory-n IPD by simple adjust-

ments. We use the same adjustment as with the memory-2 IPD to make

the memory-n IPD a Markov chain: we set one state of the Markov chain

{Vn}n≥0 to be the result of the first n played games. Observe that the state

space S for a memory-n IPD contains 22n = 4n elements. If we continue

with the notation from Subsection 2.3.2, We can again set up the state space

to be

S = {s1, s2, . . . , s4n}

= {CC · · ·CC, CC · · ·CD, . . . , DD · · · DD}.

The strategy vector p containing the probabilities of cooperating after ob-

serving state si ∈ S also contains 4n elements:

p = (p1, p2, . . . , p4n−1, p4n), qi ∈ [0, 1].

Again, the element pi corresponds to the probability of cooperating after

observing state si ∈ S. If we use the notation e1 . . . e2n with ei ∈ {C, D} for

the states, we have

P(Vn+1 = e1 . . . e2n|Vn = ẽ1 . . . ẽ2n) = 0 if e1 . . . e2n−2 ̸= ẽ3 . . . ẽ2n,

using the same reasoning as with the memory-2 IPD. We setup a transition

matrix defined by pij = P(si → sj), and we obtain a transition matrix

P ∈ [0, 1]4
n×4n

that completely describes the memory-n IPD as a Markov

chain.

When considering the computational complexity of the memory-n IPD, it is

essential to take into account the structure and size of the required transi-

tion matrix P. A 4n × 4n matrix must be created and stored to represent all

possible states and transitions. The size of this matrix grows exponentially

with n. Specifically, the growth rate of the matrix size is O(4n).

This exponential growth has significant implications for numerical calcula-
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2.3 IPD as a Markov chain

tions. As the matrix size grows, the computational resources required

— both in terms of time and memory — also increase dramatically. This

leads to considerably longer processing times and greater demands on sys-

tem capabilities for larger values of n. Consequently, the feasibility of per-

forming these calculations is constrained by the available computational

power.
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2.4 Visualizing a Markov chain

2.4 Visualizing a Markov chain

In order to introduce definitions used in an important theorem later on, we

need to consider the visualization of a Markov chain. The easiest and most

intuitive way to display a Markov chain {Vn}n≥0 with a finite number of

states is by constructing a directed weighted graph G = (S, E).

The set of vertices S are all the states the system can attain, so it is the state

space. For any 2 elements si, sj ∈ S there is a directed weighted edge be-

tween them if the probability of transitioning from si to sj is greater than

zero:

E = {(si, sj) | si, sj ∈ S and P(si → sj) > 0}

The weight of an edge is given by a function w : E → [0, 1] :

w((si, sj)) = P(si → sj)

.

Figure 1: example of visualization of Markov chain
Source: Wikipedia

In the example above we have a Markov chain moving through 2 states.

Hence, S = {E, A}. If we set state s1 = A and state s2 = E, the transition

matrix is given by

P =

0.6 0.4

0.7 0.3

 .
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2.4 Visualizing a Markov chain

To help us investigate a Markov chain via a graph G, we introduce the def-

initions of walk, irreducibility, cycle and periodicity of a graph. For a di-

rected weighted graph G = (S, E):

Definition 2.6 (Walk). A walk is a sequence (s0, s1, . . . , sn) of consecutive (possi-

bly repeating) vertices connected by directed edges. A walk (s0, . . . , sn) has length

n.

Definition 2.7 (Path). A path is a walk that doesn’t repeat any vertices, other

than the first or the last vertex. More formally, a walk s = (s0, . . . , sn) is a path if

∀i, j ∈ {1, n − 1} : si ̸= sj.

For example, both (A, E) and (A, E, A, E, A) are valid walks in Figure 1, but

only (A, E) is a path. The first walk has length 1 and the second walk has

length 4.

Definition 2.8 (Irreducbility). A graph G is irreducible if there exists a walk

from any vertex to any other vertex in G.

Definition 2.9 (Cycle). If a path s = (s0, . . . , sn) has the same start and end-

vertex, i.e. s0 = sn, s is a cycle.

Definition 2.10 (Periodicity). The periodicity of a graph G is the greatest com-

mon divisor of the lengths of all possible cycles in G. If this greatest common divisor

is 1, the graph is aperiodic.

From the definition above, we immediately remark the following:

Corollary 2.11. Consider a directed graph G. If there is an arrow pointing from a

vertex in G back to itself, i.e. a cycle of length one, then G is aperiodic.
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2.5 Limiting distributions and eigenvalues

Recall that we want to analyze the situation where every pair of players

plays an infinite number of times against their opponent. It is insufficient to

simply start with an initial row vector x0, and find the next n states through

the transition matrix. That would only get us to a finite, n, steps. To find the

results of playing an infinite number of games we introduce the definition

of limiting distribution.

Definition 2.12 (Limiting distribution). Let {Vn}n≥0 be a Markov chain, and

S = {s1, . . . , sd} its state space. Given an initial vector x0, a probability distri-

bution π = (π1, . . . , πd) is called the limiting distribution of the Markov chain

{Vn}n≥0 if

πj = lim
n→∞

P(Vn = sj|V0 = x0).

Each element πj of π represents the probability of the system being in state

j if the process goes on infinitely. Or equivalently, it is the proportion of time

the system visits state j in an infinitely iterated sequence. Since this vector

is deterministic, it is also a solution of

π = πP. (2.5.1)

Using this property, a limiting distribution vector is the left-eigenvector of P

associated with eigenvalue λ1 = 1. By looking at (2.5.1), it is clear that there

exists an eigenvalue λ1 = 1 for a transition matrix P of the memory-2 IPD.

If we want to analyze long term behaviour of the IPD using the fact that

λ1 = 1 is the eigenvalue corresponding with π, we need to make sure λ1 is

the unique dominant eigenvalue. Also, the left eigenvector v = (v1, . . . , vd)

associated with λ1 needs to be a probability vector. Summarizing, the fol-

lowing statements have to be proven for a transition matrix P:

1) |λj| ≤ λ1 ∀j (2.5.2)

2) |λj| < λ1 ∀j ̸= 1

3)
d

∑
i=1

vi = 1, vi ≥ 0 ∀i
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2.5 Limiting distributions and eigenvalues

If all these statements hold, then row eigenvector v associated with eigen-

value λ1 = 1 is the limiting distribution π. Moreover, λ1 = 1 is the dom-

inant eigenvalue, so long term behaviour is determined by v. Before we

begin to prove these statements, we state the Perron-Frobenius theorem:

Theorem 2.13 (Perron-Frobenius). Suppose P ∈ Rd×d, where pij ≥ 0, ∀i, j.

Then, there exists a constant z ∈ C such that the eigenvector v associated with

eigenvalue λ1 = 1 has no negative elements:

zvi ≥ 0, i = 1, . . . , d.

If we also assume that P is irreducible and aperiodic, then P has a real, dominant

eigenvalue λ1 ∈ R such that

|λj| < λ1 j = 2, . . . , d.

It is immediately clear from the construction of transition matrix P that ev-

ery element is nonnegative. However, it is not immediately obvious why

this matrix is irreducible and aperiodic.

Theorem 2.14 (Irreducibility and aperiodicity of P). P, as defined in (2.3.1)

of Section 2.3.2, is irreducible and aperiodic.

Proof. The Markov chain associated with the memory-2 IPD moves from

state CCCC back to itself with probability p1q1. Therefore, we have a cycle

of length one. By using Corollary 2.10, we conclude that P is aperiodic.

Furthermore, suppose G = (S, E), as defined in Section 2.4, is the weighted,

directed graph associated with matrix P. Then, P is irreducible if and only

if G is strongly connected.

Note that G is strongly connected if and only if there is a path from every

state si to every other state sj, where si, sj ∈ {CCCC, CCCD, . . . , DDDD}.

Hence, it is sufficient to show that there is a path from every state si to every

other state sj. For simplicity, we correspond the state space S as defined in

Subsection 2.3.2 to the numbers {1, 2, . . . , 15, 16}.

By looking at the nonzero entries of the memory-2 IPD transition matrix,
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2.5 Limiting distributions and eigenvalues

we define a function f that maps subsets I ⊂ S to other subsets J ⊂ S if

the probability of transitioning from any element i ∈ I to any other element

j ∈ J is nonzero, i.e. P(i → j) ̸= 0, ∀i ∈ I, j ∈ J:

f ({1, 5, 9, 13}) = {1, 2, 3, 4}

f ({2, 6, 10, 14}) = {5, 6, 7, 8}

f ({3, 7, 11, 15}) = {9, 10, 11, 12}

f ({4, 8, 12, 16}) = {13, 14, 15, 16}.

This mapping is also shown in the figure below. Any element i can be

mapped to any other element j if the column color of i is the same as the

row color of j.

Figure 2: Mapping of function f

Now, to prove P is irreducible, we will show that it takes at most 2 transi-

tions to go from any element i ∈ S to any other element j ∈ S.

If the column color of i is the same as the row color of j, it takes only 1 tran-

sition to go from state i to state j. So, suppose they are not the same color.

First, determine the column color of element i. In the row with the same

color, find the element a that has the same column color as the row color

of j. Then, the transition i → a → j is a valid transition. Since i, j were
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2.5 Limiting distributions and eigenvalues

arbitrary, this concludes the result.

It is important to note that this theorem does not hold when some probabili-

ties pi in a strategy vector p are deterministic, i.e. pi ∈ {0, 1}. If, for instance,

we have strategy vectors p and q where p1 = q1 = 1, then we would see

that

p14 = (1 − p1)(1 − q1) = 0

We solve this by adjusting the values pi and q1 can attain. Instead of pi, qi ∈
[0, 1], we set pi, qi ∈]0, 1[. This will have minimal effect on the results, and

keeps P irreducible.

Theorem 2.15. Assume P ∈ [0, 1]d×d. Furthermore, assume π is the vector sat-

isfying (2.5.1). Suppose λ1, . . . , λd are the eigenvalues corresponding with matrix

P, and v is the row eigenvector associated with λ1 = 1. Then, all statements of

(2.5.2) hold with v = π.

Proof. 1) We define |w| for a vector w as:

|w| = (|w1|, |w2|, . . . , |wd|). (2.5.3)

With this definition, we have for any row vector w = (w1, . . . , wd):

|wP|j =
∣∣∣∣∣ d

∑
i=1

wi pij

∣∣∣∣∣ ≤ |w1p1j|+ . . . + |wd pdj| = |w1|p1j + . . . + |wd|pdj

= (|w|P)j,

where the inequality follows from the triangle inequality and the pijs are

nonnegative. For any left eigenvector ṽ of P with eigenvalue λ, we have

|λ||ṽ| = |λṽ| = |ṽP| ≤ |ṽ|P.

By multiplying both sides of the inequality with 1 =

( 1
...
1

)
on the right we

obtain

|λ||ṽ|1 ≤ |ṽ|P1 = |ṽ|1.

So for any eigenvector ṽ of P we have that |λ||ṽ|1 ≤ |ṽ|1, and therefore,
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2.5 Limiting distributions and eigenvalues

|λ| ≤ 1 for all eigenvalues λ of P. Since λ1 = 1, we conclude that |λj| ≤ λ1,

for j = 1, . . . , d.

2) By Theorem 1.13, P is irreducible and aperiodic. Hence, by the Perron-

Frobenius theorem, we have that

|λj| < λ1 ∀j ̸= 1.

3) Assume that v is the eigenvector associated with the dominant eigen-

value λ1 = 1. According to the Perron-Frobenius theorem, there exists a

constant z ∈ C such that zv ∈ R. If v is an eigenvector and c ∈ R, c · v is

also an eigenvector. Therefore, we can set the left eigenvector v such that it

is a well defined probability vector:

d

∑
i=1

vi = 1, vi ≥ 0 ∀i.

Since a transition matrix P of the memory-2 IPD satisfies the conditions of

Theorem 2.14, it satisfies (2.5.2). We can use this to determine the limiting

ditribution of a transition matrix of the memory-2 IPD.
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2.6 Code construction

We can use the limiting distribution to determine the payoff of 2 players

playing an infinite number of games. In Section 2.5, we have proven that

the limiting distribution vector is the normalized row vector v associated

with the eigenvalue λ1 = 1. We will use Python to implement the memory-

2 IPD and to find dominant strategies numerically.

First, we create n players, each with a random strategy vector p as defined

in Subsection 2.3.2. All elements pi of all strategy vectors p in the population

are sampled from U(0, 1).

In the kth iteration, we let player i with strategy vector p play against player

j with strategy vector q, and determine their transition matrix P as defined

by (2.3.1). We calculate the limiting distribution π, which is the same as

v = (v1, . . . vn), the row eigenvector associated with eigenvalue λ = 1. The

element πk of row vector π is the probability of the system being in state

sk ∈ S where S is defined as in Subsection 2.3.2. If we want to determine the

payoff for player i, we need to multiply π by the payoff column vector p:

p := (R, S, T, P, R, S, T, P, R, S, T, P, R, S, T, P)T,

where R, S, T and P are defined as in Section 1.

We want every player of the population to play a game against every other

player in the population, to ensure unbiasedness. Therefore, we construct a

matrix M. The entries of M are calculated as

mij = p · π(i,j),

where π(i,j) is the limiting distribution associated with the transition ma-

trix P that was determined by the strategy vectors of player i and player

j. To determine the payoff for every player in the population, we want to

calculate the sum of every row of the matrix M. The sum of row i is the

total payoff player i received when playing against all other players in the

population. Then, we sort the players according to this total payoff.

The bottom half of the population, determined by the lowest payoffs of each
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2.6 Code construction

player, is omitted. The top half is retained. To replace the omitted players,

new players are created. These are created by copying the retained top play-

ers, and adding noise to their strategy vectors. We define the noise ϵ as

ϵ := (ϵ1, . . . , ϵ16), ϵi ∼ U(−0.1; 0.1).

The strategy vector p̃ for a new player ĩ is then defined as

p̃ = p + ϵ,

where p is the strategy vector of retained player i. If this mutation results

in any p̃i being outside of the open interval ]0, 1[, we adjust it to the closest

value in this interval to ensure p̃ remains a well-defined strategy vector.

We then repeat the entire process, for K generations.
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3 Results

3 Results

In this section, we discuss the results found by running the simulation. We

set (R, S, T, P) = (3, 0, 5, 1) to satisfy the conditions set in the Introduction.

Figure 3: seed = 0

The x-axis shows all the possible outcomes of the previous two played games.

Every line represents the strategy vector of a player. The line shows the

probability of that player playing cooperate (C) afer observing any of the

outcomes shown on the x-axis.

As expected, if a player observed 2 rounds of mutual cooperation, the next

round they also choose to cooperate. Suprisingly, the probability of cooper-

ating after 2 rounds of defection is also close to being 1. It seems that players

who still defect after 2 rounds of defection receive less payoff than players

who do not, and are removed from the population as a consequence of this.

In the paper ’A strategy of win-stay, lose-shift that outperforms tit-for-tat in the

Prisoner’s Dilemma game’ [1], the memory-1 IPD is considered. the so-called

’Pavlov strategy’ showed to be the dominant strategy. The Pavlov strategy is

a deterministic strategy where a player cooperates if and only if the previous

round had an outcome of CC or DD. It is a simple adjustment to convert the

program for a memory-2 IPD to memory-1: All that is required is to change

the transition matrix to the memory-1 IPD transition matrix as defined in

Subsection 2.3.1. It yields the following results:
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Figure 4: seed = 0

Figure 5: seed = 0

If we run the simulation with 6 players, there are no cooperators left after

100000 generations. All the players always choose defect, and therefore any

new cooperators introduced into the population will immediately be taken

advantage of and are omitted in the next round.

Remarkably, this is not the case if we run the simulation with the same seed,

but with a larger population. It is clear that the Pavlov strategy is the domi-

nant strategy when considering a larger population.

Figure 6

In the paper by M. Nowak and K. Sigmund [1], the simulations are ran for

±4 · 105 generations. If we set the memory-2 IPD simulation to run until
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±4 · 105 generations, the average payoff converges to 3 in the memory-2

case as well, as shown in Figure 6. The average payoff is not exactly 3 as

seen in the figure. This is the result of the small adjustment made to the

strategy vector when creating a new generation. An average payoff of 3 is

the maximum average payoff we can attain. It is easy to determine why this

is the case: since a round of CC gives both agents a reward of 3, it contributes

a total of 6 to the average. 1 agent exploiting another will result in a payoff

of (5, 0) or (0, 5), only contributing 5 to the average payoff.

After ±4 · 105 generations, the probability of cooperating shares some char-

acteristics with the Pavlov strategy described above: after observing either

CCCC or DDDD, the probability of cooperating is very close to 1 for all

agents. The probability of cooperating is also very high for any previous

states of DDCC and CDCC, and even CDDD and DCDD. The only dif-

ference with the Pavlov strategy is the probability for cooperating after ob-

serving an outcome of CCDD. Although we are unsure what is the cause of

this, it is plausible that it is the result of the players having more memory

than in the setup of the paper by Nowak and Sigmund [1].

It is also interesting to consider the memory-2 IPD with a large population.

Figure 7: seed = 0

Figure 7 shows the strategies of the 10 players with the highest payoff, while

Figure 8 shows the strategies of all players in the population. Surprisingly,

almost all agents converge to a similar strategy in only 100 generations.

If we compare this result to Figure 3, there is a large difference in the strate-

gies that is caused by the change in population: the probabilities for some

states, such as CCDC and DCDD are entirely different. However, all cases
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Figure 8: seed = 0

shown share one common characteristic: The probability for cooperating

following a previous round of CD converges to 0. Although this cannot be

seen in Figure 3, Figure 6 runs on the same seed. Therefore, it is showing

the same population, where the convergence is clearly present.

In the paper ’Effects of increasing the number of players and memory size in the

iterated Prisoner’s dilemma: a numerical approach’ by CH. Hauert and H. G.

Schuster [4], the memory-N IPD with N players is analyzed. They found

that an increasing number of players and an increasing temptation T hin-

ders the establishment of cooperation.

As seen in Figure 6, this is not the case in our results. However, in the setup

of the memory-M IPD with N players, they state the following:

Strategies, as explained previously, do not incorporate mecha-

nisms to identify opponents. Moreover, the players cannot profit

from distinguishing the opponents’ moves because the encoun-

ters are set-up symmetrically [...]. Thus, the probability to coop-

erate depends only on the number of cooperating respectively

defecting opponents in each round. This reduces the strategy

space dramatically from 2M = 2mN to 2mN dimensions, where

m ∈ N corresponds to the number of rounds recalled by the

players. Therefore, for example, for three players with three-

step memory the following identities must hold: pccd ≡ pcdc and

pdcd ≡ pddc. [4]

If the IPD is set up as above, it indicates that players cannot differ be-

tween when an opponent defected: the probability of cooperating after re-
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sults CDCC and CCCD would be identical. The author does this to reduce

the strategy space and thereby CPU time. However, it removes the ability

of recognizing whether an opponent is starting to defect after cooperating,

or whether an opponent is starting to cooperate after previously defecting.

This could be the cause of the difference in the results. To verify this, we

compute another run with an even higher population size.

Figure 9: seed = 1

As shown by the average payoff for this population, there is a trend of lower

tendency to cooperate, and therefore there is more defection. But this is not

as obvious as described in the paper [4].
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4 Conclusion and future work

In this study, we investigated the effects of increasing memory size and

population in the Iterated Prisoner’s Dilemma (IPD). Our results provide

insights into how these factors influence the emergence and stability of co-

operative strategies.

Increasing the memory size of agents in the IPD substantially impacts their

strategic behaviors. With larger memory, agents can recall and condition

their actions on a longer history of past interactions, which generally leads

to more nuanced and sophisticated strategies. This increased memory al-

lows for a better understanding of the opponent’s behavior over multiple

rounds, thereby enhancing the ability to predict and respond to future ac-

tions. For instance, with memory-2, agents show a higher probability of co-

operation after observing mutually cooperative or defective rounds, align-

ing with the Pavlov strategy, which is known for its robustness and effec-

tiveness.

The dominant strategies that emerge under these conditions tend to share

several characteristics. Firstly, they often exhibit a strong conditional re-

sponse to past interactions, particularly favoring cooperation if previous

rounds resulted in mutual cooperation or mutual defection. This is evident

in the high probability of cooperation following such outcomes. Secondly,

there is a convergence towards specific probabilistic strategies, where al-

most all agents in the population adopt similar tactics within relatively few

generations, indicating a form of strategic equilibrium. Moreover, dominant

strategies typically involve a mechanism to discourage exploitation; for ex-

ample, the probability of cooperation after encountering a defection tends

to be low, which helps in maintaining stability against defectors.

In conclusion, the expansion of memory in agents within the IPD frame-

work fosters the development of more sophisticated and cooperative strate-

gies. The emergent dominant strategies share the characteristics of condi-

tional cooperation and convergence, contributing to a stable cooperative

environment even as the complexity of the system increases.
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Future research could further explore the effects of larger memory sizes and

larger population sizes on the dynamics of the IPD. While our study focused

on memory-2, examining memory-3 or even larger memory sizes could pro-

vide deeper insights into strategic development and stability. Additionally,

increasing the population size could reveal more about cooperative behav-

ior and the robustness of the dominant strategies identified in smaller pop-

ulations.

We are currently limited by computational power, which constrains our

ability to simulate larger memory sizes and populations. Advances in com-

putational resources or more efficient algorithms could facilitate these stud-

ies, enabling a deeper exploration of how a larger scale affects the evolution

of cooperation. Investigating these aspects may help in understanding how

cooperation can be maintained in more complex and larger-scale systems,

providing broader applications in fields such as economics, political science,

and evolutionary biology.
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Appendix

Python code for memory-2 IPD

Below is the complete code for calculating the figures associated with the

memory-2 IPD, presented in Section 3.

1 import copy

2 import numpy as np

3 import scipy.linalg as sclin

4 import matplotlib.pyplot as plt

5

6 n = 50 # population size

7 K = 20 # amount of generations

8 np.random.seed(0) # save random seed

9

10 class Prisoner:

11 def __init__(self,strategy,payoff = 1):

12 self.strategy = strategy

13 self.payoff = payoff

14

15 def transition_matrix(p,q): # p, q are 16-tuples of strategies

player 1 & 2↪→

16 def f(pi,qi):

17 return [ pi * qi, pi * (1-qi), qi * (1-pi), (1-pi) *

(1-qi) ]↪→

18

19 P = np.zeros((16,16))

20 P[0, :4 ] = f(p[0 ],q[0 ])

21 P[1, 4:8 ] = f(p[1 ],q[2 ])

22 P[2, 8:12] = f(p[2 ],q[1 ])

23 P[3, 12: ] = f(p[3 ],q[3 ])

24

25 P[4, :4 ] = f(p[4 ],q[8 ])
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26 P[5, 4:8 ] = f(p[5 ],q[10])

27 P[6, 8:12] = f(p[6 ],q[9 ])

28 P[7, 12: ] = f(p[7 ],q[11])

29

30 P[8, :4 ] = f(p[8 ],q[4 ])

31 P[9, 4:8 ] = f(p[9 ],q[6 ])

32 P[10, 8:12] = f(p[10],q[5 ])

33 P[11, 12: ] = f(p[11],q[7 ])

34

35 P[12, :4 ] = f(p[12],q[12])

36 P[13, 4:8 ] = f(p[13],q[14])

37 P[14, 8:12] = f(p[14],q[13])

38 P[15, 12: ] = f(p[15],q[15])

39

40 return P

41

42 def avgpay(player_1, player_2):

43

44 # calculates average payoff for player 1, where player 1 vs

player 2↪→

45

46 trmatrix =

transition_matrix(player_1.strategy,player_2.strategy)↪→

47 eigen,vl = sclin.eig(trmatrix, left = True, right = False)

48

49 index = np.where(np.isclose(eigen, 1, atol = 1e-8))[0][0]

50 # find index of eigenvalue equal to 1

51

52 eigenvector = np.real(np.transpose(vl)[index])

53 eigenvector = (1 / sum(eigenvector))*eigenvector #

normalise eigenvector↪→

54
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55 return np.inner([eigenvector],4*PAYOFF)

56

57 def clip(l):

58 # list as input, to keep strategies welldefined and the

transition matrix↪→

59 # irreducible

60 for x in range(len(l)):

61 if l[x] < 1e-4:

62 l[x] = 1e-4

63 elif l[x] > 1-1e-4:

64 l[x] = 1-1e-4

65 else:

66 pass

67 return l

68

69 def play_matrix(n):

70 # n = population size, matrix where Mij = game player i vs.

player j↪→

71

72 M = np.zeros((n,n))

73 for i in range(n):

74 for j in range(n):

75 M[i,j] = avgpay(PLAYERS[i],PLAYERS[j])

76

77 return M

78

79 def average(l):

80 return sum(l)/len(l)

81

82 plt.rc('axes', labelsize=15) # fontsize of the x and y

labels↪→

83 plt.rc('xtick', labelsize=15) # fontsize of the tick labels
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84 plt.rc('ytick', labelsize=15) # fontsize of the tick labels

85 plt.rc('figure', titlesize=20) # fontsize of the figure title

86 z = np.arange(16) #x-axis of graph

87

88 order =

['CCCC','CCCD','CCDC','CCDD','CDCC','CDCD','CDDC','CDDD','DCCC','DCCD','DCDC','DCDD','DDCC','DDCD','DDDC','DDDD']↪→

89 PAYOFF = [3,0,5,1]

90

91 strategies = np.random.uniform(0,1,(n,16)) #generate different

random strategies↪→

92

93 PLAYERS = []

94 PLAYERS += [Prisoner(x) for x in strategies]

95

96 for h in range(1,K+1): # loop generations

97 game = play_matrix(n)

98 payoffs = np.sum(game, axis = 1)

99

100 for i in range(len(PLAYERS)):

101 PLAYERS[i].payoff = payoffs[i]

102

103 PLAYERS.sort(key=lambda x: x.payoff, reverse=True)

104 # sort players according to payoff

105

106 PLAYERS = PLAYERS[:len(PLAYERS)//2]

107 # omit worst half

108

109 NEW_PLAYERS = copy.deepcopy(PLAYERS)

110

111 noise = np.random.uniform(-0.1,0.1,(len(NEW_PLAYERS),16))

112 # add mutation to strategy of new players

113
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114 for i in range(len(NEW_PLAYERS)):

115 NEW_PLAYERS[i].strategy = clip(NEW_PLAYERS[i].strategy

+ noise[i])↪→

116

117 PLAYERS += NEW_PLAYERS

118

119 if h%1 == 0:

120 f = plt.figure()

121 f.set_figwidth(20)

122 f.set_figheight(5)

123 for i in range(len(PLAYERS)):

124 #for i in range(10): #for showing best 10 players only,

for large pop. size↪→

125

126 plt.xticks(z,order)

127 plt.plot(z,PLAYERS[i].strategy)

128 plt.autoscale(False)

129 f.suptitle('population size = '+str(n)+',

'+str(h)+' generations. Average payoff =

'+str(average(payoffs)/n) )

↪→

↪→

130 plt.show()

131
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