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Abstract

The generalized Hopf (Bautin) bifurcation is a well-studied codimension 2 bi-
furcation where the system has an equilibrium with a pair of simple purely
imaginary eigenvalues and the vanishing first Lyapunov coefficient. This bi-
furcation can be studied in both ordinary differential equations (ODEs) and
delay differential equations (DDESs). Generically, a codimension 1 bifurcation
curve of nonhyperbolic limit cycles (LPC curve) emanates from a generalized
Hopf point. By performing the parameter-dependent center manifold reduc-
tion near the generalized Hopf point, predictors can be derived to initiate the
continuation of the LPC curve. In this thesis, we derive higher-order pre-
dictors for the LPC curve in ODEs and DDEs for the first time. The new
predictors have been implemented, and their effectiveness is demonstrated on
several models.
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Chapter 1

Introduction

1.1 The generalized Hopf bifurcation in ODEs and DDEs

Many applications use models that consist of autonomous Ordinary Differential Equations
(ODEs)
i(t) = F(z(t), a), (1.1)

where z : R - R", a € RP and F' : R" x RP — R" is a smooth mappingm We use dot
dx

notation to indicate the derivative with respect to ¢, denoted as # = <. One is often in-
terested in the behaviour of such systems under parameter variations. As the parameters
change, the phase portrait might undergo qualitative changes. For instance, equilibria
might disappear or change stability. Such an event is called a bifurcation. Suppose that
system has an equilibrium at the origin, i.e. F'(0,0) = 0. The type of local bifurca-
tions is determined by the eigenvalues of the linear part A = D F'(0,0) of the vector field
F. If A has a pair of simple imaginary eigenvalues, the imaginary eigenvalues may cross
the imaginary axis under a continuous parameter variation. When this occurs, the system
undergoes an (Andronov-) Hopf bifurcation. Near a Hopf bifurcation in planar systems de-
pending on one parameter, the system can be transformed into the following normal form,
through the introduction of a complex variable, and the utilization of smooth invertible

coordinate transformations that depend smoothly on the parameters:
W = \a)w + c1 (@)wlw]* + O(|w|?), w e C, (1.2)

where A(a) = p(a) + iw(a) with ©(0) = 0, w(0) = wp > 0. We define [} = %O%{cl(O)}
as the first Lyapunov coefficient . Under the conditions that Iy # 0 and p'(0) # 0, this
system is locally topologically equivalent near the origin to the following system in polar

coordinates
. — l 2
{ﬁf p(B+1lip?), (13)
¢ =1
where g = % is the new unfolding parameter. If I; < 0, this system has a stable focus

at the origin for 8 < 0 and an unstable focus surrounded by a stable limit cycle for g > 0.
This scenario is known as the supercritical Hopf bifurcation. On the other hand, if [ > 0
the Hopf bifurcation is subcritical, and an unstable cycle exists for § < 0, which vanishes
at 8 = 0, resulting in an unstable focus at the origin for 5 > 0. Phase portraits of the
system for the supercritical case are shown in Figure

The condition that [; # 0 in the normal form is also called the nondegeneracy condition.

LOften, the dependence of the phase variable x on time t is not explicitly indicated.
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Figure 1.1: Phase portraits near a supercritical (I; < 0) Andronov-Hopf bifurcation. Figure
adapted from [16].

Meanwhile, the condition p/(0) # 0 is referred to as the transversality condition. The
transversality condition allows the introduction of the new unfolding parameter 5. Since
we need only one parameter to tune for this bifurcation to occur, i.e. get a pair of simple
purely imaginary eigenvalues, it is referred to as a codimension one bifurcation. Another
well-known codim 1 bifurcation is the fold bifurcation, where two equilibria collide and
disappear at the point where a simple real eigenvalue becomes zero.

By allowing the variation of a second parameter, the first Lyapunov coefficient may vanish
while the two purely imaginary eigenvalues persist. At such a point a generalized Hopf
bifurcation (or Bautin bifurcation) occurs. This type of bifurcation, which requires two
conditions to be satisfied to manifest, is classified as a codimension two bifurcation. There
are four other well-known local codim 2 bifurcations. For example, a Hopf-Hopf bifurcation
occurs when an equilibrium has two pairs of simple purely imaginary eigenvalues. Their
normal forms and local behaviour are discussed in detail in [I6, Chapter 8|. In this thesis,
we will only deal with the generalized Hopf bifurcation.

Near a generalized Hopf bifurcation in planar systems depending on two parameters, the
system can be transformed to the following normal form:

W = Ma)w + e1(@)wlw]? + ca(@)w|w|* + O(|w|®), w e C, (1.4)

where we still have A(a) = p(a) + iw(a) with p(0) = 0, w(0) = wp > 0. If the second
Lyapunov coefficient ly = %0%{02(0)} # 0, this system is generically locally topologically
equivalent to the following system in polar coordinates

{p' = p(B1 + Bop? + l2p*), (1.5)

¢ =1

Here “generically” means that the map a — (u(«@),li(e)) is regular at o = 0, allowing
for the introduction of the new unfolding parameters 31, 82. From the amplitude equation
in , we see that there always is a trivial equilibrium at the origin. Any non-trivial
equilibrium satisfies the equation 8y + fop? + lap* = 0. Depending on the values of 5, and
B2 this equation has zero, one or two positive solutions. After a closer inspection, one will
find that two codim 1 bifurcation curves emanate from the generalized Hopf point. One
curve H along which supercritical /subcritical Hopf-bifurcations occur is the line g; = 0.
And a second curve along which two hyperbolic cycles collide and disappear. This curve
— along which non-hyperbolic cycles exist — is also referred to as the LPC curve, where



LPC stands for limit point of cycles. If [ < 0, the LPC' curve in system is given by
the half-parabola £, = i /33 for B2 > 0. A sketch of the bifurcation diagram for the case
where ls < 0 is shown in Figure In this illustration, we can discern three different
regions near the generalized Hopf bifurcation. In region 1 there is only a stable focus at
the origin. If we move from region 1 to region 2, passing the supercritical Hopf bifurca-
tion line H_, the equilibrium at the origin becomes unstable and a unique stable limit
cycle appears. Continuing through the subcritical Hopf bifurcation line H; into region 3,
the equilibrium recovers its stability, alongside the emergence of an unstable cycle nested
within the pre-existing stable cycle.
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Figure 1.2: Bifurcation diagram near a generalized Hopf bifurcation for the case lo < 0. Figure
adapted from [16].

Up to this point, we have only considered bifurcations in planar systems. However, the
same bifurcations can occur in n-dimensional systems. In n-dimensional systems where a
local bifurcation arises, a smooth family of parameter-dependent invariant center mani-
folds WE exists for sufficiently small ||af|. All qualitative behaviour near the bifurcation
point occurs on this lower dimensional manifold. For the Hopf and the generalized Hopf
bifurcations, this manifold will be two-dimensional. If we restrict our system to the
center manifold, the system can locally be transformed to the normal form . The
existence of an invariant center manifold can be used to derive equations for the normal
form coefficients.

Untill now, our focus has been on ODEs. However, another interesting class of differential
equations, known as Delay Differential Equations (DDEs) can be encountered in applica-
tions. These appear for example in the life sciences [20] and climate physics [12]. Unlike
ODESs, which rely only on current state information, DDEs include the values of the phase
variables at previous times. This accounts for delays in the system’s response, capturing
phenomena where the evolution of a system depends not only on its current state but also
on its history. A specific case of DDEs that are often encountered in applications is of the
following form

z(t) = F(z(t),z(t —11),...,2(t — ™), @), (1.6)



where 2 : R — R", a € RP, F : R™(Mm+) « RP 5 R” is a smooth mapping, and
0<m <...<Ty =:h are constant delays. This is also known as a discrete DDE. More
generally, a DDE is an equation of the form

z(t) = F(zy, ), t>0, (1.7)

where F': X xRP — R" for X = C([—h,0],R™). Such equations are referred to as classical
DDEs. The right hand side depends on the history x; : [—h,0] — R™ defined as

zi(0) == x(t+6), forallde|[—h,0.

We will only consider finite delays 0 < h < oo. To guarantee an unique solution to
equation (|1.7) we need to provide an initial condition

z(0) = p(0), 0€]—h,0].

Such systems allow for study of bifurcations, including the generalized Hopf bifurcation
(i.e. [13,[14,24]). In contrast to ODEs, DDEs belong to the class of infinite dimensional dy-
namical systems, since dim X = co. As a result, we will need Functional Analysis to study
DDEs. However, the state space C([—h, 0], R™) does lead to some technical complications.
This can be resolved with the help of perturbation theory for dual semigroups, which has
been developed in [5H8] and is also known as sun-star calculus. Using this framework,
the existence of a finite-dimensional smooth invariant center manifold has been rigorously
established for DDEs [3, 9]. On this center manifold, the infinite-dimensional system of
DDESs can be reduced to a finite-dimensional system of ODEs. This in turn allows us to
“lift” results from the bifurcation theory of ODEs to the theory of DDEs.

1.2 Numerical continuation of the LPC curve

In most cases, the codim 1 bifurcation curves near a generalized Hopf bifurcation cannot
be computed analytically. Instead one uses numerical methods for the location of the
codim 2 bifurcation and the continuation of the emanating codim 1 bifurcation curves. In
this thesis, we will only concern ourselves with the continuation of the LPC curve.

To continue a limit cycle, we first need to know how to compute a periodic solution. We
are looking for a solution with z(7) = x(0), where the minimal 7' > 0 satisfying this
condition is the period. Generally, the period 1" of the cycle is unknown. To resolve this,
we rescale the time ¢ = T'7 in system so that T becomes a parameter. For ODEs, a
limit cycle can be found with the following boundary-value problem (BVP)

(1) = Tf(z(r),a) =0, 7 €]0,1],
z(1) —z(0) =0,

1 (1.8)
/0 ((r), °(r))dr = 0,

where 2° is a reference periodic solution. Here the first equation arises from system (T.1)

after rescaling the time t = 7't and the second equation defines the periodic boundary
conditions. The integral condition is a phase condition that ensures the uniqueness of
the solution. To solve the resulting system of equations numerically, they first need to be
discretized. A method commonly used for discretisation of the BVP is called orthogonal
collocation. With this method, the solution is approximated by a piecewise polynomial



and the approximated solution is required to satisfy the time-scaled system in on
a number of m collocation points within each subinterval. These collocation points are
chosen as the roots of the mth degree Legendre polynomial translated to each interval.
Details can be found in for example [16, Section 10.1.4]. Near a point on the LPC curve,
two cycles exist that will collide on the curve and then disappear. Consequently, the BVP
(1.8) will have two solutions that collide at the critical parameter. This occurs when the
linearization of the BVP with respect to (x(-),7") has a nontrivial solution. With
a bordering technique, the bifurcation point can be detected by including a constraint
G = 0 to system which vanishes precisely when the linearization becomes singular.
The function G = G(z,T,«) is determined from a bordered matrix system and more
details can be found in [I0].

When considering DDEs, having x(t9) = z(to + 1) for some ¢y, > 0 is insufficient to ensure
a periodic solution. Instead, periodic solutions of (1.7 must satisfy x(t) = x(t+T') for all
t € [—h,0]. For discrete DDEs, we have the following rescaled system to find a periodic
orbit

(s) = Tf(x(s),z(s —m/T),...,2(s — 1 /T), ) =0, s€][0,1],
z(0+1)—z(0)=0, 0€l[-h/T,0],

. (1.9)
/0 i%(s)(2°(s) — 2(s))ds = 0,

where 2(?) is a reference periodic solution. This system also needs to be discretized first,

which is generally done using orthogonal collocation [I1), Section 3.2]. Just as for ODEs,
we need to include additional equations to (1.9) to detect LPC points. We again look for a
singularity of the linear part of the system (1.9) with respect to the solution = and period
T [19]. Similarly to the ODE case, we can add a function to the system which vanishes
at the fold point using a bordering technique. For the continuation of the LPC curve for
both ODEs and DDEs, we need an initial guess for the periodic solution, the period and
the parameters.

Let us now return to the LPC curve emanating from a generalized Hopf bifurcation point.
If the approximate location of a generalized Hopf bifurcation point is known, we would like
to switch to the LPC curve emanating from this point using only local information that is
available at the generalized Hopf point. As mentioned before, to start the continuation, we
need an approximation of the LPC curve in the original parameter space, an approximation
of the corresponding periodic orbit and the period. Combined, this forms a predictor,
which can be used to initialize the numerical continuation of the LPC curve starting from
the generalized Hopf point. A general method to derive such approximations, using only
local information at the codim 2 bifurcation point, has been introduced in [2]. Within
the framework of the sun-star calculus, the normalization method developed for ODEs
has been extended to DDEs [I5]. These methods have already been applied to derive
first-order predictors for both ODEs [17] and DDEs [3]. Such predictors, however, do not
distinguish the curves H and LPC in the parameter space. In this thesis, we derive a
higher-order predictor for both ODEs and DDEs that does not suffer from this drawback.



1.3 Structure

This thesis is structured as follows. We begin by describing the general technique for
computing the normal form coefficients on the parameter-dependent center manifold in
Chapter We first address this for ODEs, then for DDEs. For DDEs, we provide a
summary of relevant results from sun-star calculus. The existing special cases of solutions
to the linear operator equations used in [3] are insufficient when computing higher-order
coefficients. Therefore, we have derived new, more general solutions. These are presented

in Section 2.2.11

In Chapter (3| we derive higher-order approximations for the parameters of the LPC curve
for the normal form. These approximations are then used to obtain a higher-order approx-
imation for the period. We conclude this chapter with a discussion on which coefficients
should be included in the parameter and center manifold approximations when extending
the higher-order predictor to the general setting of ODEs and DDEs.

Then, in Chapters [4 and [5} the method from Chapter 2] is applied to derive all the co-
efficients for the higher-order predictor for ODEs and DDEs. All necessary components
of the predictors are summarised at the end of these chapters. For the higher-order ap-
proximation, we need an expression for the seventh-order critical normal form coefficient.
For ODEs, this coefficient was previously derived in [21]. For completeness, we redirived
it here and identified a missing term in one of the expressions from [21], although it was
included in their calculations. Additionally, the expression for the seventh-order critical
normal form coefficient has now been derived for DDEs in this thesis. Finally, the pre-
vious method used for deriving parameter-dependent coefficients in [17] and [3] does not
work for higher orders. Therefore, we used a slightly different approach, resulting in new
equations for the parameter-dependent coefficients.

Finally, the new equations for the computation of all the coefficients in the higher-order
predictor have been implemented in the programming language Julia. In Chapter [0 we
illustrate the new LPC curve predictors on several models.

Then, there are three appendices. In Appendix[A] we present all of the equations collected
from the homological equation for ODEs. Meanwhile, Appendix [B] contains some remain-
ing expressions for coefficients of the center manifold-approximation for both ODEs and
DDEs that were not needed in the derivations in Chapters [4 and [5} Finally, Appendix [C]
contains some more background on sun-star and DDEs.



Chapter 2

Parameter-dependent center
manifold reduction and
normalization

In this chapter, we review the general technique for computing the normal form coefficients
on the parameter-dependent center manifold for ODEs and DDEs respectively. For DDEs,
this includes a summary of relevant results from sun-star calculus. We also discuss the
general methods used to solve the resulting linear systems. This includes additional special
cases of representations required for obtaining the higher-order coefficients in DDEs.

2.1 The center manifold reduction and normalization method
for ODEs

Consider a system of ODEs depending on two parameters
&= F(z,q), (2.1)

where z : R - R”, a € R? and F : R” x R? — R”. We will always assume that F is as
smooth as necessary, i.e. F'is C*-smooth for some sufficiently large k > 1. Suppose that
xo = 0 is an equilibrium at ap = 0, i.e. F'(0,0) = 0. We denote the Jacobian matrix at the
equilibrium as A = D, F(0,0). Let n. be the number of eigenvalues with zero real part
and 7T, the corresponding critical eigenspace. For the generalized Hopf bifurcation, we
have n, = 2. A procedure to switch to the codim 1 bifurcation curves emanating from a
codim 2 bifurcation point was introduced in [2]. We will follow the same approach below.

For each sufficiently small |||, system has a smooth local n.-dimensional invariant
center manifold W¢. At x = 0, W is tangent to the critical eigenspace T of A. Restricted
to the center manifold, we can transform the system into a certain normal form using only
smooth coordinate and parameter transformations:

W= G(w,B), G:R"™ xR?— R"™, (2.2)

These normal forms are known for all five codim 2 bifurcations, and details can be found,
for example, in [I6, Chapter 8]. From the normal form, we can derive an approximation
for the codim 1 curves emanating from the codim 2 point. To relate the local behaviour of
the normal form on the center manifold to our original system, we need a relation between



the original parameters o and the unfolding parameters S3:
a=K(B), K:R*>-R%. (2.3)

Furthermore, we need a parameterisation of the center manifold depending on the new
parameters [3:

= H(w,B), H:R"™ xR?—R" (2.4)
By substituting equations (12.2)), (2.3) and (2.4) into equation (2.1)), we find the following

so-called homological equation

This is essentially a consequence of the invariance of the center manifold. In the following,
we will use multi-indices v and p to simplify the notation in the expansions of G, H
and K. A multi-index p is defined as p = (p1,...,un) for p; € Ny and we have that
wh = witwh?, pl = ! py! and u| = g1 4 ...+ ppn. The general form of the
normal form expansion is known and is expanded as

1 14
G(w7 6) = Z Mlgu,u BH. (26)
[v|+lpl=1
Meanwhile, H and K are unknown and admit the expansions
1
Hw )= 3, soHauw's, =3 Kuﬁ (2.7)
[v|+[pl=1 \u\>1

All of these expansions will be truncated at some sufficiently high order. For the Taylor
expansion of F', we define the multilinear forms

n 2
82F($0 040) 8F(.ZCO 040)
B(u,v) = — v, Jiu = —
( ) ) Z 81‘28]}j AR 1 Z 80[1' 79
2,7=1 =1
n
83F :Bo,Oéo 8 F xo,ao
U v, w = W;v;w U3 V5
Z Ox;0x;0xy, ks ZZ Or;0a; 7
i,j,k=1 i=1 j=1
8 F .CL‘() Ozo
(u, v, w) Z Z 5L ;904 UV W, ete.
ij=1 k=1 _1ICCk

We use the letters A, B,C, D, E, K, and L to denote (in increasing order) the derivatives of
F with respect to its first argument evaluated at the critical point. The subscript denotes
the order of the derivative of F' with respect to the parameters.

If we substitute the expansions , along with the Taylor expansion of F', into
the homological equation , we can collect the coefficients of the w”B*-terms. This
results in a set of equations from which it is possible to recursively solve for the unknown
coefficients g, Hy,, and K.

2.1.1 Solving the linear systems

If we collect all the coefficients of the w” 8#-terms from the homological equation ({2.5)), we
will find linear systems of equations of the form

(M — A)H,,, = Ry, (2.8)



where A will be some linear combination of the critical eigenvalues of A. Furthermore, the
right-hand side R,,,, will depend on the coefficients g,/,/, H,,» with V| + |p/| < |v| +|p],
the coefficients K, with |¢/| < |u| and on derivatives of F. Two situations need to be
considered. Either A is an eigenvalue, or A is not an eigenvalue.

If A is not an eigenvalue, the matrix AI — A will be invertible and system ([2.8) has the
unique solution

H,, =\ — ARy,

If A is an eigenvalue, we can apply Fredholm’s solvability condition. A complex version of
the Fredholm solvability condition can be stated as

Lemma 1 (Fredholm Solvability). Let L € C"*™ and y € C". The linear system Lz =y
has a solution if and only if for all p € C™ satisfying L*p = L™p = 0 we have that

(p,y) =pTy=0.

We only have to concern ourselves with the situation where X is a simple eigenvalue,
meaning both the algebraic and geometric multiplicities are equal to one. In that case,
there exist, up to scaling, unique eigenvectors ¢,p € C™ such that

(M—A)g=0, M—-A"p=0, and(p,q)=p'q=1.

The existence of the center manifold implies that the system ([2.8]) must be solvable. Thus,
the Fredholm alternative requires that

<p, Ru,u> =0. (2.9)

When R,,, depends on the unknown normal form coefficient g,,,, the solvability condition
(2.9) will result in an equation for g,,.

To get to higher-order coefficients, we will also need a solution H,,, to system ({2.8)) when A
is an eigenvalue. We can obtain the unique solution to equation ({2.8) satisfying (p, H,,) =
0 by solving the following bordered system

M—-A q\ (Hyu\ _ (Ro
(o 0 () =) 219
with s € R. The (n+ 1) x (n + 1) matrix on the left is invertible (see for example [16,

Lemma 5.3]). To see that a solution to this bordered system solves equation (2.8) note
that this system is equivalent to solving the following equations

()‘I - A)Huu +gs = Rl/;u
(p, HVM> =0.

Taking the inner product with p on both sides of the first equation yields

(p, M — A)Hyp) + (P, q)s = (p, Rup)-

From the Fredholm alternative, we had that (p, R,,) = 0. Furthermore, we assumed that
(p,q) = 1 and we have that

(p,(\I — A)H,,) = (M — AT)p,H,,) = 0.

Thus, it follows that s = 0 and as a result we have indeed that equation ([2.8) is satisfied
with (p, H,,) = 0. We will write H,,, =: A{\NVRW for the solution.
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2.2 The center manifold reduction and normalization method
for DDEs

As presented in [15], the normalization technique for local bifurcations in ODEs can be
lifted to the infinite-dimensional setting of DDEs. In [3], this normalization method was
further extended to include parameters. We will closely follow the procedure from [3]
and summarize some of the results from sun-star calculus that are necessary to apply this
technique for the generalized Hopf bifurcation and solve the resulting equations.

We take the nonreflexive Banach space X := C(|—h, 0], R™) and define for each ¢ > 0 the
history function z; : [—h,0] — R™ at time ¢ as

z(0) ;== z(t+6), forall §€[—h,0.
Consider the classical parameter-dependent DDE
z(t) = F(zy, ), t>0, (2.11)

where F : X x R?2 — R” is a C*-smooth operator for some k > 1 and 0 < h < oo.
Assume that system satisfies F'(0,0) = 0 and that the trivial equilibrium exhibits
a generalized Hopf bifurcation at o = 0. As mentioned in the introduction, the existence
of a center manifold for DDEs has rigorously been established using the mathematical
framework of sun-star calculus. As for ODEs, the proof relies on a variations-of-constants
formula describing the solutions. To establish a variations-of-constants formula for DDEs,
it turns out that it is convenient to work in the larger space X©*, the so-called sun-star
dual space of X. Below, we will only present some necessary definitions and results from
sun-star calculus that will be needed in the normalisation method. Some background
information on sun-star and DDEs is presented in Appendix [C| although for a more
complete general introduction to sun-star calculus, including proofs, we refer to [9].

There exists a unique matrix-valued function of normalized bounded variation ¢ : [0, h] —
R™ ™ such that the linear part of (2.11)) at & = 0 can written as

h
Dy F(0,0)p = (¢, ) i= /0 aC(0)(—0). (2.12)

The above integral is of Riemann-Stieltjes type. With this notation, we can write the
right-hand side of (2.11)) in terms of its linear and nonlinear parts

F(‘P? a) = <Cv 90> + D2F(O’ 0)a + G((,O, a)v

where the nonlinear part G is a smooth operator satisfying G(0,0) = 0, D1G(0,0) = 0,
and DyG(0,0) = 0. We can associate a unique C’o—semigroupﬂ T on X with the linear
part of at 0 € X for the critical parameter value o = 0. Its generator A, plays an
important role in the stability analysis of the nonlinear DDE (2.11]). The generator of a
semigroup of operators is defined as the derivative of T'(t) at t = 0. The generator of the
semigroup 1" corresponding to the linearisation of is given by

Ap=¢, with D(A)={p e C'|p(0) = (¢, ¥)}- (2.13)

LA semigroup is a family T = {T(t)}:>0 of bounded linear operators with the properties: T(0) = I and
T(s)T(t) =T(s+t) for all t,s > 0. The Cp indicates the additional property of strong continuity: for all
peX, |Tt)p—¢|| = 0ast] 0. More details are given in Appendix
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When we go to the dual space X* of X, we lose strong continuity with the adjoint semi-
group T*. Therefore, we consider the maximal subspace of strong continuity X©. The
space X© has the representation

X© =R" x L([0, h], R™), (2.14)

with the duality pairing between ¢® = (¢, g) € X© and ¢ € X given by

h
(%) = T p(0) + / 9(0)p(—0)db. (2.15)

On the Banach space X® we have a Cp-semigroup T® with generator A®. The dual space
X% of X© has the representation

XO* =R" x L>([0, h],R™). (2.16)
On this space, we have the generator

A% (0, 0) = (¢, ), 9),  with  D(A™") = {(a, ¢)|¢ € Lip(a)}, (2.17)

where Lip(«) denotes the subset of L ([—h, 0], C) consisting of Lipschitz continuous func-
tions which assume the value « at § = 0. The duality pairing between ¢* = (a, 1)) € X©*
and ©® = (¢, g) € X is given by

h
(%, ©®) :cTa—l—/O g(0)p(—6)db. (2.18)

We look again at the maximal subspace of strong continuity X ©®. There exists an injection
j: X — X©© defined by

jo = (p(0), ) € X for all ¢ € X. (2.19)

We have that X®® = j(X). This property is also known as sun-reflezivity. We will often
move back and forth between the space X and its sun-dual space X ©*.

Assume that there are ng > 1 eigenvalues of the linearization of at @ = 0 on the
imaginary axis, with a corresponding real np-dimensional center eigenspace Xy. Then
[3, Corollary 20] will imply the existence of a parameter-dependent local center manifold
WE . (a) for (2.11). As in the ODE case, we want to include a relation @ = K () between
the original parameters a and some new unfolding parameters 8. Let u : I — X with
u(t) := x; € W (o) be as in [3, Corollary 20]. Then, u is differentiable on I and satisfies
the equation

ju(t) = A% ju(t) + (Do F(0,0) K (B))r®* + G(u(t), K(B))r®*, foralltel. (2.20)

Here wr®* = (w,0) € X®*, for w € R™. Now, choose a basis ® of Xy. With respect to
® and in terms of the new parameter (5, we can consider the locally defined C*-smooth
parameterization H : R™ x R? — X of the center manifold W¢ (a). Let z(t) be the
coordinate with respect to ® of the projection of u(t) onto the center subspace Xy. Then
z : I — R™ sgatisfies a parameter-dependent ODE where the right-hand side is a C*-
smooth vector field that can be expanded as

. 1 v
zZ= Z T’u!ng . (2.21)

[v|+[ul=1



12

We may assume that (2.21]) is a smooth normal form in terms of the unfolding parameters
5. Furthermore, we have that
u(t) = H(z(t),8), tel. (2.22)
If we substitute equation (2.22)) into the equation (2.20)), we find the following homological
equation
AP GH (2, 8) + (LK (B)r®* + G(H(z, 8), K(B))r™ = jD.H(z,B), (2.23)

where 2 is given by (2.21) and we defined J; := D2 F(0,0). The mappings H and K allow
for the expansions

Hif = S - Hep, K@) =Y ~K.pn (2.24)

i !
oz rEls

Meanwhile, the nonlinear part G (¢, ) can be expanded as

Gpa)= 3 %D{D;F(0,0)(cp(r),a(s)), (2.25)
r4+s>1
where o) = (¢,...,¢0) € X", a® = (a,...,a) € [R¥]®* and D}D3F(0,0) : X" x [R?}* —
R™ is the mixed Fréchet derivative of order r + s evaluated at (0,0) € X x R%. Just
as in the ODE-case, we will indicate the multilinear forms in the expansion of F' with
B,C,D,E, K, L and for the parameter-dependent derivatives B;, C;, etc. where the sub-
script ¢ indicated the number of derivatives with respect to the parameter. Thus,

J1:= D2F(0,0), B(u,u) = D3F(0,0)(u,u),
Al(u7 Ol) = D%D%F(Ov 0)(“7 (X), C(’U,, u, U) - D:l))F(Oa 0)(’&7 u, U,),
Bi(u,u, o) = DIDIF(0,0)(u,u, a), ete.

For the case of discrete DDEs, explicit formulas for the computation of the multilinear
forms are presented in [3], Section 5].

Similar to what we did for ODEs, we can now substitute the expansions , and
into the homological equation and collect terms of equal powers z¥*. Then
it is possible to solve recursively for the coefficients g,,, H,, and K. Before we discuss
how we can solve the resulting equations, we need some facts about the spectrum of the
generator A.

The spectrum To determine if bifurcations are present, we need to analyse the spec-
trum of the generator A of the semigroup corresponding to the linear part of (2.11]). For
this, we need the characteristic matriz function which is defined as

h
A(z) = 21 — / e dc(0), A:C—Cm (2.26)
0

and contains all spectral information about A% The integral in the above expression is of
Riemann-Stieltjes type and ( is the same from (2.12)). The eigenvalues of A are given by
the roots of the characteristic equation

det A(\) = 0. (2.27)

2In general, when we work with operators on infinite-dimensional spaces we divide the spectrum into
three parts: the point spectrum, the residual spectrum and the continuous spectrum. The point spectrum
consists of all the eigenvalues. Since T will eventually be compact, the spectrum of A consists only of
isolated eigenvalues, and the corresponding eigenspaces are finite-dimensional.
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We only have to concern ourselves with simple eigenvalues, i.e. eigenvalues for which both
the geometric and algebraic multiplicities equal one. If A € C is a simple eigenvalue of A,
there exist an eigenfunction ¢ and an adjoint eigenfunction ¢® such that

Ap = dp, A*o® = \p°.

Let ¢,p € C™ such that
ANg=0, pTARN) =0.

Then the corresponding eigenfunctions are given by
©0(0) =eMg, 6 e [-h,0] (2.28)
and ,
©® = <p,9 »—>p/9 e’\(e_T)d((T)) , 60¢€[-h,0]. (2.29)
Furthermore, it is possible to normalize the eigenfunctions to
(0, 0) = pA'(A\)g = 1.

Here A’()) is the derivative of z — A(z) evaluated at z = A
h
AN =T+ / 0e=0dc(9). (2.30)
0

Proofs of the above results on the spectrum of A can be found in [9, Chapter IV]. Note
that for £ > 2 we have the higher-order derivatives

h
AFI(A) = (—1)k+! / Ghe 0 4¢(0). (2.31)
0

In the following, we will denote the second, third, and fourth derivatives as A”(X), A”(X),
and A" (\) respectively.

In the special case of the discrete DDE (|1.6]), the characteristic matrix is given by
m
A(z) =zl — ZMje*ZTj, z€C,
§=0

where M; := Dy ;f(0,0) € R™™"™ is the partial derivative of f with respect to its jth state
argument evaluated at the origin [3 Section 6].

Remark. When dealing with the spectrum of A, it is actually necessary to complexify
all of the above spaces and the linear operators acting on them. However, as previously
remarked by [15, Remark 2.2] this is not a trivial task. Fortunately, this has already been
carried out in detail in [9, Section II1.7] and therefore will not be discussed here.
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2.2.1 Solving the linear operator equations

From the homological equation ([2.23]) we will find equations of the form
(A — A% (vg,v) = (wp, w), (2.32)

for some known (wp,w) € X®*, A € C and an unknown (vg,v) € D(A®*). We will only
have to consider two cases, either A is a simple eigenvalue or A is not an eigenvalue.

If A is not an eigenvalue, then equation ([2.32)) has a unique solution
(vo,v) = (M — A®*) " (wp, w). (2.33)

To compute the solutions, we need some representation for the solution (vg, v). The general
representation is given by the following result

Lemma 2 ([I5], Lemma 3.3). Suppose that X\ is not an eigenvalue. Then the unique

solution of (2.32)) is given by
0
v(0) = My + / A= w(o)do (6 € [~h,0]), (2.34)
0

with N
-
vo = A-1(\) {wg + / dc(7) / e (o — T)dg}. (2.35)
0 0
Of course, the above representation is not very nice to work with. Fortunately, we
will only encounter equations where the right-hand side of (2.32)) has a specific form that

allows us to write the above representations in terms of derivatives of the characteristic
matrix function A(z). The following Corollary presents some useful cases.

Corollary 1. Suppose that A is not an eigenvalue. We have the following special cases

1. Suppose that (wgy,w) = (wo,0). Then the unique solution (vo,v) € D(A®*) of (2.32))

has the representation

vg = v(0), v(0) =eMATI(\)wo.

2. Suppose that (wo, w) = (O7 0 — e’\GA_l()\)n) for some fizedn € C™. Then the unique
solution (vo,v) € D(A®*) of (2.32)) has the representation

v =v(0), v(0) = ATTV)[A' ) — I — IAN)]w(B).

3. Let k > 1. Suppose that (wo,w) = (0,0 — 0¥’ A=1(\)n) for some fized n € C".
Then the unique solution (vg,v) € D(A®*) of (2.32)) has the representation
1

vo = v(0), wv(h) = m&@A—l(A)[AUM)(A) — 0FFTAN)]ATI (M.

Proof. These representations follow by applying Lemma [2| The first follows immediately
after substitution into equation (2.34) and a derivation of the second case is presented in
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[15, Corollary 3.4]. For the third case, we first calculate vg using equation (2.35)). This
yields for k > 1

h T
w=a70 [ ) / DA o r)rdo AT (W,

/ / r)dodc(r)A™ (\n,

_ A /0 le( 1)k+2h L= e (1) AL (A,
1
Y

where we used expression (2.31) for the (k + 1)-th derivative of A(z) at z = A. By
substituting this into (2.34) we find for 6 € [—h, 0]

AT AT ) AT ),

0
v(0) = My —|—/ ANk A7 e A= (M),
0

1
_ k1 A1
e <v0 T 19 (A)n) ,

= M (AT AEI AT g — AT )
= AT A AT () — 04
1 _
= 7 AT AT — oA AT .

O
The special cases from Corollary (1| can be combined to arrive at the following result:

Corollary 2. Suppose that X is not an eigenvalue and that the right-hand side of (2.32))
has the representation

(wp, w) = (wo, 0— ewA*l()\)[n + 0&1 + 6’252]) ,

for some fized n,&1,& € C™. Then the unique solution (vo,v) € D(A®*) of (2.32)) has the
following representation

v(0) = MATI(N) (wo VA — T — HA(A)]A‘I()\)n
5100~ PAMIATI (VG + SIA"(0) — PANIAT (G,
and vo = v(0).
Proof. Write
(wo,w) = (w0, 0) + (0,6 = XA (2)n) + (0,6 > 6eM A (V)¢ )
+ (0, 0 92&%—1@)@) .

Using the linearity of the inverse operator (A — A®*)~! we can apply the cases from
Corollary O
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Finally, from this result, we can derive the following special case, which will make our
calculations in Section [5.1] easier.

Corollary 3. Suppose that A is not an eigenvalue. We have the following special case:
Suppose that (wo,w) has the form

wo = w(0), w(®) = AT (M +[A') — PAN + [A"() — CPAWNE)

for some fized M,ﬁ,f € C". Then the unique solution (vg,v) € D(A®*) of ([2.32) has the
representation

Wl

0(6) = AT (A0~ BAN(0) - FIA"() - AN - A" () ~ FANE)

and vo = v(0).
Proof. We can rewrite w(f) as
w(f) = AT [M + A'(N)i) + A"(N)E = OAN)H — 02 A(N)E].
Now we can apply Corollary [2| by taking n = M + A'(A)7) + A"(NE, & = —A(N)7 and
& = —A(N)E. Finally, use that wg = A~1(\)n to simplify the expression. O

If X\ is an eigenvalue, system ([2.32]) does not have a unique solution. Just as when
we solve the matrix equations for the ODE case, there exists a variant of the Fredholm
solvability condition for operator equations of the form (2.32]).

Lemma 3 ([15], Lemma 3.2). For arbitrary X\, a solution (vo,v) € D(A®*) to system

(2.32) exists if and only if
{(wo,w),®) =0, forall ¢®¢e N — A*).

This condition is also referred to as the Fredholm solvability condition in much of the
literature. During our computations in Section [5.1| we will also refer to it as the Fredholm
solvability condition. It should be clear from the context which version we use. Similarly
to before, we can use a bordered operator inverse

(M — ANV RINT — A®*) — D(A®¥)

to find a unique solution to system satisfying ((vo,v), ) = 0 for all (wp,w) for
which is consistent, i.e. satisfies the Fredholm solvability condition. A general
representation for (A\I — A*)INV in the case that \ is a simple eigenvalue is given by the
following proposition

Proposition 1 ([15], Proposition 3.6). Let A be a simple eigenvalue of A with eigenvector
¢ and adjoint eigenvector ©®, such that (p®,p) = 1. Suppose that [2.32)) is consistent

for some given (wg,w) € X©*. Then the unique solution (vg,v) = (A — A9*)INV (wq, w)
satisfying ((vo,v), ©®) = 0 is given by
0
v =E+7g, v(0) =M +/ A w(o)do (0 € [~h,0)), (2.36)
0
with .
£ =AY [wo +/ dg(T)/ e)‘aw(a—T)da] : (2.37)
0 0

and the constant v is given by

h rh 0
v = —pA/()\)f—p/O / e)‘st(s)/ e M w(o)dodr. (2.38)
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The expression for ¢ contains the bordered matrix inverse A(X\)¥V. A unique solution
= AN)NVVy satisfying p”2 = 0 can be found by solving the following bordered system

57 5) ()= 6)

for (z,s) € C**!. We will occasionally encounter the following special case:

Corollary 4 ([15], Corollary 3.7). Suppose in addition that (wo,w) = (n,0) + k(q, ) for
somen € C" and k € C. Then

vo=E+7q,  v(0) = e (vy — Kbg),

with
€= ANV () + 5 (\)g) and 3 = —pA(VE + rpA" (g,

For this case we will use the notation v = BNV (n, k).

For the derivation of the linear predictor in [3], the special case from Corollary {4f was
enough. However, if we want to derive the equations for the higher order coefficients we
will find that we need two more special cases for the representation of (A — A®*)INV,
Before we state these, we derive the following more general result when w is of a polynomial

type.

Corollary 5. Suppose in addition to the assumptions from Proposition |1 that (wg,w)
satisfies
(wo,w) = (w0, (€9 + 061 + ... +67))

for some m € N and constant vectors &, € C", 0 < k < m. Then the unique solution
(vo,v) = (AT — ANV (o, w) satisfying ((vo,v), p®) = 0 is given by

1 1
vo=¢+7q, v(f)=c (vo—ego—29251—...—m+19m“§m>,
where
1
_ INV / _ AN (m+1)
E= AWM fun + YO ~ TG0+ A& + .+ L AP
and
1

1= “pAOVE + A (N + gpA" (N + .+ ANy

(m+1)(m+2)

Proof. Write w(f) = e’ Sty 0%¢ and apply Proposition Filling the expression of
w(#) into equation (2.36)) yields

0 m
v(0) = Mg + / eA0=0) Ao Z okéndo,
0 k=0
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For the expression of £ we first evaluate the integral in equation (2.37). This results in

h m
Intfz/ dC(T)/ “ArAlo=T Z o —1)*¢do,
0 0 k=0

h m 1 o=T
— AT d _ \k+1
/Oe <<T>k20[k+1<a 71| e
m k
+2/ k+1ef)\7d<—(7_)£k’
k=0 0

M) -1l + 3 A g
k=1

Here we used expressions (2.30) and (2.31) for the derivatives A®)(\). Filling this into
equation ([2.37)) will yield the expression for £. Finally, evaluating the integral in equation
(2.38]) results in

Inty = /0 ' /T " e_)‘st(s)kf::O /_ OT ok ¢pdodr,
_ kio /0 ' /T ' e_ASdC(s)(_klj_k:szkadT,
= i / " s / S (_]:ff#f“dmg(s)gk,
-y CESES) - / "2 (),

2 (k+ 1)k +2)
= 1
- kZ:O (k+1)(k+2) A (N

Here we used Fubini’s theorem to switch the order of integration in the third equality and
expression (2.31)) in the last step. Filling this expression into equation (2.38)) yields the
expression for ~. O

From Corollary , we have the following two special cases that we will use in our
derivations in Section 5.1}

Corollary 6. Suppose in addition to the assumptions from Proposition |1 that (wg,w)
satisfies
wo = w(0), w(d) = e (wy — kbyg),

for some k € C. Then the unique solution (vy,v) = (A — AQ*)INV(wO,w) satisfying
{(vo,v),9®) =0 is given by

= 1
w=E+7q, () =N (m ~ Owp + 2ﬁ92q> ,
where

£ = A()\)INV [A'()\)wo - ;HA”()\)Q] ,
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and
~ 1 1
G = —pA(E + 3pA" (Nwo — £rpA" (N

For this case we will use the notation v = B{Nv(w, K).

Corollary 7. Suppose in addition to the assumptions from Proposition |1| that (wp,w)
satisfies

1
wo =w(0), w(f)= e)‘e(wo —0¢ + 5%&92q),
for some constant vector & € C" and some constant k € C. Then the unique solution

(vo,v) = (M — A*)INV (o, w) satisfying ((ve,v), ¢®) = 0 is given by

. 1 1
vo=&+9q, v(d)= M <’U(] — Owg + 5925 — 6/@03q> ,

where

E= A [ A (un — JA"ONE + rd" (]

and
4= —pA(NE + %pA”(A)wo - épA’"(A)é + szﬂpﬁ""(k)q'

For this case we will use the notation v = B{Nv(w,ﬁ, K).



Chapter 3

Higher order LPC curve
approximmation for the normal
form

In this chapter, we will first derive a parameter approximation of the LPC curve for
the normal form. Then, we will use this to derive an approximation for the period of the
cycles on the LPC curve. We will conclude the chapter with a detailed discussion on which
coefficients need to be included in the center manifold and parameter approximations when
extending to general n-dimensional systems of ODEs.

3.1 Approximmation of the LPC curve derived from the
normal form

Assume that at o = 0 there is an equilibrium at the origin with only one pair of purely
imaginary simple eigenvalues

)\172 = t+iwwgy, wp > 0.

Restricted to the center manifold near a generalized Hopf bifurcation, the system (2.1)
can be transformed to the following parameter-dependent normal form

= Ma)w + e1(@)wlw]?* + ca(@)w|w|* + c3(a)w|w|® + O(|lw|®), w e C,

where \(0) = iwg, di = R(c1(0)) = 0 and dy = R(c2(0)) # 0. Furthermore, we have the
following transversaility condition:

The map a — (R(A(«)), R(c1(«))) is regular at o = 0. (3.1)
If this condition is satisfied, we may introduce new parameters
(Bi(e), fa(a)) = (R(A(a)), R(cr(a))).

Then, for ||a|| small enough, the normal form can be expressed in terms of 5. This results
in the following expression for the normal form

W = (iwo + B1+ib1(8))w+ (B2 +iba(B))wlw|* + c2 (B)wlw|* + e3(B)w|w|® + O(|w[*), (3.2)

where by and by are real valued functions with b1(0) = 0 and b2(0) = I(e¢1(0)). Note that
we write ¢;(f) instead of ¢;(a(fB)) for convenience. To get a higher-order approximation

20



21

of the LPC curve, we first substitute w = pe’¥ into (3.2)). Taking the real part yields the
following amplitude equation

p=p(Br+ Bap® + R(ca(B))p* + R(cs(B))p® + O(p")). (3.3)

3.1.1 LPC curve in the amplitude equation

To derive an approximation for the LPC curve we expand

R(c2(B)) = ds + as21081 + asz01 B2 + O(||B]%),
R(es(B)) = ds + O(|B]])-
The LPC curve corresponds to a double equilibrium of the right-hand side of equation

(3.3). This occurs when both the right-hand side of equation (3.3)) and its first derivative
with respect to p vanish. This results in the following system of equations:

{ﬂl + B2p? + R(c2(B))p* + R(es(B8))p® + O(p7) = 0,
Bap + 2R(c2(8))p* + 3R(c3(8))p° + O(p°) = 0.

Let us define P : R x R?2 — R? by
P = (P, 2 RO eyt < 01 55)
& B2+ 2R(c2(8))p” + 3R(e3(8))p" + O ) '

Then equation is equivalent to P(p, 3) = 0. Note that P(0,0) = 0 and DP3(0,0) is
invertible. Thus, by the Implicit Function Theorem, there exists a unique locally smooth
function 5(p) = (B1(p), S2(p)) near p = 0 such that 5(0) = 0 and P(p, 5(p)) = 0. Conse-
quently, we can expand (1 and (B2 in p as

(3.4)

Bi = miip+mizp® +mizp® +miap* +misp’ +miep® +0(p7), i=1,2.
If we substitute these expansions into the equation P(p, 3) = 0, we see that up to p> we
have the following terms
mi1p 4+ miop® + (miz+mi1)p®+0(p*) =0,
ma,1p+ (Mma2 + 2da)p® + (ma + 2my 1asz10 + 2ma1asae1)p” + O(p*) = 0.
From the p-terms it follows that mq1,m21 = 0 and the p2—terms imply that mi2 = 0

and mg 2 = —2dy. As a result, the p3 terms yield mq 3,mo 3 = 0. Collecting the p4—terms
yields the equations

Pt d2 +my g4 — 2dy =0,

ma4 + 3d3 - 4&3201d2 = 0.
Thus, the fourth order coefficients are given by mi4 = do and ma 4 = 4azz1ds — 3ds.

From the p°-terms in the first equation of (3.5) we find that m; 5 = 0. Finally, collecting
the pb terms from the first equation of (3.5)) we find that

m16 + M4 + aza01mao2 + d3z = 0.

Thus, mi6 = 2(ds — asz1dz2). We now have the following asymptotic expansions for the
beta parameters

B1 = dop* + 2(d3 — az01d2)p® + O(p"),
By = —2d2p2 + (4a3201d2 — 3d3)p4 + O(p5).
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Let p = ¢ > 0 be small. Then, an approximation of the LPC curve is given by
(p, b1, ,82) = (8, d2€4+2(d3—a3201d2)56+0(57), —2d2€2+(4&3201d2—3d3)84+0(€5)). (3.6)

To see the order of the parameter curve approximation, we derive an expression for 81 as
a function of By. For this, we first substitute § = £? and write

B1(8) = dad® + 5185 + O(p3),
Ba(8) = —2dsd + 5502 + O(62),

where s1 = 2(d3 — ageo1d2) and sy = 4agep1de — 3ds. Under the condition that 5(0) =
—2dy # 0 it follows from the Inverse Function Theorem that there exists a unique locally
smooth inverse d(f2) of f2(d). We can expand § as a function of f2

5(B2) = 6182 + 6282 + O(63).

Substituting this into the equation for (s yields

52 = —2d251,32 + (825% - 261252)63 + O(BS)

From this it follows that §; = —ﬁ and Js = 522;2% thus §(B2) = —ﬁ62 + 8%&% + O(33).
Since we set § = €2, we need that §(82) > 0. If dy < 0, this holds for B2 > 0 small enough.
If we substitute this into the expression for 81 we find

1

1 7
= 4726% — —=(s2+51)85 + O(B3).

b 83

Thus, using the approximation (3.6)), the LPC parameter curve is approximated up to
third order for the normal form (3.2)).

Remark For a quadratic approximation in the parameter plane, it is enough to take
B1 = dap* and By = —2dap*.
3.1.2 Period approximmation

To approximate the period T of the cycle on the LPC curve near the generalized Hopf
bifurcation we use that

T .
/0 bt = 2. (3.7)

To obtain the approximation of ¢, we first take the imaginary part of equation ([3.2))
after substituting w = pe’¥ and partially truncate higher order terms. This results in the
equation

W = wo + b1(B) + b2(8)p” + S(c2(0)p" + I(e3(0))p°. (3.8)
For b1(8) and ba(3) we make the following expansions
1, o , 1 4 1 S
b1(B) = b1,1061 + brorfat b1 2050 + biafife + §bl,ozﬁz+601.:a(J»~—f1 + 551.21 Bi B2
1 ¢ 1 Q
+50112815 + Sbiosfz + O8],

1 . ) 1 » .3
b2(B) = S(c1(0)) + bo 1031 + bo,o1 P2 + ;bz.z()‘ff) + 02,1151 82 + ;/)2.0255 + O([IB]7)-
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Since we are only interested in an approximation of the period up to fourth order in ¢,
the terms in grey would not appear in the period approximation. Their inclusion here is
meant to demonstrate this explicitly. Now, substitute the parameter expansions (3.6) of
the LPC curve into equation (3.8)) and solve the integral (3.7). This results in the following
approximation of the period
T = 271’/(&)0 + (%(01 (O)) — 2d2b1701)€2 + [d2b1710 -+ (4a3201d2 — 3d3)b1701 + 2d%b1702
— 2daba 01 + I(ca(0))]e? + O(P)). (3.9)

3.2 Coefficients needed for the center manifold and para-
meter transformation approximmations
As discussed in [4], it is important to consider the effect of terms that are not present in
the normal form used to derive the predictor. The terms that affect the predictor up to
the current order of approximation will tell us which coefficients need to be included in
the parameter transformation K and center manifold approximation H. We will illustrate
this with an example. Consider the system
2= (a1 +€a3 +iwg)z + agz|z|? + (da + aag)z|z|* + ds2]2|°, 2 €C,

for some nonzero constants &,wp, da, a,ds € R. Substituting z = pe’¥ and taking the real
part results in the following amplitude equation:

p = plar + &a3 + azp® + (da + aaz)p* + ds3p®)

To approximate the LPC curve, we need to solve the following system

{al +€a3 + agp? + (dg + aaz)p* + d3p® =0, (3.10)

ag + 2(da + aag)pQ + 3d3p4 =0.
For this, we proceed in the same way as before and expand
ai = mi1p+migp” +mizp’ +miapt +misp’ +miep® +O0(p"), i=1,2.

Substituting this into equations (3.10) and collecting terms will result in the following
approximation for p =¢ > 0

a1 = (dy — 4d38)e + (2dy — 2ady + 4dy(4ads — 3d3)E)e + O(7),

g = —2doe?® + (4ady — 3d3)e* + O(ED). (3.11)
This yields a different LPC curve approximation than the approximation (3.6|) from before.
Specifically, in the expansion for a;, we have two extra terms depending on the constant
¢ that have appeared. Therefore, including a term a2z in the normal form will alter the
current predictor. Consequently, this term needs to be transformed away into higher-order

terms that do not affect the current order of the predictor. We can achieve this with the
following parameter transformation

{a1 — B — B2,

3.12
ag = (3. (3.12)

Then the system becomes

3= (B1+iwo)z + Paz|z|? + (d2 + aB)z|z|* + dsz|2|®, 2 €C,
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The LPC curve approximation for this system, up to the same orders as before, will yield:

ﬁl = d2€4 + 2(d2 — ad2)56 + 0(67),
By = —2d2€2 + (4ad2 - 3d3)€4 + 0(85),

which is the same approximmation as (3.6). Note that if we substitute the approximation
for 5 into the parameter transformation (3.12]), we recover our approximation for the

original parameters (3.11]), as expected.

The key point is that since the additional term £a3z influences the predictor up to the
desired order, this term needs to be transformed away into higher order terms. We need
to include the quadratic coefficient Ko into our parameter approximation to achieve this.
Therefore, to find all the coefficients that need to be included in the approximations K
and H, we need to see which terms, not included in the normal form , will affect
the predictor up to the desired order. These are then precisely the terms that need to
be removed, i.e. transformed into higher order terms, to preserve the accuracy of our
predictor up to the desired order.

To derive our parameter approximation of the LPC curve it was enough to consider the
truncated normal form

w = (iwo + 61+ ibl(ﬁ))w + (52 + ibg(ﬁ))wlw\Q + (02(0) + a320152)w‘w’4 + dgw]w\G.

We can now include terms of the form gnmklw"wmﬁfﬁé forn,m,k,l € Nwith n+m+k+I[ >
1 to this normal form, and determine if they influence in the predictor approximation.
The amplitude equation p is derived by taking the real part of the normal form after
substituting w = pe’¥. When you do this, you will notice that terms for which n—m—1 # 0
will be resonant. These will certainly influence the predictor up to a certain order. Let
us write anmir (1)) = R{gnmre? ™ DY, Then the amplitude equation will have the
following form

p = Bip+ Bap® + (da + azo01B2)p” + dsp” + anmu () p" " BYBL.

To find a parameter approximation of the LPC curve, we look for a double zero in the
equation

Brp + Bop® + (da + az20182)p° + dap” + apmpa (V) p" T BYBL = 0. (3.13)

The goal is to determine the combinations of n, m, k, [ for which the resonant term will ap-
pear in our expansions of 81 and (2, consequently affecting our LPC curve approximation.
This will indicate which terms need to be removed in the normal form and thus which
coefficients H,,,x; need to be included in the center manifold approximation [4]. Similarly,
we can see which coefficients Kj; need to be included by looking at the nonresonant terms
aloklpﬂfﬂé and a21klp3ﬁfﬂé. We will first discuss in detail the case when n +m = 0, and
then provide the coefficients for n + m > 1.

Case n 4+ m = 0 : The equations that need to be satisfied for a double zero are in this
case given by

Bip + Bap® + (da + azem B2)p° + dap” + agor () BYBL = 0,
81+ 3620 + 5(da + azz0182)p* + Td3p® = 0.
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As before, we expand
Bi = my1p + mi,ng + mi,3p3 + m¢74,04 + mi,5p5 + mi,GpG + O(p7), 1 =1,2.

Note that it immediately follows from the second equation that mi; = mj2 = 0. One
approach would be to simply substitute the expansions of §; into the equations and solve
for the coefficients up to the desired orders to see where the terms anmki (1)) appear.
However, this method would quickly become tedious. Fortunately, we can simplify things
a bit by setting m; 1 = m; 3 = 0 for i = 1,2. To see why, let us examine all the p-terms in
the first equation. This yields

aooo1 (¢¥)ma1 + apo10(p)mi,1 = 0.

Since this must hold for all 9, it follows that mso 1 and mi; have to equal zero. These
terms are already zero in our LPC approximation, so this does not present a problem.
Now collect all p2-terms in the first equation

aooo1 (1)ma.2 + ago10(¥)ma2 + aoo20(¥)mi 1 + aooo2(¥)m3 1 + agor1(¥)ma,1ma;1 = 0.

This can only hold for all w if mi2 = m271 =my11 =Mmg2 = 0. For m172,m271, and mini,
this is not an issue since they are already zero in the approximation. However, for ma 2,
it is a problem because this term is not zero in our LPC curve approximation. Thus, if
the term aggp1 (¢) is present in the normal form, it will influence our predictor. Therefore,
this term must be transformed away, implying that the coefficient Hygpr must be included
in the center manifold approximation. Whenever a coefficient like my 3, which is zero in
our LPC approximation, appears in front of a term agog;(1), this term can be removed
by simply setting mq 3 = 0 without altering the predictor. There is only a problem if the
coefficient in front of agor;(1) depends on coefficients like mg 2, which are nonzero in our
predictor. Thus, it is enough to substitute

81 =myap* +miep°,

B2 = m2,2p2 + m2,4p4,
when collecting terms. To arrive at the desired order of the predictor, we need to collect
terms up to p” in the first equation and terms up to p® in the second equation. Therefore,
all terms with k,5 € N for which ﬂfﬁé contains a term p’, j < 7 need to be removed.

All combinations of &k, € N for which ﬁfﬁé contain such terms have been listed in Table
below. This would mean that we need the coefficients Hogo1, Hoo10, Hooo2, Hoo11, and

Hogo3-

Table 3.1: The first terms of BF3, for k,I € N which are lower than order p.

First term of 5},
k‘zl,l:O m174p4
k= 0,l =1 m2,2p2
k=0,1=2 m%72p4
kE=1,1=1 my 4ma2p°
k=0,l=3 m§72p6

Case n+m > 1: Now consider the following two equations

Brp + Bap® + (da + az20182)p° + dap” + apmp (V)" T BYBY = 0,
B1 + 3620 + 5(da + azz0182)p* + Td3p® + apmi (V) (n 4+ m — 1)p" 1 EEL = 0.
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By the same reasoning as before it is enough to substitute

4 6
B1=mi4p” +miep’,

By = maop? + maap*.

To derive the parameter approximation of the predictor up to sixth order in ¢, we need to
collect all terms up to p” in the first equation and all terms up to p® in the second equation.
If the term anmkl(zp)p"erﬂfﬁé contains terms of order p” or lower, this will influence the
approximmation. If & = [ = 0, then a term a,,x (1)) will influence the predictor for all
1 <n+m <7 and thus all of these need to be removed. This implies that we need to
include all coeflicients H ;00 with 1 <n +m < 7 in the center manifold approximation.

Now we consider the cases for which k or [ are nonzero. For n+m = 1, we need to remove
all apmri (V) pﬁfﬁé terms for which 6{“65 contains terms of p% or less. This is the case for
(kl) = (10), (01), (02), (11) and (03) So we need Hnmlg, Hanla HanQa Hnmll and Hnmog
with n +m = 1. From this case, it also follows that the non-resonant terms a,mxpB3" 35
with (kl) = (10), (01), (02), (11) and (03) will affect the predictor. Thus they also need to
be removed, which can be achieved with the coefficients K¢, K1, Koo, K11, and Kpz in
the parameter approximation.

For n+m = 2, we need to remove all @,k (1) p? 5{“65 terms for which Bfﬁé contains terms
of p° or less. This is the case for (ki) = (10), (01), (02). So we need Hym10, Humo1, Humo2
with n +m = 2.

For n +m = 3, we need to remove the terms for which 5§35 contains terms of p* or less.
This will be the case for (kl) = (10),(01),(02). For n +m = 4,5, only (kl) = (01) will
appear and for n 4+ m > 6 none of the p"*t™pFBL terms appear in the approximmation
when & or [ is nonzero.

To summarise, all coeflicients that need to be included in the center manifold approxima-
tion are

Hym10s Hamot, Humoz, Humi1, Humos, n+m=j,j€{0,1},
Hymios Humot, Hpmo2, n+m=jj€ {23},
Hpmot n+m=j,j € {4,5},
H,moo, n+m=jj€{1,2,3,4,56,7}.

Finally, all coefficients that need to be included in the parameter transformation are
Ko, Ko, Koz, K11, and Kog.

Remark. If one is only interested in a predictor that is second-order in the parameters
3, i.e. using the approximation B; = dop?, fo = —2dap?, it is enough to collect terms op
to order p° in equation (3.13)). Therefore, only terms a,m (1) p" ™ 3% 8L where pnt™ kgL
contains terms of order p° or lower need to be removed. In that case, the following
coefficients are necessary for the center manifold approximation

Hnm107Hnm017Hnm02a n+m :]a] € {071}’
Hanl n+m:]7]€{273})
HanO, n+m:j7j€{172737475}

For the parameter transformation, it will be enough to include Kig, K1 and Kos.



Chapter 4

The predictor for ODEs

4.1 Coefficients of the parameter-dependent normal form
and the predictor for ODEs

We will now derive the equations to calculate all the coefficients that we need in our
predictor for ODEs. We follow the method discussed in Section Assume that system
has an equilibrium at the origin at a = (0,0) € R? with only one pair of purely
imaginary simple eigenvalues

)\172 = twwgy, wp > 0.

Additionally, we assume that all the other eigenvalues have non-zero real parts. This
allows us to introduce the complex eigenvectors p, ¢ € C" satisfying

Aq =iwoq, ATp= —iwgp, and ¢ q=p'q=1.

Furthermore, we assume that the first Lyapunov coefficient /;(0) = 0 and the second
Lyapunov coefficient I5(0) # 0. The critical real eigenspace T corresponding to Aq 2 is
now two dimensional and we can represent each y € T¢ in terms of the complex coordinate

w = (p,y) as
Y = wq + wq.

Then, the homological equation ([2.5) has the form
Dy H (w, w, ) + D H(w, w, f)w = F(H(w, o, B), K(8)). (4.1)

Under the assumption that the transversality condition (3.1 is satisfied, the truncated
normal form restricted to the two-dimensional center manifold can be expressed in terms
of the unfolding parameters 8 = (51, f2) as

w = (iwy + B1 + ib1(8))w + (B2 + iba(B))w|w|* + (c2(0) + g320182)w|w|?
+ c3(0)w|wlS, (4.2)

where it is enough to expand

1 1
b1(B) = b1,1051 + b1,0182 + b11151 82 + 551,0253 + 651,03537 (4.3)

1 1
b2(B) = I(c1(0)) + b2.1061 + b2,0182 + b2.115152 + 5@,0253 + 652,03/33 (4.4)

27
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Under the assumption that F' is sufficiently smooth, the truncated Taylor expansion of F
is taken as

1 1 1 1
F(z,a) = Az + Jia + Ai(z, ) + §B(:I:,x) + §J2(a, a)+ =C(z,xz,x) + §B1($,:1:, a)

6
1 1 1 1 1
+ 7A2(33,06,05) + 7J3(O[7047O‘) + 7D($,$,33,1’) + 701(337%‘7'%705) + 732('1‘71"0570[)
2 6 24 6 4
1 1 1 1
+ 6143(1‘,04, a, o) + mE(m,:v, x,r,x) + ﬂDl(m,x,aj,x, a) + ECQ(:U,x,x, a, Q)
1 1 1
+ EBg(x,x, a, ) + %K(:c,x, x,r,x,T)+ ﬁEl (x,z,x, 2,2, Q)
1
+ %Cg(fl‘,.’lf,x, a, o, ) + ML(&:,J:, T, T,T,T,T). (4.5)

The parameterization of the center manifold is expanded as

7 5
_ __ 1 _
H(w7 w, 6) =quw + qu + Z m]¥nmoownwm + Z Hanl

wnwmﬂz
Im! n!m!
n+m=2 n+m=0
3 3

1 n,—m 1 n,—m Q2

+ E ——— Hpmiow"w™ B1 + E ——— Hpmoow" W™ 35

n!m! 2nlm!
n+m=0 n+m=0

1

1
1 B 1 _
+ E Hnmllwnwm/@IBQ + § Hnm03wnwm63
nlm! 6n!m!
n+m=0 n+m=0

1 . 1 o 1 P
+6H1 103ww 35 + EH24J(J:;U'233 + EHZI():E w10 By (4.6)

Note that the image of H lies in R" and thus we have that Hj, = iju- The last three
terms, marked in grey, are not needed to approximate the periodic orbit in phase space.
However, as will be clear in Section we do need the expressions for Hq1¢3, Hogoz and
Ho103 to derive the coefficients Ky3, Hygoz and Hygoz. The relation between the parameters
is expanded as

1

6K03ﬁ§‘ (4.7)

1
K(B) = Ki0p1 + Ko182 + §Ko2ﬁ§ + K118182 +
Although the coefficients bq11, b1,03 in the expansion of by(3) and ba2,b2,11,b2,03 in de
expansion of by() do not appear in our predictor, we will need their expressions from the
homological equation to solve for Kz, K11 and Ky3. All the equations collected from the
homological equation (4.1]) are listed in Appendix

In the next two subsections, we will derive all the necessary critical normal form coefficients
from and the parameter-dependent coefficients from . Not all coefficients in the
center manifold approximation (4.6)) are needed in this derivation. Their expressions are
presented in Appendix [Bl An overview of all the coefficients that need to be determined
for the higher order predictor is presented in figure [£.1]
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Parameter-independent coefficients Parameter-dependent coefficients
Hao00, H1100 Ko, Ko
| |
c1(0) Hoou, b1, Hiop 1= (10, (01)
| Hoop, Hi1py b2, Ho1y
H2100, H3000, H3100, H2200 _— ™~
| H3010, H3001, H3101 Koo, K11
c2(0) Ha301, Haoo01, Hs001, Ha101 / \
| —
H3200, Hi000, Ha100, Ha200, H3300 93201 Hooo2, b1,02, H1002 Hoo11,b1,11
_ S~ | Hao02, H1102, b2,02, H2102 Hyo11
c3(0) Hs000, He000, H5100 H3a01 _— S~
\ H7000, He100, H5200 H3z002 Kos
Hy300 |
Hooos, b1,03
Hioos

Figure 4.1: Schematic overview of all the coefficients that need to be determined. The coefficients
that are marked blue are not needed in the computation of the normal form coefficients but are
needed in the approximation of periodic orbit. Their expressions can be found in Appendix @
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Remark. In [I7] and [3] a slightly different approach was used to obtain a linear approx-
imation to the LPC curve between the parameters than the one that was taken here. The
main difference resides in the fact that they considered the truncated parameter-dependent
normal form in terms of the original parameter a:

2 = (iwo + 71,1001 + Y1,0102)2 + (c1(0) + Y2,1001 + Y2,0102)2]2]* + 2(0)z]2[*.
The homological equation will then be simplified to
H.(2,z,0)2 + Hs(2,z,0)z = F(H(z, 2, a), ).

After deriving the coefficients v1,10, 71,01, 72,10 and 2,01 from the above phonological equa-
tion, one can obtain the following linear relation for the parameters

o= (éR{ <’71,10 71,01) }) - 8.
V2,10 72,01

Although this method does simplify expressions, one must be careful since the LPC-curve
from the normal form is approximated in the parameters S. This should be taken into
account when approximating the solution in phase space using the center manifold expan-
sion in a.. Furthermore, as remarked by [3], this method only works if one is interested in
a linear approximation of « in terms of 3.

4.1.1 Critical normal form coefficients

The critical normal form coefficients up to the fifth order coefficient have already been
derived in previous works. For completeness, we include their derivation here following
[16, Section 8.7.3]. The expression for the first Lyapunov coefficient I3 = %0%(01 (0)) can
be derived from the w?, ww and w?w terms in the homological equation. These terms
yield the equations

Haoo0 = (2iwoI — A) ' B(q, q), (4.8)
HllOO - _AilB(q7 Q)a .
(iwol — A)Ha100 = 2B(q, H1100) + B(q, Ha000) + C(q,¢,7) — 2¢1(0)q. (4.10)

Since the last equation is singular, we can use the Fredholm solvability condition to find

c1(0) = %ﬁT[QB(q,Hnoo) + B(q, Ha000) + C(q, 4, q)]- (4.11)

The vector Haj9p with (p, Ha100) = 0 can be found by solving the corresponding bordered

matrix system ([2.10)).

For the second Lyapunov coefficient Iy = U%OS?(CQ(O)) we need the w3, w3w, w?

2

w* and

w3w? terms from the homological equation. The first three terms yield the equations
Hso0 = (3iwol — A)~'[3B(q, Haooo) + C(q, 4,9)), (4.12)
Hs100 = (2iwol — A)~'[3B(g, Ha100) + B(q, Hzo00) + 3B(Hi100, Ha000)
+3C(q, q, H1100) + 3C(q, ¢, H2000) + D(q, 4, q,q) — 6¢1(0) Haooo], (4.13)
Haoo = =A™ [2B(q, Ha100) + 2B(, H2100) + B(Hz2000, H2000)
+ 2B(H1100, Hi100) + C(¢, ¢, H2000) + 4C(q, , Hi100)
+ C(q, q, Hao00) + D(q, 4,7, 9)]- (4.14)
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Note that we used that ¢1(0) + ¢1(0) = 2wpl; = 0 to simplify the expression for Hag.
Collecting the ww? terms yields the equation

(iwol — A)Hsa00 = 3B(q, Ha200) + 2B(q, Hs100) + B(H 2000, H3000) + 6 B(H1100, H2100)
+ 3B(Ha100, Ha000) + 3C(q, 4, Ha100) + 6C (g, ¢, H2100) + 3C(q, H2000, H2000)
+ 6C(q, Hi100, H1100) + C(q, @, H3000) + 6C (¢, H1100, Ha2000) + D(q, 4, 4, H2000)
+6D(q, 4, q, Hi100) + 3D(q, q, ¢, H2000) + E(4,9,9,7,q)
— (12¢2(0)q + 6i3(c1(0)) Ha100)- (4.15)

By applying the Fredholm solvability condition to this equation, we find that

c2(0) = 11*2I3T[3B(q7 H00) + 2B(, H3100) + B(Ha2000, H3000)
+ 6B(H1100, H2100) + 3B(H 2100, H2000) + 3C (¢, ¢, H2100)
+6C(q, ¢, H2100) + 3C(q, Hao00, H2000) + 6C(q, H1100, H1100)
+ C(@, @, H000) + 6C(q, H1100, H2000) + D(¢, ¢, ¢, Ha000)
+6D(q, q,q, Hi100) + 3D(q, 4, G, Hz000) + £(q: 9,4, 4, q)]- (4.16)

For the higher order coefficients we will also need Hsogg. The unique solution to equation
satisfying (p, Hs200) = 0 can again be found by solving the corresponding bordered
system . An expression of the seventh order coefficient ¢3(0) has been derived in
[21], using the same normalization method. For this we need the coefficients of the terms

w, whw, whw? and w3w? from the homological equation. These yield regular systems and

the solutions are respectively
Haoo0 = (4iwol — A)~'[4B(q, Hso0) + 3B(H2000, H2000)
+6C(q, g, Ha000) + D(q, 4,9, 9)], (4.17)
Hyi00 = (3iwol, — A) " [4B(q, Hz100) + B(q, Hao00) + 4B(H1100, H3000)
+ 6B(H2000, H2100) + 6C(q, ¢, H2100) + 4C(q, @, H3000)
+12C(q, H1100, H2000) + 3C(q, H2000, H2000) + 4D(q, 4, ¢, Hi100)
+6D(q, q,q, Ha000) + E(q, 4,4, 9,7) — 12¢1(0) Hz000], (4.18)

Hapoo = (2iwol — A) " [4B(q, Hs00) + 2B(q, Ha100)
+ B(H 2000, Ha000) + 8 B(H1100, H3100) + 4B(H 2100, H3000)
+ 6B(H2000, H2200) + 6 B(H2100, H2100) + 6C(q, q, H2200)
+ 8C(q, ¢, H3100) + 4C(q, Ha000, H3000) + 24C (¢, Hi100, H2100)
+12C(q, Ha100, H2000) + C(, 4, Haoo0) + 8C (4, Hi100, H3000)
+ 12C(q, Ha000, H2100) + 3C(H2000, H2000, H2000) + 12C(H1100, H1100, H2000)
+4D(q,q,q, H2100) + 12D(q, ¢, G, H2100) + 6D(q, ¢, H2000, H2000)
+12D(q, q, Hi100, H1100) + 4D(q, q, @, H3000) + 24D(q, ¢, H1100, H2000)
+ 3D(, 4, H2000, H2000) + E (4,4, ¢, ¢, H2000) + 8E(q, ¢, ¢, G, H1100)
+6E(q, 9,7, q, Ha000) + K (4,9, 4,4, G, 7) — 8(6¢2(0) Hao00 + 2¢1(0)H3100)],  (4.19)
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Hss00 = —A™Y[3B(q, Ha200) + 3B(q, H3200) + 3B (Ha000, H3100) + B(H3000, H3000)

+ 9B(H1100, H2200) + 9B(Ha2100, H2100) + 3B(H3z100, H2000)
+3C(q, ¢, H3100) + 9C (¢, @, Haa00) + 9C (q, Hao00, H2100)

+ 3C(q, H3000, Hao00) + 18C (g, Hi100, Ha100) + 3C (4, ¢, H3100)

+ 3C(q, H2000, H3000) + 18C(q, H1100, H2100) + 9C(q, H2100, H2000)
(

+ 9C(H 2000, H1100, H2000) + 6C (H1100, H1100, H1100) + D(4, ¢, ¢, H3000)

+9D(q,q,q, Ha100) + 9D(q, ¢, H2000, H1100) + 9D(q, 4, 7, H2100)
+9D(q, G, Hao00, H2000) + 18D(q, G, H1100, H1100) + D(7, G, 4, H3000)
+9D(q, 3, Hi100, H2000) + 3E(q, 4, 4,3, Hao00) + 9E(q, 4,3, 7, H1100)
+3E(q, 4,4, q, Hao00) + K(q,4,9,7, G, q) — 72da H1100)-

(4.20)

Here we used that ¢;1(0) 4+¢1(0) = 0 and ¢2(0) +¢2(0) = R(c2(0)) = da to simplify the last
two expressions. Note that the term D(q, g, ¢, H3ooo) in the expression for Hssgg is missing
n [21], although it was included in their calculations. Collecting the w*w? terms results

in the equation

(iwol — A)Hyzo0 = Mazoo — (144c3(0)q + 72(2¢2(0) + €2(0)) Ha100
+12i3{e1(0)} H3200),

where we used that 3¢1(0) 4+ 2¢1(0) = iS{c1(0)} and defined

Moo = 4B(q, Hsz00) + 3B(q, Hazo0) + 3B(Hao00, Ha100) + B(H3000, H1000)
+ 12B(H1100, H3200) + 12B(H2100, H3100) + 4B(H 3100, H3000)
+ 6.B(Ha000, Ha200) + 18B(Ha100, Ha200) 4+ 6C(q, ¢, H3200)
+12C(q, ¢, H3a00) + 12C(q, H 2000, H3100) + 4C (¢, H 3000, H3000)
+ 36C (q, H1100, H2200) + 36C(q, Ha100, H2100) + 12C (g, H3100, H2000)
+ 3C(q, q, Haro0) + 3C (G, H2000, Haooo) + 24C(q, Hi100, H3100)
+12C(g, H 2100, H3000) + 18C(q, Haoo0, H2200) + 18C(q, Ha100, H2100)
+ 12C(H 2000, H1100, H3000) + 18C (H 2000, H2000, H2100)
+ 3C(H 3000, H2000, H2000) + 36C (H1100, H1100, H2100)
+ 36C(H1100, Ha100, H2000) + 4D(q, ¢, ¢, H3100) 4+ 18D(q, ¢, ¢, H2200)

(4.21)

+ 18D(q, g, H 2000, H2100) + 6D(q, ¢, H3000, H2000) + 36D (q, ¢, H1100, H2100)

+12D(q, 4, q, H3100) + 12D(q, @, H2000, H3000) + 72D(q, @, H1100, H2100)
+36D(q, @, H2100, Ho000) + 36 D(q, H2000, H1100, H2000)

+ 18D(q, g, Ha000, H2100) + 9D (g, H 2000, H2000, H2000)

+36D(q, H1100, H1100, H2000) + E(¢, ¢, ¢, ¢, H3000) + 12E(q, q, 4, G, H2100)

+ 12E(q, 4, ¢, H2000, H1100) + 18E(q, ¢, 7, @, H2100) + 18E(q, 4, @, H2000, H2000)
+36E(q, q,q, Hi100, H1100) + 4E(q, q, G, G, H3000) + 36 E(q, q, ¢, H1100, H2000)
+ 3E(4, 4, 4, H2000, Ha000) + 3K (¢, ¢, 4,4, 4, Hao0) + 12K (¢, ¢, ¢, 4, G, H1100)
+6K(q,9,q,q,, H2000) + L(4,4, 4,4, 7, G, 7)-

(
(
(
+24D(q, H1100, H1100, H1100) + D(q, , 4, Hao00) + 12D(q, 4, H1100, H3000)
(
(
(
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To obtain the equation for ¢3(0) we apply the Fredholm solvability condition to the singular
system (4.21]). This yields the equation

1
c3(0) = Tad p’ Mys00,

where we used that (p, Ha100) = 0 and (p, Hs200) = 0. The unique solution to equation
(4.21)) satisfying (p, H4300) = 0 can again be found by solving the corresponding bordered

sytem (2.10).

4.1.2 Parameter-related coefficients

Linear coefficients K19,Ky1 We first determine the coefficients for the linear approxi-
mation of the parameter transformation K. Collecting the 51 and fa terms in (4.1)) yields
for ;1 = (10), (01) the systems

AHyoy = -1 K,,.
Let eq, es € R? be the standard basis vectors. Then we can write
K, = y1u€1 + 72,u62, (4.22)
for some v1 4,72, € R. Since A is regular, we have
Hyoy, = —71,HA_1J1€1 — 72,HA_1J162. (4.23)

In the equations that follow we will occasionally use the following notation

- L i (i
=4 T W) e (4.24)
0, if u=(ji)
The 1w and fow terms yield the systems
(iwol — A)Hyo, = A1(q, Kpu) + B(g, Hoou) — (6, + ib1,,)q. (4.25)

To reduce the length of the equations, it is convenient to define I';(¢) = Ai(q,e;) +
B(q,—A~1Jye;). Substituting equations (#.22) and (4.23)) into equation (4.25) results in

(iwol — A)Hiop = 11,,T1(q) + y2,uT2(q) — (8, + ibru)g, (4.26)

Applying the Fredholm solvability condition to equation (4.26)) results in

510 + by = 0 1T (9) + 72, 2(0)] (4.27)

If we take the real and imaginary parts of the above equation, we find that

610 = 1R T1(q)] + 2, R[0" Ta(q)], (4.28)
and
b1y = Y1, T1(q)] + 12,3 T2(q)]. (4.29)

A solution Hjg,, of equation (4.26]) satisfying (p, Hiou) = 0 can be obtained by solving the
bordered system

iwol = A g\ (Hiox\ _ (mul1(9) +92,02(0) = (0,0 +ibiu)g
ol 0 s 0 ‘
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However, since the coefficients b1 ,, 1, and 72, are yet unknown, it is not possible to
immediately solve this system. Instead, we can derive another equation like , where
the only unknown are +y; , and 7, ,. This will then allow us to set up a linear system from
which we can solve for 71 ;, and 72 ,. The solution of equation can be written as

HlO,u = 'Yl,,uA NVFl( ) + ’yg’#A[NVFQ( ) (5;0 + ’L'blﬂu)A[NV q, (430)

two wo wo

where we use the shorthand notation A{ujj\é V' = (iwgl, — ANV, The vectors w = A{L% Vq

and vy = AINVT(q) (k = 1,2) are to be found by solving the following bordered systems

1w

() () =6) e (" D) ()= ()

From the left bordered system it follows that A{u])\g V¢ = 0. To see this, note that we can

write the correspoinding bordered system as the following system of equations

(twol — A)w + gs = q,
(p,w) = 0.
Taking the inner product with p of the first equation yields s = 1. Then the first equation
becomes (iwgl — A)w = 0, with solution w = Ag. Filling this into the second equation
yields (p,w) = A(p,¢) = 0 from which it follows that A = 0. Thus, the unique solution to
this system is (w,s) = (0,1). We will use this to simplify the final equations from which
we can solve for v1 , and 72 .

Collecting the w?f3; and wwp; terms respectively yield the system&ﬂ
(2iwol — A)Hagy = A1(Hao00, K) + 2B(q, Hiop) + B(Hoow, H2000)
+ Bi(g, 4, Kp) + C(q, q, Hoop) — 2(8,,° + by .) Haooo,
—AHyy, = Al(Hlloo, w) +2R{B(q, Hiou)} + B(Hoou, H1100)
+ Bi(q, 3, K,) + C(q, @, Hoow) — 26, Hi100-

Both these systems are regular with solutions

Haou = Agity [A1(Hao00, K) + 2B(q, Hio) + B(Hoou, Ha000)

+ Bi(q, 9, K.) + C(q, 4, Hoop) — 2(8,,° + b1 ) Haooo], (4.31)
Hyyy = —A A1 (Hioo, K,) + 2R(B(q, Hio)) + B(Hoopu, Hi100)
+ Bl(q7 Q7 KM) + C(q7 Q7 HOOp,) - 25;50H1100]7 (432)

where we wrlte A2zw0 = (2iwol — A)~L. We will now substitute equations (4.22), (4.23)
and ( into the above expressions. For this it is convenient to define the following
functions

Ai(u,v,w) = Ti(u) + 2B(v, ANV (w)) + Bi(v, w, e;) + C(v,w, — A" J1e;),

1w
IT; (u, v, w) = T(u) + 2R{B (v, ANV, () )} + Bi(v,w,e) + C(v,w, —A" ey).

wo

Then the equations for Hap, and Hip, become

Haou = 71,0 A%, M (Ha000, 4, @) + 72,4510, A2 (Ha000, ¢, @) — 2(83° + ib1,.) Az, Ha000,
Hiyy = =1, A" T (H1100, 4, @) — Y2, A” Ta(Hi100, G, q) + 20,° A~ Hi1go.

ISince Hoi, = Flo;u we can write B(q, Hoip) + B(q, Hiop) = 2R(B(q, Hiop))-
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The w?wp; terms yield the systems

(iwoln — A)Ha1y, = A1(Hai00, K,) + 2B(q, H11,) + B(q, Haou) + B(Hoow, H2100)
+ B(H1ou, Ha000) + 2B(Hiou, Hi100) + 2B1(q, Hi100, K,) + B1(q, Ha000, K,)
+ C(q,q, Hiou) + 2C(q, ¢.-Hiop) + 2C (g, Hoop, Hi100) 4+ C (G, Hoops H2000)
+ C1(q, 4,3, Ku) + D(q, 4,3, Hoou) — [2(85)" + iba,u)q
+ (38, + iby ) Ha100 + 2¢1(0) Hioy]. (4.33)

Applying the Fredholm solvability equation to equation (4.33|) results in

. 1. _
521 +iby, = ipT[A1(H2100, K,)+2B(q, Hi1,) + B(q, Haou) + B(Hoow, H2100)

+ B(H 10, Ha000) + 2B(Hiou, H1100) + 2B1(q, Hi100, K1) + B1(g, Hao00, K ,)
+ C(q,q, Hiop) + 2C(q, . Hou) + 2C(q, Hoow, Hi100) + C(q, Hoop, Ha2000)
+ Cl(QaQa (L KM) + D(Qa q, (7, HOO/L)]’ (434)

where we used that (p, Ha100) = 0 and (p, Hio,) = 0. If we substitute the expressions for
Hoop, Hiops Hoop, Hi1y, K, and by, into equation (4.34)), we can finally solve for 7, and

Y2,

After substitution and some rewriting we arrive at the following system

P (71’”) =Qu, (4.35)

V2,1
where P € R?*2 is given by
Py = R[p Tk(q)], (4.36)

1 _ _ _
Py = Qﬁ{ﬁT [Fk(HﬂOO) +2B(g, —A~ T (H1100, 7, 9)) + B(Q, Ag;py, Ak (H2000, 4, 9))

+ B(Haooo, ALYV T (q)) + 2B(H100, ALV Ti(q)) + 2B1 (g, Hiroo, ex) + B1(a, Haooo, ex)
+C(a,, AL Ti(9) +2C(q, ¢ ALY Ti(a)) +2C(q, Hizoo, =A™ Jrey)

+ C(q, Haoo0, =A™ " Jier) + Ci(q, 4,3, ex) + D(q, 4,3, — A~ Jrex)

+ S Tr(q)] (—2iB(q, Ay, Ha000)) } } (4.37)

and @, € R? with p = (10), (01) is given by

Qi =56, (4.38)
1
QZM = (521 + 55;0%{]5T [4B (q, —AilHnoo) + 2B ((j, A;iguoHQOOO)] } (439)

Thus, one first computes the linear coefficients K19 and Ky by solving the system (4.35)).
This system should be solvable if the transversality condition holds. Once Kjg, Ko are
known, we can determine the coefficients Hyg, from equation and by ,, from equation
. With these coefficients we can determine Hyo, from equation , and Hag,, and
Hyy,, from respectively equations and . The coefficient by 91 is then given by
the imaginary part of the right-hand side of equation . Finally, we can use equation
to solve for Haqg; satisfying (p, Ha191) = 0 by solving the corresponding bordered

system ([2.10)).
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The coefficient a3y Note that aszagr = R(gs201). To determine this coefficient we
also need the coefficients Hsgo1, H3101 and Hasg1. These can be found by collecting the
w3 By, w3 Py and w?w? Py terms from the homological equation (4.1)). This results in the

following equations

Hs001

H3z101

Hs901

= (3iwo I, — A) "' [A1(Hs000, Ko1) + 3B(q, Hao01) + B(Hooo1, H3000)

+ 3B(H1001, Ha2000) + 3B1(q, H2000, Ko1) + 3C(q, ¢, H1001)

+3C(q, Hooo1, H2000) + C1(4; ¢, ¢, Ko1) + D(q, q, q, Hooo1) — 3ib1,01H3000],
= (2iwol, — A) "' [A1(Hs100, Ko1) + 3B(q, H2101) + B(@, H3o01)

+ B(Hooo1, H3100) + B(H 1001, H3000) + 3B(H1001, H2100)

+ 3B(H1100, H2001) + 3B(H1101, H2000) + 3B1(q; H2100, Ko1)

+ B1(q, H3000, Ko1) + 3B1(H1100, H2000, Ko1) + 3C(q, ¢, H1101)

+ 3C(q, @, Hao01) + 3C (¢, Hooo1, H2100) + 3C(q, H1o01, Ha000)

+6C(q, H1001, H1100) + C(g, Hooo1, Hzo00) + 3C (g, H1o01, H2000)

+ 3C(Hooo1, H1100, H2000) + 3C1(q, ¢, H1100, Ko1) + 3C1(q, ¢, H2000, Ko1)
+ D(q,q,q, Hio01) + 3D(q,q,q, Hio01) + 3D(q, ¢, Hooo1, H1100)

+3D(q, 4, Hooo1, Ha2000) + D1(q, 4,4, G, Ko1) + E(q,4, q,q, Hooo1)

— 6(1 + ib2,01) Ha2000 — 6¢1(0)Ha001 — 2ib1,01 H3100],

= — A" A1 (Ha00, Ko1) + 2B(q, Ha101) + 2B(q, Ha101) + B(Hooo1, Ha200)
+ 2B(H 1001, Ha100) + B(H2000, H2001) + B(Ha2001, H2000)

+ 2B(Hi001, Ha100) + 4B(Hi100, Hi101) + 2B1(q, H2100, Ko1)

+ B1(H 2000, Ha000, Ko1) + 2B1(H1100, H1100, Ko1) + 2B1(q, Hz100, Ko1)

+ C(q, 4, Haoo1) + 4C(q, G, Hi101) + 2C(q, Hooo1, H2100)

+ 4C(q, H1001, H1100) + 2C(q, H2000, H1001) + C(q, @, Ha2001)

+ 2C(q, Hooo1, Ha100) + 2C(, H 1001, H2000) + 4C(q, H1001, H1100)

+ C(Hooo1, H 2000, H2000) + 2C(Hooo1, Hi100, H1100) + C1(¢: ¢, Ha000, Ko1)
+4C1(q, ¢, Hi100, Ko1) + C1(q, @, Hao00, Ko1) + 2D(q, ¢, G, H1o01)

+ D(q, ¢, Hooo1, H2000) + 2D(q,q, @, Hio01) + 4D(q, ¢, Hooo1, Hi100)

+ D(q, 4, Hooo1, H2000) + D1(4, 4,4, q, Ko1) + E(q, ¢, G, q, Hooo1) — 8H1100]-

The coefficient g3001 can now be found by applying the Fredholm alternative to the
equation that follows from collecting the w3w? B, terms. This yields the following equation

(iwoly, — A)H3zo01 = M3201 — [12g3201q + 12¢2(0) H1go1 + (18 + 6ib2,01) Ha100

+ 6i3{c1(0) } Ha101 + ib1,01 H3200] (4.40)
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where

M3901

= A1(Hs200, Ko1) + 3B(q, H2o01) + 2B(q, Hz101) + B(Hooo1, Hz200)

+ 2B(H 1001, H3100) + B(H2000, H3001) + B(H2001, H3000)

+ 3B(H1001, H2200) + 6 B(H1100, H2101) + 6 B(H1101, H2100)

+ 3B(Ha100, Ha001) + 3B(H2101, H2000) + 3B1(q, Ha200, Ko1)

+ 2B1(q, H3100, Ko1) + B1(H 2000, H3000, Ko1) + 6B1(H1100, H2100, Ko1)

+ 3B1(H 2100, H2000, K01) + 3C(q, ¢, H2101) + 6C(q, @, H2101)

+ 3C (g, Hooo1, Ha200) + 6C (¢, H1001, Ha100) + 3C (¢, H2000, H2001)

+ 3C(q, Ha001, Hao00) + 6C (g, Hio01, H2100) + 12C (g, Hi100, H1101)

+ C(, @, Ho01) + 2C(q, Hooo1, Hz100) + 2C (¢, H1001, H3000)

+ 6C(q, H1001, H2100) + 6C(q, H1100, H2001) + 6C(g, H1101, H2000)

+ C(Hooo1, H2000, H3000) + 6C (Hooo1, H1100, H2100) + 3C (Hooo1, H 2100, H2000)
+ 6C(H 1001, H1100, H2000) + 3C (Ha2000, H1001, H2000)

+ 6C(H1001, H1100, H1100) + 3C1(q, ¢, H2100, Ko1) + 6C1(q, ¢, H2100, Ko1)

+ 3C1(q, H2000, H2000, Ko1) + 6C1(q, Hi100, H1100, Ko1) + C1(q, @, H3000, Ko1)
+ 6C1(q, H1100, H2000, Ko1) + D(q, ¢, q, H2o01) + 6D(q, ¢, ¢, H1101)

+ 3D(q, ¢, Hooor, H2100) + 6D(q, ¢, Hioo1, Hi100) + 3D(q, ¢, Ha000, H1001)
+3D(q,q,q, Ha001) + 6D(q, ¢, Hooo1, H2100) + 6D (g, ¢, H 1001, H2000)
+12D(q, ¢, H1001, Hi100) + 3D(q, Hooo1, H2000, H2000)

+6D(q, Hooo1, H1100, H1100) + D(4; @, Hooo1, H3000) + 3D(q, ¢, H1o001, H2000)
+ 6.D(q, Hooo1, H1100, H2000) + D1(4; ¢, ¢, H2000, Ko1) + 6D1(q, 4, ¢, Hi100, Ko1)
+3D1(q, G, 4, Ha000, Ko1) + 2E(q, 4, 4,3, Hi001) + E(q, 4, ¢, Hooo1, Ha2000)
+3E(q, 4,9, G, Hio01) + 6E(q, 4, G, Hooo1, H1100) + 3E(q; G, 7, Hooo1, H2000)

+ F1(9,9,9,9, 9, Ko) + K (¢, 9,97 @ Hooot)-

Applying the Fredholm alternative to (4.40) now yields

1
93201 = EﬁTMz%zm. (4.41)

Now the unique solution for Hsso; satisfying (p, H3201) = 0 can be solved from equation
(4.40) using the corresponding bordered system ([2.10]).
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Quadratic coefficients Koz, K11,b102 The method in which we compute the quadratic
coeflicients is very similar as what we did for the linear coefficients. We simply have more
terms. Collecting the 82 and 3132 terms from (4.1)) yields for p = (02), (11) the equations

AHgyy = —J1 K, — Mooy, (4.42)
where My, only depends on coefficients that are already known and are given by

Moooz = 2A1(Hooo1, Ko1) + B(Hooo1, Hooor) + J2(Ko1, Kot),
Moo11 = A1(Hooi0, Ko1) + A1 (Hooot, K10) + B(Hooo1, Hooio) + J2(Ko1, Kio)-

Let eq, es € R? be the standard basis vectors and write

Ku =Y,pe1 + Y2, u€2 M= (02)7 (11)7 (443)
where 1,71, € R are unknown constants that need to be determined. From equation
(4.42)) it follows that

Ho()u = —717HA_1J161 — ’ygyﬂA_lJleg — A_lMOOH (4.44)

The w33 and w1 B2 terms yield the equations
(iwol — A)Hiop = A1(q, Kyu) + B(q, Hoow) — b1, + 7104, (4.45)
where we define

71002 = Mioo2 — 2ib1 01 H1001,
r1011 = Mio11 — [(1 + ib1,10)Hi001 + ib1,01H1010),

with multilinear parts given by

Mioo2 = 2A1(Hi001, Ko1) + 2B(Hooo1, Hioo1) + A2(q, Ko, Ko1)
+ 2B1(q, Hooot, Ko1) + C(q, Hooo1, Hooo1),

Mio11 = A1(Hio10, Ko1) + A1(Hioor, K10) + B(Hooot, Hio10)
+ B(Hoo10, H1001) + A2(q, Ko1, K10) + B1(q, Hoo1o, Ko1)
+ B1(g, Hooo1, K10) + C(q, Hooot, Hoo1o)-

Applying the Fredholm alternative to equation (4.45)) yields the equations
biui = p' [A1(q, Ku) + Blq, Hoop) + Moy (4.46)

Here we used that (p, Hip10) = (p, Hio01) = 0. Substituting expressione (4.43]) and (4.44])
into the above equation results in

bii =" [11,,01() +72,.T2(q) + Mo, (4.47)
where
Mo, = B(gq, —A™ Moo,) + Mioy.
From equation , it follows that

Y RIP T1(q)] + 12, R[P" T2(q)] = —R{p" M1y}, (4.48)
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and

by = 71300 T1(0)] + 72,430  T2(a)] + S{p" Mo} (4.49)

Furthermore, Hyq, is given by

Hiop = p ALY T1(q) + 72, AL Ta(q) — b1, ALY g + ALY Frop, (4.50)

wo wo

where

#1002 = Mooz — 2b1,01 H1001,
#1011 = Mio11 — [(1 4 ib1.10) Hio01 + ib1.01 H1010]-

Now collect the w?3* terms for = (02), (11). These terms yield the equations

(2iwol — A)Hag, = A1(Hao00, K) + 2B(q, Hiop) + B(Hoow, H2000)
+ B1(q,q, K,) + C(q,q, Hoop) — 2iby,, Haooo + 20, (4.51)

where

r2002 = Maoo2 — 4ib1,01H2001,
r2011 = Mao11 — [2(1 + ib1,10) Ha2001 + 2ib1,01 H2010,

with multilinear parts given by

Mooo2 = 2A1(Hao01, Ko1) + 2B(Hooo1, H2o01) + 2B(Hio01, Hi001)
+ Az(Ha000, Ko1, Ko1) + 4B1(q, Hioo1, Ko1) + 2B1(Hooot, H2000, Ko1)
+4C(q, Hooo1, H1o001) + C(Hooo1, Hooo1, Hao00) + B2(q, ¢, Ko, Ko1)
+2C1(q, q, Hooo1, Ko1) + D(q, ¢, Hooo1, Hooo1 )

Mso11 = A1(Hao10, Ko1) + A1(Hao01, K10) + B(Hooot, H2010)
+ B(Hoo10, H2001) + 2B(H1001, H1010) + A2(H2000, Ko1, K10)
+2B1(q, H1o010, Ko1) + 2B1(q, H1001, K10) + B1(Hoo1o, H2000, Ko1)
+ B1(Hooo1, H2000, K10) + 2C(q, Hooo1, H1010) + 2C (¢, Hoo10, H1001)
+ C(Hooo1, Hoo10, H2000) + B2(q, ¢, K10, Ko1) + C1(q, ¢, Hooro, Ko1)
+ C1(q, ¢, Hooo1, K10) + D(q, ¢, Hooo1, Hooto)-

Collecting the wwp* terms for p = (02), (11) result in the equations

—AHy1, = A1(Hioo, Kp) + 2R (B(q, Hiou)) + B(Hoow, H1100)
+Bl(qqu Ku) +C’(q,(j, HOOM) +7"11;u (452)

where

r1102 = Mii02, and 7111 = Mi111 — 2Hy101,
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with the multilinear parts given by

M2 = 2A1(H1101, Ko1) + 2B(Hooor, Hi101) + 2B(H 1001, Hio01)
+ A2(H1100, Ko1, Ko1) + 4R (B1(q, Hioo1, Ko1)) + 2B1(Hooot, H1100, Ko1)
+ 4R (C(q, Hooo1, Hio01)) + C(Hooo1, Hooo1, Hi100) + B2(q, ¢, Kot, Ko1)
+2C1(q, ¢, Hooo1, Ko1) + D(q, G, Hooo1, Hooo1),

Mi111 = A1(Hi1io, Ko1) + A1(Hiiot1, K1o0) + B(Hooot, Hi110)
+ B(Hoo10, Hi101) + 2R (B(H1001, Hio10)) + A2(Hi100, Ko1, K10)
+ 2R (B1(q, H1o010, Ko1)) + 2R (B1(q, H101, K10)) + B1(Hoo1o, H1100, Ko1)
+ B1(Hooo1, H1100, K10) + 2R (C(q, Hooo1, H1010)) + 2R (C(g, Hoo10, H1001))
+ C(Hooo1, Hoo10, H1100) + B2(q, ¢, Ko1, K10) + C1(q, 7, Hoo1o, Ko1)
+ C1(q, @, Hooo1, K10) + D(q, ¢, Hooo1, Hooto)-

From equations (4.51)) and (4.52)) it follows that

Hyg, = Az_iijo [A1(Ha000, Ku) + 2B(q, Hiou) + B(Hoou, H2000)

+ B1(q,q, K,) + C(q,q, Hoop) + m20,) — 2ib1,uA2_i}u0H20007 (4.53)
Hyyy = —A7 A (Hiw00, K) + 2R (B(q, Hio)) + B(Hoo, Hi100)
+ Bi(q, ¢, Ku) + C(q, 4, Hoop) + 11, (4.54)

Substituting equations (4.43)), (4.44) and (4.50)) into the expressions for Hag, and Hiyy,
yields the equations

Hy, = 71,yA2_i3J0A1(H20007 q,q) + 72,uA2_i}uOA2(H2000, 4,q)

- 2ib1,uA2_Z-i,0 Hapoo + Ag_i}uoﬁom (4.55)
Hiyy = =1, A7 T (Hi100, @5 @) — V2,0 A o (Hi100, G, )
— A7, (4.56)

where

Foop = ra0u + 2B (¢, ALY #10,) + B(Hao00, —A 'r00u) + C(q, 4, — A roop),
Frip = rag + 2R (B (3, ALY Y F104)) + B(Hi100, —A ' ro0u) + C(q, @, —A ' ro0,).

The w?wpH terms yield for u = (02), (11) the equations

(iwol — A)Ha1, = A1(Ha100, Kp) + 2B(q, H11,) + B(q, H2op.) + B(Hoopu, Ha100)
+ B(H 10, H2000) + 2B(Hiou, H1100) + 2B1(g, H1100, K1)
+ B1(q, Ha000, K ) + C(q, ¢, Hiop) + 2C(q, ¢, Hiou) + 2C(q, Hoow, Hi100)
+ C(q, Hoou, Ha2000) + C1(q, 4,4, Kpu) + D(q, 4, G, Hoou) + 721,
— (Qibg,uq + b1, Ho100 + 2¢1 (O)Hlou), (4.57)

where

r2102 = Ma102 — [4(1 + ib2,01) Hi001 + 2ib1,01H2101),
ro111 = Mai11 — [2ib210H1001 + 2(1 + ib2,01) Hi010 + (3 + ib1,10) H2101 + 01,01 H2110]-
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with multilinear parts given by

Ma102 = 2A1(Haio1, Kot) + 2B(Hooo1, Ha101) + 2B(H 1001, Hao01) + 4B(H1001, H1101)
+ Aa(Ha100, Ko1, Ko1) + 4B1(q, H1101, Ko1) + 2B1(q, Ha001, Ko1)
+ 2B1(Hooo1, H2100, Ko1) 4+ 2B1(H 1001, H2000, Ko1) + 4B1(Hioo1, H1100, Ko1)
+ 4C(q, Hooo1, Hi101) + 4C(q, H1oo1, Hioo1) + 2C (g, Hooo1, Hao01)
+2C(q, Hi001, H1001) + C(Hooo1, Hooo1, H2100) + 2C (Hooo1, H 1001, Hao00)
+ 4C(Hooo1, H1o01, H1100) + 2B2(q, H1100, Ko1, Ko1) + B2(q, H2000, Ko1, Ko1)
+2C1(q, ¢, Hio01, Ko1) + 4C1(q, G, Hioo1, Kor) + 4C1(q, Hooo1, Hi100, Ko1)
+ 2C1(q, Hooo1, Ha000, Ko1) 4 2D(q, q, Hooot, H1o01) + 4D(q, 4, Hooo1, Hio01)
+2D(q, Hooo1, Hooo1, H1100) + D(; H2000, Hooot, Hooo1) + C2(q, 4, ¢, Ko, Ko1)
+2D1(q. ¢, ¢, Hooo1, Ko1) + £(q. ¢, ¢, Hooo1, Hooo1 )

and

Ms111 = A1(Ha110, Ko1) + A1(Hai01, K10) + B(Hooo1, H2110) + B(Hoo1o, Ha2101)
+ B(H 1001, H2010) + B(H 1010, H2001) + 2B(H1001, H1110) + 2B(H1010, H1101)
+ A2(H2100, Ko1, K10) + 2B1(q, Hi110, Ko1) + 2B1(q, H1101, K10) + B1(q, H2010, Ko1)
+ B1(q, Hzo01, K10) + B1(Hoo10, H2100, Ko1) + B1(H 1010, H2000, Ko1) + 2B1(H1o10, Hi100, Ko1)
+ B1(Hooo1, H2100, K10) + B1(H 1001, H2000, K10) + 2B1(H1001, Hi1100, K10) 4+ 2C(q, Hooo1, Hi110)
+ 2C(q, Hoo1o, H1101) + 2C(q, H1o01, Hi010) + 2C (¢, Hio10, Hi001) + C(q, Hooo1, H2010)
+ C(q, Hoo10, H2001) + 2C(q, Hio01, H1010) + C(Hooo1, Hoo10, H2100) + C(Hooo1, H1010, H2000)
+ 2C(Hooo1, Hi010, Hi100) + C(Hoo10, H1001, H2000) + 2C(Hoo10, Hi001, H1100)
+ 2B3(q, Hi100, Ko1, K10) + Ba(q, Hao00, Ko1, K10) + C1(¢: ¢: H1010, Ko1) + C1(q, ¢, Hioo1, K10)
+2C1(q; ¢, Hi010, Ko1) + 2C1(q, 4, Hio01, K10) + 2C1(q, Hoo10, H1100, Ko1)
+ 2C1(q, Hooo1, H1100, K10) + C1(q, Hoo10, H2000, Ko1) + C1(q; Hooot, H2000, K10)
+ D(q,q, Hooo1, Hi010) + D(q, ¢, Hoo10, H1o01) + 2D(q, §, Hooo1, H1010)
+2D(q, 4, Hoo10, H1o01) + 2D(q, Hooo1, Hoo10, H1100) + D(g, Hooo1, Hoo1o, H2000)
+ C2(q, 9,4, Ko1, K10) + D1(q; q, G, Hooto, Ko1) + D1(q, ¢, ¢, Hooo1, K10) + £(q, q, @, Hooo1, Hooto)-

Applying the Fredholm solvabitlity condition to (4.57)) yields the equations

1 _
bo,ut = §pT[A1(H21007 K,) +2B(q, Hi1,) + B(q, Hop) + B(Hoop, H2100)

+ B(H 10, Ha000) + 2B(Hiou, H1100) + 2B1(q, Hi100, K,,)
+ B1(q, H2000, K,.) + C(q, q, Hiop) + 2C(q, @, Hiou) + 2C(q, Hoops Hi100)
+ C(Q? HOO/M HQOOO) + Cl (Q7 q, 67 K/L) + D(Qa q, Q7 HOO/.L) + MQI,U,]~ (458)

Now substitute the expressions for Hoo,, Hiou, Hoop, H11,, K, and by, into the above
expression to solve for v; , and vz .

We find the following system to solve for 1, and 2,

P (717“) = Qo (4.59)

V2,1
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where P € R?*? has the same components , and @, € R? is given by
Qua = —R{p" Mo},
Qu2 = —%%{ﬁT [23 (¢, —A 'F11,) + B (g, Az}ijmm)
+ B (Ha100, —A™ " Moo,) + B (H2000, Aﬁgvﬁou> + 2B (Hii00, ALYV F10,)
+C (q,qvAﬁ\gVﬁoO +2C (g, q, ALY F104) + 2C (g, Hir00, —A™ ' Mooy,
+ C (@, Ha000, =A™ Moo,) + D(q,q, G, — A~ Moo,) + Moy,
+ S{p" Mo} (—2iB(q, AQ_iiJOHQOOO))] }

Thus, to obtain the quadratic coefficients Kyo and Kj; we solve system (4.59). Once
these coefficients are known, one can calculate the coefficients Hog,b1,02 and Hig, from

respectively the equations (4.44),(4.49) and (4.50). Then, the coefficients Happe and
Hii02 are calculated from equations (4.53)), (4.54). Finally, the coefficient Hajp2 satisfying

(p, H2102) = 0, can be determined from system (4.57) using the corresponding bordered
system (|2.10]).

The coefficient Ky3 The qubic coefficient Kyg is determined in the same way as the
quadratic coefficients. Essentially, only the terms containing all the known cofficients will
be different. Collecting the 33 terms yields the equation

AHoyooz = —J1 Koz — Mooo3, (4.60)
with

Mooos = 3A1(Hooo2, Ko1) + 3A1(Hooo1, Ko2) + 3B(Hooo1, Hooo2)
+ 3J2(Ko1, Ko2) + 3A2(Hooot1, Kot, Ko1) + 3B1(Hooot, Hooot, Ko1)
+ J3(Ko1, Ko, Ko1) + C(Hooo1, Hooot, Hooo1)-

With eq, es € R? the standard basis vectors and 71,03, 72,03 € R we write
Koz = 71,03€1 + 72,03€2-
The w33 terms yield the equation
(iwoly, — A)Hioos = A1(q, Koz) + B(q, Hooos) — ib1,03¢ + 1003, (4.61)
where
71003 = Mooz — (31b1,02H 1001 + 31b1,01H1002),
with multilinear part

Moz = 3A1(H1o02, Ko1) + 3A1(Hio01, Ko2) + 3B(Hooo1, H1002)
+ 3B(Hooo2, H1001) + 3A2(q, Ko1, Ko2) + 3A2(H1001, Ko1, Ko1)
+ 3B1(q, Hooo2, Ko1) + 3B1(q, Hooo1, Ko2) + 6B1(Hooo1, H1o01, Ko1)
+ 3C(q, Hooo1, Hooo2) + 3C(Hooot, Hooot, H1001) + A3(q, Ko1, Ko1, Kot)
+ 3B2(q, Hooot, Ko1, Ko1) + 3C1(q, Hooo1, Hooo1, Ko1)
+ D(q, Hooo1, Hooo1, Hooo1)-
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Collecting the w233 and ww/33 terms yield the equations

(2iwol, — A)Hao03 = A1(H2000, Ko3) + 2B(q, Hi003) + B(Hooos, H2000) (4.62)
+ Bi1(q, 9, Ko3) + C(q, q, Hooos) — 2ib1,03H2000 + 72003,
—AHy103 = A1(Hy100, Ko3) + 2R(B(q, Hi003)) + B(Hooos, H1100)
+ Bi(¢, ¢, Kos) + C(q, 4, Hooos) + T1103, (4.63)

where
2003 = Maooz — (6ib1,02H2001 + 6ib1,01H2002), and 71103 = Mi103,
with multilinear parts given by

Ms003 = 3A1(Ha002, Ko1) + 3A1(Ha2001, Ko2) + 3B(Hooot, H2002) + 3B(Hooo2, H2001)
+ 6B(H1001, H1002) + 3A2(Ha001, Ko1, Ko1) + 3A2(Ha000, Ko1, Ko2)
+ 6B1(q, H1002, Ko1) + 6B1(q, H1001, Ko2) + 6B1(Hooo1, H2001, Ko1)
+ 3B1(Hooo2, H2000, Ko1) + 681 (H1001, H1001, Ko1) + 3B1(Hooot, H2000, Ko2)
+ 6C(q, Hooo1, H1002) + 6C(q, Hoooz, H1001) + 3C(Hooo1, Hooo1, H2001)
+ 3C(Hooo1, Hoooz, H2000) + 6C (Hooo1, H1o01, H1001) + Az(H2000, Kot, Ko1, Ko1)
+3B2(q, ¢, Ko1, Koz2) + 6B2(q, H1001, Ko1, Ko1) + 3B2(Hooo1, H2000, Ko1, Ko1)
+ 3C1(q, ¢, Hoooz, Ko1) + 3C1(q, ¢, Hooot, Koz) + 12C1(q, Hooo1, H1o01, Ko1)
+ 3C1(Hooo1, Hooo1, Hao00, Ko1) + 3D(q, ¢, Hooo1, Hoooz) + 6D(q, Hooot, Hooo1, H1001)
+ D(Hooo1, Hooo1, Hooot, H2000) + B3(q; q, Ko1, Kot, Ko1) + 3C2(q, ¢, Hooot, Ko1, Ko1)
+3D1(q, ¢, Hooo1, Hooo1, Ko1) + E(q, ¢, Hooo1, Hooo1, Hooot),

and

Mi103 = 3A1(H1102, Ko1) + 3A1(Hio1, Ko2) + 3B(Hooot, H1102) + 3B(Hoooz2, H1101)
+ 3B(H 1001, Hi002) + 3B(H 1002, Hio01) + 3A2(H1101, Ko1, Kot)
+ 3A2(Hi100, Kot1, Ko2) + 6R(B1(q, Hi002, Ko1)) + 6R(B1(q, Hioo1, Ko2))
+ 6B1(Hooo1, Hi101, Ko1) + 3B1(Hoooz, Hi100, Ko1) + 6B1(H 1001, Hi001, Ko1)
+ 3B1(Hooo1, Hi100, Koz2) + 6%(C(q, Hooo1, H1002)) + 6R(C(q, Hoooz, H1001))
+ 3C(Hooo1, Hooo1, Hi101) + 3C(Hooo1, Hooozs Hi100) + 6C (Hooo1, H1001, H1001)
+ A3(H1100, Ko1, Ko1, Ko1) + 3B2(q, ¢, Ko1, Ko2) + 6R(B2(q, Hio01, Ko1, Ko1))
+ 3Ba(Hooo1, H1100, Ko1, Ko1) + 3C1(q, @, Hoooz, Ko1) + 3C1(q, ¢, Hooo1, Koz)
+ 12R(C1(q, Hooot1, Hio01, Ko1)) + 3C1(Hooo1, Hooo1, H1100, Ko1)

+3D(q,q, Hooo1, Hoooz) + 6R(D(q, Hooo1, Hooo1, Hioo1)) + D(Hooo1, Hooo1, Hooot, Hi100)

+ B3(q,q, Ko1, Ko, Ko1) + 3C2(q, ¢, Hooo1, Ko, Ko1) + 3D1(q, G, Hooo1, Hooot, Ko1)
+ E(q, 4, Hooo1, Hooo1, Hooot )-

Applying the Fredholm solvability condition to the w?w 33 terms finally yields the equation

. 1._ i
ib2 03 = §;DT[A1(H2100, Ko3) + 2B(q, H1103) + B(q, H2003) + B(Hoo03, H2100)

+ B(H1003, H2000) + 2B(Hi003, Hi1100) + 2B1(g, H1100, Ko3)
+ B1(q, Hao00, Kos) + C(q, ¢, H1003) + 2C(q, @, Hio03) + 2C(q, Hooo3, H1100)
+ C(q, Hooos, H2000) + C1(q, 4,4, Koz) + D(q,q, 7, Hooos) + Ma103]- (4.64)
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where the expression for r2193 can be found on the next page. Equations (4.60)),(4.61)),(4.62]),
(4.63) and (4.64]) are respectively given by equations (4.42),(4.45)),(4.51)), (4.52)) and (4.58
for 1 = (03). As a result, we can solve for the coefficients v; 03 and 2,03 by simply using
system for u = (03). Then Hygos and Higos can be calculated from respectively the
equations (4.60) and (4.61)), where the latter is solved using the corresponding bordered

system (2.10]).
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72103

= 3A1(Ha2102, Ko1) + 3A1(Ha101, Koz2) + 3B(Hooo1, H2102) + 3B(Hoooz, H2101) + 3B(H 1001, H2002)
+ 3B(H 1002, H2001) + 6 B(H1001, H1102) + 6 B(H1002, H1101) + 3A2(H2101, Ko1, Ko1)

+ 3A2(Ha100, Ko1, Ko2) + 6B1(q, Hi102, Ko1) + 6B1(q, H1101, Ko2) + 3B1(q, H2002, Ko1)

+ 3B1(q, Hao01, Ko2) + 6B1(Hooo1, H2101, Ko1) + 3B1(Hoooz2, H2100, Ko1) + 6B1(H 1001, Ha001, Ko1)
+ 3B1(H 1002, H2000, Ko1) + 12B1(Hio01, Hi101, Ko1) + 6B1(H1002, Hi100, Ko1)

+ 3B1(Hooo1, H2100, Ko2) + 3B1(H 1001, H2000, Ko2) + 6B1(Hi001, H1100, Ko2)

+ 6C (g, Hooo1, H1102) + 6C (g, Hoooz, H1101) + 6C (g, H1001, H1002) + 6C(q, H1002, H1001)
+3C(q, Hooo1, H2002) + 3C(q, Hooo2, H2001) + 6C(q, H1o01, H1002) + 3C(Hooo1, Hooo1, H2101)
+ 3C(Hooo1, Hoooz, H2100) + 6C(Hooo1, H1001, Ha001) + 3C(Hooo1, H 1002, H2000)

+ 12C(Hooo1, Hi001, H1101) 4+ 6C (Hooo1, Hi002, Hi100) + 3C(Hoooz, H 1001, H2000)

+ 6C(Hooo2, H1001, H1100) + 6C(H1001, H1001, H1001) + As(H2100, Ko1, Ko, Kot)

+ 6B3(q, H1101, Ko1, Ko1) + 6B2(q, H1100, Ko1, Ko2) + 3B2(q, Haoo1, Ko1, Ko1)

+ 3Ba2(q, Ha000, Ko1, Koz2) + 3Ba(Hooo1, Ha2100, Ko1, Ko1) + 3B2(H 1001, Ha000, Ko1, Kot)

+ 6B2(H1001, H1100, Ko1, Ko1) + 3C1(q, ¢, Hio02, Ko1) + 3C1(q, ¢, Hio01, Koz)

+6C1(q, ¢, Hio02, Ko1) + 6C1(q, ¢, Hioo1, Koz) + 12C1(q, Hooo1, H1101, Ko1)

+ 6C1 (g, Hoooz, H1100, Ko1) + 12C1 (g, H1001, Hi001, » Ko1) + 6C1 (g, Hooor, H1100, Ko2)

+ 6C1(q, Hooot, Hao01, Ko1) + 3C1(q, Hoooz, Hao00, Ko1) + 6C1(q, Hio01, H1o01, Ko1)

+ 3C1(q, Hooot, Ha000, Koz2) + 3C1 (Hooo1, Hooo1, Ha100, Ko1) + 6C1(Hooor, H 1001, H2000, Ko1)
+ 12C1 (Hooo1, H1001, H1100, Ko1) + 3D(q, ¢, Hooo1, H1002) + 3D(q, ¢, Hoooz, H1o01)

+6D(q, q, Hooo1, H1002) + 6D(q, @, Hoooz2, H1001) + 6D(q, Hooo1, Hooot, H1101)

+ 6D(q, Hooo1, Hoooz, H1100) + 12D(q, Hooor, H1oo1, Hioo1) + 3D (7, Hooor, Hooor, Hao01)

+ 3D(q, Hooot, Hoooz, H2000) + 6D(q, Hooo1, H1001, H1001) + D(Hooo1, Hooo1, Hooo1, H2100)

+ 3D (Hooo1, Hooo1, H1001, H2000) + 6D(Hooo1, Hooo1, H1001, H1100)

+ 2B3(q, H1100, Ko1, Kot, Ko1) + B3(q, Hao00, Ko1, Ko1, Ko1) + 3C2(q, ¢, 7, Ko1, Ko2)

+ 3Ca(q, g, Hoo1, Ko, Ko1) + 6C2(q, @, Hioo1, Ko, Ko1) + 6Ca(q, Hooo1, H1100, Ko, Kor)

+ 3C2(q, Hooot, Ha000, Ko1, Ko1) + 3D1(q, 4, G, Hoooz, Ko1) + 3D1(q, ¢, ¢, Hooot, Ko2)

+ 6D1(q, ¢, Hooo1, H1o01, Ko1) + 12D1(q, ¢, Hooo1, Hio01, Ko1) + 6D1(q, Hooo1, Hooo1, Hi100, Ko1)
+ 3D1(q, Hooo1, Hooo1, H2000, Ko1) + 3E(q, ¢, G, Hooo1, Hoooz2) + 3E(q, ¢, Hooo1, Hooor, H1001)
+ 6E(q,q, Hooo1, Hooo1, H1001) + 2E(q, Hooo1, Hooo1, Hooo1, H1100)

+ E(q, Hooo1, Hooot1, Hooot1, H2000) + C3(q, ¢, ¢ Ko1, Ko, Ko1)

+ 3E1(q, q, 4, Hooot, Hooo1, Ko1) + K (q,q, @, Hooo1, Hooot, Hooo1)-
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4.2 The higher order LPC predictor for ODEs
We approximate the parameter values on the LPC curve by
B = doc” + 2(ds — ag01d2)e®, By = —2dae” + (dasaorda — 3ds)e”,
for € > 0. Taking the expansion for K, we have the following parameter predictor
a=ag+ K(B1, B2). (4.65)

To approximate the solution in phase space we substitute w = e’ into the expansion
of H together with the approximations in the 5 parameters, where it is not necessary
to include the last three terms that are marked grey. Thus, for ¥ € [0,27] the periodic
orbit can be approximated as

T =x9+ H(Eew, ee”™ By, B2). (4.66)
Finally, the period is approximated by equation (3.9),

T =27 /(wo + (3(c1(0)) — 2daby 01)e? + [dabi 10 + (daso1d2 — 3d3)b1 o1 + 2d3b1 02
— 2d262701 + %(CQ(O))]éA).



Chapter 5

The predictor for DDEs

5.1 Coefficients of the parameter-dependent normal form
and the predictor in DDEs

We will derive the equations to calculate the coefficients needed in the predictor for DDEs.
We follow the procedure as explained in Section Assume that system has an
equilibrium at the origin at o = (0,0) € R? with only one pair of purely imaginary simple
eigenvalues

A2 = Fiwg, wo >0,

and no other eigenvalues on the imaginary axis. Furthermore, we assume that the first
Lyapunov coefficient {1(0) = 0 and the second Lyapunov coefficient l5(0) # 0. Instead of
eigenvectors, we now have eigenfunctions ¢ and ¢® satisfying

Ap =iwop, A'Y =iwop®, (¥%, ) =1,
where (p®, ) is given by the pairing (2.15]) not to be confused with the Hermitian inner
product. Furthermore, introduce ¢, p € C™ such that
Aiwg)g =0, pTA(iwg) =0, plA(iwg)g = 1.

With q and p as above, explicit expressions for the eigenfunctions ¢ and ¢® are respectively
given by equations (2.28]) and (2.29)). Points y € Xy of the real critical eigenspace can be
represented in terms of the complex coordinate z = (p®, y) as,

Y = zp+ zp.
The homological equation (2.23)) becomes

A" jH(z, 2, 8) + 1K (B)r**+R(H (2, 2, 8), K(8))
= j(D,H(z,2,8)2 + D:H(z,%,3)%). (5.1)

Restricted to the two-dimensional center manifold, the system can be transformed into the
same normalform (4.2) with new unfolding parameters § = (51, 82) if the transversality
condition ({3.1)) holds. Thus, we take the same truncated normal form:

Z = (lwo + P1+101(8))z + (B2 + 2[)2(ﬁ))2|2’2 + (e2(0) + 9320152)Z|Z’4
+ es(0)z]2% (52)

47
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where b1 () and 2(3) are expanded as (4.3]) and (4.4). The nonlinearity in the homological
equation (b.1)) is expanded as

1 1 1 1
R(u, o) = [A1(u, o) + §B(u,u) + §J2(O[7 a) + EC(u,u,u) + 531(%% a)
1 1 1 1 1
+ §Ag(u, a,a) + ng(oz,a, a) + ﬂD(u,u,u, u) + 66’1 (u,u,u, ) + EBg(u,u, a, @)

1 1 1 1
+ —As(u, o, a0, ) + —=E(u, u, u, u, u) + — D1 (u, u, u, u, ) + 202(uuuaa)

6 120 24 1
1 1
B + —K —F
+ 15 3(u, u, a, a, @) + o0 (uuuuuu)+120 1(u, uy w, u,u, o)

1
+ —C3(u, u, u, o, @, @) + ——— L(w, w, w, u, u, u, u)]re*.

1
36 5040
Finally, H is expanded as

1
H(z,2,B) =zp+2p + Z iy Hnmo02" 2™+ Z Humoy 22" 2

n+m=2 n+m=0
+ Z nmlOz z 61 + Z nm02znzm/82
n+m= 0 n+m= O
+ Z Hpm112"2" P12 + Z Hymozz" 2" B3
n+m=0 nlm n+m= O
1 3 1 9,3, 1 2_n3
+-H11032285 + — Ho0032" 35 + = H21032"235. (5.3)
6 12 12

In contrast to the ODE case, H is now a mapping into X = C([—h,0],R"). Since X
is real, we still have the property that H;;p = ﬁjikl. Finally, the relation between the
parameters K is the same as in the ODE case, given by . The equations collected from
the homological equation will essentially have the same form as those we collected
in the ODE case. For the multilinear forms one only needs to change all ¢ to ¢ and
include an r7®* after all the multilinear forms. The remaining vectors H;j and q outside
the multilinear forms become jH;;i; and jy respectively. However, the solutions to the
equations will look quite different, as we are now solving linear operator equations acting
on elements in X©*.

In the next two subsections we will derive all the critical normal coefficients and parameter-
dependent coefficients that appear in the parameter approximation of the LPC curve. All
the remaining coefficients needed for the limit cycle approximation on the center manifold
are presented in Appendix Bl An overview of all the coefficients is presented in Figure

5.1.1 Critical normal form coefficients

For the computation of the critical normal form coefficients up to c2(0) we follow [15].
Collecting the 22,2z and 2% terms from the homological equation (5.1]) results in the
following linear systems

(2iwol — A®*)jHagoo = By, )r®",
—A®*jH1100 = B(p, @)r®”,
(3iwol — A“*)j Hz000 = [3B(p, Ha000) + O, 0, )|
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All three equations are regular with a right-hand side of the form (wg,w) = (wp,0). Thus,
applying Corollary [I11 results in the following solutions

Hgooo(@) = eziWOQA_1(2in)B(g0, QO), (5.4)
Hi100(0) = A™H(0)B(, @),
H3ooo(0) = €*° A~ (3iwo) [3B (¢, Hao00) + C(, 0, ©)]. (5.6)

Collecting the z?Z terms will result in the following singular system
(iwol — A®*)jHai00 = [2B (0, Hi100) + B(, Haoo) + C (0, 0, 9)1r* — 2¢1(0)je.

Applying the Fredhom solvability condition to the above system results in

1
c1(0) = §<[ZB(% Hi100) + B(@, Hao00) + C (¢, 0, §)]r*, ¢%).

Here we used that (jp,9®) = (p®,¢) = 1 which follows from the pairings (2.15]) and
(2.18). We can evaluate the above pairing using equation (2.18) and the expression (2.29)
for ©®. This results in the following formula

1
c1(0) = §PT[23(907 Hi100) + B(@, Ha000) + C(p, ¢, )]-

Finally, to obtain the expression for Ha199(6) we apply Corollary {4 to obtain the unique
solution

Ha00(0) = BEYY (2B(p, Hi100) + B(@, Haoo0) + C¢, 0, ), —2¢1(0))(6)

satisfying (¢®, Hojp0) = 0. Similarly to the first three systems we find for Haggo the
equation

Ha200(0) = A™1(0)[2B(p, Ha100) + 2B(@, H2100) + B(Ha000, H2000)
+ 2B(H1100, H1100) + C(i0, ¢, Ha000) + 4C (¢, @, H1100)
+ C(@a@aHQOOO) +D(QP7(P7()5795)] (57)
To solve for Hziqp, a bit more caution is required. The 23% terms yield the linear system
(2iwgl — A®*)jHz100 = [3B(g, Ha100) + B(@, H3o00) + 3B(H1100, H2000) + 3C(¢0, ¢, Hi100)
+ 3C(¢, @, Hao00) + D(¢, ¢, ¢, @)]r* — 6¢1(0)5 Hao00-
Notice that the right hand side is of the form (wq, w) with wg = [...] —6¢1(0)H2000(0) and
w(@) = —601(0)H2000<9) = 62iw09A71(2in)(—661 (O)B(QO, gO))
Thus, we can apply Corollary [2| with n = —6¢1(0)B(p, ¢) and & = & = 0, which yields
H3100(0) = 2% A™1(2iw)[3B(¢, Ha100) + B(@, H3000) + 3B(H1100, Ha2000)
+ 3C (s, @, H1100) + 3C (9, @, Haooo) + D(g, ¢, @, P)]
— 61 (0) A~ (2i) [ A (2iw0) — OA(2ic0)] Haooo(0). (5.8)
Collecting the 2322 terms results in the equation
(iwol — A®*)jHsa00 = [3B(y, Haz00) + 2B(@, H3100) + B(Ha000, H3000) + 6 B(H1100, H2100)
+ 3B(H 2100, Ha000) + 3C (¢, ¢, Ha100) + 6C (0, ¢, Ha100) + 3C (¢, Han00, H2000)
+ 6C(¢, H1100, H1100) + C (@, @, H3000) + 6C (&, Hi100, H2000) + D (¢, ¢, ¢, H2000)

+ 6D(p, ¢, ¢, Hi100) + 3D (¢, @, 8, Ha000) + E(p, ¢, 0, 8, ¢)|r*
— (1202(0)jg0 + 61'%(61(0))]']%[2100). (59)
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Applying the Fredholm solvability condition gives

c2(0) = DL p" [3B(ip, Ha200) + 2B(@, Hs100) + B(H2000, H3000) + 6B (H1100, Ha100)

+ 3B(H 2100, H2000) + 3C (¢, ¢, Ha100) + 6C (¢, @, Ha100) + 3C (0, Ha000, H2000)

+ 6C (¢, Hi100, H1100) + C (@, @, H3000) + 6C (&, H1100. H2000) + D (. ¢, ¢, Ha000)
+ GD(QO, @, @7 HllOO) + 3D(907 @7 957 HQOOO) + E(QO7 ®, P, @7 @)]

We will now proceed by deriving the coefficients that are needed for the computation of
the seventh-order coefficient ¢3(0). To solve for Hsagp let us write equation (5.9)) as

(iwol — A®*)jHs00 = M3200r™* — 12¢2(0)ji — 6iS(c1(0))5 Ha100,

where we write Masggo for the term that contains all the multilinear forms. We can now
use the linearity of the bordered inverse to apply Corollaries [4 and [6] to find the solution

Hzz00(0) = Bi2" (Msa00, —12¢2(0))(8) — 6iS(c1(0)) BEYY (Ha100, —2¢1(0))(6),

satisfying (o®, H3200) = 0. Solving for the expressions of the coefficients Hyop0, Ha100 and
H3sg0 is similar to how we solved for Hsi1gp with the application of Corollary This
results in the following expressions
Haoo0(0) = €*™% A1 (4iwg)[4B (0, H3000) + 3B (H2000, H2000)
+6C (s, ¢, Hao00) + D(g, 0, 0, 9)], (5.10)
Hi100(0) = €309 A7 (3iwg) [4B (0, Hz100) + B(@, Hao00) + 4B(H1100, H3000)
+ 6.8B(H3000, H2100) + 6C (@, ¢, Ha100) + 4C(0, @, H3000)
+ 12C (¢, H1100, H2000) + 3C (@, Haoo0, Ha000) + 4D (¢, ¢, ¢, Hi100)

+ 6D(§07 @, @7 HZOOO) + E((Pu PP P @)]
— 12¢1(0) A7 (3iwp) [A (3iwg) — OA(3iwg )] Hzo00(6), (5.11)

and

Hs300(0) = A™1(0)[3B (0, H3z00) + 3B(@, H3z00) + 3B(H 000, Hs100) + B(Hs000, Hs000)
+ 9B(H1100, H2200) + 9B(Ha2100, H2100) + 3B(H3100, H2000)
+3C (¢, ¢, H3100) + 9C (0, ¢, Ha200) + 9C (0, H 2000, Ha100)
+ 3C(, H3000, H2000) + 18C (¢, Hi100, H2100) + 3C (%, $, H3100)
+ 3C(®, Ha000, H3000) + 18C (@, H1100, Ha100) + 9C(@, H2100, H2000)
+ 9C (H 2000, H1100, H2000) + 6C(Hi100, H1100, H1100) + D(, ¢, ¢, H3000)
+9D(p, ¢, ¢, Ha100) + 9D (0, @, Haooo, Hi100) + 9D (0, @, @, Ha100)
+9D(, @, Hao00, Haooo) + 18D(p, , Hi100, Hi100) + D(#, ?, @, H3000)
+9D(#, ¢, Hi100, H2000) + 3E(, ¢, ¢, ¢, H2000) + 9E (9, ¢, ¢, 6, Hi100)
+3E(¢, 8,0, ¢, Haooo) + K (0,0, 0,0, 6, 7)]
— 72dy A7 (0)[A(0) — 0A(0)] H1100(6).- (5.12)

For Hy909 we need to be more careful. The equation that has to be solved is of the following
form

(QZWOI A® )jH4200 = M42()07’ — 4802(0)jH2000 — 1601 (0)jH3100, (513)
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where we use Myogg to denote the mulitilinear forms. Using the linearity of the inverse
operator, we can apply Corollary [2 for the first two terms. Then to determine the inverse
of the last term, we apply Corollary 3| with M = Ms109, 1) = —6¢1(0) Ha000(0) and £=0.
This results in the following expression
Hy200(0) = €209 A=Y (2iw) [4B (g, H3a00) + 2B(@, Hi100)

+ B(H2000, Hi000) + 8B(H1100, H3100) + 4B(H 2100, H3000)

+ 6. B(H2000, H2200) + 6 B(H2100, H2100) + 6C (9, ¢, H2200)

+ 8C (¢, @, Hz100) + 4C (0, H2000, Hz000) + 24C (9, Hi100, H2100)

+ 12C (0, H2100, H2000) 4 C(%, ?, Haooo) + 8C(, Hi100, Hao00)

+ 12C(@, Ha000, Ha100) + 3C (H 2000, H2000, H2000) + 12C (H1100, H1100, H2000)

+4D(, ¢, ¢, H2100) + 12D (0, ¢, @, H2100) + 6D (0, 9, Hao00, Haooo)

+12D(, ¢, Hi100, H1100) + 4D(p, @, ¢, Hzo00) + 24D(0, ¢, H1100, H2000)

+3D(@, @, Haooo, Haooo) + E(0, @, ¢, ¢, Haooo) + 8E (¢, ¢, ¢, @, Hi100)

+6E(p, ¢, ¢, 6, Haooo) + K (p,0,9,9,0,¢)]

— 48¢5(0) A (2iwg) [A(2iwo) — OA(2iwo )] Haooo(0)

1661 (0)e2#00 A=Y (24ep) ([A'(mo) — 9A(2iwo)] Hz100(0)

+ 31 (0)[A (2iwp) — 92A(2iw0)]H2000(0)). (5.14)

The third Lyapunov coefficient is derived from the system

(iwol — A®*)jHyz00 = Muyzo0r®* — (144c3(0)jp + 72(2¢2(0) + 72(0)) 7 Ha100
+ 12@'%{61(0)}ng200>, (515)

where Mysgp is given by the same expression as in (4.21)) but with all vectors ¢ changed
to functions ¢. Applying the Fredholm solvability condition to equation ([5.15)) will then
result in

1
c3(0) = Tad T M3,

where we used that (¢®, Hojp9) = 0 and (p®, H3s09) = 0.

5.1.2 Parameter-related coefficients

Linear coefficients K19,Ky; To find the equations from which we can solve for K1q, Ko1,
we follow the same steps as in the ODE case. Collecting the £ and 2 terms in (5.1)) yields
for ;1 = (10), (01) the systems
— A jHooy = J1Kur*. (5.16)
Write
K, = v €1+ v2,u62, (5.17)
for unknown 1,72, € R and ej,ex € R2 the standard basis vectors. Substituting

equation (5.17)) into (5.16)) and applying Corollary 1 results in
H(]ou(e) = ’yl,#A_l(O)Jlel + ’YQ’#A(O)_ljlez. (5.18)

The B1z and P2z terms yield the systems

(iwol — A®")jHiou = [A1(p, Kp) + B(e, Hoow)r™* — (8, +ib1,.)j o, (5.19)
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where 5}? is defined as in ([4.24]). Define I';(p) = A1 (@, e;)+B(p, A71(0).J1e;). Substituting
equations (5.17)) and (5.18) into equation (5.19) then yields

(iwol — A“)jHiop = 11, D1 (0)r" + 72, T2 (0)r™ — (8,0 + b1 ) je- (5.20)

Applying the Fredholm solvability condition to equation (5.20)) results in
8,0+ b = p" [l () + v2,uT2(9)]- (5.21)
Taking the real and imaginary parts yield

8,0 = 1, R T1(0)] + 12, R Ta ()], (5.22)
and

b1 = 1S T1(9)] + 72,4  Ta(0)). (5.23)
A solution Higy, of equation (5.20)) satisfying (¢®, Hig,) = 0 can be obtained with Corol-

lary 4l Using the linearity of the bordered inverse we can write the solution as

Hiou(0) = 71, BEYY (T1(9),0) + 72, BENY (Ta(),0) — (6,7 + iby ) BIAY (0,1).  (5.24)

iwo iwo iwo

Collecting the 223; and zZB3; terms respectively yield the systems

(2iwol — A®*)jHaop = [A1(Hao00, Ku) + 2B(, Hiop) + B(Hoow, H2000)
+ Bi(e, ¢, Kp) + C, @, Hoow)Jr¥* — 2(6,,° + iby ) j Hao00,
—A®*jHi1,, = [A1(Hi100, Ku) + 2R{B(®, Hiou)} + B(Hoou, Hi100)
+ Bi(p, ¢, K,) + Cp, @, Hoow)Jr™ — 26,°5 Hi100.

Both these systems are regular and their solutions follow from Corollary [2l The resulting
equations are

Ho,(0) = €200 A™Y(24tsg) [ A1 (H2000, K i) + 2B(g, Hio,) + B(Hooy, Haooo)
+ Bi(p, ¢, Kyu) + Clo, ¢, Hooy)
2(6,0 + ib1,) AT (2iw)[A (2iwo) — OA(2iwo)] Hao00(0), (5.25)
Hy1,(0) = A™Y0)[A1 (Hi100, K1) + 2R(B(@, Hiop)) + B(Hoop, Hi1o0)
+ Bi(p, ¢, Ku) + C(e, ¢, Hoop)] — 25i0A_1(0)[A/(0) —0A(0)]H1100(0), (5.26)

Substituting equations (5.17)), (5.18]) and (5.24)) into these expressions yields

HQO’LL(G) = ’yl,#QinOeA_l(inO)Al (HQ()()(), ©, (,0) + VQ,MQQWOGA_l(QiWO)A2(H20007 ©, 90)
2(6,° + ib1,) A~ (2iwp) ([A/(%wo) — OA(2iwo)] Haooo(0) + € B (o, BIY (0, 1))> ’
Hi1,(0) = 71, A7 (0)Ty (Hy100, @, ) + V2., A (0)a( Hi100, @, ¢)
—20,°A7! ( ) ([A7(0) — 0A(0)] Hiioo(0) + R {B (#, B3 (0,1)) })
—2b1,, AN O)R {iB (¢, BIYV(0,1))},

two

where we defined

Ai(u,v,w) = Ty(u) + 2B (v, BNV (Ti(w),0)) + Bi(v,w,e;) + C(v,w, AH(0) Jre;),

iwo

I (u, v,w) = Ti(u) + 2§R{B (U BINV(PZ(U}), 0))} + Bi(v,w, ;) + C(v,w, Ail(O)Jlei).

iwo
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The 22Zf; terms yield the systems
(iwol — A®*)jHo1, = [A1(Ha100, Kpu) + 2B(¢, Hi1,) + B(@, Haou) + B(Hoow, Ha100)
+ B(H 1o, Ha000) + 2B(Hiou, H1100) + 2B1 (¢, Hi100, K,.) + B1(@, Ha000, K1)
+ C(@, 9, Hiou) + 2C(9, @, Hiou) + 2C(p, Hoo, Hi100) + C (@, Hoow, Haooo)
+C1(p, 0,8, Ky) + D9, ¢, @, Hoop)Jr™*
— [2009" + iba,)jep + (36,0 + iby )i Hato0 + 2¢1(0)5 Hiou- (5.27)
Applying the Fredholm Alternative to equation results in the equation

) 1 _
521 + by, = EPT[Al(HZIOOa K,) +2B(p, Hi1,) + B(p, Haop) + B(Hoow, Ha100)

+ B(H 10, Ha000) + 2B(H1ou, H1100) + 2B1(¢, Hi100, K,.) + B1 (@, Ha000, K1)
+ C(p, ¢, Hiop) + 2C(, ¢.Hiou) + 2C (¢, Hoops Hi100) + C(@, Hoops Ha000)
+ Cilp, 0,0, Ky) + D(, 0,0, Hoop), (5.28)

where we used that (p®, Haip0) = 0 and (¢®, Hio,) = 0. If we substitute the expressions
for Hoop, Hiop, Haop, Hi1p, K, and by, into equation (5.28)), we can solve for 1 ,, and 72,

After substitution and some rewriting we arrive at the following system

P (71’“> = Qu (5.29)

V2,1

where P € R?*? has for k = 1,2 the compenents
Py = Rp"Ti(0)), (5.30)

1 - = = W — .
Py, = iﬁ{PT {Fk(Hmoo) + 2B (¢, A7 (0)Ix(H1100, 8, ) + B (% €200 A=Y (240 ) Ay (Hoaoo0, %@))

+ B (H20007 BINV(Pk(SO),O» +2B (Hui00, BEYY (Tk(),0)) + 2B1 (0, Hi100, ex) + B1 (@, Haooo, ex,)

iwo

+C (% @, BV (T (), 0)) +2C (p, ¢, BV (Ti (), 0)) + 2C (¢, Hi100, A7 (0) Jiey,)

+ C(@, Haooo, A (0) Jiex) + C1 (o, 0, @, ex) + D(p, 0, , A~1(0) Jrey,)

+ O[T Th()] (~20B (p, A7 (2iw0) [A' (2it) — A (2it0)] Haooo (0))
—%B (@, €200 A=1(2iu0) B (0, BNV (0, 1))) — 4B (o, A"HO)R[B (¢, BINY (0,1))])

iwo iwo

+iB (Haooo, BINY(0,1)) = 2iB (Huwoo, B (0,1)) +iC (0,0, BNV (0,1))

wWwo wo wwo
- 2C (.5, B (0,)))] }, (5.31)
and Q, € R? with u = (10), (01) is given by
Qi =56, (5.32)

Qo= 001+ S50 pT [4B (0, A7 (O)[A(0) — 0 (0)] Huson(6)
+ 2B ((/_), A_l(inO)[A/(inO) — 9A(2iwo)]H2000(9))
+4B (p, ATH0)R {B (. BNV (0,1))}) + 2B (@, 208 A=1(2iwg) B (¢, BLAY (0, 1)))

wo wo

iwo iwo

+2C (¢, BV (0.1)] }. (5.33)

+ B (Haoo, BNV (0,1)) + 2B (Huoo, B (0,1)) +C (0,0, BV (0,1))
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Compared to equations (4.37)) and (4.39) for ODEs we see that there are quite some simi-

larities. If we consider all the terms that do not contain B{é\g V(0,1), we see that the

same multilinear forms are present. Where we had matrix inverses A~ and A2W for
the ODE system, these are now replaced by functions of 6 containing the inverse of the
characteristic matrix A~(\). Then, we also have some extra multilinear forms containing

the bordered inverse Bﬁ\g V(0,1). Compared to the ODE equations, this replaces the term
AI NV

w0
AINV

q which we showed to equal zero. Consequently, all the multilinear forms containing
q vanish. Finally, notice that instead of p7 we have p! everywhere. This is because
we now work with the pairing , which is different from the complex inner product.

To summarise, we first compute the linear coefficients K7y and Ky by solving system
. Then we can determine the coefficients Hyg,, from equation vbl,u from equa-
tion and Hig, from equation . Once we have these, the coefficients Hag,, and
Hyy,, can respectively be calculated from equations @ and . The coefficient b g1
is determined from the imaginary part of equation @ . Finally, we will also need Ha1¢1
and Ho119 for what follows. The solution to equation @ can be found by separately
applying Corollaries [] and [} Denote the part containing all the multilinear forms in
equation (5.27)) by Mpa1,. This results in the equation

Hou(0) = B{3Y (Mary, —2(50" + b ))(0) — (3510+zb1,ﬂ) NV(Ha100, —2¢1(0))(6)

iwo

—2¢1(0) By (Hiou — (8,0 +ib1,))(6), = (01), (10)-

The coefficient azog; As in the ODE case, to determine the coefficient asog; we first
need the coefficients Hzgo1, H3101 and Hagpr. These can be found by collecting the 23fs,
232By and 222%P, terms from the homological equation . For convenience, we will
write M;;x; for the term containing all the multilinear forms as these are the same as in
the corresponding equations for ODEs after changing ¢ to ¢. The equations for Hspg; and
Hoop1 follow from Corollary [2| This results in the expressions

H3001(0) = egiWOGA_1(3in)M3001 — 32'191701A_1(3in)[A,(3in) — 9A(32’w0)]H3000(9),
Ha01(0) = A7H(0) Mgy — 8ATL(0)[A'(0) — OA(0)]H1100(6).

For Hsi01, we need to be more careful. The 23Z8; terms yield the equation
(2iwol — A*)jHz101 = M31017”* — 6(1 + ib2,01)j Ha000 — 6¢1(0)5 Haoo1 — 2ib1,015 H3100-

To solve for Hsjp1, we can separately apply Corollary |2 I 2| for the part Mz017®* — 6(1 +
ib2,01)jH2000 and Corollary 3| I 3| for the last two terms. This yields the following solution

H3101(0) = ™9 A=Y (2itg) M3101 — 6(1 + g 01) A~ (2w ) [A (2iwn) — OA(2iwo)] Hao00(0)
— 61 (0)e2 ! A (2icwy) (A (o) — O (2isw0)] o1 (0)
+ iby o1 [A (2icw) — 92A(2iw0)]H2000(0))
— 2iby 012400 A~ (2itwp) ([A’(Ziwo) — 9A(2iwo)] Hz100(0)
+ 3¢1(0)[A” (2iwp) — 92A(2iw0)]H2000(0)). (5.34)
Finally, collecting the 2322835 terms results in the following equation

(iwol — A®*)jHao01 = M32017™* — [12g32015¢ + 12¢2(0)j H1001 + (18 + 6ib2.01)j H2100
+6i3{c1(0) }5 Ha1o1 + ib1,015 H3200]- (5.35)
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The coefficient azog1 can now be found by applying the Fredholm solvability condition to
equation (5.35) and then taking the real part. Thus

1
azo1 = ﬁ% {p" Ms201} . (5.36)

Quadratic coefficients Koo, K11,b102 In the ODE case, we put all of the terms that
contained known coefficients into a rest term r;;5;. Since the multilinear forms in 75

will be the same for DDEs but with ¢ changed to ¢, we will indicate those with Mj;;y,.
Collecting the 82 and 132 terms from ([5.1]) yields for = (02), (11) the equations

—A®*jHoyoy = [J1 K, + Moo r®™*. (5.37)
Let eq, es € R? be the standard basis vectors and write
K, =y €1+ 72,062, (5.38)

where 1 ;,,71,, € R are unknown constants that need to be determined. From equation
(5.37)) it follows after applying Corollary 1 that

Hoop(0) = y1,,A71(0) Jrer + v2,, A7 1H0) Jrea + A™H0) Mooy, (5.39)
The 232 and 231 3 terms yield for u = (02), (11) the equations
(iwol — A9%)jHio, = [A1(e, Kpu) + B, Hoop)r™ — ib1uje + r10u, (5.40)

where

1002 = M10o2r®* — 2ib1 01 H1o001,
1011 = M10117%* — (1 + ib1.10)j H1001 — ib1,017 Hi010-

Applying the Fredholm alternative to equations (5.40|) yields the equations
ibyu = p" [A1(p, Kpu) + B(e, Hoop) + Mioy)- (5.41)

Here we used that (¢, Hio10) = (¢, Hi001) = 0. Substituting equations (5.38) and (5.39)
into equation (5.41)) results in

ib1y = P [11,uT1(0) + 2,,T2(9) + Miou], (5.42)
where
Mg, = B(p, A™1(0)Mooy) + Moy
From equation , it follows that
MR T1(0)] + 72, R[p" Ta(p)] = —R{p" Mig,.}, (5.43)
and
b1 = 163" T1(9)] + 2,480 Ta(9)] + S{p" Miou}- (5.44)

Furthermore, applying corollaries [4] and [6] to equations (5.40) yields for = (02), (11) the
solutions

Hiou(0) = 1uBi " (T1(),0)(0) + 72, Bl (T2(), 0)(6)
— by, BV (0,1)(0) + Biou(0), (5.45)

iwo
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where

Bioo2(0) = BNV (Moo, 0)(0) — 2ib1,01 BEYY (H1001, —ib1,01)(0),

wo wo

Bion1(0) = BNV (Mio11,0)(0) — (1 + ib1,10) B (Hio01, —ib1,01)(6)

- ibl,méﬁ\gv(fhmo, —(1 +1b1,10))(0).

Here Corollary |§| was used for the terms with jH1o01, jH1010. Now collect the 225* terms
for ;= (02), (11). These terms yield the equations

(2iwol — A®*)jHaop = [A1(Haooo, Ku) 4 2B(¢, Hiop) + B(Hoop, Hao00)
+ Bi(p, ¢, K,.) + C(p, p, Hoop) ™" — 2iby .5 Haooo + 720, (5.46)
where
79002 = Mapo2r®™* — 4ib1 015 H2001,
79011 = Mao117™* — 2(1 + by 10) 7 Ha001 — 2ib1,017 H2010-
Using Corollaries |1 and [3, we find that the solutions to equations ([5.46|) are
Hopoa(0) = ™09 A= (2it)[A1 (Hao00, Koz) + 2B(¢, Hio02) + B(Hoooz2, H2000)

+ Bi(p, ¢, Ko2) + C(p, ¢, Hoooz) + Ma002]
— 2ib1’02A*1(2iw0)[A'(2iw0) — 0A(2iw0)]H2000(0)

— 4ib1701€2iw09A_1(2iW(]) ([A/(2iWQ) — QA(QiWO)]H2001(O)
+ by o1 [A (2iwg) — 92A(2iw0)]H2000(0)), (5.47)

Hop11(0) = €209 A=Y (2iw) [A1 (Haoo0, K11) + 2B(p, Hio11) + B(Hoo11, Hao00)
+ Bi(p, ¢, K11) + C(p, ¢, Hoot1) + Mao11]
— 2ib1711A_1<2in)[A,(2iWQ) — 0A(2iw0)]H2000(0)

— 2(1 + iby10)e20? A~ (2iwy) ([A'(mo) — OA(2iw0)] Hago1 (0)
+ Z'bL()l[A//(?iwo) - 92A(2’iWQ)]H2000(0))
— 2iby 012900 A1 (2iwg) ([A’(2iw0) — OA(2iwo)] Hao10(0)

+ (1 + iblylo)[A”(QiW()) — QQA(inO)]HQQOQ(O)> . (5.48)

Substituting equations ((5.38)), (5.39) and (5.45) into the above expressions result in

Ho0,(0) = m1,,€*°% A~ (2iwg) A1 (Hao00, ¢, ) + V2,,€2°? A~ (2iwg) Ao (Ha000, ¢ )
— 2iby . A7 (2iwp) ([A’(%wo) — OA(2iw0)) Hao00(0) + €20/ B (10, BINY (0, 1)))

iwo

i €2iw09A—1(2in)f2ou(9)’ (5.49)
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where we have for p = (02), (11):
72002(0) = Maooz + 2B(p, Biooz2) + B(Hao00, A™"(0) Mogoz) + C(s, ¢, A7 (0) Mooo2)
— iy 01 ([ (2iti) — OA(2ice)] Haoon (0)
+ by o1 [A (2iwg) — «92A(2iw0)]H2000(0)>,
72011 (0) = Maor1 + 2B(p, Bio1) + B(Hao00, A~ (0) Moo11) + C(p, @, A~ (0) Moo11)
= 2(1+ iby,10) ([A(2io) — OA(2ien)] Haoor (0)
+ by o1 [A (2iwg) — 92A(2iw0)]H2000(0))
—%meN@w@—HA@wMHmwm)
(1 -+ by,10) [A" (2itio) — 62A(24t0)] Hao00(0) ).
Similarly, collecting the zZ(* terms for p = (02), (11) yield the equations
—A®*jHy1,, = [A1(Hii00, Ku) + 2R (B(@, Hio,)) + B(Hoop, Hi100)
+ Bi(p, @, Kpu) + C(0, @, Hoop)lr™* + 11, (5.50)
where
O*

N .
r1102 = Miio2r and  r1111 = M11117% — 25 Hy101.-

Using Corollary [2, we find that the solutions to equations (5.50)) are

Hi102(0) = A71(0)[A1(H1100, Ko2) + 2R (B(@, Hi002)) + B(Hoooz, Hi100)

+ Bi(p, ¢, Koz2) + C(e, @, Hooo2) + Mi102], (5.51)
Hi111(0) = A™H0)[A1(Hi100, K11) + 2R (B(@, Hi011)) + B(Hoo11, H1100)

+ Bi(p, @, K11) + C (¢, @, Hoo11) + Mi111]

— 2A71(0)[A'(0) — 0A(0)] Hy101(0)- (5.52)

Substituting equations (5.38]), (5.39) and (5.45|) into the above expressions result in

Hll,u(e) = ’ylﬂuA_l(O)Hl (Huoo, QZ_?, QO) + ’72,HA_1(0)H1(H11007 857 SO)
— 21, ATHO)R {iB((@, BV (0,1)) } + A™H0)F11,(0), (5.53)

wo

where 711, is given for p = (02), (11) by

F1102(0) = My102 + 2R{B(@, B1oo2)} + B(H1100, A (0) Mogo2) + C(p, @, A~ (0) Mogoz),
F1111(0) = Mi111 + 2R{B(@, B1o11)} + B(H1100, A (0) Moo11) + C(p, @, A~ (0) Moo11)
— Q[A’(O) — 6A(0)]Hy101(0).
The 22z8* terms yield for u = (02), (11) the equations

(iwol — A“*)jHa, = [A1(Haio0, Kpu) + 2B(9, Hi1,) + B(#, Haop) + B(Hoou, Hai00)
+ B(H1ou, Ha000) + 2B(H1ou, Hi100) + 2B1(¢, Hi100, K,.)
+ Bi1(®, Hao00, K1) + Cle, ¢, Hiou) + 2C (¢, @, Hio,) + 2C (¢, Hoow, Hi100)
+ C(, Hoop, Haooo) + C1(, @, 8, Ku) + D(@, 0,0, Hoop) + 21,7
— (2ib2,ujep + ib1,j Ha100 + 2¢1(0)§ Hioy), (5.54)
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where

9102 = Ma1027™* — [4(1 + ib2,01)j H1001 + 2ib1,01J H2101),
o111 = Ma1117% — [2ib2.105 H1001 + 2(1 + ib2,01)j H1o10 + (3 + ib1.10) jH2101 + ib1,015 Ha110)-

Applying the Fredholm solvabitlity condition to the equation (5.54) results for u =
(02), (11) in the equations

1 _
bo i = §PT[A1(H2100, K,) +2B(p, Hi1,) + B(p, Haop) + B(Hoow, H2100)

+ B(H 104, Ha000) + 2B(H1ou, Hi100) + 2B1(¢, Hi100, K,.)
+ B1(®, Haooo, K,.) + Clp, 0, Hio) + 2C (¢, @, Hiou) + 2C (0, Hoow, Hi100)
+ C(@: HOO,UJ HQOOO) + Cl(QD, 2 ‘757 KH) + D(@? ®, ()57 HOO;L) + M21/.L]7 (555)

Finally, substitute equations (5.38)), (5.39)), (5.45)), (5.49) and (5.53]) into the above expres-
sion and solve for the coefficients 1 ,,72 . We arrive at the following system

P (717“> = Q,, (5.56)

V2,1
where the components of P € R?*? are given by equations (5.30) and (5.31)) for u =
(02), (11). Meanwhile, the components of @, € R? are
Q1 = —R{p" Mo},
1 < = 2iwpb A —1(0: V=
Q2 = —jR{pT {23 (go, Afl(O)rnu) + B (go, el A 1(220«)0)7”2()“)
+ B (H2100, A™(0) Moo, ) + B (Hao00, Biog) + 2B (Hi100, Bioy)
+ C (¢, ¢, Biop) +2C (, %, Biou) + 2C (¢, Hi100, A~ (0) Mooy )
+C (()57 H20007 A_I(O)MOOM) +D (907 ©, P, A_l(O)MOO,U,) + M21,u
+ S{p" Mo} (—4B (2, A OREB (9, BV (0,1))))
~ 2iB (5,87 2iwo) (12 (2itso) — 2 (i) Haoon(8) + 207 B (i, BNV (0,1)) ))

+iB (HQOOO, BINV (0, 1)) — 2B (Hyy00, BNV (0,1)) +iC (go, o, BINV(0), 1))

I wo
—2iC (¢, ¢, B{NV (0, 1))” }

Thus, to obtain the quadratic coefficients Kpo and K7 we solve system (5.56). Once
these coefficients are known, one can calculate the coefficients Hogy,b1,, and Hig, from

respectively the equations (5.39)),(5.44)) and (5.45)). Then, the coefficients Hapo2 and Hiio2
are calculated from respectively the equations (5.47) and (5.51). Finally, the coefficient
Ho102, needs to be determined from system ([5.54)). This can be achieved by a piecewise
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application of Corollaries [4] [6] and [7]

Ho102(0) = B{YY (A1(Ha100, Ku) + 2B(, Hi1,) + B(@, Haou) + B(Hoop, Ha100)
+ B(H 10, Ha000) + 2B(H1ou, H1100) + 2B1 (¢, Hi100, K1)
+ B1(@, Ha000, Ku) + C (0, ¢, Hiou) + 2C (0, ¢, Hiou) + 2C (0, Hooys Hi00)
+ C(@, Hoop, H2000) + C1(; ¢, @, Kpu) + D (0, 0, ¢, Hoop) + Maioz, —2ib2,02)(0)
— ib1,02 BNV (Ha100, —2¢1(0))(8) — 4(1 + ibo,01) BiAY (H1o01, —ib1,01)(6)
— 2¢1(0) B2 (H1o02, —[i1,029 + 2ib1,01 H1001(0)], —2b7 1)

iwo

— 2ib1 01 BEYY (Ha101, —[2(1 + ib2,01)q + ib1,01 H2100(0) + 2¢1(0) H1o01(0)], 4ic1(0)b1,01)(6).

The coefficient Ky3 Collecting the 33 terms yields the equation
— A" jHooo3 = [J1Kos + Mooos)r™*. (5.57)
With e1, es € R? the standard basis vectors and 71,03, 72,03 € R we write
Koz = 71,03€1 + 72,03€2- (5.58)
The solution to equation follows from Corollary 1 and is given by
Hooo3(0) = 71,08A71(0) Jre1 + y2,03A71(0) Jre2 + A™1H(0) Mogos. (5.59)
The zﬂg’ terms yield the equation
(iwol — A®*)jHi03 = [A1(p, Kos) + B, Hoo3)]r®* — ib1.035% + r1003, (5.60)
where
1003 = M1003r®* — 3ib1 025 Hi001 — 3ib1,015 H1002-

Applying the Fredholm solvability condition to equation (5.60)), after substituting equa-
tions ([5.58)) and (5.59)), yields the following expression:

ib1,03 = v1,03P" [1(0) + v2,030" T2(0) + p" Mios, (5.61)
where
Migos = B(p, A™1(0)Mooos) + M1oos.
To solve for Higgs from equation , we apply Corollaries |§| and (7| The result is:

H1003(0) = y1,03BL0 " (T1(),0)(0) + v2,03Bin " (T2(¢), 0)(6)
—ib1,03Bfy " (0,1)(6) + Buoos(0), (5.62)

wo

where
Bioos(0) = BIYY (Mioos, 0)(0) — 3ib1 02 BEY Y (Hioo1, —ib1,01)(6)

— 3iby,o1 BENY (Hi002, —[ib1,02q + 2ib1,01 H1001(0)], —2b3 1) (6).

iwo
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Collecting the 2233 and zz33 terms yields the equations:
(2iwol — A®*)jHaposz = [A1(Haoo0, Ko3) + 2B(p, Hioo3) + B(Hooos, Ha000) (5.63)
+ B1(p, ¢, Koz) + C(p, ¢, Hooos)|m™* — 2ib1 035 H2000 + 72003,
— A" Hy103 = [A1(H1100, Ko3) + 2R(B(®, H1003)) + B(Hooo3, H1100)
+ Bi(p, @, Kos) + C(, @, Hooos)|r™* + 71103, (5.64)
where
72003 = Maoo3r™* — (6ib1,025 Haoo1 + 6ib1,015Ho002) and 71103 = My1037™*

To solve equation (|5 , we apply Corollary ll for the terms containing the multilinear
forms and Corollary |§| to the remaining terms. This yields the following solution:

Hooo3(0) = €209 A=1(2iw0)[A1 (Hao00, Ko3) + 2B(¢, Higos) + B(Hooos, Haooo)  (5.65)
+ Bi(p, ¢, Ko3) + C(p, ¢, Hoooz) + Maoos]
— 2il)1703A_1(zin)[A,(ino) — QA(QiCUQ)]Hgooo(Q)

— 6iby 0262400 A~ (2itwyp) ([A’(2iw0) — 9A(2iwo)] Haoo1 (0)
+ by o1 [A" (2iwg) — 02A(2iw0)]H2000(0))
— Giby o120 A~ (2t ([A’(ino) — OA(2iw)] Ha002(0)
[A”(zmo) — 02 A(2iw0)](ib1 02 Ha000(0) + 2iby 01 Han01(0))
bl 01" (2i) — 6> A(2ito) Hz000(0) ), (5.66)

Since the rlght—hand side of equation is of the form (wy,0), the solution for Hyio3
is obtained by simply applying Corollary [I}1. This results in the equation:
Hi103(0) = A7 (0)[A1(Hi100, Kos) + 2R(B(@, Hio03)) + B(Hooos, H1100)
+ Bi(p, ¢, Ko3) + C(¢, ¢, Hooos) + Mi1o3]- (5.67)
Substituting equations (5.58)), (5.59), and (5.62)) into equations (5.68) and (5.69) result in:
Hao03(0) = v1,03*°? A~ (2it0) A1 (Ha000, 0, ) + 72,037 A1 (QMO)Az(Hzooo, @, ¢)
— 2iby 03A™ (2iwp) ([A'(2z’wo) — A (2iwo)) Haooo(0) + €2“°° B (i, BINV (0, 1)))

iwo
+ €200 A (240 ) o003, (5.68)

Hi103(0) = v1,03A7H(0)TTy (Hy100, B, ©) + 72,03A 7 (0 )HI(HHOO: @, )
— 2by,03AH(O)R{iB((@, BLYY (0,1)) } + A™(0)F1108, (5.69)

where we have
Fa003 = Maoos + 2B(p, Bioos) + B(Hz000, A~ (0) Mooos) + C (i, ¢, A™1(0) Mogos)
— 6Z'b1702 <[A (220.}0) — HA(QMJO)]HQO(H(

)
+ by 01 [A" (2iw0) — 62 A(2iwg)] Haooo O))
— 6,01 ([A (2i0) — OA(2icen)] Haoos (0)
[A”(ino) — 02 A(2iw)](ib1,02 H2000(0) + 2ib1 01 H2001(0))
S0 [ (2i) — A (2i0)] oo 0))

71103 = M1103 + 2R{B(®, B1oo3)} + B(H1100, A~ (0) Mogo3) + C(p, @, A1 (0) Mogo3).-
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Applying the Fredholm solvability condition to the 22233 terms yields the equation:

) 1 _
ibo o3 = 5PT[A1(H2100, Ko3) +2B(p, H1103) + B(, Ha003) + B(Hooos, H2100)

+ B(H1003, H2000) + 2B(H1003, H1100) + 2B1 (0, H1100, Ko3)
+ B1(p, Haoo0, Ko3) + C(p, ¢, Higos) + 2C (¢, @, Hio03) + 2C (0, Hooos, H1100)
+ C(@, Hoooz, Hao00) + Ci1 (e, ¢, ¢, Ko3) + D(¢, v, @, Hooo3) + M2103]. (5.70)

Observe that equations (5.59), (5.62), (5.68)), (5.69), and (5.70|) correspond to equations
(5.39),(5.45),(5.49), (5.53)), and (5.55) respectively, for p = (03). Consequently, we can
solve for the coefficients 71 03 and 72,03 by utilizing system (5.56)) for p = (03).

5.2 The higher order LPC predictor for DDEs

The parameter approximations for the LPC curve for DDEs remain the same as for ODEs.
Thus, we have the 8 parameter approximations

B1 = dae® 4 2(d3 — az01da)e®,  Ba = —2dac® + (4agaoida — 3d3)e?,

and then
a=ag+ K(B,B2),

where the expression for K is given by (4.7) and the period is given by (3.9)). Similarly,
the periodic orbit is approximmated for ¢ € [0, 27] as

T =x9+ H(aeiw, e ™ B, B2). (5.71)

However, now this defines a function in C'([—h, 0], R™). Since, we know that the solution
that we are looking for is periodic, we have that x(0) = (6 + T') for all § € [—h,0]. Thus,
it is enough to ensure that x(0) = 2(7T") when solving the system for the localisation of the
periodic cycle. Therefore, we take H;;i = H;j;ri(0) for the coefficients in the approximation
of H when we approximate the cycle.



Chapter 6

Examples

In this chapter, we will demonstrate the performance of the higher-order predictor and
compare it to the first-order predictor. We will first present two examples of ODE systems
and conclude with one example of a DDE system.

6.1 ODE Examples

We have implemented all of the equations for the higher-order predictor in the program-
ming language Julia. For the numerical computation of the generalized Hopf points and the
continuation of the LPC curves, we used the existing Julia package Bifurcationkit. j1[23].
We compare the higher-order predictor from Section to the first-order predictor from
[17].

6.1.1 Bazykin and Khibnik prey-predator model

As a first example, we consider a version of a prey-predator system by Bazykin and Khibnik
[1]. The model consists of the following two equations

2 (1-x)
T atz Y (6.1)
y = _y(m_x)v

where z,y > 0 and 0 < m < 1. One can show analytically that an Andronov-Hopf
bifurcation occurs along the curve n = m?/(1 —2m). The first Lyapunov coefficient along

this curve is positive for 0 < m < i and negative for i <m < %, while it vanishes

at (m,n) = (1,1). Thus, there is a generalized Hopf bifurcation in this system. The

bifurcation diagram near the generalized Hopf bifurcation is shown in Figure [6.1

At the generalized Hopf bifurcation we have the eigenvalues \; o = +iwp, with wy = v/2/4.
We take the following eigenvectors

o= () = (4%%)

satisfying §7q = p’ ¢ = 1. Using these eigenvectors, the second Lyapunov coefficient has
the exact valu ly = —%\/ﬁ. In our implementation in Julia, this value is numerically
approximated by lo = —1.986494770740791. Figure[6.2]shows a close-up of the bifurcation

diagram, including the first-order and the higher-order predictors in parameter space.

I This value was calculated in MATLAB
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0.20

0.15

< 0.10

0.05 A

0.00

0.0

Figure 6.1: The bifurcation diagram near the generalized Hopf bifurcation (GH) in system .
The curve of Hopf bifurcations (n = m?/(1 — 2m)) is coloured red. The Hopf bifurcation is
subcritical on the branch marked by H; and supercritical on the branch marked by H_. The
numerically continued LPC curve is plotted in green.

« numerically obtained LPC branch
e GH point
—— Hopf branch
0.12 — First order predictor
0.00010 - P
— Higher order predictor
< 0.11 =
0.00005
0.10
0.00000 A -
0.09 T T T T T T
0.23 0.24 0.25 -0.015 -0.010 -0.005 0.000
m m

Figure 6.2: On the left, the bifurcation diagram near the generalized Hopf bifurcation in the system
(6.1) is shown together with the first-order and the higher-order LPC predictors. The figure on
the right shows the LPC curve and the predictors after a translation to the origin and a rotation.

6.1.2 The extended Lorenz-84 model

Our second example is an extended version of the Lorenz-84, which approximates the
dynamics of an atmospheric flow model [22]. In this model, X represents the strength of
the jet stream, while Y and Z model the sine and cosine coefficients of the baroclinic wave.
In [I8], the model was extended to include the variable U to study the effect of external
parameters, such as temperature, on the jet stream and baroclinic waves. The same model
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was used as an example in [I7]. The extended model consists of four equations:

X =-Y?2-272_aX +aF —AU?,
Y =XY-BXZ-Y+G,

Z =BXY+XZ-2Z,

U =—-6U+UX+T.

We take F' and T as the bifurcation parameters and fix the parameters

a=025 B=1, G=025 &=104 ~=0098T7.

Then, the system has a generalized Hopf bifurcation at (F,T) =~ (2.3763,0.05019). At
the generalized Hopf bifurcation, we have the purely imaginary eigenvalues A = +iwy,
with wg = 0.690367 and we take the eigenvectors such that ¢'q = p’q = 1. The second

Lyapunov coefficient is computed as lo = 0.22567.

Figure [6.3] shows the first-order and the higher-order predictors in parameter space next

to the numerically continued LPC curve.

0.05020 -
0.05015 A
e generalized Hopf point
- * numerically obtained LPC branch

0.05010 A . )

— linear LPC predictor

— higher order LPC predictor
0.05005 A

T T
2.376 2.378 2.380
F

Figure 6.3: The numerically computed LPC curve emanating from the generalized Hopf point in

the system (6.2 together with the first-order and higher-order predictors.
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6.2 DDE example: Coupled FHN neural system with delay

The numerical computation of the generalized Hopf points and the continuation of the
LPC curves has been implemented in Julia by Maikel Bosschaert. The calculation of the
higher-order coefficients for the higher-order predictor has been added to this code, which
will be released in a future publication. In the following example, we compare the higher
order predictor from Section to the first order predictor from [3].

We consider the coupled FitzHugh-Nagumo model from [24] which was also used to test
the predictor in [3]. This system consists of the following set of equations

in(t) = —Sud(t) + (e + a)ud(t) + dus (t) — us(t) + 28 (us (t — 7)),

Tlg(t) E( 1 t) — bUQ(t)).
In this model, o and 5 measure the synaptic strength in self-connection and neighbourhood
interaction, respectively, and 7 > 0 represents the time delay in signal transmission. The

function f is a sufficiently smooth sigmoidal amplification function. The parameters b and
€ are assumed to satisfy 0 < b<land 0 <e < 1.

(6.3)

e

As in [24], we take § and « as the bifurcation parameters and fix the parameters
b=0.9, =008, c=20528 d=—3.2135 1 =1.7722

Furthermore, we use f(u) = tanh(u) for the sigmoid amplification function. There is a
generalized Hopf point at (5, a) = (1.9, —1.0429). The left and right vectors null vectors of
the characteristic matrix function evaluated at the critical eigenvalues are taken such that
d'q =1 and pTA/ (twog)qg = 1. The second Lyapunov coefficient is negative and has the
value lo = —15.6733. In Figure the bifurcation diagram is shown near the generalized
Hopf point including the first-order and higher-order predictor curves.
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FitzZHugh-Nagumo model

-1.02
[ ]
[ ]
[ ]
L]
[ ]
™Y |
-1.03 A ° |
®
e, E subcritical Hopf branch
.o. | — supercritical Hopf branch
5 -1.04 1 : e Computed Limit point cycle branch
- - - Linear LPC predictor
— Higher order LPC predictor
® Generalized Hopf point
-1.05 A
T T T
1.89990 1.89995 1.90000 1.90005
B
-1.02
-1.03 A
o -1.04 A

-1.05 A

1.89990 1.89995 1.90000 1.90005

B

Figure 6.4: The bifurcation diagram near the generalized Hopf bifurcation in system (6.3]) together

with first-order and higher-order predictors.



Chapter 7

Final remarks

In this thesis, we applied parameter-dependent center manifold reduction to the general-
ized Hopf bifurcation to derive new higher-order predictors for the LPC curve. We did
this for both ODEs and DDEs. In our examples, we have seen a good improvement of
the predictor in parameter space. While this marks the end of this Bachelor thesis, there
is more to explore. One such thing is creating convergence plots of the full higher-order
predictor to compare with the first-order predictor. The inclusion of higher-order terms
is expected to result in faster convergence to the LPC curve. Additionally, it would be
interesting to look at the approximated periodic orbits with their correction and compare
the period approximations to the corrected period.

Finally, as part of this thesis, the equations have only been implemented as a separate
code in Julia. The plan is to make these files public in a future publication. The next step
would be to include the higher-order predictor in some existing software, like MatCont in
MATLAB for ODEs or DDE-BIFTOOL for DDEs. Then it will be easily accessible to

anyone interested.
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Appendix A

Terms collected from the
homological equation for ODEs

In this appendix, all the equations collected from the homological equation for the gener-
alized Hopf bifurcation in ODEs (4.1]) are presented. The collected equations are obtained
with the help of Mathematica. We use the truncated normal form expressed in terms of 3

W = MNB)w + c1(B)w|w]? + ca(B)w|w|* + e3(0)w|w|®, weC, B eR2

where we expand

. 1 1 1
A(B) = iwo + g101061 + 9100152 + 5910205% + 910115152 + 591002522 + 91003,

1 1 1
c1(B) = c1(0) + g211081 + 9210182 + 592120/3% + 921118182 + 59210253 + +692103’
c2(B) = ¢2(0) + g321061 + 93201 52-

Compared to (4.2)) we have that for p = (10), (01)

giop = 5,110 + b1 i,

921y = 521 + ba i,
For p = (20),(02),(11) we have gioy = b1ui and ga1, = bz ui. The vectorfield F is
expanded as (.5)). Note that Hyj, = H ji,.

A.1 Linear terms

Collecting linear terms of (4.1):
w: Aq=iwyq
w: A§ = —iweq
B1: AHooro = —J1 K10
B2+ AHooo1 = —J1Ko1
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A.2 Quadratic terms
Collecting quadratic terms of (4.1)):

w?: (A — 2iwol,)Hapoo = —Bl(q, q)

ww : AHy100 = —B(q,q)
wphy: (A —iwoln)Hio10 = 910109 — A1(q, K10) — B(q, Hoo1o)
wfhy: (A —iwoln)Hioo1r = 910019 — A1(q, Ko1) — B(q, Hooot)

i AHgooo = —J1 K20 — 2A1(Hoo10, K10) — B(Hoo10, Hoo1o) — J2 (K10, K10)
3 AHgoo2 = —J1Ko2 — 2A1(Hooo1, Ko1) — B(Hooo1, Hooo1) — J2(Ko1, Kor)
B1B2 : AHyo11 = —J1 K11 — A1(Hoowo, Ko1) — A1(Hooo1, K10) — B(Hooo1, Hooto)

— Jo(Ko1, K1)

A.3 Qubic terms
Collecting qubic terms of (4.1)):

w® (A - 3iwol,)Hsoo0 = —3B(q, Hao00) — C (4,9, q)
w’w: (A —iwoln)Haio0 = 2¢1(0)q — [2B(q, Hi100) + B(q, Hao00) + C(q, ¢, 7)]
Brw? : (A — 2iwol,)Haoto = 2g1010Ha000 — [A1(Hao00, K10) + 2B(g, Hio010) + B(Hoo10, H2000)
+ Bi(q, q, K10) + C(q, 4, Hoo1o)]
Bow? : (A — 2iwoI,)Haoo1 = 291001 Haooo — [A1(Haooo, Ko1) + 2B(q, Hioo1) + B(Hooo1, Hao00)
+ Bi(q, 4, Ko1) + C(q, ¢, Hooo1)]

wwf : AHj110 = (91010 + g1010)H1100 — [A1(H1100, K10) + B(q, Ho110) + B(q, Hio010)
+ B(Hoo10, H1100) + Bi1(q, @, K10) + C(q, ¢, Hoo10)]
wwfPBs : AHu101 = (91001 + G1001)Hi100 — [A1(H1100, Ko1) + B(q, Hoi01) + B(q, Hioo1)

+ B(Hooo1, H1100) + B1(q, ¢, Ko1) + C(q, G, Hooo1)]

whi: (A —iwoln)Hio20 = 910209 + 291010H1010 — [A1(q, K20) + 241 (Hi010, K10) + B(q, Hoo20)
+ 2B(Hoo10, H1010) + A2(q, K10, K10) + 2B1(q, Hoo10, K10)
+ C(q, Hoo10, Hoo10)]

wphi (A —iwoln)Higoe = 91002 + 291001 Hioo1 — [A1(q, Ko2) + 241 (Hioo1, Ko1) + B(q, Hooo2)
+ 2B (Hooo1, H1o001) + A2(q, Ko1, Ko1) + 2B1(q, Hooot, Ko1)
+ C(q, Hooo1, Hooo1)]

wh1B2: (A —iwol,)Hiorr = g10119 + gr010H 1001 + gr001H1010 — [A1(q, K11) + A1 (Hio10, Kot)
+ A1 (H1o01, K10) + B(q, Hoo11) + B(Hooo1, Hio10) + B(Hoo10, H1001)
+ Aa2(q, Kot1, K10) + B1(q, Hoo1o0, Ko1) + B1(q, Hooo1, K10)
+ C(q, Hooo1, Hoo1o)
B3 : —AHooo3 = J1 Koz + 3A1(Hoooz, Ko1) + 3A1(Hooot, Ko2)

+ 3B(Hooo1, Hoooz2) + 3J2(Ko1, Koz) + 3A2(Hooo1, Kot, Ko1)
+ 3B1(Hooo1, Hooo1, Ko1) + J3(Ko1, Ko1, Ko1) + C(Hooo1, Hooo1, Hooo1)
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A.4 Quartic terms
Collecting quartic terms of (4.1)):

w*: (diwol, — A)Haooo = 4B(q, Hso00) + 3B(Hao00, Ha000) + 6C (g, q, . Ha000) + D(q,4. 4, q)
w?w:  (2iwgl, — A)Hsi00 = —6¢1(0)Hao00 + 3B(q, H2100) + B(q, Hso00) + 3B(H1100, H2000)
+3C(q, 4, Hi100) + 3C(q, G, H2000) + D(4, 4,9, q)
wo? : —AHozo00 = —4(c1(0) 4 ¢1(0))Hi100 + 2B(q, Hi200) + 2B(q, H2100)
+ B(Ho200, H2000) + 2B(H1100, H1100) + C(q, ¢, Ho200) + 4C(q, ¢, H1100)
+ C(q, ¢, Hao00) + D(q, 4,7, q)
w?By (A= 3iwoln)Hso10 = 3g1010H3000 — [A1(Hs000, K10) + 3B(q, H2010) + B(Hoo10, H3000)
+ 3B(Hio10, H2000) + 3B1(q, H2000, K10) + 3C(q, ¢, H1010)
+3C(q, Hoo1o, H2000) + C1(4, ¢, 4, K10) + D(q, 4, ¢, Hoo10)]
w?By (A = 3iwoln)Hsoo1 = 391001 Hs000 — [A1(Hs000, Ko1) + 3B(q, Hao01) + B(Hooo1, Ho00)
+ 3B (H1001, H2000) + 3B1(q, H2000, Ko1) + 3C(q, ¢, H1001)
+ 3C(q, Hooo1, H2000) + C1(q, ¢, ¢, Ko1) + D(q, ¢, ¢, Hooo1)]
w?wp : (A —iwo)Ha110 = 2g21109 + (291010 + G1010) H2100 + 2¢1(0) H1010 — [A1(H2100, K10)
+2B(q, Hi110) + B(q, H2010) + B(Hoo10, H2100) + B(Ho110, H2000)
+ 2B(H1010, H1100) + 2B1(q, H1100, K10) + B1(q, Ha2000, K10)
+ C(q, q, Ho110) + 2C(q, G- Hio10) + 2C(q, Hoo10, H1100)
+ C(q, Hoo1o, Ha000) + C1(q, 4, ¢, K10) + D(q, ¢, q, Hoo1o)]
Wy : (A —iwo)Ha2101 = 2921019 + (291001 + g1001)H2100 + 2€1(0) H1001 — [A1(H2100, Ko01)
+2B(q, Hi101) + B(q, Hao01) + B(Hooo1, H2100) + B(Ho1o1, H2000)
+ 2B(H1001, H1100) + 2B1(q, H1100, Ko1) + B1(g, H2000, Ko1)
+ C(q, q, Ho101) + 2C(q, . H1001) + 2C(q, Hooo1, H1100)
+ C(q, Hooot, Ha000) + C1(q, 4, ¢, Ko1) + D(q, q, , Hooo1)]
w?B (A= 2iwol,)Haozo = 291020 Ha2000 + 491010 H2010 — [241(Ha010, K10) + A1 (Ha000, K20)
+ 2B(q, H1020) + 2B(Hoo10, H2010) + B(Hoo20, H2000)
+ 2B(Hio010, H1010) + A2(H2000, K10, K10) + B1(q, ¢, K20)
+4B1(q, Hi010, K10) + 2B1(Hoo10, H2000, K10) + C(q, ¢, Hoo20)
+4C(q, Hoo10, H1o10) + C(Hoo10, Hoo1o, H2000) + B2(q, ¢, K10, K10)
+2C1(q, ¢, Hoo1o, K10) + D(q, ¢, Hoo1o, Hoo10)]
w?B5 (A — 2iwoly)Haooz = 291002H2000 + 491001 H2001 — [2A1(Ha001, Ko1) + A1 (Ha000, Ko2)
+2B(q, Hio02) + 2B(Hooo1, Ha001) + B(Hoooz, H2000)
+ 2B(Hio01, H1001) + A2(H2000, Ko1, Ko1) + B1(q, ¢, Koz)
+ 4B1(q, Hi001, Ko1) + 2B1(Hooo1, H2000, Ko1) + C(q, ¢, Hoooz)
+4C(q, Hooo1, H1o001) + C(Hooo1, Hooo1, Hao00) + B2(q, ¢, Ko1, Ko1)
+2C'1(q, q, Hooo1, Ko1) + D(q, g, Hooo1, Hooo1)]
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w?B1Be 1 (A — 2iwol,)Haor1

wiwf?

wu_)ﬂg2 :

wwfB B

AHi120

AHi102

AHy111

= 2g1011 H2000 + 291010 H2001 + 291001 H2010 — [A1(H2010, Ko01)

+ A1 (Hzo01, K10) + A1(Hao00, K11) + 2B(q, H1011) + B(Hooo1, H2010)
+ B(Hoo10, H2001) + B(Hoo11, Ha2000) + 2B(H1001, H1010)

+ A2(H2000, Ko1, K10) + Bi1(q, ¢, K11) + 2B1(q, Hio10, Ko1)
+2B1(q, Hio01, K10) + B1(Hoo10, H2000, Ko1) + B1(Hooo1, H2000, K10)
+ C(q,q, Hoo11) + 2C(q, Hooo1, H1o10) + 2C(q, Hoo1o, H1001)

+ C(Hooot, Hoo1o, H2000) + B2(q, ¢, Ko1, K10) + C1(q, ¢, Hoo10, Ko1)
+ C1(q, ¢, Hooo1, K10) + D(q, g, Hooo1, Hooto)]

= (91020 + g1020)H1100 + 2(g1010 + G1010) H1110 — [2A1(H1110, K10)
+ A1(Hi100, K20) + B(q, Ho120) + B(q, Hio20) + 2B(Hoo10, H1110)
+ B(Hoo20, H1100) + 2B(Ho110, H1010) + A2(H1100, K10, K10)

+ Bi(q, @, K2o) + 2B1(q, Ho110, K10) + 2B1(q, Hio10, K10)

+ 2B1(Hoo10, H1100, K10) + C(q, @, Hoo20) + 2C(q, Hoo1o, Ho110)
+2C(q, Hoo1o, H1010) + C(Hoo10, Hoo1o0, H1100) + B2(¢, ¢, K10, K10)
+2C1(q, @, Hooto, K10) + D(q, 4, Hoo10, Hoo1o)]

= (91002 + g1002) H1100 + 2(g1001 + G1001)H1101 — [2A1(H1101, Ko01)
+ A1(H1100, Ko2) + B(q, Ho1o2) + B(q, Hio02) + 2B(Hooo1, H1101)
+ B(Hooo2, H1100) + 2B(Ho1o1, H1001) + A2(H1100, Ko1, Ko1)

+ Bi(q, ¢, Ko2) + 2B1(q, Ho1o01, Ko1) + 2B1(q, H1o01, Ko1)

+ 2B1(Hooo1, H1100, Ko1) + C(q, @, Hoooz2) + 2C (g, Hooot, Ho1o1)
+2C(q, Hooo1, Hioo1) + C(Hooo1, Hooot; Hi100) + B2(q, G, Kot, Kor)
+2C1(q, @, Hooo1, Ko1) + D(q, @, Hooo1, Hooo1)]

= (g1011 + g1011)H1100 + (91010 + G1010) H1101 + (91001 + G1001) H1110
— [A1(H1110, Ko1) + A1(H1io1, K1o0) + A1 (Hii00, K11) + B(q, Hoi11)
+ B(q, Hio11) + B(Hooo1, H1110) + B(Hoo10, Hi101) + B(Hoo11, H1100)
+ B(Ho1o1, H1010) + B(Ho110, H1001) + A2(H1100, Ko1, K10)

+ B1(q, ¢, K11) + B1(q, Ho110, Ko1) + Bi1(q, Hoio1, K10)

+ B1(q, H1o10, Ko1) + B1(q, H1o01, K10) + B1(Hoo10, H1100, Ko1)

+ B1(Hooo1, H1100, K10) + C(q, ¢, Hoo11) + C(q, Hooo1, Ho110)

+ C(q, Hoo10, Ho101) + C(q, Hooo1, Hi1o010) + C (g, Hoo1o, H1001)

+ C(Hooo1, Hoo10, H1100) + B2(q, ¢, Ko, K10) + C1(q, ¢, Hoo1o, Ko1)
+ C1(q, @, Hooot, K10) + D(q, G, Hooot, Hoo1o)]
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wps + (iwol, — A)Hiooz = A1(q, Koz) + 3A1(Hio02, Ko1)
+ 3A1(Hio01, Ko2) + B(q, Hooo3) + 3B(Hooo1, H1002)
+ 3B (Hooo2, H1001) + 3A2(q, Ko1, Ko2) + 3A2(H1o01, Ko1, Ko1)
+ 3B1(q, Hooo2, Ko1) + 3B1(q, Hooo1, Ko2) + 6B1(Hooo1, H1o01, Ko1)
+ 3C(q, Hooo1, Hoooz) + 3C(Hooo1, Hooo1, Hi001)
+ As(q, Ko, Ko1, Ko1) + 3B2(q, Hooo1, Ko1, Ko1)
+ 3C1(q, Hooo1, Hooo1, Ko1) + D(q, Hooo1, Hooot, Hooor)
— (91003¢ + 391002 H1001 + 391001 H1002)
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A.5 Quintic terms

Collecting quintic terms of (4.1)):

w’ : (5iwol, — A)Hsoo0 = 5B(q, Hao00) + 10B(Ha000, H3000) + 10C (g, ¢, H3000)
+ 15C (g, H2000, H2000) + 10D(q, ¢, ¢, Ha000) + E(q, ¢, 4,4, q)
w3w? : (iwol, — A)Hsao0 = —12¢2(0)q — 6(2¢1(0) 4 ¢1(0))Ho100 + 3B(q, Hazoo) + 2B(G, H3100)
+ B(Ho200, H3000) + 6 B(H1100, H2100) + 3B(H1200, H2000) + 3C(q, ¢, H1200)
+6C(q, ¢, H2100) + 3C(q, Ho200, H2000) + 6C(q, H1100, H1100)
+ C(q, q, H3000) + 6C(q, H1100, H2000) + D(q, q, ¢, Ho200)
+6D(q,4,q, Hi100) + 3D(q, q, G, H2000) + £(4:9, 4,7, 9)
ww (A= 3iwol,)Hatoo = 12¢1(0)Hsooo — [4B(q, H3100) + B(q, Haooo) + 4B (Hu1100, H3000)
+ 6B (Ha000, H2100) + 6C (¢, ¢, H2100) + 4C (g, ¢, H3000)
+12C(q, H1100, H2000) + 3C(q, H2000, H2000) + 4D(q, ¢, q, Hi100)
+6D(q,4,q, Haoo0) + £(q, 4,99, 7))
Wy i (A — 2iwol,)Hsio1 = 692101 Haooo + 6¢1(0)Hagor + (391001 + Gr001) Hz100
— [A1(H3100, Ko1) + 3B(q, Ha101) + B(q, Hzo01) + B(Hooo1, H3100)
+ B(Ho1o1, H3000) + 3B(H1001, H2100) + 3B(H1100, H2001)
+ 3B(H1101, H2000) + 3B1(q, H2100, Ko1) + B1(q, H3000, Ko1)
+ 3B1(Hi100, H2000, Ko1) + 3C(q, ¢, Hi101) + 3C(q, @, H2001)
+3C(q, Hooo1, Ha2100) + 3C(q, Ho1o01, Ha2000) + 6C(q, H1001, H1100)
+ C(q, Hooo1, H3000) + 3C(q, H1o01, H2000) + 3C (Hooo1, H1100, H2000)
+3C1(q, ¢, H1100, Ko1) + 3C1(q, @, Hao00, Ko1) + D(q, 4, ¢, Ho101)
+3D(q,q,q, Hioo1) + 3D(q, q, Hooo1, H1100) + 3D(q, @, Hooo1, H2000)
+ D1(q,9,9,7, Ko1) + E(q, 9,4, G, Hooot)]
Wi (A —iwol,)Hai20 = 2921209 + 4ga110H1010 + 2¢1(0) Hio20 + (291020 + G1020) H2100
+ (4g1010 + 2g1010) Ha110 — [2A1(H2110, K10) + A1(H2100, K20)
+2B(q, Hi120) + B(q, H2020) + 2B(Hoo10, Ha2110) + B(Hoo20, H2100)
+ 2B(Ho110, H2010) + B(Ho120, H2000) + 4B(H1010, H1110)
+ 2B(H1020, H1100) + A2(H2100, K10, K10) + 4B1(q, H1110, K10)
+2B1(q, Hi100, K20) + 2B1(q, Hao10, K10) + B1(q, H2000, K20)
+ 2B1(Hoo10, H2100, K10) + 2B1(Ho110, H2000, K10)
+4B1(H1010, H1100, K10) + C(q, ¢, Ho120) + 2C(q, ¢, H1020)
+4C(q, Hoo1o, H1110) + 2C(q, Hoo20, H1100) + 4C(q, Ho110, H1010)
+2C(q, Hoo1o, H2010) + C(q, Hoo20, Ha000) + 2C(q, H1010, H1010)
+ C(Hoo10, Hoo10, H2100) + 2C (Hoo10, Ho110, H2000)
+4C(Hoo10, H1010, H1100) + 2B2(q, H1100, K10, K10) + B2(q, H2000, K10, K10)
+ C1(q, ¢, ¢, K20) + 2C1(q, ¢, Ho110, K10) + 4C1(q, G, Hio10, K10)
+4C1(q, K10, Hoo10, H1100) + 2C1(q, K10, Hoo10, H2000)
+ D(q,q,q, Hoo2o) + 2D(q, g, Hoo1o, Ho110) + 4D(q, @, Hoo1o, H1010)
+2D(q, Hoo10, Hoo10, H1100) + D(g, H2000, Hoo10, Hoo10)
+ Ca(q, q, G, K10, K10) + 2D1(q, 4, @, K10, Hoo1o) + E(q, ¢, ¢, Hoo1o, Hooto)]
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w?w? By : —AHaz01 = A1(Ha200, Ko1) + 2B(q, Hi201) + 2B(q, H2101) + B(Hooo1, H2200)
+ 2B(Ho101, H2100) + B(Hoz200, H2001) + B(Hoz01, H2000)
+ 2B(H1o01, H1200) + 4B(H1100, Hi101) + 2B1(q, H1200, Ko1)
+ Bi1(Ho200, H2000, Ko1) + 2B1(Hi100, H1100, Ko1) + 2B1(¢, H2100, Ko1)
+ C(q,q, Hoz01) + 4C(q, ¢, H1101) + 2C(q, Hooo1, H1200)
+4C(q, Ho1o1, H1100) + 2C(q, Ho200, H1001) + C(q, G, H2001)
+2C(q, Hooo1, H2100) + 2C(q, Ho101, H2000) + 4C(q, Hi001, H1100)
+ C(Hooo1, Ho200, H2000) + 2C(Hooo1, H1100, H1100) + C1(q, ¢, Ho200, Ko1)
+4C1(q, ¢, H1100, Ko1) + C1(q, @, H2000, Ko1) + 2D(q, q, G, Ho1o1)
+ D(q,q, Hooo1, Ho200) +2D(q, G, G, Hi001) + 4D(q, G, Hooo1, H1100)
+ D(q, @, Hooot, Ha000) + D1(q, 4,4, @, Ko1) + E(q, ¢, q, ¢, Hooo1)
— (4(c1(0) + c1(0)) H1101 + 4(g2101 + g2101) H1100 + 2(g1001 + g1001) H2200)
w'Bs i (diwol, — A)Haoor = A1(Haooo, Ko1) + 4B(q, Hzo01) + B(Hooo1, Haooo)
+ 4B(H001, H3000) + 68(H2000, H2001) + 4B1(q, H3000, Ko1)
+ 3B1(H2000, H2000, Ko1) + 6C (¢, q, Ha001) + 4C(q, Hooo1, H3000)
+ 12C(q, Hioo1, H2000) + 3C(Hooo1, H2000, H2000)
+ 6C'1(q, q, Ha000, Ko1) + 4D(q, q, ¢, Hio01) + 6D(q, ¢, Hooo1, H2000)
+ D1(4,9,9,4, Ko1) + £(¢, 4,4, ¢, Hooo1) — 491001 Ha000

w?wp3 (A —iwoly)Haio2 = 292102 + 492101 Hioo1 + 2¢1(0)Hioo2 + (291002 + G1002) Ho100
+ (491001 + 2g1001) H2101 — [2A1(H2101, Ko01) + A1(H2100, K02)
+2B(q, Hi102) + B(q, Ha002) + 2B(Hooo1, H2101) + B(Hooo2, H2100)
+ 2B(Ho1o1, H2001) + B(Ho102, H2000) + 4B(H1001, H1101)
+ 2B(H1o02, H1100) + A2(Ko1, Kot, Ha100) + 4B1(q, H1101, Ko1)
+ 2B1(q, Hi100, Ko2) + 2B1(q, Ha001, Ko1) + B1(q, H2000, Ko2)
+ 2B1(Hooo1, H2100, Ko1) + 2B1(Ho1o1, H2000, Ko1)
+ 4B1(H1001, H1100, Ko1) + C(q, ¢, Hoto2) + 2C(q, ¢, H1002)
+4C(q, Hooo1, Hi101) + 2C (g, Hoooz, H1100) + 4C (g, Ho1o1, H1001)
+2C(q, Hooo1, H2001) + C(q, Hoooz, Ha000) + 2C (g, Hio01, H1001)
+ C(Hooo1, Hooo1, H2100) + 2C(Hooo1, Ho1o1, Ha000)
+4C(Hooo1, H1o01, H1100) + 2B2(q, H1100, Ko1, Ho1) + B2(q, Hao00, Ko1, Ko1)
+ C1(q, 4, G, Ko2) + 2C1(q, ¢, Horo1, Ko1) + 4C1(q, @, Hio01, Ko1)
+4C1(q, Hooot, H1100, Ko1) + 2C1(q, Hooo1, H2000, Ko1)
+ D(q,q,q, Hoooz) + 2D(q, q, Hooo1, Ho1o1) + 4D(q, ¢, Hooo1, H1o01)
+2D(q, Hooot1, Hooo1, H1100) + D(q, Ha000, Hooo1, Hooo1)
+ Ca(q, 4,4, Ko1, Ko1) +2D1(q, 4, ¢, Hooo1, Ko1) + E(q, q, 4, Hooo1, Hooo1)]
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w?B3 + (3iwol, — A)Hsoo2 = 2A1(Hsoo1, Ko1) + A1 (Hsoo0, Koz) + 3B(q, Hao02)
+ 2B(Hooo1, H3001) + B(Hooo2, H3000) + 6 B(H1001, H2001)
+ 3B(H1o02, H2000) + A2(H3000, Ko1, Ko1) + 6B1(q, Ha01, Ko1)
+ 3B1(q, Ha000, Ko2) + 2B1(Hooo1, H3000, Ko1) + 681 (H1o001, H2000, Ko1)
+3C(q, g, H1002) + 6C (g, Hooo1, H2001) + 3C(q, Hooo2, H2000)
+6C(q, H1001, H1o01) + C(Hooo1, Hooo1, H3000)
+ 6C (Hooo1, H1o01, H2000) + 3B2(q, Hao00, Ko1, Ko1) + C1(q, ¢, ¢, Ko2)
+ 6C1(q, q, Hioo1, Ko1) + 6C1(q, Hooo1, Ha000, Ko1) + D(q, 4, q, Hoooz2)
+6D(q, g, Hooo1, Hio01) + 3D(q, Hooo1, Hooo1, H2000)
+ C2(q, 4, ¢, Ko1, Ko1) + 2D1(q, 4, ¢, Hooot, Ko1)
+ E(q, q, 9, Hooo1, Hooo1) — [391002H3000 + 691001 H3001]

woB1Py i (A —iwoln)Hair = 2921119 + 292110H1001 + 292100 H1010 + 2¢1(0)H1011
+ (291011 + g1011) Ha100 + (291010 + g1010) H2101 + (291001 + J1001) H2110
— [A1(Ha110, Ko1) + A1(Haio1, K10) + A1 (Ha100, K11) + 2B(q, H1111)
+ B(q, H2011) + B(Hooo1, H2110) + B(Hoo10, Ha101) + B(Hoo11, Ha100)
+ B(Ho1o1, H2010) + B(Ho110, Hao01) + B(Ho111, H2000) + 2B(H1001, H1110)
+ 2B(H1010, H1101) + 2B(H1011, H1100) + A2(H2100, Ko1, K10)
+2B1(q, Hi110, Ko1) + 2B1(q, H1101, K10) + 2B1(q, H1100, K11)
+ B1(q, Hao10, Ko1) + B1(q, H2001, K10) + B1(q, H2000, K11)
+ B1(Hoo10, H2100, Ko1) + B1(Ho110, Ha2000, Ko1) + 2B1(H1010, H1100, Ko1)
+ B1(Hooo1, H2100, K10) + B1(Ho1o1, Ha2000, K10) + 281 (H1o01, H1100, K10)
+ C(q,q, Hoi11) +2C(q, G, Hio11) + 2C(q, Hooo1, Hi110)
+2C(q, Hoo10, H1101) + 2C(q, Hoo11, H1100) + 2C(q, Ho101, H1010)
+2C(q, Ho110, H1001) + C(q, Hooo1, H2010) + C(q, Hoo10, H2001)
+ C(g, Hoot1, Haooo) + 2C(q, Hioo1, Hio10) + C(Hooor, H*', Ha100)
+ C(Hooo1, Ho110, H2000) + 2C(Hooo1, H1o010, H1100) + C(Hoo10, Ho101, H2000)
+ 2C(Hoo10, H1001, H1100) + 2B2(q, H1100, Ko1, K10) + B2(q, H2000, Ko1, K10)
+ C1(9, 4, ¢, K11) + C1(q, ¢, Hot10, Ko1) + C1(q, ¢, Hoto1, K10)
+2C1(q, ¢, Hio10, Ko1) + 2C1(q, @, H1001, K10) + 2C1(q, Hoot0, H1100, Ko1)
+2C1(q, Hooot, Hi100, K10) + C1(q, Hoo10, H2000, Ko1)
+ C1(q, Hooo1, H2000, K10) + D(q, 4, G, Hoo11) + D(q, g, Hooot, Ho110)
+ D(q,q, Hoo1o, Ho101) + 2D(q, @, Hooo1, H1010) + 2D(q, G, Hoo10, H1o01)
+2D(q, Hooo1, Hoo10, H1100) + D(g, Hooo1, Hoo1o, H2000)
+ Ca(q, 4,4, Ko, K10) + D1(q, q, G, Hoo1o, Ko1) + D1(q, q, ¢, Hooot, K10)
+ E(q, q,q, Hooo1, Hoo1o)]
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w?ps : (2iwgl, — A)Hagos = 3A1(Haooz, Ko1) + 3A1(Hagor, Ko2)
+ A1 (Ha000, Kos) + 2B(q, Hi003) + 3B(Hooo1, H2002)
+ 3B(Hoooz2, H2001) + B(Hooo3, H2000) + 6 B(H1001, H1002)
+ 3A2(Haoo01, Ko1, Ko1) + 3A2(Hz000, Ko1, Koz2) + Bi(q, ¢, Kos)
+6B1(q, Hi002, Ko1) + 6B1(q, Hio01, Ko2) + 6B1(Hooo1, H2001, Ko1)
+ 3B1(Hooo2, Ha2000, Ko1) + 681 (H1001, H1001, Ko1)
+ 3B1(Hooo1, H2000, Koz2) + C(q, ¢, Hooos) + 6C(q, Hooo1, H1002)
+ 6C(q, Hooo2, H1001) + 3C(Hooo1, Hooo1, H2001)
+ 3C(Hooo1, Hooo2, H2000) + 6C (Hooo1, H1001, H1o001)
+ Az(H2000, Ko1, Ko1, Ko1) + 3B2(q, ¢, Ko1, Koz) + 6B2(q, Hio01, Ko1, Ko1)
+ 3B2(Hooo1, H2000, Ko1, Ko1) + 3C1(q, ¢, Hoooz, Ko1)
+3C1(q, ¢, Hooo1, Ko2) + 12C1 (g, Hooo1, Hio01, Ko1)
+ 3C1(Hooo1, Hooo1, Ha2000, Ko1) + 3D(q, ¢, Hooo1, Hoooz)
+6D(q, Hooo1, Hooo1, H1001) + D(Hooot, Hooot, Hooot, H2000)
+ Bs(q, q, Kot1, Ko, Ko1) + 3C2(q, ¢, Hooo1, Ko1, Ko1)
+3D1(q, 9, Ko1, Hooo1, Hooo1) + £(q, q, Hooot, Hooot, Hooo1)
— (291003 H2000 + 691002 H2001 + 691001 H2002)

wwfs —AH 1103 = 3A1(Hi102, Ko1) + 3A1(Hy101, Ko2) + A1 (Hi100, Ko3)
+ B(q, Ho103) + B(q, H1003) + 3B(Hooo1, H1102) + 3B(Hoooz, H1101)
+ B(Hooo3, H1100) + 3B(Ho1o1, H1002) + 3B(Ho1o2, H1001)
+ 3A2(Hu101, Ko1, Ko1) + 3A2(H1100, Ko, Koz2) + Bi(q, ¢, Kos)
+3B1(q, Ho102, Ko1) + 3B1(q, Ho1o1, Ko2) + 3B1(q, Hio02, Ko1)
+ 3B1(q, H1o01, Ko2) + 6B1(Hooo1, H1101, Ko1) + 3B1(Hooo2, Hi100, Ko1)
+ 6B1(Ho101, H1o01, Ko1) + 3B1(Hooot, H1100, Koz2) + C(q, 7, Hooo3)
+3C(q, Hooo1, Hoo2) + 3C(q, Hoooz2, Hoo1) + 3C(q, Hooo1, Hio02)
+3C(q, Hooo2, Hioo1) + 3C(Hooo1, Hooo1, Hi101)
+ 3C(Hooo1, Hooo2, H1100) + 6C (Hooo1, Hoto1, H1o001)
+ Az(H1100, Ko1, Ko, Ko1) + 3B2(q, ¢, Ko1, Koz2) + 3Ba(q, Ho1o1, Ko1, Ko1)
+ 3B2(q, H1oo1, Ko1, Ko1) + 3B2(Hooo1, H1100, Ko1, Ko1)
+3C1(q, 4, Hoooz, Ko1) + 3C1(q, ¢, Hooo1, Ko2)
+ 6C1(q, Hooo1, Hoo1, Ko1) + 6C1(q, Hooo1, Hioo1, Ko1)
+ 3C1(Hooot1, Hooot, Hi100, Ko1) + 3D(q, G, Hooo1, Hoooz2)
+3D(q, Hooo1, Hooo1, Hoo1) + 3D(q, Hooo1; Hooot, H1001)
+ D(Hooo1, Hooo1, Hooo1, H1100) + B3(q, @, Kot, Kot, Ko1)
+3C2(q, ¢, Hooo1, Ko1, Ko1) + 3D1(q, @, Hooot, Hooot, Ko1)
+ E(q, ¢, Hooo1, Hooo1, Hooo1)
— (91003 + G1003) H1100 + 3(g1002 + G1002) H1101 + 3(g1001 + G1001) H1102)
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A.6 Sixth order terms
Collecting sixth order terms of (4.1)):

w® : (6iwol, — A)Heooo = 6B(q, Hs000) + 15B(H2000, Ha000) + 10B(Hz000, H3000)
+15C(q, q, Ha000) + 60C (¢, H2000, H3000) + 15C (H2000, H2000, H2000)
+20D(q, q,q, H3000) + 45D(q, ¢, H2000-H2000) + 15E(q; q, q, 4, H2000)
+ K(4,9:9:4,4,9)
w’w : (diwol, — A)Hs100 = 5B(q, Ha100) + B(@, Hso00) + 5B(Hi100, Haooo) + 10B(Ha2000, H3100)
+ 10B(Hz2100, H3000) + 10C(q, ¢, H3100) + 5C(¢, ¢, Ha000)
+20C (g, H1100, H3000) + 30C (g, H2000, H2100) + 10C(q, H2000, H3000)
+ 15C(H1100, H2000, H2000) + 10D(q, q, ¢, Ha100) + 10D(q, q, G, H3000)
+30D(q, q, H1100, H2000) + 15D(q, G, H2000, H2000) + 5E(q; q, q, g, H1100)
+10E(q, q, ¢, q, H2000) + K(q, 4,4, 9, 4, ) — 20c1(0) Ha000
whw? : (A — 2iwol,)Hyzo0 = 48¢2(0) Hagoo + 8(3¢1(0) + 1(0)) Hzro0 — [4B(q, Hz00) + 2B(§, Ha100)
+ B(Hoz200, Hao00) + 8 B(H1100, H3100) + 4B(H1200, H3000)
+ 6 B(Ha000, Ha2200) + 6B(H2100, H2100) + 6C(q, ¢, H2200)
+8C(q, @, H3100) + 4C(q, Ho200, H3000) + 24C(q, H1100, H2100)
+12C(q, H1200, Ha2000) + C(q, 4, Hao00) + 8C(q; H1100, H3000)
+ 12C(q, H2000, H2100) + 3C(Ho200, H2000, H2000) + 12C (H1100, H1100, H2000)
+4D(q,q,q, Hi200) + 12D(q, q, G, H2100) + 6.D(q, q, Ho200, H2000)
+12D(q, q, Hi100, Hi100) + 4D(q, @, ¢, H3000) + 24D(q, ¢, H1100, H2000)
+ 3D(q, @, H2000, H2000) + E(q q, ¢, q, Ho2o0) + 8E(q, 4, 4,7, H1100)
+6E(q,4,G, 4, Ha000) + K(4,9,9, 4,7, 7))
wiw® : AHj3300 = 36(c2(0) +¢2(0)) Hi100 + 18(c1(0) + €1(0)) H2200
— [3B(q, Ha300) + 3B(q, H3200) + 3B(Ho200, H3100) + B(Ho300, H3000)
+ 9B (H1100, H2200) + 9B(H 1200, H2100) + 3B (H1300, H2000)
+3C(q, 4, H1300) + 9C(q, ¢, H2200) + 9C (g, Ho200, H2100)
+ 3C(q, Hoz00, H2000) + 18C(q, H1100, H1200) + 3C(q, ¢, H3100)
+ 3C(q, Ho200, H3000) + 18C(q, H1100, H2100) + 9C (g, H1200, H2000)
+ 9C(Ho200, H1100, H2000) + 6C(H1100, H1100, H1100) + D(4, ¢, ¢, Ho300)
+9D(q, q, ¢, Hi200) + 9D(q, q, Ho2o0, H1100) + 9D(q, 7, G, H2100)
+9D(q, ¢, Ho200, H2000) + 18D(q, ¢, H1100, H1100) + D(q, G, G, H3000)
+9D(q,
+ 3E(q,

¢, Hi100, H2000) + 3E(q, 4,4, @, Ho200) + 9E(q, ¢, 4, 4, H1100)
4,49, Haooo) + K(4,49,9,7, 4, 7)]
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w3w252 : (A — iWOIn)H3201

= 12g3201q + 12¢2(0) H1001 + (1292101 + 6g2101) H2100

+ (12¢1(0) + 6¢1(0))Ha101 + (391001 + 2g1001) H3200

— [A1(H3200, Ko1) + 3B(q, Ha201) + 2B(q, H3101) + B(Hooo1, H3200)

+ 2B(Ho1o01, H3100) + B(Hoz200, H3001) + B(Ho201, H3000)

+ 3B (H1001, H2200) + 6B(H1100, H2101) + 6 B(H1101, H2100)

+ 3B(H1200, H2001) + 3B(H1201, H2000) + 3B1(q; H2200, Ko1)

+ 2B1(q, H3100, Ko1) + B1(Ho200, H3000, Ko1) + 681 (H1100, H2100, Ko1)

+ 3B1(H1200, H2000, Ko1) + 3C(q, q, H1201) + 6C(q, G, H2101)

+3C(q, Hooo1, H2200) + 6C(q, Ho1o1, H2100) + 3C(q, Ho200, H2001)

+ 3C(q, Ho201, H2000) + 6C(q, H1001, H1200) + 12C(q, H1100, H1101)

+ C(q, 4, Hz001) + 2C(q, Hooo1, Hz100) + 2C(q, Ho1o1, Hz000)

+ 6C(q, H1001, H2100) + 6C(q, H1100, H2001) 4 6C (g, H1101, H2000)

+ C(Hooo1, Hoz200, H3000) + 6C(Hooo1, H1100, H2100) + 3C(Hooo1, H1200, H2000)
+ 6C (Ho101, H1100, H2000) + 3C (Ho200, H1001, H2000)

+ 6C(Hu001, H1100, H1100) + 3C1(q, ¢, H1200, Ko1) + 6C1(q, ¢, H2100, Ko1)

+ 3C1(q, Ho200, H2000, Ko1) + 6C1(q, H1100, H1100, Ko1) + C1(, G, H3000, Ko1)
+ 6C1(q, H1100, H2000, Ko1) + D(q, ¢, ¢, Ho201) + 6D(q, 4, G, H1101)

+3D(q, g, Hooo1, H1200) + 6D(q, ¢, Ho1o1, H1100) + 3D(q, ¢, Hoz00, H1001)
+3D(q, 4, q, Hao01) + 6D(q, @, Hooo1, H2100) + 6D(q, G, Ho1o1, H2000)

+ 12D(q, G, Hio01, H1100) + 3D(q, Hooo1, Ho200, H2000)

+ 6D(q, Hooo1, H1100, H1100) + D(, ¢, Hooo1, H3000) + 3D(q, ¢, H1001, H2000)
+6D(q, Hooo1, H1100, H2000) + D1(4; ¢, ¢, Ho20, Ko1) + 6D1(q, ¢, G, Hi100, Ko1)
+3D1(q G, 4, H2000, Ko1) + 2E(q, ¢, ¢, 4, Hoi01) + E(q, ¢, ¢, Hooo1, Hoz00)
+3E(q,4,q, 4, Hioo1) + 6E(q, g, 7, Hooo1, H1100) + 3E(q, G, 7, Hooo1, H2000)

+ E1(9: 4, 4,4, @, Ko) + K(4,4, 9,9, @ Hooon)]

w’Ba: (5iwol, — A)Hso01 = A1(Hso00, Ko1) + 5B(q, Haoo1) + B(Hooo1, Hs000)
+ 5B (Hi001, Ha000) + 10B(Han00, H3001) + 10B(H2001, H3000)
+ 5B1(q, Hioo0, Ko1) + 1081 (Hz2000, H3000, Ko1) + 10C(q, ¢, H3001)
+5C(q, Hooo1, Haoo0) + 20C (g, H1o001, H3000) + 30C (g, H2000, H2001)
+ 10C (Hooo1, H2000, H3000) + 15C (H1001, H2000, H2000)
+10C1(q, q, H3000, Ko1) + 15C1(q, Ha2000, H2000, Ko1)
+10D(q, q, q, H2001) + 10D(q, g, Hooo1, H3000) + 30D(q, q, H1001, H2000)
+15D(q, Hooo1, H2000, H2000) + 10D1(q, q, ¢, H2000, Ko1)
+5E(q,q, 4,9, Hioo1) + 10E(q, g, ¢, Hooo1, H2000)
+ F1(q,9,9, 9,9, Ko1) + K(q, 4,9, 4,9, Hooo1) — 591001 Hs000
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w471)62 : (3inIn — A)H4101

= A1(Hu100, Ko1) +4B(q, H3101) + B(q, Haoo1)

+ B(Hooo1, Ha100) + B(Ho101, Ha000) + 4B(H1o01, H3100)

+ 4B (H1100, H3001) + 4B(H1101, H3000) + 6 B(H2000, H2101)

+ 6B(H2001, H2100) + 4B1(q, H3100, Ko1) + B1(q, Ha000, Ko1)

+ 4B1(Hx100, H3000, Ko1) + 6B1(H2000, H2100, Ko1) + 6C(q, q, H2101)
+4C(q, q, H3001) + 4C(q, Hooo1, H3100) + 4C(q, Ho101, H3000)
+12C(q, H1001, H2100) + 12C(q, H1100, H2001) + 12C(q, H1101, H2000)
+ C(q, Hooo1, Hao00) + 4C (g, H1001, H3000) + 6C(q, Ha000, H2001)

+ 4C(Hooo1, H1100, H3000) + 6C (Hooo1, H2000, H2100)

+ 3C(Ho101, Hao00, Ha2000) + 12C (H1001, H1100, H2000)

+ 6C1(q, g, H2100, Ko1) + 4C1(q, 4, H3000, Ko1)

+ 12C1(q, H1100, H2000, Ko1) + 3C1(g, H2000, H2000, Ko1)
+4D(q,q,q, Hi101) +6D(q, q, G, H2001) + 6D(q, ¢, Hooo1, H2100)
+6D(q, q, Ho1o1, Ha2000) + 12D(q, q, H1001, H1100)

+4D(q, q, Hooo1, H3o000) + 12D(q, @, H1001, H2000)

+ 12D(q, Hooo1, H1100, H2000) + 3D(d, Hooo1, H2000, H2000)

+4D1(q, q,q, Hi100, Ko1) + 6D1(q, q, @, Ha000, Ko1)

+ E(q,9,4,q, Hoio1) +4E(q, 4,4, q, Hio01) +4E(q, q,q, Hooo1, H1100)
+6E(q, q,q, Hooo1, H2000) + F1(q, 4, 9,9, 7, Ko1) + K(q,9,4, 4,7, Hooo1)
— [12g2101 H3000 + 12¢1(0) H3001 + (491001 + F1001)H4100]
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w?wpBs . (iwoly, — A)Haioz = 341(H2102, Ko1) + 341 (H2101, Ko2) + A1(Hz100, Koz) + 2B(q, Hi103)
+B(q, Ha003) + 3B(Hooo1, H2102) + 3B(Hooo2, H2101) + B(Hooo3, H2100)

+3B(Ho1o1, H2002) + 3B(Ho102, H2001) + B(Ho103, H2000) + 6 B(H1001, H1102)

+6B(H1002, H1101) + 2B(H1003, H1100) + 3A2(H2101, Ko1, Ko1)

+3A2(H2100, Ko1, Ko2) + 6B1(q, Hi102, Ko1) + 6B1(q, H1101, Ko2)

+2B1(q, H1100, Ko3) + 3B1(q, Ha002, Ko1) + 3B1(q, Ha001, Ko2)

+B1(q, Haooo, Ko3) + 6B1(Hooo1, H2101, Ko1) + 3B1(Hoooz, Ha100, Ko1)

+6B81(Ho101, Hao01, Ko1) + 3B1(Hoo2, H2000, Ko1) + 1281 (Hi001, H1101, Ko1)

+6B81(H1002, H1100, Ko1) + 3B1(Hooot, H2100, Koz2) + 3B1(Ho1o1, Ha2000, Ko2)

+6B1(H1001, H1100, Koz2) + C(q, ¢, Hoio3) + 2C(q, G, H1003)

+6C(q, Hooo1, H1102) + 6C(q, Hoooz, H1101) + 2C(q, Hooo3, H1100)

+6C(q, Ho101, H1002) + 6C(q, Ho102, H1001) + 3C(q, Hooo1, H2002)

+3C(q, Hooo2, H2001) + C(q, Hooo3, H2000) + 6C(q, H1o01, H1002)

+3C (Hooo1, Hooo1, H2101) + 3C(Hooo1, Hooo2, Ha100) + 6C (Hooo1, Hoo1, Ha001)

+3C(Hooo1, Ho1o2, Ha2000) + 12C(Hooot, H1o001, H1101)

+6C (Hooo1, H1o02, H1100) + 3C (Hoooz2, Ho101, Ha2000) + 6C (Hoooz2, H1001, H1100)

+6C(Ho1o1, H1o01, H1001) + A3(Hz100, Ko1, Ko1, Ko1)

+6B2(q, H1101, Ko1, Ko1) 4 6B82(q, H1100, Ko1, Ko2)

+3B2(q, Hao01, Ko1, Ko1) + 3B2(q, H2000, Ko1, Ko2)

+3B2(Hooo1, H2100, Ko1, Ko1) + 3B2(Ho1o1, H2000, Ko1, Ko1)

+6B2(H1001, H1100, Ko1, Ko1) + C1(q, ¢, 4, Ko3) + 3C1(q, q, Ho1o2, Ko1)

+3C1(q, ¢, Ho1o1, Ko2) + 6C1(q, ¢, H1002, Ko1) + 6C1(q, ¢, Hioo1, Ko2)
+12C'(q, Hooo1, Hi101, Ko1) + 6C1 (¢, Hoooz, Hi100, Kot)

+12C1(q, Ho101, H1001, , Ko1) + 6C1(q, Hooo1, H1100, Ko2)

+6C1(q, Hooo1, H2001, Ko1) + 3C1(q, Hoooz, H2000, Ko1)

+6C1(q, Hio01, H1o01, Ko1) + 3C1(q, Hooo1, H2000, Ko2)

+3C1(Hooot, Hooo1, Ha2100, Ko1) + 6C1(Hooo1, Hoto1, H2000, Ko1)
+12C1(Hooo1, H1o01, H1100, Ko1) + D(q, q, ¢, Hooos) + 3D(q, q, Hooo1, Ho102)
+3D(q, q, Hoooz2, Hoto1) + 6D(q, @, Hooo1, H1002) + 6D(q, ¢, Hoooz, H1001)
+6D(q, Hooot, Hooot, H1101) + 6D (q, Hooo1, Hoooz, H1100) + 12D(q, Hooot, Ho1o1, H1o01)
+3D(q, Hooot1, Hooo1, Hao01) + 3D(q, Hooo1, Hoooz, H2000)

+6D(q, Hooot, H1o0o1, H1001) + D(Hooo1, Hooo1, Hooo1, Ha2100)
+3D(Hooo1, Hooo1, Hoio1, Hao00) + 6D (Hooot, Hooo1, Hio01, H1100)
+2B3(q, H1100, Ko1, Ko, Ko1) + B3(q, Ha000, Ko1, Ko1, Kot)

+3C2(q, 4, G, Ko, Koz) + 3C2(q, ¢, Horo1, Ko1, Ko1)

+6C4(q, @, Hio01, Ko, Ko1) + 6C2(q, Hooot, Hi100, Ko, Ko1)

+3C2(q, Hooo1, H2000, Ko1, Ko1) + 3D1(q, q, ¢, Hoooz, Ko1)

+3D1(q, q,q, Hooo1, Koz2) + 6D1(q, q, Hooo1, Ho1o1, Ko1)

+12D1(q, @, Hooo1, H1001, Ko1) + 6D1(q, Hooo1, Hooo1, H1100, Ko1)
+3D1(q, Hooo1, Hooot, H2000, Ko1) + 3E(q, ¢, 4, Hooot, Hooo2)

+3E(q, q, Hooo1, Hooo1, Horo1) + 6E(q, @, Hooo1, Hooo1, Hioo1)

+2E(q, Hooo1, Hooo1, Hooot, H1100) + £(q, Hooot, Hooo1, Hooo1, H2000)
+Cs3(q, 4, G, Ko1, Ko1, Ko1) + 3E1(q, 4, ¢, Hooo1, Hooot, Ko1) + K(q, ¢, @, Hooo1, Hooo1, Hooo1)
—(292103¢ + 692102 H1001 + 692101 H1002 + 2¢1(0) H1003 + (291003 + G1003) H2100

+(6g1002 + 3G1002) H2101 + (691001 + 3G1001) H2102)
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A.7 Seventh order terms

Collecting seventh order terms of (4.1):

w”: (Tiwol, — A)Hrooo = 7B(q, Heooo) + 21B(Ha000, Hs000) + 358 (Hz000, Ha000)
+21C(q, g, Hs000) + 105C(q, H2000, H1000) + 70C(q, H3000, H3000)
+ 105C(H2000, H2000, H3000) + 35D(q, 4, ¢, Hao00)
+210D(q, q, H2000, H3000) + 105D (q, Ha000, H2000, H2000)
+35E(q, 9,4, 9, H3000) + 105E(q, q, g, H2000, H2000)
+21K(q, 9,9, 9, ¢, Hao00) + L(4: 4, 4: 4, 4, 4, q)

wbw 1 (5iwol, — A)Her00 = 6B(q, Hs100) + B(q, Heooo) + 6B(H1100, Hs000)
+ 15B(H2000, Ha100) + 15B(H2100, Ha000) + 20B(H3000, H3100)
+15C(q, q, Ha100) + 6C(q, G, Hs000) + 30C (¢, H1100, Ha000)
+ 60C(q, H2000, H3100) + 60C(q, H2100, H3000) + 15C(q, H2000, H4000)
+ 10C(q, Hs000, H3000) + 60C (H1100, H2000, H3000)
+ 45C (H2000, H2000, H2100) + 20D(q, ¢, ¢, H3100) + 15D(q; q, ¢, Ha000)
+60D(q, 4, H1100, H3000) + 90D(q, ¢, H2000, H2100)
+60D(q, @, Ha000, H3000) + 90D(q, H1100, H2000, H2000)
+ 15D(q, H2000, H2000, H2000) + 15E(q; q, ¢, ¢, H2100)
+20E(q, 4,9, q, Hzo00) + 60E(q, q, ¢, H1100, H2000)
+45E(q, q, 4, H2000, H2000) + 6K (q, 4,9, 9, ¢, H1100)
+ 15K(q, 4,4, 9. 4, Hao00) + L(¢: 9,9, 4, 4, ¢, @) — 30c1(0) H000

wiw? . (3iwol, — A)Hsao0 = 5B(q, Hyzo0) + 2B(§, Hs100)
+ B(Hoz00, Hs000) + 10B(H1100, Ha100) + 5B(H1200, Ha000)
+ 10B(Ha2000, H3200) + 20B(H2100, H3100) + 108(H2200, H3000)
+10C(q, q, H3200) + 10C(q, ¢, Ha100) + 5C (g, Ho200, Hao00)
+40C (g, H1100, H3100) + 20C (g, H1200, H3000)
+ 30C(q, H2000, H2200) + 30C (¢, Ha100, H2100) + C(q, ¢, H5000)
+10C(q, Hi100, Hao00) + 20C (g, H2000, H3100) + 20C(q, Ha100, H3000)
+ 10C (Hoz200, H2000, H3000) + 20C(H1100, H1100, H3000)
+ 60C (H1100, H2000, H2100) + 15C(H 1200, H2000, H2000)
+10D(q, q, 4, H2200) + 20D(q, ¢, G, H3100) + 10D(q, g, Ho200, H3000)
+60D(q, ¢, Hi100, H2100) + 30D(q, ¢, Hi200, H2000)
+5D(q, q, G, Haooo) + 40D (q, G, H1100, H3000) + 60D(q, ¢, H2000, H2100)
+ 15D(q, Ho200, H2000, H2000) + 60D (q, H1100, H1100, H2000)
+10D(, ¢, Ha000, H3000) + 30D(g, H1100, H2000, H2000)
+5E(q,9,q,9, Hi200) + 20E(q, 4, q, G, H2100) + 10E(q, q, ¢, Ho200, H2000)
+20E(q, 9,9, Hi100, H1100) + 10E(q, q, G, G, H3000)
+60E(q,q,q, Hi100, H2000) + 15E(q, , G, H2000, H2000)
+ K(q,9,9,9,9, Ho2o0) + 10K (q, 9,9, 4, q, Hi100) + 10K (q, 4, q, 4, 7, H2000)
+ L(4,9,9,4, 4G, q) — [120c2(0) H3000 + (40c1(0) + 10€1(0)) Ha100]
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(A — iwol,) Hazoo = 144e3(0)q + 72(2¢2(0) + @5(0)) Haroo + 12(3¢1(0) + 227(0)) Hzao0

— [4B(q, H3300) + 3B(q, Ha200) + 3B(Ho200, Ha100) + B(Hos00, H4000)

+ 12B(H1100, H3200) + 12B(H1200, H3100) + 4B(H 1300, H3000)

+ 6 B(Ha2000, H2300) + 18 B(H2100, H2200) + 6C(q, ¢, H2300)

+12C(q, q, H3200) + 12C(q, Ho200, H3100) + 4C(q, Ho300, H3000)

+36C (g, H1100, H2200) + 36C (g, H1200, H2100) + 12C(q, H1300, H2000)

+3C(q, ¢, Ha100) + 3C(q, Hoz00, Haoo0) + 24C(q, H1100, H3100)

+ 12C0(q, Hi200, H3000) + 18C(q, H2000, H2200) + 18C(q, Ha100, H2100)

+ 12C(Hoz00, H1100, H3000) + 18C (Ho200, H2000, H2100)

+ 3C (Ho300, H2000, H2000) + 36C(H1100, H1100, H2100)

+ 36C (H1100, H1200, H2000) + 4D(q, 4, ¢, H1300) + 18D(q, ¢, 7, Ha200)

+18D(q, q, Ho200, H2100) + 6D(q, ¢, Hoz00, H2000) + 36D(q, ¢, H1100, H1200)

+12D(q, q, q, H3100) + 12D(q, 4, Ho200, H3000) + 72D(q, @, H1100, H2100)

+36D(q, @, H1200, H2000) + 36D(q, Ho200, H1100, H2000)

+24D(q, Hi100, H1100, H1100) + D(q, 4, G, Hao00) + 12D(q, G, H1100, H3000)

+ 18D(q, 4, H2000, H2100) + 9D(G, Ho200, H2000, H2000)

+36D(q, H1100, H1100, H2000) + E(4, 4 4, ¢, Hozo0) + 12E(q, q, 4, 7, H1200)
+12E(q, 4, q, Ho2o0, H1100) + 18E(q, 4, G, 4, H2100) + 18E(q, q, 7, Ho200, H2000)
+36E(q, 4, q, Hi100, H1100) + 4E(q, G, q, G, H3000) + 36 £(q, 4, G, H1100, H2000)
+ 3E(q, G, q, H2000, H2000) + 3K(q, 4, 4,4, G, Ho2o0) + 12K(q, 4, ¢, , ¢, H1100)
+6K(q, 9,4, 4,4, Hz000) + L(4,9: 9, 4,4, 4, 7)]



Appendix B

Remaining coefficients for the
center manifold approximmation

In this appendix, we present the coefficients of the center manifold approximation H that
were not needed in the computation of the normal form coefficients, i.e. the coefficients
marked blue in Figure They need to be included in predidic orbit approximation as
discussed in Section 3.2l

B.1 Coefficients for ODEs

B.1.1 Parameter-independent coefficients

For our center manifold approximation, we also need the following parameter-independent

coefficients whose expressions can be found by respectively collecting the w® w® w’w, w?,

wO,w w? terms. The resulting equations are

Hso00 = (5iwol — A) " [5B(q, Hioo0) + 10B(Ha000, H3000) + 10C(q, ¢, H3000)
+15C(q, H2000, Ha000) + 10D(q, q, ¢, H2000) + E(q, 4,4, 4,9)],

Heooo = (6iwoI, — A) ' [6B(q, Hso00) + 15B(Ha000, H1000) + 10B(Hz000, H3000)
+15C(q, q, Ha000) + 60C (g, H2000, H3000) + 15C(H2000, H2000, H2000)
+20D(q, q, q, H3000) + 45D(q, q, H2000-H2000) + 15E(q, q, q, ¢, Ha000)

+ K(¢:9:9:9:9:9)];

Hs100 = (4iwol — A)~'[5B(q, Ha100) + B(q, Hs000) + 5B(H1100, Ha000)
+ 10B(H2000, H3100) + 10 B(H2100, H3000) + 10C(q, ¢, H3100) + 5C(q, ¢, Ha000)
+20C(q, H1100, H3000) + 30C (¢, H2000, H2100) + 10C(q, H2000, H3000)
+ 15C(H1100, H2000, H2000) + 10D(q, ¢, ¢, H2100) + 10D(q; q, ¢, H3000)
+30D(q, g, H1100, H2000) + 15D(q, ¢, H2000, H2000) + 5E(q; ¢, ¢, ¢, H1100)
+10E(q, 9,9, ¢, Hao00) + K(4, 4, 9,9, 9 @) — 20¢1(0) Haooo),
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Hoo00 = (Tiwol — A)~L[7B(q, Heooo) + 21.B(Ha000, Hs000) + 358 (H3000, Ha000)
+21C(q, q, H5000) + 105C(q, Ha2000, Ha000) + 70C(q, H3000, H3000)
+ 105C (H2000, H2000, H3000) + 35D(q, 4, ¢, Hao00)
+210D(q, q, H2000, H3000) + 105D(q, H2000, H2000, H2000)
+ 35E(q, q, 9, q, H3o00) + 105E(q, ¢, ¢, H2000, H2000)
+21K(q, 4, 4,9, ¢ H2000) + L(4, 4,4, 4,4, 4, )],

He100 = (5iwol — A)~'[6B(q, Hs100) + B(, Heooo) + 6.8 (H1100, Hs000)
+ 15B(H2000, Ha100) + 15B(H2100, Hao00) + 20B(H3000, H3100)
+15C(q, q, Ha100) + 6C(q, @, H5000) + 30C (q, H1100, Ha000)
+60C (¢, H2000, H3100) + 60C (g, H2100, H3000) + 15C(q, H2000, H1000)
+ 10C(q, H3000, H3000) + 60C (H1100, H2000, H3000)
+ 45C( Ha000, H2000, H2100) + 20D(q, q, ¢, H3100) + 15D(q, ¢, G, Hi000)
+60D(q, q, Hi100, H3000) + 90D(q, ¢, H2000, H2100)
+60D(q, @, H2000, H3000) + 90D(q, H1100, H2000, H2000)
+ 15D(q, H2000, H2000, H2000) + 15E(q, q, 4, ¢, H2100)
+20E(q,q,q, 7, H3000) + 60E(q, q, ¢, H1100, H2000)
+45E(q, 4, 4, Ha000, Ha000) + 6K (4, 4,4, q, ¢, H1100)
+15K(q, 4, ¢: ¢, ¢: H2o000) + L(q, 9, 4, ¢: ¢: ¢, ) — 30c1(0) Hs000],

Hia00 = (3iwol — A)~'[5B(q, Hazoo) + 2B(q, Hs100)
+ B(H 2000, Hs000) + 10B(H1100, H1100) + 5B(H2100, Ha000)
+ 10B(H2000, H3200) + 20B(H2100, H3100) + 108 (H2200, H3000)
+10C(q, q, H3200) + 10C(q, q, Ha100) + 5C (¢, H 2000, Ha000)
+ 40C (¢, Hi100, H3100) 4+ 20C (¢, H2100, H3000)
+ 30C(q, Ha000, H2200) + 30C (¢, H2100, H2100) + C(q, 7, H5000)
+10C(q, Hi100, Ha000) + 20C (g, H2000, H3100) + 20C(q, Ha100, H3000)
+ 10C (H 2000, Hz2000, H3000) + 20C (H1100, H1100, H3000)
+ 60C(H1100, H2000, H2100) + 15C (H 2100, H2000, H2000)
+ 10D(q, ¢, ¢, Ha200) + 20D(q, q, ¢, H100) + 10D(q, q, H2000, H3000)
+ 60D(q, ¢, H1100, H2100) + 30D(q, ¢, H2100, H2000)
+5D(q, q, 4, Haooo) + 40D (q, G, H1100, H3000) + 60D(q, ¢, H2000, H2100)
+ 15D(g, H2000, H2000, H2000) + 60D (q, H1100, H1100, H2000)
+10D(q, g, Ha000, H3000) + 30D(g, H1100, H2000, H2000)
+5E(q, ¢, ¢, 4, Ha100) + 20E(q, ¢, ¢, @, H2100) + 10E(q, q, 4, H2000, H2000)
+20E(q, q,9, H1100, H1100) + 10E(q, ¢, 4, G, H3000)
+60E(q, 4, q, Hi100, Ha000) + 15E(q, 4, G, Ha000, H2000)
+ K (4,4, 4,9 ¢, Ha000) + 10K (¢, ¢, ¢, 4, G, H1100) + 10K (¢, 4, 4,3, G, Ha000)
+ L(q,4,9,9,9,G,q) — (120c2(0) Hz000 + (40c1(0) + 1021(0)) Ha100)]-
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B.1.2 Parameter-dependent coefficients

We also need the following parameter-dependent coeflicients

Hso10 = (3iwo I, — A) ' [A1(Hs000, K10) + 3B(q, H2010) + B(Hoo10, H3000)
+ 3B(H1010, H2000) + 3B1(q, H2000, K10) + 3C(¢, ¢, Hi010) + 3C (g, Hoo10, H2000)
+ C1(q, 9,9, K10) + D(q, q,q, Hoo10) — 3(1 + ib1,10) H3000]

Hyon = (diwol,, — A) " [A1(Haooo, Ko1) + 4B(q, Hzo01) + B(Hooo1, Haooo)
+ 4B (H1o01, H3000) + 6 B(H2000, H2001) + 4B81(q, H3000, Ko1)
+ 3B1(H2000, H2000, Ko1) + 6C(q, g, Ha001) + 4C (g, Hooo1, H3000)
+12C(q, H1001, Ha000) + 3C(Hooo1, Ha000, H2000)
+ 6C1(q; ¢, Hao00, Ko1) +4D(q, ¢, q, Hio01) + 6D(q, ¢, Hooo1, H2000)
+ D1(¢,4,9,9, Ko1) + E(q, ¢, 4, ¢, Hooo1) — 4ib1,01 Haoo0],

Hso01 = (5iwo Ly, — A) ™ [A1(Hs000, Ko1) + 5B(q, Haoo1) + B(Hooo1, Hz000)
+ 5B(H1001, Hao00) + 10B(Hao00, H3001) + 10B(H2001, H3000)
+ 5B1(q, Haoo0, Ko1) + 1081 (Ha000, H3000, Ko1) + 10C(q, q, H3001)
+5C(q, Hooo1, Haoo0) + 20C (g, H1001, H3000) + 30C (g, H2000, H2001)
+ 10C (Hooo1, H2000, H3000) + 15C (H1001, H2000, H2000)
+10C1(q, ¢, H3000, Ko1) + 15C1 (g, Hao00, H2000, Ko1)
+10D(q, q, q, Ha001) + 10D(q, g, Hooo1, H3000) + 30D(q, q, H1001, H2000)
+15D(q, Hooo1, H2000, H2000) + 10D1(q, q, ¢, H2000, Ko1)
+5FE(q,9, 9,49, Hioo1) + 10E(q, ¢, ¢, Hooo1, H2000)
+ E1(4,9,9, 9,9, Ko1) + K(q,4,9, 4,9, Hooo1) — 5ib1,01 H5000],
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Huon = (3iwol, — A) ' [A1(Ha100, Ko1) + 4B(q, Hz101) + B(q, Haoo1)
+ B(Hooo1, Ha100) + B(H 1001, Hao00) + 4B(Higo1, H3100)
+4B(H1100, H3001) + 4B(H1101, H3000) + 6 B(H2000, H2101)
+ 6 B(Ha001, H2100) + 4B1(q, H3100, Ko1) + B1(q, Hao00, Ko1)
+ 4B1(H1100, H3000, Ko1) + 681 (H2000, H2100, Ko1) + 6C(q, q, H2101)
+4C(q, q, Hao01) + 4C (¢, Hooo1, H3100) + 4C(q, H1001, H3000)
+12C(q, H1o01, H2100) + 12C(q, H1100, H2001) + 12C(q, H1101, H2000)
+ C(q, Hooo1, Haoo0) + 4C (g, H1o01, H3000) + 6C(q, H2000, H2001)
+4C(Hooo1, H1100, H3000) + 6C (Hooo1, H2000, H2100)
+ 3C(H 1001, H2000, H2000) + 12C (H1001, H1100, H2000)
+6C1(q, ¢, H2100, Ko1) + 4C1(q, ¢, H3000, Ko1)
+12C1(q, H1100, H2000, Ko1) + 3C1(q, H2000, H2000, Ko1)
+4D(q,q,q, Hi101) +6D(q, q, G, H2001) + 6D(q, ¢, Hooo1, H2100)
+ 6D(q, q, H1001, H2000) + 12D(q, ¢, H1001, H1100)
+4D(q, q, Hooo1, H3000) + 12D(q, @, H1001, H2000)
+ 12D(q, Hooo1, H1100, H2000) + 3D(q, Hooo1, H2000, H2000)
+4D1(q, q,q, Hi100, Ko1) + 6D1(q, q, §, Ha000, Ko1)
+ E(q, 4,4, ¢, Hioo1) + 4E(q, 4, 4,7, Hio01) + 4E(q, ¢, ¢, Hooo1, H1100)
+6E(q,q,q, Hooo1, H2000) + E1(q, 4, ¢, ¢, ¢ Ko1) + K(q, 4,4, 9,7, Hooo1)
— (12(1 4+ ib2,01) H3000 + 12¢1(0) H3001 + 3ib1,01 Ha100)]-

Finally, we need the coefficient Hszpp2 which can be derived by collecting the w333 terms.
This yields the equation

Hsn0o = (3iwol — A) " [2A1(Hso01, Ko1) + A1(Hs000, Ko2) + 3B(q, Haoo2)
+ 2B(Hooo1, H3001) + B(Hooo2, H3000) + 6 B(H1001, H2001)
+ 3B(H1002, H2000) + A2(H3000, Ko1, Ko1) + 6B1(q, Ha001, Ko1)
+ 3B1(q, H2000, Ko2) + 2B1(Hooo1, H3000, Ko1) + 6B1(H1001, H2000, Ko1)
+3C(q, q, H1002) + 6C(q, Hooo1, Ha001) + 3C (¢, Hoooz, H2000)
+ 6C(q, H1001, H1001) + C(Hooo1, Hooo1, H3000)
+ 6C (Hooo1, H1001, H2000) + 3B2(q, H2000, Ko1, Ko1) + C1(q, 4, ¢, Ko2)
+6C1(q, g, Hio01, Ko1) + 6C1(q, Hooo1, H2000, Ko1) + D(q; q, g, Hooo2)
+6D(q, g, Hooo1, H1001) + 3D(q, Hooo1, Hooot, H2000)
+ C2(q, 4, ¢, Ko1, Ko1) + 2D1(q, 4, ¢, Hooo1, Ko1)
+ E(q,4,q, Hooo1, Hooo1) — (3ib1,02H3000 + 61b1,01 H3001)]-
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B.2 Coefficients for DDEs

B.2.1 Parameter-independent coefficients

For our center manifold approximation, we also need the following parameter-independent
coefficients

Hio00(8) = >0 A~ (5iw0) [5B (0, Haoo0) + 10B(Haoo0, H3000) + 10C (¢, ¢, Hzo00)
+ 15C(¢, Hz000, H2000) + 10D (0, 0, ¢, Hao00) + E (¢, ¢, 0, ¢, ¢)],

Heooo(0) = €% A~ (6iw0)[6.8 (0, Hs000) + 15.B(Ha000, Hao00) + L0B(Hs000, H3000)
+15C (¢, @, Haoo0) + 60C (¢, H2000, H3000) + 15C (H2000, H2000, H2000)
+20D(p, @, , H3000) + 45D (i, g, Hao00-H2000) + 15E (0, ¢, @, ¢, Haooo)
+ K(p, 0,0, 0,0,0)],

Hs100(0) = "% A~ (4iwo) [5B(p, Haro0) + B(@, Hsoo0) + 5B(Hi100, Haooo)
+ 10B(Ha2000, H3100) + 10B(H2100, H3000) + 10C (9, 0, H3100) + 5C (0, ¢, Ha000)
+20C (¢, H1100, H3000) + 30C (0, H2000, H2100) + 10C (6, H2000, H3000)
+ 15C (H1100, H2000, H2000) + 10D (¢, @, 0, Ha100) + 10D (9, ¢, ¢, H3000)
+ 30D(, ¢, H1100, H2000) + 15D (s, ¢, H2000, H2000) + 5E (¢, ¢, ¢, ¢, H1100)
+10E(p, ¢, ¢, ¢, Haoo0) + K (¢, 0,9, 0.0, P)]
(0

- 2001 ) (4ZWO)[A,(4’LWO) - 9A(4ZWO)]H4000(9),

Hro0(0) = ™% A1 (Ticwo) [TB(p, Heooo) + 21B(Hz000, Hs000) + 35 B(Hz000, Ha000)
+21C (¢, @, Hs000) + 105C (4, Hao00, Hao00) + 70C (0, H3000, H3000)
+ 105C (H2000, H2000, H3000) + 35D (¢, ¢, @, Ha000)
+ 210D (e, o, H2000, H3000) + 105D (¢, Hao00, H2000, H2000)

+ 35E(p, ¢, ¢, ¢, H3o00) + 105E (¢, ¢, ¢, Hao00, H2000)
+ 21K (0, 0, ¢, ¢, ¢, Haooo) + L, 0, 0,0, 0, 0, )],

Hg100(0) = "% A~ (5iw0)[6B(q, Hs100) + B(%, Heo00) + 6B(H1100, H5000)
+ 15B(H2000, Ha100) + 15B(Ha2100, Ha000) + 208 (H3000, H3100)
+ 15C (¢, ¢, Ha100) + 6C (¢, @, Hs000) + 30C (¢, H1100, Ha000)
+ 60C (¢, Ha000, H3100) + 60C (¢, Ha100, H3000) + 15C (&, H2000, Ha000)
+ 10C (@, H3000, H3000) + 60C (H1100, H2000, H3000)
+ 45C( Haoo0, H2000, Ha100) + 20D (0, 9, 0, H3100) + 15D(0, @, ¢, Hao00)
+ 60D(¢, v, Hi100, H3000) + 90D (¢, ¢, Ha000, H2100)
+ 60D (¢, @, Ha000, H3000) + 90D (e, Hi100, H2000, H2000)
(
(

o O

+ 15D(@, Hao00, H2000, H2000) + 15E (0, ¢, ¢, ©, H2100)
+ 20E (¢, ¢, ¢, @, H3o00) + 60E (e, ¢, ¢, Hi100, Ha000)
+45E(p, ¢, ¢, H2000, H2000) + 6K (0, ¢, ¢, ¢, ¢, H1100)
+ 15K (¢, ¢, 9, ¢, #, Haoo) + L(; 0, ¢, 0,0, 0, P)]

— 30c1(0) A~ (5iwg) [A (5iwo) — OA (5iwg )] Hs000(6),

&
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H00(0) = €*°? A1 (3iwo) [5B(p, Hazoo) + 2B(@, Hs100)
+ B(H 2000, H5000) + 10B(H1100, Ha100) + 5B(H2100, Ha000)
+ 10B(H2000, H3200) + 20B(Ha2100, H3100) + 10B(Ha200, H3000)
+10C (¢, @, H300) + 10C (0, @, Ha100) 4 5C (¢, Haoo0, Hao00)
+ 40C (g, Hi100, H3100) + 20C (0, Ha100, H3000)
+ 30C (¢, Hapo0, H2200) + 30C (@, Ha100, H2100) + C(@, @, H5000)
+ 10C (@, Hi100, Haooo) + 20C (@, Ha000, H3100) + 20C (@, Ha100, H3000)
+ 10C (H 2000, H2000, H3000) + 20C (H1100, H1100, H3000)
+ 60C(H1100, H2000, Ha100) + 15C(H 2100, H2000, H2000)
+10D(¢, ¢, @, Hasoo) + 20D(p, ¢, @, Hz100) + 10D (¢, @, H2000, H3000)
+60D(y, ¢, H1100, H2100) + 30D (0, ©, Ha100, H2000)
+5D(p, @, @, Haooo) + 40D (¢, ¢, H1100, H3000) + 60D (¢, ¢, Ha000, H2100)
+ 15D (0, Ha000, H2000, Ha000) + 60D(¢, H1100, H1100, H2000)
+10D(p, ¢, Hao00, H3000) + 30D (9, H1100, H2000, H2000)
+5E(, ¢, 0,0, Ha100) + 20E(, ¢, ¢, @, Ha100) + 10E (0, ¢, ¢, Haoo0, Ha000)
+20E(p, ¢, ¢, Hi100, H1100) + 10E(, ¢, @, @, H3000)
+ 60E(p, ¢, , Hi100, H2000) + 15E(, ¢, ¢, Ha000, H2000)
+ K (0,050,059, Hao00) + 10K (0, ¢, ¢, 0, 8, Hito0) + 10K (9, 9, ¢, @, @, H2000)
+ L(p, 0,90, 0,9, 6, 9)]
— 120¢2(0) A7 (Biwo ) [A (3iwo) — OA(3iwo )] H3o00(6)
— (40¢1(0) + 10¢7(0))e30? A= (i) ([A’(3iw0) — OA(3iwg)| Ha100(0)

+ 61 (0)[A" (3itn) — 04 (3iteo)] Haooo (0))

Hazo0(0) = BJ2y" (Misoo, —144c3(0))(6) — 72(2¢2(0) + 2(0)) BEYY (Ha100, —2¢1(0))(6)

wo wo

— 12@%{61 (0)}B<INV(H3200, —[1202(0)(] + 613 (Cl (0)) Hgloo(O)}, 12:& (01 (0)) C1 (0))(9)

iwo

B.2.2 Parameter-dependent coefficients

For our center manifold approximation, we also need the following parameter-dependent
coefficients

Hi010(0) = €9 A~ (3iwo ) [A1 (H3000, K10) + 3B(¢, Ha010) + B(Hoo10, H3000)
+ 3B(H1010, H2000) + 3B1 (¢, H2000, K10) + 3C (e, ¢, Hi010) + 3C (¢, Hoo10, H2000)
+ C1(, ¢, , K10) + D(p, 9, ¢, Hooo)]
—3(1 4 b1 10) A (3itwo) [ A (i) — A (3ico)] Hanoo (8)],
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Ho01(0) = €*™0% A= (4iwo) [A1 (Haoo0, K1) + 4B (¢, Hzo01) + B(Hooo1, Hi000)
+ 4B (H1001, H3000) + 68(H2000, Ha2001) + 4B1(, H3000, Ko1)
+ 3B1(H2000, H2000, Ko1) + 6C (v, v, Hago1) + 4C (v, Hooo1, H3000)
+ 12C (¢, H1001, H2000) + 3C (Hooo1, H2000, H2000)
+ 6C1 (e, ¢, Haooo, Ko1) + 4D(p, ¢, ¢, Higo1) + 6D (¢, v, Hooo1, H2000)
+ D1, 9, 0,0, Ko1) + E(p, ¢, ¢, ¢, Hooo)]
— 4iby 01 AT (4iwo)[A (4iwn ) — OA (4iwn )] Haooo (),

Hio01(0) = €% A= (5iw) [A1 (Hs000, Ko1) + 5B(, Haoo1) + B(Hooo1, Hz000)
+ 5B(H1001, Ha000) + 10B(Hao00, H3001) + 10B(H2001, H3000)
+ 5B1(0, Hao00, Ko1) + 1081 (Ha000, H3000, Ko1) + 10C (¢, ¢, H3001)
+ 5C (¢, Hooot, Hao00) + 20C (¢, H1001, H3000) + 30C (¢, Hao00, H2001)
+ 10C (Hooo1, H2000, H3000) + 15C(H1001, H2000, H2000)
+10C1 (e, v, H3000, Ko1) + 15C1 (s, Ha000, H2000, Ko1)
+10D(¢, ¢, ¥, Ha001) + 10D(, 0, Hooo1, H3000) + 30D(, o, H1001, H2000)
+ 15D(¢, Hooo1, H2000, H2000) 4+ 10D1 (¢, @, ¢, Ha000, Ko1)
+ 5E(p, ¢, ¢, ¢, Hioo1) + 10E (e, ¢, ¢, Hooo1, H2000)
+ Er(p, 0,0, 0,0, Ko1) + K(p, ¢, 0,9, 0, Hooo1)]
— 5iby 01 A (5iwg)[A (5iwg ) — OA(5iwo )] Hzo00(8),



90

Hi01(0) = ¥ A (3iwg) [ A1 (Ha100, Ko1) + 4B (¢, H101) + B(, Haoo1)
+ B(Hooo1, Ha100) + B(H 1001, Hao00) + 4B(H1o01, H3100)
+4B(H1100, H3001) + 4B(H1101, H3000) + 6 B(H2000, H2101)
+ 6 B(Hao01, H2100) + 4B1(, H3100, Ko1) + B1(, Hao00, Ko1)
+4B1(H1100, H3000, Ko01) + 6B1(Ha000, H2100, Ko1) + 6C (9, ¢, H2101)
+4C (¢, ¢, Haoo1) + 4C (0, Hooo1, Hz100) + 4C (0, H 1001, H3000)
+12C (¢, Hio01, H2100) + 12C(0, H1100, Ha001) + 12C (0, H1101, H2000)
+ C(@, Hooo1, Haooo0) + 4C(@, Hioo1, H3000) + 6C (9, Ha000, Ha001)
+4C(Hooo1, H1100, H3000) + 6C(Hooo1, H2000, H2100)
+ 3C(H 1001, H2000, H2000) + 12C (H1001, H1100, H2000)
+ 6C1 (e, ¢, Ha100, Ko1) + 4C1 (@, @, H3000, Ko1)
+ 12C1 (¢, Hi1100, H2000, Ko1) + 3C1(@, Ha2000, H2000, Ko1)
+4D(p, ¢, ¢, Hi101) + 6D (¢, @, @, Hagor) + 6D(p, ¢, Hooor, H2100)
+ 6D(ep, ¢, Hioo1, H2000) + 12D (¢, ¢, Hi001, H1100)
+4D(p, ¢, Hooo1, H3000) + 12D (¢, @, Ho01, H2000)
+ 12D(¢, Hooo1, Hi100, H2000) + 3D (@, Hooo1; H2000, H2000)
+4D1 (e, ¢, , Hi100, Ko1) + 6D1(sp, ¢, @, H2000, Ko1)
+ E(p, 0, 0,90, Hioo1) + 4E(p, ¢, ¢, @, Hio01) + 4E(, ¢, ©, Hooo1, H1100)
+6E(p, ¢, ¢, Hooor, Hao00) + E1(, ¢, 0, 0, 6, Ko1) + K(, ¢, ¢, ¢, ¢, Hooor)]
— 12(1 4 ib,01) A~ (3iwo ) [A' (3iwo) — OA(3iwn)] H3000(0)

— 12¢1(0)e¥ 09 A~ (i) ( (3iwo) — OA(3iwo)] H3001(0)
3. ; i

+ §Zb1,01[A”(3W0) —0 A(3zwo)]H3000(0)>

~ 3iby 013400 A~ (i) ([A’(Siwo) — OA(3iwo)] Ha100(0)

+ 61 (0)[A (3iwo) — 02A(3¢w0)]H3000(0)).

Hzo01(0) = BL (Ms201, —12g3201)(0) — 12¢2(0) B{YY (H1001, —ib1,01)(0)
— (18 + 61bg 01)B{£V(H2100a —2c1 (0))(0)

—6i3{c1(0)} BINY (Hai01, —[2(1 + ibo,1)q + 1,01 H2100(0) + 2¢1(0) H1001(0)], 4ic1(0)b1,01)(6)
— Zbl Olewo (H320[), —[1202(0)(] + 61% (61 (0)) Hgloo(O)], 122% (61 (0)) C1 (0))(9),
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Hio02(0) = €309 A~ (3iwp)[2A41 (H3001, Ko1) + A1 (Hzo00, Ko2) + 3B (0, Hao02)
+ 2B(Hooo1, H3001) + B(Hooo2, H3000) + 6B(H1001, H2001)
+ 3B (H1002, H2000) + A2(H3000, Ko1, Ko1) + 681 (¢, Haoo1, Ko1)
+ 3B1 (¢, Hao00, Ko2) + 2B1(Hooo1, H3000, Ko1) + 681 (H 1001, H2000, Ko1)
+ 3C (¢, ¢, Hi002) + 6C (¢, Hooo1, H2001) + 3C(, Hoooz, H2000)
+ 6C (9, H1001, H1001) + C(Hooo1, Hooo1, H3000)
+ 6C(Hooo1, H1001, H2000) + 3B2(@, Hao00, Ko1, Ko1) + C1(e, @, , Koz)
+ 6C1 (¢, ¢, H1o01, Ko1) + 6C1 (@, Hooo1, Ha000, Ko1) + D(@, , v, Hoooz)
+ 6D(, ¢, Hooo1, H1001) + 3D(p, Hooo1, Hooo1, Hao00)
+ Ca (¢, @, v, Ko1, Ko1) + 2D1 (¢, ¢, @, Hooo1, Ko1)
+ E(p, ¢, ¢, Hooo1, Hooo1)]
— 3iby 02 A (3iwg)[A (3iwn ) — OA(3iwo )] H3000(0)

— Gty 01¢¥0? A~ (3o [A'(3icwo) — OA (3iti) Hioor (0)

3. . .
+ 51()1701[A"(32w0) — 02A(3’LWO)]H3000(0)) .



Appendix C

DDEs and sun-star calculus

A common way of solving DDEs is by the so-called method of steps. This will be illustrated
in the following example.

Example. Consider the following simple DDE
(t) =ax(t—h), t>0, (C.1)

for some o € R with the initial condition x(t) = 1 for ¢t € [—h,0]. For ¢t € [0, h] we have
that z(t — h) = 1 and thus system (C.1]) becomes

t=a, tel0,h].

Integrating this equation results in the solution
h
z(t) = z(0) +/ ads =14+ at, te][0,h]
0

Using this solution we can proceed to find the solution on the interval [h,2h]. Namely,

the equation becomes
i(t) = a(l+ a(t —h)), te[h,2h)].

Integrating this equation yields
t

o(t) = () +a [ (1+ als — W),

h

=1l4+ah+a <(t—h)(1 —ah) + %oz(t2 —hz)) )

=1+ah+a(t—h)(1+ %a(t— h)), t€ [h,2h].

This second step can also be performed by first translating the solution on the interval
[0, k] to the interval [—h,0] and then integrating the new equation. Proceeding this way
one can find a solution for all ¢ > 0.

Thus, there are two main steps in solving such an equation. First, we extend the solution
by solving the DDE on the interval [0, h]. Then we can translate this solution back to the
interval [—h,0] and repeat the process. Motivated by this, a natural state space is the
Banach space X = C([—h, 0], R) of continuous functions endowed with the usual supremum
norm. To deal with the infinite-dimensional state space X, we need the functional analytic
framework of sun-star calculus. We will provide a short introduction of sun-star calculus
in the context of DDEs in the next sections following [9].
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C.1 The shift semigroup
A good starting point turns out to be the trivial DDE
z(t) =0, t>0, (C.2)
with some initial condition ¢ € X
xz(0) = p(f), 0€]—h,0. (C.3)

Here we take X = C([—h,0],C) as our state space endowed with the supremum norm.
The extension rules for other systems can be considered perturbations of this simple case.

The solution to (C.2) is given by

_Je(®), te[-h0]
aw_{ﬂm7t20' (C.4)

Based on this solution, we define for each ¢t > 0 the shift semigroup

o(t+0), t+0e[—h,0,

o(0), 4030, (©5)

(To(t)e)(0) = {

This defines a bounded linear operator Tp(t) : X — X mapping the initial state ¢ at time
zero to the state z; at time ¢. The family {Ty(¢)}+>0 of operators satisfies the following
three properties:

1. T(0) = I,
2. TH)T(s)=T(t+s), t,s>0,
3. forany p € X, ||T(t)p — || = 0ast 0.

Such a family bounded linear operators defined on a Banach space X is called a strongly
continuous semigroup of operators or a Co-semigroup. The first two properties make it a
semigroup, while the final property ensures strong continuity. A more rigorous introduc-
tion to Cp-semigroup including proofs of some general results can be found in [9, Appendix
I1]. The infinitesimal generator A of a semigroup of operators {7'(t) }+>¢ is defined as the
derivative at t = 0, i.e. .

Ap = lim 2 (T()e — ), (C.6)
where the domain D(A) is defined as the set of all ¢ € X for which the above limit does
exist. The operator A is a linear operator on its domain and is generally unbounded.
However, it is closed and its domain D(A) is dense in X. The infinitesimal generator for
the shift semigroup can be found explicitly and is given by

D(Ap) = {p € X|¢ € C([=h,0],C), $(0) = 0}, Aoy = .

One problem that arises here is that the extension rule is incorporated in the domain of
Ap through the condition $(0) = 0. Changing this rule will change the domain of the
generator. This will result in certain technical complications when we study perturbations
of the trivial equation which is resolved with the help of the sun-star calculus. Before we
proceed with sun-star, it is useful to introduce functions of normalized bounded variation.



94

C.2 Functions of normalized bounded variation

Recall from the functional analysis that a dual space of a Banach space X is defined as the
space of continuous linear operators on X with values in R or C. We will denote this by
X*. For the case where X = C([—h, 0], R) it is possible to identify the dual space X* with
the so-called space of functions of normalized bounded variations. For this, we first need
to define functions of bounded variation. Let f : [a,b] — R. We define the total variation
of f over the interval [a,b] as

N
V(f) = e ; 1f(o;) = foj-1)l,

where P(a,b) is a partition a = 09 < 01 < -+- < oy = b of [a,b]. We say that f is of
bounded variation or f € BV if V(f) < co. We can now define the space of functions of
normalized bounded variations as

NBV :={f € BV |f(a) = 0 and f is continuous from the right on the interval (a,b)}.

A vector-valued function f : [a,b] — R™ is of normalized bounded variation if and only
if every component is of normalized bounded variation. Now consider again the space
X = C([—h,0],R). Then it is convenient to consider functions of NBV on the interval
[0, h] and extend the domain to all of R by setting f(#) = 0 for # < 0 and f(0) = f(h) for
6 > h. With this convention, we have the following pairing between f € NBV and ¢ € X.

h
(f ) = /0 df (0)(—0), (1)

where the integral is a Riemann-Stieltjes integral. More details on the Riemann-Stieltjes
integral and its properties can be found in [9, Appendix I].

C.3 Sun-star calculus for the shift semi-group

This section is based on [9, Chapter IT]. We will only state some of the main results.

The pairing between z* € X* and x € X will be denoted as z*(x) = (z*,z). We will
now consider the family of adjoint semigroup operators T := {T*(¢)}+>0 on X*. For a
bounded linear operator T': X — X, the adjoint operator T* : X* — X* is defined by the
property that

(x*,Tx) = (T*x*,x), foreveryx e X, z* € X",

As shown in [9][Section II.4], the adjoint operator of the shift semigroup (C.5) can be
found explicitly and is given by

(TE(t)p) = p(t+6), 6> 0. (C.8)

The adjoint semigroup is not strongly continuous. For a densely defined unbounded op-
erator A, we define the adjoint operator A* : D(A*) — X* by

D(A*) = {z* € X*| There exists y* € X* such that
(x*, Az) = (y*,x), for all z € D(A)},

and
A*r™ =y~
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For the infinitesimal generator A defined as (C.6|), A* only generates the adjoint semigroup
T* in the weak*-sense. This means that

1
lifgl ¥<T*(t)x* —a*,x) = (A*x*,z), forall z € X if and only if z* € D(A*).
t

We can consider the restriction of 7* to the maximal subspace of strong continuity

X© .= {z* e X*

lim + (T(0)p — ) = 0}.

It turns out that X© is precisely given by the norm closure of D(A*), i.e.

X© = D(A%).

The restriction of T* to X®, denoted by T® := {T®(¢)}4>0 is a Cp-semigroup. The
infinitesimal generator A® of T© is the restriction of A* to X©,

D(A®) = {2® € D(A*)|A*z® € X©}, A9z® = A*2®.
For the shift semigroup, we can explicitly determine the sun-dual space X®. For the case
of the shift semigroup, we have
t
X9 ={fe NBV|f(t) = c—l—/ g(0)de for t > 0, where ¢ € C and
0
g € L' such that g(f) = 0, for (almost all) § > h}.

We see that for the shift semigroup, the elements of the space X© are completely specified
by the pair (c,g) € C x L([0, h],C). Using these coordinates we have from (C.8)

t
T (0e.0) = (c+ [ atoldogle+) (©9)
Furthermore, the infinitesimal generator A(? is given by

Af (e, 9) = (9(0), 9),

Let AC denote the space of absolutely continuous functions. Then the domain of ABD is
given by
D(A) = {(c,g)|c € C and g € AC with g() = 0 for § > h}.

We now have a Cjy-semigroup TéD defined on a Banach space X® with a generator A(%D .
Repeating the same procedure, we can construct the dual space X®* with the adjoint
semigroup 75°*. Finally, we obtain the Cp-semigroup 73°® by restricting T5°* to X =
D(A§™*). We can use the paring between X and X®* to define an embedding j : X — X©*
as

(jo,2%) = (2%, z).
In the special case where j(X) = X®©, we say that X is @-reflerive with respect to T'.
For the shift semigroup we can represent X ©* by C x L>([—h, 0], C). The pairing between
(a, ) € X®* and (c,g) € X© is given by

h
(), (e )) = ac+ /0 o(—60)g(6)db.
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From equation ((C.9) we can determine the action of TSD* in terms of the above paring.
This yields
Ty () (a, ) = (o, ¢f),
where
() = {(p(t—l-e), t+6<0,
Q, t+60>0.

Let Lip(a) denote the subset of L>([—h, 0], C) consisting of Lipschitz continuous functions
which assume the value o at € = 0. Then, the infinitesimal generator ASD* has domain

D(A™) = {(a, p)|¢ € Lip(a)},
and is given by
AF* (s 0) = (0, 9). (C.10)

To arrive at X©© we take the closure of D(A$*) which yields

X©9 = D(AG") = {(a, 9)lp € Cla)},

where ¢ € C'(a) are the continuous functions in L ([—h, 0], C) satisfying ¢(0) = a.. Thus,
we see that we can identify eacht ¢ € X with the pair (¢(0), p) € X®®. This allows us to
define the embedding

je = (#(0),¢)
mapping X onto X% ie. j(X) = X®®., Thus X = C([-h,0],C) is ®-reflexive with
respect to the shift semigroup 7j.
C.3.1 Linear DDEs

We can consider linear DDEs as bounded perturbations from the trivial DDE (C.2)) fol-
lowing [9, Chapter III]. Let L : X — C" be a continuous linear operator and consider a
linear system of DDEs

{a'c(t) =Lz, t>0, (C.11)

2(0) = (0) 0 € [=h,0]

A corollary of Riesz representation theorem [9, Theorem 1.1] states that there exists a
unique function of normalized bounded variation ( € NBV, ( : [0,h] — C™ such that

Lz, = ((,xy).

Furthermore, define the operator B : X — X®* as

By = (<C> 90>a0)'

Then we can write the linear DDE as an equation in X®* as

. d .
jgpoe = A e+ Bay, (C.12)

where AS* is given by (C.10). There exists a unique Cp-semigroup T corresponding to the
linear DDE ((C.11]) which is related to the shift-semigroup (C.5)) by the following linear
integral equation

t
Tt = To(t)s + 5~ / TO*BT(r)edr, >0,z € X. (C.13)
0
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It turns out that X is again sun-reflexive with respect to T'. Furthermore, the spaces X©
and X®® remain the same for T as for Ty. The domain of A®* is not affected by the linear
perturbation B. Only the action changes, i.e.

A = AS* + Bj~t,  with  D(A®*) = D(AJ™).
For the generator A of T we have
D(A) = {z € X : jo € D(AY*) and AJ*jx + Bz € X9}, (C.14)

with

Az = jH(A§*jz + Bu). (C.15)
Returning to our linear DDE ((C.11]), we can determine explicit expressions for the gener-
ators A®* and A. The generator A®* is given by

A% (@, ) = ((¢,9), ), with  D(A®) = {(a, ¢)|p € Lip(a)}. (C.16)
Meanwhile, the generator A is given by
Ap=¢, with D(A)={p e Cp(0) = (C.0)} (C.17)

Observe the change in the domain of the generator A compared to the domain of Ay.
Finally, we can relate solutions of the linear DDE ((C.11)) to the semigroup 7" defined by

(C.13). Namely, if x(-, ) is a solution to equation (C.11]), then

C.3.2 The variation of constants formula

As we did for linear DDEs, we can associate solutions to a general DDE with solutions
to an abstract integral equation by considering nonlinear perturbations of the linear DDE
(C.11). This will lead to the so-called variations-of-constants formula for DDEs.

Consider the following perturbed DDE

y = >
{ii?) e, velnn o
where G : X — R" is assumed to be sufficiently smooth such that
G(0) =0, DG(0)=0.
Let e; be the standard basis vectors in R™ for ¢ = 1,...,n. It is convenient to introduce

O = (e;,0) € XO* and

the notation r;

n
wr®* = E wird*,  weR™
=1

With this notation we can write wr®* = (w,0) € X®*. Let T = {T'(t)}+>0 be the Cp-
semigroup corresponding to the linear part of (C.18)) and define R : X — X®* as

R(p) = G(p)re™.
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Let u(t) = x4 and let T' be the Cyp-semigroup corresponding to the linear part of :C.18)
with generator A. Then as was done for linear DDEs, it is tempting to write (C.18) as
the abstract equation

gu(t) = A% ju(t) + R(u(t)). (C.19)

Then, formal integration of (C.19)) results in the following version of the variations-of-
constants equation

t

w(t) = T(t)p + ! / Tt — 7V R(u(r))dr, 1> 0. (C.20)
0

Solutions to ((C.20)) are continuous functions u : [0,¢4+) — X. A one-to-one correspondence

exists between solutions to the integral equation (C.20) and solutions to the DDE (C.18)

[9, Proposition 6.1]. In particular, if u(¢) is a solution to (C.18]), then the function x :

[—h,t,) = R" defined as

zo:=¢, and x(t) =u(t)(0), te]|0,t,)

is the unique solution of (C.18)).

As for ODEs, the variations-of-constants equation plays an important role in the study
of solutions and their stability of DDEs. In particular, it is used to prove the exis-
tence of an invariant local invariant center manifold in [9, Chapter IX]. On this cen-
ter manifold the solutions v : I — X actually satisfy the abstract differential equation
(C.19). A parameter-dependent version of the variations-of-constants equation results in
the parameter-dependent ODE (2.20]) on the center manifold, see [3, Corollary 20].
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