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Abstract

The generalized Hopf (Bautin) bifurcation is a well-studied codimension 2 bi-
furcation where the system has an equilibrium with a pair of simple purely
imaginary eigenvalues and the vanishing first Lyapunov coefficient. This bi-
furcation can be studied in both ordinary differential equations (ODEs) and
delay differential equations (DDEs). Generically, a codimension 1 bifurcation
curve of nonhyperbolic limit cycles (LPC curve) emanates from a generalized
Hopf point. By performing the parameter-dependent center manifold reduc-
tion near the generalized Hopf point, predictors can be derived to initiate the
continuation of the LPC curve. In this thesis, we derive higher-order pre-
dictors for the LPC curve in ODEs and DDEs for the first time. The new
predictors have been implemented, and their effectiveness is demonstrated on
several models.
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Chapter 1

Introduction

1.1 The generalized Hopf bifurcation in ODEs and DDEs

Many applications use models that consist of autonomous Ordinary Differential Equations
(ODEs)

ẋ(t) = F (x(t), α), (1.1)

where x : R → Rn, α ∈ Rp and F : Rn × Rp → Rn is a smooth mapping.1 We use dot
notation to indicate the derivative with respect to t, denoted as ẋ = dx

dt . One is often in-
terested in the behaviour of such systems under parameter variations. As the parameters
change, the phase portrait might undergo qualitative changes. For instance, equilibria
might disappear or change stability. Such an event is called a bifurcation. Suppose that
system (1.1) has an equilibrium at the origin, i.e. F (0, 0) = 0. The type of local bifurca-
tions is determined by the eigenvalues of the linear part A = DxF (0, 0) of the vector field
F . If A has a pair of simple imaginary eigenvalues, the imaginary eigenvalues may cross
the imaginary axis under a continuous parameter variation. When this occurs, the system
undergoes an (Andronov-)Hopf bifurcation. Near a Hopf bifurcation in planar systems de-
pending on one parameter, the system can be transformed into the following normal form,
through the introduction of a complex variable, and the utilization of smooth invertible
coordinate transformations that depend smoothly on the parameters:

ẇ = λ(α)w + c1(α)w|w|2 +O(|w|4), w ∈ C, (1.2)

where λ(α) = µ(α) + iω(α) with µ(0) = 0, ω(0) = ω0 > 0. We define l1 = 1
ω0
ℜ{c1(0)}

as the first Lyapunov coefficient . Under the conditions that l1 ̸= 0 and µ′(0) ̸= 0, this
system is locally topologically equivalent near the origin to the following system in polar
coordinates {

ρ̇ = ρ(β + l1ρ
2),

φ̇ = 1,
(1.3)

where β = µ(α)
ω(α) is the new unfolding parameter. If l1 < 0, this system has a stable focus

at the origin for β ≤ 0 and an unstable focus surrounded by a stable limit cycle for β > 0.
This scenario is known as the supercritical Hopf bifurcation. On the other hand, if l1 > 0
the Hopf bifurcation is subcritical, and an unstable cycle exists for β < 0, which vanishes
at β = 0, resulting in an unstable focus at the origin for β ≥ 0. Phase portraits of the
system (1.3) for the supercritical case are shown in Figure 1.1.

The condition that l1 ̸= 0 in the normal form is also called the nondegeneracy condition.

1Often, the dependence of the phase variable x on time t is not explicitly indicated.
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Figure 1.1: Phase portraits near a supercritical (l1 < 0) Andronov-Hopf bifurcation. Figure
adapted from [16].

Meanwhile, the condition µ′(0) ̸= 0 is referred to as the transversality condition. The
transversality condition allows the introduction of the new unfolding parameter β. Since
we need only one parameter to tune for this bifurcation to occur, i.e. get a pair of simple
purely imaginary eigenvalues, it is referred to as a codimension one bifurcation. Another
well-known codim 1 bifurcation is the fold bifurcation, where two equilibria collide and
disappear at the point where a simple real eigenvalue becomes zero.

By allowing the variation of a second parameter, the first Lyapunov coefficient may vanish
while the two purely imaginary eigenvalues persist. At such a point a generalized Hopf
bifurcation (or Bautin bifurcation) occurs. This type of bifurcation, which requires two
conditions to be satisfied to manifest, is classified as a codimension two bifurcation. There
are four other well-known local codim 2 bifurcations. For example, a Hopf-Hopf bifurcation
occurs when an equilibrium has two pairs of simple purely imaginary eigenvalues. Their
normal forms and local behaviour are discussed in detail in [16, Chapter 8]. In this thesis,
we will only deal with the generalized Hopf bifurcation.

Near a generalized Hopf bifurcation in planar systems depending on two parameters, the
system can be transformed to the following normal form:

ẇ = λ(α)w + c1(α)w|w|2 + c2(α)w|w|4 +O(|w|6), w ∈ C, (1.4)

where we still have λ(α) = µ(α) + iω(α) with µ(0) = 0, ω(0) = ω0 > 0. If the second
Lyapunov coefficient l2 = 1

ω0
ℜ{c2(0)} ̸= 0, this system is generically locally topologically

equivalent to the following system in polar coordinates{
ρ̇ = ρ(β1 + β2ρ

2 + l2ρ
4),

φ̇ = 1,
(1.5)

Here “generically” means that the map α 7→ (µ(α), l1(α)) is regular at α = 0, allowing
for the introduction of the new unfolding parameters β1, β2. From the amplitude equation
in (1.5), we see that there always is a trivial equilibrium at the origin. Any non-trivial
equilibrium satisfies the equation β1+β2ρ

2+ l2ρ
4 = 0. Depending on the values of β1 and

β2 this equation has zero, one or two positive solutions. After a closer inspection, one will
find that two codim 1 bifurcation curves emanate from the generalized Hopf point. One
curve H along which supercritical/subcritical Hopf-bifurcations occur is the line β1 = 0.
And a second curve along which two hyperbolic cycles collide and disappear. This curve
– along which non-hyperbolic cycles exist – is also referred to as the LPC curve, where
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LPC stands for limit point of cycles. If l2 < 0, the LPC curve in system (1.5) is given by
the half-parabola β1 = 1

4l2
β22 for β2 > 0. A sketch of the bifurcation diagram for the case

where l2 < 0 is shown in Figure 1.2. In this illustration, we can discern three different
regions near the generalized Hopf bifurcation. In region 1 there is only a stable focus at
the origin. If we move from region 1 to region 2, passing the supercritical Hopf bifurca-
tion line H−, the equilibrium at the origin becomes unstable and a unique stable limit
cycle appears. Continuing through the subcritical Hopf bifurcation line H+ into region 3,
the equilibrium recovers its stability, alongside the emergence of an unstable cycle nested
within the pre-existing stable cycle.
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Figure 1.2: Bifurcation diagram near a generalized Hopf bifurcation for the case l2 < 0. Figure
adapted from [16].

Up to this point, we have only considered bifurcations in planar systems. However, the
same bifurcations can occur in n-dimensional systems. In n-dimensional systems where a
local bifurcation arises, a smooth family of parameter-dependent invariant center mani-
folds W c

α exists for sufficiently small ∥α∥. All qualitative behaviour near the bifurcation
point occurs on this lower dimensional manifold. For the Hopf and the generalized Hopf
bifurcations, this manifold will be two-dimensional. If we restrict our system (1.1) to the
center manifold, the system can locally be transformed to the normal form (1.4). The
existence of an invariant center manifold can be used to derive equations for the normal
form coefficients.

Untill now, our focus has been on ODEs. However, another interesting class of differential
equations, known as Delay Differential Equations (DDEs) can be encountered in applica-
tions. These appear for example in the life sciences [20] and climate physics [12]. Unlike
ODEs, which rely only on current state information, DDEs include the values of the phase
variables at previous times. This accounts for delays in the system’s response, capturing
phenomena where the evolution of a system depends not only on its current state but also
on its history. A specific case of DDEs that are often encountered in applications is of the
following form

ẋ(t) = F (x(t), x(t− τ1), . . . , x(t− τm), α), (1.6)
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where x : R → Rn, α ∈ Rp, F : Rn×(m+1) × Rp → Rn is a smooth mapping, and
0 < τ1 < . . . < τm =: h are constant delays. This is also known as a discrete DDE. More
generally, a DDE is an equation of the form

ẋ(t) = F (xt, α), t ≥ 0, (1.7)

where F : X×Rp → Rn for X = C([−h, 0],Rn). Such equations are referred to as classical
DDEs. The right hand side depends on the history xt : [−h, 0] → Rn defined as

xt(θ) := x(t+ θ), for all θ ∈ [−h, 0].

We will only consider finite delays 0 < h < ∞. To guarantee an unique solution to
equation (1.7) we need to provide an initial condition

x(θ) = φ(θ), θ ∈ [−h, 0].

Such systems allow for study of bifurcations, including the generalized Hopf bifurcation
(i.e. [13, 14, 24]). In contrast to ODEs, DDEs belong to the class of infinite dimensional dy-
namical systems, since dimX = ∞. As a result, we will need Functional Analysis to study
DDEs. However, the state space C([−h, 0],Rn) does lead to some technical complications.
This can be resolved with the help of perturbation theory for dual semigroups, which has
been developed in [5–8] and is also known as sun-star calculus. Using this framework,
the existence of a finite-dimensional smooth invariant center manifold has been rigorously
established for DDEs [3, 9]. On this center manifold, the infinite-dimensional system of
DDEs can be reduced to a finite-dimensional system of ODEs. This in turn allows us to
“lift” results from the bifurcation theory of ODEs to the theory of DDEs.

1.2 Numerical continuation of the LPC curve

In most cases, the codim 1 bifurcation curves near a generalized Hopf bifurcation cannot
be computed analytically. Instead one uses numerical methods for the location of the
codim 2 bifurcation and the continuation of the emanating codim 1 bifurcation curves. In
this thesis, we will only concern ourselves with the continuation of the LPC curve.

To continue a limit cycle, we first need to know how to compute a periodic solution. We
are looking for a solution with x(T ) = x(0), where the minimal T > 0 satisfying this
condition is the period. Generally, the period T of the cycle is unknown. To resolve this,
we rescale the time t = Tτ in system (1.1) so that T becomes a parameter. For ODEs, a
limit cycle can be found with the following boundary-value problem (BVP)

ẋ(τ)− Tf(x(τ), α) = 0, τ ∈ [0, 1],

x(1)− x(0) = 0,∫ 1

0
⟨x(τ), ẋ0(τ)⟩dτ = 0,

(1.8)

where x0 is a reference periodic solution. Here the first equation arises from system (1.1)
after rescaling the time t = Tτ and the second equation defines the periodic boundary
conditions. The integral condition is a phase condition that ensures the uniqueness of
the solution. To solve the resulting system of equations numerically, they first need to be
discretized. A method commonly used for discretisation of the BVP is called orthogonal
collocation. With this method, the solution is approximated by a piecewise polynomial
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and the approximated solution is required to satisfy the time-scaled system in (1.8) on
a number of m collocation points within each subinterval. These collocation points are
chosen as the roots of the mth degree Legendre polynomial translated to each interval.
Details can be found in for example [16, Section 10.1.4]. Near a point on the LPC curve,
two cycles exist that will collide on the curve and then disappear. Consequently, the BVP
(1.8) will have two solutions that collide at the critical parameter. This occurs when the
linearization of the BVP (1.8) with respect to (x(·), T ) has a nontrivial solution. With
a bordering technique, the bifurcation point can be detected by including a constraint
G = 0 to system (1.8) which vanishes precisely when the linearization becomes singular.
The function G = G(x, T, α) is determined from a bordered matrix system and more
details can be found in [10].

When considering DDEs, having x(t0) = x(t0+T ) for some t0 ≥ 0 is insufficient to ensure
a periodic solution. Instead, periodic solutions of (1.7) must satisfy x(t) = x(t+T ) for all
t ∈ [−h, 0]. For discrete DDEs, we have the following rescaled system to find a periodic
orbit

ẋ(s)− Tf(x(s), x(s− τ1/T ), . . . , x(s− τm/T ), α) = 0, s ∈ [0, 1],

x(θ + 1)− x(θ) = 0, θ ∈ [−h/T, 0],∫ 1

0
ẋ0(s)(x0(s)− x(s))ds = 0,

(1.9)

where x(0) is a reference periodic solution. This system also needs to be discretized first,
which is generally done using orthogonal collocation [11, Section 3.2]. Just as for ODEs,
we need to include additional equations to (1.9) to detect LPC points. We again look for a
singularity of the linear part of the system (1.9) with respect to the solution x and period
T [19]. Similarly to the ODE case, we can add a function to the system which vanishes
at the fold point using a bordering technique. For the continuation of the LPC curve for
both ODEs and DDEs, we need an initial guess for the periodic solution, the period and
the parameters.

Let us now return to the LPC curve emanating from a generalized Hopf bifurcation point.
If the approximate location of a generalized Hopf bifurcation point is known, we would like
to switch to the LPC curve emanating from this point using only local information that is
available at the generalized Hopf point. As mentioned before, to start the continuation, we
need an approximation of the LPC curve in the original parameter space, an approximation
of the corresponding periodic orbit and the period. Combined, this forms a predictor,
which can be used to initialize the numerical continuation of the LPC curve starting from
the generalized Hopf point. A general method to derive such approximations, using only
local information at the codim 2 bifurcation point, has been introduced in [2]. Within
the framework of the sun-star calculus, the normalization method developed for ODEs
has been extended to DDEs [15]. These methods have already been applied to derive
first-order predictors for both ODEs [17] and DDEs [3]. Such predictors, however, do not
distinguish the curves H and LPC in the parameter space. In this thesis, we derive a
higher-order predictor for both ODEs and DDEs that does not suffer from this drawback.
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1.3 Structure

This thesis is structured as follows. We begin by describing the general technique for
computing the normal form coefficients on the parameter-dependent center manifold in
Chapter 2. We first address this for ODEs, then for DDEs. For DDEs, we provide a
summary of relevant results from sun-star calculus. The existing special cases of solutions
to the linear operator equations used in [3] are insufficient when computing higher-order
coefficients. Therefore, we have derived new, more general solutions. These are presented
in Section 2.2.1.

In Chapter 3, we derive higher-order approximations for the parameters of the LPC curve
for the normal form. These approximations are then used to obtain a higher-order approx-
imation for the period. We conclude this chapter with a discussion on which coefficients
should be included in the parameter and center manifold approximations when extending
the higher-order predictor to the general setting of ODEs and DDEs.

Then, in Chapters 4 and 5, the method from Chapter 2 is applied to derive all the co-
efficients for the higher-order predictor for ODEs and DDEs. All necessary components
of the predictors are summarised at the end of these chapters. For the higher-order ap-
proximation, we need an expression for the seventh-order critical normal form coefficient.
For ODEs, this coefficient was previously derived in [21]. For completeness, we redirived
it here and identified a missing term in one of the expressions from [21], although it was
included in their calculations. Additionally, the expression for the seventh-order critical
normal form coefficient has now been derived for DDEs in this thesis. Finally, the pre-
vious method used for deriving parameter-dependent coefficients in [17] and [3] does not
work for higher orders. Therefore, we used a slightly different approach, resulting in new
equations for the parameter-dependent coefficients.

Finally, the new equations for the computation of all the coefficients in the higher-order
predictor have been implemented in the programming language Julia. In Chapter 6, we
illustrate the new LPC curve predictors on several models.

Then, there are three appendices. In Appendix A, we present all of the equations collected
from the homological equation for ODEs. Meanwhile, Appendix B contains some remain-
ing expressions for coefficients of the center manifold-approximation for both ODEs and
DDEs that were not needed in the derivations in Chapters 4 and 5. Finally, Appendix C
contains some more background on sun-star and DDEs.



Chapter 2

Parameter-dependent center
manifold reduction and
normalization

In this chapter, we review the general technique for computing the normal form coefficients
on the parameter-dependent center manifold for ODEs and DDEs respectively. For DDEs,
this includes a summary of relevant results from sun-star calculus. We also discuss the
general methods used to solve the resulting linear systems. This includes additional special
cases of representations required for obtaining the higher-order coefficients in DDEs.

2.1 The center manifold reduction and normalization method
for ODEs

Consider a system of ODEs depending on two parameters

ẋ = F (x, α), (2.1)

where x : R → Rn, α ∈ R2 and F : Rn × R2 → Rn. We will always assume that F is as
smooth as necessary, i.e. F is Ck-smooth for some sufficiently large k ≥ 1. Suppose that
x0 = 0 is an equilibrium at α0 = 0, i.e. F (0, 0) = 0. We denote the Jacobian matrix at the
equilibrium as A = DxF (0, 0). Let nc be the number of eigenvalues with zero real part
and Tc the corresponding critical eigenspace. For the generalized Hopf bifurcation, we
have nc = 2. A procedure to switch to the codim 1 bifurcation curves emanating from a
codim 2 bifurcation point was introduced in [2]. We will follow the same approach below.

For each sufficiently small ∥α∥, system (2.1) has a smooth local nc-dimensional invariant
center manifoldW c

α. At x = 0,W c
0 is tangent to the critical eigenspace T c of A. Restricted

to the center manifold, we can transform the system into a certain normal form using only
smooth coordinate and parameter transformations:

ẇ = G(w, β), G : Rnc × R2 → Rnc . (2.2)

These normal forms are known for all five codim 2 bifurcations, and details can be found,
for example, in [16, Chapter 8]. From the normal form, we can derive an approximation
for the codim 1 curves emanating from the codim 2 point. To relate the local behaviour of
the normal form on the center manifold to our original system, we need a relation between

7
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the original parameters α and the unfolding parameters β:

α = K(β), K : R2 → R2. (2.3)

Furthermore, we need a parameterisation of the center manifold depending on the new
parameters β:

x = H(w, β), H : Rnc × R2 → Rn. (2.4)

By substituting equations (2.2), (2.3) and (2.4) into equation (2.1), we find the following
so-called homological equation

Hw(w, β)G(w, β) = f(H(w, β),K(β)). (2.5)

This is essentially a consequence of the invariance of the center manifold. In the following,
we will use multi-indices ν and µ to simplify the notation in the expansions of G,H
and K. A multi-index µ is defined as µ = (µ1, . . . , µn) for µi ∈ N0 and we have that
wµ = wµ11 . . . wµ2n , µ! = µ1!µ2! . . . µn! and |µ| = µ1 + . . . + µn. The general form of the
normal form expansion is known and is expanded as

G(w, β) =
∑

|ν|+|µ|≥1

1

ν!µ!
gνµw

νβµ. (2.6)

Meanwhile, H and K are unknown and admit the expansions

H(w, β) =
∑

|ν|+|µ|≥1

1

ν!µ!
Hνµw

νβµ, K(β) =
∑
|µ|≥1

1

µ!
Kµβ

µ. (2.7)

All of these expansions will be truncated at some sufficiently high order. For the Taylor
expansion of F , we define the multilinear forms

B(u, v) =
n∑

i,j=1

∂2F (x0, α0)

∂xi∂xj
uivj , J1u =

2∑
i=1

∂F (x0, α0)

∂αi
ui,

C(u, v, w) =

n∑
i,j,k=1

∂3F (x0, α0)

∂xi∂xj∂xk
uivjwk, A1(u, v) =

n∑
i=1

2∑
j=1

∂2F (x0, α0)

∂xi∂αj
uivj ,

B1(u, v, w) =
n∑

i,j=1

2∑
k=1

∂3F (x0, α0)

∂xi∂xj∂αk
uivjwk, etc.

We use the letters A,B,C,D,E,K, and L to denote (in increasing order) the derivatives of
F with respect to its first argument evaluated at the critical point. The subscript denotes
the order of the derivative of F with respect to the parameters.

If we substitute the expansions (2.6), (2.7) along with the Taylor expansion of F , into
the homological equation (2.5), we can collect the coefficients of the wνβµ-terms. This
results in a set of equations from which it is possible to recursively solve for the unknown
coefficients gνµ, Hνµ, and Kµ.

2.1.1 Solving the linear systems

If we collect all the coefficients of the wνβµ-terms from the homological equation (2.5), we
will find linear systems of equations of the form

(λI −A)Hνµ = Rνµ, (2.8)
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where λ will be some linear combination of the critical eigenvalues of A. Furthermore, the
right-hand side Rνµ, will depend on the coefficients gν′µ′ , Hν′µ′ with |ν ′|+ |µ′| ≤ |ν|+ |µ|,
the coefficients Kµ′ with |µ′| ≤ |µ| and on derivatives of F . Two situations need to be
considered. Either λ is an eigenvalue, or λ is not an eigenvalue.

If λ is not an eigenvalue, the matrix λI − A will be invertible and system (2.8) has the
unique solution

Hνµ = (λI −A)−1Rνµ.

If λ is an eigenvalue, we can apply Fredholm’s solvability condition. A complex version of
the Fredholm solvability condition can be stated as

Lemma 1 (Fredholm Solvability). Let L ∈ Cn×m and y ∈ Cn. The linear system Lx = y
has a solution if and only if for all p ∈ Cn satisfying L∗p = L̄T p = 0 we have that
⟨p, y⟩ = p̄T y = 0.

We only have to concern ourselves with the situation where λ is a simple eigenvalue,
meaning both the algebraic and geometric multiplicities are equal to one. In that case,
there exist, up to scaling, unique eigenvectors q, p ∈ Cn such that

(λI −A)q = 0, (λ̄I −AT )p = 0, and ⟨p, q⟩ = p̄T q = 1.

The existence of the center manifold implies that the system (2.8) must be solvable. Thus,
the Fredholm alternative requires that

⟨p,Rνµ⟩ = 0. (2.9)

When Rνµ depends on the unknown normal form coefficient gνµ, the solvability condition
(2.9) will result in an equation for gνµ.

To get to higher-order coefficients, we will also need a solution Hνµ to system (2.8) when λ
is an eigenvalue. We can obtain the unique solution to equation (2.8) satisfying ⟨p,Hνµ⟩ =
0 by solving the following bordered system(

λI −A q
p̄T 0

)(
Hνµ

s

)
=

(
Rνµ
0

)
, (2.10)

with s ∈ R. The (n + 1) × (n + 1) matrix on the left is invertible (see for example [16,
Lemma 5.3]). To see that a solution to this bordered system solves equation (2.8) note
that this system is equivalent to solving the following equations{

(λI −A)Hνµ + qs = Rνµ,

⟨p,Hνµ⟩ = 0.

Taking the inner product with p on both sides of the first equation yields

⟨p, (λI −A)Hνµ⟩+ ⟨p, q⟩s = ⟨p,Rνµ⟩.

From the Fredholm alternative, we had that ⟨p,Rνµ⟩ = 0. Furthermore, we assumed that
⟨p, q⟩ = 1 and we have that

⟨p, (λI −A)Hνµ⟩ = ⟨(λ̄I −AT )p,Hνµ⟩ = 0.

Thus, it follows that s = 0 and as a result we have indeed that equation (2.8) is satisfied
with ⟨p,Hνµ⟩ = 0. We will write Hνµ =: AINVλ Rνµ for the solution.
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2.2 The center manifold reduction and normalization method
for DDEs

As presented in [15], the normalization technique for local bifurcations in ODEs can be
lifted to the infinite-dimensional setting of DDEs. In [3], this normalization method was
further extended to include parameters. We will closely follow the procedure from [3]
and summarize some of the results from sun-star calculus that are necessary to apply this
technique for the generalized Hopf bifurcation and solve the resulting equations.

We take the nonreflexive Banach space X := C([−h, 0],Rn) and define for each t ≥ 0 the
history function xt : [−h, 0] → Rn at time t as

xt(θ) := x(t+ θ), for all θ ∈ [−h, 0].

Consider the classical parameter-dependent DDE

ẋ(t) = F (xt, α), t ≥ 0, (2.11)

where F : X × R2 → Rn is a Ck-smooth operator for some k ≥ 1 and 0 < h < ∞.
Assume that system (2.11) satisfies F (0, 0) = 0 and that the trivial equilibrium exhibits
a generalized Hopf bifurcation at α = 0. As mentioned in the introduction, the existence
of a center manifold for DDEs has rigorously been established using the mathematical
framework of sun-star calculus. As for ODEs, the proof relies on a variations-of-constants
formula describing the solutions. To establish a variations-of-constants formula for DDEs,
it turns out that it is convenient to work in the larger space X⊙⋆, the so-called sun-star
dual space of X. Below, we will only present some necessary definitions and results from
sun-star calculus that will be needed in the normalisation method. Some background
information on sun-star and DDEs is presented in Appendix C, although for a more
complete general introduction to sun-star calculus, including proofs, we refer to [9].

There exists a unique matrix-valued function of normalized bounded variation ζ : [0, h] →
Rn×n such that the linear part of (2.11) at α = 0 can written as

D1F (0, 0)φ = ⟨ζ, φ⟩ :=
∫ h

0
dζ(θ)φ(−θ). (2.12)

The above integral is of Riemann-Stieltjes type. With this notation, we can write the
right-hand side of (2.11) in terms of its linear and nonlinear parts

F (φ, α) = ⟨ζ, φ⟩+D2F (0, 0)α+G(φ, α),

where the nonlinear part G is a smooth operator satisfying G(0, 0) = 0, D1G(0, 0) = 0,
and D2G(0, 0) = 0. We can associate a unique C0-semigroup1 T on X with the linear
part of (2.11) at 0 ∈ X for the critical parameter value α = 0. Its generator A, plays an
important role in the stability analysis of the nonlinear DDE (2.11). The generator of a
semigroup of operators is defined as the derivative of T (t) at t = 0. The generator of the
semigroup T corresponding to the linearisation of (2.11) is given by

Aφ = φ̇, with D(A) = {φ ∈ C1|φ̇(0) = ⟨ζ, φ⟩}. (2.13)

1A semigroup is a family T = {T (t)}t≥0 of bounded linear operators with the properties: T (0) = I and
T (s)T (t) = T (s+ t) for all t, s ≥ 0. The C0 indicates the additional property of strong continuity: for all
φ ∈ X, ∥T (t)φ− φ∥ → 0 as t ↓ 0. More details are given in Appendix C.
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When we go to the dual space X⋆ of X, we lose strong continuity with the adjoint semi-
group T ⋆. Therefore, we consider the maximal subspace of strong continuity X⊙. The
space X⊙ has the representation

X⊙ = Rn × L1([0, h],Rn), (2.14)

with the duality pairing between φ⊙ = (c, g) ∈ X⊙ and φ ∈ X given by

⟨φ⊙, φ⟩ = cTφ(0) +

∫ h

0
g(θ)φ(−θ)dθ. (2.15)

On the Banach space X⊙ we have a C0-semigroup T⊙ with generator A⊙. The dual space
X⊙⋆ of X⊙ has the representation

X⊙⋆ = Rn × L∞([0, h],Rn). (2.16)

On this space, we have the generator

A⊙⋆(α,φ) = (⟨ζ, φ⟩, φ̇), with D(A⊙⋆) = {(α,φ)|φ ∈ Lip(α)}, (2.17)

where Lip(α) denotes the subset of L∞([−h, 0],C) consisting of Lipschitz continuous func-
tions which assume the value α at θ = 0. The duality pairing between φ⊙⋆ = (a, ψ) ∈ X⊙⋆

and φ⊙ = (c, g) ∈ X⊙ is given by

⟨φ⊙⋆, φ⊙⟩ = cTa+

∫ h

0
g(θ)ψ(−θ)dθ. (2.18)

We look again at the maximal subspace of strong continuityX⊙⊙. There exists an injection
j : X → X⊙⊙ defined by

jφ = (φ(0), φ) ∈ X⊙⊙ for all φ ∈ X. (2.19)

We have that X⊙⊙ = j(X). This property is also known as sun-reflexivity. We will often
move back and forth between the space X and its sun-dual space X⊙⋆.

Assume that there are n0 ≥ 1 eigenvalues of the linearization of (2.11) at α = 0 on the
imaginary axis, with a corresponding real n0-dimensional center eigenspace X0. Then
[3, Corollary 20] will imply the existence of a parameter-dependent local center manifold
Wc

loc(α) for (2.11). As in the ODE case, we want to include a relation α = K(β) between
the original parameters α and some new unfolding parameters β. Let u : I → X with
u(t) := xt ∈ Wc

loc(α) be as in [3, Corollary 20]. Then, u is differentiable on I and satisfies
the equation

ju̇(t) = A⊙⋆ju(t) + (D2F (0, 0)K(β))r⊙⋆ +G(u(t),K(β))r⊙⋆, for all t ∈ I. (2.20)

Here wr⊙⋆ = (w, 0) ∈ X⊙⋆, for w ∈ Rn. Now, choose a basis Φ of X0. With respect to
Φ and in terms of the new parameter β, we can consider the locally defined Ck-smooth
parameterization H : Rnc × R2 → X of the center manifold Wc

loc(α). Let z(t) be the
coordinate with respect to Φ of the projection of u(t) onto the center subspace X0. Then
z : I → Rn0 satisfies a parameter-dependent ODE where the right-hand side is a Ck-
smooth vector field that can be expanded as

ż =
∑

|ν|+|µ|≥1

1

ν!µ!
gνµz

νβµ. (2.21)
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We may assume that (2.21) is a smooth normal form in terms of the unfolding parameters
β. Furthermore, we have that

u(t) = H(z(t), β), t ∈ I. (2.22)

If we substitute equation (2.22) into the equation (2.20), we find the following homological
equation

A⊙⋆jH(z, β) + (J1K(β))r⊙⋆ +G(H(z, β),K(β))r⊙⋆ = jDzH(z, β)ż, (2.23)

where ż is given by (2.21) and we defined J1 := D2F (0, 0). The mappings H and K allow
for the expansions

H(z, β) =
∑

|ν|+|µ|≥1

1

ν!µ!
Hνµz

νβµ, K(β) =
∑
|µ|≥1

1

µ!
Kµβ

µ. (2.24)

Meanwhile, the nonlinear part G(φ, α) can be expanded as

G(φ, α) =
∑
r+s>1

1

r!s!
Dr

1D
s
2F (0, 0)(φ

(r), α(s)), (2.25)

where φ(r) = (φ, . . . , φ) ∈ Xr, α(s) = (α, . . . , α) ∈ [R2]s and Dr
1D

s
2F (0, 0) : X

r × [R2]s →
Rn is the mixed Fréchet derivative of order r + s evaluated at (0, 0) ∈ X × R2. Just
as in the ODE-case, we will indicate the multilinear forms in the expansion of F with
B,C,D,E,K,L and for the parameter-dependent derivatives Bi, Ci, etc. where the sub-
script i indicated the number of derivatives with respect to the parameter. Thus,

J1 := D2F (0, 0), B(u, u) = D2
1F (0, 0)(u, u),

A1(u, α) = D1
1D

1
2F (0, 0)(u, α), C(u, u, u) = D3

1F (0, 0)(u, u, u),

B1(u, u, α) = D2
1D

1
2F (0, 0)(u, u, α), etc.

For the case of discrete DDEs, explicit formulas for the computation of the multilinear
forms are presented in [3, Section 5].

Similar to what we did for ODEs, we can now substitute the expansions (2.21), (2.24) and
(2.25) into the homological equation (2.23) and collect terms of equal powers zνβµ. Then
it is possible to solve recursively for the coefficients gνµ, Hνµ and Kµ. Before we discuss
how we can solve the resulting equations, we need some facts about the spectrum of the
generator A.

The spectrum To determine if bifurcations are present, we need to analyse the spec-
trum of the generator A of the semigroup corresponding to the linear part of (2.11). For
this, we need the characteristic matrix function which is defined as

∆(z) = zI −
∫ h

0
e−zθdζ(θ), ∆ : C → Cn×n, (2.26)

and contains all spectral information about A2. The integral in the above expression is of
Riemann-Stieltjes type and ζ is the same from (2.12). The eigenvalues of A are given by
the roots of the characteristic equation

det∆(λ) = 0. (2.27)

2In general, when we work with operators on infinite-dimensional spaces we divide the spectrum into
three parts: the point spectrum, the residual spectrum and the continuous spectrum. The point spectrum
consists of all the eigenvalues. Since T will eventually be compact, the spectrum of A consists only of
isolated eigenvalues, and the corresponding eigenspaces are finite-dimensional.
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We only have to concern ourselves with simple eigenvalues, i.e. eigenvalues for which both
the geometric and algebraic multiplicities equal one. If λ ∈ C is a simple eigenvalue of A,
there exist an eigenfunction φ and an adjoint eigenfunction φ⊙ such that

Aφ = λφ, A⋆φ⊙ = λφ⊙.

Let q, p ∈ Cn such that
∆(λ)q = 0, pT∆(λ) = 0.

Then the corresponding eigenfunctions are given by

φ(θ) = eλθq, θ ∈ [−h, 0] (2.28)

and

φ⊙ =

(
p, θ 7→ p

∫ h

θ
eλ(θ−τ)dζ(τ)

)
, θ ∈ [−h, 0]. (2.29)

Furthermore, it is possible to normalize the eigenfunctions to

⟨φ⊙, φ⟩ = p∆′(λ)q = 1.

Here ∆′(λ) is the derivative of z 7→ ∆(z) evaluated at z = λ

∆′(λ) = I +

∫ h

0
θe−λθdζ(θ). (2.30)

Proofs of the above results on the spectrum of A can be found in [9, Chapter IV]. Note
that for k ≥ 2 we have the higher-order derivatives

∆(k)(λ) = (−1)k+1

∫ h

0
θke−λθdζ(θ). (2.31)

In the following, we will denote the second, third, and fourth derivatives as ∆′′(λ), ∆′′′(λ),
and ∆′′′′(λ) respectively.

In the special case of the discrete DDE (1.6), the characteristic matrix is given by

∆(z) = zI −
m∑
j=0

Mje
−zτj , z ∈ C,

where Mj := D1,jf(0, 0) ∈ Rn×n is the partial derivative of f with respect to its jth state
argument evaluated at the origin [3, Section 6].

Remark. When dealing with the spectrum of A, it is actually necessary to complexify
all of the above spaces and the linear operators acting on them. However, as previously
remarked by [15, Remark 2.2] this is not a trivial task. Fortunately, this has already been
carried out in detail in [9, Section III.7] and therefore will not be discussed here.



14

2.2.1 Solving the linear operator equations

From the homological equation (2.23) we will find equations of the form

(λI −A⊙⋆)(v0, v) = (w0, w), (2.32)

for some known (w0, w) ∈ X⊙⋆, λ ∈ C and an unknown (v0, v) ∈ D(A⊙⋆). We will only
have to consider two cases, either λ is a simple eigenvalue or λ is not an eigenvalue.

If λ is not an eigenvalue, then equation (2.32) has a unique solution

(v0, v) = (λI −A⊙⋆)−1(w0, w). (2.33)

To compute the solutions, we need some representation for the solution (v0, v). The general
representation is given by the following result

Lemma 2 ([15], Lemma 3.3). Suppose that λ is not an eigenvalue. Then the unique
solution of (2.32) is given by

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)w(σ)dσ (θ ∈ [−h, 0]), (2.34)

with

v0 = ∆−1(λ)

{
w0 +

∫ h

0
dζ(τ)

∫ τ

0
e−λσw(σ − τ)dσ

}
. (2.35)

Of course, the above representation is not very nice to work with. Fortunately, we
will only encounter equations where the right-hand side of (2.32) has a specific form that
allows us to write the above representations in terms of derivatives of the characteristic
matrix function ∆(z). The following Corollary presents some useful cases.

Corollary 1. Suppose that λ is not an eigenvalue. We have the following special cases

1. Suppose that (w0, w) = (w0, 0). Then the unique solution (v0, v) ∈ D(A⊙⋆) of (2.32)
has the representation

v0 = v(0), v(θ) = eλθ∆−1(λ)w0.

2. Suppose that (w0, w) =
(
0, θ 7→ eλθ∆−1(λ)η

)
for some fixed η ∈ Cn. Then the unique

solution (v0, v) ∈ D(A⊙⋆) of (2.32) has the representation

v0 = v(0), v(θ) = ∆−1(λ)[∆′(λ)− I − θ∆(λ)]w(θ).

3. Let k ≥ 1. Suppose that (w0, w) =
(
0, θ 7→ θkeλθ∆−1(λ)η

)
for some fixed η ∈ Cn.

Then the unique solution (v0, v) ∈ D(A⊙⋆) of (2.32) has the representation

v0 = v(0), v(θ) =
1

k + 1
eλθ∆−1(λ)[∆(k+1)(λ)− θk+1∆(λ)]∆−1(λ)η.

Proof. These representations follow by applying Lemma 2. The first follows immediately
after substitution into equation (2.34) and a derivation of the second case is presented in
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[15, Corollary 3.4]. For the third case, we first calculate v0 using equation (2.35). This
yields for k ≥ 1

v0 = ∆−1(λ)

∫ h

0
dζ(τ)

∫ τ

0
e−λσeλ(σ−τ)(σ − τ)kdσ∆−1(λ)η,

= ∆−1(λ)

∫ h

0

∫ τ

0
e−λτ (σ − τ)kdσdζ(τ)∆−1(λ)η,

= ∆−1(λ)

∫ h

0

1

k + 1
(−1)k+2τk+1e−λτdζ(τ)∆−1(λ)η,

=
1

k + 1
∆−1(λ)∆(k+1)(λ)∆−1(λ)η,

where we used expression (2.31) for the (k + 1)-th derivative of ∆(z) at z = λ. By
substituting this into (2.34) we find for θ ∈ [−h, 0]

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)σkeλσdσ∆−1(λ)η,

= eλθ
(
v0 −

1

k + 1
θk+1∆−1(λ)η

)
,

=
1

k + 1
eλθ
(
∆−1(λ)∆(k+1)(λ)∆−1(λ)η − θk+1∆−1(λ)η

)
,

=
1

k + 1
eλθ∆−1(λ)[∆(k+1)(λ)∆−1(λ)η − θk+1η],

=
1

k + 1
eλθ∆−1(λ)[∆(k+1)(λ)− θk+1∆(λ)]∆−1(λ)η.

The special cases from Corollary 1 can be combined to arrive at the following result:

Corollary 2. Suppose that λ is not an eigenvalue and that the right-hand side of (2.32)
has the representation

(w0, w) =
(
w0, θ 7→ eλθ∆−1(λ)[η + θξ1 + θ2ξ2]

)
,

for some fixed η, ξ1, ξ2 ∈ Cn. Then the unique solution (v0, v) ∈ D(A⊙⋆) of (2.32) has the
following representation

v(θ) = eλθ∆−1(λ)
(
w0 + [∆′(λ)− I − θ∆(λ)]∆−1(λ)η

+
1

2
[∆′′(λ)− θ2∆(λ)]∆−1(λ)ξ1 +

1

3
[∆′′′(λ)− θ3∆(λ)]∆−1(λ)ξ2

)
,

and v0 = v(0).

Proof. Write

(w0, w) = (w0, 0) +
(
0, θ 7→ eλθ∆−1(z)η

)
+
(
0, θ 7→ θeλθ∆−1(λ)ξ1

)
+
(
0, θ 7→ θ2eλθ∆−1(λ)ξ2

)
.

Using the linearity of the inverse operator (λI − A⊙⋆)−1 we can apply the cases from
Corollary 1.
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Finally, from this result, we can derive the following special case, which will make our
calculations in Section 5.1 easier.

Corollary 3. Suppose that λ is not an eigenvalue. We have the following special case:
Suppose that (w0, w) has the form

w0 = w(0), w(θ) = eλθ∆−1(λ)
(
M + [∆′(λ)− θ∆(λ)]η̂ + [∆′′(λ)− θ2∆(λ)]ξ̂

)
,

for some fixed M, η̂, ξ̂ ∈ Cn. Then the unique solution (v0, v) ∈ D(A⊙⋆) of (2.32) has the
representation

v(θ) = eλθ∆−1(λ)

(
[∆′(λ)− θ∆(λ)]w(0)− 1

2
[∆′′(λ)− θ2∆(λ)]η̂ − 1

3
[∆′′′(λ)− θ3∆(λ)]ξ̂

)
.

and v0 = v(0).

Proof. We can rewrite w(θ) as

w(θ) = eλθ∆−1(λ)[M +∆′(λ)η̂ +∆′′(λ)ξ̂ − θ∆(λ)η̂ − θ2∆(λ)ξ̂].

Now we can apply Corollary 2 by taking η = M + ∆′(λ)η̂ + ∆′′(λ)ξ̂, ξ1 = −∆(λ)η̂ and
ξ2 = −∆(λ)ξ̂. Finally, use that w0 = ∆−1(λ)η to simplify the expression.

If λ is an eigenvalue, system (2.32) does not have a unique solution. Just as when
we solve the matrix equations for the ODE case, there exists a variant of the Fredholm
solvability condition for operator equations of the form (2.32).

Lemma 3 ([15], Lemma 3.2). For arbitrary λ, a solution (v0, v) ∈ D(A⊙⋆) to system
(2.32) exists if and only if

⟨(w0, w), φ
⊙⟩ = 0, for all φ⊙ ∈ N(λI −A⋆).

This condition is also referred to as the Fredholm solvability condition in much of the
literature. During our computations in Section 5.1 we will also refer to it as the Fredholm
solvability condition. It should be clear from the context which version we use. Similarly
to before, we can use a bordered operator inverse

(λI −A⊙⋆)INV : R(λI −A⊙⋆) → D(A⊙⋆)

to find a unique solution to system (2.32) satisfying ⟨(v0, v), φ⊙⟩ = 0 for all (w0, w) for
which (2.32) is consistent, i.e. satisfies the Fredholm solvability condition. A general
representation for (λI −A⊙⋆)INV in the case that λ is a simple eigenvalue is given by the
following proposition

Proposition 1 ([15], Proposition 3.6). Let λ be a simple eigenvalue of A with eigenvector
φ and adjoint eigenvector φ⊙, such that ⟨φ⊙, φ⟩ = 1. Suppose that (2.32) is consistent
for some given (w0, w) ∈ X⊙⋆. Then the unique solution (v0, v) = (λI − A⊙⋆)INV (w0, w)
satisfying ⟨(v0, v), φ⊙⟩ = 0 is given by

v0 = ξ + γq, v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)w(σ)dσ (θ ∈ [−h, 0]), (2.36)

with

ξ = ∆(λ)INV
[
w0 +

∫ h

0
dζ(τ)

∫ τ

0
e−λσw(σ − τ)dσ

]
, (2.37)

and the constant γ is given by

γ = −p∆′(λ)ξ − p

∫ h

0

∫ h

τ
e−λsdζ(s)

∫ 0

−τ
e−λσw(σ)dσdτ. (2.38)
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The expression for ξ contains the bordered matrix inverse ∆(λ)INV . A unique solution
x = ∆(λ)INV y satisfying pTx = 0 can be found by solving the following bordered system(

∆(λ) q
pT 0

)(
x
s

)
=

(
y
0

)
,

for (x, s) ∈ Cn+1. We will occasionally encounter the following special case:

Corollary 4 ([15], Corollary 3.7). Suppose in addition that (w0, w) = (η, 0) + κ(q, φ) for
some η ∈ Cn and κ ∈ C. Then

v0 = ξ + γq, v(θ) = eλθ(v0 − κθq),

with

ξ = ∆INV (λ)(η + κ∆′(λ)q) and γ = −p∆′(λ)ξ +
1

2
κp∆′′(λ)q.

For this case we will use the notation v = BINV
λ (η, κ).

For the derivation of the linear predictor in [3], the special case from Corollary 4 was
enough. However, if we want to derive the equations for the higher order coefficients we
will find that we need two more special cases for the representation of (λI − A⊙⋆)INV .
Before we state these, we derive the following more general result when w is of a polynomial
type.

Corollary 5. Suppose in addition to the assumptions from Proposition 1 that (w0, w)
satisfies

(w0, w) =
(
w0, e

λθ(ξ0 + θξ1 + . . .+ θmξm)
)
,

for some m ∈ N and constant vectors ξk ∈ Cn, 0 ≤ k ≤ m. Then the unique solution
(v0, v) = (λI −A⊙⋆)INV (w0, w) satisfying ⟨(v0, v), φ⊙⟩ = 0 is given by

v0 = ξ + γq, v(θ) = eλθ
(
v0 − θξ0 −

1

2
θ2ξ1 − . . .− 1

m+ 1
θm+1ξm

)
,

where

ξ = ∆(λ)INV
[
w0 + [∆′(λ)− I]ξ0 +

1

2
∆′′(λ)ξ1 + . . .+

1

m+ 1
∆(m+1)(λ)ξm

]
,

and

γ = −p∆′(λ)ξ +
1

2
p∆′′(λ)ξ0 +

1

6
p∆′′′(λ)ξ1 + . . .+

1

(m+ 1)(m+ 2)
∆(m+2)(λ)ξm.

Proof. Write w(θ) = eλθ
∑m

k=0 θ
kξk and apply Proposition 1. Filling the expression of

w(θ) into equation (2.36) yields

v(θ) = eλθv0 +

∫ 0

θ
eλ(θ−σ)eλσ

m∑
k=0

σkξkdσ,

= eλθ

(
v0 +

m∑
k=0

∫ 0

θ
σkdσξk

)
,

= eλθ

(
v0 −

m∑
k=0

1

k + 1
θk+1ξk

)
.
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For the expression of ξ we first evaluate the integral in equation (2.37). This results in

Intξ =

∫ h

0
dζ(τ)

∫ τ

0
e−λσeλ(σ−τ)

m∑
k=0

(σ − τ)kξkdσ,

=

∫ h

0
e−λτdζ(τ)

m∑
k=0

[
1

k + 1
(σ − τ)k+1

]σ=τ
σ=0

ξk,

=

m∑
k=0

(−1)k+2

k + 1

∫ h

0
τk+1e−λτdζ(τ)ξk,

= [∆′(λ)− I]ξ0 +

m∑
k=1

1

k + 1
∆(k+1)(λ)ξk.

Here we used expressions (2.30) and (2.31) for the derivatives ∆(k)(λ). Filling this into
equation (2.37) will yield the expression for ξ. Finally, evaluating the integral in equation
(2.38) results in

Intγ =

∫ h

0

∫ h

τ
e−λsdζ(s)

m∑
k=0

∫ 0

−τ
σkξkdσdτ,

=

m∑
k=0

∫ h

0

∫ h

τ
e−λsdζ(s)

(−1)k+2

k + 1
τk+1ξkdτ,

=

m∑
k=0

∫ h

0
e−λs

∫ s

0

(−1)k+2

k + 1
τk+1dτdζ(s)ξk,

= −
m∑
k=0

(−1)k+3

(k + 1)(k + 2)

∫ h

0
sk+2eλsdζ(s)ξk,

= −
m∑
k=0

1

(k + 1)(k + 2)
∆(k+2)(λ)ξk.

Here we used Fubini’s theorem to switch the order of integration in the third equality and
expression (2.31) in the last step. Filling this expression into equation (2.38) yields the
expression for γ.

From Corollary (7), we have the following two special cases that we will use in our
derivations in Section 5.1:

Corollary 6. Suppose in addition to the assumptions from Proposition 1 that (w0, w)
satisfies

w0 = w(0), w(θ) = eλθ(w0 − κθq),

for some κ ∈ C. Then the unique solution (v0, v) = (λI − A⊙⋆)INV (w0, w) satisfying
⟨(v0, v), φ⊙⟩ = 0 is given by

v0 = ξ̃ + γ̃q, v(θ) = eλθ
(
v0 − θw0 +

1

2
κθ2q

)
,

where

ξ̃ = ∆(λ)INV
[
∆′(λ)w0 −

1

2
κ∆′′(λ)q

]
,
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and

γ̃ = −p∆′(λ)ξ̃ +
1

2
p∆′′(λ)w0 −

1

6
κp∆′′′(λ)q.

For this case we will use the notation v = B̃INV
λ (w, κ).

Corollary 7. Suppose in addition to the assumptions from Proposition 1 that (w0, w)
satisfies

w0 = w(0), w(θ) = eλθ(w0 − θξ +
1

2
κθ2q),

for some constant vector ξ ∈ Cn and some constant κ ∈ C. Then the unique solution
(v0, v) = (λI −A⊙⋆)INV (w0, w) satisfying ⟨(v0, v), φ⊙⟩ = 0 is given by

v0 = ξ̂ + γ̂q, v(θ) = eλθ
(
v0 − θw0 +

1

2
θ2ξ − 1

6
κθ3q

)
,

where

ξ̂ = ∆(λ)INV
[
∆′(λ)w0 −

1

2
∆′′(λ)ξ +

1

6
κ∆′′′(λ)q

]
,

and

γ̂ = −p∆′(λ)ξ̂ +
1

2
p∆′′(λ)w0 −

1

6
p∆′′′(λ)ξ +

1

24
κp∆′′′′(λ)q.

For this case we will use the notation v = B̂INV
λ (w, ξ, κ).



Chapter 3

Higher order LPC curve
approximmation for the normal
form

In this chapter, we will first derive a parameter approximation of the LPC curve for
the normal form. Then, we will use this to derive an approximation for the period of the
cycles on the LPC curve. We will conclude the chapter with a detailed discussion on which
coefficients need to be included in the center manifold and parameter approximations when
extending to general n-dimensional systems of ODEs.

3.1 Approximmation of the LPC curve derived from the
normal form

Assume that at α = 0 there is an equilibrium at the origin with only one pair of purely
imaginary simple eigenvalues

λ1,2 = ±iω0, ω0 > 0.

Restricted to the center manifold near a generalized Hopf bifurcation, the system (2.1)
can be transformed to the following parameter-dependent normal form

ẇ = λ(α)w + c1(α)w|w|2 + c2(α)w|w|4 + c3(α)w|w|6 +O(|w|8), w ∈ C,

where λ(0) = iω0, d1 = ℜ(c1(0)) = 0 and d2 = ℜ(c2(0)) ̸= 0. Furthermore, we have the
following transversaility condition:

The map α 7→ (ℜ(λ(α)),ℜ(c1(α))) is regular at α = 0. (3.1)

If this condition is satisfied, we may introduce new parameters

(β1(α), β2(α)) = (ℜ(λ(α)),ℜ(c1(α))).

Then, for ∥α∥ small enough, the normal form can be expressed in terms of β. This results
in the following expression for the normal form

ẇ = (iω0+β1+ ib1(β))w+(β2+ ib2(β))w|w|2+ c2(β)w|w|4+ c3(β)w|w|6+O(|w|8), (3.2)

where b1 and b2 are real valued functions with b1(0) = 0 and b2(0) = ℑ(c1(0)). Note that
we write ci(β) instead of ci(α(β)) for convenience. To get a higher-order approximation

20
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of the LPC curve, we first substitute w = ρeiψ into (3.2). Taking the real part yields the
following amplitude equation

ρ̇ = ρ(β1 + β2ρ
2 + ℜ(c2(β))ρ4 + ℜ(c3(β))ρ6 +O(ρ7)). (3.3)

3.1.1 LPC curve in the amplitude equation

To derive an approximation for the LPC curve we expand

ℜ(c2(β)) = d2 + a3210β1 + a3201β2 +O(∥β∥2),
ℜ(c3(β)) = d3 +O(∥β∥).

The LPC curve corresponds to a double equilibrium of the right-hand side of equation
(3.3). This occurs when both the right-hand side of equation (3.3) and its first derivative
with respect to ρ vanish. This results in the following system of equations:{

β1 + β2ρ
2 + ℜ(c2(β))ρ4 + ℜ(c3(β))ρ6 +O(ρ7) = 0,

β2ρ+ 2ℜ(c2(β))ρ3 + 3ℜ(c3(β))ρ5 +O(ρ6) = 0.
(3.4)

Let us define P : R× R2 → R2 by

P (ρ, β) =

(
β1 + β2ρ

2 + ℜ(c2(β))ρ4 + ℜ(c3(β))ρ6 +O(ρ7)
β2 + 2ℜ(c2(β))ρ2 + 3ℜ(c3(β))ρ4 +O(ρ5)

)
. (3.5)

Then equation (3.4) is equivalent to P (ρ, β) = 0. Note that P (0, 0) = 0 and DPβ(0, 0) is
invertible. Thus, by the Implicit Function Theorem, there exists a unique locally smooth
function β(ρ) = (β1(ρ), β2(ρ)) near ρ = 0 such that β(0) = 0 and P (ρ, β(ρ)) = 0. Conse-
quently, we can expand β1 and β2 in ρ as

βi = mi,1ρ+mi,2ρ
2 +mi,3ρ

3 +mi,4ρ
4 +mi,5ρ

5 +mi,6ρ
6 +O(ρ7), i = 1, 2.

If we substitute these expansions into the equation P (ρ, β) = 0, we see that up to ρ3 we
have the following terms

m1,1ρ+m1,2ρ
2 + (m1,3 +m1,1)ρ

3 +O(ρ4) = 0,

m2,1ρ+ (m2,2 + 2d2)ρ
2 + (m2,3 + 2m1,1a3210 + 2m2,1a3201)ρ

3 +O(ρ4) = 0.

From the ρ-terms it follows that m1,1,m2,1 = 0 and the ρ2-terms imply that m1,2 = 0
and m2,2 = −2d2. As a result, the ρ3 terms yield m1,3,m2,3 = 0. Collecting the ρ4-terms
yields the equations

ρ4 : d2 +m1,4 − 2d2 = 0,

m2,4 + 3d3 − 4a3201d2 = 0.

Thus, the fourth order coefficients are given by m1,4 = d2 and m2,4 = 4a3201d2 − 3d3.
From the ρ5-terms in the first equation of (3.5) we find that m1,5 = 0. Finally, collecting
the ρ6 terms from the first equation of (3.5) we find that

m1,6 +m2,4 + a3201m2,2 + d3 = 0.

Thus, m1,6 = 2(d3 − a3201d2). We now have the following asymptotic expansions for the
beta parameters

β1 = d2ρ
4 + 2(d3 − a3201d2)ρ

6 +O(ρ7),

β2 = −2d2ρ
2 + (4a3201d2 − 3d3)ρ

4 +O(ρ5).
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Let ρ = ε > 0 be small. Then, an approximation of the LPC curve is given by

(ρ, β1, β2) = (ε, d2ε
4+2(d3−a3201d2)ε6+O(ε7),−2d2ε

2+(4a3201d2−3d3)ε
4+O(ε5)). (3.6)

To see the order of the parameter curve approximation, we derive an expression for β1 as
a function of β2. For this, we first substitute δ = ε2 and write

β1(δ) = d2δ
2 + s1δ

3 +O(ρ
7
2 ),

β2(δ) = −2d2δ + s2δ
2 +O(δ

5
2 ),

where s1 = 2(d3 − a3201d2) and s2 = 4a3201d2 − 3d3. Under the condition that β′2(0) =
−2d2 ̸= 0 it follows from the Inverse Function Theorem that there exists a unique locally
smooth inverse δ(β2) of β2(δ). We can expand δ as a function of β2

δ(β2) = δ1β2 + δ2β
2
2 +O(β32).

Substituting this into the equation for β2 yields

β2 = −2d2δ1β2 + (s2δ
2
1 − 2d2δ2)β

2
2 +O(β32).

From this it follows that δ1 = − 1
2d2

and δ2 =
s2δ21
2d2

thus δ(β2) = − 1
2d2
β2 +

s2
8d32
β22 + O(β32).

Since we set δ = ε2, we need that δ(β2) ≥ 0. If d2 < 0, this holds for β2 ≥ 0 small enough.
If we substitute this into the expression for β1 we find

β1 =
1

4d2
β22 −

1

8d32
(s2 + s1)β

3
2 +O(β

7
2
2 ).

Thus, using the approximation (3.6), the LPC parameter curve is approximated up to
third order for the normal form (3.2).

Remark For a quadratic approximation in the parameter plane, it is enough to take
β1 = d2ρ

4 and β2 = −2d2ρ
2.

3.1.2 Period approximmation

To approximate the period T of the cycle on the LPC curve near the generalized Hopf
bifurcation we use that ∫ T

0
ψ̇dt = 2π. (3.7)

To obtain the approximation of ψ̇, we first take the imaginary part of equation (3.2)
after substituting w = ρeiψ and partially truncate higher order terms. This results in the
equation

ψ̇ = ω0 + b1(β) + b2(β)ρ
2 + ℑ(c2(0))ρ4 + ℑ(c3(0))ρ6. (3.8)

For b1(β) and b2(β) we make the following expansions

b1(β) = b1,10β1 + b1,01β2+
1

2
b1,20β

2
1 + b1,11β1β2 +

1

2
b1,02β

2
2+

1

6
b1,30β

3
1 +

1

2
b1,21β

2
1β2

+
1

2
b1,12β1β

2
2 +

1

6
b1,03β

3
2 +O(∥β∥4),

b2(β) = ℑ(c1(0)) + b2,10β1 + b2,01β2 +
1

2
b2,20β

2
1 + b2,11β1β2 +

1

2
b2,02β

2
2 +O(∥β∥3).
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Since we are only interested in an approximation of the period up to fourth order in ε,
the terms in grey would not appear in the period approximation. Their inclusion here is
meant to demonstrate this explicitly. Now, substitute the parameter expansions (3.6) of
the LPC curve into equation (3.8) and solve the integral (3.7). This results in the following
approximation of the period

T = 2π/(ω0 + (ℑ(c1(0))− 2d2b1,01)ε
2 + [d2b1,10 + (4a3201d2 − 3d3)b1,01 + 2d22b1,02

− 2d2b2,01 + ℑ(c2(0))]ε4 +O(ε5)). (3.9)

3.2 Coefficients needed for the center manifold and para-
meter transformation approximmations

As discussed in [4], it is important to consider the effect of terms that are not present in
the normal form used to derive the predictor. The terms that affect the predictor up to
the current order of approximation will tell us which coefficients need to be included in
the parameter transformation K and center manifold approximation H. We will illustrate
this with an example. Consider the system

ż = (α1 + ξα2
2 + iω0)z + α2z|z|2 + (d2 + aα2)z|z|4 + d3z|z|6, z ∈ C,

for some nonzero constants ξ, ω0, d2, a, d3 ∈ R. Substituting z = ρeiψ and taking the real
part results in the following amplitude equation:

ρ̇ = ρ(α1 + ξα2
2 + α2ρ

2 + (d2 + aα2)ρ
4 + d3ρ

6)

To approximate the LPC curve, we need to solve the following system{
α1 + ξα2

2 + α2ρ
2 + (d2 + aα2)ρ

4 + d3ρ
6 = 0,

α2 + 2(d2 + aα2)ρ
2 + 3d3ρ

4 = 0.
(3.10)

For this, we proceed in the same way as before and expand

αi = mi,1ρ+mi,2ρ
2 +mi,3ρ

3 +mi,4ρ
4 +mi,5ρ

5 +mi,6ρ
6 +O(ρ7), i = 1, 2.

Substituting this into equations (3.10) and collecting terms will result in the following
approximation for ρ = ε > 0

α1 = (d2 − 4d22ξ)ε
4 + (2d2 − 2ad2 + 4d2(4ad2 − 3d3)ξ)ε

6 +O(ε7),

α2 = −2d2ε
2 + (4ad2 − 3d3)ε

4 +O(ε5). (3.11)

This yields a different LPC curve approximation than the approximation (3.6) from before.
Specifically, in the expansion for α1, we have two extra terms depending on the constant
ξ that have appeared. Therefore, including a term ξα2

2z in the normal form will alter the
current predictor. Consequently, this term needs to be transformed away into higher-order
terms that do not affect the current order of the predictor. We can achieve this with the
following parameter transformation{

α1 = β1 − ξβ22 ,

α2 = β2.
(3.12)

Then the system becomes

ż = (β1 + iω0)z + β2z|z|2 + (d2 + aβ2)z|z|4 + d3z|z|6, z ∈ C,
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The LPC curve approximation for this system, up to the same orders as before, will yield:

β1 = d2ε
4 + 2(d2 − ad2)ε

6 +O(ε7),

β2 = −2d2ε
2 + (4ad2 − 3d3)ε

4 +O(ε5),

which is the same approximmation as (3.6). Note that if we substitute the approximation
for β into the parameter transformation (3.12), we recover our approximation for the
original parameters (3.11), as expected.

The key point is that since the additional term ξα2
2z influences the predictor up to the

desired order, this term needs to be transformed away into higher order terms. We need
to include the quadratic coefficient K02 into our parameter approximation to achieve this.
Therefore, to find all the coefficients that need to be included in the approximations K
and H, we need to see which terms, not included in the normal form (3.2), will affect
the predictor up to the desired order. These are then precisely the terms that need to
be removed, i.e. transformed into higher order terms, to preserve the accuracy of our
predictor up to the desired order.

To derive our parameter approximation of the LPC curve it was enough to consider the
truncated normal form

ẇ = (iω0 + β1 + ib1(β))w + (β2 + ib2(β))w|w|2 + (c2(0) + a3201β2)w|w|4 + d3w|w|6.

We can now include terms of the form gnmklw
nw̄mβk1β

l
2 for n,m, k, l ∈ N with n+m+k+l ≥

1 to this normal form, and determine if they influence in the predictor approximation.
The amplitude equation ρ̇ is derived by taking the real part of the normal form after
substituting w = ρeiψ. When you do this, you will notice that terms for which n−m−1 ̸= 0
will be resonant. These will certainly influence the predictor up to a certain order. Let
us write anmkl(ψ) = ℜ{gnmkleiψ(n−m−1)}. Then the amplitude equation will have the
following form

ρ̇ = β1ρ+ β2ρ
3 + (d2 + a3201β2)ρ

5 + d3ρ
7 + anmkl(ψ)ρ

n+mβk1β
l
2.

To find a parameter approximation of the LPC curve, we look for a double zero in the
equation

β1ρ+ β2ρ
3 + (d2 + a3201β2)ρ

5 + d3ρ
7 + anmkl(ψ)ρ

n+mβk1β
l
2 = 0. (3.13)

The goal is to determine the combinations of n,m, k, l for which the resonant term will ap-
pear in our expansions of β1 and β2, consequently affecting our LPC curve approximation.
This will indicate which terms need to be removed in the normal form and thus which
coefficients Hnmkl need to be included in the center manifold approximation [4]. Similarly,
we can see which coefficients Kkl need to be included by looking at the nonresonant terms
a10klρβ

k
1β

l
2 and a21klρ

3βk1β
l
2. We will first discuss in detail the case when n+m = 0, and

then provide the coefficients for n+m ≥ 1.

Case n +m = 0 : The equations that need to be satisfied for a double zero are in this
case given by

β1ρ+ β2ρ
3 + (d2 + a3201β2)ρ

5 + d3ρ
7 + a00kl(ψ)β

k
1β

l
2 = 0,

β1 + 3β2ρ
2 + 5(d2 + a3201β2)ρ

4 + 7d3ρ
6 = 0.
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As before, we expand

βi = mi,1ρ+mi,2ρ
2 +mi,3ρ

3 +mi,4ρ
4 +mi,5ρ

5 +mi,6ρ
6 +O(ρ7), i = 1, 2.

Note that it immediately follows from the second equation that m1,1 = m1,2 = 0. One
approach would be to simply substitute the expansions of βi into the equations and solve
for the coefficients up to the desired orders to see where the terms anmkl(ψ) appear.
However, this method would quickly become tedious. Fortunately, we can simplify things
a bit by setting mi,1 = mi,3 = 0 for i = 1, 2. To see why, let us examine all the ρ-terms in
the first equation. This yields

a0001(ψ)m2,1 + a0010(ψ)m1,1 = 0.

Since this must hold for all ψ, it follows that m2,1 and m1,1 have to equal zero. These
terms are already zero in our LPC approximation, so this does not present a problem.
Now collect all ρ2-terms in the first equation

a0001(ψ)m2,2 + a0010(ψ)m1,2 + a0020(ψ)m
2
1,1 + a0002(ψ)m

2
2,1 + a0011(ψ)m1,1m2,1 = 0.

This can only hold for all ψ if m1,2 = m2,1 = m1,1 = m2,2 = 0. For m1,2,m2,1, and m1,1,
this is not an issue since they are already zero in the approximation. However, for m2,2,
it is a problem because this term is not zero in our LPC curve approximation. Thus, if
the term a0001(ψ) is present in the normal form, it will influence our predictor. Therefore,
this term must be transformed away, implying that the coefficient H0001 must be included
in the center manifold approximation. Whenever a coefficient like m1,3, which is zero in
our LPC approximation, appears in front of a term a00kl(ψ), this term can be removed
by simply setting m1,3 = 0 without altering the predictor. There is only a problem if the
coefficient in front of a00kl(ψ) depends on coefficients like m2,2, which are nonzero in our
predictor. Thus, it is enough to substitute

β1 = m1,4ρ
4 +m1,6ρ

6,

β2 = m2,2ρ
2 +m2,4ρ

4,

when collecting terms. To arrive at the desired order of the predictor, we need to collect
terms up to ρ7 in the first equation and terms up to ρ6 in the second equation. Therefore,
all terms with k, j ∈ N for which βk1β

l
2 contains a term ρj , j ≤ 7 need to be removed.

All combinations of k, l ∈ N for which βk1β
l
2 contain such terms have been listed in Table

3.1 below. This would mean that we need the coefficients H0001, H0010, H0002, H0011, and
H0003.

Table 3.1: The first terms of βk1β
l
2 for k, l ∈ N which are lower than order ρ7.

First term of βk1β
l
2

k = 1, l = 0 m1,4ρ
4

k = 0, l = 1 m2,2ρ
2

k = 0, l = 2 m2
2,2ρ

4

k = 1, l = 1 m1,4m2,2ρ
6

k = 0, l = 3 m3
2,2ρ

6

Case n+m ≥ 1 : Now consider the following two equations

β1ρ+ β2ρ
3 + (d2 + a3201β2)ρ

5 + d3ρ
7 + anmkl(ψ)ρ

n+mβk1β
l
2 = 0,

β1 + 3β2ρ
2 + 5(d2 + a3201β2)ρ

4 + 7d3ρ
6 + anmkl(ψ)(n+m− 1)ρn+m−1βk1β

l
2 = 0.
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By the same reasoning as before it is enough to substitute

β1 = m1,4ρ
4 +m1,6ρ

6,

β2 = m2,2ρ
2 +m2,4ρ

4.

To derive the parameter approximation of the predictor up to sixth order in ε, we need to
collect all terms up to ρ7 in the first equation and all terms up to ρ6 in the second equation.
If the term anmkl(ψ)ρ

n+mβk1β
l
2 contains terms of order ρ7 or lower, this will influence the

approximmation. If k = l = 0, then a term anmkl(ψ) will influence the predictor for all
1 ≤ n +m ≤ 7 and thus all of these need to be removed. This implies that we need to
include all coefficients Hnm00 with 1 ≤ n+m ≤ 7 in the center manifold approximation.

Now we consider the cases for which k or l are nonzero. For n+m = 1, we need to remove
all anmkl(ψ)ρβ

k
1β

l
2 terms for which βk1β

l
2 contains terms of ρ6 or less. This is the case for

(kl) = (10), (01), (02), (11) and (03). So we need Hnm10, Hnm01, Hnm02, Hnm11 and Hnm03

with n +m = 1. From this case, it also follows that the non-resonant terms anmklρβ
k
1β

k
2

with (kl) = (10), (01), (02), (11) and (03) will affect the predictor. Thus they also need to
be removed, which can be achieved with the coefficients K10,K01,K02,K11, and K03 in
the parameter approximation.

For n+m = 2, we need to remove all anmkl(ψ)ρ
2βk1β

l
2 terms for which βk1β

l
2 contains terms

of ρ5 or less. This is the case for (kl) = (10), (01), (02). So we need Hnm10, Hnm01, Hnm02

with n+m = 2.

For n+m = 3, we need to remove the terms for which βk1β
l
2 contains terms of ρ4 or less.

This will be the case for (kl) = (10), (01), (02). For n +m = 4, 5, only (kl) = (01) will
appear and for n + m ≥ 6 none of the ρn+mβk1β

l
2 terms appear in the approximmation

when k or l is nonzero.

To summarise, all coefficients that need to be included in the center manifold approxima-
tion are

Hnm10, Hnm01, Hnm02, Hnm11, Hnm03, n+m = j, j ∈ {0, 1},
Hnm10, Hnm01, Hnm02, n+m = j, j ∈ {2, 3},
Hnm01, n+m = j, j ∈ {4, 5},
Hnm00, n+m = j, j ∈ {1, 2, 3, 4, 5, 6, 7}.

Finally, all coefficients that need to be included in the parameter transformation are
K10,K01,K02,K11, and K03.

Remark. If one is only interested in a predictor that is second-order in the parameters
β, i.e. using the approximation β1 = d2ρ

4, β2 = −2d2ρ
2, it is enough to collect terms op

to order ρ5 in equation (3.13). Therefore, only terms anmkl(ψ)ρ
n+mβk1β

l
2 where ρn+mβk1β

l
2

contains terms of order ρ5 or lower need to be removed. In that case, the following
coefficients are necessary for the center manifold approximation

Hnm10, Hnm01, Hnm02, n+m = j, j ∈ {0, 1},
Hnm01 n+m = j, j ∈ {2, 3},
Hnm00, n+m = j, j ∈ {1, 2, 3, 4, 5}.

For the parameter transformation, it will be enough to include K10,K01 and K02.



Chapter 4

The predictor for ODEs

4.1 Coefficients of the parameter-dependent normal form
and the predictor for ODEs

We will now derive the equations to calculate all the coefficients that we need in our
predictor for ODEs. We follow the method discussed in Section 2.1. Assume that system
(2.1) has an equilibrium at the origin at α = (0, 0) ∈ R2 with only one pair of purely
imaginary simple eigenvalues

λ1,2 = ±iω0, ω0 > 0.

Additionally, we assume that all the other eigenvalues have non-zero real parts. This
allows us to introduce the complex eigenvectors p, q ∈ Cn satisfying

Aq = iω0q, AT p = −iω0p, and q̄
T q = p̄T q = 1.

Furthermore, we assume that the first Lyapunov coefficient l1(0) = 0 and the second
Lyapunov coefficient l2(0) ̸= 0. The critical real eigenspace T c corresponding to λ1,2 is
now two dimensional and we can represent each y ∈ T c in terms of the complex coordinate
w = ⟨p, y⟩ as

y = wq + w̄q̄.

Then, the homological equation (2.5) has the form

DwH(w, w̄, β)ẇ +Dw̄H(w, w̄, β) ˙̄w = F (H(w, w̄, β),K(β)). (4.1)

Under the assumption that the transversality condition (3.1) is satisfied, the truncated
normal form restricted to the two-dimensional center manifold can be expressed in terms
of the unfolding parameters β = (β1, β2) as

ẇ = (iω0 + β1 + ib1(β))w + (β2 + ib2(β))w|w|2 + (c2(0) + g3201β2)w|w|4

+ c3(0)w|w|6, (4.2)

where it is enough to expand

b1(β) = b1,10β1 + b1,01β2 + b1,11β1β2 +
1

2
b1,02β

2
2 +

1

6
b1,03β

3
2 , (4.3)

b2(β) = ℑ(c1(0)) + b2,10β1 + b2,01β2 + b2,11β1β2 +
1

2
b2,02β

2
2 +

1

6
b2,03β

3
2 (4.4)

27
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Under the assumption that F is sufficiently smooth, the truncated Taylor expansion of F
is taken as

F (x, α) = Ax+ J1α+A1(x, α) +
1

2
B(x, x) +

1

2
J2(α, α) +

1

6
C(x, x, x) +

1

2
B1(x, x, α)

+
1

2
A2(x, α, α) +

1

6
J3(α, α, α) +

1

24
D(x, x, x, x) +

1

6
C1(x, x, x, α) +

1

4
B2(x, x, α, α)

+
1

6
A3(x, α, α, α) +

1

120
E(x, x, x, x, x) +

1

24
D1(x, x, x, x, α) +

1

12
C2(x, x, x, α, α)

+
1

12
B3(x, x, α, α, α) +

1

720
K(x, x, x, x, x, x) +

1

120
E1(x, x, x, x, x, α)

+
1

36
C3(x, x, x, α, α, α) +

1

5040
L(x, x, x, x, x, x, x). (4.5)

The parameterization of the center manifold is expanded as

H(w, w̄, β) = qw + q̄w̄ +
7∑

n+m=2

1

n!m!
Hnm00w

nw̄m +
5∑

n+m=0

Hnm01
1

n!m!
wnw̄mβ2

+

3∑
n+m=0

1

n!m!
Hnm10w

nw̄mβ1 +

3∑
n+m=0

1

2n!m!
Hnm02w

nw̄mβ22

+
1∑

n+m=0

1

n!m!
Hnm11w

nw̄mβ1β2 +
1∑

n+m=0

1

6n!m!
Hnm03w

nw̄mβ32

+
1

6
H1103ww̄β

3
2 +

1

12
H2003w

2β32 +
1

12
H2103w

2w̄β32 . (4.6)

Note that the image of H lies in Rn and thus we have that Hjkµ = Hkjµ. The last three
terms, marked in grey, are not needed to approximate the periodic orbit in phase space.
However, as will be clear in Section 4.1.2, we do need the expressions for H1103, H2003 and
H2103 to derive the coefficients K03, H0003 and H1003. The relation between the parameters
is expanded as

K(β) = K10β1 +K01β2 +
1

2
K02β

2
2 +K11β1β2 +

1

6
K03β

3
2 . (4.7)

Although the coefficients b1,11, b1,03 in the expansion of b1(β) and b2,02, b2,11, b2,03 in de
expansion of b2(β) do not appear in our predictor, we will need their expressions from the
homological equation to solve for K02,K11 and K03. All the equations collected from the
homological equation (4.1) are listed in Appendix A.

In the next two subsections, we will derive all the necessary critical normal form coefficients
from (4.2) and the parameter-dependent coefficients from (4.7). Not all coefficients in the
center manifold approximation (4.6) are needed in this derivation. Their expressions are
presented in Appendix B. An overview of all the coefficients that need to be determined
for the higher order predictor is presented in figure 4.1.
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Parameter-independent coefficients

H2000, H1100

c1(0)

H2100, H3000, H3100, H2200

c2(0)

H3200, H4000, H4100, H4200, H3300

c3(0) H5000, H6000, H5100

H7000, H6100, H5200

H4300

Parameter-dependent coefficients

K10,K01

H00µ, b1,µ, H10µ

H20µ, H11µ, b2,µ, H21µ
µ = (10), (01)

K20,K11

H0002, b1,02, H1002

H2002, H1102, b2,02, H2102

H3002 K03

H0003, b1,03
H1003

H0011, b1,11
H1011

H3010, H3001, H3101

H2201, H4001, H5001, H4101

g3201

H3201

Figure 4.1: Schematic overview of all the coefficients that need to be determined. The coefficients
that are marked blue are not needed in the computation of the normal form coefficients but are
needed in the approximation of periodic orbit. Their expressions can be found in Appendix B.
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Remark. In [17] and [3] a slightly different approach was used to obtain a linear approx-
imation to the LPC curve between the parameters than the one that was taken here. The
main difference resides in the fact that they considered the truncated parameter-dependent
normal form in terms of the original parameter α:

ż = (iω0 + γ1,10α1 + γ1,01α2)z + (c1(0) + γ2,10α1 + γ2,01α2)z|z|2 + c2(0)z|z|4.

The homological equation will then be simplified to

Hz(z, z̄, α)ż +Hz̄(z, z̄, α) ˙̄z = F (H(z, z̄, α), α).

After deriving the coefficients γ1,10, γ1,01, γ2,10 and γ2,01 from the above phonological equa-
tion, one can obtain the following linear relation for the parameters

α =

(
ℜ
{(

γ1,10 γ1,01
γ2,10 γ2,01

)})−1

β.

Although this method does simplify expressions, one must be careful since the LPC-curve
from the normal form is approximated in the parameters β. This should be taken into
account when approximating the solution in phase space using the center manifold expan-
sion in α. Furthermore, as remarked by [3], this method only works if one is interested in
a linear approximation of α in terms of β.

4.1.1 Critical normal form coefficients

The critical normal form coefficients up to the fifth order coefficient have already been
derived in previous works. For completeness, we include their derivation here following
[16, Section 8.7.3]. The expression for the first Lyapunov coefficient l1 = 1

ω0
ℜ(c1(0)) can

be derived from the w2, ww̄ and w2w̄ terms in the homological equation. These terms
yield the equations

H2000 = (2iω0I −A)−1B(q, q), (4.8)

H1100 = −A−1B(q, q̄), (4.9)

(iω0I −A)H2100 = 2B(q,H1100) +B(q̄, H2000) + C(q, q, q̄)− 2c1(0)q. (4.10)

Since the last equation is singular, we can use the Fredholm solvability condition to find

c1(0) =
1

2
p̄T [2B(q,H1100) +B(q̄, H2000) + C(q, q, q̄)]. (4.11)

The vector H2100 with ⟨p,H2100⟩ = 0 can be found by solving the corresponding bordered
matrix system (2.10).

For the second Lyapunov coefficient l2 = 1
ω0
ℜ(c2(0)) we need the w3, w3w̄, w2w̄2 and

w3w̄2 terms from the homological equation. The first three terms yield the equations

H3000 = (3iω0I −A)−1[3B(q,H2000) + C(q, q, q)], (4.12)

H3100 = (2iω0I −A)−1[3B(q,H2100) +B(q̄, H3000) + 3B(H1100, H2000)

+ 3C(q, q,H1100) + 3C(q, q̄,H2000) +D(q, q, q, q̄)− 6c1(0)H2000], (4.13)

H2200 = −A−1[2B(q,H2100) + 2B(q̄, H2100) +B(H2000, H2000)

+ 2B(H1100, H1100) + C(q, q,H2000) + 4C(q, q̄,H1100)

+ C(q̄, q̄, H2000) +D(q, q, q̄, q̄)]. (4.14)
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Note that we used that c1(0) + c̄1(0) = 2ω0l1 = 0 to simplify the expression for H2200.
Collecting the w3w̄2 terms yields the equation

(iω0I −A)H3200 = 3B(q,H2200) + 2B(q̄, H3100) +B(H2000, H3000) + 6B(H1100, H2100)

+ 3B(H2100, H2000) + 3C(q, q,H2100) + 6C(q, q̄,H2100) + 3C(q,H2000, H2000)

+ 6C(q,H1100, H1100) + C(q̄, q̄, H3000) + 6C(q̄, H1100, H2000) +D(q, q, q,H2000)

+ 6D(q, q, q̄, H1100) + 3D(q, q̄, q̄, H2000) + E(q, q, q, q̄, q̄)

− (12c2(0)q + 6iℑ(c1(0))H2100). (4.15)

By applying the Fredholm solvability condition to this equation, we find that

c2(0) =
1

12
p̄T [3B(q,H2200) + 2B(q̄, H3100) +B(H2000, H3000)

+ 6B(H1100, H2100) + 3B(H2100, H2000) + 3C(q, q,H2100)

+ 6C(q, q̄,H2100) + 3C(q,H2000, H2000) + 6C(q,H1100, H1100)

+ C(q̄, q̄, H3000) + 6C(q̄, H1100, H2000) +D(q, q, q,H2000)

+ 6D(q, q, q̄, H1100) + 3D(q, q̄, q̄, H2000) + E(q, q, q, q̄, q̄)]. (4.16)

For the higher order coefficients we will also need H3200. The unique solution to equation
(4.15) satisfying ⟨p,H3200⟩ = 0 can again be found by solving the corresponding bordered
system (2.10). An expression of the seventh order coefficient c3(0) has been derived in
[21], using the same normalization method. For this we need the coefficients of the terms
w4, w4w̄, w4w̄2 and w3w̄3 from the homological equation. These yield regular systems and
the solutions are respectively

H4000 = (4iω0I −A)−1[4B(q,H3000) + 3B(H2000, H2000)

+ 6C(q, q,H2000) +D(q, q, q, q)], (4.17)

H4100 = (3iω0In −A)−1[4B(q,H3100) +B(q̄, H4000) + 4B(H1100, H3000)

+ 6B(H2000, H2100) + 6C(q, q,H2100) + 4C(q, q̄,H3000)

+ 12C(q,H1100, H2000) + 3C(q̄, H2000, H2000) + 4D(q, q, q,H1100)

+ 6D(q, q, q̄, H2000) + E(q, q, q, q, q̄)− 12c1(0)H3000], (4.18)

H4200 = (2iω0I −A)−1[4B(q,H3200) + 2B(q̄, H4100)

+B(H2000, H4000) + 8B(H1100, H3100) + 4B(H2100, H3000)

+ 6B(H2000, H2200) + 6B(H2100, H2100) + 6C(q, q,H2200)

+ 8C(q, q̄,H3100) + 4C(q,H2000, H3000) + 24C(q,H1100, H2100)

+ 12C(q,H2100, H2000) + C(q̄, q̄, H4000) + 8C(q̄, H1100, H3000)

+ 12C(q̄, H2000, H2100) + 3C(H2000, H2000, H2000) + 12C(H1100, H1100, H2000)

+ 4D(q, q, q,H2100) + 12D(q, q, q̄,H2100) + 6D(q, q,H2000, H2000)

+ 12D(q, q,H1100, H1100) + 4D(q, q̄, q̄, H3000) + 24D(q, q̄,H1100, H2000)

+ 3D(q̄, q̄, H2000, H2000) + E(q, q, q, q,H2000) + 8E(q, q, q, q̄, H1100)

+ 6E(q, q, q̄, q̄, H2000) +K(q, q, q, q, q̄, q̄)− 8(6c2(0)H2000 + 2c1(0)H3100)], (4.19)
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H3300 = −A−1[3B(q,H3200) + 3B(q̄, H3200) + 3B(H2000, H3100) +B(H3000, H3000)

+ 9B(H1100, H2200) + 9B(H2100, H2100) + 3B(H3100, H2000)

+ 3C(q, q,H3100) + 9C(q, q̄,H2200) + 9C(q,H2000, H2100)

+ 3C(q,H3000, H2000) + 18C(q,H1100, H2100) + 3C(q̄, q̄, H3100)

+ 3C(q̄, H2000, H3000) + 18C(q̄, H1100, H2100) + 9C(q̄, H2100, H2000)

+ 9C(H2000, H1100, H2000) + 6C(H1100, H1100, H1100) +D(q, q, q,H3000)

+ 9D(q, q, q̄,H2100) + 9D(q, q,H2000, H1100) + 9D(q, q̄, q̄, H2100)

+ 9D(q, q̄,H2000, H2000) + 18D(q, q̄,H1100, H1100) +D(q̄, q̄, q̄, H3000)

+ 9D(q̄, q̄, H1100, H2000) + 3E(q, q, q, q̄, H2000) + 9E(q, q, q̄, q̄, H1100)

+ 3E(q, q̄, q̄, q̄, H2000) +K(q, q, q, q̄, q̄, q̄)− 72d2H1100]. (4.20)

Here we used that c1(0) + c1(0) = 0 and c2(0) + c2(0) = ℜ(c2(0)) = d2 to simplify the last
two expressions. Note that the term D(q̄, q̄, q̄, H3000) in the expression for H3300 is missing
in [21], although it was included in their calculations. Collecting the w4w̄3 terms results
in the equation

(iω0I −A)H4300 =M4300 − (144c3(0)q + 72(2c2(0) + c2(0))H2100

+ 12iℑ{c1(0)}H3200), (4.21)

where we used that 3c1(0) + 2c1(0) = iℑ{c1(0)} and defined

M4300 = 4B(q,H3300) + 3B(q̄, H4200) + 3B(H2000, H4100) +B(H3000, H4000)

+ 12B(H1100, H3200) + 12B(H2100, H3100) + 4B(H3100, H3000)

+ 6B(H2000, H3200) + 18B(H2100, H2200) + 6C(q, q,H3200)

+ 12C(q, q̄,H3200) + 12C(q,H2000, H3100) + 4C(q,H3000, H3000)

+ 36C(q,H1100, H2200) + 36C(q,H2100, H2100) + 12C(q,H3100, H2000)

+ 3C(q̄, q̄, H4100) + 3C(q̄, H2000, H4000) + 24C(q̄, H1100, H3100)

+ 12C(q̄, H2100, H3000) + 18C(q̄, H2000, H2200) + 18C(q̄, H2100, H2100)

+ 12C(H2000, H1100, H3000) + 18C(H2000, H2000, H2100)

+ 3C(H3000, H2000, H2000) + 36C(H1100, H1100, H2100)

+ 36C(H1100, H2100, H2000) + 4D(q, q, q,H3100) + 18D(q, q, q̄, H2200)

+ 18D(q, q,H2000, H2100) + 6D(q, q,H3000, H2000) + 36D(q, q,H1100, H2100)

+ 12D(q, q̄, q̄, H3100) + 12D(q, q̄,H2000, H3000) + 72D(q, q̄,H1100, H2100)

+ 36D(q, q̄,H2100, H2000) + 36D(q,H2000, H1100, H2000)

+ 24D(q,H1100, H1100, H1100) +D(q̄, q̄, q̄, H4000) + 12D(q̄, q̄, H1100, H3000)

+ 18D(q̄, q̄, H2000, H2100) + 9D(q̄, H2000, H2000, H2000)

+ 36D(q̄, H1100, H1100, H2000) + E(q, q, q, q,H3000) + 12E(q, q, q, q̄, H2100)

+ 12E(q, q, q,H2000, H1100) + 18E(q, q, q̄, q̄, H2100) + 18E(q, q, q̄,H2000, H2000)

+ 36E(q, q, q̄, H1100, H1100) + 4E(q, q̄, q̄, q̄, H3000) + 36E(q, q̄, q̄, H1100, H2000)

+ 3E(q̄, q̄, q̄, H2000, H2000) + 3K(q, q, q, q, q̄, H2000) + 12K(q, q, q, q̄, q̄, H1100)

+ 6K(q, q, q̄, q̄, q̄, H2000) + L(q, q, q, q, q̄, q̄, q̄).



33

To obtain the equation for c3(0) we apply the Fredholm solvability condition to the singular
system (4.21). This yields the equation

c3(0) =
1

144
p̄TM4300,

where we used that ⟨p,H2100⟩ = 0 and ⟨p,H3200⟩ = 0. The unique solution to equation
(4.21) satisfying ⟨p,H4300⟩ = 0 can again be found by solving the corresponding bordered
sytem (2.10).

4.1.2 Parameter-related coefficients

Linear coefficients K10,K01 We first determine the coefficients for the linear approxi-
mation of the parameter transformation K. Collecting the β1 and β2 terms in (4.1) yields
for µ = (10), (01) the systems

AH00µ = −J1Kµ.

Let e1, e2 ∈ R2 be the standard basis vectors. Then we can write

Kµ = γ1,µe1 + γ2,µe2, (4.22)

for some γ1,µ, γ2,µ ∈ R. Since A is regular, we have

H00µ = −γ1,µA−1J1e1 − γ2,µA
−1J1e2. (4.23)

In the equations that follow we will occasionally use the following notation

δijµ =

{
1, if µ = (ij),

0, if µ = (ji)
, for i, j ∈ N. (4.24)

The β1w and β2w terms yield the systems

(iω0I −A)H10µ = A1(q,Kµ) +B(q,H00µ)− (δ10µ + ib1,µ)q. (4.25)

To reduce the length of the equations, it is convenient to define Γi(q) = A1(q, ei) +
B(q,−A−1J1ei). Substituting equations (4.22) and (4.23) into equation (4.25) results in

(iω0I −A)H10µ = γ1,µΓ1(q) + γ2,µΓ2(q)− (δ10µ + ib1,µ)q, (4.26)

Applying the Fredholm solvability condition to equation (4.26) results in

δ10µ + ib1,µ = p̄T [γ1,µΓ1(q) + γ2,µΓ2(q)]. (4.27)

If we take the real and imaginary parts of the above equation, we find that

δ10µ = γ1,µℜ[p̄TΓ1(q)] + γ2,µℜ[p̄TΓ2(q)], (4.28)

and
b1,µ = γ1,µℑ[p̄TΓ1(q)] + γ2,µℑ[p̄TΓ2(q)]. (4.29)

A solution H10µ of equation (4.26) satisfying ⟨p,H10µ⟩ = 0 can be obtained by solving the
bordered system(

iω0I −A q
p̄T 0

)(
H10µ

s

)
=

(
γ1,µΓ1(q) + γ2,µΓ2(q)− (δ10µ + ib1,µ)q

0

)
.



34

However, since the coefficients b1,µ, γ1,µ and γ2,µ are yet unknown, it is not possible to
immediately solve this system. Instead, we can derive another equation like (4.28), where
the only unknown are γ1,µ and γ2,µ. This will then allow us to set up a linear system from
which we can solve for γ1,µ and γ2,µ. The solution of equation (4.26) can be written as

H10µ = γ1,µA
INV
iω0

Γ1(q) + γ2,µA
INV
iω0

Γ2(q)− (δ10µ + ib1,µ)A
INV
iω0

q, (4.30)

where we use the shorthand notation AINViω0
= (iω0In − A)INV . The vectors w = AINViω0

q

and vk = AINViω0
Γk(q) (k = 1, 2) are to be found by solving the following bordered systems(

iω0I −A q
p̄T 0

)(
w
s

)
=

(
q
0

)
, and

(
iω0I −A q

p̄T 0

)(
vk
sk

)
=

(
Γk(q)
0

)
.

From the left bordered system it follows that AINViω0
q = 0. To see this, note that we can

write the correspoinding bordered system as the following system of equations

(iω0I −A)w + qs = q,

⟨p, w⟩ = 0.

Taking the inner product with p of the first equation yields s = 1. Then the first equation
becomes (iω0I − A)w = 0, with solution w = λq. Filling this into the second equation
yields ⟨p, w⟩ = λ⟨p, q⟩ = 0 from which it follows that λ = 0. Thus, the unique solution to
this system is (w, s) = (0, 1). We will use this to simplify the final equations from which
we can solve for γ1,µ and γ2,µ.

Collecting the w2βi and ww̄βi terms respectively yield the systems1

(2iω0I −A)H20µ = A1(H2000,Kµ) + 2B(q,H10µ) +B(H00µ, H2000)

+B1(q, q,Kµ) + C(q, q,H00µ)− 2(δ10µ + ib1,µ)H2000,

−AH11µ = A1(H1100,Kµ) + 2ℜ{B(q̄, H10µ)}+B(H00µ, H1100)

+B1(q, q̄,Kµ) + C(q, q̄,H00µ)− 2δ10µ H1100.

Both these systems are regular with solutions

H20µ = A−1
2iω0

[A1(H2000,Kµ) + 2B(q,H10µ) +B(H00µ, H2000)

+B1(q, q,Kµ) + C(q, q,H00µ)− 2(δ10µ + ib1,µ)H2000], (4.31)

H11µ = −A−1[A1(H1100,Kµ) + 2ℜ(B(q̄, H10µ)) +B(H00µ, H1100)

+B1(q, q̄,Kµ) + C(q, q̄,H00µ)− 2δ10µ H1100], (4.32)

where we write A−1
2iω0

= (2iω0I − A)−1. We will now substitute equations (4.22), (4.23)
and (4.30) into the above expressions. For this it is convenient to define the following
functions

Λi(u, v, w) = Γi(u) + 2B(v,AINViω0
Γi(w)) +B1(v, w, ei) + C(v, w,−A−1J1ei),

Πi(u, v, w) = Γi(u) + 2ℜ{B
(
v,AINViω0

Γi(w)
)
}+B1(v, w, ei) + C(v, w,−A−1J1ei).

Then the equations for H20µ and H11µ become

H20µ = γ1,µA
−1
2iω0

Λ1(H2000, q, q) + γ2,µA
−1
2iω0

Λ2(H2000, q, q)− 2(δ10µ + ib1,µ)A
−1
2iω0

H2000,

H11µ = −γ1,µA−1Π1(H1100, q̄, q)− γ2,µA
−1Π2(H1100, q̄, q) + 2δ10µ A

−1H1100.

1Since H01µ = H10µ, we can write B(q,H01µ) +B(q̄, H10µ) = 2ℜ(B(q̄, H10µ)).
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The w2w̄βi terms yield the systems

(iω0In −A)H21µ = A1(H2100,Kµ) + 2B(q,H11µ) +B(q̄, H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(q,H1100,Kµ) +B1(q̄, H2000,Kµ)

+ C(q, q,H10µ) + 2C(q, q̄.H10µ) + 2C(q,H00µ, H1100) + C(q̄, H00µ, H2000)

+ C1(q, q, q̄,Kµ) +D(q, q, q̄, H00µ)− [2(δ01µ + ib2,µ)q

+ (3δ10µ + ib1,µ)H2100 + 2c1(0)H10µ]. (4.33)

Applying the Fredholm solvability equation to equation (4.33) results in

δ01µ + ib2,µ =
1

2
p̄T [A1(H2100,Kµ) + 2B(q,H11µ) +B(q̄, H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(q,H1100,Kµ) +B1(q̄, H2000,Kµ)

+ C(q, q,H10µ) + 2C(q, q̄.H10µ) + 2C(q,H00µ, H1100) + C(q̄, H00µ, H2000)

+ C1(q, q, q̄,Kµ) +D(q, q, q̄, H00µ)], (4.34)

where we used that ⟨p,H2100⟩ = 0 and ⟨p,H10µ⟩ = 0. If we substitute the expressions for
H00µ, H10µ, H20µ, H11µ, Kµ and b1,µ into equation (4.34), we can finally solve for γ1,µ and
γ2,µ.

After substitution and some rewriting we arrive at the following system

P

(
γ1,µ
γ2,µ

)
= Qµ, (4.35)

where P ∈ R2×2 is given by

P1k = ℜ[p̄TΓk(q)], (4.36)

P2k =
1

2
ℜ
{
p̄T
[
Γk(H2100) + 2B(q,−A−1Πk(H1100, q̄, q)) +B(q̄, A−1

2iω0
Λk(H2000, q, q))

+B(H2000, AINViω0
Γk(q)) + 2B(H1100, A

INV
iω0

Γk(q)) + 2B1(q,H1100, ek) +B1(q̄, H2000, ek)

+ C(q, q, AINViω0
Γk(q)) + 2C(q, q̄, AINViω0

Γk(q)) + 2C(q,H1100,−A−1J1ek)

+ C(q̄, H2000,−A−1J1ek) + C1(q, q, q̄, ek) +D(q, q, q̄,−A−1J1ek)

+ ℑ[p̄TΓk(q)]
(
−2iB(q̄, A−1

2iω0
H2000)

) ]}
(4.37)

and Qµ ∈ R2 with µ = (10), (01) is given by

Q1,µ = δ10µ , (4.38)

Q2,µ = δ01µ +
1

2
δ10µ ℜ

{
p̄T
[
4B
(
q,−A−1H1100

)
+ 2B

(
q̄, A−1

2iω0
H2000

)]}
. (4.39)

Thus, one first computes the linear coefficients K10 and K01 by solving the system (4.35).
This system should be solvable if the transversality condition holds. Once K10,K01 are
known, we can determine the coefficients H00µ from equation (4.23) and b1,µ from equation
(4.29). With these coefficients we can determine H10µ from equation (4.30), and H20µ and
H11µ from respectively equations (4.31) and (4.32). The coefficient b2,01 is then given by
the imaginary part of the right-hand side of equation (4.34). Finally, we can use equation
(4.33) to solve for H2101 satisfying ⟨p,H2101⟩ = 0 by solving the corresponding bordered
system (2.10).
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The coefficient a3201 Note that a3201 = ℜ(g3201). To determine this coefficient we
also need the coefficients H3001, H3101 and H2201. These can be found by collecting the
w3β2, w

3w̄β2 and w2w̄2β2 terms from the homological equation (4.1). This results in the
following equations

H3001 = (3iω0In −A)−1[A1(H3000,K01) + 3B(q,H2001) +B(H0001, H3000)

+ 3B(H1001, H2000) + 3B1(q,H2000,K01) + 3C(q, q,H1001)

+ 3C(q,H0001, H2000) + C1(q, q, q,K01) +D(q, q, q,H0001)− 3ib1,01H3000],

H3101 = (2iω0In −A)−1[A1(H3100,K01) + 3B(q,H2101) +B(q̄, H3001)

+B(H0001, H3100) +B(H1001, H3000) + 3B(H1001, H2100)

+ 3B(H1100, H2001) + 3B(H1101, H2000) + 3B1(q,H2100,K01)

+B1(q̄, H3000,K01) + 3B1(H1100, H2000,K01) + 3C(q, q,H1101)

+ 3C(q, q̄,H2001) + 3C(q,H0001, H2100) + 3C(q,H1001, H2000)

+ 6C(q,H1001, H1100) + C(q̄, H0001, H3000) + 3C(q̄, H1001, H2000)

+ 3C(H0001, H1100, H2000) + 3C1(q, q,H1100,K01) + 3C1(q, q̄,H2000,K01)

+D(q, q, q,H1001) + 3D(q, q, q̄, H1001) + 3D(q, q,H0001, H1100)

+ 3D(q, q̄,H0001, H2000) +D1(q, q, q, q̄,K01) + E(q, q, q, q̄, H0001)

− 6(1 + ib2,01)H2000 − 6c1(0)H2001 − 2ib1,01H3100],

H2201 = −A−1[A1(H2200,K01) + 2B(q,H2101) + 2B(q̄, H2101) +B(H0001, H2200)

+ 2B(H1001, H2100) +B(H2000, H2001) +B(H2001, H2000)

+ 2B(H1001, H2100) + 4B(H1100, H1101) + 2B1(q,H2100,K01)

+B1(H2000, H2000,K01) + 2B1(H1100, H1100,K01) + 2B1(q̄, H2100,K01)

+ C(q, q,H2001) + 4C(q, q̄,H1101) + 2C(q,H0001, H2100)

+ 4C(q,H1001, H1100) + 2C(q,H2000, H1001) + C(q̄, q̄, H2001)

+ 2C(q̄, H0001, H2100) + 2C(q̄, H1001, H2000) + 4C(q̄, H1001, H1100)

+ C(H0001, H2000, H2000) + 2C(H0001, H1100, H1100) + C1(q, q,H2000,K01)

+ 4C1(q, q̄,H1100,K01) + C1(q̄, q̄, H2000,K01) + 2D(q, q, q̄,H1001)

+D(q, q,H0001, H2000) + 2D(q, q̄, q̄, H1001) + 4D(q, q̄,H0001, H1100)

+D(q̄, q̄, H0001, H2000) +D1(q, q, q̄, q̄,K01) + E(q, q, q̄, q̄, H0001)− 8H1100].

The coefficient g3201 can now be found by applying the Fredholm alternative to the
equation that follows from collecting the w3w̄2β2 terms. This yields the following equation

(iω0In −A)H3201 =M3201 − [12g3201q + 12c2(0)H1001 + (18 + 6ib2,01)H2100

+ 6iℑ{c1(0)}H2101 + ib1,01H3200], (4.40)
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where

M3201 = A1(H3200,K01) + 3B(q,H2201) + 2B(q̄, H3101) +B(H0001, H3200)

+ 2B(H1001, H3100) +B(H2000, H3001) +B(H2001, H3000)

+ 3B(H1001, H2200) + 6B(H1100, H2101) + 6B(H1101, H2100)

+ 3B(H2100, H2001) + 3B(H2101, H2000) + 3B1(q,H2200,K01)

+ 2B1(q̄, H3100,K01) +B1(H2000, H3000,K01) + 6B1(H1100, H2100,K01)

+ 3B1(H2100, H2000,K01) + 3C(q, q,H2101) + 6C(q, q̄,H2101)

+ 3C(q,H0001, H2200) + 6C(q,H1001, H2100) + 3C(q,H2000, H2001)

+ 3C(q,H2001, H2000) + 6C(q,H1001, H2100) + 12C(q,H1100, H1101)

+ C(q̄, q̄, H3001) + 2C(q̄, H0001, H3100) + 2C(q̄, H1001, H3000)

+ 6C(q̄, H1001, H2100) + 6C(q̄, H1100, H2001) + 6C(q̄, H1101, H2000)

+ C(H0001, H2000, H3000) + 6C(H0001, H1100, H2100) + 3C(H0001, H2100, H2000)

+ 6C(H1001, H1100, H2000) + 3C(H2000, H1001, H2000)

+ 6C(H1001, H1100, H1100) + 3C1(q, q,H2100,K01) + 6C1(q, q̄,H2100,K01)

+ 3C1(q,H2000, H2000,K01) + 6C1(q,H1100, H1100,K01) + C1(q̄, q̄, H3000,K01)

+ 6C1(q̄, H1100, H2000,K01) +D(q, q, q,H2001) + 6D(q, q, q̄, H1101)

+ 3D(q, q,H0001, H2100) + 6D(q, q,H1001, H1100) + 3D(q, q,H2000, H1001)

+ 3D(q, q̄, q̄, H2001) + 6D(q, q̄,H0001, H2100) + 6D(q, q̄,H1001, H2000)

+ 12D(q, q̄,H1001, H1100) + 3D(q,H0001, H2000, H2000)

+ 6D(q,H0001, H1100, H1100) +D(q̄, q̄, H0001, H3000) + 3D(q̄, q̄, H1001, H2000)

+ 6D(q̄, H0001, H1100, H2000) +D1(q, q, q,H2000,K01) + 6D1(q, q, q̄,H1100,K01)

+ 3D1(q, q̄, q̄, H2000,K01) + 2E(q, q, q, q̄, H1001) + E(q, q, q,H0001, H2000)

+ 3E(q, q, q̄, q̄, H1001) + 6E(q, q, q̄, H0001, H1100) + 3E(q, q̄, q̄, H0001, H2000)

+ E1(q, q, q, q̄, q̄,K01) +K(q, q, q, q̄, q̄, H0001).

Applying the Fredholm alternative to (4.40) now yields

g3201 =
1

12
p̄TM3201. (4.41)

Now the unique solution for H3201 satisfying ⟨p,H3201⟩ = 0 can be solved from equation
(4.40) using the corresponding bordered system (2.10).
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Quadratic coefficients K02,K11, b1,02 The method in which we compute the quadratic
coefficients is very similar as what we did for the linear coefficients. We simply have more
terms. Collecting the β22 and β1β2 terms from (4.1) yields for µ = (02), (11) the equations

AH00µ = −J1Kµ −M00µ, (4.42)

where M00µ only depends on coefficients that are already known and are given by

M0002 = 2A1(H0001,K01) +B(H0001, H0001) + J2(K01,K01),

M0011 = A1(H0010,K01) +A1(H0001,K10) +B(H0001, H0010) + J2(K01,K10).

Let e1, e2 ∈ R2 be the standard basis vectors and write

Kµ = γ1,µe1 + γ2,µe2 µ = (02), (11), (4.43)

where γ1,µ, γ1,µ ∈ R are unknown constants that need to be determined. From equation
(4.42) it follows that

H00µ = −γ1,µA−1J1e1 − γ2,µA
−1J1e2 −A−1M00µ (4.44)

The wβ22 and wβ1β2 terms yield the equations

(iω0I −A)H10µ = A1(q,Kµ) +B(q,H00µ)− ib1,µq + r10µ, (4.45)

where we define

r1002 =M1002 − 2ib1,01H1001,

r1011 =M1011 − [(1 + ib1,10)H1001 + ib1,01H1010],

with multilinear parts given by

M1002 = 2A1(H1001,K01) + 2B(H0001, H1001) +A2(q,K01,K01)

+ 2B1(q,H0001,K01) + C(q,H0001, H0001),

M1011 = A1(H1010,K01) +A1(H1001,K10) +B(H0001, H1010)

+B(H0010, H1001) +A2(q,K01,K10) +B1(q,H0010,K01)

+B1(q,H0001,K10) + C(q,H0001, H0010).

Applying the Fredholm alternative to equation (4.45) yields the equations

b1,µi = p̄T [A1(q,Kµ) +B(q,H00µ) +M10µ]. (4.46)

Here we used that ⟨p,H1010⟩ = ⟨p,H1001⟩ = 0. Substituting expressione (4.43) and (4.44)
into the above equation results in

b1,µi = p̄T [γ1,µΓ1(q) + γ2,µΓ2(q) + M̃10µ], (4.47)

where

M̃10µ = B(q,−A−1M00µ) +M10µ.

From equation (4.49), it follows that

γ1,µℜ[p̄TΓ1(q)] + γ2,µℜ[p̄TΓ2(q)] = −ℜ{p̄T M̃10µ}, (4.48)
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and

b1,µ = γ1,µℑ[p̄TΓ1(q)] + γ2,µℑ[p̄TΓ2(q)] + ℑ{p̄T M̃10µ}. (4.49)

Furthermore, H10µ is given by

H10µ = γ1,µA
INV
iω0

Γ1(q) + γ2,µA
INV
iω0

Γ2(q)− ib1,µA
INV
iω0

q +AINViω0
r̃10µ, (4.50)

where

r̃1002 = M̃1002 − 2b1,01H1001,

r̃1011 = M̃1011 − [(1 + ib1,10)H1001 + ib1,01H1010].

Now collect the w2βµ terms for µ = (02), (11). These terms yield the equations

(2iω0I −A)H20µ = A1(H2000,Kµ) + 2B(q,H10µ) +B(H00µ, H2000)

+B1(q, q,Kµ) + C(q, q,H00µ)− 2ib1,µH2000 + r20µ, (4.51)

where

r2002 =M2002 − 4ib1,01H2001,

r2011 =M2011 − [2(1 + ib1,10)H2001 + 2ib1,01H2010],

with multilinear parts given by

M2002 = 2A1(H2001,K01) + 2B(H0001, H2001) + 2B(H1001, H1001)

+A2(H2000,K01,K01) + 4B1(q,H1001,K01) + 2B1(H0001, H2000,K01)

+ 4C(q,H0001, H1001) + C(H0001, H0001, H2000) +B2(q, q,K01,K01)

+ 2C1(q, q,H0001,K01) +D(q, q,H0001, H0001),

M2011 = A1(H2010,K01) +A1(H2001,K10) +B(H0001, H2010)

+B(H0010, H2001) + 2B(H1001, H1010) +A2(H2000,K01,K10)

+ 2B1(q,H1010,K01) + 2B1(q,H1001,K10) +B1(H0010, H2000,K01)

+B1(H0001, H2000,K10) + 2C(q,H0001, H1010) + 2C(q,H0010, H1001)

+ C(H0001, H0010, H2000) +B2(q, q,K10,K01) + C1(q, q,H0010,K01)

+ C1(q, q,H0001,K10) +D(q, q,H0001, H0010).

Collecting the ww̄βµ terms for µ = (02), (11) result in the equations

−AH11µ = A1(H1100,Kµ) + 2ℜ (B(q̄, H10µ)) +B(H00µ, H1100)

+B1(q, q̄,Kµ) + C(q, q̄,H00µ) + r11µ, (4.52)

where

r1102 =M1102, and r1111 =M1111 − 2H1101,
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with the multilinear parts given by

M1102 = 2A1(H1101,K01) + 2B(H0001, H1101) + 2B(H1001, H1001)

+A2(H1100,K01,K01) + 4ℜ (B1(q̄, H1001,K01)) + 2B1(H0001, H1100,K01)

+ 4ℜ (C(q̄, H0001, H1001)) + C(H0001, H0001, H1100) +B2(q, q̄,K01,K01)

+ 2C1(q, q̄,H0001,K01) +D(q, q̄,H0001, H0001),

M1111 = A1(H1110,K01) +A1(H1101,K10) +B(H0001, H1110)

+B(H0010, H1101) + 2ℜ
(
B(H1001, H1010)

)
+A2(H1100,K01,K10)

+ 2ℜ (B1(q̄, H1010,K01)) + 2ℜ (B1(q̄, H1001,K10)) +B1(H0010, H1100,K01)

+B1(H0001, H1100,K10) + 2ℜ (C(q̄, H0001, H1010)) + 2ℜ (C(q̄, H0010, H1001))

+ C(H0001, H0010, H1100) +B2(q, q̄,K01,K10) + C1(q, q̄,H0010,K01)

+ C1(q, q̄,H0001,K10) +D(q, q̄,H0001, H0010).

From equations (4.51) and (4.52) it follows that

H20µ = A−1
2iω0

[A1(H2000,Kµ) + 2B(q,H10µ) +B(H00µ, H2000)

+B1(q, q,Kµ) + C(q, q,H00µ) + r20µ]− 2ib1,µA
−1
2iω0

H2000, (4.53)

H11µ = −A−1[A1(H1100,Kµ) + 2ℜ (B(q̄, H10µ)) +B(H00µ, H1100)

+B1(q, q̄,Kµ) + C(q, q̄,H00µ) + r11µ]. (4.54)

Substituting equations (4.43), (4.44) and (4.50) into the expressions for H20µ and H11µ

yields the equations

H20µ = γ1,µA
−1
2iω0

Λ1(H2000, q, q) + γ2,µA
−1
2iω0

Λ2(H2000, q, q)

− 2ib1,µA
−1
2iω0

H2000 +A−1
2iω0

r̃20µ, (4.55)

H11µ = −γ1,µA−1Π1(H1100, q̄, q)− γ2,µA
−1Π2(H1100, q̄, q)

−A−1r̃11µ, (4.56)

where

r̃20µ = r20µ + 2B
(
q, AINViω0

r̃10µ
)
+B(H2000,−A−1r00µ) + C(q, q,−A−1r00µ),

r̃11µ = r11µ + 2ℜ
(
B
(
q̄, AINViω0

r̃10µ
))

+B(H1100,−A−1r00µ) + C(q, q̄,−A−1r00µ).

The w2w̄βµ terms yield for µ = (02), (11) the equations

(iω0I −A)H21µ = A1(H2100,Kµ) + 2B(q,H11µ) +B(q̄, H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(q,H1100,Kµ)

+B1(q̄, H2000,Kµ) + C(q, q,H10µ) + 2C(q, q̄,H10µ) + 2C(q,H00µ, H1100)

+ C(q̄, H00µ, H2000) + C1(q, q, q̄,Kµ) +D(q, q, q̄, H00µ) + r21µ

− (2ib2,µq + ib1,µH2100 + 2c1(0)H10µ), (4.57)

where

r2102 =M2102 − [4(1 + ib2,01)H1001 + 2ib1,01H2101],

r2111 =M2111 − [2ib2,10H1001 + 2(1 + ib2,01)H1010 + (3 + ib1,10)H2101 + ib1,01H2110].
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with multilinear parts given by

M2102 = 2A1(H2101,K01) + 2B(H0001, H2101) + 2B(H1001, H2001) + 4B(H1001, H1101)

+A2(H2100,K01,K01) + 4B1(q,H1101,K01) + 2B1(q̄, H2001,K01)

+ 2B1(H0001, H2100,K01) + 2B1(H1001, H2000,K01) + 4B1(H1001, H1100,K01)

+ 4C(q,H0001, H1101) + 4C(q,H1001, H1001) + 2C(q̄, H0001, H2001)

+ 2C(q̄, H1001, H1001) + C(H0001, H0001, H2100) + 2C(H0001, H1001, H2000)

+ 4C(H0001, H1001, H1100) + 2B2(q,H1100,K01,K01) +B2(q̄, H2000,K01,K01)

+ 2C1(q, q,H1001,K01) + 4C1(q, q̄,H1001,K01) + 4C1(q,H0001, H1100,K01)

+ 2C1(q̄, H0001, H2000,K01) + 2D(q, q,H0001, H1001) + 4D(q, q̄,H0001, H1001)

+ 2D(q,H0001, H0001, H1100) +D(q̄, H2000, H0001, H0001) + C2(q, q, q̄,K01,K01)

+ 2D1(q, q, q̄, H0001,K01) + E(q, q, q̄, H0001, H0001),

and

M2111 = A1(H2110,K01) +A1(H2101,K10) +B(H0001, H2110) +B(H0010, H2101)

+B(H1001, H2010) +B(H1010, H2001) + 2B(H1001, H1110) + 2B(H1010, H1101)

+A2(H2100,K01,K10) + 2B1(q,H1110,K01) + 2B1(q,H1101,K10) +B1(q̄, H2010,K01)

+B1(q̄, H2001,K10) +B1(H0010, H2100,K01) +B1(H1010, H2000,K01) + 2B1(H1010, H1100,K01)

+B1(H0001, H2100,K10) +B1(H1001, H2000,K10) + 2B1(H1001, H1100,K10) + 2C(q,H0001, H1110)

+ 2C(q,H0010, H1101) + 2C(q,H1001, H1010) + 2C(q,H1010, H1001) + C(q̄, H0001, H2010)

+ C(q̄, H0010, H2001) + 2C(q̄, H1001, H1010) + C(H0001, H0010, H2100) + C(H0001, H1010, H2000)

+ 2C(H0001, H1010, H1100) + C(H0010, H1001, H2000) + 2C(H0010, H1001, H1100)

+ 2B2(q,H1100,K01,K10) +B2(q̄, H2000,K01,K10) + C1(q, q,H1010,K01) + C1(q, q,H1001,K10)

+ 2C1(q, q̄,H1010,K01) + 2C1(q, q̄,H1001,K10) + 2C1(q,H0010, H1100,K01)

+ 2C1(q,H0001, H1100,K10) + C1(q̄, H0010, H2000,K01) + C1(q̄, H0001, H2000,K10)

+D(q, q,H0001, H1010) +D(q, q,H0010, H1001) + 2D(q, q̄,H0001, H1010)

+ 2D(q, q̄,H0010, H1001) + 2D(q,H0001, H0010, H1100) +D(q̄, H0001, H0010, H2000)

+ C2(q, q, q̄,K01,K10) +D1(q, q, q̄, H0010,K01) +D1(q, q, q̄, H0001,K10) + E(q, q, q̄, H0001, H0010).

Applying the Fredholm solvabitlity condition to (4.57) yields the equations

b2,µi =
1

2
p̄T [A1(H2100,Kµ) + 2B(q,H11µ) +B(q̄, H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(q,H1100,Kµ)

+B1(q̄, H2000,Kµ) + C(q, q,H10µ) + 2C(q, q̄,H10µ) + 2C(q,H00µ, H1100)

+ C(q̄, H00µ, H2000) + C1(q, q, q̄,Kµ) +D(q, q, q̄, H00µ) +M21µ]. (4.58)

Now substitute the expressions for H00µ, H10µ, H20µ, H11µ, Kµ and b1,µ into the above
expression to solve for γ1,µ and γ2,µ.

We find the following system to solve for γ1,µ and γ2,µ

P

(
γ1,µ
γ2,µ

)
= Qµ, (4.59)
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where P ∈ R2×2 has the same components (4.36),(4.37) and Qµ ∈ R2 is given by

Qµ,1 = −ℜ{p̄T M̃10µ},

Qµ,2 = −1

2
ℜ
{
p̄T
[
2B
(
q,−A−1r̃11µ

)
+B

(
q̄, A−1

2iω0
r̃20µ

)
+B

(
H2100,−A−1M00µ

)
+B

(
H2000, AINViω0

r̃10µ

)
+ 2B

(
H1100, A

INV
iω0

r̃10µ
)

+ C
(
q, q, AINViω0

r̃10µ

)
+ 2C

(
q, q̄, AINViω0

r̃10µ
)
+ 2C

(
q,H1100,−A−1M00µ

)
+ C

(
q̄, H2000,−A−1M00µ

)
+D(q, q, q̄,−A−1M00µ) +M21µ

+ ℑ{p̄T M̃10µ}
(
−2iB(q̄, A−1

2iω0
H2000)

)]}
.

Thus, to obtain the quadratic coefficients K02 and K11 we solve system (4.59). Once
these coefficients are known, one can calculate the coefficients H00µ,b1,02 and H10µ from
respectively the equations (4.44),(4.49) and (4.50). Then, the coefficients H2002 and
H1102 are calculated from equations (4.53), (4.54). Finally, the coefficient H2102 satisfying
⟨p,H2102⟩ = 0, can be determined from system (4.57) using the corresponding bordered
system (2.10).

The coefficient K03 The qubic coefficient K03 is determined in the same way as the
quadratic coefficients. Essentially, only the terms containing all the known cofficients will
be different. Collecting the β32 terms yields the equation

AH0003 = −J1K03 −M0003, (4.60)

with

M0003 = 3A1(H0002,K01) + 3A1(H0001,K02) + 3B(H0001, H0002)

+ 3J2(K01,K02) + 3A2(H0001,K01,K01) + 3B1(H0001, H0001,K01)

+ J3(K01,K01,K01) + C(H0001, H0001, H0001).

With e1, e2 ∈ R2 the standard basis vectors and γ1,03, γ2,03 ∈ R we write

K03 = γ1,03e1 + γ2,03e2.

The wβ32 terms yield the equation

(iω0In −A)H1003 = A1(q,K03) +B(q,H0003)− ib1,03q + r1003, (4.61)

where

r1003 =M1003 − (3ib1,02H1001 + 3ib1,01H1002),

with multilinear part

M1003 = 3A1(H1002,K01) + 3A1(H1001,K02) + 3B(H0001, H1002)

+ 3B(H0002, H1001) + 3A2(q,K01,K02) + 3A2(H1001,K01,K01)

+ 3B1(q,H0002,K01) + 3B1(q,H0001,K02) + 6B1(H0001, H1001,K01)

+ 3C(q,H0001, H0002) + 3C(H0001, H0001, H1001) +A3(q,K01,K01,K01)

+ 3B2(q,H0001,K01,K01) + 3C1(q,H0001, H0001,K01)

+D(q,H0001, H0001, H0001).
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Collecting the w2β32 and ww̄β32 terms yield the equations

(2iω0In −A)H2003 = A1(H2000,K03) + 2B(q,H1003) +B(H0003, H2000) (4.62)

+B1(q, q,K03) + C(q, q,H0003)− 2ib1,03H2000 + r2003,

−AH1103 = A1(H1100,K03) + 2ℜ(B(q̄, H1003)) +B(H0003, H1100)

+B1(q, q̄,K03) + C(q, q̄,H0003) + r1103, (4.63)

where

r2003 =M2003 − (6ib1,02H2001 + 6ib1,01H2002), and r1103 =M1103,

with multilinear parts given by

M2003 = 3A1(H2002,K01) + 3A1(H2001,K02) + 3B(H0001, H2002) + 3B(H0002, H2001)

+ 6B(H1001, H1002) + 3A2(H2001,K01,K01) + 3A2(H2000,K01,K02)

+ 6B1(q,H1002,K01) + 6B1(q,H1001,K02) + 6B1(H0001, H2001,K01)

+ 3B1(H0002, H2000,K01) + 6B1(H1001, H1001,K01) + 3B1(H0001, H2000,K02)

+ 6C(q,H0001, H1002) + 6C(q,H0002, H1001) + 3C(H0001, H0001, H2001)

+ 3C(H0001, H0002, H2000) + 6C(H0001, H1001, H1001) +A3(H2000,K01,K01,K01)

+ 3B2(q, q,K01,K02) + 6B2(q,H1001,K01,K01) + 3B2(H0001, H2000,K01,K01)

+ 3C1(q, q,H0002,K01) + 3C1(q, q,H0001,K02) + 12C1(q,H0001, H1001,K01)

+ 3C1(H0001, H0001, H2000,K01) + 3D(q, q,H0001, H0002) + 6D(q,H0001, H0001, H1001)

+D(H0001, H0001, H0001, H2000) +B3(q, q,K01,K01,K01) + 3C2(q, q,H0001,K01,K01)

+ 3D1(q, q,H0001, H0001,K01) + E(q, q,H0001, H0001, H0001),

and

M1103 = 3A1(H1102,K01) + 3A1(H1101,K02) + 3B(H0001, H1102) + 3B(H0002, H1101)

+ 3B(H1001, H1002) + 3B(H1002, H1001) + 3A2(H1101,K01,K01)

+ 3A2(H1100,K01,K02) + 6ℜ(B1(q̄, H1002,K01)) + 6ℜ(B1(q̄, H1001,K02))

+ 6B1(H0001, H1101,K01) + 3B1(H0002, H1100,K01) + 6B1(H1001, H1001,K01)

+ 3B1(H0001, H1100,K02) + 6ℜ(C(q̄, H0001, H1002)) + 6ℜ(C(q̄, H0002, H1001))

+ 3C(H0001, H0001, H1101) + 3C(H0001, H0002, H1100) + 6C(H0001, H1001, H1001)

+A3(H1100,K01,K01,K01) + 3B2(q, q̄,K01,K02) + 6ℜ(B2(q̄, H1001,K01,K01))

+ 3B2(H0001, H1100,K01,K01) + 3C1(q, q̄,H0002,K01) + 3C1(q, q̄,H0001,K02)

+ 12ℜ(C1(q̄, H0001, H1001,K01)) + 3C1(H0001, H0001, H1100,K01)

+ 3D(q, q̄,H0001, H0002) + 6ℜ(D(q̄, H0001, H0001, H1001)) +D(H0001, H0001, H0001, H1100)

+B3(q, q̄,K01,K01,K01) + 3C2(q, q̄,H0001,K01,K01) + 3D1(q, q̄,H0001, H0001,K01)

+ E(q, q̄,H0001, H0001, H0001).

Applying the Fredholm solvability condition to the w2w̄β32 terms finally yields the equation

ib2,03 =
1

2
p̄T [A1(H2100,K03) + 2B(q,H1103) +B(q̄, H2003) +B(H0003, H2100)

+B(H1003, H2000) + 2B(H1003, H1100) + 2B1(q,H1100,K03)

+B1(q̄, H2000,K03) + C(q, q,H1003) + 2C(q, q̄,H1003) + 2C(q,H0003, H1100)

+ C(q̄, H0003, H2000) + C1(q, q, q̄,K03) +D(q, q, q̄, H0003) +M2103]. (4.64)
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where the expression for r2103 can be found on the next page. Equations (4.60),(4.61),(4.62),
(4.63) and (4.64) are respectively given by equations (4.42),(4.45),(4.51), (4.52) and (4.58)
for µ = (03). As a result, we can solve for the coefficients γ1,03 and γ2,03 by simply using
system (4.59) for µ = (03). Then H0003 and H1003 can be calculated from respectively the
equations (4.60) and (4.61), where the latter is solved using the corresponding bordered
system (2.10).
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r2103 = 3A1(H2102,K01) + 3A1(H2101,K02) + 3B(H0001, H2102) + 3B(H0002, H2101) + 3B(H1001, H2002)

+ 3B(H1002, H2001) + 6B(H1001, H1102) + 6B(H1002, H1101) + 3A2(H2101,K01,K01)

+ 3A2(H2100,K01,K02) + 6B1(q,H1102,K01) + 6B1(q,H1101,K02) + 3B1(q̄, H2002,K01)

+ 3B1(q̄, H2001,K02) + 6B1(H0001, H2101,K01) + 3B1(H0002, H2100,K01) + 6B1(H1001, H2001,K01)

+ 3B1(H1002, H2000,K01) + 12B1(H1001, H1101,K01) + 6B1(H1002, H1100,K01)

+ 3B1(H0001, H2100,K02) + 3B1(H1001, H2000,K02) + 6B1(H1001, H1100,K02)

+ 6C(q,H0001, H1102) + 6C(q,H0002, H1101) + 6C(q,H1001, H1002) + 6C(q,H1002, H1001)

+ 3C(q̄, H0001, H2002) + 3C(q̄, H0002, H2001) + 6C(q̄, H1001, H1002) + 3C(H0001, H0001, H2101)

+ 3C(H0001, H0002, H2100) + 6C(H0001, H1001, H2001) + 3C(H0001, H1002, H2000)

+ 12C(H0001, H1001, H1101) + 6C(H0001, H1002, H1100) + 3C(H0002, H1001, H2000)

+ 6C(H0002, H1001, H1100) + 6C(H1001, H1001, H1001) +A3(H2100,K01,K01,K01)

+ 6B2(q,H1101,K01,K01) + 6B2(q,H1100,K01,K02) + 3B2(q̄, H2001,K01,K01)

+ 3B2(q̄, H2000,K01,K02) + 3B2(H0001, H2100,K01,K01) + 3B2(H1001, H2000,K01,K01)

+ 6B2(H1001, H1100,K01,K01) + 3C1(q, q,H1002,K01) + 3C1(q, q,H1001,K02)

+ 6C1(q, q̄,H1002,K01) + 6C1(q, q̄,H1001,K02) + 12C1(q,H0001, H1101,K01)

+ 6C1(q,H0002, H1100,K01) + 12C1(q,H1001, H1001, ,K01) + 6C1(q,H0001, H1100,K02)

+ 6C1(q̄, H0001, H2001,K01) + 3C1(q̄, H0002, H2000,K01) + 6C1(q̄, H1001, H1001,K01)

+ 3C1(q̄, H0001, H2000,K02) + 3C1(H0001, H0001, H2100,K01) + 6C1(H0001, H1001, H2000,K01)

+ 12C1(H0001, H1001, H1100,K01) + 3D(q, q,H0001, H1002) + 3D(q, q,H0002, H1001)

+ 6D(q, q̄,H0001, H1002) + 6D(q, q̄,H0002, H1001) + 6D(q,H0001, H0001, H1101)

+ 6D(q,H0001, H0002, H1100) + 12D(q,H0001, H1001, H1001) + 3D(q̄, H0001, H0001, H2001)

+ 3D(q̄, H0001, H0002, H2000) + 6D(q̄, H0001, H1001, H1001) +D(H0001, H0001, H0001, H2100)

+ 3D(H0001, H0001, H1001, H2000) + 6D(H0001, H0001, H1001, H1100)

+ 2B3(q,H1100,K01,K01,K01) +B3(q̄, H2000,K01,K01,K01) + 3C2(q, q, q̄,K01,K02)

+ 3C2(q, q,H1001,K01,K01) + 6C2(q, q̄,H1001,K01,K01) + 6C2(q,H0001, H1100,K01,K01)

+ 3C2(q̄, H0001, H2000,K01,K01) + 3D1(q, q, q̄,H0002,K01) + 3D1(q, q, q̄, H0001,K02)

+ 6D1(q, q,H0001, H1001,K01) + 12D1(q, q̄,H0001, H1001,K01) + 6D1(q,H0001, H0001, H1100,K01)

+ 3D1(q̄, H0001, H0001, H2000,K01) + 3E(q, q, q̄,H0001, H0002) + 3E(q, q,H0001, H0001, H1001)

+ 6E(q, q̄,H0001, H0001, H1001) + 2E(q,H0001, H0001, H0001, H1100)

+ E(q̄, H0001, H0001, H0001, H2000) + C3(q, q, q̄,K01,K01,K01)

+ 3E1(q, q, q̄, H0001, H0001,K01) +K(q, q, q̄, H0001, H0001, H0001).
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4.2 The higher order LPC predictor for ODEs

We approximate the parameter values on the LPC curve by

β1 = d2ε
4 + 2(d3 − a3201d2)ε

6, β2 = −2d2ε
2 + (4a3201d2 − 3d3)ε

4,

for ε > 0. Taking the expansion (4.7) for K, we have the following parameter predictor

α = α0 +K(β1, β2). (4.65)

To approximate the solution in phase space we substitute w = εeiψ into the expansion
(4.6) of H together with the approximations in the β parameters, where it is not necessary
to include the last three terms that are marked grey. Thus, for ψ ∈ [0, 2π] the periodic
orbit can be approximated as

x = x0 +H(εeiψ, εe−iψ, β1, β2). (4.66)

Finally, the period is approximated by equation (3.9),

T = 2π/(ω0 + (ℑ(c1(0))− 2d2b1,01)ε
2 + [d2b1,10 + (4a3201d2 − 3d3)b1,01 + 2d22b1,02

− 2d2b2,01 + ℑ(c2(0))]ε4).



Chapter 5

The predictor for DDEs

5.1 Coefficients of the parameter-dependent normal form
and the predictor in DDEs

We will derive the equations to calculate the coefficients needed in the predictor for DDEs.
We follow the procedure as explained in Section 2.2. Assume that system (2.11) has an
equilibrium at the origin at α = (0, 0) ∈ R2 with only one pair of purely imaginary simple
eigenvalues

λ1,2 = ±iω0, ω0 > 0,

and no other eigenvalues on the imaginary axis. Furthermore, we assume that the first
Lyapunov coefficient l1(0) = 0 and the second Lyapunov coefficient l2(0) ̸= 0. Instead of
eigenvectors, we now have eigenfunctions φ and φ⊙ satisfying

Aφ = iω0φ, A⋆φ⊙ = iω0φ
⊙, ⟨φ⊙, φ⟩ = 1,

where ⟨φ⊙, φ⟩ is given by the pairing (2.15) not to be confused with the Hermitian inner
product. Furthermore, introduce q, p ∈ Cn such that

∆(iω0)q = 0, pT∆(iω0) = 0, pT∆′(iω0)q = 1.

With q and p as above, explicit expressions for the eigenfunctions φ and φ⊙ are respectively
given by equations (2.28) and (2.29). Points y ∈ X0 of the real critical eigenspace can be
represented in terms of the complex coordinate z = ⟨φ⊙, y⟩ as,

y = zφ+ z̄φ̄.

The homological equation (2.23) becomes

A⊙⋆jH(z, z̄, β) + J1K(β)r⊙⋆+R(H(z, z̄, β),K(β))

= j(DzH(z, z̄, β)ż +Dz̄H(z, z̄, β) ˙̄z). (5.1)

Restricted to the two-dimensional center manifold, the system can be transformed into the
same normalform (4.2) with new unfolding parameters β = (β1, β2) if the transversality
condition (3.1) holds. Thus, we take the same truncated normal form:

ż = (iω0 + β1 + ib1(β))z + (β2 + ib2(β))z|z|2 + (c2(0) + g3201β2)z|z|4

+ c3(0)z|z|6, (5.2)

47
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where b1(β) and β2(β) are expanded as (4.3) and (4.4). The nonlinearity in the homological
equation (5.1) is expanded as

R(u, α) = [A1(u, α) +
1

2
B(u, u) +

1

2
J2(α, α) +

1

6
C(u, u, u) +

1

2
B1(u, u, α)

+
1

2
A2(u, α, α) +

1

6
J3(α, α, α) +

1

24
D(u, u, u, u) +

1

6
C1(u, u, u, α) +

1

4
B2(u, u, α, α)

+
1

6
A3(u, α, α, α) +

1

120
E(u, u, u, u, u) +

1

24
D1(u, u, u, u, α) +

1

12
C2(u, u, u, α, α)

+
1

12
B3(u, u, α, α, α) +

1

720
K(u, u, u, u, u, u) +

1

120
E1(u, u, u, u, u, α)

+
1

36
C3(u, u, u, α, α, α) +

1

5040
L(u, u, u, u, u, u, u)]r⊙⋆.

Finally, H is expanded as

H(z, z̄, β) = zφ+ z̄φ̄+

7∑
n+m=2

1

n!m!
Hnm00z

nz̄m +

5∑
n+m=0

Hnm01
1

n!m!
znz̄mβ2

+
3∑

n+m=0

1

n!m!
Hnm10z

nz̄mβ1 +
3∑

n+m=0

1

2n!m!
Hnm02z

nz̄mβ22

+
1∑

n+m=0

1

n!m!
Hnm11z

nz̄mβ1β2 +
1∑

n+m=0

1

6n!m!
Hnm03z

nz̄mβ32

+
1

6
H1103zz̄β

3
2 +

1

12
H2003z

2β32 +
1

12
H2103z

2z̄β32 . (5.3)

In contrast to the ODE case, H is now a mapping into X = C([−h, 0],Rn). Since X
is real, we still have the property that Hijkl = Hjikl. Finally, the relation between the
parametersK is the same as in the ODE case, given by (4.7). The equations collected from
the homological equation (5.1) will essentially have the same form as those we collected
in the ODE case. For the multilinear forms one only needs to change all q to φ and
include an r⊙⋆ after all the multilinear forms. The remaining vectors Hijkl and q outside
the multilinear forms become jHijkl and jφ respectively. However, the solutions to the
equations will look quite different, as we are now solving linear operator equations acting
on elements in X⊙⋆.

In the next two subsections we will derive all the critical normal coefficients and parameter-
dependent coefficients that appear in the parameter approximation of the LPC curve. All
the remaining coefficients needed for the limit cycle approximation on the center manifold
are presented in Appendix B. An overview of all the coefficients is presented in Figure 4.1.

5.1.1 Critical normal form coefficients

For the computation of the critical normal form coefficients up to c2(0) we follow [15].
Collecting the z2, zz̄ and z3 terms from the homological equation (5.1) results in the
following linear systems

(2iω0I −A⊙⋆)jH2000 = B(φ,φ)r⊙⋆,

−A⊙⋆jH1100 = B(φ, φ̄)r⊙⋆,

(3iω0I −A⊙⋆)jH3000 = [3B(φ,H2000) + C(φ,φ, φ)]r⊙⋆.
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All three equations are regular with a right-hand side of the form (w0, w) = (w0, 0). Thus,
applying Corollary 1.1 results in the following solutions

H2000(θ) = e2iω0θ∆−1(2iω0)B(φ,φ), (5.4)

H1100(θ) = ∆−1(0)B(φ, φ̄), (5.5)

H3000(θ) = e3iω0θ∆−1(3iω0)[3B(φ,H2000) + C(φ,φ, φ)]. (5.6)

Collecting the z2z̄ terms will result in the following singular system

(iω0I −A⊙⋆)jH2100 = [2B(φ,H1100) +B(φ̄,H2000) + C(φ,φ, φ̄)]r⊙⋆ − 2c1(0)jφ.

Applying the Fredhom solvability condition to the above system results in

c1(0) =
1

2
⟨[2B(φ,H1100) +B(φ̄,H2000) + C(φ,φ, φ̄)]r⊙⋆, φ⊙⟩.

Here we used that ⟨jφ, φ⊙⟩ = ⟨φ⊙, φ⟩ = 1 which follows from the pairings (2.15) and
(2.18). We can evaluate the above pairing using equation (2.18) and the expression (2.29)
for φ⊙. This results in the following formula

c1(0) =
1

2
pT [2B(φ,H1100) +B(φ̄,H2000) + C(φ,φ, φ̄)].

Finally, to obtain the expression for H2100(θ) we apply Corollary 4 to obtain the unique
solution

H2100(θ) = BINV
iω0

(2B(φ,H1100) +B(φ̄,H2000) + C(φ,φ, φ̄),−2c1(0))(θ)

satisfying ⟨φ⊙, H2100⟩ = 0. Similarly to the first three systems we find for H2200 the
equation

H2200(θ) = ∆−1(0)[2B(φ,H2100) + 2B(φ̄,H2100) +B(H2000, H2000)

+ 2B(H1100, H1100) + C(φ,φ,H2000) + 4C(φ, φ̄,H1100)

+ C(φ̄, φ̄,H2000) +D(φ,φ, φ̄, φ̄)]. (5.7)

To solve for H3100, a bit more caution is required. The z3z̄ terms yield the linear system

(2iω0I −A⊙⋆)jH3100 = [3B(φ,H2100) +B(φ̄,H3000) + 3B(H1100, H2000) + 3C(φ,φ,H1100)

+ 3C(φ, φ̄,H2000) +D(φ,φ, φ, φ̄)]r⊙⋆ − 6c1(0)jH2000.

Notice that the right hand side is of the form (w0, w) with w0 = [. . . ]−6c1(0)H2000(0) and

w(θ) = −6c1(0)H2000(θ) = e2iω0θ∆−1(2iω0)(−6c1(0)B(φ,φ)).

Thus, we can apply Corollary 2 with η = −6c1(0)B(φ,φ) and ξ1 = ξ2 = 0, which yields

H3100(θ) = e2iω0θ∆−1(2iω0)[3B(φ,H2100) +B(φ̄,H3000) + 3B(H1100, H2000)

+ 3C(φ,φ,H1100) + 3C(φ, φ̄,H2000) +D(φ,φ, φ, φ̄)]

− 6c1(0)∆
−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ). (5.8)

Collecting the z3z̄2 terms results in the equation

(iω0I −A⊙⋆)jH3200 = [3B(φ,H2200) + 2B(φ̄,H3100) +B(H2000, H3000) + 6B(H1100, H2100)

+ 3B(H2100, H2000) + 3C(φ,φ,H2100) + 6C(φ, φ̄,H2100) + 3C(φ,H2000, H2000)

+ 6C(φ,H1100, H1100) + C(φ̄, φ̄,H3000) + 6C(φ̄,H1100, H2000) +D(φ,φ, φ,H2000)

+ 6D(φ,φ, φ̄,H1100) + 3D(φ, φ̄, φ̄,H2000) + E(φ,φ, φ, φ̄, φ̄)]r⊙⋆

− (12c2(0)jφ+ 6iℑ(c1(0))jH2100). (5.9)
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Applying the Fredholm solvability condition gives

c2(0) =
1

12
pT [3B(φ,H2200) + 2B(φ̄,H3100) +B(H2000, H3000) + 6B(H1100, H2100)

+ 3B(H2100, H2000) + 3C(φ,φ,H2100) + 6C(φ, φ̄,H2100) + 3C(φ,H2000, H2000)

+ 6C(φ,H1100, H1100) + C(φ̄, φ̄,H3000) + 6C(φ̄,H1100, H2000) +D(φ,φ, φ,H2000)

+ 6D(φ,φ, φ̄,H1100) + 3D(φ, φ̄, φ̄,H2000) + E(φ,φ, φ, φ̄, φ̄)].

We will now proceed by deriving the coefficients that are needed for the computation of
the seventh-order coefficient c3(0). To solve for H3200 let us write equation (5.9) as

(iω0I −A⊙⋆)jH3200 =M3200r
⊙⋆ − 12c2(0)jφ− 6iℑ(c1(0))jH2100,

where we write M3200 for the term that contains all the multilinear forms. We can now
use the linearity of the bordered inverse to apply Corollaries 4 and 6 to find the solution

H3200(θ) = BINV
iω0

(M3200,−12c2(0))(θ)− 6iℑ(c1(0))B̃INV
iω0

(H2100,−2c1(0))(θ),

satisfying ⟨φ⊙, H3200⟩ = 0. Solving for the expressions of the coefficients H4000, H4100 and
H3300 is similar to how we solved for H3100 with the application of Corollary 2. This
results in the following expressions

H4000(θ) = e4iω0θ∆−1(4iω0)[4B(φ,H3000) + 3B(H2000, H2000)

+ 6C(φ,φ,H2000) +D(φ,φ, φ, φ)], (5.10)

H4100(θ) = e3iω0θ∆−1(3iω0)[4B(φ,H3100) +B(φ̄,H4000) + 4B(H1100, H3000)

+ 6B(H2000, H2100) + 6C(φ,φ,H2100) + 4C(φ, φ̄,H3000)

+ 12C(φ,H1100, H2000) + 3C(φ̄,H2000, H2000) + 4D(φ,φ, φ,H1100)

+ 6D(φ,φ, φ̄,H2000) + E(φ,φ, φ, φ, φ̄)]

− 12c1(0)∆
−1(3iω0)[∆

′(3iω0)− θ∆(3iω0)]H3000(θ), (5.11)

and

H3300(θ) = ∆−1(0)[3B(φ,H3200) + 3B(φ̄,H3200) + 3B(H2000, H3100) +B(H3000, H3000)

+ 9B(H1100, H2200) + 9B(H2100, H2100) + 3B(H3100, H2000)

+ 3C(φ,φ,H3100) + 9C(φ, φ̄,H2200) + 9C(φ,H2000, H2100)

+ 3C(φ,H3000, H2000) + 18C(φ,H1100, H2100) + 3C(φ̄, φ̄,H3100)

+ 3C(φ̄,H2000, H3000) + 18C(φ̄,H1100, H2100) + 9C(φ̄,H2100, H2000)

+ 9C(H2000, H1100, H2000) + 6C(H1100, H1100, H1100) +D(φ,φ, φ,H3000)

+ 9D(φ,φ, φ̄,H2100) + 9D(φ,φ,H2000, H1100) + 9D(φ, φ̄, φ̄,H2100)

+ 9D(φ, φ̄,H2000, H2000) + 18D(φ, φ̄,H1100, H1100) +D(φ̄, φ̄, φ̄,H3000)

+ 9D(φ̄, φ̄,H1100, H2000) + 3E(φ,φ, φ, φ̄,H2000) + 9E(φ,φ, φ̄, φ̄,H1100)

+ 3E(φ, φ̄, φ̄, φ̄,H2000) +K(φ,φ, φ, φ̄, φ̄, φ̄)]

− 72d2∆
−1(0)[∆′(0)− θ∆(0)]H1100(θ). (5.12)

ForH4200 we need to be more careful. The equation that has to be solved is of the following
form

(2iω0I −A⊙⋆)jH4200 =M4200r
⊙⋆ − 48c2(0)jH2000 − 16c1(0)jH3100, (5.13)
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where we use M4200 to denote the mulitilinear forms. Using the linearity of the inverse
operator, we can apply Corollary 2 for the first two terms. Then to determine the inverse
of the last term, we apply Corollary 3 with M = M3100, η̂ = −6c1(0)H2000(0) and ξ̂ = 0.
This results in the following expression

H4200(θ) = e2iω0θ∆−1(2iω0)[4B(φ,H3200) + 2B(φ̄,H4100)

+B(H2000, H4000) + 8B(H1100, H3100) + 4B(H2100, H3000)

+ 6B(H2000, H2200) + 6B(H2100, H2100) + 6C(φ,φ,H2200)

+ 8C(φ, φ̄,H3100) + 4C(φ,H2000, H3000) + 24C(φ,H1100, H2100)

+ 12C(φ,H2100, H2000) + C(φ̄, φ̄,H4000) + 8C(φ̄,H1100, H3000)

+ 12C(φ̄,H2000, H2100) + 3C(H2000, H2000, H2000) + 12C(H1100, H1100, H2000)

+ 4D(φ,φ, φ,H2100) + 12D(φ,φ, φ̄,H2100) + 6D(φ,φ,H2000, H2000)

+ 12D(φ,φ,H1100, H1100) + 4D(φ, φ̄, φ̄,H3000) + 24D(φ, φ̄,H1100, H2000)

+ 3D(φ̄, φ̄,H2000, H2000) + E(φ,φ, φ, φ,H2000) + 8E(φ,φ, φ, φ̄,H1100)

+ 6E(φ,φ, φ̄, φ̄,H2000) +K(φ,φ, φ, φ, φ̄, φ̄)]

− 48c2(0)∆
−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ)

− 16c1(0)e
2iω0θ∆−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H3100(0)

+ 3c1(0)[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
. (5.14)

The third Lyapunov coefficient is derived from the system

(iω0I −A⊙⋆)jH4300 =M4300r
⊙⋆ − (144c3(0)jφ+ 72(2c2(0) + c2(0))jH2100

+ 12iℑ{c1(0)}jH3200), (5.15)

where M4300 is given by the same expression as in (4.21) but with all vectors q changed
to functions φ. Applying the Fredholm solvability condition to equation (5.15) will then
result in

c3(0) =
1

144
pTM4300,

where we used that ⟨φ⊙, H2100⟩ = 0 and ⟨φ⊙, H3200⟩ = 0.

5.1.2 Parameter-related coefficients

Linear coefficients K10,K01 To find the equations from which we can solve forK10,K01,
we follow the same steps as in the ODE case. Collecting the β1 and β2 terms in (5.1) yields
for µ = (10), (01) the systems

−A⊙⋆jH00µ = J1Kµr
⊙⋆. (5.16)

Write
Kµ = γ1,µe1 + γ2,µe2, (5.17)

for unknown γ1,µ, γ2,µ ∈ R and e1, e2 ∈ R2 the standard basis vectors. Substituting
equation (5.17) into (5.16) and applying Corollary 1.1 results in

H00µ(θ) = γ1,µ∆
−1(0)J1e1 + γ2,µ∆(0)−1J1e2. (5.18)

The β1z and β2z terms yield the systems

(iω0I −A⊙⋆)jH10µ = [A1(φ,Kµ) +B(φ,H00µ)]r
⊙⋆ − (δ10µ + ib1,µ)jφ, (5.19)
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where δ10µ is defined as in (4.24). Define Γi(φ) = A1(φ, ei)+B(φ,∆−1(0)J1ei). Substituting
equations (5.17) and (5.18) into equation (5.19) then yields

(iω0I −A⊙⋆)jH10µ = γ1,µΓ1(φ)r
⊙⋆ + γ2,µΓ2(φ)r

⊙⋆ − (δ10µ + ib1,µ)jφ. (5.20)

Applying the Fredholm solvability condition to equation (5.20) results in

δ10µ + ib1,µ = pT [γ1,µΓ1(φ) + γ2,µΓ2(φ)]. (5.21)

Taking the real and imaginary parts yield

δ10µ = γ1,µℜ[pTΓ1(φ)] + γ2,µℜ[pTΓ2(φ)], (5.22)

and
b1,µ = γ1,µℑ[pTΓ1(φ)] + γ2,µℑ[pTΓ2(φ)]. (5.23)

A solution H10µ of equation (5.20) satisfying ⟨φ⊙, H10µ⟩ = 0 can be obtained with Corol-
lary 4. Using the linearity of the bordered inverse we can write the solution as

H10µ(θ) = γ1,µB
INV
iω0

(Γ1(φ), 0) + γ2,µB
INV
iω0

(Γ2(φ), 0)− (δ10µ + ib1,µ)B
INV
iω0

(0, 1). (5.24)

Collecting the z2βi and zz̄βi terms respectively yield the systems

(2iω0I −A⊙⋆)jH20µ = [A1(H2000,Kµ) + 2B(φ,H10µ) +B(H00µ, H2000)

+B1(φ,φ,Kµ) + C(φ,φ,H00µ)]r
⊙⋆ − 2(δ10µ + ib1,µ)jH2000,

−A⊙⋆jH11µ = [A1(H1100,Kµ) + 2ℜ{B(φ̄,H10µ)}+B(H00µ, H1100)

+B1(φ, φ̄,Kµ) + C(φ, φ̄,H00µ)]r
⊙⋆ − 2δ10µ jH1100.

Both these systems are regular and their solutions follow from Corollary 2. The resulting
equations are

H20µ(θ) = e2iω0θ∆−1(2iω0)[A1(H2000,Kµ) + 2B(φ,H10µ) +B(H00µ, H2000)

+B1(φ,φ,Kµ) + C(φ,φ,H00µ)]

− 2(δ10µ + ib1,µ)∆
−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ), (5.25)

H11µ(θ) = ∆−1(0)[A1(H1100,Kµ) + 2ℜ(B(φ̄,H10µ)) +B(H00µ, H1100)

+B1(φ, φ̄,Kµ) + C(φ, φ̄,H00µ)]− 2δ10µ ∆−1(0)[∆′(0)− θ∆(0)]H1100(θ), (5.26)

Substituting equations (5.17), (5.18) and (5.24) into these expressions yields

H20µ(θ) = γ1,µe
2iω0θ∆−1(2iω0)Λ1(H2000, φ, φ) + γ2,µe

2iω0θ∆−1(2iω0)Λ2(H2000, φ, φ)

− 2(δ10µ + ib1,µ)∆
−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H2000(θ) + e2iω0θB

(
φ,BINV

iω0
(0, 1)

))
,

H11µ(θ) = γ1,µ∆
−1(0)Π1(H1100, φ̄, φ) + γ2,µ∆

−1(0)Π2(H1100, φ̄, φ)

− 2δ10µ ∆−1(0)
(
[∆′(0)− θ∆(0)]H1100(θ) + ℜ

{
B
(
φ̄, BINV

iω0
(0, 1)

)})
− 2b1,µ∆

−1(0)ℜ
{
iB
(
φ̄, BINV

iω0
(0, 1)

)}
,

where we defined

Λi(u, v, w) = Γi(u) + 2B
(
v,BINV

iω0
(Γi(w), 0)

)
+B1(v, w, ei) + C(v, w,∆−1(0)J1ei),

Πi(u, v, w) = Γi(u) + 2ℜ{B
(
v,BINV

iω0
(Γi(w), 0)

)
}+B1(v, w, ei) + C(v, w,∆−1(0)J1ei).
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The z2z̄βi terms yield the systems

(iω0I −A⊙⋆)jH21µ = [A1(H2100,Kµ) + 2B(φ,H11µ) +B(φ̄,H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(φ,H1100,Kµ) +B1(φ̄,H2000,Kµ)

+ C(φ,φ,H10µ) + 2C(φ, φ̄,H10µ) + 2C(φ,H00µ, H1100) + C(φ̄,H00µ, H2000)

+ C1(φ,φ, φ̄,Kµ) +D(φ,φ, φ̄,H00µ)]r
⊙⋆

− [2(δ01µ + ib2,µ)jφ+ (3δ10µ + ib1,µ)jH2100 + 2c1(0)jH10µ]. (5.27)

Applying the Fredholm Alternative to equation (5.27) results in the equation

δ01µ + ib2,µ =
1

2
pT [A1(H2100,Kµ) + 2B(φ,H11µ) +B(φ̄,H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(φ,H1100,Kµ) +B1(φ̄,H2000,Kµ)

+ C(φ,φ,H10µ) + 2C(φ, φ̄.H10µ) + 2C(φ,H00µ, H1100) + C(φ̄,H00µ, H2000)

+ C1(φ,φ, φ̄,Kµ) +D(φ,φ, φ̄,H00µ)], (5.28)

where we used that ⟨φ⊙, H2100⟩ = 0 and ⟨φ⊙, H10µ⟩ = 0. If we substitute the expressions
for H00µ, H10µ, H20µ, H11µ, Kµ and b1,µ into equation (5.28), we can solve for γ1,µ and γ2,µ.

After substitution and some rewriting we arrive at the following system

P

(
γ1,µ
γ2,µ

)
= Qµ, (5.29)

where P ∈ R2×2 has for k = 1, 2 the compenents

P1k = ℜ[pTΓk(φ)], (5.30)

P2k =
1

2
ℜ
{
pT
[
Γk(H2100) + 2B

(
φ,∆−1(0)Πk(H1100, φ̄, φ)

)
+B

(
φ̄, e2iω0θ∆−1(2iω0)Λk(H2000, φ, φ)

)
+B

(
H2000, BINV

iω0
(Γk(φ), 0)

)
+ 2B

(
H1100, B

INV
iω0

(Γk(φ), 0)
)
+ 2B1(φ,H1100, ek) +B1(φ̄,H2000, ek)

+ C
(
φ,φ,BINV

iω0
(Γk(φ), 0)

)
+ 2C

(
φ, φ̄, BINV

iω0
(Γk(φ), 0)

)
+ 2C

(
φ,H1100,∆

−1(0)J1ek
)

+ C(φ̄,H2000,∆
−1(0)J1ek) + C1(φ,φ, φ̄, ek) +D(φ,φ, φ̄,∆−1(0)J1ek)

+ ℑ[pTΓk(φ)]
(
−2iB

(
φ̄,∆−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ)
)

− 2iB
(
φ̄, e2iω0θ∆−1(2iω0)B

(
φ,BINV

iω0
(0, 1)

))
− 4B

(
φ,∆−1(0)ℜ[iB

(
φ̄, BINV

iω0
(0, 1)

)
]
)

+iB
(
H2000, BINV

iω0
(0, 1)

)
− 2iB

(
H1100, B

INV
iω0

(0, 1)
)
+ iC

(
φ,φ,BINV

iω0
(0, 1)

)
− 2iC

(
φ, φ̄, BINV

iω0
(0, 1)

))]}
, (5.31)

and Qµ ∈ R2 with µ = (10), (01) is given by

Q1,µ = δ10µ , (5.32)

Q2,µ = δ01µ +
1

2
δ10µ ℜ

{
pT
[
4B
(
φ,∆−1(0)[∆′(0)− θ∆(0)]H1100(θ)

)
+ 2B

(
φ̄,∆−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ)
)

+ 4B
(
φ,∆−1(0)ℜ

{
B
(
φ̄, BINV

iω0
(0, 1)

)})
+ 2B

(
φ̄, e2iω0θ∆−1(2iω0)B

(
φ,BINV

iω0
(0, 1)

))
+B

(
H2000, BINV

iω0
(0, 1)

)
+ 2B

(
H1100, B

INV
iω0

(0, 1)
)
+ C

(
φ,φ,BINV

iω0
(0, 1)

)
+ 2C

(
φ, φ̄, BINV

iω0
(0, 1)

)]}
. (5.33)
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Compared to equations (4.37) and (4.39) for ODEs we see that there are quite some simi-
larities. If we consider all the terms that do not contain BINV

iω0
(0, 1), we see that the

same multilinear forms are present. Where we had matrix inverses A−1 and A−1
2iω0

for
the ODE system, these are now replaced by functions of θ containing the inverse of the
characteristic matrix ∆−1(λ). Then, we also have some extra multilinear forms containing
the bordered inverse BINV

iω0
(0, 1). Compared to the ODE equations, this replaces the term

AINViω0
q which we showed to equal zero. Consequently, all the multilinear forms containing

AINViω0
q vanish. Finally, notice that instead of p̄T we have pT everywhere. This is because

we now work with the pairing (2.18), which is different from the complex inner product.

To summarise, we first compute the linear coefficients K10 and K01 by solving system
(5.29). Then we can determine the coefficients H00µ from equation (5.18),b1,µ from equa-
tion (5.23) and H10µ from equation (5.24). Once we have these, the coefficients H20µ and
H11µ can respectively be calculated from equations (5.25) and (5.26). The coefficient b2,01
is determined from the imaginary part of equation (5.28). Finally, we will also need H2101

and H2110 for what follows. The solution to equation (5.27) can be found by separately
applying Corollaries 4 and 6. Denote the part containing all the multilinear forms in
equation (5.27) by M21µ. This results in the equation

H21µ(θ) = BINV
iω0

(M21µ,−2(δ01µ + ib2,µ))(θ)− (3δ10µ + ib1,µ)B̃
INV
iω0

(H2100,−2c1(0))(θ)

− 2c1(0)B̃
INV
iω0

(H10µ,−(δ10µ + ib1,µ))(θ), µ = (01), (10).

The coefficient a3201 As in the ODE case, to determine the coefficient a3201 we first
need the coefficients H3001, H3101 and H2201. These can be found by collecting the z3β2,
z3z̄β2 and z2z̄2β2 terms from the homological equation (5.1). For convenience, we will
write Mijkl for the term containing all the multilinear forms as these are the same as in
the corresponding equations for ODEs after changing q to φ. The equations for H3001 and
H2201 follow from Corollary 2. This results in the expressions

H3001(θ) = e3iω0θ∆−1(3iω0)M3001 − 3ib1,01∆
−1(3iω0)[∆

′(3iω0)− θ∆(3iω0)]H3000(θ),

H2201(θ) = ∆−1(0)M2201 − 8∆−1(0)[∆′(0)− θ∆(0)]H1100(θ).

For H3101, we need to be more careful. The z3z̄β2 terms yield the equation

(2iω0I −A⊙⋆)jH3101 =M3101r
⊙⋆ − 6(1 + ib2,01)jH2000 − 6c1(0)jH2001 − 2ib1,01jH3100.

To solve for H3101, we can separately apply Corollary 2 for the part M3101r
⊙⋆ − 6(1 +

ib2,01)jH2000 and Corollary 3 for the last two terms. This yields the following solution

H3101(θ) = e2iω0θ∆−1(2iω0)M3101 − 6(1 + ib2,01)∆
−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ)

− 6c1(0)e
2iω0θ∆−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H2001(0)

+ ib1,01[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
− 2ib1,01e

2iω0θ∆−1(2iω0)
(
[∆′(2iω0)− θ∆(2iω0)]H3100(0)

+ 3c1(0)[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
. (5.34)

Finally, collecting the z3z̄2β2 terms results in the following equation

(iω0I −A⊙⋆)jH3201 =M3201r
⊙⋆ − [12g3201jφ+ 12c2(0)jH1001 + (18 + 6ib2,01)jH2100

+ 6iℑ{c1(0)}jH2101 + ib1,01jH3200]. (5.35)
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The coefficient a3201 can now be found by applying the Fredholm solvability condition to
equation (5.35) and then taking the real part. Thus

a3201 =
1

12
ℜ
{
pTM3201

}
. (5.36)

Quadratic coefficients K02,K11, b1,02 In the ODE case, we put all of the terms that
contained known coefficients into a rest term rijkl. Since the multilinear forms in rijkl
will be the same for DDEs but with q changed to φ, we will indicate those with Mijkl.
Collecting the β22 and β1β2 terms from (5.1) yields for µ = (02), (11) the equations

−A⊙⋆jH00µ = [J1Kµ +M00µ]r
⊙⋆. (5.37)

Let e1, e2 ∈ R2 be the standard basis vectors and write

Kµ = γ1,µe1 + γ2,µe2, (5.38)

where γ1,µ, γ1,µ ∈ R are unknown constants that need to be determined. From equation
(5.37) it follows after applying Corollary 1.1 that

H00µ(θ) = γ1,µ∆
−1(0)J1e1 + γ2,µ∆

−1(0)J1e2 +∆−1(0)M00µ. (5.39)

The zβ22 and zβ1β2 terms yield for µ = (02), (11) the equations

(iω0I −A⊙⋆)jH10µ = [A1(φ,Kµ) +B(φ,H00µ)]r
⊙⋆ − ib1,µjφ+ r10µ, (5.40)

where

r1002 =M1002r
⊙⋆ − 2ib1,01jH1001,

r1011 =M1011r
⊙⋆ − (1 + ib1,10)jH1001 − ib1,01jH1010.

Applying the Fredholm alternative to equations (5.40) yields the equations

ib1,µ = pT [A1(φ,Kµ) +B(φ,H00µ) +M10µ]. (5.41)

Here we used that ⟨φ⊙, H1010⟩ = ⟨φ⊙, H1001⟩ = 0. Substituting equations (5.38) and (5.39)
into equation (5.41) results in

ib1,µ = pT [γ1,µΓ1(φ) + γ2,µΓ2(φ) + M̃10µ], (5.42)

where

M̃10µ = B(φ,∆−1(0)M00µ) +M10µ.

From equation (5.44), it follows that

γ1,µℜ[pTΓ1(φ)] + γ2,µℜ[pTΓ2(φ)] = −ℜ{pT M̃10µ}, (5.43)

and

b1,µ = γ1,µℑ[pTΓ1(φ)] + γ2,µℑ[pTΓ2(φ)] + ℑ{pT M̃10µ}. (5.44)

Furthermore, applying corollaries 4 and 6 to equations (5.40) yields for µ = (02), (11) the
solutions

H10µ(θ) = γ1,µB
INV
iω0

(Γ1(φ), 0)(θ) + γ2,µB
INV
iω0

(Γ2(φ), 0)(θ)

− ib1,µB
INV
iω0

(0, 1)(θ) +B10µ(θ), (5.45)
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where

B1002(θ) = BINV
iω0

(M̃1002, 0)(θ)− 2ib1,01B̃
INV
iω0

(H1001,−ib1,01)(θ),
B1011(θ) = BINV

iω0
(M̃1011, 0)(θ)− (1 + ib1,10)B̃

INV
iω0

(H1001,−ib1,01)(θ)
− ib1,01B̃

INV
iω0

(H1010,−(1 + ib1,10))(θ).

Here Corollary 6 was used for the terms with jH1001, jH1010. Now collect the z2βµ terms
for µ = (02), (11). These terms yield the equations

(2iω0I −A⊙⋆)jH20µ = [A1(H2000,Kµ) + 2B(φ,H10µ) +B(H00µ, H2000)

+B1(φ,φ,Kµ) + C(φ,φ,H00µ)]r
⊙⋆ − 2ib1,µjH2000 + r20µ, (5.46)

where

r2002 =M2002r
⊙⋆ − 4ib1,01jH2001,

r2011 =M2011r
⊙⋆ − 2(1 + ib1,10)jH2001 − 2ib1,01jH2010.

Using Corollaries 1 and 3, we find that the solutions to equations (5.46) are

H2002(θ) = e2iω0θ∆−1(2iω0)[A1(H2000,K02) + 2B(φ,H1002) +B(H0002, H2000)

+B1(φ,φ,K02) + C(φ,φ,H0002) +M2002]

− 2ib1,02∆
−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ)

− 4ib1,01e
2iω0θ∆−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H2001(0)

+ ib1,01[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
, (5.47)

H2011(θ) = e2iω0θ∆−1(2iω0)[A1(H2000,K11) + 2B(φ,H1011) +B(H0011, H2000)

+B1(φ,φ,K11) + C(φ,φ,H0011) +M2011]

− 2ib1,11∆
−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ)

− 2(1 + ib1,10)e
2iω0θ∆−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H2001(0)

+ ib1,01[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
− 2ib1,01e

2iω0θ∆−1(2iω0)
(
[∆′(2iω0)− θ∆(2iω0)]H2010(0)

+ (1 + ib1,10)[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
. (5.48)

Substituting equations (5.38), (5.39) and (5.45) into the above expressions result in

H20µ(θ) = γ1,µe
2iω0θ∆−1(2iω0)Λ1(H2000, φ, φ) + γ2,µe

2iω0θ∆−1(2iω0)Λ2(H2000, φ, φ)

− 2ib1,µ∆
−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H2000(θ) + e2iω0θB

(
φ,BINV

iω0
(0, 1)

))
+ e2iω0θ∆−1(2iω0)r̃20µ(θ), (5.49)
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where we have for µ = (02), (11):

r̃2002(θ) =M2002 + 2B(φ,B1002) +B(H2000,∆
−1(0)M0002) + C(φ,φ,∆−1(0)M0002)

− 4ib1,01

(
[∆′(2iω0)− θ∆(2iω0)]H2001(0)

+ ib1,01[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
,

r̃2011(θ) =M2011 + 2B(φ,B1011) +B(H2000,∆
−1(0)M0011) + C(φ, φ̄,∆−1(0)M0011)

− 2(1 + ib1,10)
(
[∆′(2iω0)− θ∆(2iω0)]H2001(0)

+ ib1,01[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
− 2ib1,01

(
[∆′(2iω0)− θ∆(2iω0)]H2010(0)

+ (1 + ib1,10)[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
.

Similarly, collecting the zz̄βµ terms for µ = (02), (11) yield the equations

−A⊙⋆jH11µ = [A1(H1100,Kµ) + 2ℜ (B(φ̄,H10µ)) +B(H00µ, H1100)

+B1(φ, φ̄,Kµ) + C(φ, φ̄,H00µ)]r
⊙⋆ + r11µ, (5.50)

where

r1102 =M1102r
⊙⋆ and r1111 =M1111r

⊙⋆ − 2jH1101.

Using Corollary 2, we find that the solutions to equations (5.50) are

H1102(θ) = ∆−1(0)[A1(H1100,K02) + 2ℜ (B(φ̄,H1002)) +B(H0002, H1100)

+B1(φ, φ̄,K02) + C(φ, φ̄,H0002) +M1102], (5.51)

H1111(θ) = ∆−1(0)[A1(H1100,K11) + 2ℜ (B(φ̄,H1011)) +B(H0011, H1100)

+B1(φ, φ̄,K11) + C(φ, φ̄,H0011) +M1111]

− 2∆−1(0)[∆′(0)− θ∆(0)]H1101(θ). (5.52)

Substituting equations (5.38), (5.39) and (5.45) into the above expressions result in

H11µ(θ) = γ1,µ∆
−1(0)Π1(H1100, φ̄, φ) + γ2,µ∆

−1(0)Π1(H1100, φ̄, φ)

− 2b1,µ∆
−1(0)ℜ

{
iB(
(
φ̄, BINV

iω0
(0, 1)

)}
+∆−1(0)r̃11µ(θ), (5.53)

where r̃11µ is given for µ = (02), (11) by

r̃1102(θ) =M1102 + 2ℜ{B(φ̄, B1002)}+B(H1100,∆
−1(0)M0002) + C(φ, φ̄,∆−1(0)M0002),

r̃1111(θ) =M1111 + 2ℜ{B(φ̄, B1011)}+B(H1100,∆
−1(0)M0011) + C(φ, φ̄,∆−1(0)M0011)

− 2[∆′(0)− θ∆(0)]H1101(θ).

The z2z̄βµ terms yield for µ = (02), (11) the equations

(iω0I −A⊙⋆)jH21µ = [A1(H2100,Kµ) + 2B(φ,H11µ) +B(φ̄,H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(φ,H1100,Kµ)

+B1(φ̄,H2000,Kµ) + C(φ,φ,H10µ) + 2C(φ, φ̄,H10µ) + 2C(φ,H00µ, H1100)

+ C(φ̄,H00µ, H2000) + C1(φ,φ, φ̄,Kµ) +D(φ,φ, φ̄,H00µ) + r21µ]r
⊙⋆

− (2ib2,µjφ+ ib1,µjH2100 + 2c1(0)jH10µ), (5.54)
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where

r2102 =M2102r
⊙⋆ − [4(1 + ib2,01)jH1001 + 2ib1,01jH2101],

r2111 =M2111r
⊙⋆ − [2ib2,10jH1001 + 2(1 + ib2,01)jH1010 + (3 + ib1,10) jH2101 + ib1,01jH2110].

Applying the Fredholm solvabitlity condition to the equation (5.54) results for µ =
(02), (11) in the equations

b2,µi =
1

2
pT [A1(H2100,Kµ) + 2B(φ,H11µ) +B(φ̄,H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(φ,H1100,Kµ)

+B1(φ̄,H2000,Kµ) + C(φ,φ,H10µ) + 2C(φ, φ̄,H10µ) + 2C(φ,H00µ, H1100)

+ C(φ̄,H00µ, H2000) + C1(φ,φ, φ̄,Kµ) +D(φ,φ, φ̄,H00µ) +M21µ], (5.55)

Finally, substitute equations (5.38), (5.39), (5.45), (5.49) and (5.53) into the above expres-
sion and solve for the coefficients γ1,µ,γ2,µ. We arrive at the following system

P

(
γ1,µ
γ2,µ

)
= Qµ, (5.56)

where the components of P ∈ R2×2 are given by equations (5.30) and (5.31) for µ =
(02), (11). Meanwhile, the components of Qµ ∈ R2 are

Q1,µ = −ℜ{pT M̃10µ},

Q2,µ = −1

2
ℜ
{
pT
[
2B
(
φ,∆−1(0)r̃11µ

)
+B

(
φ̄, e2iω0θ∆−1(2iω0)r̃20µ

)
+B

(
H2100,∆

−1(0)M00µ

)
+B

(
H2000, B10µ

)
+ 2B (H1100, B10µ)

+ C
(
φ,φ,B10µ

)
+ 2C (φ, φ̄, B10µ) + 2C

(
φ,H1100,∆

−1(0)M00µ

)
+ C

(
φ̄,H2000,∆

−1(0)M00µ

)
+D

(
φ,φ, φ̄,∆−1(0)M00µ

)
+M21µ

+ ℑ{pT M̃10µ}
(
−4B

(
φ,∆−1(0)ℜ[iB

(
φ̄, BINV

iω0
(0, 1)

)
]
)

− 2iB
(
φ̄,∆−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H2000(θ) + e2iω0θB

(
φ,BINV

iω0
(0, 1)

)))
+iB

(
H2000, BINV

iω0
(0, 1)

)
− 2iB

(
H1100, B

INV
iω0

(0, 1)
)
+ iC

(
φ,φ,BINV

iω0
(0, 1)

)
− 2iC

(
φ, φ̄, BINV

iω0
(0, 1)

))]}
.

Thus, to obtain the quadratic coefficients K02 and K11 we solve system (5.56). Once
these coefficients are known, one can calculate the coefficients H00µ,b1,µ and H10µ from
respectively the equations (5.39),(5.44) and (5.45). Then, the coefficients H2002 and H1102

are calculated from respectively the equations (5.47) and (5.51). Finally, the coefficient
H2102, needs to be determined from system (5.54). This can be achieved by a piecewise
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application of Corollaries 4, 6 and 7.

H2102(θ) = BINV
iω0

(A1(H2100,Kµ) + 2B(φ,H11µ) +B(φ̄,H20µ) +B(H00µ, H2100)

+B(H10µ, H2000) + 2B(H10µ, H1100) + 2B1(φ,H1100,Kµ)

+B1(φ̄,H2000,Kµ) + C(φ,φ,H10µ) + 2C(φ, φ̄,H10µ) + 2C(φ,H00µ, H1100)

+ C(φ̄,H00µ, H2000) + C1(φ,φ, φ̄,Kµ) +D(φ,φ, φ̄,H00µ) +M2102,−2ib2,02)(θ)

− ib1,02B̃
INV
iω0

(H2100,−2c1(0))(θ)− 4(1 + ib2,01)B̃
INV
iω0

(H1001,−ib1,01)(θ)
− 2c1(0)B̂

INV
iω0

(H1002,−[ib1,02q + 2ib1,01H1001(0)],−2b21,01)

− 2ib1,01B̂
INV
iω0

(H2101,−[2(1 + ib2,01)q + ib1,01H2100(0) + 2c1(0)H1001(0)], 4ic1(0)b1,01)(θ).

The coefficient K03 Collecting the β32 terms yields the equation

−A⊙⋆jH0003 = [J1K03 +M0003]r
⊙⋆. (5.57)

With e1, e2 ∈ R2 the standard basis vectors and γ1,03, γ2,03 ∈ R we write

K03 = γ1,03e1 + γ2,03e2. (5.58)

The solution to equation (5.57) follows from Corollary 1.1 and is given by

H0003(θ) = γ1,03∆
−1(0)J1e1 + γ2,03∆

−1(0)J1e2 +∆−1(0)M0003. (5.59)

The zβ32 terms yield the equation

(iω0I −A⊙⋆)jH1003 = [A1(φ,K03) +B(φ,H0003)]r
⊙⋆ − ib1,03jφ+ r1003, (5.60)

where

r1003 =M1003r
⊙⋆ − 3ib1,02jH1001 − 3ib1,01jH1002.

Applying the Fredholm solvability condition to equation (5.60), after substituting equa-
tions (5.58) and (5.59), yields the following expression:

ib1,03 = γ1,03p
TΓ1(φ) + γ2,03p

TΓ2(φ) + pT M̃1003, (5.61)

where

M̃1003 = B(φ,∆−1(0)M0003) +M1003.

To solve for H1003 from equation (5.60), we apply Corollaries 4, 6 and 7. The result is:

H1003(θ) = γ1,03B
INV
iω0

(Γ1(φ), 0)(θ) + γ2,03B
INV
iω0

(Γ2(φ), 0)(θ)

− ib1,03B
INV
iω0

(0, 1)(θ) +B1003(θ), (5.62)

where

B1003(θ) = BINV
iω0

(M̃1003, 0)(θ)− 3ib1,02B̃
INV
iω0

(H1001,−ib1,01)(θ)
− 3ib1,01B̂

INV
iω0

(H1002,−[ib1,02q + 2ib1,01H1001(0)],−2b21,01)(θ).
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Collecting the z2β32 and zz̄β32 terms yields the equations:

(2iω0I −A⊙⋆)jH2003 = [A1(H2000,K03) + 2B(φ,H1003) +B(H0003, H2000) (5.63)

+B1(φ,φ,K03) + C(φ,φ,H0003)]r
⊙⋆ − 2ib1,03jH2000 + r2003,

−A⊙⋆jH1103 = [A1(H1100,K03) + 2ℜ(B(φ̄,H1003)) +B(H0003, H1100)

+B1(φ, φ̄,K03) + C(φ, φ̄,H0003)]r
⊙⋆ + r1103, (5.64)

where

r2003 =M2003r
⊙⋆ − (6ib1,02jH2001 + 6ib1,01jH2002) and r1103 =M1103r

⊙⋆.

To solve equation (5.63), we apply Corollary 1.1 for the terms containing the multilinear
forms and Corollary 3 to the remaining terms. This yields the following solution:

H2003(θ) = e2iω0θ∆−1(2iω0)[A1(H2000,K03) + 2B(φ,H1003) +B(H0003, H2000) (5.65)

+B1(φ,φ,K03) + C(φ,φ,H0003) +M2003]

− 2ib1,03∆
−1(2iω0)[∆

′(2iω0)− θ∆(2iω0)]H2000(θ)

− 6ib1,02e
2iω0θ∆−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H2001(0)

+ ib1,01[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
− 6ib1,01e

2iω0θ∆−1(2iω0)
(
[∆′(2iω0)− θ∆(2iω0)]H2002(0)

+ [∆′′(2iω0)− θ2∆(2iω0)](ib1,02H2000(0) + 2ib1,01H2001(0))

− 4

3
b21,01[∆

′′′(2iω0)− θ3∆(2iω0)]H2000(0)
)
, (5.66)

Since the right-hand side of equation (5.64) is of the form (w0, 0), the solution for H1103

is obtained by simply applying Corollary 1.1. This results in the equation:

H1103(θ) = ∆−1(0)[A1(H1100,K03) + 2ℜ(B(φ̄,H1003)) +B(H0003, H1100)

+B1(φ, φ̄,K03) + C(φ, φ̄,H0003) +M1103]. (5.67)

Substituting equations (5.58), (5.59), and (5.62) into equations (5.68) and (5.69) result in:

H2003(θ) = γ1,03e
2iω0θ∆−1(2iω0)Λ1(H2000, φ, φ) + γ2,03e

2iω0θ∆−1(2iω0)Λ2(H2000, φ, φ)

− 2ib1,03∆
−1(2iω0)

(
[∆′(2iω0)− θ∆(2iω0)]H2000(θ) + e2iω0θB

(
φ,BINV

iω0
(0, 1)

))
+ e2iω0θ∆−1(2iω0)r̃2003, (5.68)

H1103(θ) = γ1,03∆
−1(0)Π1(H1100, φ̄, φ) + γ2,03∆

−1(0)Π1(H1100, φ̄, φ)

− 2b1,03∆
−1(0)ℜ

{
iB(
(
φ̄, BINV

iω0
(0, 1)

)}
+∆−1(0)r̃1103, (5.69)

where we have

r̃2003 =M2003 + 2B(φ,B1003) +B(H2000,∆
−1(0)M0003) + C(φ, φ̄,∆−1(0)M0003)

− 6ib1,02

(
[∆′(2iω0)− θ∆(2iω0)]H2001(0)

+ ib1,01[∆
′′(2iω0)− θ2∆(2iω0)]H2000(0)

)
− 6ib1,01

(
[∆′(2iω0)− θ∆(2iω0)]H2002(0)

+ [∆′′(2iω0)− θ2∆(2iω0)](ib1,02H2000(0) + 2ib1,01H2001(0))

− 4

3
b21,01[∆

′′′(2iω0)− θ3∆(2iω0)]H2000(0)
)
,

r̃1103 =M1103 + 2ℜ{B(φ̄, B1003)}+B(H1100,∆
−1(0)M0003) + C(φ, φ̄,∆−1(0)M0003).
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Applying the Fredholm solvability condition to the z2z̄β32 terms yields the equation:

ib2,03 =
1

2
pT [A1(H2100,K03) + 2B(φ,H1103) +B(φ̄,H2003) +B(H0003, H2100)

+B(H1003, H2000) + 2B(H1003, H1100) + 2B1(φ,H1100,K03)

+B1(φ̄,H2000,K03) + C(φ,φ,H1003) + 2C(φ, φ̄,H1003) + 2C(φ,H0003, H1100)

+ C(φ̄,H0003, H2000) + C1(φ,φ, φ̄,K03) +D(φ,φ, φ̄,H0003) +M2103]. (5.70)

Observe that equations (5.59), (5.62), (5.68), (5.69), and (5.70) correspond to equations
(5.39),(5.45),(5.49), (5.53), and (5.55) respectively, for µ = (03). Consequently, we can
solve for the coefficients γ1,03 and γ2,03 by utilizing system (5.56) for µ = (03).

5.2 The higher order LPC predictor for DDEs

The parameter approximations for the LPC curve for DDEs remain the same as for ODEs.
Thus, we have the β parameter approximations

β1 = d2ε
4 + 2(d3 − a3201d2)ε

6, β2 = −2d2ε
2 + (4a3201d2 − 3d3)ε

4,

and then
α = α0 +K(β1, β2),

where the expression for K is given by (4.7) and the period is given by (3.9). Similarly,
the periodic orbit is approximmated for ψ ∈ [0, 2π] as

x = x0 +H(εeiψ, εe−iψ, β1, β2). (5.71)

However, now this defines a function in C([−h, 0],Rn). Since, we know that the solution
that we are looking for is periodic, we have that x(θ) = x(θ+T ) for all θ ∈ [−h, 0]. Thus,
it is enough to ensure that x(0) = x(T ) when solving the system for the localisation of the
periodic cycle. Therefore, we takeHijkl = Hijkl(0) for the coefficients in the approximation
of H when we approximate the cycle.



Chapter 6

Examples

In this chapter, we will demonstrate the performance of the higher-order predictor and
compare it to the first-order predictor. We will first present two examples of ODE systems
and conclude with one example of a DDE system.

6.1 ODE Examples

We have implemented all of the equations for the higher-order predictor in the program-
ming language Julia. For the numerical computation of the generalized Hopf points and the
continuation of the LPC curves, we used the existing Julia package Bifurcationkit.jl[23].
We compare the higher-order predictor from Section 4.2 to the first-order predictor from
[17].

6.1.1 Bazykin and Khibnik prey-predator model

As a first example, we consider a version of a prey-predator system by Bazykin and Khibnik
[1]. The model consists of the following two equationsẋ =

x2(1− x)

n+ x
− xy,

ẏ = −y(m− x),
(6.1)

where x, y ≥ 0 and 0 < m < 1. One can show analytically that an Andronov-Hopf
bifurcation occurs along the curve n = m2/(1− 2m). The first Lyapunov coefficient along
this curve is positive for 0 < m < 1

4 and negative for 1
4 < m < 1

2 , while it vanishes
at (m,n) = (14 ,

1
8). Thus, there is a generalized Hopf bifurcation in this system. The

bifurcation diagram near the generalized Hopf bifurcation is shown in Figure 6.1.

At the generalized Hopf bifurcation we have the eigenvalues λ1,2 = ±iω0, with ω0 =
√
2/4.

We take the following eigenvectors

q =

(
1
3

√
3

−1
3

√
6i

)
, p =

(
1
2

√
3

−1
4

√
6i

)
,

satisfying q̄T q = p̄T q = 1. Using these eigenvectors, the second Lyapunov coefficient has
the exact value1 l2 = −1024

729

√
2. In our implementation in Julia, this value is numerically

approximated by l2 = −1.986494770740791. Figure 6.2 shows a close-up of the bifurcation
diagram, including the first-order and the higher-order predictors in parameter space.

1This value was calculated in MATLAB

62



63

Figure 6.1: The bifurcation diagram near the generalized Hopf bifurcation (GH) in system (6.1).
The curve of Hopf bifurcations (n = m2/(1 − 2m)) is coloured red. The Hopf bifurcation is
subcritical on the branch marked by H+ and supercritical on the branch marked by H−. The
numerically continued LPC curve is plotted in green.

Figure 6.2: On the left, the bifurcation diagram near the generalized Hopf bifurcation in the system
(6.1) is shown together with the first-order and the higher-order LPC predictors. The figure on
the right shows the LPC curve and the predictors after a translation to the origin and a rotation.

6.1.2 The extended Lorenz-84 model

Our second example is an extended version of the Lorenz-84, which approximates the
dynamics of an atmospheric flow model [22]. In this model, X represents the strength of
the jet stream, while Y and Z model the sine and cosine coefficients of the baroclinic wave.
In [18], the model was extended to include the variable U to study the effect of external
parameters, such as temperature, on the jet stream and baroclinic waves. The same model
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was used as an example in [17]. The extended model consists of four equations:
Ẋ = −Y 2 − Z2 − αX + αF − γU2,

Ẏ = XY − βXZ − Y +G,

Ż = βXY +XZ − Z,

U̇ = −δU + γUX + T.

(6.2)

We take F and T as the bifurcation parameters and fix the parameters

α = 0.25, β = 1, G = 0.25, δ = 1.04, γ = 0.987.

Then, the system has a generalized Hopf bifurcation at (F, T ) ≈ (2.3763, 0.05019). At
the generalized Hopf bifurcation, we have the purely imaginary eigenvalues λ = ±iω0,
with ω0 = 0.690367 and we take the eigenvectors such that q̄T q = p̄T q = 1. The second
Lyapunov coefficient is computed as l2 = 0.22567.

Figure 6.3 shows the first-order and the higher-order predictors in parameter space next
to the numerically continued LPC curve.

Figure 6.3: The numerically computed LPC curve emanating from the generalized Hopf point in
the system (6.2) together with the first-order and higher-order predictors.



65

6.2 DDE example: Coupled FHN neural system with delay

The numerical computation of the generalized Hopf points and the continuation of the
LPC curves has been implemented in Julia by Maikel Bosschaert. The calculation of the
higher-order coefficients for the higher-order predictor has been added to this code, which
will be released in a future publication. In the following example, we compare the higher
order predictor from Section 5.2 to the first order predictor from [3].

We consider the coupled FitzHugh-Nagumo model from [24] which was also used to test
the predictor in [3]. This system consists of the following set of equations{

u̇1(t) = −1
3u

3
1(t) + (c+ α)u21(t) + du1(t)− u2(t) + 2βf(u1(t− τ)),

u̇2(t) = ε(u1(t)− bu2(t)).
(6.3)

In this model, α and β measure the synaptic strength in self-connection and neighbourhood
interaction, respectively, and τ > 0 represents the time delay in signal transmission. The
function f is a sufficiently smooth sigmoidal amplification function. The parameters b and
ε are assumed to satisfy 0 < b < 1 and 0 < ε≪ 1.

As in [24], we take β and α as the bifurcation parameters and fix the parameters

b = 0.9, ε = 0.08, c = 2.0528, d = −3.2135, τ = 1.7722

Furthermore, we use f(u) = tanh(u) for the sigmoid amplification function. There is a
generalized Hopf point at (β, α) = (1.9,−1.0429). The left and right vectors null vectors of
the characteristic matrix function evaluated at the critical eigenvalues are taken such that
q̄T q = 1 and pT∆′(iω0)q = 1. The second Lyapunov coefficient is negative and has the
value l2 = −15.6733. In Figure 6.4, the bifurcation diagram is shown near the generalized
Hopf point including the first-order and higher-order predictor curves.
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Figure 6.4: The bifurcation diagram near the generalized Hopf bifurcation in system (6.3) together
with first-order and higher-order predictors.



Chapter 7

Final remarks

In this thesis, we applied parameter-dependent center manifold reduction to the general-
ized Hopf bifurcation to derive new higher-order predictors for the LPC curve. We did
this for both ODEs and DDEs. In our examples, we have seen a good improvement of
the predictor in parameter space. While this marks the end of this Bachelor thesis, there
is more to explore. One such thing is creating convergence plots of the full higher-order
predictor to compare with the first-order predictor. The inclusion of higher-order terms
is expected to result in faster convergence to the LPC curve. Additionally, it would be
interesting to look at the approximated periodic orbits with their correction and compare
the period approximations to the corrected period.

Finally, as part of this thesis, the equations have only been implemented as a separate
code in Julia. The plan is to make these files public in a future publication. The next step
would be to include the higher-order predictor in some existing software, like MatCont in
MATLAB for ODEs or DDE-BIFTOOL for DDEs. Then it will be easily accessible to
anyone interested.
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Appendix A

Terms collected from the
homological equation for ODEs

In this appendix, all the equations collected from the homological equation for the gener-
alized Hopf bifurcation in ODEs (4.1) are presented. The collected equations are obtained
with the help of Mathematica. We use the truncated normal form expressed in terms of β

ẇ = λ(β)w + c1(β)w|w|2 + c2(β)w|w|4 + c3(0)w|w|6, w ∈ C, β ∈ R2,

where we expand

λ(β) = iω0 + g1010β1 + g1001β2 +
1

2
g1020β

2
1 + g1011β1β2 +

1

2
g1002β

2
2 +

1

6
g1003,

c1(β) = c1(0) + g2110β1 + g2101β2 +
1

2
g2120β

2
1 + g2111β1β2 +

1

2
g2102β

2
2 ++

1

6
g2103,

c2(β) = c2(0) + g3210β1 + g3201β2.

Compared to (4.2) we have that for µ = (10), (01)

g10µ = δ10µ + b1,µi,

g21µ = δ01µ + b2,µi,

For µ = (20), (02), (11) we have g10µ = b1,µi and g21µ = b2,µi. The vectorfield F is
expanded as (4.5). Note that Hijµ = Hjiµ.

A.1 Linear terms

Collecting linear terms of (4.1):

w : Aq = iw0q

w̄ : Aq̄ = −iw0q̄

β1 : AH0010 = −J1K10

β2 : AH0001 = −J1K01

68
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A.2 Quadratic terms

Collecting quadratic terms of (4.1):

w2 : (A− 2iω0In)H2000 = −B(q, q)

ww̄ : AH1100 = −B(q, q̄)

wβ1 : (A− iω0In)H1010 = g1010q −A1(q,K10)−B(q,H0010)

wβ2 : (A− iω0In)H1001 = g1001q −A1(q,K01)−B(q,H0001)

β21 : AH0020 = −J1K20 − 2A1(H0010,K10)−B(H0010, H0010)− J2(K10,K10)

β22 : AH0002 = −J1K02 − 2A1(H0001,K01)−B(H0001, H0001)− J2(K01,K01)

β1β2 : AH0011 = −J1K11 −A1(H0010,K01)−A1(H0001,K10)−B(H0001, H0010)

− J2(K01,K10)

A.3 Qubic terms

Collecting qubic terms of (4.1):

w3 : (A− 3iω0In)H3000 = −3B(q,H2000)− C(q, q, q)

w2w̄ : (A− iω0In)H2100 = 2c1(0)q − [2B(q,H1100) +B(q̄, H2000) + C(q, q, q̄)]

β1w
2 : (A− 2iω0In)H2010 = 2g1010H2000 − [A1(H2000,K10) + 2B(q,H1010) +B(H0010, H2000)

+B1(q, q,K10) + C(q, q,H0010)]

β2w
2 : (A− 2iω0In)H2001 = 2g1001H2000 − [A1(H2000,K01) + 2B(q,H1001) +B(H0001, H2000)

+B1(q, q,K01) + C(q, q,H0001)]

ww̄β1 : AH1110 = (g1010 + ḡ1010)H1100 − [A1(H1100,K10) +B(q,H0110) +B(q̄, H1010)

+B(H0010, H1100) +B1(q, q̄,K10) + C(q, q̄,H0010)]

ww̄β2 : AH1101 = (g1001 + ḡ1001)H1100 − [A1(H1100,K01) +B(q,H0101) +B(q̄, H1001)

+B(H0001, H1100) +B1(q, q̄,K01) + C(q, q̄,H0001)]

wβ21 : (A− iω0In)H1020 = g1020q + 2g1010H1010 − [A1(q,K20) + 2A1(H1010,K10) +B(q,H0020)

+ 2B(H0010, H1010) +A2(q,K10,K10) + 2B1(q,H0010,K10)

+ C(q,H0010, H0010)]

wβ22 : (A− iω0In)H1002 = g1002q + 2g1001H1001 − [A1(q,K02) + 2A1(H1001,K01) +B(q,H0002)

+ 2B(H0001, H1001) +A2(q,K01,K01) + 2B1(q,H0001,K01)

+ C(q,H0001, H0001)]

wβ1β2 : (A− iω0In)H1011 = g1011q + g1010H1001 + g1001H1010 − [A1(q,K11) +A1(H1010,K01)

+A1(H1001,K10) +B(q,H0011) +B(H0001, H1010) +B(H0010, H1001)

+A2(q,K01,K10) +B1(q,H0010,K01) +B1(q,H0001,K10)

+ C(q,H0001, H0010)

β32 : −AH0003 = J1K03 + 3A1(H0002,K01) + 3A1(H0001,K02)

+ 3B(H0001, H0002) + 3J2(K01,K02) + 3A2(H0001,K01,K01)

+ 3B1(H0001, H0001,K01) + J3(K01,K01,K01) + C(H0001, H0001, H0001)



70

A.4 Quartic terms

Collecting quartic terms of (4.1):

w4 : (4iω0In −A)H4000 = 4B(q,H3000) + 3B(H2000, H2000) + 6C(q, q, ,H2000) +D(q, q, q, q)

w3w̄ : (2iω0In −A)H3100 = −6c1(0)H2000 + 3B(q,H2100) +B(q̄, H3000) + 3B(H1100, H2000)

+ 3C(q, q,H1100) + 3C(q, q̄,H2000) +D(q, q, q, q̄)

w2w̄2 : −AH2200 = −4(c1(0) + c̄1(0))H1100 + 2B(q,H1200) + 2B(q̄, H2100)

+B(H0200, H2000) + 2B(H1100, H1100) + C(q, q,H0200) + 4C(q, q̄,H1100)

+ C(q̄, q̄, H2000) +D(q, q, q̄, q̄)

w3β1 : (A− 3iω0In)H3010 = 3g1010H3000 − [A1(H3000,K10) + 3B(q,H2010) +B(H0010, H3000)

+ 3B(H1010, H2000) + 3B1(q,H2000,K10) + 3C(q, q,H1010)

+ 3C(q,H0010, H2000) + C1(q, q, q,K10) +D(q, q, q,H0010)]

w3β2 : (A− 3iω0In)H3001 = 3g1001H3000 − [A1(H3000,K01) + 3B(q,H2001) +B(H0001, H3000)

+ 3B(H1001, H2000) + 3B1(q,H2000,K01) + 3C(q, q,H1001)

+ 3C(q,H0001, H2000) + C1(q, q, q,K01) +D(q, q, q,H0001)]

w2w̄β1 : (A− iω0)H2110 = 2g2110q + (2g1010 + ḡ1010)H2100 + 2c1(0)H1010 − [A1(H2100,K10)

+ 2B(q,H1110) +B(q̄, H2010) +B(H0010, H2100) +B(H0110, H2000)

+ 2B(H1010, H1100) + 2B1(q,H1100,K10) +B1(q̄, H2000,K10)

+ C(q, q,H0110) + 2C(q, q̄.H1010) + 2C(q,H0010, H1100)

+ C(q̄, H0010, H2000) + C1(q, q, q̄,K10) +D(q, q, q̄, H0010)]

w2w̄β2 : (A− iω0)H2101 = 2g2101q + (2g1001 + ḡ1001)H2100 + 2c1(0)H1001 − [A1(H2100,K01)

+ 2B(q,H1101) +B(q̄, H2001) +B(H0001, H2100) +B(H0101, H2000)

+ 2B(H1001, H1100) + 2B1(q,H1100,K01) +B1(q̄, H2000,K01)

+ C(q, q,H0101) + 2C(q, q̄.H1001) + 2C(q,H0001, H1100)

+ C(q̄, H0001, H2000) + C1(q, q, q̄,K01) +D(q, q, q̄, H0001)]

w2β21 : (A− 2iω0In)H2020 = 2g1020H2000 + 4g1010H2010 − [2A1(H2010,K10) +A1(H2000,K20)

+ 2B(q,H1020) + 2B(H0010, H2010) +B(H0020, H2000)

+ 2B(H1010, H1010) +A2(H2000,K10,K10) +B1(q, q,K20)

+ 4B1(q,H1010,K10) + 2B1(H0010, H2000,K10) + C(q, q,H0020)

+ 4C(q,H0010, H1010) + C(H0010, H0010, H2000) +B2(q, q,K10,K10)

+ 2C1(q, q,H0010,K10) +D(q, q,H0010, H0010)]

w2β22 : (A− 2iω0In)H2002 = 2g1002H2000 + 4g1001H2001 − [2A1(H2001,K01) +A1(H2000,K02)

+ 2B(q,H1002) + 2B(H0001, H2001) +B(H0002, H2000)

+ 2B(H1001, H1001) +A2(H2000,K01,K01) +B1(q, q,K02)

+ 4B1(q,H1001,K01) + 2B1(H0001, H2000,K01) + C(q, q,H0002)

+ 4C(q,H0001, H1001) + C(H0001, H0001, H2000) +B2(q, q,K01,K01)

+ 2C1(q, q,H0001,K01) +D(q, q,H0001, H0001)]
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w2β1β2 : (A− 2iω0In)H2011 = 2g1011H2000 + 2g1010H2001 + 2g1001H2010 − [A1(H2010,K01)

+A1(H2001,K10) +A1(H2000,K11) + 2B(q,H1011) +B(H0001, H2010)

+B(H0010, H2001) +B(H0011, H2000) + 2B(H1001, H1010)

+A2(H2000,K01,K10) +B1(q, q,K11) + 2B1(q,H1010,K01)

+ 2B1(q,H1001,K10) +B1(H0010, H2000,K01) +B1(H0001, H2000,K10)

+ C(q, q,H0011) + 2C(q,H0001, H1010) + 2C(q,H0010, H1001)

+ C(H0001, H0010, H2000) +B2(q, q,K01,K10) + C1(q, q,H0010,K01)

+ C1(q, q,H0001,K10) +D(q, q,H0001, H0010)]

ww̄β21 : AH1120 = (g1020 + ḡ1020)H1100 + 2(g1010 + ḡ1010)H1110 − [2A1(H1110,K10)

+A1(H1100,K20) +B(q,H0120) +B(q̄, H1020) + 2B(H0010, H1110)

+B(H0020, H1100) + 2B(H0110, H1010) +A2(H1100,K10,K10)

+B1(q, q̄,K20) + 2B1(q,H0110,K10) + 2B1(q̄, H1010,K10)

+ 2B1(H0010, H1100,K10) + C(q, q̄,H0020) + 2C(q,H0010, H0110)

+ 2C(q̄, H0010, H1010) + C(H0010, H0010, H1100) +B2(q, q̄,K10,K10)

+ 2C1(q, q̄,H0010,K10) +D(q, q̄,H0010, H0010)]

ww̄β22 : AH1102 = (g1002 + ḡ1002)H1100 + 2(g1001 + ḡ1001)H1101 − [2A1(H1101,K01)

+A1(H1100,K02) +B(q,H0102) +B(q̄, H1002) + 2B(H0001, H1101)

+B(H0002, H1100) + 2B(H0101, H1001) +A2(H1100,K01,K01)

+B1(q, q̄,K02) + 2B1(q,H0101,K01) + 2B1(q̄, H1001,K01)

+ 2B1(H0001, H1100,K01) + C(q, q̄,H0002) + 2C(q,H0001, H0101)

+ 2C(q̄, H0001, H1001) + C(H0001, H0001, H1100) +B2(q, q̄,K01,K01)

+ 2C1(q, q̄,H0001,K01) +D(q, q̄,H0001, H0001)]

ww̄β1β2 : AH1111 = (g1011 + ḡ1011)H1100 + (g1010 + ḡ1010)H1101 + (g1001 + ḡ1001)H1110

− [A1(H1110,K01) +A1(H1101,K10) +A1(H1100,K11) +B(q,H0111)

+B(q̄, H1011) +B(H0001, H1110) +B(H0010, H1101) +B(H0011, H1100)

+B(H0101, H1010) +B(H0110, H1001) +A2(H1100,K01,K10)

+B1(q, q̄,K11) +B1(q,H0110,K01) +B1(q,H0101,K10)

+B1(q̄, H1010,K01) +B1(q̄, H1001,K10) +B1(H0010, H1100,K01)

+B1(H0001, H1100,K10) + C(q, q̄,H0011) + C(q,H0001, H0110)

+ C(q,H0010, H0101) + C(q̄, H0001, H1010) + C(q̄, H0010, H1001)

+ C(H0001, H0010, H1100) +B2(q, q̄,K01,K10) + C1(q, q̄,H0010,K01)

+ C1(q, q̄,H0001,K10) +D(q, q̄,H0001, H0010)]
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wβ32 : (iω0In −A)H1003 = A1(q,K03) + 3A1(H1002,K01)

+ 3A1(H1001,K02) +B(q,H0003) + 3B(H0001, H1002)

+ 3B(H0002, H1001) + 3A2(q,K01,K02) + 3A2(H1001,K01,K01)

+ 3B1(q,H0002,K01) + 3B1(q,H0001,K02) + 6B1(H0001, H1001,K01)

+ 3C(q,H0001, H0002) + 3C(H0001, H0001, H1001)

+A3(q,K01,K01,K01) + 3B2(q,H0001,K01,K01)

+ 3C1(q,H0001, H0001,K01) +D(q,H0001, H0001, H0001)

− (g1003q + 3g1002H1001 + 3g1001H1002)
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A.5 Quintic terms

Collecting quintic terms of (4.1):

w5 : (5iω0In −A)H5000 = 5B(q,H4000) + 10B(H2000, H3000) + 10C(q, q,H3000)

+ 15C(q,H2000, H2000) + 10D(q, q, q,H2000) + E(q, q, q, q, q)

w3w̄2 : (iω0In −A)H3200 = −12c2(0)q − 6(2c1(0) + c̄1(0))H2100 + 3B(q,H2200) + 2B(q̄, H3100)

+B(H0200, H3000) + 6B(H1100, H2100) + 3B(H1200, H2000) + 3C(q, q,H1200)

+ 6C(q, q̄,H2100) + 3C(q,H0200, H2000) + 6C(q,H1100, H1100)

+ C(q̄, q̄, H3000) + 6C(q̄, H1100, H2000) +D(q, q, q,H0200)

+ 6D(q, q, q̄, H1100) + 3D(q, q̄, q̄, H2000) + E(q, q, q, q̄, q̄)

w4w̄ : (A− 3iω0In)H4100 = 12c1(0)H3000 − [4B(q,H3100) +B(q̄, H4000) + 4B(H1100, H3000)

+ 6B(H2000, H2100) + 6C(q, q,H2100) + 4C(q, q̄,H3000)

+ 12C(q,H1100, H2000) + 3C(q̄, H2000, H2000) + 4D(q, q, q,H1100)

+ 6D(q, q, q̄, H2000) + E(q, q, q, q, q̄)]

w3w̄β2 : (A− 2iω0In)H3101 = 6g2101H2000 + 6c1(0)H2001 + (3g1001 + ḡ1001)H3100

− [A1(H3100,K01) + 3B(q,H2101) +B(q̄, H3001) +B(H0001, H3100)

+B(H0101, H3000) + 3B(H1001, H2100) + 3B(H1100, H2001)

+ 3B(H1101, H2000) + 3B1(q,H2100,K01) +B1(q̄, H3000,K01)

+ 3B1(H1100, H2000,K01) + 3C(q, q,H1101) + 3C(q, q̄,H2001)

+ 3C(q,H0001, H2100) + 3C(q,H0101, H2000) + 6C(q,H1001, H1100)

+ C(q̄, H0001, H3000) + 3C(q̄, H1001, H2000) + 3C(H0001, H1100, H2000)

+ 3C1(q, q,H1100,K01) + 3C1(q, q̄,H2000,K01) +D(q, q, q,H0101)

+ 3D(q, q, q̄, H1001) + 3D(q, q,H0001, H1100) + 3D(q, q̄,H0001, H2000)

+D1(q, q, q, q̄,K01) + E(q, q, q, q̄, H0001)]

w2w̄β21 : (A− iω0In)H2120 = 2g2120q + 4g2110H1010 + 2c1(0)H1020 + (2g1020 + ḡ1020)H2100

+ (4g1010 + 2ḡ1010)H2110 − [2A1(H2110,K10) +A1(H2100,K20)

+ 2B(q,H1120) +B(q̄, H2020) + 2B(H0010, H2110) +B(H0020, H2100)

+ 2B(H0110, H2010) +B(H0120, H2000) + 4B(H1010, H1110)

+ 2B(H1020, H1100) +A2(H2100,K10,K10) + 4B1(q,H1110,K10)

+ 2B1(q,H1100,K20) + 2B1(q̄, H2010,K10) +B1(q̄, H2000,K20)

+ 2B1(H0010, H2100,K10) + 2B1(H0110, H2000,K10)

+ 4B1(H1010, H1100,K10) + C(q, q,H0120) + 2C(q, q̄,H1020)

+ 4C(q,H0010, H1110) + 2C(q,H0020, H1100) + 4C(q,H0110, H1010)

+ 2C(q̄, H0010, H2010) + C(q̄, H0020, H2000) + 2C(q̄, H1010, H1010)

+ C(H0010, H0010, H2100) + 2C(H0010, H0110, H2000)

+ 4C(H0010, H1010, H1100) + 2B2(q,H1100,K10,K10) +B2(q̄, H2000,K10,K10)

+ C1(q, q, q̄,K20) + 2C1(q, q,H0110,K10) + 4C1(q, q̄,H1010,K10)

+ 4C1(q,K10, H0010, H1100) + 2C1(q̄, K10, H0010, H2000)

+D(q, q, q̄, H0020) + 2D(q, q,H0010, H0110) + 4D(q, q̄,H0010, H1010)

+ 2D(q,H0010, H0010, H1100) +D(q̄, H2000, H0010, H0010)

+ C2(q, q, q̄,K10,K10) + 2D1(q, q, q̄,K10, H0010) + E(q, q, q̄, H0010, H0010)]
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w2w̄2β2 : −AH2201 = A1(H2200,K01) + 2B(q,H1201) + 2B(q̄, H2101) +B(H0001, H2200)

+ 2B(H0101, H2100) +B(H0200, H2001) +B(H0201, H2000)

+ 2B(H1001, H1200) + 4B(H1100, H1101) + 2B1(q,H1200,K01)

+B1(H0200, H2000,K01) + 2B1(H1100, H1100,K01) + 2B1(q̄, H2100,K01)

+ C(q, q,H0201) + 4C(q, q̄,H1101) + 2C(q,H0001, H1200)

+ 4C(q,H0101, H1100) + 2C(q,H0200, H1001) + C(q̄, q̄, H2001)

+ 2C(q̄, H0001, H2100) + 2C(q̄, H0101, H2000) + 4C(q̄, H1001, H1100)

+ C(H0001, H0200, H2000) + 2C(H0001, H1100, H1100) + C1(q, q,H0200,K01)

+ 4C1(q, q̄,H1100,K01) + C1(q̄, q̄, H2000,K01) + 2D(q, q, q̄,H0101)

+D(q, q,H0001, H0200) + 2D(q, q̄, q̄, H1001) + 4D(q, q̄,H0001, H1100)

+D(q̄, q̄, H0001, H2000) +D1(q, q, q̄, q̄,K01) + E(q, q, q̄, q̄, H0001)

− (4(c1(0) + c1(0))H1101 + 4(ḡ2101 + g2101)H1100 + 2(ḡ1001 + g1001)H2200)

w4β2 : (4iω0In −A)H4001 = A1(H4000,K01) + 4B(q,H3001) +B(H0001, H4000)

+ 4B(H1001, H3000) + 6B(H2000, H2001) + 4B1(q,H3000,K01)

+ 3B1(H2000, H2000,K01) + 6C(q, q,H2001) + 4C(q,H0001, H3000)

+ 12C(q,H1001, H2000) + 3C(H0001, H2000, H2000)

+ 6C1(q, q,H2000,K01) + 4D(q, q, q,H1001) + 6D(q, q,H0001, H2000)

+D1(q, q, q, q,K01) + E(q, q, q, q,H0001)− 4g1001H4000

w2w̄β22 : (A− iω0In)H2102 = 2g2102q + 4g2101H1001 + 2c1(0)H1002 + (2g1002 + ḡ1002)H2100

+ (4g1001 + 2ḡ1001)H2101 − [2A1(H2101,K01) +A1(H2100,K02)

+ 2B(q,H1102) +B(q̄, H2002) + 2B(H0001, H2101) +B(H0002, H2100)

+ 2B(H0101, H2001) +B(H0102, H2000) + 4B(H1001, H1101)

+ 2B(H1002, H1100) +A2(K01,K01, H2100) + 4B1(q,H1101,K01)

+ 2B1(q,H1100,K02) + 2B1(q̄, H2001,K01) +B1(q̄, H2000,K02)

+ 2B1(H0001, H2100,K01) + 2B1(H0101, H2000,K01)

+ 4B1(H1001, H1100,K01) + C(q, q,H0102) + 2C(q, q̄,H1002)

+ 4C(q,H0001, H1101) + 2C(q,H0002, H1100) + 4C(q,H0101, H1001)

+ 2C(q̄, H0001, H2001) + C(q̄, H0002, H2000) + 2C(q̄, H1001, H1001)

+ C(H0001, H0001, H2100) + 2C(H0001, H0101, H2000)

+ 4C(H0001, H1001, H1100) + 2B2(q,H1100,K01, H01) +B2(q̄, H2000,K01,K01)

+ C1(q, q, q̄,K02) + 2C1(q, q,H0101,K01) + 4C1(q, q̄,H1001,K01)

+ 4C1(q,H0001, H1100,K01) + 2C1(q̄, H0001, H2000,K01)

+D(q, q, q̄, H0002) + 2D(q, q,H0001, H0101) + 4D(q, q̄,H0001, H1001)

+ 2D(q,H0001, H0001, H1100) +D(q̄, H2000, H0001, H0001)

+ C2(q, q, q̄,K01,K01) + 2D1(q, q, q̄,H0001,K01) + E(q, q, q̄, H0001, H0001)]
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w3β22 : (3iω0In −A)H3002 = 2A1(H3001,K01) +A1(H3000,K02) + 3B(q,H2002)

+ 2B(H0001, H3001) +B(H0002, H3000) + 6B(H1001, H2001)

+ 3B(H1002, H2000) +A2(H3000,K01,K01) + 6B1(q,H2001,K01)

+ 3B1(q,H2000,K02) + 2B1(H0001, H3000,K01) + 6B1(H1001, H2000,K01)

+ 3C(q, q,H1002) + 6C(q,H0001, H2001) + 3C(q,H0002, H2000)

+ 6C(q,H1001, H1001) + C(H0001, H0001, H3000)

+ 6C(H0001, H1001, H2000) + 3B2(q,H2000,K01,K01) + C1(q, q, q,K02)

+ 6C1(q, q,H1001,K01) + 6C1(q,H0001, H2000,K01) +D(q, q, q,H0002)

+ 6D(q, q,H0001, H1001) + 3D(q,H0001, H0001, H2000)

+ C2(q, q, q,K01,K01) + 2D1(q, q, q,H0001,K01)

+ E(q, q, q,H0001, H0001)− [3g1002H3000 + 6g1001H3001]

w2w̄β1β2 : (A− iω0In)H2111 = 2g2111q + 2g2110H1001 + 2g2101H1010 + 2c1(0)H1011

+ (2g1011 + ḡ1011)H2100 + (2g1010 + ḡ1010)H2101 + (2g1001 + ḡ1001)H2110

− [A1(H2110,K01) +A1(H2101,K10) +A1(H2100,K11) + 2B(q,H1111)

+B(q̄, H2011) +B(H0001, H2110) +B(H0010, H2101) +B(H0011, H2100)

+B(H0101, H2010) +B(H0110, H2001) +B(H0111, H2000) + 2B(H1001, H1110)

+ 2B(H1010, H1101) + 2B(H1011, H1100) +A2(H2100,K01,K10)

+ 2B1(q,H1110,K01) + 2B1(q,H1101,K10) + 2B1(q,H1100,K11)

+B1(q̄, H2010,K01) +B1(q̄, H2001,K10) +B1(q̄, H2000,K11)

+B1(H0010, H2100,K01) +B1(H0110, H2000,K01) + 2B1(H1010, H1100,K01)

+B1(H0001, H2100,K10) +B1(H0101, H2000,K10) + 2B1(H1001, H1100,K10)

+ C(q, q,H0111) + 2C(q, q̄,H1011) + 2C(q,H0001, H1110)

+ 2C(q,H0010, H1101) + 2C(q,H0011, H1100) + 2C(q,H0101, H1010)

+ 2C(q,H0110, H1001) + C(q̄, H0001, H2010) + C(q̄, H0010, H2001)

+ C(q̄, H0011, H2000) + 2C(q̄, H1001, H1010) + C(H0001, H
0010, H2100)

+ C(H0001, H0110, H2000) + 2C(H0001, H1010, H1100) + C(H0010, H0101, H2000)

+ 2C(H0010, H1001, H1100) + 2B2(q,H1100,K01,K10) +B2(q̄, H2000,K01,K10)

+ C1(q, q, q̄,K11) + C1(q, q,H0110,K01) + C1(q, q,H0101,K10)

+ 2C1(q, q̄,H1010,K01) + 2C1(q, q̄,H1001,K10) + 2C1(q,H0010, H1100,K01)

+ 2C1(q,H0001, H1100,K10) + C1(q̄, H0010, H2000,K01)

+ C1(q̄, H0001, H2000,K10) +D(q, q, q̄, H0011) +D(q, q,H0001, H0110)

+D(q, q,H0010, H0101) + 2D(q, q̄,H0001, H1010) + 2D(q, q̄,H0010, H1001)

+ 2D(q,H0001, H0010, H1100) +D(q̄, H0001, H0010, H2000)

+ C2(q, q, q̄,K01,K10) +D1(q, q, q̄, H0010,K01) +D1(q, q, q̄, H0001,K10)

+ E(q, q, q̄, H0001, H0010)]
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w2β32 : (2iω0In −A)H2003 = 3A1(H2002,K01) + 3A1(H2001,K02)

+A1(H2000,K03) + 2B(q,H1003) + 3B(H0001, H2002)

+ 3B(H0002, H2001) +B(H0003, H2000) + 6B(H1001, H1002)

+ 3A2(H2001,K01,K01) + 3A2(H2000,K01,K02) +B1(q, q,K03)

+ 6B1(q,H1002,K01) + 6B1(q,H1001,K02) + 6B1(H0001, H2001,K01)

+ 3B1(H0002, H2000,K01) + 6B1(H1001, H1001,K01)

+ 3B1(H0001, H2000,K02) + C(q, q,H0003) + 6C(q,H0001, H1002)

+ 6C(q,H0002, H1001) + 3C(H0001, H0001, H2001)

+ 3C(H0001, H0002, H2000) + 6C(H0001, H1001, H1001)

+A3(H2000,K01,K01,K01) + 3B2(q, q,K01,K02) + 6B2(q,H1001,K01,K01)

+ 3B2(H0001, H2000,K01,K01) + 3C1(q, q,H0002,K01)

+ 3C1(q, q,H0001,K02) + 12C1(q,H0001, H1001,K01)

+ 3C1(H0001, H0001, H2000,K01) + 3D(q, q,H0001, H0002)

+ 6D(q,H0001, H0001, H1001) +D(H0001, H0001, H0001, H2000)

+B3(q, q,K01,K01,K01) + 3C2(q, q,H0001,K01,K01)

+ 3D1(q, q,K01, H0001, H0001) + E(q, q,H0001, H0001, H0001)

− (2g1003H2000 + 6g1002H2001 + 6g1001H2002)

ww̄β32 : −AH1103 = 3A1(H1102,K01) + 3A1(H1101,K02) +A1(H1100,K03)

+B(q,H0103) +B(q̄, H1003) + 3B(H0001, H1102) + 3B(H0002, H1101)

+B(H0003, H1100) + 3B(H0101, H1002) + 3B(H0102, H1001)

+ 3A2(H1101,K01,K01) + 3A2(H1100,K01,K02) +B1(q, q̄,K03)

+ 3B1(q,H0102,K01) + 3B1(q,H0101,K02) + 3B1(q̄, H1002,K01)

+ 3B1(q̄, H1001,K02) + 6B1(H0001, H1101,K01) + 3B1(H0002, H1100,K01)

+ 6B1(H0101, H1001,K01) + 3B1(H0001, H1100,K02) + C(q, q̄,H0003)

+ 3C(q,H0001, H0102) + 3C(q,H0002, H0101) + 3C(q̄, H0001, H1002)

+ 3C(q̄, H0002, H1001) + 3C(H0001, H0001, H1101)

+ 3C(H0001, H0002, H1100) + 6C(H0001, H0101, H1001)

+A3(H1100,K01,K01,K01) + 3B2(q, q̄,K01,K02) + 3B2(q,H0101,K01,K01)

+ 3B2(q̄, H1001,K01,K01) + 3B2(H0001, H1100,K01,K01)

+ 3C1(q, q̄,H0002,K01) + 3C1(q, q̄,H0001,K02)

+ 6C1(q,H0001, H0101,K01) + 6C1(q̄, H0001, H1001,K01)

+ 3C1(H0001, H0001, H1100,K01) + 3D(q, q̄,H0001, H0002)

+ 3D(q,H0001, H0001, H0101) + 3D(q̄, H0001, H0001, H1001)

+D(H0001, H0001, H0001, H1100) +B3(q, q̄,K01,K01,K01)

+ 3C2(q, q̄,H0001,K01,K01) + 3D1(q, q̄,H0001, H0001,K01)

+ E(q, q̄,H0001, H0001, H0001)

− (g1003 + g1003)H1100 + 3(g1002 + g1002)H1101 + 3(g1001 + g1001)H1102)
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A.6 Sixth order terms

Collecting sixth order terms of (4.1):

w6 : (6iω0In −A)H6000 = 6B(q,H5000) + 15B(H2000, H4000) + 10B(H3000, H3000)

+ 15C(q, q,H4000) + 60C(q,H2000, H3000) + 15C(H2000, H2000, H2000)

+ 20D(q, q, q,H3000) + 45D(q, q,H2000.H2000) + 15E(q, q, q, q,H2000)

+K(q, q, q, q, q, q)

w5w̄ : (4iω0In −A)H5100 = 5B(q,H4100) +B(q̄, H5000) + 5B(H1100, H4000) + 10B(H2000, H3100)

+ 10B(H2100, H3000) + 10C(q, q,H3100) + 5C(q, q̄,H4000)

+ 20C(q,H1100, H3000) + 30C(q,H2000, H2100) + 10C(q̄, H2000, H3000)

+ 15C(H1100, H2000, H2000) + 10D(q, q, q,H2100) + 10D(q, q, q̄, H3000)

+ 30D(q, q,H1100, H2000) + 15D(q, q̄,H2000, H2000) + 5E(q, q, q, q,H1100)

+ 10E(q, q, q, q̄, H2000) +K(q, q, q, q, q, q̄)− 20c1(0)H4000

w4w̄2 : (A− 2iω0In)H4200 = 48c2(0)H2000 + 8(3c1(0) + c1(0))H3100 − [4B(q,H3200) + 2B(q̄, H4100)

+B(H0200, H4000) + 8B(H1100, H3100) + 4B(H1200, H3000)

+ 6B(H2000, H2200) + 6B(H2100, H2100) + 6C(q, q,H2200)

+ 8C(q, q̄,H3100) + 4C(q,H0200, H3000) + 24C(q,H1100, H2100)

+ 12C(q,H1200, H2000) + C(q̄, q̄, H4000) + 8C(q̄, H1100, H3000)

+ 12C(q̄, H2000, H2100) + 3C(H0200, H2000, H2000) + 12C(H1100, H1100, H2000)

+ 4D(q, q, q,H1200) + 12D(q, q, q̄, H2100) + 6D(q, q,H0200, H2000)

+ 12D(q, q,H1100, H1100) + 4D(q, q̄, q̄, H3000) + 24D(q, q̄,H1100, H2000)

+ 3D(q̄, q̄, H2000, H2000) + E(q, q, q, q,H0200) + 8E(q, q, q, q̄,H1100)

+ 6E(q, q, q̄, q̄, H2000) +K(q, q, q, q, q̄, q̄)]

w3w̄3 : AH3300 = 36(c2(0) + c2(0))H1100 + 18(c1(0) + c1(0))H2200

− [3B(q,H2300) + 3B(q̄, H3200) + 3B(H0200, H3100) +B(H0300, H3000)

+ 9B(H1100, H2200) + 9B(H1200, H2100) + 3B(H1300, H2000)

+ 3C(q, q,H1300) + 9C(q, q̄,H2200) + 9C(q,H0200, H2100)

+ 3C(q,H0300, H2000) + 18C(q,H1100, H1200) + 3C(q̄, q̄, H3100)

+ 3C(q̄, H0200, H3000) + 18C(q̄, H1100, H2100) + 9C(q̄, H1200, H2000)

+ 9C(H0200, H1100, H2000) + 6C(H1100, H1100, H1100) +D(q, q, q,H0300)

+ 9D(q, q, q̄, H1200) + 9D(q, q,H0200, H1100) + 9D(q, q̄, q̄, H2100)

+ 9D(q, q̄,H0200, H2000) + 18D(q, q̄,H1100, H1100) +D(q̄, q̄, q̄, H3000)

+ 9D(q̄, q̄, H1100, H2000) + 3E(q, q, q, q̄, H0200) + 9E(q, q, q̄, q̄, H1100)

+ 3E(q, q̄, q̄, q̄, H2000) +K(q, q, q, q̄, q̄, q̄)]
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w3w̄2β2 : (A− iω0In)H3201 = 12g3201q + 12c2(0)H1001 + (12g2101 + 6ḡ2101)H2100

+ (12c1(0) + 6c1(0))H2101 + (3g1001 + 2ḡ1001)H3200

− [A1(H3200,K01) + 3B(q,H2201) + 2B(q̄, H3101) +B(H0001, H3200)

+ 2B(H0101, H3100) +B(H0200, H3001) +B(H0201, H3000)

+ 3B(H1001, H2200) + 6B(H1100, H2101) + 6B(H1101, H2100)

+ 3B(H1200, H2001) + 3B(H1201, H2000) + 3B1(q,H2200,K01)

+ 2B1(q̄, H3100,K01) +B1(H0200, H3000,K01) + 6B1(H1100, H2100,K01)

+ 3B1(H1200, H2000,K01) + 3C(q, q,H1201) + 6C(q, q̄,H2101)

+ 3C(q,H0001, H2200) + 6C(q,H0101, H2100) + 3C(q,H0200, H2001)

+ 3C(q,H0201, H2000) + 6C(q,H1001, H1200) + 12C(q,H1100, H1101)

+ C(q̄, q̄, H3001) + 2C(q̄, H0001, H3100) + 2C(q̄, H0101, H3000)

+ 6C(q̄, H1001, H2100) + 6C(q̄, H1100, H2001) + 6C(q̄, H1101, H2000)

+ C(H0001, H0200, H3000) + 6C(H0001, H1100, H2100) + 3C(H0001, H1200, H2000)

+ 6C(H0101, H1100, H2000) + 3C(H0200, H1001, H2000)

+ 6C(H1001, H1100, H1100) + 3C1(q, q,H1200,K01) + 6C1(q, q̄,H2100,K01)

+ 3C1(q,H0200, H2000,K01) + 6C1(q,H1100, H1100,K01) + C1(q̄, q̄, H3000,K01)

+ 6C1(q̄, H1100, H2000,K01) +D(q, q, q,H0201) + 6D(q, q, q̄, H1101)

+ 3D(q, q,H0001, H1200) + 6D(q, q,H0101, H1100) + 3D(q, q,H0200, H1001)

+ 3D(q, q̄, q̄, H2001) + 6D(q, q̄,H0001, H2100) + 6D(q, q̄,H0101, H2000)

+ 12D(q, q̄,H1001, H1100) + 3D(q,H0001, H0200, H2000)

+ 6D(q,H0001, H1100, H1100) +D(q̄, q̄, H0001, H3000) + 3D(q̄, q̄, H1001, H2000)

+ 6D(q̄, H0001, H1100, H2000) +D1(q, q, q,H0200,K01) + 6D1(q, q, q̄, H1100,K01)

+ 3D1(q, q̄, q̄, H2000,K01) + 2E(q, q, q, q̄, H0101) + E(q, q, q,H0001, H0200)

+ 3E(q, q, q̄, q̄, H1001) + 6E(q, q, q̄, H0001, H1100) + 3E(q, q̄, q̄, H0001, H2000)

+ E1(q, q, q, q̄, q̄,K01) +K(q, q, q, q̄, q̄, H0001)]

w5β2 : (5iω0In −A)H5001 = A1(H5000,K01) + 5B(q,H4001) +B(H0001, H5000)

+ 5B(H1001, H4000) + 10B(H2000, H3001) + 10B(H2001, H3000)

+ 5B1(q,H4000,K01) + 10B1(H2000, H3000,K01) + 10C(q, q,H3001)

+ 5C(q,H0001, H4000) + 20C(q,H1001, H3000) + 30C(q,H2000, H2001)

+ 10C(H0001, H2000, H3000) + 15C(H1001, H2000, H2000)

+ 10C1(q, q,H3000,K01) + 15C1(q,H2000, H2000,K01)

+ 10D(q, q, q,H2001) + 10D(q, q,H0001, H3000) + 30D(q, q,H1001, H2000)

+ 15D(q,H0001, H2000, H2000) + 10D1(q, q, q,H2000,K01)

+ 5E(q, q, q, q,H1001) + 10E(q, q, q,H0001, H2000)

+ E1(q, q, q, q, q,K01) +K(q, q, q, q, q,H0001)− 5g1001H5000
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w4w̄β2 : (3iω0In −A)H4101 = A1(H4100,K01) + 4B(q,H3101) +B(q̄, H4001)

+B(H0001, H4100) +B(H0101, H4000) + 4B(H1001, H3100)

+ 4B(H1100, H3001) + 4B(H1101, H3000) + 6B(H2000, H2101)

+ 6B(H2001, H2100) + 4B1(q,H3100,K01) +B1(q̄, H4000,K01)

+ 4B1(H1100, H3000,K01) + 6B1(H2000, H2100,K01) + 6C(q, q,H2101)

+ 4C(q, q̄,H3001) + 4C(q,H0001, H3100) + 4C(q,H0101, H3000)

+ 12C(q,H1001, H2100) + 12C(q,H1100, H2001) + 12C(q,H1101, H2000)

+ C(q̄, H0001, H4000) + 4C(q̄, H1001, H3000) + 6C(q̄, H2000, H2001)

+ 4C(H0001, H1100, H3000) + 6C(H0001, H2000, H2100)

+ 3C(H0101, H2000, H2000) + 12C(H1001, H1100, H2000)

+ 6C1(q, q,H2100,K01) + 4C1(q, q̄,H3000,K01)

+ 12C1(q,H1100, H2000,K01) + 3C1(q̄, H2000, H2000,K01)

+ 4D(q, q, q,H1101) + 6D(q, q, q̄, H2001) + 6D(q, q,H0001, H2100)

+ 6D(q, q,H0101, H2000) + 12D(q, q,H1001, H1100)

+ 4D(q, q̄,H0001, H3000) + 12D(q, q̄,H1001, H2000)

+ 12D(q,H0001, H1100, H2000) + 3D(q̄, H0001, H2000, H2000)

+ 4D1(q, q, q,H1100,K01) + 6D1(q, q, q̄, H2000,K01)

+ E(q, q, q, q,H0101) + 4E(q, q, q, q̄, H1001) + 4E(q, q, q,H0001, H1100)

+ 6E(q, q, q̄, H0001, H2000) + E1(q, q, q, q, q̄,K01) +K(q, q, q, q, q̄, H0001)

− [12g2101H3000 + 12c1(0)H3001 + (4g1001 + ḡ1001)H4100]
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w2w̄β32 : (iω0In −A)H2103 = 3A1(H2102,K01) + 3A1(H2101,K02) +A1(H2100,K03) + 2B(q,H1103)

+B(q̄, H2003) + 3B(H0001, H2102) + 3B(H0002, H2101) +B(H0003, H2100)

+3B(H0101, H2002) + 3B(H0102, H2001) +B(H0103, H2000) + 6B(H1001, H1102)

+6B(H1002, H1101) + 2B(H1003, H1100) + 3A2(H2101,K01,K01)

+3A2(H2100,K01,K02) + 6B1(q,H1102,K01) + 6B1(q,H1101,K02)

+2B1(q,H1100,K03) + 3B1(q̄, H2002,K01) + 3B1(q̄, H2001,K02)

+B1(q̄, H2000,K03) + 6B1(H0001, H2101,K01) + 3B1(H0002, H2100,K01)

+6B1(H0101, H2001,K01) + 3B1(H0102, H2000,K01) + 12B1(H1001, H1101,K01)

+6B1(H1002, H1100,K01) + 3B1(H0001, H2100,K02) + 3B1(H0101, H2000,K02)

+6B1(H1001, H1100,K02) + C(q, q,H0103) + 2C(q, q̄,H1003)

+6C(q,H0001, H1102) + 6C(q,H0002, H1101) + 2C(q,H0003, H1100)

+6C(q,H0101, H1002) + 6C(q,H0102, H1001) + 3C(q̄, H0001, H2002)

+3C(q̄, H0002, H2001) + C(q̄, H0003, H2000) + 6C(q̄, H1001, H1002)

+3C(H0001, H0001, H2101) + 3C(H0001, H0002, H2100) + 6C(H0001, H0101, H2001)

+3C(H0001, H0102, H2000) + 12C(H0001, H1001, H1101)

+6C(H0001, H1002, H1100) + 3C(H0002, H0101, H2000) + 6C(H0002, H1001, H1100)

+6C(H0101, H1001, H1001) +A3(H2100,K01,K01,K01)

+6B2(q,H1101,K01,K01) + 6B2(q,H1100,K01,K02)

+3B2(q̄, H2001,K01,K01) + 3B2(q̄, H2000,K01,K02)

+3B2(H0001, H2100,K01,K01) + 3B2(H0101, H2000,K01,K01)

+6B2(H1001, H1100,K01,K01) + C1(q, q, q̄,K03) + 3C1(q, q,H0102,K01)

+3C1(q, q,H0101,K02) + 6C1(q, q̄,H1002,K01) + 6C1(q, q̄,H1001,K02)

+12C1(q,H0001, H1101,K01) + 6C1(q,H0002, H1100,K01)

+12C1(q,H0101, H1001, ,K01) + 6C1(q,H0001, H1100,K02)

+6C1(q̄, H0001, H2001,K01) + 3C1(q̄, H0002, H2000,K01)

+6C1(q̄, H1001, H1001,K01) + 3C1(q̄, H0001, H2000,K02)

+3C1(H0001, H0001, H2100,K01) + 6C1(H0001, H0101, H2000,K01)

+12C1(H0001, H1001, H1100,K01) +D(q, q, q̄, H0003) + 3D(q, q,H0001, H0102)

+3D(q, q,H0002, H0101) + 6D(q, q̄,H0001, H1002) + 6D(q, q̄,H0002, H1001)

+6D(q,H0001, H0001, H1101) + 6D(q,H0001, H0002, H1100) + 12D(q,H0001, H0101, H1001)

+3D(q̄, H0001, H0001, H2001) + 3D(q̄, H0001, H0002, H2000)

+6D(q̄, H0001, H1001, H1001) +D(H0001, H0001, H0001, H2100)

+3D(H0001, H0001, H0101, H2000) + 6D(H0001, H0001, H1001, H1100)

+2B3(q,H1100,K01,K01,K01) +B3(q̄, H2000,K01,K01,K01)

+3C2(q, q, q̄,K01,K02) + 3C2(q, q,H0101,K01,K01)

+6C2(q, q̄,H1001,K01,K01) + 6C2(q,H0001, H1100,K01,K01)

+3C2(q̄, H0001, H2000,K01,K01) + 3D1(q, q, q̄, H0002,K01)

+3D1(q, q, q̄, H0001,K02) + 6D1(q, q,H0001, H0101,K01)

+12D1(q, q̄,H0001, H1001,K01) + 6D1(q,H0001, H0001, H1100,K01)

+3D1(q̄, H0001, H0001, H2000,K01) + 3E(q, q, q̄, H0001, H0002)

+3E(q, q,H0001, H0001, H0101) + 6E(q, q̄,H0001, H0001, H1001)

+2E(q,H0001, H0001, H0001, H1100) + E(q̄, H0001, H0001, H0001, H2000)

+C3(q, q, q̄,K01,K01,K01) + 3E1(q, q, q̄,H0001, H0001,K01) +K(q, q, q̄, H0001, H0001, H0001)

−(2g2103q + 6g2102H1001 + 6g2101H1002 + 2c1(0)H1003 + (2g1003 + g1003)H2100

+(6g1002 + 3g1002)H2101 + (6g1001 + 3g1001)H2102)
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A.7 Seventh order terms

Collecting seventh order terms of (4.1):

w7 : (7iω0In −A)H7000 = 7B(q,H6000) + 21B(H2000, H5000) + 35B(H3000, H4000)

+ 21C(q, q,H5000) + 105C(q,H2000, H4000) + 70C(q,H3000, H3000)

+ 105C(H2000, H2000, H3000) + 35D(q, q, q,H4000)

+ 210D(q, q,H2000, H3000) + 105D(q,H2000, H2000, H2000)

+ 35E(q, q, q, q,H3000) + 105E(q, q, q,H2000, H2000)

+ 21K(q, q, q, q, q,H2000) + L(q, q, q, q, q, q, q)

w6w̄ : (5iω0In −A)H6100 = 6B(q,H5100) +B(q̄, H6000) + 6B(H1100, H5000)

+ 15B(H2000, H4100) + 15B(H2100, H4000) + 20B(H3000, H3100)

+ 15C(q, q,H4100) + 6C(q, q̄,H5000) + 30C(q,H1100, H4000)

+ 60C(q,H2000, H3100) + 60C(q,H2100, H3000) + 15C(q̄, H2000, H4000)

+ 10C(q̄, H3000, H3000) + 60C(H1100, H2000, H3000)

+ 45C(H2000, H2000, H2100) + 20D(q, q, q,H3100) + 15D(q, q, q̄, H4000)

+ 60D(q, q,H1100, H3000) + 90D(q, q,H2000, H2100)

+ 60D(q, q̄,H2000, H3000) + 90D(q,H1100, H2000, H2000)

+ 15D(q̄, H2000, H2000, H2000) + 15E(q, q, q, q,H2100)

+ 20E(q, q, q, q̄, H3000) + 60E(q, q, q,H1100, H2000)

+ 45E(q, q, q̄, H2000, H2000) + 6K(q, q, q, q, q,H1100)

+ 15K(q, q, q, q, q̄, H2000) + L(q, q, q, q, q, q, q̄)− 30c1(0)H5000

w5w̄2 : (3iω0In −A)H5200 = 5B(q,H4200) + 2B(q̄, H5100)

+B(H0200, H5000) + 10B(H1100, H4100) + 5B(H1200, H4000)

+ 10B(H2000, H3200) + 20B(H2100, H3100) + 10B(H2200, H3000)

+ 10C(q, q,H3200) + 10C(q, q̄,H4100) + 5C(q,H0200, H4000)

+ 40C(q,H1100, H3100) + 20C(q,H1200, H3000)

+ 30C(q,H2000, H2200) + 30C(q,H2100, H2100) + C(q̄, q̄, H5000)

+ 10C(q̄, H1100, H4000) + 20C(q̄, H2000, H3100) + 20C(q̄, H2100, H3000)

+ 10C(H0200, H2000, H3000) + 20C(H1100, H1100, H3000)

+ 60C(H1100, H2000, H2100) + 15C(H1200, H2000, H2000)

+ 10D(q, q, q,H2200) + 20D(q, q, q̄, H3100) + 10D(q, q,H0200, H3000)

+ 60D(q, q,H1100, H2100) + 30D(q, q,H1200, H2000)

+ 5D(q, q̄, q̄, H4000) + 40D(q, q̄,H1100, H3000) + 60D(q, q̄,H2000, H2100)

+ 15D(q,H0200, H2000, H2000) + 60D(q,H1100, H1100, H2000)

+ 10D(q̄, q̄, H2000, H3000) + 30D(q̄, H1100, H2000, H2000)

+ 5E(q, q, q, q,H1200) + 20E(q, q, q, q̄,H2100) + 10E(q, q, q,H0200, H2000)

+ 20E(q, q, q,H1100, H1100) + 10E(q, q, q̄, q̄, H3000)

+ 60E(q, q, q̄, H1100, H2000) + 15E(q, q̄, q̄, H2000, H2000)

+K(q, q, q, q, q,H0200) + 10K(q, q, q, q, q̄, H1100) + 10K(q, q, q, q̄, q̄, H2000)

+ L(q, q, q, q, q, q̄, q̄)− [120c2(0)H3000 + (40c1(0) + 10c1(0))H4100]
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w4w̄3 : (A− iω0In)H4300 = 144c3(0)q + 72(2c2(0) + c2(0))H2100 + 12(3c1(0) + 2c1(0))H3200

− [4B(q,H3300) + 3B(q̄, H4200) + 3B(H0200, H4100) +B(H0300, H4000)

+ 12B(H1100, H3200) + 12B(H1200, H3100) + 4B(H1300, H3000)

+ 6B(H2000, H2300) + 18B(H2100, H2200) + 6C(q, q,H2300)

+ 12C(q, q̄,H3200) + 12C(q,H0200, H3100) + 4C(q,H0300, H3000)

+ 36C(q,H1100, H2200) + 36C(q,H1200, H2100) + 12C(q,H1300, H2000)

+ 3C(q̄, q̄, H4100) + 3C(q̄, H0200, H4000) + 24C(q̄, H1100, H3100)

+ 12C(q̄, H1200, H3000) + 18C(q̄, H2000, H2200) + 18C(q̄, H2100, H2100)

+ 12C(H0200, H1100, H3000) + 18C(H0200, H2000, H2100)

+ 3C(H0300, H2000, H2000) + 36C(H1100, H1100, H2100)

+ 36C(H1100, H1200, H2000) + 4D(q, q, q,H1300) + 18D(q, q, q̄, H2200)

+ 18D(q, q,H0200, H2100) + 6D(q, q,H0300, H2000) + 36D(q, q,H1100, H1200)

+ 12D(q, q̄, q̄, H3100) + 12D(q, q̄,H0200, H3000) + 72D(q, q̄,H1100, H2100)

+ 36D(q, q̄,H1200, H2000) + 36D(q,H0200, H1100, H2000)

+ 24D(q,H1100, H1100, H1100) +D(q̄, q̄, q̄, H4000) + 12D(q̄, q̄, H1100, H3000)

+ 18D(q̄, q̄, H2000, H2100) + 9D(q̄, H0200, H2000, H2000)

+ 36D(q̄, H1100, H1100, H2000) + E(q, q, q, q,H0300) + 12E(q, q, q, q̄, H1200)

+ 12E(q, q, q,H0200, H1100) + 18E(q, q, q̄, q̄, H2100) + 18E(q, q, q̄,H0200, H2000)

+ 36E(q, q, q̄, H1100, H1100) + 4E(q, q̄, q̄, q̄, H3000) + 36E(q, q̄, q̄, H1100, H2000)

+ 3E(q̄, q̄, q̄, H2000, H2000) + 3K(q, q, q, q, q̄, H0200) + 12K(q, q, q, q̄, q̄, H1100)

+ 6K(q, q, q̄, q̄, q̄, H2000) + L(q, q, q, q, q̄, q̄, q̄)]
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Remaining coefficients for the
center manifold approximmation

In this appendix, we present the coefficients of the center manifold approximation H that
were not needed in the computation of the normal form coefficients, i.e. the coefficients
marked blue in Figure 4.1. They need to be included in predidic orbit approximation as
discussed in Section 3.2.

B.1 Coefficients for ODEs

B.1.1 Parameter-independent coefficients

For our center manifold approximation, we also need the following parameter-independent
coefficients whose expressions can be found by respectively collecting the w5,w6,w5w̄, w7,
w6w̄,w5w̄2 terms. The resulting equations are

H5000 = (5iω0I −A)−1[5B(q,H4000) + 10B(H2000, H3000) + 10C(q, q,H3000)

+ 15C(q,H2000, H2000) + 10D(q, q, q,H2000) + E(q, q, q, q, q)],

H6000 = (6iω0In −A)−1[6B(q,H5000) + 15B(H2000, H4000) + 10B(H3000, H3000)

+ 15C(q, q,H4000) + 60C(q,H2000, H3000) + 15C(H2000, H2000, H2000)

+ 20D(q, q, q,H3000) + 45D(q, q,H2000.H2000) + 15E(q, q, q, q,H2000)

+K(q, q, q, q, q, q)],

H5100 = (4iω0I −A)−1[5B(q,H4100) +B(q̄, H5000) + 5B(H1100, H4000)

+ 10B(H2000, H3100) + 10B(H2100, H3000) + 10C(q, q,H3100) + 5C(q, q̄,H4000)

+ 20C(q,H1100, H3000) + 30C(q,H2000, H2100) + 10C(q̄, H2000, H3000)

+ 15C(H1100, H2000, H2000) + 10D(q, q, q,H2100) + 10D(q, q, q̄, H3000)

+ 30D(q, q,H1100, H2000) + 15D(q, q̄,H2000, H2000) + 5E(q, q, q, q,H1100)

+ 10E(q, q, q, q̄, H2000) +K(q, q, q, q, q, q̄)− 20c1(0)H4000],
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H7000 = (7iω0I −A)−1[7B(q,H6000) + 21B(H2000, H5000) + 35B(H3000, H4000)

+ 21C(q, q,H5000) + 105C(q,H2000, H4000) + 70C(q,H3000, H3000)

+ 105C(H2000, H2000, H3000) + 35D(q, q, q,H4000)

+ 210D(q, q,H2000, H3000) + 105D(q,H2000, H2000, H2000)

+ 35E(q, q, q, q,H3000) + 105E(q, q, q,H2000, H2000)

+ 21K(q, q, q, q, q,H2000) + L(q, q, q, q, q, q, q)],

H6100 = (5iω0I −A)−1[6B(q,H5100) +B(q̄, H6000) + 6B(H1100, H5000)

+ 15B(H2000, H4100) + 15B(H2100, H4000) + 20B(H3000, H3100)

+ 15C(q, q,H4100) + 6C(q, q̄,H5000) + 30C(q,H1100, H4000)

+ 60C(q,H2000, H3100) + 60C(q,H2100, H3000) + 15C(q̄, H2000, H4000)

+ 10C(q̄, H3000, H3000) + 60C(H1100, H2000, H3000)

+ 45C(H2000, H2000, H2100) + 20D(q, q, q,H3100) + 15D(q, q, q̄, H4000)

+ 60D(q, q,H1100, H3000) + 90D(q, q,H2000, H2100)

+ 60D(q, q̄,H2000, H3000) + 90D(q,H1100, H2000, H2000)

+ 15D(q̄, H2000, H2000, H2000) + 15E(q, q, q, q,H2100)

+ 20E(q, q, q, q̄, H3000) + 60E(q, q, q,H1100, H2000)

+ 45E(q, q, q̄, H2000, H2000) + 6K(q, q, q, q, q,H1100)

+ 15K(q, q, q, q, q̄, H2000) + L(q, q, q, q, q, q, q̄)− 30c1(0)H5000],

H5200 = (3iω0I −A)−1[5B(q,H4200) + 2B(q̄, H5100)

+B(H2000, H5000) + 10B(H1100, H4100) + 5B(H2100, H4000)

+ 10B(H2000, H3200) + 20B(H2100, H3100) + 10B(H2200, H3000)

+ 10C(q, q,H3200) + 10C(q, q̄,H4100) + 5C(q,H2000, H4000)

+ 40C(q,H1100, H3100) + 20C(q,H2100, H3000)

+ 30C(q,H2000, H2200) + 30C(q,H2100, H2100) + C(q̄, q̄, H5000)

+ 10C(q̄, H1100, H4000) + 20C(q̄, H2000, H3100) + 20C(q̄, H2100, H3000)

+ 10C(H2000, H2000, H3000) + 20C(H1100, H1100, H3000)

+ 60C(H1100, H2000, H2100) + 15C(H2100, H2000, H2000)

+ 10D(q, q, q,H2200) + 20D(q, q, q̄, H3100) + 10D(q, q,H2000, H3000)

+ 60D(q, q,H1100, H2100) + 30D(q, q,H2100, H2000)

+ 5D(q, q̄, q̄, H4000) + 40D(q, q̄,H1100, H3000) + 60D(q, q̄,H2000, H2100)

+ 15D(q,H2000, H2000, H2000) + 60D(q,H1100, H1100, H2000)

+ 10D(q̄, q̄, H2000, H3000) + 30D(q̄, H1100, H2000, H2000)

+ 5E(q, q, q, q,H2100) + 20E(q, q, q, q̄, H2100) + 10E(q, q, q,H2000, H2000)

+ 20E(q, q, q,H1100, H1100) + 10E(q, q, q̄, q̄, H3000)

+ 60E(q, q, q̄, H1100, H2000) + 15E(q, q̄, q̄, H2000, H2000)

+K(q, q, q, q, q,H2000) + 10K(q, q, q, q, q̄, H1100) + 10K(q, q, q, q̄, q̄, H2000)

+ L(q, q, q, q, q, q̄, q̄)− (120c2(0)H3000 + (40c1(0) + 10c1(0))H4100)].



85

B.1.2 Parameter-dependent coefficients

We also need the following parameter-dependent coefficients

H3010 = (3iω0In −A)−1[A1(H3000,K10) + 3B(q,H2010) +B(H0010, H3000)

+ 3B(H1010, H2000) + 3B1(q,H2000,K10) + 3C(q, q,H1010) + 3C(q,H0010, H2000)

+ C1(q, q, q,K10) +D(q, q, q,H0010)− 3(1 + ib1,10)H3000],

H4001 = (4iω0In −A)−1[A1(H4000,K01) + 4B(q,H3001) +B(H0001, H4000)

+ 4B(H1001, H3000) + 6B(H2000, H2001) + 4B1(q,H3000,K01)

+ 3B1(H2000, H2000,K01) + 6C(q, q,H2001) + 4C(q,H0001, H3000)

+ 12C(q,H1001, H2000) + 3C(H0001, H2000, H2000)

+ 6C1(q, q,H2000,K01) + 4D(q, q, q,H1001) + 6D(q, q,H0001, H2000)

+D1(q, q, q, q,K01) + E(q, q, q, q,H0001)− 4ib1,01H4000],

H5001 = (5iω0In −A)−1[A1(H5000,K01) + 5B(q,H4001) +B(H0001, H5000)

+ 5B(H1001, H4000) + 10B(H2000, H3001) + 10B(H2001, H3000)

+ 5B1(q,H4000,K01) + 10B1(H2000, H3000,K01) + 10C(q, q,H3001)

+ 5C(q,H0001, H4000) + 20C(q,H1001, H3000) + 30C(q,H2000, H2001)

+ 10C(H0001, H2000, H3000) + 15C(H1001, H2000, H2000)

+ 10C1(q, q,H3000,K01) + 15C1(q,H2000, H2000,K01)

+ 10D(q, q, q,H2001) + 10D(q, q,H0001, H3000) + 30D(q, q,H1001, H2000)

+ 15D(q,H0001, H2000, H2000) + 10D1(q, q, q,H2000,K01)

+ 5E(q, q, q, q,H1001) + 10E(q, q, q,H0001, H2000)

+ E1(q, q, q, q, q,K01) +K(q, q, q, q, q,H0001)− 5ib1,01H5000],
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H4101 = (3iω0In −A)−1[A1(H4100,K01) + 4B(q,H3101) +B(q̄, H4001)

+B(H0001, H4100) +B(H1001, H4000) + 4B(H1001, H3100)

+ 4B(H1100, H3001) + 4B(H1101, H3000) + 6B(H2000, H2101)

+ 6B(H2001, H2100) + 4B1(q,H3100,K01) +B1(q̄, H4000,K01)

+ 4B1(H1100, H3000,K01) + 6B1(H2000, H2100,K01) + 6C(q, q,H2101)

+ 4C(q, q̄,H3001) + 4C(q,H0001, H3100) + 4C(q,H1001, H3000)

+ 12C(q,H1001, H2100) + 12C(q,H1100, H2001) + 12C(q,H1101, H2000)

+ C(q̄, H0001, H4000) + 4C(q̄, H1001, H3000) + 6C(q̄, H2000, H2001)

+ 4C(H0001, H1100, H3000) + 6C(H0001, H2000, H2100)

+ 3C(H1001, H2000, H2000) + 12C(H1001, H1100, H2000)

+ 6C1(q, q,H2100,K01) + 4C1(q, q̄,H3000,K01)

+ 12C1(q,H1100, H2000,K01) + 3C1(q̄, H2000, H2000,K01)

+ 4D(q, q, q,H1101) + 6D(q, q, q̄, H2001) + 6D(q, q,H0001, H2100)

+ 6D(q, q,H1001, H2000) + 12D(q, q,H1001, H1100)

+ 4D(q, q̄,H0001, H3000) + 12D(q, q̄,H1001, H2000)

+ 12D(q,H0001, H1100, H2000) + 3D(q̄, H0001, H2000, H2000)

+ 4D1(q, q, q,H1100,K01) + 6D1(q, q, q̄, H2000,K01)

+ E(q, q, q, q,H1001) + 4E(q, q, q, q̄, H1001) + 4E(q, q, q,H0001, H1100)

+ 6E(q, q, q̄, H0001, H2000) + E1(q, q, q, q, q̄,K01) +K(q, q, q, q, q̄, H0001)

− (12(1 + ib2,01)H3000 + 12c1(0)H3001 + 3ib1,01H4100)].

Finally, we need the coefficient H3002 which can be derived by collecting the w3β22 terms.
This yields the equation

H3002 = (3iω0I −A)−1[2A1(H3001,K01) +A1(H3000,K02) + 3B(q,H2002)

+ 2B(H0001, H3001) +B(H0002, H3000) + 6B(H1001, H2001)

+ 3B(H1002, H2000) +A2(H3000,K01,K01) + 6B1(q,H2001,K01)

+ 3B1(q,H2000,K02) + 2B1(H0001, H3000,K01) + 6B1(H1001, H2000,K01)

+ 3C(q, q,H1002) + 6C(q,H0001, H2001) + 3C(q,H0002, H2000)

+ 6C(q,H1001, H1001) + C(H0001, H0001, H3000)

+ 6C(H0001, H1001, H2000) + 3B2(q,H2000,K01,K01) + C1(q, q, q,K02)

+ 6C1(q, q,H1001,K01) + 6C1(q,H0001, H2000,K01) +D(q, q, q,H0002)

+ 6D(q, q,H0001, H1001) + 3D(q,H0001, H0001, H2000)

+ C2(q, q, q,K01,K01) + 2D1(q, q, q,H0001,K01)

+ E(q, q, q,H0001, H0001)− (3ib1,02H3000 + 6ib1,01H3001)].
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B.2 Coefficients for DDEs

B.2.1 Parameter-independent coefficients

For our center manifold approximation, we also need the following parameter-independent
coefficients

H5000(θ) = e5iω0θ∆−1(5iω0)[5B(φ,H4000) + 10B(H2000, H3000) + 10C(φ,φ,H3000)

+ 15C(φ,H2000, H2000) + 10D(φ,φ, φ,H2000) + E(φ,φ, φ, φ, φ)],

H6000(θ) = e6iω0θ∆−1(6iω0)[6B(φ,H5000) + 15B(H2000, H4000) + 10B(H3000, H3000)

+ 15C(φ,φ,H4000) + 60C(φ,H2000, H3000) + 15C(H2000, H2000, H2000)

+ 20D(φ,φ, φ,H3000) + 45D(φ,φ,H2000.H2000) + 15E(φ,φ, φ, φ,H2000)

+K(φ,φ, φ, φ, φ, φ)],

H5100(θ) = e4iω0θ∆−1(4iω0)[5B(φ,H4100) +B(φ̄,H5000) + 5B(H1100, H4000)

+ 10B(H2000, H3100) + 10B(H2100, H3000) + 10C(φ,φ,H3100) + 5C(φ, φ̄,H4000)

+ 20C(φ,H1100, H3000) + 30C(φ,H2000, H2100) + 10C(φ̄,H2000, H3000)

+ 15C(H1100, H2000, H2000) + 10D(φ,φ, φ,H2100) + 10D(φ,φ, φ̄,H3000)

+ 30D(φ,φ,H1100, H2000) + 15D(φ, φ̄,H2000, H2000) + 5E(φ,φ, φ, φ,H1100)

+ 10E(φ,φ, φ, φ̄,H2000) +K(φ,φ, φ, φ, φ, φ̄)]

− 20c1(0)∆
−1(4iω0)[∆

′(4iω0)− θ∆(4iω0)]H4000(θ),

H7000(θ) = e7iω0θ∆−1(7iω0)[7B(φ,H6000) + 21B(H2000, H5000) + 35B(H3000, H4000)

+ 21C(φ,φ,H5000) + 105C(φ,H2000, H4000) + 70C(φ,H3000, H3000)

+ 105C(H2000, H2000, H3000) + 35D(φ,φ, φ,H4000)

+ 210D(φ,φ,H2000, H3000) + 105D(φ,H2000, H2000, H2000)

+ 35E(φ,φ, φ, φ,H3000) + 105E(φ,φ, φ,H2000, H2000)

+ 21K(φ,φ, φ, φ, φ,H2000) + L(φ,φ, φ, φ, φ, φ, φ)],

H6100(θ) = e5iω0θ∆−1(5iω0)[6B(q,H5100) +B(φ̄,H6000) + 6B(H1100, H5000)

+ 15B(H2000, H4100) + 15B(H2100, H4000) + 20B(H3000, H3100)

+ 15C(φ,φ,H4100) + 6C(φ, φ̄,H5000) + 30C(φ,H1100, H4000)

+ 60C(φ,H2000, H3100) + 60C(φ,H2100, H3000) + 15C(φ̄,H2000, H4000)

+ 10C(φ̄,H3000, H3000) + 60C(H1100, H2000, H3000)

+ 45C(H2000, H2000, H2100) + 20D(φ,φ, φ,H3100) + 15D(φ,φ, φ̄,H4000)

+ 60D(φ,φ,H1100, H3000) + 90D(φ,φ,H2000, H2100)

+ 60D(φ, φ̄,H2000, H3000) + 90D(φ,H1100, H2000, H2000)

+ 15D(φ̄,H2000, H2000, H2000) + 15E(φ,φ, φ, φ,H2100)

+ 20E(φ,φ, φ, φ̄,H3000) + 60E(φ,φ, φ,H1100, H2000)

+ 45E(φ,φ, φ̄,H2000, H2000) + 6K(φ,φ, φ, φ, φ,H1100)

+ 15K(φ,φ, φ, φ, φ̄,H2000) + L(φ,φ, φ, φ, φ, φ, φ̄)]

− 30c1(0)∆
−1(5iω0)[∆

′(5iω0)− θ∆(5iω0)]H5000(θ),
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H5200(θ) = e3iω0θ∆−1(3iω0)[5B(φ,H4200) + 2B(φ̄,H5100)

+B(H2000, H5000) + 10B(H1100, H4100) + 5B(H2100, H4000)

+ 10B(H2000, H3200) + 20B(H2100, H3100) + 10B(H2200, H3000)

+ 10C(φ,φ,H3200) + 10C(φ, φ̄,H4100) + 5C(φ,H2000, H4000)

+ 40C(φ,H1100, H3100) + 20C(φ,H2100, H3000)

+ 30C(φ,H2000, H2200) + 30C(φ,H2100, H2100) + C(φ̄, φ̄,H5000)

+ 10C(φ̄,H1100, H4000) + 20C(φ̄,H2000, H3100) + 20C(φ̄,H2100, H3000)

+ 10C(H2000, H2000, H3000) + 20C(H1100, H1100, H3000)

+ 60C(H1100, H2000, H2100) + 15C(H2100, H2000, H2000)

+ 10D(φ,φ, φ,H2200) + 20D(φ,φ, φ̄,H3100) + 10D(φ,φ,H2000, H3000)

+ 60D(φ,φ,H1100, H2100) + 30D(φ,φ,H2100, H2000)

+ 5D(φ, φ̄, φ̄,H4000) + 40D(φ, φ̄,H1100, H3000) + 60D(φ, φ̄,H2000, H2100)

+ 15D(φ,H2000, H2000, H2000) + 60D(φ,H1100, H1100, H2000)

+ 10D(φ̄, φ̄,H2000, H3000) + 30D(φ̄,H1100, H2000, H2000)

+ 5E(φ,φ, φ, φ,H2100) + 20E(φ,φ, φ, φ̄,H2100) + 10E(φ,φ, φ,H2000, H2000)

+ 20E(φ,φ, φ,H1100, H1100) + 10E(φ,φ, φ̄, φ̄,H3000)

+ 60E(φ,φ, φ̄,H1100, H2000) + 15E(φ, φ̄, φ̄,H2000, H2000)

+K(φ,φ, φ, φ, φ,H2000) + 10K(φ,φ, φ, φ, φ̄,H1100) + 10K(φ,φ, φ, φ̄, φ̄,H2000)

+ L(φ,φ, φ, φ, φ, φ̄, φ̄)]

− 120c2(0)∆
−1(3iω0)[∆

′(3iω0)− θ∆(3iω0)]H3000(θ)

− (40c1(0) + 10c1(0))e
3iω0θ∆−1(3iω0)

(
[∆′(3iω0)− θ∆(3iω0)]H4100(0)

+ 6c1(0)[∆
′′(3iω0)− θ2∆(3iω0)]H3000(0)

)
,

H4300(θ) = BINV
iω0

(M4300,−144c3(0))(θ)− 72(2c2(0) + c2(0))B̃
INV
iω0

(H2100,−2c1(0))(θ)

− 12iℑ{c1(0)}B̂INV
iω0

(H3200,−[12c2(0)q + 6iℑ (c1(0))H2100(0)], 12iℑ (c1(0)) c1(0))(θ).

B.2.2 Parameter-dependent coefficients

For our center manifold approximation, we also need the following parameter-dependent
coefficients

H3010(θ) = e3iω0θ∆−1(3iω0)[A1(H3000,K10) + 3B(φ,H2010) +B(H0010, H3000)

+ 3B(H1010, H2000) + 3B1(φ,H2000,K10) + 3C(φ,φ,H1010) + 3C(φ,H0010, H2000)

+ C1(φ,φ, φ,K10) +D(φ,φ, φ,H0010)]

− 3(1 + ib1,10)∆
−1(3iω0)[∆

′(3iω0)− θ∆(3iω0)]H3000(θ)],
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H4001(θ) = e4iω0θ∆−1(4iω0)[A1(H4000,K01) + 4B(φ,H3001) +B(H0001, H4000)

+ 4B(H1001, H3000) + 6B(H2000, H2001) + 4B1(φ,H3000,K01)

+ 3B1(H2000, H2000,K01) + 6C(φ,φ,H2001) + 4C(φ,H0001, H3000)

+ 12C(φ,H1001, H2000) + 3C(H0001, H2000, H2000)

+ 6C1(φ,φ,H2000,K01) + 4D(φ,φ, φ,H1001) + 6D(φ,φ,H0001, H2000)

+D1(φ,φ, φ, φ,K01) + E(φ,φ, φ, φ,H0001)]

− 4ib1,01∆
−1(4iω0)[∆

′(4iω0)− θ∆(4iω0)]H4000(θ),

H5001(θ) = e5iω0θ∆−1(5iω0)[A1(H5000,K01) + 5B(φ,H4001) +B(H0001, H5000)

+ 5B(H1001, H4000) + 10B(H2000, H3001) + 10B(H2001, H3000)

+ 5B1(φ,H4000,K01) + 10B1(H2000, H3000,K01) + 10C(φ,φ,H3001)

+ 5C(φ,H0001, H4000) + 20C(φ,H1001, H3000) + 30C(φ,H2000, H2001)

+ 10C(H0001, H2000, H3000) + 15C(H1001, H2000, H2000)

+ 10C1(φ,φ,H3000,K01) + 15C1(φ,H2000, H2000,K01)

+ 10D(φ,φ, φ,H2001) + 10D(φ,φ,H0001, H3000) + 30D(φ,φ,H1001, H2000)

+ 15D(φ,H0001, H2000, H2000) + 10D1(φ,φ, φ,H2000,K01)

+ 5E(φ,φ, φ, φ,H1001) + 10E(φ,φ, φ,H0001, H2000)

+ E1(φ,φ, φ, φ, φ,K01) +K(φ,φ, φ, φ, φ,H0001)]

− 5ib1,01∆
−1(5iω0)[∆

′(5iω0)− θ∆(5iω0)]H5000(θ),
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H4101(θ) = e3iω0θ∆−1(3iω0)[A1(H4100,K01) + 4B(φ,H3101) +B(φ̄,H4001)

+B(H0001, H4100) +B(H1001, H4000) + 4B(H1001, H3100)

+ 4B(H1100, H3001) + 4B(H1101, H3000) + 6B(H2000, H2101)

+ 6B(H2001, H2100) + 4B1(φ,H3100,K01) +B1(φ̄,H4000,K01)

+ 4B1(H1100, H3000,K01) + 6B1(H2000, H2100,K01) + 6C(φ,φ,H2101)

+ 4C(φ, φ̄,H3001) + 4C(φ,H0001, H3100) + 4C(φ,H1001, H3000)

+ 12C(φ,H1001, H2100) + 12C(φ,H1100, H2001) + 12C(φ,H1101, H2000)

+ C(φ̄,H0001, H4000) + 4C(φ̄,H1001, H3000) + 6C(φ̄,H2000, H2001)

+ 4C(H0001, H1100, H3000) + 6C(H0001, H2000, H2100)

+ 3C(H1001, H2000, H2000) + 12C(H1001, H1100, H2000)

+ 6C1(φ,φ,H2100,K01) + 4C1(φ, φ̄,H3000,K01)

+ 12C1(φ,H1100, H2000,K01) + 3C1(φ̄,H2000, H2000,K01)

+ 4D(φ,φ, φ,H1101) + 6D(φ,φ, φ̄,H2001) + 6D(φ,φ,H0001, H2100)

+ 6D(φ,φ,H1001, H2000) + 12D(φ,φ,H1001, H1100)

+ 4D(φ, φ̄,H0001, H3000) + 12D(φ, φ̄,H1001, H2000)

+ 12D(φ,H0001, H1100, H2000) + 3D(φ̄,H0001, H2000, H2000)

+ 4D1(φ,φ, φ,H1100,K01) + 6D1(φ,φ, φ̄,H2000,K01)

+ E(φ,φ, φ, φ,H1001) + 4E(φ,φ, φ, φ̄,H1001) + 4E(φ,φ, φ,H0001, H1100)

+ 6E(φ,φ, φ̄,H0001, H2000) + E1(φ,φ, φ, φ, φ̄,K01) +K(φ,φ, φ, φ, φ̄,H0001)]

− 12(1 + ib2,01)∆
−1(3iω0)[∆

′(3iω0)− θ∆(3iω0)]H3000(θ)

− 12c1(0)e
3iω0θ∆−1(3iω0)

(
[∆′(3iω0)− θ∆(3iω0)]H3001(0)

+
3

2
ib1,01[∆

′′(3iω0)− θ2∆(3iω0)]H3000(0)
)

− 3ib1,01e
3iω0θ∆−1(3iω0)

(
[∆′(3iω0)− θ∆(3iω0)]H4100(0)

+ 6c1(0)[∆
′′(3iω0)− θ2∆(3iω0)]H3000(0)

)
.

H3201(θ) = BINV
iω0

(M3201,−12g3201)(θ)− 12c2(0)B̃
INV
iω0

(H1001,−ib1,01)(θ)
− (18 + 6ib2,01)B̃

INV
iω0

(H2100,−2c1(0))(θ)

− 6iℑ{c1(0)}B̂INV
iω0

(H2101,−[2(1 + ib2,01)q + ib1,01H2100(0) + 2c1(0)H1001(0)], 4ic1(0)b1,01)(θ)

− ib1,01B̂
INV
iω0

(H3200,−[12c2(0)q + 6iℑ (c1(0))H2100(0)], 12iℑ (c1(0)) c1(0))(θ),
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H3002(θ) = e3iω0θ∆−1(3iω0)[2A1(H3001,K01) +A1(H3000,K02) + 3B(φ,H2002)

+ 2B(H0001, H3001) +B(H0002, H3000) + 6B(H1001, H2001)

+ 3B(H1002, H2000) +A2(H3000,K01,K01) + 6B1(φ,H2001,K01)

+ 3B1(φ,H2000,K02) + 2B1(H0001, H3000,K01) + 6B1(H1001, H2000,K01)

+ 3C(φ,φ,H1002) + 6C(φ,H0001, H2001) + 3C(φ,H0002, H2000)

+ 6C(φ,H1001, H1001) + C(H0001, H0001, H3000)

+ 6C(H0001, H1001, H2000) + 3B2(φ,H2000,K01,K01) + C1(φ,φ, φ,K02)

+ 6C1(φ,φ,H1001,K01) + 6C1(φ,H0001, H2000,K01) +D(φ,φ, φ,H0002)

+ 6D(φ,φ,H0001, H1001) + 3D(φ,H0001, H0001, H2000)

+ C2(φ,φ, φ,K01,K01) + 2D1(φ,φ, φ,H0001,K01)

+ E(φ,φ, φ,H0001, H0001)]

− 3ib1,02∆
−1(3iω0)[∆

′(3iω0)− θ∆(3iω0)]H3000(θ)

− 6ib1,01e
3iω0θ∆−1(3iω0)

(
[∆′(3iω0)− θ∆(3iω0)]H3001(0)

+
3

2
ib1,01[∆

′′(3iω0)− θ2∆(3iω0)]H3000(0)
)
.



Appendix C

DDEs and sun-star calculus

A common way of solving DDEs is by the so-called method of steps. This will be illustrated
in the following example.

Example. Consider the following simple DDE

ẋ(t) = αx(t− h), t ≥ 0, (C.1)

for some α ∈ R with the initial condition x(t) = 1 for t ∈ [−h, 0]. For t ∈ [0, h] we have
that x(t− h) = 1 and thus system (C.1) becomes

ẋ = α, t ∈ [0, h].

Integrating this equation results in the solution

x(t) = x(0) +

∫ h

0
αds = 1 + αt, t ∈ [0, h].

Using this solution we can proceed to find the solution on the interval [h, 2h]. Namely,
the equation becomes

ẋ(t) = α(1 + α(t− h)), t ∈ [h, 2h].

Integrating this equation yields

x(t) = x(h) + α

∫ t

h
(1 + α(s− h))ds,

= 1 + αh+ α

(
(t− h)(1− αh) +

1

2
α(t2 − h2)

)
,

= 1 + αh+ α(t− h)(1 +
1

2
α(t− h)), t ∈ [h, 2h].

This second step can also be performed by first translating the solution on the interval
[0, h] to the interval [−h, 0] and then integrating the new equation. Proceeding this way
one can find a solution for all t ≥ 0.

Thus, there are two main steps in solving such an equation. First, we extend the solution
by solving the DDE on the interval [0, h]. Then we can translate this solution back to the
interval [−h, 0] and repeat the process. Motivated by this, a natural state space is the
Banach spaceX = C([−h, 0],R) of continuous functions endowed with the usual supremum
norm. To deal with the infinite-dimensional state space X, we need the functional analytic
framework of sun-star calculus. We will provide a short introduction of sun-star calculus
in the context of DDEs in the next sections following [9].
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C.1 The shift semigroup

A good starting point turns out to be the trivial DDE

ẋ(t) = 0, t ≥ 0, (C.2)

with some initial condition φ ∈ X

x(θ) = φ(θ), θ ∈ [−h, 0]. (C.3)

Here we take X = C([−h, 0],C) as our state space endowed with the supremum norm.
The extension rules for other systems can be considered perturbations of this simple case.
The solution to (C.2) is given by

x(t) =

{
φ(t), t ∈ [−h, 0],
φ(0), t ≥ 0.

(C.4)

Based on this solution, we define for each t ≥ 0 the shift semigroup

(T0(t)φ)(θ) =

{
φ(t+ θ), t+ θ ∈ [−h, 0],
φ(0), t+ θ ≥ 0.

(C.5)

This defines a bounded linear operator T0(t) : X → X mapping the initial state φ at time
zero to the state xt at time t. The family {T0(t)}t≥0 of operators satisfies the following
three properties:

1. T (0) = I,

2. T (t)T (s) = T (t+ s), t, s ≥ 0,

3. for any φ ∈ X, ∥T (t)φ− φ∥ → 0 as t ↓ 0.

Such a family bounded linear operators defined on a Banach space X is called a strongly
continuous semigroup of operators or a C0-semigroup. The first two properties make it a
semigroup, while the final property ensures strong continuity. A more rigorous introduc-
tion to C0-semigroup including proofs of some general results can be found in [9, Appendix
II]. The infinitesimal generator A of a semigroup of operators {T (t)}t≥0 is defined as the
derivative at t = 0, i.e.

Aφ = lim
t↓0

1

t
(T (t)φ− φ), (C.6)

where the domain D(A) is defined as the set of all φ ∈ X for which the above limit does
exist. The operator A is a linear operator on its domain and is generally unbounded.
However, it is closed and its domain D(A) is dense in X. The infinitesimal generator for
the shift semigroup (C.5) can be found explicitly and is given by

D(A0) = {φ ∈ X|φ̇ ∈ C([−h, 0],C), φ̇(0) = 0}, A0φ = φ̇.

One problem that arises here is that the extension rule is incorporated in the domain of
A0 through the condition φ̇(0) = 0. Changing this rule will change the domain of the
generator. This will result in certain technical complications when we study perturbations
of the trivial equation which is resolved with the help of the sun-star calculus. Before we
proceed with sun-star, it is useful to introduce functions of normalized bounded variation.
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C.2 Functions of normalized bounded variation

Recall from the functional analysis that a dual space of a Banach space X is defined as the
space of continuous linear operators on X with values in R or C. We will denote this by
X⋆. For the case where X = C([−h, 0],R) it is possible to identify the dual space X⋆ with
the so-called space of functions of normalized bounded variations. For this, we first need
to define functions of bounded variation. Let f : [a, b] → R. We define the total variation
of f over the interval [a, b] as

V (f) = sup
P (a,b)

N∑
j=1

|f(σj)− f(σj−1)|,

where P (a, b) is a partition a = σ0 < σ1 < · · · < σN = b of [a, b]. We say that f is of
bounded variation or f ∈ BV if V (f) < ∞. We can now define the space of functions of
normalized bounded variations as

NBV := {f ∈ BV |f(a) = 0 and f is continuous from the right on the interval (a, b)}.

A vector-valued function f : [a, b] → Rn is of normalized bounded variation if and only
if every component is of normalized bounded variation. Now consider again the space
X = C([−h, 0],R). Then it is convenient to consider functions of NBV on the interval
[0, h] and extend the domain to all of R by setting f(θ) = 0 for θ ≤ 0 and f(θ) = f(h) for
θ ≥ h. With this convention, we have the following pairing between f ∈ NBV and φ ∈ X.

⟨f, φ⟩ =
∫ h

0
df(θ)φ(−θ), (C.7)

where the integral is a Riemann-Stieltjes integral. More details on the Riemann-Stieltjes
integral and its properties can be found in [9, Appendix I].

C.3 Sun-star calculus for the shift semi-group

This section is based on [9, Chapter II]. We will only state some of the main results.

The pairing between x⋆ ∈ X⋆ and x ∈ X will be denoted as x⋆(x) = ⟨x⋆, x⟩. We will
now consider the family of adjoint semigroup operators T ⋆ := {T ⋆(t)}t≥0 on X⋆. For a
bounded linear operator T : X → X, the adjoint operator T ⋆ : X⋆ → X⋆ is defined by the
property that

⟨x⋆, Tx⟩ = ⟨T ⋆x⋆, x⟩, for every x ∈ X,x⋆ ∈ X⋆.

As shown in [9][Section II.4], the adjoint operator of the shift semigroup (C.5) can be
found explicitly and is given by

(T ⋆0 (t)φ) = φ(t+ θ), θ > 0. (C.8)

The adjoint semigroup is not strongly continuous. For a densely defined unbounded op-
erator A, we define the adjoint operator A⋆ : D(A⋆) → X⋆ by

D(A⋆) = {x⋆ ∈ X⋆| There exists y⋆ ∈ X⋆ such that

⟨x⋆, Ax⟩ = ⟨y⋆, x⟩, for all x ∈ D(A)},

and
A⋆x⋆ = y⋆.
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For the infinitesimal generator A defined as (C.6), A⋆ only generates the adjoint semigroup
T ⋆ in the weak∗-sense. This means that

lim
t↓0

1

t
⟨T ⋆(t)x⋆ − x⋆, x⟩ = ⟨A⋆x⋆, x⟩, for all x ∈ X if and only if x⋆ ∈ D(A⋆).

We can consider the restriction of T ⋆ to the maximal subspace of strong continuity

X⊙ :=

{
x⋆ ∈ X⋆

∣∣∣∣limt↓0 1

t
(T (t)φ− φ) = 0

}
.

It turns out that X⊙ is precisely given by the norm closure of D(A⋆), i.e.

X⊙ = D(A⋆).

The restriction of T ⋆ to X⊙, denoted by T⊙ := {T⊙(t)}t≥0 is a C0-semigroup. The
infinitesimal generator A⊙ of T⊙ is the restriction of A⋆ to X⊙,

D(A⊙) = {x⊙ ∈ D(A⋆)|A⋆x⊙ ∈ X⊙}, A⊙x⊙ = A⋆x⊙.

For the shift semigroup, we can explicitly determine the sun-dual space X⊙. For the case
of the shift semigroup, we have

X⊙ = {f ∈ NBV |f(t) = c+

∫ t

0
g(θ)dθ for t > 0, where c ∈ C and

g ∈ L1 such that g(θ) = 0, for (almost all) θ ≥ h}.

We see that for the shift semigroup, the elements of the space X⊙ are completely specified
by the pair (c, g) ∈ C× L1([0, h],C). Using these coordinates we have from (C.8)

T⊙
0 (t)(c, g) =

(
c+

∫ t

0
g(σ)dσ, g(t+ ·)

)
(C.9)

Furthermore, the infinitesimal generator A⊙
0 is given by

A⊙
0 (c, g) = (g(0), ġ),

Let AC denote the space of absolutely continuous functions. Then the domain of A⊙
0 is

given by
D(A⊙

0 ) = {(c, g)|c ∈ C and g ∈ AC with g(θ) = 0 for θ ≥ h}.
We now have a C0-semigroup T⊙

0 defined on a Banach space X⊙ with a generator A⊙
0 .

Repeating the same procedure, we can construct the dual space X⊙⋆ with the adjoint
semigroup T⊙⋆

0 . Finally, we obtain the C0-semigroup T⊙⊙
0 by restricting T⊙⋆

0 to X⊙⊙ =

D(A⊙⋆
0 ). We can use the paring between X and X⊙⋆ to define an embedding j : X → X⊙⋆

as
⟨jx, x⊙⟩ := ⟨x⊙, x⟩.

In the special case where j(X) = X⊙⊙, we say that X is ⊙-reflexive with respect to T .

For the shift semigroup we can represent X⊙⋆ by C×L∞([−h, 0],C). The pairing between
(α,φ) ∈ X⊙⋆ and (c, g) ∈ X⊙ is given by

⟨(α,φ), (c, g)⟩ = αc+

∫ h

0
φ(−θ)g(θ)dθ.
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From equation (C.9) we can determine the action of T⊙⋆
0 in terms of the above paring.

This yields
T⊙⋆
0 (t)(α,φ) = (α,φαt ),

where

φαt (θ) =

{
φ(t+ θ), t+ θ ≤ 0,

α, t+ θ > 0.

Let Lip(α) denote the subset of L∞([−h, 0],C) consisting of Lipschitz continuous functions
which assume the value α at θ = 0. Then, the infinitesimal generator A⊙⋆

0 has domain

D(A⊙⋆
0 ) = {(α,φ)|φ ∈ Lip(α)},

and is given by
A⊙⋆

0 (α,φ) = (0, φ̇). (C.10)

To arrive at X⊙⊙ we take the closure of D(A⊙⋆
0 ) which yields

X⊙⊙ = D(A⊙⋆
0 ) = {(α,φ)|φ ∈ C(α)},

where φ ∈ C(α) are the continuous functions in L∞([−h, 0],C) satisfying φ(0) = α. Thus,
we see that we can identify eacht φ ∈ X with the pair (φ(0), φ) ∈ X⊙⊙. This allows us to
define the embedding

jφ = (φ(0), φ)

mapping X onto X⊙⊙, i.e. j(X) = X⊙⊙. Thus X = C([−h, 0],C) is ⊙-reflexive with
respect to the shift semigroup T0.

C.3.1 Linear DDEs

We can consider linear DDEs as bounded perturbations from the trivial DDE (C.2) fol-
lowing [9, Chapter III]. Let L : X → Cn be a continuous linear operator and consider a
linear system of DDEs {

ẋ(t) = Lxt, t ≥ 0,

x(θ) = φ(θ) θ ∈ [−h, 0]
(C.11)

A corollary of Riesz representation theorem [9, Theorem 1.1] states that there exists a
unique function of normalized bounded variation ζ ∈ NBV , ζ : [0, h] → Cn such that

Lxt = ⟨ζ, xt⟩.

Furthermore, define the operator B : X → X⊙⋆ as

Bφ = (⟨ζ, φ⟩, 0).

Then we can write the linear DDE as an equation in X⊙⋆ as

j
d

dt
xt = A⊙⋆

0 jxt +Bxt, (C.12)

where A⊙⋆
0 is given by (C.10). There exists a unique C0-semigroup T corresponding to the

linear DDE (C.11) which is related to the shift-semigroup (C.5) by the following linear
integral equation

T (t)x = T0(t)x+ j−1

∫ t

0
T⊙⋆
0 BT (τ)xdτ, t ≥ 0, x ∈ X. (C.13)
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It turns out that X is again sun-reflexive with respect to T . Furthermore, the spaces X⊙

and X⊙⊙ remain the same for T as for T0. The domain of A⊙⋆ is not affected by the linear
perturbation B. Only the action changes, i.e.

A⊙⋆ = A⊙⋆
0 +Bj−1, with D(A⊙⋆) = D(A⊙⋆

0 ).

For the generator A of T we have

D(A) = {x ∈ X : jx ∈ D(A⊙⋆
0 ) and A⊙⋆

0 jx+Bx ∈ X⊙⊙}, (C.14)

with
Ax = j−1(A⊙⋆

0 jx+Bx). (C.15)

Returning to our linear DDE (C.11), we can determine explicit expressions for the gener-
ators A⊙⋆ and A. The generator A⊙⋆ is given by

A⊙⋆(α,φ) = (⟨ζ, φ⟩, φ̇), with D(A⊙⋆) = {(α,φ)|φ ∈ Lip(α)}. (C.16)

Meanwhile, the generator A is given by

Aφ = φ̇, with D(A) = {φ ∈ C1|φ̇(0) = ⟨ζ, φ⟩}. (C.17)

Observe the change in the domain of the generator A compared to the domain of A0.
Finally, we can relate solutions of the linear DDE (C.11) to the semigroup T defined by
(C.13). Namely, if x(·, φ) is a solution to equation (C.11), then

xt(·, φ) = T (t)φ.

C.3.2 The variation of constants formula

As we did for linear DDEs, we can associate solutions to a general DDE with solutions
to an abstract integral equation by considering nonlinear perturbations of the linear DDE
(C.11). This will lead to the so-called variations-of-constants formula for DDEs.

Consider the following perturbed DDE{
ẋ(t) = ⟨ζ, xt⟩+G(xt), t ≥ 0,

x(θ) = φ(θ), θ ∈ [−h, 0].
(C.18)

where G : X → Rn is assumed to be sufficiently smooth such that

G(0) = 0, DG(0) = 0.

Let ei be the standard basis vectors in Rn for i = 1, . . . , n. It is convenient to introduce
the notation r⊙⋆i := (ei, 0) ∈ X⊙⋆ and

wr⊙⋆ :=
n∑
i=1

wir
⊙⋆
i , w ∈ Rn.

With this notation we can write wr⊙⋆ = (w, 0) ∈ X⊙⋆. Let T = {T (t)}t≥0 be the C0-
semigroup corresponding to the linear part of (C.18) and define R : X → X⊙⋆ as

R(φ) = G(φ)r⊙⋆.



98

Let u(t) = xt and let T be the C0-semigroup corresponding to the linear part of (C.18)
with generator A. Then as was done for linear DDEs, it is tempting to write (C.18) as
the abstract equation

ju̇(t) = A⊙⋆ju(t) +R(u(t)). (C.19)

Then, formal integration of (C.19) results in the following version of the variations-of-
constants equation

u(t) = T (t)φ+ j−1

∫ t

0
T⊙⋆(t− τ)R(u(τ))dτ, t ≥ 0. (C.20)

Solutions to (C.20) are continuous functions u : [0, t+) → X. A one-to-one correspondence
exists between solutions to the integral equation (C.20) and solutions to the DDE (C.18)
[9, Proposition 6.1]. In particular, if u(t) is a solution to (C.18), then the function x :
[−h, tφ) → Rn defined as

x0 := φ, and x(t) = u(t)(0), t ∈ [0, tφ)

is the unique solution of (C.18).

As for ODEs, the variations-of-constants equation plays an important role in the study
of solutions and their stability of DDEs. In particular, it is used to prove the exis-
tence of an invariant local invariant center manifold in [9, Chapter IX]. On this cen-
ter manifold the solutions u : I → X actually satisfy the abstract differential equation
(C.19). A parameter-dependent version of the variations-of-constants equation results in
the parameter-dependent ODE (2.20) on the center manifold, see [3, Corollary 20].
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