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Abstract

In this thesis we will discuss the topic of quadratic forms and we will prove
Hasse’s local-global principle. This is a theorem that allows us to determine
if a quadratic form with coefficients in Q has a nontrivial zero. Firstly, we
will define quadratic forms and prove some basic properties. Then, we define
the p-adic field Q, and explore this field thoroughly to learn a lot about its
structure and its elements. Finally, we will prove the local-global principle.



Introduction

If a polynomial f(z) € Z[x] has a root a € Z, then the reduced polynomial
f(x) € (Z/pZ)[x] has a corresponding root a € Z/pZ for every prime p. In
other words, if f has a ‘global’ zero, then it has a ‘local’ zero everywhere.
The converse is not true. For example, the polynomial:

(2% = 2)(2® = 3) (2" = 6),

has a zero in Z/pZ everywhere, but none in Z. So, in this case, it is not
necessarily true that a local zero everywhere implies a global zero. A local-
global principle is a statement that asserts that a certain property is true
globally if and only if it is true everywhere locally. Before stating Hasse’s
local-global principle, we provide an overview of the topics discussed in this
thesis.

The first chapter of this thesis is about quadratic forms. A quadratic form
on a vector space V over k with dim(V) = n is a function f : V' — k such
that f can be written as:

f([El, e ,l’n) = ZZaijxixj,
g

such that a;; = aj;. We say that two quadratic forms f on V and g on V' are
equivalent if there exists a linear bijection h : V' — V'’ such that go h = f.
If this is the case we will write f ~ g. The main theorem of this chapter is
that every quadratic form f is equivalent to a quadratic form of the form:

2 2
f~axi+ ... +ay,T,,.

We say that a quadratic form is nondegenerate if a; # 0 for all 1 <7 < n.

In the second chapter we will define the p-adic field Q,. Recall, that the
field Q is not complete with respect to te absolute value and that R can be
defined as a completion of Q using Cauchy sequences. The p-adic field Q,
is defined similarly. It is defined as a completion of @, in almost the same
way as R, but with respect to another norm. The norm in question is called
the p-adic norm. An element x € QQ is small with respect to this norm if the
power of p in the ‘prime factorization’ of x is high and vice versa.

We will give a decomposition of Q, but before we are able to do this
we first try to understand what the elements in Q, look like. After this we
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will do some analysis in Q,. We will mainly discuss the function exp(z) and
log(x). These function are important to us because they will allow us the give
isomorphism between subsets of QQ,, which in turn allows us to decompose
Q, and give us criteria when an element in Q is a square.

We will use all this theory to prove bilinearity of the Hilbert symbol. The
Hilbert symbol is defined as follows: let a,b € Q). We put:

(a.b) 1 if 22 — ax® — by® = 0 has a solution not equal to 0 in Q}.
a7 = .
—1 otherwise.

Bilinearity of the Hilbert symbol means that:
(ad’,b) = (a,b)(d’,b).

It is one the the main theorems of this thesis. It is a strong theorem and
we will use it a lot to prove the local-global principle, which we will now
formally state.

Theorem. A nondegenerate quadratic form f with coefficients in Q has a
nontrivial zero if and only if f has a nontrivialzero in R and in @, for every
prime p.



1 Quadratic forms

1.1 Basic definitions

Definition 1.1.1. Let V be a vector space over a field k. A quadratic form
on V is a function () : V — k that suffices:

1. Q(ax) = a*Q(x) for all a € k and x € V

2. The function (z,y) — Q(z +y) — Q(z) — Q(y) is a bilinear function.
We call the pair (V, Q) a quadratic module.

In this text, we will limit ourselves to fields k with char(k) # 2. We also
assume that V' has finite dimension.

Definition 1.1.2. Let x,y € V. The function - : V x V' — R defined by:
1
vy =5(Qr +9) - Q) - Qy)
is called the scalar product associated with Q).

The scalar product has the following important property:
1
-z =5(Q(22) - 2Q(z)) = Q(2).
Proposition 1.1.3. Define Qy as the set of quadratic forms on the vector
space V' and By as the set of symmetric bilinear functions over the same
space. The maps f : Qy — By and g : By — Qv given by:

F(Q)y) = 5(Q +y) -~ Q) - Q)

and
g9(b)(z) := bz, x),

are well-defined and mutual inverses. We conclude that Qy is in bijection
with Bv.

Proof. By Definition 1.1.1, the map f sends quadratic forms to symmetric
bilinear functions. It is obvious that g(b)(ax) = b(az,ax) = a®b(x,x) =
a’g(b)(x), so g(b) satisfies the first property of a quadratic form. Because b
is bilinear, g(b) also satisfies the second. We prove that f and g are inverses:

(F 0 0) (b)) = & (b + v, + ) — bla,2) — by.0)) = b +)

and

(Q(22) = 2Q(2)) = Q(x). =

N | —

(g0 N)(Q(z)) =
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We will now define the matrix of a quadratic form.

Definition 1.1.4. Let (V,Q) be a quadratic module and B = {ey, ..., e,}
be a basis of V. The matriz of () with respect to this basis, is the matrix
A= (aij) with Q5 1= €4 €.

If we change the basis by means of an invertible matrix X = (z;;), we get a
new matrix A" = (aj;) of Q with respect to the new basis B’ = {Xey, ..., Xe,}.
We defined aj; = (Xe; - Xe;) and we will show that A" = XTAX:

Xe; - Xej = Z Trir 2961]'61
= ZZ Trivij(ex - ;) (XTAX)ij
k=11=1
We conclude that det(A’) = det(A)det(X)2. The following definition makes

sense now.

Definition 1.1.5. The discriminant of () is defined as the determinant of A,
it is determined up to multiplication by and element of k**. The discriminant
is denoted as d(Q).

Example 1.1.6. Define Q : R" —» R by Q(x) = 2% + ... + 22, where we use
the usual multiplication and addition in R. We will use the standard basis in
this example. If x,y € R", with x = (z1,...,2,) and y = (Y1, -, Yn), then:

= T11 + T2Y2 + ...+ TnYn-

For the matriz A of QQ we see that, with respect to the standard basis, A = I,
where I,, denotes the identity matriz. We also have d(Q) = 1.



1.2 Orthogonality

Definition 1.2.1. Let (V, Q) be a quadratic module over k. Two elements
x,y € V are called orthogonal if -y = 0. The set of elements orthogonal to
a subset H — V is denoted by H*. If V; and V5 are two linear subspaces of
V', they are said to be orthogonal if z € V;,y € V5 implies that -y = 0.

Proposition 1.2.2. Let H be a subset of V', where (V,Q) is a quadratic
module. The set H*, is a linear subspace of V.

Proof. If H = &, then H* =V, so suppose that H # &. Since -0 = 0 for
all ze V, we have 0 € H* and H* # ¢J. Suppose that vy, v, are elements of
H* and ky, ko are elements of k. It is sufficient to show that kyvq +kovy € H*.
Now, for every v € H we have:

(k?ﬂ}l + ]{?21}2) U = ]{?1(1)1 'U) + k2(v2 . U) = 0,
by bilinearity of the scalar product. O]

Definition 1.2.3. The orthogonal complement V= of V itself, is called the
radical of V| denoted rad(V'). Its codimension is called the rank of Q. If
V+ = {0}, we say that Q is nondegenerate.

Let’s take a look at Q : R? — R defined by Q(x) = x3 + 2175 + 23, where
r = (r1,72). If y = (y1,92) € R?, then the scalar product for this quadratic
form is:

Ty =T1Y1 + T1Y2 + Y1T2 + Tayo.

Using the standard basis for R?, it is easy to see that all the entries of the
matrix A of @) are given by a;; = 1. This means that d(Q)) = det(A) = 0 and
there exists ki, ko € R such that for the column vectors vy, v of A, we have
kiv1 + kovy = 0. Since v; = vy we choose k; = —ky = 1. Now, for any z € R?

we have:
1 P = + 29 —x1—29=0
1 Lo =T T T o = U.

We conclude that @) is degenerate. The next proposition generalizes this
phenomenon.

Proposition 1.2.4. A quadratic form @Q is nondegenerate if and only if

d(Q) # 0.

Proof. Let A be the matrix of (). Denote for vy, ..., v, the column vectors of
A. We have that det(A) = 0 if and only if kjvq + ... + kv, = 0 for some
ki, ..., kn € k not all equal to zero or since v; = (a4, ..., apn;):

ijaijz()foralllgién.
J
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For arbitrary z € V with x = ). ;e; we have:
Z T;€; - 2 kjej = 21‘2(61 . Z k’j€j)
i J i J
= ZmZZkJ(eZ . ej) = 0
( J

So, there exists (ki,...,k,) # 0 € V1 if and only if d(Q) = 0. O

Definition 1.2.5. Let Uy,...,U,, be linear subspaces of V. One says that
V' is the orthogonal direct sum of the U; if they are pairwise orthogonal and
if V' is the direct sum of them. One writes then:

V=U,8...8U,.

Proposition 1.2.6. Suppose (V,Q) is a quadratic module. We can decom-

pose (V,Q) as:
V = rad(V) & U

where Q|y is nondegenerate.

Proof. If U is any subspace of V then rad(V) and U are orthogonal. By
Proposition 1.2.2 we know that rad(V') is a subspace of V. Every subspace
of a vector space has a complement, i.e. there exists U such that:

V =rad(V)®U and U nrad(V) = {0}.

Now, U must be nondegenerate. If x € rad(U), v € rad(V) and u € U, we
have z - (v+u) =2 -v+x-u=0,s0 x€rad(V) and x = 0. O

Definition 1.2.7. Given any vector space V over a field k, the dual space
V* is defined as the set of all linear maps ¢ : V. — k. The dual space
V* becomes a vector space over k and dim(V) = dim(V*) if V is finite-
dimensional. Elements of the dual space are called linear forms.

Lemma 1.2.8. Let U be a linear subspcae of V, and let U* be the dual of U.
Let qu : V — U* be defined by qu(x) = - —.

1. The kernel of qi is U+.

2. The quadratic form Q) is nondegenerate if and only if qy : V — V* s
an isomorphism.



Proof. Let x € ker(qy). We have qy(z)(u) = x-u = 0 for all u € U, so
x e Ut Now, let x € U+, so for all u € U we have qy(z)(u) = z-u = 0, so
x € ker(qy). This proves 1. Suppose @ is nondegenerate. We have that gy is
injective, since ker(qy/) must be trivial. We know that gy is a linear map and
injective, so from this we can conclude that a set of independent vectors gets
mapped to independent linear forms, using dim(V*) = dim(V') we conclude
that ¢y is surjective. Suppose that gy is an isomorphism. Injectivity implies
that gy has trivial kernel. This proves 2. O

Definition 1.2.9. A metric isomorphism between quadratic modules (V, Q)
and (V' Q') is a linear bijection f : V — V' such that Q' o f = Q.

The linearity of a metric isomorphism implies that f(z) - f(y) = x - y for
all z,y e V.

Proposition 1.2.10. Suppose (V, Q) is nondegenerate, then:

1. For all linear subspaces U of V', we have

(UHt = U, dim(U) +dim(U*) = dim(V),rad(U) = rad(U*) = UnU™.

2. The quadratic module U is nondegenerate if and only if U+ is. If this
is the case, then V =U & U*.

Proof. By Lemma 1.2.8, the map ¢y : V — V* is an isomorphism, which
implies that gy : V' — U* is surjective. The rank-nullity theorem and Lemma
1.2.8 give us:

dim(U*) + dim(U*) = dim(V).

Note that dim(U) = dim(U*), so this proves the second equation. By def-
inition, (U+)* = {x e V : 2 -y = 0,Yy € Ut}, so for arbitrary u € U
we see that u € (UY)t so U = (U)*. By the second equation we have
dim(U*t) + dim(U) = dim(V) and dim((U4)*) + dim(U+) = dim(V), so
dim((U+)*) = dim(U). Note that the inclusion is a linear and injective map
from U to (U+)*, we have seen that we can conclude that the inclusion is
now surjective. This proves the first equation. Now, it is easy to see that
rad(U) = U n U+, so rad(U+) = UL n (U)* and using the first equation we
see rad(U) = rad(U+) = U n U+, which proves 1. We conclude from the last
statement of 1, the first statement of 2 and U n U+ = {0}. We also know
that dim(V) = dim(U) + dim(U"). If we now combine the two bases of U
and U+ we have a basis for V. We can’t express elements from one basis in
terms of the other, because we have U n U+ = {0}. This proves 2. [
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1.3 Isotropic vectors

Definition 1.3.1. An element x of a quadratic module (V,Q) is called
isotropic if Q(x) = 0. A subspace U of V is called isotropic if all its ele-
ments are isotropic.

Proposition 1.3.2. Let (V,Q) be a quadratic module and U < V' be a linear
subspace. The following statements are equivalent.

1. U 1is isotropic.
2. Uc U

3. Qly = 0.

Proof. Suppose U is isotropic and let x € U. Now for all y € U we have that
x +y € U, because U is a subspace of V. We have:

vy = 5 (Qa+y) ~ Q) ~ Q) = 5(0-0-0) =0

DN | —

so z € Ut and we conclude U < U*+. Suppose U — Ut and z € U, this means
xr e Ut and we have Q(z) = x-2 = 0, so Q|y = 0. If Q|, = 0, then it is clear
that U is isotropic. We conclude that 1 =— 2 =— 3 = 1, so we are
done. O

Definition 1.3.3. A quadratic module having a basis formed of two isotropic
elements z,y such that x -y # 0 is called a hyperbolic plane.

Let’s take a look at the function @ : R* — R defined by Q(xy, 25) = 4x115.
If x = (x1,22) and y = (y1, y2), then the scalar product corresponding to @
is:

(4@1 +y1)(x2 + yo) — da172 — 4yly2) = 2(z1y2 + Y172).

N | —

x.y:

For the standard basis vectors ey, eo, we see that Q(e;) = 0 and e - e = 2.
We conclude that this quadratic module (R?, Q) is a hyperbolic plane. Now,
let’s multiply ey by (e - e3) ™! = % This gives ey - %62 = 1 and the matrix of
Q) with respect to e; and %62 will become ((1) (1)) The following lemma will

generalize this phenomenon.

Lemma 1.3.4. Suppose (V,Q) is a hyperbolic plane with basis formed by
x,y. After multiplying y by (x - y)~' we can suppose that x - (z-y) 'y = 1.
Then the matriz of Q with respect to x and (x - y) 'y is the matrix ((1] (1))

11



Proof. We use bilinearity of the scalar product to deduce:

zo(ry)ly=(z-y)Hz-y) =1

For the matrix A of @) we see that a;; = x-x = Q(x) = 0. For aj5 and ayy,
we get a1 = as; = v - (- y) 'y = 1 and finally

az = Q((z-y)'y) = (z-y)?Qy) = 0. O

Proposition 1.3.5. Let x # 0 be an isotropic element of a nondegenerate
quadratic module (V, Q). Then there exists a subspace U < V which contains
x and which is a hyperbolic plane.

Proof. Since @) is nondegenerate, there exists z such that z - z # 0. Now
define t := (z-2)"'z with -t = 1. Also define y = 2t — (¢-t)z. We calculate:

Q) =y-y
— (2t —(t-t)z) (2t — (¢ t)2)
=4(t-t) =4t -t)(z-t)+ (t-t)*(z - 2)
=4(t-t) —4(t-t)+ (t-1)’Q(x) = 0.

So y is isotropic and x -y = (x-2t) — (z- (t - t)x) = 2. We also see that x and
y are linearly independent, because if they weren’t, x - y = 0 would follow
from the fact x and y are isotropic. Now the subspace U = kx @ ky has the
desired property. O

Corollary 1.3.6. If (V, Q) is nondegenerate and contains a nonzero isotropic
element, then Q) : V — k is surjective.

Proof. Suppose a € k. By Proposition 1.3.5, there exists a subspace U < V'
which is a hyperbolic plane. Now, by Lemma 1.3.4, we can assume that z,y
form a basis of U with z,y isotropic and x - y = 1. We conclude:

2

Q(ergy) = (x+gy) : (x+gy) = Q(a:)+a(:c-y)+%@(y) =q. O
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1.4 Orthogonal bases

In this section we will take a look at what it means for a quadratic module
(V, Q) to have an orthogonal basis and we will define what it means for two
bases to be contiguous.

Definition 1.4.1. A basis (ey, ..., e,) of a quadratic module (V, Q) is called
orthogonal if its elements are pairwise orthogonal, i.e. if ;- e; = 0 for ¢ # j
and ({e,....,en}) = V.

Define a; = e; - e;. It is now easy to see that d(Q) = ay...a,. If we
assume that our quadratic module (V, @) is nondegenerate, then d(Q) # 0
and a; # 0 for all 7.

Proposition 1.4.2. Every quadratic module (V,Q) has an orthogonal basis.

Proof. We will prove this by induction on the dimension of V. If dim(V') = 0,
then this statement is trivial, because a vector space with dim(V) = 0 will
have the empty set as basis. Assume the proposition holds for dim(V') = n.
Suppose dim(V') = n + 1, if V' is isotropic all bases of V' are orthogonal. So
suppose V' is non isotropic and choose e; € V such that e; - e; # 0. Define
W = ke;. By Proposition 1.2.10:

dim(W) 4+ dim(W+) =n + 1,

or dim(W+) = n. Using the induction hypothesis we find a basis (ey, ..., €,11)
for W+. Note that e; does not belong to W+. We conclude that (e1,€9, ..., €ny1)
forms an orthogonal basis over V. O
Definition 1.4.3. Two orthogonal bases B and B’ of V are called contiguous
if Bn B # .

Lemma 1.4.4. Assume that (V, Q) is a nondegenerate quadratic module with
dim(V) = 3. Let B = {ey,...,en} and B' = {€, ..., €.} be two orthogonal bases
of V. If (e1 - e1) (el - €}) = (e1 - €})* for i = 1,2, then there exists x € k such
that e, = €| + xey is nonisotropic and ke; @ ke, is a nondegenerate plane.
Proof. By bilinearity of the scalar product and the fact that B’ is an orthogo-
nal basis, we have e, e, = €] -e|+x2(e}-€}). We want that Q(e,) = e, e, # 0.
This means that 2% should not be equal to —(¢] - €])/(e} - €). We also want
key @ ke, to be nondegenerate. This is equivalent to saying that the discrim-
inant is not equal to zero, or (€] - €})(e, - e;) — (€1 - €;)* # 0. We have:

)
(er-en)(er-ex) = (e1- €)= (a1 el>(( er) + a*(eh - €5)) — (e1 - e,)?
= (e1-e1)(€) ) 2( ~e1)(ey - €y) — (e %)2
= (e1-€1)? +2%(er - €5)” — (e1- )’

e
= —2x(e;-€))(ez-€h) # 0
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So, x should not be equal to zero. If k£ has at least 4 elements, we can find x
such that x # 0 and 2% # — (¢} - €})/(€} - €}). Now, since char(k) # 2 we only
have to look at Fs. In [F3, we have 1' = 1 and 22 = 1 so, (e, - e1)(e; - ¢l) =1
for i = 1,2. We conclude that 22 # —1 = 2 and x # 0 give us the solution
r=1. O

Proposition 1.4.5. Let (V,Q) be a nondegenerate quadratic module with
dim(V') = 3, and let B = {ey, ...,en} and B' = {€}, ..., el,} be two orthogonal

bases of V.. There exists a finite sequence By, ..., By, of orthogonal bases of V
such that By = B, B,, = B’ and B; is contiguous with B; ;1 for 0 <i < m.

Proof. We consider three cases.

1. If (e1-e1) (€} - €}) — (e -€})* # 0, then there doesn’t exist a € k such that
e} = aey, because if it did we would have (e;-e1)(aei-aey)—(e1-aep)* =0
by bilinearity of the scalar product. By the definition of the matrix
associated to the a quadratic module, we can also conclude that in this
case, the quadratic module P = ke; @ ke/ is nondegenerate. We know
that e; - e; # 0 and €] - ) # 0. Using the same argument as in the
proof of Proposition 1.4.2; there exists €3, €, such that:

P = ke, © key = ke @ kel,.

We have V = P @ P+ by Proposition 1.2.10. By Proposition 1.4.2,
there exists an orthogonal basis {e}, ..., e”} of PL. The sequence:

" " / / " " /
B, {e1,€2,€5, ..., }, {e], €5, €5, ...,er }, B
suffices.

2. If (eg - e1)(ehy - €h) — (e1 - €4)? # 0, then the proof is similar to case 1,
replacing €} by ej.

3. If (€1 -e1)(ei-el) — (e -€)? = 0 for i = 1,2, then by Lemma 1.4.4, there
exists x € k such that e, = €] + xe), is non isotropic and generates with
e; a nondegenerate plane. Since e, is non isotropic, there exists €3 such
that e, and € form an orthogonal basis of the plane ke| & ke),. Then
B" = {e,, €4, ¢4, ...,el, } is an orthogonal basis of V, since {ej, .., e} }
forms an orthogonal basis of the orthogonal complement of ke @ kej,.
Since ke; @ ke, is a nondegenerate plane, we have seen in the first case
that there exists a chain from B to B” and because B” and B’ are
contiguous we conclude that B and B’ are contiguous. This proves the

proposition. ]
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1.5 Reformulation of statements

Suppose that (k", f) is a quadratic module and that the matrix A = (a;;)
is the matrix assosciated to f.

Definition 1.5.1. Two quadratic forms f and f’ are called equivalent if the
corresponding modules are isomorphic. We then write f ~ f’.

Remember that two quadratic modules (k™, f) and (k", f’) are isomorphic
if there exists a linear bijective map ¢ : k™ — k™ such that f'og = f. Note
that a linear bijective map can be represented by an invertible matrix, so
this is equivalent to saying that there exists a invertible matrix C' such that

f'(Cr) = [f(x).
Example 1.5.2. We define two quadratic forms:
flar,x) = 27 — 23 and f'(21,22) = 2125,

We also define a linear map g(x1,x2) = (x1 — X9, 21 + x2). It is clear that

flog=f. We conclude that x x5 ~ x5 — 3.

We can now see that the following translation of Lemma 1.3.3 makes sense.
Definition 1.5.3. A quadratic form (k?, f(z1,x9)) is hyperbolic if we have:
f~xze ~ x% - x%

Suppose f(x1,...,2,) and g(x1,...,2,) are two quadratic forms. It is
easy to see that f(xy,...,2,) + g(Tni1, ..., Tnem) is also a quadratic form.
From now on we will write f + ¢ for this sum.

Definition 1.5.4. An element a € k is represented by a quadratic form
f(zq, ..., x,) if there exists (z1,...,x,) # 0 € k", with f(x1,...,2,) = a.

We can now translate Proposition 1.3.5 and its corollary.

Proposition 1.5.5. If f represents 0 and is nondegenerate, then one has
f ~ fo+ g, where fy is hyperbolic. Moreover, f represents all elements of k.

Corollary 1.5.6. Let g = g(x1,...,x,-1) be a nondegenerate quadratic form
and let a € k*. The following properties are equivalent:

1. The form g represents a.

2. One has g ~ h + ax?_,, where h is a form in n — 2 variables.

15



3. The form f = g — ax? represents 0.

Proof. If g represents a, then there exists z € k"~ ! with g(z) = v-2 = a. If H
denotes the orthogonal complement to z, we have k" = H & kx. So, we have
g ~ h+az?_;, where h denotes the quadratic form attached to a basis of H.
The converse is clear. If f = g —az? has a nontrivial zero (z1, ..., Ty 1, %,),
then we have two cases. If x, = 0, then g represents 0 and since g is
nondegenerate, g also represents a. If z,, # 0, then g(x1/x,, ..., x4 1/2,) =

a. The converse is clear, so we are done. O

Corollary 1.5.7. Let g and h be two nondegenerate forms of rank > 1, and
let f = g— h. The following properties are equivalent:

1. The form f represents 0.
2. There exists a € k™ which s represented by g and h.
3. There exists a € k* such that g — az® and h — az? represent 0.

Proof. If f represents 0, then we write the zero as (z,y) with g(x) = h(y).
If the element a = g(z) = g(y) # 0, then 2 is true. If a = 0, then g and h
represent all elements of &k, so we conclude that 1 implies 2. The converse
is clear. The second and third statement are equivalent by the previous
corollary. O]

We finish this section by giving a translation of Proposition 1.4.2.

Proposition 1.5.8. Let f be a quadratic form in n variables. There exist
ai, ..., a, € k such that f ~ a12? + ... + a,a™.
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2 The p-adics numbers

2.1 Basic definitions

Recall that Q is incomplete, i.e. there exists a Cauchy sequence in Q that
diverges. As the reader might know, the real numbers R are defined as the
completion of Q, with respect to the absolute value norm. The p-adics can
be defined as a completion of the rational numbers with respect to another
norm, that is dependent on a prime number. Before we are able to define the
p-adics, we first define the p-adic absolute value. It is easy to see that the
following definition is well-defined, because every integer has a unique prime
factorization.

Definition 2.1.1. Fix a prime p € N. The p-adic valuation on Z is the
function:
v,: Z—{0} - R
defined as follows: for each integer n € Z, n # 0, let v,(n) be the unique
postive integer satisfying
n = p*™n/ with p t n'.
We extend v, to Q as follows: if z = § € Q*, then v,(z) = v,(a) — v,(b).

It will be convenient to set v,(0) = +00. The reasoning behind this is that
any prime number devides zero as many times as we like.

Lemma 2.1.2. For all x and y in Q, we have:
1. vy(zy) = vy(x) + vu(y).

2. vp(z +y) = minfvy (), vp(y)}-
Proof. 1If x = 0 then:

vp(xy) = 1,(0) = 00 = 00 + v,(y) = vy(x) + v,u(y),
and
vp(® +y) = vp(y) = minfuy (), v, (y)}
for all y € Q. If y = 0, then the proof is similar. We now assume that x # 0
and y # 0. We can write:
x =p’% and y =p7§,
such that ¢,j € Z and p 1 a, b, c,d. The first property is immediate and the

second follows from the fact that common powers of p, can be factored out
from a sum. [
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Definition 2.1.3. For any nonzero x € Q, we define the p-adic absolute value
of x by:
|x|p = p_vp(m)'

We extend this to all of Q by defining |0], = 0. We will also write | | for
the usual absolute value on Q.

Note that the extension to Q makes sense, because we defined v,(0) = co.

Proposition 2.1.4. The function | |, is an absolute value on Q and:

|z + y’p max{lm‘zw ‘y’p}

Proof. For x € Q we have that |z|, > 0 by the definition of | |,. It also follows
from the definition that |z|, = 0 if and only if v,(z) = o0 if and only if z = 0.
By Lemma 2.1.2 the following holds:

jzyl, = p~r ) = pmr@pmr W) — gl lyl,
and
|$ + y|p — p*vp(x+y) <p min{vp(x),vp(y)} < pfvp(x) + p |$‘p + ’y’p

This proves the first claim. Assume without loss of generality that |x|, = |y|,,
s0 vy(x) < vy(y). We conclude that:

|ZE + y|p = p—vp(:r+y) <p min{vp(z),0p(y)} _ p—Up(:v)
Lemma 2.1.5. If z,y € Q and |z|, # |yl,, then |z + y|, = max{|z|,, |y|,}.

Proof. Without loss of generality, assume |z|, > |y|,. By Proposition 2.1.4:

[z +ylp < |2, = max{|z],, [yl,}-

Using the proposition again and the fact that x = (z + y) — y, we have:

’$|p max{|r + y|p7 ‘y’p}

Because |z|, > |y|, it must hold that: max{|z + yl,, |yl,} = |z + y[,. We
showed that |z + y|, < |z|, < |z + y|,, so we conclude that |z + y|, = |z],.
This proves the lemma. O

Definition 2.1.6. We define the trivial absolute value on Q as |z| = 1 if
z# 0and |z| =0if z = 0.

This clearly is an absolute value on Q. We now defined lots of different
absolute values. The following definition will let us compare them.
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Definition 2.1.7. We call two absolute values | |; and | |5 equivalent if for
any Cauchy sequence (z,) in Q we have x,, — a with respect to | |; if and
only if z,, — a with respect to | |s.

The following two theorems are proven in [2, p.56] and [2, p.63].

Theorem 2.1.8. Every non-trivial absolute value on Q is equivalent to one
of the absolute values | |,, where p is a prime number or p = .

Theorem 2.1.9. The field Q of rational numbers is not complete with respect
to any of its non-trivial absolute values.

These theorems tell us that it actually makes sense to find a completion
of Q with respect to the p-adic absolute value.

Definition 2.1.10. We denote by C,(Q), or C if the context is clear, the set
of all Cauchy sequences of elements of Q:

Co(Q) = {(z,) : (x,) is a Cauchy sequence with respect to | |,}.
Proposition 2.1.11. Defining:

(@n) + (Yn) = (@0 + Yn) and (2,)(Yn) = (Tnyn),
makes C,(Q) a commutative ring with unity.

Proof. We first check that the sequences on the right-hand side are Cauchy.
We know that for every Cauchy sequence (x,), there exists M such that
||, < M. For all € > 0 there exists Ny € N such that if n,m > Nj, then
|Tm — 25| < 357. Similarly, there exists Ny € N such that if n,m > Nj, then
[Ym — Yn| < 537- Now, let N = max{N;, Na}. For n,m > N, we have:

|xmym - xnyn|p = |xm(ym - yn) + yn(xm - $n)|p
< |@nlplym = Ynlp + [Ynlplzm — 20y
€ €
<M(—+—7)=c¢
Gar T o) =€
This proves that (x,y,) is Cauchy. The argument for (z, + y,) is similar.
We conclude that the operations are well-defined. We know that Q is a field,

so it is easy to see that C,(Q) is a commutative ring with unity (z,) = (1),
since it is a subring of [ [,y Q. O

Definition 2.1.12. We define NV < C to be the set of Cauchy sequences that
tend to zero with respect to | |,

N =A{(z,) : nlgglo |nlp = 0}.
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We will now identify sequences that differ by elements of A/. In other
words, we identify Cauchy sequences that have the same limit. Note that it
is easy to see that N is an ideal. We will define the p-adic field by taking
the quotient of C by N.

Lemma 2.1.13. The quotient ring C/N is a field.

Proof. We need to show that every sequence that doesn’t converge to zero
has an inverse. If (z,,) is a Cauchy sequence that doesn’t converge to zero,
then it is not possible that for all NV € N there exists n such that n > N and

= 0. So there exists N € N such that, if n > N, then x,, # 0. Define the
sequence (Yn) @as yp = z, if n < N an y, = 1/z, if n = N. Because (z,) is
Cauchy, the sequence (y,) is also Cauchy. It is clear that (y,) is an inverse
of (z,). O

Definition 2.1.14. The field of the p-adic numbers is defined as:
Q, =C/N.

We now show that any Cauchy sequence with respect to the p-adic norm,
that doesn’t converge to zero, eventually has constant p-adic valuation. This
is a crucial result to extend the p-adic norm to Q,,

Lemma 2.1.15. Let (x,) € C, (z,) ¢ N. There exists an integer N such
that |x,|, = |Tm|, when m,n = N

Proof. Since (z,,) is a Cauchy sequence not converging to zero, we can find
¢ and Ny, such that:

n=N = |z,|,>=c>0.
Using the definition of Cauchy sequences we can also find Ny such that:
m= Ny = |2, — x|, <c
Set N = max{Ny, No}. For n,m > N, we have:
|Tm — Tnlp < ¢ < [2nlp < max{|znlp, |20y}
By Lemma 2.1.5 it must hold that |z,|, = ||, O

Suppose that the sequences (z,,) and (y,,) don’t converge to zero and that
they are the same when viewed as element in Q,. Using the previous lemma
we see that, the p-adic norm of both sequences are eventually stationary and
equal. This gives rise to the following definition.
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Definition 2.1.16. If 7 is an element of Q,, and (z,,) is any Cauchy sequence
representing v, we define:

|7|p = gl_{rolo |xn|p~

Note that the properties we showed in Proposition 2.1.4 extend to Q,,
because they are true for every term in the Cauchy sequence. As example,
for z = (z,,) € Qp, we have that |z,|, = 0 for all n, so |z|, = lim, .« |zs], = 0.
The following theorems show we have come full circle. They are proven in
[2, p.68 - 69].

Theorem 2.1.17. The image of Q under the inclusion Q — Q, is a dense
subset of Q.

Theorem 2.1.18. The p-adic field Q, is complete with respect to | |,.

2.2 Exploring Q,

We have seen that the properties in Proposition 2.1.4 hold in Q,. If
z,y € Qp and |z[p, [yl, < 1, then [2y[, = |z[plyl, < 1 and:

|z + ylp, < max{[z],, [y[} < 1.
So, the following defintion makes sense.
Definition 2.2.1. The ring of the p-adic integers is the ring:
Zy={xeQ,: |z, <1}.
Proposition 2.2.2. The following properties hold.

1. The inclusion Z — 7Z, has dense image. Specifically, given v € Z,
and n > 1, there exists an o, € Z, 0 < a, < p" — 1, such that
|z — anl, < p™™. The integer o, with these properties is unique.

2. For any v € Z,, there exists a Cauchy sequence (o) converging to x,
of the following type:

e o, €7 satisfies 0 < a,, < p" —1

e for every n = 2 we have o, = a,,_; (mod p"t)

The sequence (ov,) with these properties is unique.

21



Proof. Choose x € Z, and n > 1. Theorem 2.1.17 gives us that we can choose
a/b e Q, reduced to lowest terms, as close to x as we like:

T
r — — S X 1.
bl, P

Using Proposition 2.1.4 and |z|, < 1, we also have:
a
x _——

i~k ) e

We conclude that p does not divide b. So there exists a’,b € Z such that
ap®+bb=1orbb=1 (mod p"). This implies:

B ‘ (1—-0'b)a
p b

< max {|$\p,
P

~at (- WB)l, <p™

5 :

b

)CL
, b
Note that & is unique mod p", since congruence is an equivalence relation

and p does not devide b. We define «,, as the unique integer such that:

O0<a,<p'—1land o, =ab’ (mod p").

Note that:
a a
T—aplpy=lr——+—-—ab +ab —a,
P
b b )
al |a
<max{’x—g ,g—ab’ ,|ab’—an|p}<p”.
P P

This proves 1. To prove 2, we just make a Cauchy sequence using «,, from
1. Note that for n > 2 we have:

|Oén - Oén71|p < maX{‘(E — O[n|p, ‘gj — anil‘p} < p*(n71)7

This implies that a,, = a,,_1 (mod p™~1). For uniqueness, notice that at each
step in 1 our choices were unique mod p”. O

We will now show a way to represent the elements of QQ, as power series
in p. Let’s begin with a p-adic integer x € Z,. We have seen in the previous
proposition that we can find a Cauchy sequence (), converging to z, with
the property that for n > 1:

Qnt1 = @, (mod p") and 0 < o, < p" — 1.

The (ay,) are integers so we can write them in base p. What we get is:

n—1 n
Op = ZO bsz and Uny1 = Zobzpla

where 0 < b; <p— 1.
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Lemma 2.2.3. Given any x € Z,, the series:

0
i
Z blp )
i=0
obtained as above, converges to x.

Proof. By definition a series converges if an only if it’s sequence of partial
sums converges. The partial sums of our series are «a,,, which we constructed
to converge to x. O

We conclude that:

Corollary 2.2.4. Every x € Z, can be written as:

o0
Tr = Z bipza
i=0
where 0 < b; < p— 1. This representation is unique.

Proof. We only need to check uniqueness. Notice that all v, are unique, and
this implies that all b; are too, because they give the base p representation
of a,. O

We will now show that any sum Y~ b;p’ with 0 < b; < p—1 also converges
to an element in 7Z,.

Lemma 2.2.5. A sequence (a,,) in Q, is a Cauchy sequence if and only if:
7}1_{1010 [ an|p = 0.

Proof. 1f (a,) is Cauchy, then we choose m = n + 1 to see that the limit
lim,, o |@nt1 — anlp = 0. Conversely, we see that if m > n:

’am - an|p = |am — Q1+t Q1 — Qo+ ...+ Qg — Oén|p

< max{\am - am—l’pv te ‘Oén-&-l - O‘n‘p}'
It is clear that (av,) is Cauchy if lim, o |an41 — anl, = O.. H

This lemma gives us an easier way to check when an infinite series in Q,
is convergent. Remember when we work in R, if a series ) a, converges,
then lim,_,, a, = 0. In Q,, the converse is also true.

Corollary 2.2.6. An infinite series Y, a, with a, € Q, is convergent if and

only if:

lim a, = 0.
n—aoo
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Proof. By definition a series converges if an only if it’s sequence of par-
tial sums converges. If we can show that the sequence of partial sums is a
Cauchy sequence, then it converges, since Q, is complete. Denote (s,,) for
the sequence of partial sums and notice that s, —s,_1 = a,. By the previous
lemma, (s,) is a Cauchy sequence if and only if lim,,_,, |a,|, = 0. ]

Corollary 2.2.7. A sum Z;io bip' with 0 < b; < p — 1 converges to an
element in Z,,.

Proof. By Corollary 2.2.6 it suffices to show that:

lim b;p’ = 0,

1—00

to prove convergence in QQ,. We need to show that for all € > 0 there exists
N € N such that if ¢ > N, then |b;p'|, < e. We have that |b;p'[, = p~* or
|bip’|, = 0 if b; = 0, so N obviously exists. Note that v,(},~,bip’) = 0, so
the sum converges to an element in 7Z,. O

If © € Zp, then |z|, < 1 and if 7" € Z,, then |z[;' = |7, < 1.
We conclude that |z|, = [z7!], = 1. If we write = as >, b;p’, then this is
equivalent to saying that by # 0.

Definition 2.2.8. The p-adic units are the invertible elements of Z,. We
will denote the set of all such element by Z:

7y, ={reQ,:|z[, =1},

We will now show that every element in QQ, can be written as a power
series in p.

Lemma 2.2.9. For every x € Q there exists an n € Z such that p"x € Z; .

Proof. If vy(x) = 0 then 2 € Z). Otherwise:

vp(p™ D) = 0, (p~ D) + v, (x) = 0.
So, [p~r@z|, =1 and p~»@x e 7). O]
Corollary 2.2.10. Every x # 0 € Q, can be written in the form:

o0}

=—m

where 0 < b; < p—1 and —m = v,(x) and b_,, # 0. This representation is
unique.
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Proof. By Lemma 2.2.9, we can write y = p™z € Z,. By Corollary 2.2.4 we

can write y as:
0
y= Z bipi
i=0

then the corollary follows by multiplying by p~™. The representation is
unique because the representation of y is. O

By Corollary 2.2.7 we also see that conversely every sum ngm b;pt with

0<b <p-—1andb_, #0 defines an element in Q,. Elements in Q, are
sometimes written as: ...b, ...bab1bg.b_1...b_,,.

2.3 Analysis in Q,

We will now do some analysis in Q,. Our goal is to prove results about
power series. After, we will use the developed theory to define the exponential
and logarithmic in QQ, and prove their known properties.

Proposition 2.3.1. Let f(x) = Y, a,z", and define:

1
P=
lim sup,, ., /] anl,’

where dividing by zero gives p = o0 and dividing by infinity gives p = 0.

1. If p =0, then f(x) converges only when x = 0.
2. If p = oo, then f(x) converges for every x € Q,.

3. If 0 < p < o0 and lim,_,« |a,|,p" = 0, then f(x) converges if and only
if z], < p.

4. If 0 < p < 0 and |a,|,p" does not tend to zero as n goes to infinity,
then f(z) converges if and only if |z|, < p.

Proof. By Corollary 2.2.6, we know that the region of convergence is:
{reQ,: lim |a,z"|, = 0}.
n—00

It is easy to see that f(0) converges. For all € > 0 there exists N such that

n = N implies that:
1
sup A/ |amlp — —| < €.
}mZIiL | ‘P p‘

25



This in turn means that:

We see that sup,,~, §/|am|p, < €+ (1/p) for all but finitely many n and thus
lan|, < (€ + 1/p)™ for all but finitely many n. If |z|, < p, then |z[,/p < 1
and:

n
sl < (ealy + )

if we choose € small enough. The case |z| = p is clear, because of Corollary
2.2.6. We also see that % — € < SUp,,>, X/|@nm|, for infinitely many n and

thus (% —€)" < |ay|, for infinitely many n. This means that:

n 1 n _n n
(1—e¢p) =(;—6) p" < lanz"y,

can’t convert to 0 if we choose € small enough. O]
Corollary 2.3.2. The series:
ee} :[,'n
fla) = D1
n=1 n
converges if and only if |x|, < 1.

Proof. We check that lim, ., p~*™/" = 1. If v,(n) = 4, then p' < n and
i < log,(n). Now, 0 < vy(n)/n < log,(n)/n. By L’Hopital’s rule we have
lim,, . log,(n)/n = 0, so lim, . v,(n)/n = 0 and we conclude:

lim p~(W/m = 1,

n—0o0

If a limit exists, then the limit is equal to the limit superior, we conclude
that p = 1. The limit lim,_, |1/n|, does not tend to zero. By Proposition
2.3.1, we conclude that the series converges for |z|, < 1. O

Corollary 2.3.3. The series:

converges if and only if ||, < p~V/®=1,
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Proof. Before we try to find p, we will calculate v,(n!). Notice that |n/p’] is
the amount of numbers in {1,2,...,n} with a factor p’. This means that:

vp(n!) = v£(1)+vp(2)+ -+ vp(n)
Ml <2t

Now, |a,|, = |1/n!], = p»™) < p?/®=D We get p > p~/®P=1 50 the series
converges for |z|, < p~Y®~Y_ If |z|, = pfl/ P=1 then |2"/n!|, does not tend
to zero. To see this set n = p™ for some m, then:

m— pm -1
vp(n)=1+p+...+p 1:p—17
and .
" P pm pm—1 1
v | — | =v = — = .
P\ n! P\ pm! p—1 p—1 p—1
The corollary follows from Corollary 2.2.6 and Proposition 2.3.1. O]

We are now able to define the exponential and logarithmic functions in Q,,
using the usual power series for these functions. We will later see that they
are each others inverses and that their standard properties, i.e. e?*® = e%e®
and log(ab) = log(a) + log(b) hold. Moreover, we will use these properties to

define a group homomorphism.

Definition 2.3.4. We define the p-adic logarithm as the function:
log : (1 + pZ,) — Q,

log(x i ”“—1)”.

Assume p > 2. If x € pZ,, then |z|, < p~! < p” VP~V If |z|, < p~ /P~
then v,(x) > 1/(p — 1) and = € pZ,. This proves that = € pZ, if and only
if |z[, < p™Y/®~Y when p > 2. If p = 2, then a similar argument shows
that x € 47, if and only if |z|, < p~¥~Y. We will use this in the following
definition.

Definition 2.3.5. Define D, = {z € Z, : |z|, < p~/® Y} if p = 2, then
D, = 4Z,, else D, = pZ,. We define the p-adic exponential as a function
from D, — Q, defined by:

= "

o
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We will now start with some theory on differentiating power series.

Definition 2.3.6. Let U < Q, be an open set, and let f : U — Q, be a
function. We say f is differentiable at x € U if the limit

o) 1 L)~ @)

h—0 h ’

exists. We say f is differentiable if it is differentiable for all z € U.

Proposition 2.3.7. Let f(z) = Y7, a,z"™ be a power series with non-zero
radius of convergence p > 0. Let x € Q,, such that f(x) converges, then so

does f'(x) and we have f'(x) = >, na,z" .

Proof. If =0, then f(z + h) = f(h) converges when |h|, < p. When = # 0
and |h|, < |z|,, then |z + h|, = |z|, by Lemma 2.1.5, so f(x + h) converges.
So, when h — 0, there are element such that f(x + h) converges. Using the
Binomial Theorem we get that:

o0

flz+h) Z (z + h)" zoj: §<)”mhm.

If we substract f(z), divide by h and take the limit to zero, then we get:

f/(I) = }ZI_I% i Z Qn, <Z) g RpEs = énanx” 1

If z = 0, then it is clear that f'(z) converges. Now suppose that x # 0 € Q,
and f(x) converges. By Corollary 2.2.6 this means that |a,z"|, — 0. Also:

nil‘p =

\nanx"%\p < |apx —layx"|, — 0,

|z

so f'(x) converges. O

We can now prove a Corollary which is a variant to a theorem that states
that two power series are equivalent if and only if their coefficients are.

Corollary 2.3.8. Suppose f(z) and g(x) are power series, and suppose that
both series converge for |x|, < p. If f'(x) = ¢'(x) for all |x|, < p, then there
exists a constant ¢ € Q, such that f(x) = g(x) + ¢ as power series.

Proof. Suppose f(z) = > a,z™ and g(z) = > bya™. If f'(z) = ¢'(z)
when |z, < p, then f’(0) = ¢’(0) and by the previous proposition a; = b;.
We can repeat this process by continuing to differentiate to conclude that

= b, for n > 1 and f and ¢ only vary by a constant term. O
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We are now finally able to prove the standard properties of the logarithm
and exponential.

Proposition 2.3.9. Ifa,be 1+ pZ,, we have abe€ 1 + pZ, and:
log(ab) = log(a) + log(b).

Proof. The first claim is clear. To prove the second, we will write a = 1 + x
and b =1+ y. For x € pZ,, we define:

(-1

x",

flw) =log(1+x) = ]

so f converges if x € pZ,. By proposition 2.3.7 we have:

flla) =Y (=)"a" = 1/(1 + z).

n=0

Now, for y € pZ,, we define:

g(w) =log((1 +2)(1 +y) = f(y + (1 +y)v).

It is clear that g(z) converges for x € pZ,. The Binomial Theorem gives us:

fly+ 1+ y)z) = Y (-1 (1 +y)a+y)"

_ :ii (—2%1 ;:) <Z> (14 )"y
_ mi (i %(’“ ;m)yk> (1 + o)™

Since y € pZ, we have that f(y) converges which implies:

e (L)

(_1)k+m+l X

¥yl —0ask—

k+m »

kE+m k v ‘

We conclude from this that both f(z) and g(x) are defined as power series
that converge when x € pZ,. By the chain rule we have f'(x) = ¢'(z), so
by Corollary 2.3.8 we conclude that g(z) = f(z) + ¢ and ¢ = g(0) = f(y).
So we have shown that g(z) = f(z) + f(y), but this is what we wanted to
show. [
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Proposition 2.3.10. If a,be D,, we have a + b e D, and:

Proof. The first claim follows from the fact that D, = pZ, if p # 2 and
D, = 4Z,. The second claim is proven by a standard argument using the
Binomial Theorem. O]

The following theorem is proven in [2, p.124 - p.127], we will use it to
prove that the exponential and logarithm are inverses.

Lemma 2.3.11. Let f(x) = >, a,a" and g(z) = ) bya™ be two power
series with g(0) = 0, and let h(x) = f(g(x)) be their composition. Suppose
that:

1. g(x) converges,
2. f(g(z)) converges,
3. for every n, |b,a"|, < |g(x)|,.
Then h(z) also converges and f(g(x)) = h(zx).

Lemma 2.3.12. Ifn € Z withn = ag+a;p+...+app® where 0 < a; <p—1
and s = a1 + ...+ ay, then:

vy(nl) = i PJ _ e

=] p-1

Proof. We have already proven the first equivalence in Corollary 2.3.3. We
will now prove the second:

37
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Proposition 2.3.13. Let v € Z,, |z|, < p~ V@V then:
log(e®) = x and 80+ =1 4
Proof. If x = 0, then the proposition is obvious, so assume z # 0. Then:

"1 n—1 n-—s s—1
— _ !
vp< o ) (n 1)'Up(:ic) vp(n.) > 1 1= 1 > 0.

It follows that |z™/n!|, < |z|,, which in turn implies that |e* — 1|, = |z],, by
Lemma 2.1.5. We also have 1 = |e*|, > |z|, > |2"/nl|, for n > 2, so using
Lemma 2.3.11 we conclude that log(e”) = =. Notice that |n!|, < |n|,, so:

xTL

n| < |‘T‘P

p

" lp

We get |log(1 + )|, = |x,, so log(1 + =) is in the domain of the exponential
and we again use Lemma 2.3.11 to conclude that e°s(1+2) = 1 4 g O]

Theorem 2.3.14. Suppose p # 2. The p-adic logarithm defines an isomor-
phism of groups:
log : (1 + pZ,) — pZ,,

with the exponential function as inverse. In particular:
(14 pZ,) = pZ, = Z,.

Proof. Proposition 2.3.9 says that the logarithm is a homomorphism. Propo-
sition 2.3.10 does the same for the exponential. Proposition 2.3.13 says that
the functions are mutual inverses. We have seen that |z], < p~/®~Y if and
only if € pZ,, so we also conclude that the domain and codomain are
correct. O

Theorem 2.3.15. Suppose p = 2. The p-adic logarithm defines an isomor-
phism of groups:
log : (1 +4Z,) — 4Z,,

with the exponential function as inverse. In particular:
(1+4Z,) = 47, = Z,.

Proof. We have seen that |z, < p~%/®~Y if and only if z € 47Z,, so we
conclude that the domain and codomain are correct. The rest is the same as
above. O
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2.4 Squares in Q,

We will begin this section with a proposition which serves as preparation
to understand an important theorem better. This theorem is called Hensel’s
Lemma. Hensel’s Lemma will make it easier to show that a given polynomial

with coefficients in Z, has a zero in Z,. By reducing the polynomial modulo

p.

Proposition 2.4.1. For anyn > 1:
L/ P" Ly = L[ p" L.

Proof. By Corollary 2.2.4, any element x € Z, can we written as a sum
x =" ,bpp’, where 0 < b; < p—1. When we view z as element in Z,/p"Z,

we see that it is equivalent to Z?;OI b;p'. Moreover, the set:

{bg—i-blp—l—...—l-bn,lpn_l:Oébiép—l},

is the complete set of representatives of equivalence classes of Z,/p"Z,. So,
it is obvious that by = 1 is a generator of Z,/p"Z,. We also see that the
order of Z,/p"Z, is p". So Z,/p"Z, is a cyclic group of order p" and thus
isomorphic to Z/p"Z. O

Theorem 2.4.2 (Hensel's Lemma). Let F' € Z,[X] and n,k € Z such that
0 < 2k < n. Suppose that there exists a p-adic integer o € Zy, such that:

F(ap) =0 (mod p"),

and

op(F'(a0)) = k.

Then there exists a unique p-adic integer o € Z,, such that a = oy (mod p"~F)
and F(a) = 0.

Proof. We will construct («;) such that for i > 0, we have:
1. F(a;) =0 (mod p™t?).
n—k-i—i).

2. a;11 = a; (mod p

Such a sequence is Cauchy and for its limit o we have F'(a) = 0, because
of continuity. Moreover, a = o (mod p"~*) by construction. We will proof
that («;) exists by induction. Note that oy is given. Suppose that «a; exists,
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we will find a;,;. Property 2 requires that o1 = o; + bp" **% for some
b; € Z,. Write F(z) = 3}, c;a?, then the Binomial Theorem gives:

d

n—k+i\j
az+1 Z C] Q; + blp )J
j=0

C] Oé +]blpn k+za] 1—1—0( (n— k+z)>)

Il
M&

<.
Il
o

||
;‘1

Olz) + bzpn kHF,(OzZ) (mod pn+i+1).

We can simplify this, using that F(a;) = 0 (mod p"™). We can write
F(a;) = zp™* for some x. We try to solve that:

z+p *F'(a;)b; =0 (mod p).

Also notice that property 2 implies that o;; = oy (mod p"~*). Which means,
F(o;) = F(ag) (mod p™*). By assumption, n > 2k and v,(F' (o)) = k,
which implies that v,(F"(c;)) = k. Now, we can bring x to the other side
and notice that p~*F”(«;) is invertible:

bi=—z(p "F'())™"  (mod p).

There exists a unique 0 < b; < p — 1 with this property. If we set a;,1 =
a; + b;p", then a; 1 has the stated properties. O

Theorem 2.4.3 (Multivariate Hensel’s Lemma). Let F' € Z,[ X1, ..., Xn].
Suppose that 0 < 2k < n and that there ezists a = (o, ..., quy) € (Z,)™ such
that:

F(a)=0 (mod p"),
and 0 < j < m such that:

Then there exists y = (y1,...,Yn) € (Z,)" such that F(y) = 0 and y
(mod p"~F).

Il
Q

Proof. The case where m = 1 is clear. If m > 1, then we obtain a polynomial
in one variable, F(oq,...,X,,...,ay). We use the one dimensional case
(with point «;). This shows existence of y; = «; (mod p"~*) such that
F(oa,...,Yj,...,a,) = 0. If we put y; = a; for i # j, then the element
Yy = (y1,--.,Ym) has the desired properties. ]
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Recall that an element x of a field is an m-th root of unity if 2™ = 1; it
is called a primitive m-th root of unity if in addition 2™ # 1 for 0 <n < m.
For a n-th root of unity ¢ € Q,, we have 1 = [("|, = |C[}, so [(], = 1 and
¢ € Z). Using Hensel’s lemma we can show that @, contains the (p — 1)-th
roots of unity.

Corollary 2.4.4. The field Q, contains the (p — 1)-th roots of unity.

Proof. Define f(z) = 2P~ — 1. By Fermat’s little theorem zP~' = 1 (mod p)
for any prime p and x not divisible by p. These are all elements « € (Z/pZ)*.
We have v,((p — 1)a?~?) = 0, so we can apply Hensel’s Lemma p — 1 times,
with respect to f, to get p — 1 unique elements in Z,, that satisfy 2P~ = 1.
They are unique because for all a € (Z/pZ)* there exists x € Z, such that
P! —1=0and x = a (mod p). O

Proposition 2.4.5. If p # 2, then the roots of unity in Q, are exactly the
(p — 1)-th roots of unity.

Proof. Define 7 : Z) — (Z/pZ)* by reducing modulo p. It is clear that 7 is
a homomorphism. Suppose that (i, (2 € Z, are two different roots of unity.
If ¢, = ¢ (mod p), then ¢;¢;' =1 (mod p). They are in the kernel of 7 and
we have ker(mw) = 1 + pZ,. By Theorem 2.3.14 we have that 1 + pZ, = Z,.
If x € Z, and |nz|, = 0, then |n|, = 0 or |z|, = 0, so we conclude that Z,
and 1 + pZ, have no torsion. However, (;(y lel+ pZy,, which means that
(1 = (2. We conclude that different roots of unity are different modulo p, so
there are at most p — 1 unique roots of unity. O

A similar statement is true in Q. The proof is identical.
Proposition 2.4.6. If p = 2, then the roots of unity in Q, are exactly {£1}.

Proof. Define 7 : Z) — (Z/4Z)* by reducing modulo 4. It is clear that 7 is
a homomorphism. Theorem 2.3.15 gives us that 1+ 4Z, =~ Z, is torsion-free.
A similar argument as in the proof of the previous proposition gives us that
different roots of unity are different modulo 4. We know that +1 € Q,, so
we conclude the proposition. O

We are now able to decompose Z;, which in turn will allow us to give a
decomposition of Q). We use p, to denote the group of n-th roots of unity

in Q,.

Lemma 2.4.7. If p # 2, then Z) = p, 1 x (1+pZy), where (1+pZy) = Z,.
If p=2, then Z; = po x (1 + 4Zs), where (1 + 4Zy) = Zs.
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Proof. If p # 2 and z € Z, then we can choose ¢ € i, 1 such that x = ¢
(mod p). Now we have that (~'a € 1 + pZ,, because if not, then x # (
(mod p). This means that x = (- ("'z and Z, =~ V x (1 + pZ,). The case

p = 2 is similar. ]

Theorem 2.4.8. The group Q) is isomorphic to Zx Zy, x Z/(p—1)Z if p # 2
and to 7 x Ly x )27 if p = 2.

Proof. Every element x € Q) can be uniquely written in the form = = p"u
with n € Z and u € Z,; . S0 Q, = Z x Z, . The theorem follows from Lemma
2.4.7 and the fact that p, 1 = Z/(p—1)Zifp # 2 and py = Z/2Zifp=2. O

Theorem 2.4.9. Suppose p # 2 and let x = p"u be and element of Q' , with
n€7Z and u € Z,;. Now, x is a square if and only if n is even and u mod p
1S a square.

Proof. By the previous theorem we can decompose u into u = u'v where
v € (14 pZ,) and v € p1,,_1. Notice that:

L=1—p+pQ—p3+p4— €7

_ . €Ly,
so 1/2 is also in Z,, which means that every element in Z, is square. Since
(1+pZ,) = Z,, all elements in (1+pZ,) are squares. We have u = v (mod p)
and we know that p, 1 = (Z/pZ)*, so the theorem follows. O

Theorem 2.4.10. An element x = 2"u of Q5 is square if and only if n is
even and u=1 (mod 8).

Proof. The decomposition Z; = {£1} x (1 + 4Z,) shows that u is square if
and only if u belongs to (1 + 4Z,) and is a square in this group. Suppose
r e (1+p°Z,) with z = 1+ p*+ .... If there exists y with x = y?, then
y> =5 mod 8, but no such y exists. This means that squares of (1 + 47Z,)
are elements in (1 + 8Z,). If z € (1 + 8Z,), then  — y* = 0 (mod 2%) has
solution y = 1. The derivative of z — y* is —2y. We see that vo(—2) = 1, so
we can apply Hensel’s Lemma to conclude that x is a square. So, the unit u
is a square if and only if u =1 (mod 8). O

2.5 Hilbert symbol

In this section we will define and discuss the Hilbert symbol. The Hilbert
symbol measures whether or not solutions to some polynomial exist. The
symbol will be useful later to define an invariant of quadratic modules. We

will denote £ for either the field R or the p-adic field @Q,.
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Definition 2.5.1. Let a,b e £*. We put:

(a.b) 1 if 22 — ax? — by? = 0 has a solution not equal to 0 in &3.
a’ = .
—1  otherwise.

The number (a,b) = +1 is called the Hilbert symbol of a and b relative to k.

We will define the group of norms and then show an interesting correlation
with the Hilbert symbol. By [1, p. 583], the following is well-defined.

Definition 2.5.2. Let E/k be any finite extension and let o € E. Define
the norm to be:

Ngj : E — k by Ngj(a) = Ha(oz),
where the product is taken over all the embeddings of E into an algebraic
closure of k. If the context is clear we will write N(a) for Ng/(a).

Lemma 2.5.3. Let E/k be any finite extension and let L be a Galois exten-
sion of k containing E, then:

1. The norm is a multiplicative map, i.e. N(af) = N(a)N(5). Moreover,
N(E) is a group, called the group of norms of elements of E.

2. Let E = k(+v/D) be a quadratic extension of k, then:

N(a+bV/D) = o® — Db*.

Proof. Note that for embeddings o, we have o(af) = o(a)o(f). Taking the
product over all embeddings o gives N(af) = N(a)N(S). The image of a
group homomorphism is a subgroup. This proves 1. The assumption that
k(+v/D) is a quadratic extension of k implies that 2> — D is irreducible over
k. Tts roots are ++/D, so:

N(a+bVD) = (a + bVD)(a — bVD) = a® — Db
This proves 2. [

Because of this lemma the following proposition makes sense.

Proposition 2.5.4. If a,be k* and ky, = k(\/b), then we have (a,b) = 1 if
and only if a belongs to the group N(k;) of norms of elements of k.
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Proof. If b is the square of an element ¢, the equation z? — az? — by? = 0
has solution (0,1, ¢) and (a,b) = 1. In this case the proposition follows from
the fact that k, = k and N(k;) = k*. If b is not a square, then k; is
quadratic over k and every element in k, can be written as z + /by with
y,2 € k. If a € N(k)), then there exists y,z € k such that a = 2* — by*.
Now, 2% — ax? — by? has zero (1,y,2) and (a,b) = 1. Conversely, suppose
(a,b) = 1. We have x # 0, otherwise 2% —by? = 0 implies b is a square, which
is a contradiction. Using this we write:

2 2
Z Y
a = ﬁ — bﬁ’
so a is the norm of Z + v/b%. This means that a € N (k). O

Proposition 2.5.5. The Hilbert symbol satisfied the formulas:
1. (a,b) = (b,a) and (a,c®) =1,
2. (a,—a) =1 and (a,1 —a) =1,
3. (a,b) =1 = (ad,b) = (d',b)
4. (a,b) = (a,—ab) = (a, (1 — a)b)

Proof. Tt is obvious that 22 — ax? — by? = 0 has a solution if and only if
22 — br? — ay? = 0 has a solution. Furthermore, 2% — ax? — ¢?*y? = 0 has
solution (0,1,c). This proves 1. The quadratic form z? — az? + ay? = 0
has solution (1,1,0) and z* — az® — (1 — a)y* = 0 has solution (1,1,1).
This proves 2. Suppose (a,b) = 1. If b is a square, then 1 implies that
(aa’,b) = (a’,b). We suppose that b is not a square, so a € N(k;) by
Proposition 2.5.4. Since N(k; ) is a group, we have that aa’ € N(k;°) if and
only if @’ € N(k;), or (aa’,b) = (a,b). This proves 3. If (a,b) = 1, then
(b,a) = 1 and (—ab,a) = (—a,a) = 1. Also, ((1 —a)b,a) = (1 —a,a) = 1.
If (a,—ab) = 1, then (—ab,a) = 1 and (—a,a) = (b, a) = 1. This implies
that (b,a) = (b*,a) = 1 and we showed that now (a, (1 — a)b) = 1. If
(a, (1 —a)b) =1, then ((1 —a)b,a) =1 and ((1 —a),a) = (b—1,a) = 1. This
implies that (b,a) = (b*,a) = 1 and we showed that now (a, —ab) = 1. We
conclude that if either one of (a, b), (a, —ab) and (a, (1 —a)b) equals one, then
they all equal one. This proves 4. O

In the rest of this section, we will try to prove bilinearity of the Hilbert
symbol, i.e. (ad’,b) = (a,b)(d’,b).

Theorem 2.5.6. If k = R, we have (a,b) = 1 ifa > 0 or b > 0, and
(a,b) = =1 ifa,b<0.
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Proof. If a > 0, then 22 — ax?® — by? = 0 has solution (1,0, 1/a). If b > 0, then
(0,1,/b) is a solution. If a,b < 0 then az® 4+ by? < 0 and 2% = ax? + by? only
has the trivial solution. O]

Lemma 2.5.7. Letv € Z) . If the equation 22—px?—vy? = 0 has a nontrivial
solution in Q,, it has a solution (z,y,z) such that z,y € L, and x € Zy.

Proof. Suppose (9, Yo, z0) is the nontrivial zero, define:

h = inf{uy (o), v, (90, vy 20) )

Define (z,y,z) = (p~"xo, p~"yo,p "20), it is clear that x,y,z € Z, and at
least on of them in Z;. We will prove that y, 2z € Z;. If it did not then either
y =0 (mod p) or 2 =0 (mod p). We have 2% —vy? = px?, so 2> —vy* =0
(mod p) and we know that v # 0 (mod p). From this we conclude that both
y and z are congruent to zero mod p, so y, z ¢ Z;. We have pr? =0 (mod p?)
since y and z are squared: z? — vy? = pz?. This in turn implies that 2 = 0
(mod p) or x ¢ Z), which is a contradiction since we assumed that at least
one of z,y and z are in Z;'. O]

Definition 2.5.8. If p # 2 and = € (Z/pZ)*. The Legendre symbol of x,
denoted ( ), is defined as:

P
<a:) 1 if x is a square,
D —1 else.

By Euler’s criterion, which had been discovered earlier and was known to

Legendre, we can also define (£) as =9/ (mod p). We will also use this

equivalence. It is also easy to see that (‘%) = (%) (%) using this definition.

Theorem 2.5.9. If k = Q, with p > 2 and if we write a = p*u and b = p°v,

where u and v belong to Z,, we have:

(Y ()

Here, u and v are the images of w and v of reduction mod p and €(p) denotes
(p—1)/2 mod 2.

Proof. We can reduce o and [ modulo 2 by Proposition 2.5.5, so due to
symmetry of the Hilbert symbol we have three cases.
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1. If o, =0 (mod 2), then we should check that (u,v) = 1. We choose
z = 1, we will prove there exists a solution to uz? + vy?> = 1. By
Theorem 2.4.3, it suffices to find a solution of uz*+vy*~1 =0 (mod p),
where u,v € (Z/pZ)*. We define S = {1 —ux® : x € Z/pZ} and we
define T' = {vy? : y € Z/pZ}. Since there are (p+ 1)/2 squares in Z/pZ,
we have |S|+|T| = p+1, so |SNT| # 0, which means that there exists
a solution to uz? + vy* — 1 =0 (mod p).

2. f a=1, =0 mod 2, then we should check that (pu,v) = (%) We
just proved that (u,v) = 1, so we have (pu,v) = (p,v) by Proposition
2.5.5. We need to check that (p,v) = (%) If v is square, then we
have that (p,v) = (%) = 1. If v is not square, then (%) = —1 by
Theorem 2.4.9. If (p,v) = 1, then the previous lemma implies that

22 — px? — vy? = 0 has a solution such that z,y € Z, , which implies

that v is a square modulo p. This is a contradiction so we conclude

that (p,v) = —1.

3. If a, B = 1, then we should check if (pu, pv) = (—1)P=1/2 (%) (%) By
Proposition 2.5.5 we have (pu,pv) = (pu, —p*uv). Since (pu,p?) =1
we also get (pu, —p*uv) = (pu, —uv). Using what we proved in 2 we
see that:

(i) = (v, —e) = (),

p
We have seen that the Legendre symbol is multiplicative and using the

formula for the symbol we also see that (=') = (=1)"~1/2 so we are
done. ]

This Theorem allows us to prove that the Hilbert symbol is bilinear. Be-
fore we do that, we first prove a similar formula for p = 2. We define two
functions for this. It is clear that they are well defined.

Definition 2.5.10. We define € : Z; — Z/2Z by:

e(u) = 4 ; ! (mod 2),

and w : Z5 — 7Z/27Z by:

Lemma 2.5.11. Ifu,v € Z, then:

e(uv) = €(u) + €(v) and w(uv) = w(u) + w(v).
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Proof. We want to show that (v —1)/2 + (v —1)/2 = (uv — 1)/2 (mod 2).
This is equivalent to showing that u —1+v—1=wv —1 (mod 4). It is easy
to see that this is true since u = 1 or 3 (mod 4) and v = 1 or 3 (mod 4).
For the second equation, it is easy to verify that:

0 ifu=+1 (mod8) w?-1

w(U)Z{l =43 (mod8): g (mod 2).

The lemma then follows by verifying every combination. O]

Theorem 2.5.12. If k = Q, and if we write a = p®u and b = p°v, where u
and v belong to Z; , we have:

(a,b) — (_1)e(u)e(v)+aw(v)+ﬁw(u)‘

Proof. We can reduce a and § modulo 2 by Proposition 2.5.5, so due to
symmetry of the Hilbert symbol we have three cases.

1. If a, 8 = 0 (mod 2), then we should check that (u,v) = 1 when u
or v is congruent to 1 (mod 4) and (u,v) = —1 otherwise. If u = 1
(mod 4), then we see that v = 1 (mod 8) or u = 5 (mod 8). In the
first case, u is a square by Theorem 2.4.10 and in the second case
u+ 4v = 1 (mod 8), since v is congruent to 1,3,5 or 7 (mod 8) .
Again, by Theorem 2.4.10, there exists w € Z,; such that w? = u + 4.
The form 22 —ux? —vy? has thus (1,2, w) as zero and (u,v) = 1. When
v =1 (mod 4), the same argument holds. Suppose now that neither u
nor v is congruent to 1 (mod 4). If this is the case, then u =v = —1
(mod 4). If (z,y, 2) is a solution of 2% — uz? — vy? = 0, then we can
force that at least one of x,y and 2 to be in Z; by multiplying the
solution with p~ ®Hur@)we®)»()} - Now, since the squares in Z/47 are
0 and 1, we know that 2%+ 2% +y? = 0 (mod 4) implies that z,y, z are
congruent to 0 (mod 2), which contradicts that at least on of them is
in Z. We conclude that (u,v) = —1.

2. If a = 1,3 = 0, then we should check if (2u,v) = (—1)<W<@+®) We
will first show that (2,v) = (—=1)*®). By the definition of w(v), this
is equivalent to saying (2,v) = 1 if and only if v = £1 (mod 8). By
Lemma 2.5.7 if (2,v) = 1, there exists x,y, z € Zy such that the form
22 —222 —vy? =0 and y,z = 1 (mod 2). The only squares in Z/8Z are
0,1and 4. So,y*> =22 =1 (mod 8) and 1—222—~v =0 (mod 8), which
implies that v = +1 (mod 8). Conversely, if v =1 (mod 8), then v is a
square by Theorem 2.4.10 and thus (2,v) = 1. In the case that v = —1
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(mod 8), then the equation 2% — 2% — vy? = 0 (mod 8) has solution
(1,1,1). By Proposition 2.4.3, this solution lifts to a true solution, so
we have (2,v) = 1. In case 1 we showed that (u,v) = (—1)<We®)
so we will now show that (2u,v) = (2,v)(u,v) to conclude the proof.
If (2,0) = 1 or (u,v) = 1, then (2u,v) = (u,v) or (2u,v) = (2,v)
by Proposition 2.5.5, so (2u,v) = (2,v)(u,v). It remains to show the

equality when (2,v) = (u,v) = —1. We showed that (2,v) = 1 if
and only if v = £1 (mod 8), which means that (2,v) = 1 implies that
v = 3orb (mod 8). In case 1 we showed that (u,v) = —1 implies

that u,v = 3 (mod 4), so u,v = 3 or — 1 (mod 8). This means that
v =3 (mod 8) and u = 3 or — 1 (mod 8). By Proposition 2.5.5 we
have (u,v) = (c®u,d*v), so we are allowed to multiply u,v by squares.
Note that by Theorem 2.4.10 v/3 = w?* for some w € Z and v/w* = 3,
so we can assume that v = 3. Using this logic, we can suppose that
v=3and u=—1orv=—-5and u = 3. The equations:

2% +22% —3y* = 0 and 22 — 622 + 5y* = 0,
have (1,1,1) as solution, so (2u,v) = 1.

. If a, B = 1, then we should check if (2u, 2v) = (—1)We)Fww+e@) By
Proposition 2.5.5 we have that (2u,2v) = (2u, —4uv) = (2u, —uv). We
have already proven in case 2 that:

(QU, 21}) _ <2U, —UU) _ (_1)e(u)e(—uv)+w(u)+w(—uv)'

Note that e(—1) = 1,w(—1) = 0 and €(u)(1 + €(u)) = 0, we conclude
using Lemma 2.5.11 that the above exponent is equivalent to:

e(u)e(v) + w(u) + w(v). O

Using these formulas for the Hilbert symbol, we can prove the main the-
orem of this section.

Theorem 2.5.13. The Hilbert symbol is bilinear, i.e. (aa’.b) = (a,b)(d’,b).

Proof. We first prove the theorem for Q,. Suppose ad’ = p*u, a = p*uy,
a' = p*?uy, with u = wjus and a = a; + as. Also suppose b = p®v. The
theorem then follows from the two proven formulas for the Hilbert symbol,
using the fact that the Legendre symbol is multiplicative, e(uv) = €(u) + €(v)
and w(uv) = w(u) + w(v). The case &k = R follows directly from Theorem

]
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Remember that given a nondegenerate quadratic module (k" f), with
n € N.g, we have that the discriminant d(f) € k*/(k*)? is invariant under
change of basis. We also proved in Proposition 1.4.2 that f has an orthogonal
basis e = (e1,...,¢e,). If we put a; = e; - ¢;, then f ~ a;23 + ... + a,z? and
we conclude that d(f) = ay...a,. We will now define another invariant of

(K", f)-

Definition 2.5.14. Suppose (k™, f) is a quadratic module and e = (e, ..., €,,)
is an orthogonal basis, also define a; = e; - ¢;. We define:

e(e) = H(ai,aj) = +1.

i<j
We will show that €(e) is an invariant of (K", f).

Corollary 2.5.15. The number €(e) does not depend on the choice of the
orthogonal basis e.

Proof. If n = 2, one has €(e¢) = 1 if and only if the form 2% — a;2? — asz3 has

a zero. By Corollary 1.5.6 this means that ¢(e) = 1 if and only if a;2? + ayx3
represents 1, which is equivalent to saying that there exists v € k2 such that
f(v) = 1, but this does not depend on e. For n > 3, we use induction on

n. Suppose € = (e},...,e)) is another orthogonal basis. By Proposition

rn

1.4.5, it suffices to prove that €(e) = €(e’) when e and €’ are contiguous. Note
that e(e’) does not change, when we permute the €}, so we can assume that
ey = €). If we put a, = e; - e;, then a; = a}. Since the Hilbert symbol is
bilinear and the fact that (a1,a?) = 1, we have:

e(e) = (ar,az...an) | [ (ai,05) = (ar.d(f)ar) | (ai,a).

2<i<j 2<i<y

Note that d(f) is invariant as element in k*/(k*)%. So, similarly,

e(e) = (ar,d(far) ] (af, a)).

2<i<j

We can apply the inductive hypothesis to the orthogonal complement of e;

to show that:
H (ai7a’j> = 1_[ (CL;,O,;-),

2<i<j 2<i<j

which implies that e(e) = €(€’), so we are done. O

We will write €(f) instead of ¢(e) from now on.
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2.6 Local-global principle

All quadratic forms considered in this section have coefficients in Q and
are nondegenerate. We will denote by 2 the union of the set of prime numbers
and the symbol o0, and we put Q, = R. Let f ~ ay2? + ... + a,2? be a
quadratic form. Let v € €, the injection Q — Q, allows us to view f as a
quadratic form in Q,. We will denote this by f,. The invariants of f, will
be denoted by d,(f) and €,(f). It is clear that d,(f) is the image of d(f) by

Q*/(Q*)? — QX/(QX)? and that:
ev(f) = H(aiaaj)v-

1<j
Lemma 2.6.1. If a,b € Q, then (a,b), = 1 for all but finitely many ele-

ments of Q) and:
[ [(a.0), = 1.
veQ

Proof. We can multiply a and b by squares, so we are allowed to assume that
a=+p1...pr and b = £p] ... p; are prime factorizations of a and b. We get:

[ [(a.0), = [ [(a. £1)u(a, 1) - - (. p})o

veEQ veEQ

= H(iL il)v(pb il)v cee (pk’ + 1)1} e (i17p2)v(p17p;)v s (pkvp;)v
veEQ

We see that we only need to prove the theorem when a or b are equal to —1
or to a prime number. We will use Theorems 2.5.6 2.5.9 and 2.5.12. Using
symmetry of the Hilbert symbol, we look at three cases.

1. If a,b = —1, then (—1,—1)y, = (=1,-1); = 1 and (—1,-1), = 1 if
v # 2,00. The product is equal to one.

2. Ifa=—1,b=1with [ prime. If [ = 2, then [ is a unit if v # 2, so since
—1 is a unit we get (—1,2), = 1. If v = 2, then it is also easy to see
that (—1,2), = 1 using the formula for the Hilbert symbol. If [ # 2
then (—1,1), = 1 if v # 2, since [ is a unit in this case. We also have
(=1,0)2 = (—1)*W and (—1,1); = () = (~=1)“®. The product is equal
to one.

3. If a =1,b=1 with [ and I’ primes, then we can suppose that [ # [’.
If I = I, then by Proposition 2.5.5 we have (I,1) = (I,—1?) = (I,—1),
which is a case we have discussed. If [ # [’ and I’ = 2, then ([,2), =1
for v # 2,1. We also have (v,2), = (=1)*® and (1,2), = (3) = (=1)~©.
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The product is equal to one. If [ # I’ and they are different then 2,
then (I,I'), = 1 for v # 2,1, We also have (I,I'); = (—1)<W)
(0,1, = (%) and (I,!')y = (£). By quadratic reciprocity [5, p. 7] we
have:

()5 = -1,

so the product is equal to one. O

Lemma 2.6.2. Let S be a finite subset of Q0. The image of Q in [[,.q Q, is
dense in this product.

Proof. Since we use the product topology we are allowed to enlarge S. Sup-
pose that S = {o0,py,...,pn}, where p; are distinct primes. Assume that
e, N > 0. We need to prove that for a point:

(Topy T1y e oy @) ER X Qpy x oo X Q.

there exists x € Q such that |z — 25|y < € and v, (x — ;) = N for all i. If
we can find x € Q such that this holds for the point (axy, azy, ..., ax,), then
the point z/a has the desired properties. We conclude that we are allowed
to assume that z; € Z,, for all ¢. By the Chinese remainder theorem using
relatively prime integers pY,...,pY, there exists zy € Z such that we have
vy, (o — x;) = N for all i. Now choose ¢ > 2, which is relatively prime to all
pi- The rational numbers of the form a/¢™ for a € Z and m > 0 are dense in
R, because 1/¢™ can get infinitely small. We can thus find number u = a/¢™
such that:
|20 — 2o +upl .. pN| < e

The number x = xg + up]lv - pff suffices, since:
v(z — x;) = min{vy, (o — 2;), v, (upy ... ph)} = N. O
The following theorem is proven in [5, p.24]

Theorem 2.6.3. Let (a;)ie; be a finite family of elements in Q* and let
(€iw)icrwven be a family of numbers equal to +1. In order that there exists
x € Q% such that (a;,x), = €, for allie I and all v € Q, it is necessary and
sufficient that the following conditions be satisfied:

1. Almost all the €, are equal to 1.
2. For allie I we have [ [ .q €0 = 1.

3. For all v € Q there exists x, € Q) such that (a;,x,), = €, for allie I.
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Theorem 2.6.4 (Hasse’s local-global principle). A nondegenerate quadratic
form f represents 0 if and only if for all v € €, the form f, represents 0.

Proof. 1f f represent 0, then it is clear that f, represents 0 for all v € €.
Conversely suppose that f, represents 0 for all v € 2. By Proposition 1.5.8
we can write f ~ a;z? + ... + a,z2. We look at four cases.

1. If n = 2, then we assume that f = z? — ax3. Since f, represents 0
we have that a > 0. When we write a = pcll1 e pfll, with p; different
primes, we see that a is a square in Q if all d; are even. Since a is
square in all Q,,, we have that v, (a) is even, so d; is even for all i.

2. If n = 3, then we assume that f = x? —az? — bx3. By Proposition 2.5.5
we can multiply @ and b by squares, so we assume that a and b are
square free integers. By symmetry of the Hilbert symbol we can also
assume that |a|, < [bl. We prove by induction on m = |a|e + |b]s. If
m = 2, then a = +1 and b = +1, so:

_ 24,2, 2
f=a] £+ a3

If f =%+ 23 + 23, then f,, only has a trivial solution, so we don’t
look at this case. In the other cases f represents 0. If m > 2 then
|bloo = 2 and we will show that a is square modulo a prime p with p | b.
If a = 0 (mod p), then we are done, so suppose that a # 0 (mod p)
or in other words that a is a p-adic unit in Q,. By hypothesis there
exists (z,y,2) € Q3 such that 2z* — az® — by® = 0. We can force that
at least one of z,y and z is in Z; by multiplying the solution with
p~ @ W)we()} - Since p | b, we have 22 = az? (mod p). If 2 =0
(mod p), then 2 =0 (mod p) and by* = 0 (mod p?). We assumed that
v,(b) = 1, so y = 0 (mod p), which is a contradiction. We conclude
that  # 0 (mod p), so since 22 = ax? (mod p), we have that a is
square modulo p. We conclude that a is a square modulo b using the
Chinese remainder theorem (b is square free). There exists an integer
t such that @ = t* (mod b) and also a = (t + ¢b)* (mod b) for all c € Z.
This means that we can choose ¢ in such a way that |¢| < [b|/2. There
also exists an integer b such that b’ = t*> — a. This shows that bV’
is a norm of the extension k(y/a)/k where k = Q or k = Q,. Because
bb' € N(k)) we have that b € N(k)) if and only if o’ € N (k). Using the
same argument as in Proposition 2.5.4, we conclude that f represents
0 in k if and only if f' = 2? — az? — V/22 represents 0 in k. We have
that:
‘a bl

2 —
e +—‘<—+1<|b|,

b

t2
g J—

b| =
v b

b
b 4
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since [t| < [b|/2 and |b] = 2. We can write & in the form 0"u? with 0"
a square free integer and u an integer, so |b”| < |b|. By the induction
hypothesis f” = z? — az? — b"x3 represents 0 and because f” ~ f’ we
know that f’ represents 0 and we conclude that f represents 0.

. If n = 4, then we assume that f = az} + bzl — (cx3 + dz}). By
assumption, for all v € 2 we have that f, represents 0 and by Corollary
1.5.7 there exists z,, € Q such that the form g = az? + bxr3 — x,5? and
h = cx? + dx? — x,y5 represent 0. We have that g represents 0 if and
only if x,g represents 0 and:

Tpg ~ xvax% + va:cg — y%,
represents 0 if:
(xpa, xyb)y = (T4, Ty)o(Ty, ab)y(a, b)y, = (2, —ab),(a,b), = 1.

This is equivalent to saying that (z,,—ab), = (a,b),. We conclude
that:

(x,, —ab), = (a,b), and (z,, —cd), = (¢, d), for all v e Q.

By Lemma 2.6.1, we can use Theorem 2.6.3, so there exists z € Q*
such that:

(x,—ab), = (a,b), and (z, —cd), = (c,d), for all v e Q.
We conclude that f represents 0 by as similar argument as made before.

. If n > 5, then we assume that f = h — g, where h = a,2? + ap23 and
g = —(azx3 + ...+ a,z?). We prove by induction. Let S be the subset
of Q consisting of o0, 2 and the prime numbers p such that v,(a;) # 0
for an ¢ > 3. It is clear that S is finite. If v € S, then f, represents
0 by assumption. By Corollary 1.5.7 there exists a, € Q) which is
represented by h and g. This means that there exits z1,,...,2,, € Q,
such that:
h(x1,0, T2p) = @y = (T30, Tny)-

Define n, = 1 if v # 2 and ny, = 3. By Lemma 2.6.2 we can choose
x1, To € Qsuch that |2;—2; 0|0 < |Timw|ew and z; = x;,, (mod pUrlav)Tno)
for every v € S — {o0}. Now, for every v € S — {0}, we have:

a = h(xy,x9) = h(214,22,) = a, (mod p”P(“”H"”)
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We see that a/a, =1 (mod p™). Using Theorem 2.4.10 and Theorem
2.4.9 we conclude that a/a, is square in Q) if v € S — {o0}. Since
| — Ti o]0 < |Tioo|o, We conclude that a/aq is a square in R*. Define
fi = az? —g. If v e S, then g represents a, in Q, and also a because
a/a, is a square in Q). We see that fi represents 0 in Q,. Assume
v ¢ S. Note that f; = az? — g represents 0 if g; = azz2 + ay23 + as2?
represents (. Using a similar argument as in the case n = 4 this is the
case if:

(—asas, —asas) = (=1, —d,(g91))(as, as)(as, as)(as, as) = 1,

which is equivalent to saying that (—1,—d,(g1)) = €,(g91). We have
that —as, ..., —as are v-adic units, because v ¢ S. We have seen in
the proof of Theorem 2.5.9 that (u,u’), = 1 for units v and u'. We
conclude that f; represents 0 for all v € €). The rank of f; is n — 1,
so by the inductive hypothesis we have that f; represents 0 in Q. We
conclude that g represents a in Q and since h represents a in Q, we
have that f represents 0. O]

Corollary 2.6.5. If a € Q*, then a nondegenerate quadratic form f repre-
sents a if and only if for all v € 2, the form f, represents a.

Proof. By Corollary 1.5.6, the form f = f(xy,...,,) represents a if and
only if f — ax, 11 represents 0. The corollary follows from the local-global
principle. O
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