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Abstract

In this thesis we will discuss the topic of quadratic forms and we will prove
Hasse’s local-global principle. This is a theorem that allows us to determine
if a quadratic form with coefficients in Q has a nontrivial zero. Firstly, we
will define quadratic forms and prove some basic properties. Then, we define
the p-adic field Qp and explore this field thoroughly to learn a lot about its
structure and its elements. Finally, we will prove the local-global principle.
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Introduction

If a polynomial fpxq P Zrxs has a root a P Z, then the reduced polynomial
f̄pxq P pZ{pZqrxs has a corresponding root ā P Z{pZ for every prime p. In
other words, if f has a ‘global’ zero, then it has a ‘local’ zero everywhere.
The converse is not true. For example, the polynomial:

px2
´ 2qpx2

´ 3qpx2
´ 6q,

has a zero in Z{pZ everywhere, but none in Z. So, in this case, it is not
necessarily true that a local zero everywhere implies a global zero. A local-
global principle is a statement that asserts that a certain property is true
globally if and only if it is true everywhere locally. Before stating Hasse’s
local-global principle, we provide an overview of the topics discussed in this
thesis.

The first chapter of this thesis is about quadratic forms. A quadratic form
on a vector space V over k with dimpV q “ n is a function f : V Ñ k such
that f can be written as:

fpx1, . . . , xnq “
ÿ

i

ÿ

j

aijxixj,

such that aij “ aji. We say that two quadratic forms f on V and g on V 1 are
equivalent if there exists a linear bijection h : V Ñ V 1 such that g ˝ h “ f .
If this is the case we will write f „ g. The main theorem of this chapter is
that every quadratic form f is equivalent to a quadratic form of the form:

f „ a1x
2
1 ` . . . ` anx

2
n.

We say that a quadratic form is nondegenerate if ai ‰ 0 for all 1 ď i ď n.

In the second chapter we will define the p-adic field Qp. Recall, that the
field Q is not complete with respect to te absolute value and that R can be
defined as a completion of Q using Cauchy sequences. The p-adic field Qp

is defined similarly. It is defined as a completion of Q, in almost the same
way as R, but with respect to another norm. The norm in question is called
the p-adic norm. An element x P Q is small with respect to this norm if the
power of p in the ‘prime factorization’ of x is high and vice versa.

We will give a decomposition of Qˆ
p , but before we are able to do this

we first try to understand what the elements in Qp look like. After this we
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will do some analysis in Qp. We will mainly discuss the function exppxq and
logpxq. These function are important to us because they will allow us the give
isomorphism between subsets of Qp, which in turn allows us to decompose
Qˆ

p and give us criteria when an element in Qˆ
p is a square.

We will use all this theory to prove bilinearity of the Hilbert symbol. The
Hilbert symbol is defined as follows: let a, b P Qˆ

p . We put:

pa, bq “

#

1 if z2 ´ ax2 ´ by2 “ 0 has a solution not equal to 0 in Q3
p.

´1 otherwise.

Bilinearity of the Hilbert symbol means that:

paa1, bq “ pa, bqpa1, bq.

It is one the the main theorems of this thesis. It is a strong theorem and
we will use it a lot to prove the local-global principle, which we will now
formally state.

Theorem. A nondegenerate quadratic form f with coefficients in Q has a
nontrivial zero if and only if f has a nontrivialzero in R and in Qp for every
prime p.
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1 Quadratic forms

1.1 Basic definitions

Definition 1.1.1. Let V be a vector space over a field k. A quadratic form
on V is a function Q : V Ñ k that suffices:

1. Qpaxq “ a2Qpxq for all a P k and x P V

2. The function px, yq ÞÑ Qpx ` yq ´ Qpxq ´ Qpyq is a bilinear function.

We call the pair pV,Qq a quadratic module.

In this text, we will limit ourselves to fields k with charpkq ‰ 2. We also
assume that V has finite dimension.

Definition 1.1.2. Let x, y P V . The function ¨ : V ˆ V Ñ R defined by:

x ¨ y “
1

2

`

Qpx ` yq ´ Qpxq ´ Qpyq
˘

is called the scalar product associated with Q.

The scalar product has the following important property:

x ¨ x “
1

2
pQp2xq ´ 2Qpxqq “ Qpxq.

Proposition 1.1.3. Define QV as the set of quadratic forms on the vector
space V and BV as the set of symmetric bilinear functions over the same
space. The maps f : QV Ñ BV and g : BV Ñ QV given by:

fpQqpx, yq :“
1

2

`

Qpx ` yq ´ Qpxq ´ Qpyq
˘

and
gpbqpxq :“ bpx, xq,

are well-defined and mutual inverses. We conclude that QV is in bijection
with BV .

Proof. By Definition 1.1.1, the map f sends quadratic forms to symmetric
bilinear functions. It is obvious that gpbqpaxq “ bpax, axq “ a2bpx, xq “

a2gpbqpxq, so gpbq satisfies the first property of a quadratic form. Because b
is bilinear, gpbq also satisfies the second. We prove that f and g are inverses:

pf ˝ gqpbpx, yqq “
1

2

`

bpx ` y, x ` yq ´ bpx, xq ´ bpy, yq
˘

“ bpx ` yq

and

pg ˝ fqpQpxqq “
1

2

`

Qp2xq ´ 2Qpxq
˘

“ Qpxq.
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We will now define the matrix of a quadratic form.

Definition 1.1.4. Let pV,Qq be a quadratic module and B “ te1, ..., enu

be a basis of V . The matrix of Q with respect to this basis, is the matrix
A “ paijq with aij :“ ei ¨ ej.

If we change the basis by means of an invertible matrix X “ pxijq, we get a
new matrix A1 “ pa1

ijq of Q with respect to the new basis B1 “ tXe1, ..., Xenu.
We defined a1

ij “ pXei ¨ Xejq and we will show that A1 “ XTAX:

Xei ¨ Xej “

n
ÿ

k“1

xkiek ¨

n
ÿ

l“1

xljel

“

n
ÿ

k“1

n
ÿ

l“1

xkixljpek ¨ ejq “
`

XTAX
˘

ij

We conclude that detpA1q “ detpAq detpXq2. The following definition makes
sense now.

Definition 1.1.5. The discriminant of Q is defined as the determinant of A,
it is determined up to multiplication by and element of k˚2

. The discriminant
is denoted as dpQq.

Example 1.1.6. Define Q : Rn Ñ R by Qpxq “ x2
1 ` ... ` x2

n, where we use
the usual multiplication and addition in R. We will use the standard basis in
this example. If x, y P Rn, with x “ px1, . . . , xnq and y “ py1, . . . , ynq, then:

x ¨ y “
1

2

`

Qpx ` yq ´ Qpxq ´ Qpyq
˘

“
1

2

˜

ÿ

i

pxi ` yiq
2

´ x2
i ´ y2i

¸

“
1

2

˜

ÿ

i

2xiyi

¸

“ x1y1 ` x2y2 ` ... ` xnyn.

For the matrix A of Q we see that, with respect to the standard basis, A “ In,
where In denotes the identity matrix. We also have dpQq “ 1.

7



1.2 Orthogonality

Definition 1.2.1. Let pV,Qq be a quadratic module over k. Two elements
x, y P V are called orthogonal if x ¨ y “ 0. The set of elements orthogonal to
a subset H Ă V is denoted by HK. If V1 and V2 are two linear subspaces of
V , they are said to be orthogonal if x P V1, y P V2 implies that x ¨ y “ 0.

Proposition 1.2.2. Let H be a subset of V , where pV,Qq is a quadratic
module. The set HK, is a linear subspace of V .

Proof. If H “ H, then HK “ V , so suppose that H ‰ H. Since x ¨ 0 “ 0 for
all x P V , we have 0 P HK and HK ‰ H. Suppose that v1, v2 are elements of
HK and k1, k2 are elements of k. It is sufficient to show that k1v1`k2v2 P HK.
Now, for every v P H we have:

pk1v1 ` k2v2q ¨ v “ k1pv1 ¨ vq ` k2pv2 ¨ vq “ 0,

by bilinearity of the scalar product.

Definition 1.2.3. The orthogonal complement V K of V itself, is called the
radical of V , denoted radpV q. Its codimension is called the rank of Q. If
V K “ t0u, we say that Q is nondegenerate.

Let’s take a look at Q : R2 Ñ R defined by Qpxq “ x2
1 `2x1x2 `x2

2, where
x “ px1, x2q. If y “ py1, y2q P R2, then the scalar product for this quadratic
form is:

x ¨ y “ x1y1 ` x1y2 ` y1x2 ` x2y2.

Using the standard basis for R2, it is easy to see that all the entries of the
matrix A of Q are given by aij “ 1. This means that dpQq “ detpAq “ 0 and
there exists k1, k2 P R such that for the column vectors v1, v2 of A, we have
k1v1 ` k2v2 “ 0. Since v1 “ v2 we choose k1 “ ´k2 “ 1. Now, for any x P R2

we have:
„

1
´1

ȷ

¨

„

x1

x2

ȷ

“ x1 ` x2 ´ x1 ´ x2 “ 0.

We conclude that Q is degenerate. The next proposition generalizes this
phenomenon.

Proposition 1.2.4. A quadratic form Q is nondegenerate if and only if
dpQq ‰ 0.

Proof. Let A be the matrix of Q. Denote for v1, ..., vn the column vectors of
A. We have that detpAq “ 0 if and only if k1v1 ` ... ` knvn “ 0 for some
k1, ..., kn P k not all equal to zero or since vi “ pa1i, . . . , aniq:

ÿ

j

kjaij “ 0 for all 1 ď i ď n .
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For arbitrary x P V with x “
ř

i xiei we have:

ÿ

i

xiei ¨
ÿ

j

kjej “
ÿ

i

xipei ¨
ÿ

j

kjejq

“
ÿ

i

xi

ÿ

j

kjpei ¨ ejq “ 0.

So, there exists pk1, . . . , knq ‰ 0 P V K if and only if dpQq “ 0.

Definition 1.2.5. Let U1, . . . , Um be linear subspaces of V . One says that
V is the orthogonal direct sum of the Ui if they are pairwise orthogonal and
if V is the direct sum of them. One writes then:

V “ U1 k . . . k Um.

Proposition 1.2.6. Suppose pV,Qq is a quadratic module. We can decom-
pose pV,Qq as:

V “ radpV q k U

where Q|U is nondegenerate.

Proof. If U is any subspace of V then radpV q and U are orthogonal. By
Proposition 1.2.2 we know that radpV q is a subspace of V . Every subspace
of a vector space has a complement, i.e. there exists U such that:

V “ radpV q ‘ U and U X radpV q “ t0u.

Now, U must be nondegenerate. If x P radpUq, v P radpV q and u P U , we
have x ¨ pv ` uq “ x ¨ v ` x ¨ u “ 0, so x P radpV q and x “ 0.

Definition 1.2.7. Given any vector space V over a field k, the dual space
V ˚ is defined as the set of all linear maps ϕ : V Ñ k. The dual space
V ˚ becomes a vector space over k and dimpV q “ dimpV ˚q if V is finite-
dimensional. Elements of the dual space are called linear forms.

Lemma 1.2.8. Let U be a linear subspcae of V, and let U˚ be the dual of U.
Let qU : V Ñ U˚ be defined by qUpxq “ x ¨ ´.

1. The kernel of qU is UK.

2. The quadratic form Q is nondegenerate if and only if qV : V Ñ V ˚ is
an isomorphism.
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Proof. Let x P kerpqUq. We have qUpxqpuq “ x ¨ u “ 0 for all u P U , so
x P UK. Now, let x P UK, so for all u P U we have qUpxqpuq “ x ¨ u “ 0, so
x P kerpqUq. This proves 1. Suppose Q is nondegenerate. We have that qV is
injective, since kerpqV q must be trivial. We know that qV is a linear map and
injective, so from this we can conclude that a set of independent vectors gets
mapped to independent linear forms, using dimpV ˚q “ dimpV q we conclude
that qV is surjective. Suppose that qV is an isomorphism. Injectivity implies
that qV has trivial kernel. This proves 2.

Definition 1.2.9. A metric isomorphism between quadratic modules pV,Qq

and pV 1, Q1q is a linear bijection f : V Ñ V 1 such that Q1 ˝ f “ Q.

The linearity of a metric isomorphism implies that fpxq ¨ fpyq “ x ¨ y for
all x, y P V .

Proposition 1.2.10. Suppose pV,Qq is nondegenerate, then:

1. For all linear subspaces U of V , we have

pUK
q

K
“ U, dimpUq`dimpUK

q “ dimpV q, radpUq “ radpUK
q “ UXUK.

2. The quadratic module U is nondegenerate if and only if UK is. If this
is the case, then V “ U k UK.

Proof. By Lemma 1.2.8, the map qV : V Ñ V ˚ is an isomorphism, which
implies that qU : V Ñ U˚ is surjective. The rank-nullity theorem and Lemma
1.2.8 give us:

dimpUK
q ` dimpU˚

q “ dimpV q.

Note that dimpUq “ dimpU˚q, so this proves the second equation. By def-
inition, pUKqK “ tx P V : x ¨ y “ 0, @y P UKu, so for arbitrary u P U
we see that u P pUKqK so U Ă pUKqK. By the second equation we have
dimpUKq ` dimpUq “ dimpV q and dimppUKqKq ` dimpUKq “ dimpV q, so
dimppUKqKq “ dimpUq. Note that the inclusion is a linear and injective map
from U to pUKqK, we have seen that we can conclude that the inclusion is
now surjective. This proves the first equation. Now, it is easy to see that
radpUq “ U XUK, so radpUKq “ UK X pUKqK and using the first equation we
see radpUq “ radpUKq “ U XUK, which proves 1. We conclude from the last
statement of 1, the first statement of 2 and U X UK “ t0u. We also know
that dimpV q “ dimpUq ` dimpUKq. If we now combine the two bases of U
and UK we have a basis for V . We can’t express elements from one basis in
terms of the other, because we have U X UK “ t0u. This proves 2.
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1.3 Isotropic vectors

Definition 1.3.1. An element x of a quadratic module pV,Qq is called
isotropic if Qpxq “ 0. A subspace U of V is called isotropic if all its ele-
ments are isotropic.

Proposition 1.3.2. Let pV,Qq be a quadratic module and U Ă V be a linear
subspace. The following statements are equivalent.

1. U is isotropic.

2. U Ă UK.

3. Q|U “ 0.

Proof. Suppose U is isotropic and let x P U . Now for all y P U we have that
x ` y P U , because U is a subspace of V . We have:

x ¨ y “
1

2

`

Qpx ` yq ´ Qpxq ´ Qpyq
˘

“
1

2
p0 ´ 0 ´ 0q “ 0,

so x P UK and we conclude U Ă UK. Suppose U Ă UK and x P U , this means
x P UK and we have Qpxq “ x ¨x “ 0, so Q|U “ 0. If Q|u “ 0, then it is clear
that U is isotropic. We conclude that 1 “ñ 2 “ñ 3 “ñ 1, so we are
done.

Definition 1.3.3. A quadratic module having a basis formed of two isotropic
elements x, y such that x ¨ y ‰ 0 is called a hyperbolic plane.

Let’s take a look at the function Q : R2 Ñ R defined by Qpx1, x2q “ 4x1x2.
If x “ px1, x2q and y “ py1, y2q, then the scalar product corresponding to Q
is:

x ¨ y “
1

2

`

4px1 ` y1qpx2 ` y2q ´ 4x1x2 ´ 4y1y2
˘

“ 2px1y2 ` y1x2q.

For the standard basis vectors e1, e2, we see that Qpeiq “ 0 and e1 ¨ e2 “ 2.
We conclude that this quadratic module pR2, Qq is a hyperbolic plane. Now,
let’s multiply e2 by pe1 ¨ e2q

´1 “ 1
2
. This gives e1 ¨ 1

2
e2 “ 1 and the matrix of

Q with respect to e1 and 1
2
e2 will become

`

0 1
1 0

˘

. The following lemma will
generalize this phenomenon.

Lemma 1.3.4. Suppose pV,Qq is a hyperbolic plane with basis formed by
x, y. After multiplying y by px ¨ yq´1 we can suppose that x ¨ px ¨ yq´1y “ 1.
Then the matrix of Q with respect to x and px ¨ yq´1y is the matrix

`

0 1
1 0

˘

.
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Proof. We use bilinearity of the scalar product to deduce:

x ¨ px ¨ yq
´1y “ px ¨ yq

´1
px ¨ yq “ 1.

For the matrix A of Q we see that a11 “ x ¨ x “ Qpxq “ 0. For a12 and a21,
we get a12 “ a21 “ x ¨ px ¨ yq´1y “ 1 and finally

a22 “ Qppx ¨ yq
´1yq “ px ¨ yq

´2Qpyq “ 0.

Proposition 1.3.5. Let x ‰ 0 be an isotropic element of a nondegenerate
quadratic module pV,Qq. Then there exists a subspace U Ă V which contains
x and which is a hyperbolic plane.

Proof. Since Q is nondegenerate, there exists z such that x ¨ z ‰ 0. Now
define t :“ px ¨zq´1z with x ¨ t “ 1. Also define y “ 2t´ pt ¨ tqx. We calculate:

Qpyq “ y ¨ y

“ p2t ´ pt ¨ tqxq ¨ p2t ´ pt ¨ tqxq

“ 4pt ¨ tq ´ 4pt ¨ tqpx ¨ tq ` pt ¨ tq2px ¨ xq

“ 4pt ¨ tq ´ 4pt ¨ tq ` pt ¨ tq2Qpxq “ 0.

So y is isotropic and x ¨ y “ px ¨ 2tq ´ px ¨ pt ¨ tqxq “ 2. We also see that x and
y are linearly independent, because if they weren’t, x ¨ y “ 0 would follow
from the fact x and y are isotropic. Now the subspace U “ kx ‘ ky has the
desired property.

Corollary 1.3.6. If pV,Qq is nondegenerate and contains a nonzero isotropic
element, then Q : V Ñ k is surjective.

Proof. Suppose a P k. By Proposition 1.3.5, there exists a subspace U Ă V
which is a hyperbolic plane. Now, by Lemma 1.3.4, we can assume that x, y
form a basis of U with x, y isotropic and x ¨ y “ 1. We conclude:

Q
`

x `
a

2
y

˘

“
`

x `
a

2
y

˘

¨
`

x `
a

2
y

˘

“ Qpxq ` apx ¨ yq `
a2

4
Qpyq “ a.

12



1.4 Orthogonal bases

In this section we will take a look at what it means for a quadratic module
pV,Qq to have an orthogonal basis and we will define what it means for two
bases to be contiguous.

Definition 1.4.1. A basis pe1, ..., enq of a quadratic module pV,Qq is called
orthogonal if its elements are pairwise orthogonal, i.e. if ei ¨ ej “ 0 for i ‰ j
and pte1, ..., enuq “ V .

Define ai “ ei ¨ ei. It is now easy to see that dpQq “ a1 . . . an. If we
assume that our quadratic module pV,Qq is nondegenerate, then dpQq ‰ 0
and ai ‰ 0 for all i.

Proposition 1.4.2. Every quadratic module pV,Qq has an orthogonal basis.

Proof. We will prove this by induction on the dimension of V . If dimpV q “ 0,
then this statement is trivial, because a vector space with dimpV q “ 0 will
have the empty set as basis. Assume the proposition holds for dimpV q “ n.
Suppose dimpV q “ n ` 1, if V is isotropic all bases of V are orthogonal. So
suppose V is non isotropic and choose e1 P V such that e1 ¨ e1 ‰ 0. Define
W “ ke1. By Proposition 1.2.10:

dimpW q ` dimpWK
q “ n ` 1,

or dimpWKq “ n. Using the induction hypothesis we find a basis pe2, ..., en`1q

forWK. Note that e1 does not belong toW
K. We conclude that pe1, e2, ..., en`1q

forms an orthogonal basis over V .

Definition 1.4.3. Two orthogonal bases B and B1 of V are called contiguous
if B X B1 ‰ H.

Lemma 1.4.4. Assume that pV,Qq is a nondegenerate quadratic module with
dimpV q ě 3. Let B “ te1, ..., enu and B1 “ te1

1, ..., e
1
nu be two orthogonal bases

of V . If pe1 ¨ e1qpe1
i ¨ e1

iq “ pe1 ¨ e1
iq
2 for i “ 1, 2, then there exists x P k such

that ex “ e1
1 ` xe1

2 is nonisotropic and ke1 ‘ kex is a nondegenerate plane.

Proof. By bilinearity of the scalar product and the fact that B1 is an orthogo-
nal basis, we have ex ¨ex “ e1

1 ¨e1
1`x2pe1

2 ¨e1
2q. We want that Qpexq “ ex ¨ex ‰ 0.

This means that x2 should not be equal to ´pe1
1 ¨ e1

1q{pe1
2 ¨ e1

2q. We also want
ke1 ‘kex to be nondegenerate. This is equivalent to saying that the discrim-
inant is not equal to zero, or pe1

1 ¨ e1
1qpex ¨ exq ´ pe1 ¨ exq2 ‰ 0. We have:

pe1 ¨ e1qpex ¨ exq ´ pe1 ¨ exq
2

“ pe1 ¨ e1qppe1
1 ¨ e1

1q ` x2
pe1

2 ¨ e1
2qq ´ pe1 ¨ exq

2

“ pe1 ¨ e1qpe1
1 ¨ e1

1q ` x2
pe1 ¨ e1qpe1

2 ¨ e1
2q ´ pe1 ¨ exq

2

“ pe1 ¨ e1
1q

2
` x2

pe1 ¨ e1
2q

2
´ pe1 ¨ exq

2

“ ´2xpe1 ¨ e1
1qpe2 ¨ e1

2q ‰ 0

13



So, x should not be equal to zero. If k has at least 4 elements, we can find x
such that x ‰ 0 and x2 ‰ ´pe1

1 ¨ e1
1q{pe1

2 ¨ e1
2q. Now, since charpkq ‰ 2 we only

have to look at F3. In F3, we have 11 “ 1 and 22 “ 1 so, pe1 ¨ e1qpe1
i ¨ e1

iq “ 1
for i “ 1, 2. We conclude that x2 ‰ ´1 “ 2 and x ‰ 0 give us the solution
x “ 1.

Proposition 1.4.5. Let pV,Qq be a nondegenerate quadratic module with
dimpV q ě 3, and let B “ te1, ..., enu and B1 “ te1

1, ..., e
1
nu be two orthogonal

bases of V . There exists a finite sequence B0, ..., Bm of orthogonal bases of V
such that B0 “ B, Bm “ B1 and Bi is contiguous with Bi`1 for 0 ď i ă m.

Proof. We consider three cases.

1. If pe1 ¨e1qpe1
1 ¨e1

1q´pe1 ¨e1
1q2 ‰ 0, then there doesn’t exist a P k such that

e1
1 “ ae1, because if it did we would have pe1¨e1qpae1¨ae1q´pe1¨ae1q

2 “ 0
by bilinearity of the scalar product. By the definition of the matrix
associated to the a quadratic module, we can also conclude that in this
case, the quadratic module P “ ke1 ‘ ke1

1 is nondegenerate. We know
that e1 ¨ e1 ‰ 0 and e1

1 ¨ e1
1 ‰ 0. Using the same argument as in the

proof of Proposition 1.4.2, there exists ϵ2, ϵ
1
2 such that:

P “ ke1 k kϵ2 “ ke1
1 k kϵ1

2.

We have V “ P k PK by Proposition 1.2.10. By Proposition 1.4.2,
there exists an orthogonal basis te2

3, ..., e
2
nu of PK. The sequence:

B, te1, ϵ2, e
2
3, ..., e

2
nu, te1

1, ϵ
1
2, e

2
3, ..., e

2
nu, B1

suffices.

2. If pe1 ¨ e1qpe1
2 ¨ e1

2q ´ pe1 ¨ e1
2q2 ‰ 0, then the proof is similar to case 1,

replacing e1
1 by e1

2.

3. If pe1 ¨ e1qpe1
i ¨ e1

iq ´ pe1 ¨ e1
iq
2 “ 0 for i “ 1, 2, then by Lemma 1.4.4, there

exists x P k such that ex “ e1
1 `xe1

2 is non isotropic and generates with
e1 a nondegenerate plane. Since ex is non isotropic, there exists ϵ2

2 such
that ex and ϵ2

2 form an orthogonal basis of the plane ke1
1 k ke1

2. Then
B2 “ tex, ϵ

2
2, e

1
3, ..., e

1
n, u is an orthogonal basis of V , since te1

3, .., e
1
nu

forms an orthogonal basis of the orthogonal complement of ke1
1 k ke1

2.
Since ke1 ‘ kex is a nondegenerate plane, we have seen in the first case
that there exists a chain from B to B2 and because B2 and B1 are
contiguous we conclude that B and B1 are contiguous. This proves the
proposition.
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1.5 Reformulation of statements

Suppose that pkn, fq is a quadratic module and that the matrix A “ paijq
is the matrix assosciated to f .

Definition 1.5.1. Two quadratic forms f and f 1 are called equivalent if the
corresponding modules are isomorphic. We then write f „ f 1.

Remember that two quadratic modules pkn, fq and pkn, f 1q are isomorphic
if there exists a linear bijective map g : kn Ñ kn such that f 1 ˝ g “ f . Note
that a linear bijective map can be represented by an invertible matrix, so
this is equivalent to saying that there exists a invertible matrix C such that
f 1pCxq “ fpxq.

Example 1.5.2. We define two quadratic forms:

fpx1, x2q “ x2
1 ´ x2

2 and f 1
px1, x2q “ x1x2.

We also define a linear map gpx1, x2q “ px1 ´ x2, x1 ` x2q. It is clear that
f 1 ˝ g “ f . We conclude that x1x2 „ x2

1 ´ x2
2.

We can now see that the following translation of Lemma 1.3.3 makes sense.

Definition 1.5.3. A quadratic form pk2, fpx1, x2qq is hyperbolic if we have:

f „ x1x2 „ x2
1 ´ x2

2.

Suppose fpx1, . . . , xnq and gpx1, . . . , xmq are two quadratic forms. It is
easy to see that fpx1, . . . , xnq ` gpxn`1, . . . , xn`mq is also a quadratic form.
From now on we will write f ` g for this sum.

Definition 1.5.4. An element a P k is represented by a quadratic form
fpx1, . . . , xnq if there exists px1, . . . , xnq ‰ 0 P kn, with fpx1, . . . , xnq “ a.

We can now translate Proposition 1.3.5 and its corollary.

Proposition 1.5.5. If f represents 0 and is nondegenerate, then one has
f „ f2 ` g, where f2 is hyperbolic. Moreover, f represents all elements of k.

Corollary 1.5.6. Let g “ gpx1, . . . , xn´1q be a nondegenerate quadratic form
and let a P kˆ. The following properties are equivalent:

1. The form g represents a.

2. One has g „ h ` ax2
n´1, where h is a form in n ´ 2 variables.

15



3. The form f “ g ´ ax2
n represents 0.

Proof. If g represents a, then there exists x P kn´1 with gpxq “ x¨x “ a. If H
denotes the orthogonal complement to x, we have kn “ H k kx. So, we have
g „ h` ax2

n´1, where h denotes the quadratic form attached to a basis of H.
The converse is clear. If f “ g ´ ax2

n has a nontrivial zero px1, . . . , xn´1, xnq,
then we have two cases. If xn “ 0, then g represents 0 and since g is
nondegenerate, g also represents a. If xn ‰ 0, then gpx1{xn, . . . , xn´1{xnq “

a. The converse is clear, so we are done.

Corollary 1.5.7. Let g and h be two nondegenerate forms of rank ě 1, and
let f “ g ´ h. The following properties are equivalent:

1. The form f represents 0.

2. There exists a P kˆ which is represented by g and h.

3. There exists a P kˆ such that g ´ az2 and h ´ az2 represent 0.

Proof. If f represents 0, then we write the zero as px, yq with gpxq “ hpyq.
If the element a “ gpxq “ gpyq ‰ 0, then 2 is true. If a “ 0, then g and h
represent all elements of k, so we conclude that 1 implies 2. The converse
is clear. The second and third statement are equivalent by the previous
corollary.

We finish this section by giving a translation of Proposition 1.4.2.

Proposition 1.5.8. Let f be a quadratic form in n variables. There exist
a1, . . . , an P k such that f „ a1x

2
1 ` . . . ` anx

n.
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2 The p-adics numbers

2.1 Basic definitions

Recall that Q is incomplete, i.e. there exists a Cauchy sequence in Q that
diverges. As the reader might know, the real numbers R are defined as the
completion of Q, with respect to the absolute value norm. The p-adics can
be defined as a completion of the rational numbers with respect to another
norm, that is dependent on a prime number. Before we are able to define the
p-adics, we first define the p-adic absolute value. It is easy to see that the
following definition is well-defined, because every integer has a unique prime
factorization.

Definition 2.1.1. Fix a prime p P N. The p-adic valuation on Z is the
function:

vp : Z ´ t0u Ñ R
defined as follows: for each integer n P Z, n ‰ 0, let vppnq be the unique
postive integer satisfying

n “ pvppnqn1 with p ∤ n1.

We extend vp to Q as follows: if x “ a
b

P Qˆ, then vppxq “ vppaq ´ vppbq.

It will be convenient to set vpp0q “ `8. The reasoning behind this is that
any prime number devides zero as many times as we like.

Lemma 2.1.2. For all x and y in Q, we have:

1. vppxyq “ vppxq ` vppyq.

2. vppx ` yq ě mintvppxq, vppyqu.

Proof. If x “ 0 then:

vppxyq “ vpp0q “ 8 “ 8 ` vppyq “ vppxq ` vppyq,

and
vppx ` yq “ vppyq “ mintvppxq, vppyqu

for all y P Q. If y “ 0, then the proof is similar. We now assume that x ‰ 0
and y ‰ 0. We can write:

x “ pi
a

b
and y “ pj

c

d
,

such that i, j P Z and p ∤ a, b, c, d. The first property is immediate and the
second follows from the fact that common powers of p, can be factored out
from a sum.

17



Definition 2.1.3. For any nonzero x P Q, we define the p-adic absolute value
of x by:

|x|p “ p´vppxq.

We extend this to all of Q by defining |0|p “ 0. We will also write | |8 for
the usual absolute value on Q.

Note that the extension to Q makes sense, because we defined vpp0q “ 8.

Proposition 2.1.4. The function | |p is an absolute value on Q and:

|x ` y|p ď maxt|x|p, |y|pu.

Proof. For x P Q we have that |x|p ě 0 by the definition of | |p. It also follows
from the definition that |x|p “ 0 if and only if vppxq “ 8 if and only if x “ 0.
By Lemma 2.1.2 the following holds:

|xy|p “ p´vppxyq
“ p´vppxqp´vppyq

“ |x|p|y|p

and

|x ` y|p “ p´vppx`yq
ď p´mintvppxq,vppyqu

ď p´vppxq
` p´vppyq

“ |x|p ` |y|p.

This proves the first claim. Assume without loss of generality that |x|p ě |y|p,
so vppxq ď vppyq. We conclude that:

|x ` y|p “ p´vppx`yq
ď p´mintvppxq,vppyqu

“ p´vppxq

Lemma 2.1.5. If x, y P Q and |x|p ‰ |y|p, then |x ` y|p “ maxt|x|p, |y|pu.

Proof. Without loss of generality, assume |x|p ą |y|p. By Proposition 2.1.4:

|x ` y|p ď |x|p “ maxt|x|p, |y|pu.

Using the proposition again and the fact that x “ px ` yq ´ y, we have:

|x|p ď maxt|x ` y|p, |y|pu.

Because |x|p ą |y|p it must hold that: maxt|x ` y|p, |y|pu “ |x ` y|p. We
showed that |x ` y|p ď |x|p ď |x ` y|p, so we conclude that |x ` y|p “ |x|p.
This proves the lemma.

Definition 2.1.6. We define the trivial absolute value on Q as |x| “ 1 if
x ‰ 0 and |x| “ 0 if x “ 0.

This clearly is an absolute value on Q. We now defined lots of different
absolute values. The following definition will let us compare them.
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Definition 2.1.7. We call two absolute values | |1 and | |2 equivalent if for
any Cauchy sequence pxnq in Q we have xn Ñ a with respect to | |1 if and
only if xn Ñ a with respect to | |2.

The following two theorems are proven in [2, p.56] and [2, p.63].

Theorem 2.1.8. Every non-trivial absolute value on Q is equivalent to one
of the absolute values | |p, where p is a prime number or p “ 8.

Theorem 2.1.9. The field Q of rational numbers is not complete with respect
to any of its non-trivial absolute values.

These theorems tell us that it actually makes sense to find a completion
of Q with respect to the p-adic absolute value.

Definition 2.1.10. We denote by CppQq, or C if the context is clear, the set
of all Cauchy sequences of elements of Q:

CppQq “ tpxnq : pxnq is a Cauchy sequence with respect to | |pu.

Proposition 2.1.11. Defining:

pxnq ` pynq “ pxn ` ynq and pxnqpynq “ pxnynq,

makes CppQq a commutative ring with unity.

Proof. We first check that the sequences on the right-hand side are Cauchy.
We know that for every Cauchy sequence pxnq, there exists M such that
|xm|p ď M . For all ϵ ą 0 there exists N1 P N such that if n,m ě N1, then
|xm ´ xn| ă ϵ

2M
. Similarly, there exists N2 P N such that if n,m ě N2, then

|ym ´ yn| ă ϵ
2M

. Now, let N “ maxtN1, N2u. For n,m ě N , we have:

|xmym ´ xnyn|p “ |xmpym ´ ynq ` ynpxm ´ xnq|p

ď |xn|p|ym ´ yn|p ` |yn|p|xm ´ xn|p

ă Mp
ϵ

2M
`

ϵ

2M
q “ ϵ.

This proves that pxnynq is Cauchy. The argument for pxn ` ynq is similar.
We conclude that the operations are well-defined. We know that Q is a field,
so it is easy to see that CppQq is a commutative ring with unity pxnq “ p1q,
since it is a subring of

ś

nPNQ.

Definition 2.1.12. We define N Ă C to be the set of Cauchy sequences that
tend to zero with respect to | |p:

N “ tpxnq : lim
nÑ8

|xn|p “ 0u.
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We will now identify sequences that differ by elements of N . In other
words, we identify Cauchy sequences that have the same limit. Note that it
is easy to see that N is an ideal. We will define the p-adic field by taking
the quotient of C by N .

Lemma 2.1.13. The quotient ring C{N is a field.

Proof. We need to show that every sequence that doesn’t converge to zero
has an inverse. If pxnq is a Cauchy sequence that doesn’t converge to zero,
then it is not possible that for all N P N there exists n such that n ě N and
xn “ 0. So there exists N P N such that, if n ě N , then xn ‰ 0. Define the
sequence pynq as yn “ xn if n ă N an yn “ 1{xn if n ě N . Because pxnq is
Cauchy, the sequence pynq is also Cauchy. It is clear that pynq is an inverse
of pxnq.

Definition 2.1.14. The field of the p-adic numbers is defined as:

Qp “ C{N .

We now show that any Cauchy sequence with respect to the p-adic norm,
that doesn’t converge to zero, eventually has constant p-adic valuation. This
is a crucial result to extend the p-adic norm to Qp,

Lemma 2.1.15. Let pxnq P C, pxnq R N . There exists an integer N such
that |xn|p “ |xm|p when m,n ě N .

Proof. Since pxnq is a Cauchy sequence not converging to zero, we can find
c and N1, such that:

n ě N1 “ñ |xn|p ě c ą 0.

Using the definition of Cauchy sequences we can also find N2 such that:

n,m ě N2 “ñ |xm ´ xn|p ă c.

Set N “ maxtN1, N2u. For n,m ě N , we have:

|xm ´ xn|p ă c ď |xn|p ď maxt|xm|p, |xn|pu.

By Lemma 2.1.5 it must hold that |xn|p “ |xm|p.

Suppose that the sequences pxnq and pynq don’t converge to zero and that
they are the same when viewed as element in Qp. Using the previous lemma
we see that, the p-adic norm of both sequences are eventually stationary and
equal. This gives rise to the following definition.
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Definition 2.1.16. If γ is an element of Qp, and pxnq is any Cauchy sequence
representing γ, we define:

|γ|p “ lim
nÑ8

|xn|p.

Note that the properties we showed in Proposition 2.1.4 extend to Qp,
because they are true for every term in the Cauchy sequence. As example,
for x “ pxnq P Qp, we have that |xn|p ě 0 for all n, so |x|p “ limnÑ8 |xn|p ě 0.
The following theorems show we have come full circle. They are proven in
[2, p.68 - 69].

Theorem 2.1.17. The image of Q under the inclusion Q ãÑ Qp is a dense
subset of Qp.

Theorem 2.1.18. The p-adic field Qp is complete with respect to | |p.

2.2 Exploring Qp

We have seen that the properties in Proposition 2.1.4 hold in Qp. If
x, y P Qp and |x|p, |y|p ď 1, then |xy|p “ |x|p|y|p ď 1 and:

|x ` y|p ď maxt|x|p, |y|pu ď 1.

So, the following defintion makes sense.

Definition 2.2.1. The ring of the p-adic integers is the ring:

Zp “ tx P Qp : |x|p ď 1u.

Proposition 2.2.2. The following properties hold.

1. The inclusion Z ãÑ Zp has dense image. Specifically, given x P Zp

and n ě 1, there exists an αn P Z, 0 ď αn ď pn ´ 1, such that
|x ´ αn|p ď p´n. The integer αn with these properties is unique.

2. For any x P Zp, there exists a Cauchy sequence pαnq converging to x,
of the following type:

• αn P Z satisfies 0 ď αn ď pn ´ 1

• for every n ě 2 we have αn ” αn´1 pmod pn´1q

The sequence pαnq with these properties is unique.
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Proof. Choose x P Zp and n ě 1. Theorem 2.1.17 gives us that we can choose
a{b P Q, reduced to lowest terms, as close to x as we like:

ˇ

ˇ

ˇ
x ´

a

b

ˇ

ˇ

ˇ

p
ď p´n

ď 1.

Using Proposition 2.1.4 and |x|p ď 1, we also have:

ˇ

ˇ

ˇ

a

b

ˇ

ˇ

ˇ

p
“

ˇ

ˇ

ˇ
x ´

´

x ´
a

b

¯
ˇ

ˇ

ˇ

p
ď max

"

|x|p ,
ˇ

ˇ

ˇ
x ´

a

b

ˇ

ˇ

ˇ

p

*

ď 1.

We conclude that p does not divide b. So there exists a1, b1 P Z such that
a1pn ` b1b “ 1 or b1b ” 1 pmod pnq. This implies:

ˇ

ˇ

ˇ

a

b
´ ab1

ˇ

ˇ

ˇ

p
“

ˇ

ˇ

ˇ

ˇ

p1 ´ b1bqa

b

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

a

b

ˇ

ˇ

ˇ

p
|p1 ´ b1bq|p ď p´n.

Note that b1 is unique mod pn, since congruence is an equivalence relation
and p does not devide b. We define αn as the unique integer such that:

0 ď αn ď pn ´ 1 and αn ” ab1
pmod pnq.

Note that:

|x ´ αn|p “

ˇ

ˇ

ˇ
x ´

a

b
`

a

b
´ ab1

` ab1
´ αn

ˇ

ˇ

ˇ

p

ď max

"

ˇ

ˇ

ˇ
x ´

a

b

ˇ

ˇ

ˇ

p
,
ˇ

ˇ

ˇ

a

b
´ ab1

ˇ

ˇ

ˇ

p
, |ab1

´ αn|p

*

ď p´n.

This proves 1. To prove 2, we just make a Cauchy sequence using αn from
1. Note that for n ě 2 we have:

|αn ´ αn´1|p ď maxt|x ´ αn|p, |x ´ αn´1|pu ď p´pn´1q,

This implies that αn ” αn´1 pmod pn´1q. For uniqueness, notice that at each
step in 1 our choices were unique mod pn.

We will now show a way to represent the elements of Qp as power series
in p. Let’s begin with a p-adic integer x P Zp. We have seen in the previous
proposition that we can find a Cauchy sequence pαnq, converging to x, with
the property that for n ě 1:

αn`1 ” αn pmod pnq and 0 ď αn ď pn ´ 1.

The pαnq are integers so we can write them in base p. What we get is:

αn “

n´1
ÿ

i“0

bip
i and αn`1 “

n
ÿ

i“0

bip
i,

where 0 ď bi ď p ´ 1.
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Lemma 2.2.3. Given any x P Zp, the series:

8
ÿ

i“0

bip
i,

obtained as above, converges to x.

Proof. By definition a series converges if an only if it’s sequence of partial
sums converges. The partial sums of our series are αn, which we constructed
to converge to x.

We conclude that:

Corollary 2.2.4. Every x P Zp can be written as:

x “

8
ÿ

i“0

bip
i,

where 0 ď bi ď p ´ 1. This representation is unique.

Proof. We only need to check uniqueness. Notice that all αn are unique, and
this implies that all bi are too, because they give the base p representation
of αn.

We will now show that any sum
ř8

i“0 bip
i with 0 ď bi ď p´1 also converges

to an element in Zp.

Lemma 2.2.5. A sequence pαnq in Qp is a Cauchy sequence if and only if:

lim
nÑ8

|an`1 ´ an|p “ 0.

Proof. If pαnq is Cauchy, then we choose m “ n ` 1 to see that the limit
limnÑ8 |an`1 ´ an|p “ 0. Conversely, we see that if m ą n:

|αm ´ αn|p “ |αm ´ αm´1 ` αm´1 ´ αm´2 ` . . . ` αn`1 ´ αn|p

ď maxt|αm ´ αm´1|p, . . . , |αn`1 ´ αn|pu.

It is clear that pαnq is Cauchy if limnÑ8 |an`1 ´ an|p “ 0..

This lemma gives us an easier way to check when an infinite series in Qp

is convergent. Remember when we work in R, if a series
ř

n an converges,
then limnÑ8 an “ 0. In Qp, the converse is also true.

Corollary 2.2.6. An infinite series
ř

n an with an P Qp is convergent if and
only if:

lim
nÑ8

an “ 0.
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Proof. By definition a series converges if an only if it’s sequence of par-
tial sums converges. If we can show that the sequence of partial sums is a
Cauchy sequence, then it converges, since Qp is complete. Denote psnq for
the sequence of partial sums and notice that sn ´sn´1 “ an. By the previous
lemma, psnq is a Cauchy sequence if and only if limnÑ8 |an|p “ 0.

Corollary 2.2.7. A sum
ř8

i“0 bip
i with 0 ď bi ď p ´ 1 converges to an

element in Zp.

Proof. By Corollary 2.2.6 it suffices to show that:

lim
iÑ8

bip
i

“ 0,

to prove convergence in Qp. We need to show that for all ϵ ą 0 there exists
N P N such that if i ě N , then |bip

i|p ă ϵ. We have that |bip
i|p “ p´i or

|bip
i|p “ 0 if bi “ 0, so N obviously exists. Note that vpp

ř8

i“0 bip
iq ě 0, so

the sum converges to an element in Zp.

If x P Zp, then |x|p ď 1 and if x´1 P Zp, then |x|´1
p “ |x´1|p ď 1.

We conclude that |x|p “ |x´1|p “ 1. If we write x as
ř

i bip
i, then this is

equivalent to saying that b0 ‰ 0.

Definition 2.2.8. The p-adic units are the invertible elements of Zp. We
will denote the set of all such element by Zˆ

p :

Zˆ
p “ tx P Qp : |x|p “ 1u.

We will now show that every element in Qp can be written as a power
series in p.

Lemma 2.2.9. For every x P Qˆ
p there exists an n P Z such that pnx P Zˆ

p .

Proof. If vppxq “ 0 then x P Zˆ
p . Otherwise:

vppp´vppxqxq “ vppp´vppxq
q ` vppxq “ 0.

So, |p´vppxqx|p “ 1 and p´vppxqx P Zˆ
p .

Corollary 2.2.10. Every x ‰ 0 P Qp can be written in the form:

x “

8
ÿ

iě´m

bip
i,

where 0 ď bi ď p ´ 1 and ´m “ vppxq and b´m ‰ 0. This representation is
unique.
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Proof. By Lemma 2.2.9, we can write y “ pmx P Zˆ
p . By Corollary 2.2.4 we

can write y as:

y “

8
ÿ

i“0

bipi

then the corollary follows by multiplying by p´m. The representation is
unique because the representation of y is.

By Corollary 2.2.7 we also see that conversely every sum
ř8

iě´m bip
i with

0 ď bi ď p ´ 1 and b´m ‰ 0 defines an element in Qp. Elements in Qp are
sometimes written as: . . . bn . . . b2b1b0.b´1 . . . b´m.

2.3 Analysis in Qp

We will now do some analysis in Qp. Our goal is to prove results about
power series. After, we will use the developed theory to define the exponential
and logarithmic in Qp and prove their known properties.

Proposition 2.3.1. Let fpxq “
ř

n anx
n, and define:

ρ “
1

lim supnÑ8
n
a

|an|p
,

where dividing by zero gives ρ “ 8 and dividing by infinity gives ρ “ 0.

1. If ρ “ 0, then fpxq converges only when x “ 0.

2. If ρ “ 8, then fpxq converges for every x P Qp.

3. If 0 ă ρ ă 8 and limnÑ8 |an|pρ
n “ 0, then fpxq converges if and only

if |x|p ď ρ.

4. If 0 ă ρ ă 8 and |an|pρ
n does not tend to zero as n goes to infinity,

then fpxq converges if and only if |x|p ă ρ.

Proof. By Corollary 2.2.6, we know that the region of convergence is:

tx P Qp : lim
nÑ8

|anx
n
|p “ 0u.

It is easy to see that fp0q converges. For all ϵ ą 0 there exists N such that
n ě N implies that:

ˇ

ˇ sup
měn

m

b

|am|p ´
1

ρ

ˇ

ˇ ă ϵ.
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This in turn means that:

1

ρ
´ ϵ ă sup

měn

m

b

|am|p ă ϵ `
1

ρ
.

We see that supměn
m
a

|am|p ă ϵ ` p1{ρq for all but finitely many n and thus
|an|p ă pϵ ` 1{ρqn for all but finitely many n. If |x|p ă ρ, then |x|p{ρ ă 1
and:

|anx
n
|p ă

ˆ

ϵ|x|p `
|x|p

ρ

˙n

Ñ 0,

if we choose ϵ small enough. The case |x| “ ρ is clear, because of Corollary
2.2.6. We also see that 1

ρ
´ ϵ ă supměn

m
a

|am|p for infinitely many n and

thus p1
ρ

´ ϵqn ă |an|p for infinitely many n. This means that:

p1 ´ ϵρq
n

“ p
1

ρ
´ ϵqnρn ă |anx

n
|p,

can’t convert to 0 if we choose ϵ small enough.

Corollary 2.3.2. The series:

fpxq “

8
ÿ

n“1

p´1q
n`1x

n

n
,

converges if and only if |x|p ă 1.

Proof. We check that limnÑ8 p´vppnq{n “ 1. If vppnq “ i, then pi ď n and
i ď logppnq. Now, 0 ď vppnq{n ď logppnq{n. By L’Hopital’s rule we have
limnÑ8 logppnq{n “ 0, so limnÑ8 vppnq{n “ 0 and we conclude:

lim
nÑ8

p´vppnq{n
“ 1.

If a limit exists, then the limit is equal to the limit superior, we conclude
that ρ “ 1. The limit limnÑ8 |1{n|p does not tend to zero. By Proposition
2.3.1, we conclude that the series converges for |x|p ă 1.

Corollary 2.3.3. The series:

gpxq “

8
ÿ

n“0

xn

n!
,

converges if and only if |x|p ă p´1{pp´1q.
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Proof. Before we try to find ρ, we will calculate vppn!q. Notice that tn{piu is
the amount of numbers in t1, 2, . . . , nu with a factor pi. This means that:

vppn!q “ vpp1q ` vpp2q ` . . . ` vppnq

“

8
ÿ

i“1

Z

n

pi

^

ă

8
ÿ

i“0

n

pi
“

n

p ´ 1
.

Now, |an|p “ |1{n!|p “ pvppn!q ă pn{pp´1q. We get ρ ě p´1{pp´1q, so the series
converges for |x|p ă p´1{pp´1q. If |x|p “ p´1{pp´1q then |xn{n!|p does not tend
to zero. To see this set n “ pm for some m, then:

vppnq “ 1 ` p ` . . . ` pm´1
“

pm ´ 1

p ´ 1
,

and

vp

ˆ

xn

n!

˙

“ vp

ˆ

xpm

pm!

˙

“
pm

p ´ 1
´

pm ´ 1

p ´ 1
“

1

p ´ 1
.

The corollary follows from Corollary 2.2.6 and Proposition 2.3.1.

We are now able to define the exponential and logarithmic functions in Qp,
using the usual power series for these functions. We will later see that they
are each others inverses and that their standard properties, i.e. ea`b “ eaeb

and logpabq “ logpaq ` logpbq hold. Moreover, we will use these properties to
define a group homomorphism.

Definition 2.3.4. We define the p-adic logarithm as the function:

log : p1 ` pZpq Ñ Qp

logpxq “

8
ÿ

n“1

p´1q
n`1 px ´ 1qn

n
.

Assume p ą 2. If x P pZp, then |x|p ď p´1 ă p´1{pp´1q. If |x|p ă p´1{pp´1q,
then vppxq ą 1{pp ´ 1q and x P pZp. This proves that x P pZp if and only
if |x|p ă p´1{pp´1q when p ą 2. If p “ 2, then a similar argument shows
that x P 4Zp if and only if |x|p ă p´1{pp´1q. We will use this in the following
definition.

Definition 2.3.5. Define Dp “ tx P Zp : |x|p ă p´1{pp´1qu, if p “ 2, then
Dp “ 4Zp, else Dp “ pZp. We define the p-adic exponential as a function
from Dp Ñ Qp defined by:

ex “

8
ÿ

n“0

xn

n!
.
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We will now start with some theory on differentiating power series.

Definition 2.3.6. Let U Ă Qp be an open set, and let f : U Ñ Qp be a
function. We say f is differentiable at x P U if the limit

f 1
pxq “ lim

hÑ0

fpx ` hq ´ fpxq

h
,

exists. We say f is differentiable if it is differentiable for all x P U .

Proposition 2.3.7. Let fpxq “
ř8

n“0 anx
n be a power series with non-zero

radius of convergence ρ ą 0. Let x P Qp, such that fpxq converges, then so
does f 1pxq and we have f 1pxq “

ř8

n“1 nanx
n´1.

Proof. If x “ 0, then fpx ` hq “ fphq converges when |h|p ă ρ. When x ‰ 0
and |h|p ă |x|p, then |x ` h|p “ |x|p by Lemma 2.1.5, so fpx ` hq converges.
So, when h Ñ 0, there are element such that fpx ` hq converges. Using the
Binomial Theorem we get that:

fpx ` hq “

8
ÿ

n“0

anpx ` hq
n

“

8
ÿ

n“0

an

n
ÿ

k“0

ˆ

n

k

˙

xn´mhm.

If we substract fpxq, divide by h and take the limit to zero, then we get:

f 1
pxq “ lim

hÑ0

8
ÿ

n“1

n
ÿ

k“1

an

ˆ

n

k

˙

xn´khk“1
“

8
ÿ

n“1

nanx
n´1.

If x “ 0, then it is clear that f 1pxq converges. Now suppose that x ‰ 0 P Qp

and fpxq converges. By Corollary 2.2.6 this means that |anx
n|p Ñ 0. Also:

|nanx
n´1

|p ď |anx
n´1

|p “
1

|x|p
|anx

n
|p Ñ 0,

so f 1pxq converges.

We can now prove a Corollary which is a variant to a theorem that states
that two power series are equivalent if and only if their coefficients are.

Corollary 2.3.8. Suppose fpxq and gpxq are power series, and suppose that
both series converge for |x|p ă ρ. If f 1pxq “ g1pxq for all |x|p ă ρ, then there
exists a constant c P Qp such that fpxq “ gpxq ` c as power series.

Proof. Suppose fpxq “
ř8

n“0 anx
n and gpxq “

ř8

n“0 bnx
n. If f 1pxq “ g1pxq

when |x|p ď ρ, then f 1p0q “ g1p0q and by the previous proposition a1 “ b1.
We can repeat this process by continuing to differentiate to conclude that
an “ bn for n ě 1 and f and g only vary by a constant term.
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We are now finally able to prove the standard properties of the logarithm
and exponential.

Proposition 2.3.9. If a, b P 1 ` pZp, we have ab P 1 ` pZp and:

logpabq “ logpaq ` logpbq.

Proof. The first claim is clear. To prove the second, we will write a “ 1 ` x
and b “ 1 ` y. For x P pZp, we define:

fpxq “ logp1 ` xq “

8
ÿ

n“1

p´1qn`1

n
xn,

so f converges if x P pZp. By proposition 2.3.7 we have:

f 1
pxq “

8
ÿ

n“0

p´1q
nxn

“ 1{p1 ` xq.

Now, for y P pZp, we define:

gpxq “ logpp1 ` xqp1 ` yqq “ fpy ` p1 ` yqxq.

It is clear that gpxq converges for x P pZp. The Binomial Theorem gives us:

fpy ` p1 ` yqxq “

8
ÿ

n“1

p´1q
n`1 pp1 ` yqx ` yqn

n

“

8
ÿ

n“1

p´1qn`1

n

n
ÿ

k“0

ˆ

n

k

˙

pp1 ` yqxq
n´kyk

“

8
ÿ

m“1

˜

8
ÿ

k“0

p´1qk`m`1

k ` m

ˆ

k ` m

k

˙

yk

¸

pp1 ` yqxq
m.

Since y P pZp we have that fpyq converges which implies:

ˇ

ˇ

ˇ

ˇ

p´1qk`m`1

k ` m

ˆ

k ` m

k

˙

yk
ˇ

ˇ

ˇ

ˇ

p

ď

ˇ

ˇ

ˇ

ˇ

p´1qk`m`1

k ` m
yk

ˇ

ˇ

ˇ

ˇ

p

Ñ 0 as k Ñ 8

We conclude from this that both fpxq and gpxq are defined as power series
that converge when x P pZp. By the chain rule we have f 1pxq “ g1pxq, so
by Corollary 2.3.8 we conclude that gpxq “ fpxq ` c and c “ gp0q “ fpyq.
So we have shown that gpxq “ fpxq ` fpyq, but this is what we wanted to
show.
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Proposition 2.3.10. If a, b P Dp, we have a ` b P Dp and:

ea`b
“ eaeb.

Proof. The first claim follows from the fact that Dp “ pZp if p ‰ 2 and
Dp “ 4Zp. The second claim is proven by a standard argument using the
Binomial Theorem.

The following theorem is proven in [2, p.124 - p.127], we will use it to
prove that the exponential and logarithm are inverses.

Lemma 2.3.11. Let fpxq “
ř

n anx
n and gpxq “

ř

n bnx
n be two power

series with gp0q “ 0, and let hpxq “ fpgpxqq be their composition. Suppose
that:

1. gpxq converges,

2. fpgpxqq converges,

3. for every n, |bnx
n|p ď |gpxq|p.

Then hpxq also converges and fpgpxqq “ hpxq.

Lemma 2.3.12. If n P Z with n “ a0 `a1p` . . .`akp
k where 0 ď ai ď p´1

and s “ a1 ` . . . ` ak, then:

vppn!q “

8
ÿ

i“1

Z

n

pi

^

“
n ´ s

p ´ 1
.

Proof. We have already proven the first equivalence in Corollary 2.3.3. We
will now prove the second:

k
ÿ

i“1

Z

n

pi

^

“

k
ÿ

i“1

pai ` ai`1p ` . . . ` akp
k´i

q

“

k
ÿ

i“1

k
ÿ

j“i

ajp
j´i

“

k
ÿ

j“0

aj
pj ´ 1

p ´ 1

“
1

p ´ 1

k
ÿ

j“0

ajpp
j

´ 1q “
n ´ s

p ´ 1
.
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Proposition 2.3.13. Let x P Zp, |x|p ă p´1{pp´1q, then:

logpexq “ x and elogp1`xq
“ 1 ` x

Proof. If x “ 0, then the proposition is obvious, so assume x ‰ 0. Then:

vp

ˆ

xn´1

n!

˙

“ pn ´ 1qvppxq ´ vppn!q ą
n ´ 1

p ´ 1
´

n ´ s

p ´ 1
“

s ´ 1

p ´ 1
ě 0.

It follows that |xn{n!|p ă |x|p, which in turn implies that |ex ´ 1|p “ |x|p, by
Lemma 2.1.5. We also have 1 “ |ex|p ą |x|p ą |xn{n!|p for n ě 2, so using
Lemma 2.3.11 we conclude that logpexq “ x. Notice that |n!|p ď |n|p, so:

ˇ

ˇ

ˇ

ˇ

xn

n

ˇ

ˇ

ˇ

ˇ

p

ď

ˇ

ˇ

ˇ

ˇ

xn

n!

ˇ

ˇ

ˇ

ˇ

p

ă |x|p.

We get |logp1 ` xq|p “ |x|p, so logp1 ` xq is in the domain of the exponential
and we again use Lemma 2.3.11 to conclude that elogp1`xq “ 1 ` x.

Theorem 2.3.14. Suppose p ‰ 2. The p-adic logarithm defines an isomor-
phism of groups:

log : p1 ` pZpq Ñ pZp,

with the exponential function as inverse. In particular:

p1 ` pZpq – pZp – Zp.

Proof. Proposition 2.3.9 says that the logarithm is a homomorphism. Propo-
sition 2.3.10 does the same for the exponential. Proposition 2.3.13 says that
the functions are mutual inverses. We have seen that |x|p ă p´1{pp´1q if and
only if x P pZp, so we also conclude that the domain and codomain are
correct.

Theorem 2.3.15. Suppose p “ 2. The p-adic logarithm defines an isomor-
phism of groups:

log : p1 ` 4Zpq Ñ 4Zp,

with the exponential function as inverse. In particular:

p1 ` 4Zpq – 4Zp – Zp.

Proof. We have seen that |x|p ă p´1{pp´1q if and only if x P 4Zp, so we
conclude that the domain and codomain are correct. The rest is the same as
above.
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2.4 Squares in Qp

We will begin this section with a proposition which serves as preparation
to understand an important theorem better. This theorem is called Hensel’s
Lemma. Hensel’s Lemma will make it easier to show that a given polynomial
with coefficients in Zp has a zero in Zp. By reducing the polynomial modulo
pn.

Proposition 2.4.1. For any n ě 1:

Zp{pnZp – Z{pnZ.

Proof. By Corollary 2.2.4, any element x P Zp can we written as a sum
x “

ř8

i“0 bip
i, where 0 ď bi ď p ´ 1. When we view x as element in Zp{pnZp

we see that it is equivalent to
řn´1

i“0 bip
i. Moreover, the set:

tb0 ` b1p ` . . . ` bn´1p
n´1 : 0 ď bi ď p ´ 1u,

is the complete set of representatives of equivalence classes of Zp{pnZp. So,
it is obvious that b0 “ 1 is a generator of Zp{pnZp. We also see that the
order of Zp{pnZp is pn. So Zp{pnZp is a cyclic group of order pn and thus
isomorphic to Z{pnZ.

Theorem 2.4.2 (Hensel’s Lemma). Let F P ZprXs and n, k P Z such that
0 ď 2k ă n. Suppose that there exists a p-adic integer α0 P Zp such that:

F pα0q ” 0 pmod pnq,

and
vppF 1

pα0qq “ k.

Then there exists a unique p-adic integer α P Zp such that α ” α0 pmod pn´kq

and F pαq “ 0.

Proof. We will construct pαiq such that for i ě 0, we have:

1. F pαiq ” 0 pmod pn`iq.

2. αi`1 ” αi pmod pn´k`iq.

Such a sequence is Cauchy and for its limit α we have F pαq “ 0, because
of continuity. Moreover, α ” α0 pmod pn´kq by construction. We will proof
that pαiq exists by induction. Note that α0 is given. Suppose that αi exists,

32



we will find αi`1. Property 2 requires that αi`1 “ αi ` bip
n´k`i for some

bi P Zp. Write F pxq “
ř

j cjx
j, then the Binomial Theorem gives:

F pαi`1q “

d
ÿ

j“0

cjpαi ` bip
n´k`i

q
j

“

d
ÿ

j“0

cjpα
j
i ` jbip

n´k`iαj´1
` Opp2pn´k`iq

qq

“ F pαiq ` bip
n´k`iF 1

pαiq pmod pn`i`1
q.

We can simplify this, using that F pαiq ” 0 pmod pn`iq. We can write
F pαiq “ xpn`i for some x. We try to solve that:

x ` p´kF 1
pαiqbi ” 0 pmod pq.

Also notice that property 2 implies that αi ” α0 pmod pn´kq. Which means,
F pαiq ” F pα0q pmod pn´kq. By assumption, n ą 2k and vppF 1pα0qq “ k,
which implies that vppF 1pαiqq “ k. Now, we can bring x to the other side
and notice that p´kF 1pαiq is invertible:

bi ” ´xpp´kF 1
pαiqq

´1
pmod pq.

There exists a unique 0 ď bi ď p ´ 1 with this property. If we set αi`1 “

αi ` bip
n, then αi`1 has the stated properties.

Theorem 2.4.3 (Multivariate Hensel’s Lemma). Let F P ZprX1, . . . , Xms.
Suppose that 0 ď 2k ă n and that there exists α “ pα1, . . . , αmq P pZpqm such
that:

F pαq ” 0 pmod pnq,

and 0 ď j ď m such that:

vp

ˆ

BF

BXj

pαq

˙

“ k.

Then there exists y “ py1, . . . , ynq P pZpqn such that F pyq “ 0 and y ” α
pmod pn´kq.

Proof. The case where m “ 1 is clear. If m ą 1, then we obtain a polynomial
in one variable, F pα1, . . . , Xj, . . . , αmq. We use the one dimensional case
(with point αj). This shows existence of yj ” αj pmod pn´kq such that
F pα1, . . . , yj, . . . , αnq “ 0. If we put yi “ αi for i ‰ j, then the element
y “ py1, . . . , ymq has the desired properties.
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Recall that an element x of a field is an m-th root of unity if xm “ 1; it
is called a primitive m-th root of unity if in addition xn ‰ 1 for 0 ă n ă m.
For a n-th root of unity ζ P Qp, we have 1 “ |ζn|p “ |ζ|np , so |ζ|p “ 1 and
ζ P Zˆ

p . Using Hensel’s lemma we can show that Qp contains the pp ´ 1q-th
roots of unity.

Corollary 2.4.4. The field Qp contains the pp ´ 1q-th roots of unity.

Proof. Define fpxq “ xp´1 ´1. By Fermat’s little theorem xp´1 ” 1 pmod pq

for any prime p and x not divisible by p. These are all elements α P pZ{pZqˆ.
We have vpppp ´ 1qαp´2q “ 0, so we can apply Hensel’s Lemma p ´ 1 times,
with respect to f , to get p ´ 1 unique elements in Zp, that satisfy xp´1 “ 1.
They are unique because for all α P pZ{pZqˆ there exists x P Zp such that
xp´1 ´ 1 “ 0 and x ” α pmod pq.

Proposition 2.4.5. If p ‰ 2, then the roots of unity in Qp are exactly the
pp ´ 1q-th roots of unity.

Proof. Define π : Zˆ
p Ñ pZ{pZqˆ by reducing modulo p. It is clear that π is

a homomorphism. Suppose that ζ1, ζ2 P Zˆ
p are two different roots of unity.

If ζ1 ” ζ2 pmod pq, then ζ1ζ
´1
2 ” 1 pmod pq. They are in the kernel of π and

we have kerpπq “ 1 ` pZp. By Theorem 2.3.14 we have that 1 ` pZp – Zp.
If x P Zp and |nx|p “ 0, then |n|p “ 0 or |x|p “ 0, so we conclude that Zp

and 1 ` pZp have no torsion. However, ζ1ζ
´1
2 P 1 ` pZp, which means that

ζ1 “ ζ2. We conclude that different roots of unity are different modulo p, so
there are at most p ´ 1 unique roots of unity.

A similar statement is true in Q2. The proof is identical.

Proposition 2.4.6. If p “ 2, then the roots of unity in Qp are exactly t˘1u.

Proof. Define π : Zˆ
p Ñ pZ{4Zqˆ by reducing modulo 4. It is clear that π is

a homomorphism. Theorem 2.3.15 gives us that 1` 4Zp – Zp is torsion-free.
A similar argument as in the proof of the previous proposition gives us that
different roots of unity are different modulo 4. We know that ˘1 P Qp, so
we conclude the proposition.

We are now able to decompose Zˆ
p , which in turn will allow us to give a

decomposition of Qˆ
p . We use µn to denote the group of n-th roots of unity

in Qp.

Lemma 2.4.7. If p ‰ 2, then Zˆ
p – µp´1 ˆ p1` pZpq, where p1` pZpq – Zp.

If p “ 2, then Zˆ
2 – µ2 ˆ p1 ` 4Z2q, where p1 ` 4Z2q – Z2.
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Proof. If p ‰ 2 and x P Zˆ
p , then we can choose ζ P µp´1 such that x ” ζ

pmod pq. Now we have that ζ´1x P 1 ` pZp, because if not, then x ı ζ
pmod pq. This means that x “ ζ ¨ ζ´1x and Zp – V ˆ p1 ` pZpq. The case
p “ 2 is similar.

Theorem 2.4.8. The group Qˆ
p is isomorphic to ZˆZpˆZ{pp´1qZ if p ‰ 2

and to Z ˆ Z2 ˆ Z{2Z if p “ 2.

Proof. Every element x P Qˆ
p can be uniquely written in the form x “ pnu

with n P Z and u P Zˆ
p . So Qp – Z ˆ Zˆ

p . The theorem follows from Lemma
2.4.7 and the fact that µp´1 – Z{pp´1qZ if p ‰ 2 and µ2 – Z{2Z if p “ 2.

Theorem 2.4.9. Suppose p ‰ 2 and let x “ pnu be and element of Qˆ
p , with

n P Z and u P Zˆ
p . Now, x is a square if and only if n is even and u mod p

is a square.

Proof. By the previous theorem we can decompose u into u “ u1v where
u1 P p1 ` pZpq and v P µp´1. Notice that:

1

1 ` p
“ 1 ´ p ` p2 ´ p3 ` p4 ´ . . . P Zp,

so 1{2 is also in Zp, which means that every element in Zp is square. Since
p1`pZpq – Zp, all elements in p1`pZpq are squares. We have u ” v pmod pq

and we know that µp´1 – pZ{pZqˆ, so the theorem follows.

Theorem 2.4.10. An element x “ 2nu of Qˆ
2 is square if and only if n is

even and u ” 1 pmod 8q.

Proof. The decomposition Zˆ
2 “ t˘1u ˆ p1 ` 4Zpq shows that u is square if

and only if u belongs to p1 ` 4Zpq and is a square in this group. Suppose
x P p1 ` p2Zpq with x “ 1 ` p2 ` . . .. If there exists y with x “ y2, then
y2 ” 5 mod 8, but no such y exists. This means that squares of p1 ` 4Zpq

are elements in p1 ` 8Zpq. If x P p1 ` 8Zpq, then x ´ y2 “ 0 pmod 23q has
solution y “ 1. The derivative of x ´ y2 is ´2y. We see that v2p´2q “ 1, so
we can apply Hensel’s Lemma to conclude that x is a square. So, the unit u
is a square if and only if u ” 1 pmod 8q.

2.5 Hilbert symbol

In this section we will define and discuss the Hilbert symbol. The Hilbert
symbol measures whether or not solutions to some polynomial exist. The
symbol will be useful later to define an invariant of quadratic modules. We
will denote k for either the field R or the p-adic field Qp.
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Definition 2.5.1. Let a, b P kˆ. We put:

pa, bq “

#

1 if z2 ´ ax2 ´ by2 “ 0 has a solution not equal to 0 in k3.

´1 otherwise.

The number pa, bq “ ˘1 is called the Hilbert symbol of a and b relative to k.

We will define the group of norms and then show an interesting correlation
with the Hilbert symbol. By [1, p. 583], the following is well-defined.

Definition 2.5.2. Let E{k be any finite extension and let α P E. Define
the norm to be:

NE{k : E Ñ k by NE{kpαq “
ź

σ

σpαq,

where the product is taken over all the embeddings of E into an algebraic
closure of k. If the context is clear we will write Npαq for NE{kpαq.

Lemma 2.5.3. Let E{k be any finite extension and let L be a Galois exten-
sion of k containing E, then:

1. The norm is a multiplicative map, i.e. Npαβq “ NpαqNpβq. Moreover,
NpEq is a group, called the group of norms of elements of E.

2. Let E “ kp
?
Dq be a quadratic extension of k, then:

Npa ` b
?
Dq “ α2

´ Db2.

Proof. Note that for embeddings σ, we have σpαβq “ σpαqσpβq. Taking the
product over all embeddings σ gives Npαβq “ NpαqNpβq. The image of a
group homomorphism is a subgroup. This proves 1. The assumption that
kp

?
Dq is a quadratic extension of k implies that x2 ´ D is irreducible over

k. Its roots are ˘
?
D, so:

Npa ` b
?
Dq “ pa ` b

?
Dqpa ´ b

?
Dq “ a2 ´ Db2.

This proves 2.

Because of this lemma the following proposition makes sense.

Proposition 2.5.4. If a, b P kˆ and kb “ kp
?
bq, then we have pa, bq “ 1 if

and only if a belongs to the group Npkˆ
b q of norms of elements of kˆ

b .
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Proof. If b is the square of an element c, the equation z2 ´ ax2 ´ by2 “ 0
has solution p0, 1, cq and pa, bq “ 1. In this case the proposition follows from
the fact that kb “ k and Npkˆ

b q “ kˆ. If b is not a square, then kb is
quadratic over k and every element in kb can be written as z `

?
by with

y, z P k. If a P Npkˆ
b q, then there exists y, z P k such that a “ z2 ´ by2.

Now, z2 ´ ax2 ´ by2 has zero p1, y, zq and pa, bq “ 1. Conversely, suppose
pa, bq “ 1. We have x ‰ 0, otherwise z2 ´ by2 “ 0 implies b is a square, which
is a contradiction. Using this we write:

a “
z2

x2
´ b

y2

x2
,

so a is the norm of z
x

`
?
b y
x
. This means that a P Npkˆ

b q.

Proposition 2.5.5. The Hilbert symbol satisfied the formulas:

1. pa, bq “ pb, aq and pa, c2q “ 1,

2. pa,´aq “ 1 and pa, 1 ´ aq “ 1,

3. pa, bq “ 1 “ñ paa1, bq “ pa1, bq

4. pa, bq “ pa,´abq “ pa, p1 ´ aqbq

Proof. It is obvious that z2 ´ ax2 ´ by2 “ 0 has a solution if and only if
z2 ´ bx2 ´ ay2 “ 0 has a solution. Furthermore, z2 ´ ax2 ´ c2y2 “ 0 has
solution p0, 1, cq. This proves 1. The quadratic form z2 ´ ax2 ` ay2 “ 0
has solution p1, 1, 0q and z2 ´ ax2 ´ p1 ´ aqy2 “ 0 has solution p1, 1, 1q.
This proves 2. Suppose pa, bq “ 1. If b is a square, then 1 implies that
paa1, bq “ pa1, bq. We suppose that b is not a square, so a P Npkˆ

b q by
Proposition 2.5.4. Since Npkˆ

b q is a group, we have that aa1 P Npkˆ
b q if and

only if a1 P Npkˆ
b q, or paa1, bq “ pa, bq. This proves 3. If pa, bq “ 1, then

pb, aq “ 1 and p´ab, aq “ p´a, aq “ 1. Also, pp1 ´ aqb, aq “ p1 ´ a, aq “ 1.
If pa,´abq “ 1, then p´ab, aq “ 1 and p´a, aq “ pb´1, aq “ 1. This implies
that pb, aq “ pb2, aq “ 1 and we showed that now pa, p1 ´ aqbq “ 1. If
pa, p1 ´ aqbq “ 1, then pp1 ´ aqb, aq “ 1 and pp1 ´ aq, aq “ pb´1, aq “ 1. This
implies that pb, aq “ pb2, aq “ 1 and we showed that now pa,´abq “ 1. We
conclude that if either one of pa, bq, pa,´abq and pa, p1´aqbq equals one, then
they all equal one. This proves 4.

In the rest of this section, we will try to prove bilinearity of the Hilbert
symbol, i.e. paa1, bq “ pa, bqpa1, bq.

Theorem 2.5.6. If k “ R, we have pa, bq “ 1 if a ą 0 or b ą 0, and
pa, bq “ ´1 if a, b ă 0.
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Proof. If a ą 0, then z2 ´ax2 ´ by2 “ 0 has solution p1, 0,
?
aq. If b ą 0, then

p0, 1,
?
bq is a solution. If a, b ă 0 then ax2 ` by2 ď 0 and z2 “ ax2 ` by2 only

has the trivial solution.

Lemma 2.5.7. Let v P Zˆ
p . If the equation z2´px2´vy2 “ 0 has a nontrivial

solution in Qp, it has a solution px, y, zq such that z, y P Zˆ
p and x P Zp.

Proof. Suppose px0, y0, z0q is the nontrivial zero, define:

h “ inftvppx0q, vppy0q, vppz0qu.

Define px, y, zq “ pp´hx0, p
´hy0, p

´hz0q, it is clear that x, y, z P Zp and at
least on of them in Zˆ

p . We will prove that y, z P Zˆ
p . If it did not then either

y ” 0 pmod pq or z ” 0 pmod pq. We have z2 ´ vy2 “ px2, so z2 ´ vy2 ” 0
pmod pq and we know that v ı 0 pmod pq. From this we conclude that both
y and z are congruent to zero mod p, so y, z R Zˆ

p . We have px2 ” 0 pmod p2q
since y and z are squared: z2 ´ vy2 “ px2. This in turn implies that x ” 0
pmod pq or x R Zˆ

p , which is a contradiction since we assumed that at least
one of x, y and z are in Zˆ

p .

Definition 2.5.8. If p ‰ 2 and x P pZ{pZqˆ. The Legendre symbol of x,
denoted

`

x
p

˘

, is defined as:

ˆ

x

p

˙

“

#

1 if x is a square,

´1 else.

By Euler’s criterion, which had been discovered earlier and was known to
Legendre, we can also define

`

x
p

˘

as xpp´1q{2 pmod pq. We will also use this

equivalence. It is also easy to see that
`

ab
p

˘

“
`

a
p

˘`

b
p

˘

using this definition.

Theorem 2.5.9. If k “ Qp with p ą 2 and if we write a “ pαu and b “ pβv,
where u and v belong to Zˆ

p , we have:

pa, bq “ p´1q
αβϵppq

ˆ

ū

p

˙βˆ

v̄

p

˙α

.

Here, ū and v̄ are the images of u and v of reduction mod p and ϵppq denotes
pp ´ 1q{2 mod 2.

Proof. We can reduce α and β modulo 2 by Proposition 2.5.5, so due to
symmetry of the Hilbert symbol we have three cases.
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1. If α, β ” 0 pmod 2q, then we should check that pu, vq “ 1. We choose
z “ 1, we will prove there exists a solution to ux2 ` vy2 “ 1. By
Theorem 2.4.3, it suffices to find a solution of ux2`vy2´1 ” 0 pmod pq,
where u, v P pZ{pZqˆ. We define S “ t1 ´ ux2 : x P Z{pZu and we
define T “ tvy2 : y P Z{pZu. Since there are pp`1q{2 squares in Z{pZ,
we have |S| ` |T | “ p`1, so |S XT | ‰ 0, which means that there exists
a solution to ux2 ` vy2 ´ 1 ” 0 pmod pq.

2. If α ” 1, β ” 0 mod 2, then we should check that ppu, vq “
`

v̄
p

˘

. We

just proved that pu, vq “ 1, so we have ppu, vq “ pp, vq by Proposition
2.5.5. We need to check that pp, vq “

`

v̄
p

˘

. If v is square, then we

have that pp, vq “
`

v̄
p

˘

“ 1. If v is not square, then
`

v̄
p

˘

“ ´1 by

Theorem 2.4.9. If pp, vq “ 1, then the previous lemma implies that
z2 ´ px2 ´ vy2 “ 0 has a solution such that z, y P Zˆ

p , which implies
that v is a square modulo p. This is a contradiction so we conclude
that pp, vq “ ´1.

3. If α, β “ 1, then we should check if ppu, pvq “ p´1qpp´1q{2
`

ū
p

˘`

v̄
p

˘

. By

Proposition 2.5.5 we have ppu, pvq “ ppu,´p2uvq. Since ppu, p2q “ 1
we also get ppu,´p2uvq “ ppu,´uvq. Using what we proved in 2 we
see that:

ppu, pvq “ ppu,´uvq “

ˆ

´uv

p

˙

.

We have seen that the Legendre symbol is multiplicative and using the
formula for the symbol we also see that

` ¯́1
p

˘

“ p´1qpp´1q{2, so we are
done.

This Theorem allows us to prove that the Hilbert symbol is bilinear. Be-
fore we do that, we first prove a similar formula for p “ 2. We define two
functions for this. It is clear that they are well defined.

Definition 2.5.10. We define ϵ : Zˆ
2 Ñ Z{2Z by:

ϵpuq “
u ´ 1

2
pmod 2q,

and ω : Zˆ
2 Ñ Z{2Z by:

ωpuq “
u2 ´ 1

8
pmod 2q.

Lemma 2.5.11. If u, v P Zˆ
2 , then:

ϵpuvq “ ϵpuq ` ϵpvq and ωpuvq “ ωpuq ` ωpvq.
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Proof. We want to show that pu ´ 1q{2 ` pv ´ 1q{2 ” puv ´ 1q{2 pmod 2q.
This is equivalent to showing that u´ 1` v ´ 1 “ uv ´ 1 pmod 4q. It is easy
to see that this is true since u ” 1 or 3 pmod 4q and v ” 1 or 3 pmod 4q.
For the second equation, it is easy to verify that:

ωpuq “

#

0 if u ” ˘1 pmod 8q

1 if u ” ˘3 pmod 8q
“

u2 ´ 1

8
pmod 2q.

The lemma then follows by verifying every combination.

Theorem 2.5.12. If k “ Q2 and if we write a “ pαu and b “ pβv, where u
and v belong to Zˆ

2 , we have:

pa, bq “ p´1q
ϵpuqϵpvq`αωpvq`βωpuq.

Proof. We can reduce α and β modulo 2 by Proposition 2.5.5, so due to
symmetry of the Hilbert symbol we have three cases.

1. If α, β ” 0 pmod 2q, then we should check that pu, vq “ 1 when u
or v is congruent to 1 pmod 4q and pu, vq “ ´1 otherwise. If u ” 1
pmod 4q, then we see that u ” 1 pmod 8q or u ” 5 pmod 8q. In the
first case, u is a square by Theorem 2.4.10 and in the second case
u ` 4v ” 1 pmod 8q, since v is congruent to 1, 3, 5 or 7 pmod 8q .
Again, by Theorem 2.4.10, there exists w P Zˆ

p such that w2 “ u ` 4v.
The form z2 ´ux2 ´vy2 has thus p1, 2, wq as zero and pu, vq “ 1. When
v ” 1 pmod 4q, the same argument holds. Suppose now that neither u
nor v is congruent to 1 pmod 4q. If this is the case, then u ” v ” ´1
pmod 4q. If px, y, zq is a solution of z2 ´ ux2 ´ vy2 “ 0, then we can
force that at least one of x, y and z to be in Zˆ

p by multiplying the

solution with p´ inftvppxq,vppyq,vppzqu. Now, since the squares in Z{4Z are
0 and 1, we know that z2 `x2 ` y2 ” 0 pmod 4q implies that x, y, z are
congruent to 0 pmod 2q, which contradicts that at least on of them is
in Zˆ

p . We conclude that pu, vq “ ´1.

2. If α “ 1, β “ 0, then we should check if p2u, vq “ p´1qϵpuqϵpvq`ωpvq. We
will first show that p2, vq “ p´1qωpvq. By the definition of ωpvq, this
is equivalent to saying p2, vq “ 1 if and only if v ” ˘1 pmod 8q. By
Lemma 2.5.7 if p2, vq “ 1, there exists x, y, z P Z2 such that the form
z2 ´2x2 ´vy2 “ 0 and y, z ” 1 pmod 2q. The only squares in Z{8Z are
0, 1 and 4. So, y2 ” z2 ” 1 pmod 8q and 1´2x2´v ” 0 pmod 8q, which
implies that v ” ˘1 pmod 8q. Conversely, if v ” 1 pmod 8q, then v is a
square by Theorem 2.4.10 and thus p2, vq “ 1. In the case that v ” ´1
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pmod 8q, then the equation z2 ´ 2x2 ´ vy2 ” 0 pmod 8q has solution
p1, 1, 1q. By Proposition 2.4.3, this solution lifts to a true solution, so
we have p2, vq “ 1. In case 1 we showed that pu, vq “ p´1qϵpuqϵpvq,
so we will now show that p2u, vq “ p2, vqpu, vq to conclude the proof.
If p2, vq “ 1 or pu, vq “ 1, then p2u, vq “ pu, vq or p2u, vq “ p2, vq

by Proposition 2.5.5, so p2u, vq “ p2, vqpu, vq. It remains to show the
equality when p2, vq “ pu, vq “ ´1. We showed that p2, vq “ 1 if
and only if v ” ˘1 pmod 8q, which means that p2, vq “ 1 implies that
v ” 3 or 5 pmod 8q. In case 1 we showed that pu, vq “ ´1 implies
that u, v ” 3 pmod 4q, so u, v ” 3 or ´ 1 pmod 8q. This means that
v ” 3 pmod 8q and u ” 3 or ´ 1 pmod 8q. By Proposition 2.5.5 we
have pu, vq “ pc2u, d2vq, so we are allowed to multiply u, v by squares.
Note that by Theorem 2.4.10 v{3 “ w2 for some w P Zˆ

p and v{w2 “ 3,
so we can assume that v “ 3. Using this logic, we can suppose that
v “ 3 and u “ ´1 or v “ ´5 and u “ 3. The equations:

z2 ` 2x2
´ 3y2 “ 0 and z2 ´ 6x2

` 5y2 “ 0,

have p1, 1, 1q as solution, so p2u, vq “ 1.

3. If α, β “ 1, then we should check if p2u, 2vq “ p´1qϵpuqϵpvq`ωpuq`ωpvq. By
Proposition 2.5.5 we have that p2u, 2vq “ p2u,´4uvq “ p2u,´uvq. We
have already proven in case 2 that:

p2u, 2vq “ p2u,´uvq “ p´1q
ϵpuqϵp´uvq`ωpuq`ωp´uvq.

Note that ϵp´1q “ 1, ωp´1q “ 0 and ϵpuqp1 ` ϵpuqq “ 0, we conclude
using Lemma 2.5.11 that the above exponent is equivalent to:

ϵpuqϵpvq ` ωpuq ` ωpvq.

Using these formulas for the Hilbert symbol, we can prove the main the-
orem of this section.

Theorem 2.5.13. The Hilbert symbol is bilinear, i.e. paa1.bq “ pa, bqpa1, bq.

Proof. We first prove the theorem for Qp. Suppose aa1 “ pαu, a “ pα1u1,
a1 “ pα2u2, with u “ u1u2 and α “ α1 ` α2. Also suppose b “ pβv. The
theorem then follows from the two proven formulas for the Hilbert symbol,
using the fact that the Legendre symbol is multiplicative, ϵpuvq “ ϵpuq ` ϵpvq

and ωpuvq “ ωpuq ` ωpvq. The case k “ R follows directly from Theorem
2.5.6.
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Remember that given a nondegenerate quadratic module pkn, fq, with
n P Ną0, we have that the discriminant dpfq P kˆ{pkˆq2 is invariant under
change of basis. We also proved in Proposition 1.4.2 that f has an orthogonal
basis e “ pe1, . . . , enq. If we put ai “ ei ¨ ei, then f „ a1x

2
1 ` . . . ` anx

2
n and

we conclude that dpfq “ a1 . . . an. We will now define another invariant of
pkn, fq.

Definition 2.5.14. Suppose pkn, fq is a quadratic module and e “ pe1, ..., enq

is an orthogonal basis, also define ai “ ei ¨ ei. We define:

ϵpeq “
ź

iăj

pai, ajq “ ˘1.

We will show that ϵpeq is an invariant of pkn, fq.

Corollary 2.5.15. The number ϵpeq does not depend on the choice of the
orthogonal basis e.

Proof. If n “ 2, one has ϵpeq “ 1 if and only if the form z2 ´ a1x
2
1 ´ a2x

2
2 has

a zero. By Corollary 1.5.6 this means that ϵpeq “ 1 if and only if a1x
2
1 ` a2x

2
2

represents 1, which is equivalent to saying that there exists v P k2 such that
fpvq “ 1, but this does not depend on e. For n ě 3, we use induction on
n. Suppose e1 “ pe1

1, . . . , e
1
nq is another orthogonal basis. By Proposition

1.4.5, it suffices to prove that ϵpeq “ ϵpe1q when e and e1 are contiguous. Note
that ϵpe1q does not change, when we permute the e1

i, so we can assume that
e1 “ e1

1. If we put a1
i “ ei ¨ ei, then a1 “ a1

1. Since the Hilbert symbol is
bilinear and the fact that pa1, a

2
1q “ 1, we have:

ϵpeq “ pa1, a2 . . . anq
ź

2ďiăj

pai, ajq “ pa1, dpfqa1q
ź

2ďiăj

pai, ajq.

Note that dpfq is invariant as element in kˆ{pkˆq2. So, similarly,

ϵpeq “ pa1, dpfqa1q
ź

2ďiăj

pa1
i, a

1
jq.

We can apply the inductive hypothesis to the orthogonal complement of e1
to show that:

ź

2ďiăj

pai, ajq “
ź

2ďiăj

pa1
i, a

1
jq,

which implies that ϵpeq “ ϵpe1q, so we are done.

We will write ϵpfq instead of ϵpeq from now on.
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2.6 Local–global principle

All quadratic forms considered in this section have coefficients in Q and
are nondegenerate. We will denote by Ω the union of the set of prime numbers
and the symbol 8, and we put Q8 “ R. Let f „ a1x

2
1 ` . . . ` anx

2 be a
quadratic form. Let v P Ω, the injection Q Ñ Qv allows us to view f as a
quadratic form in Qv. We will denote this by fv. The invariants of fv will
be denoted by dvpfq and ϵvpfq. It is clear that dvpfq is the image of dpfq by
Qˆ{pQˆq2 Ñ Qˆ

v {pQˆ
v q2 and that:

ϵvpfq “
ź

iăj

pai, ajqv.

Lemma 2.6.1. If a, b P Qˆ, then pa, bqv “ 1 for all but finitely many ele-
ments of Ω and:

ź

vPΩ

pa, bqv “ 1.

Proof. We can multiply a and b by squares, so we are allowed to assume that
a “ ˘p1 . . . pk and b “ ˘p1

1 . . . p
1
l are prime factorizations of a and b. We get:

ź

vPΩ

pa, bqv “
ź

vPΩ

pa,˘1qvpa, p1
1qv . . . pa, p1

lqv

“
ź

vPΩ

p˘1,˘1qvpp1,˘1qv . . . ppk. ˘ 1qv . . . p˘1, p1
lqvpp1, p

1
lqv . . . ppk, p

1
lqv.

We see that we only need to prove the theorem when a or b are equal to ´1
or to a prime number. We will use Theorems 2.5.6 2.5.9 and 2.5.12. Using
symmetry of the Hilbert symbol, we look at three cases.

1. If a, b “ ´1, then p´1,´1q8 “ p´1,´1q2 “ 1 and p´1,´1qv “ 1 if
v ‰ 2,8. The product is equal to one.

2. If a “ ´1, b “ l with l prime. If l “ 2, then l is a unit if v ‰ 2, so since
´1 is a unit we get p´1, 2qv “ 1. If v “ 2, then it is also easy to see
that p´1, 2qv “ 1 using the formula for the Hilbert symbol. If l ‰ 2,
then p´1, lqv “ 1 if v ‰ 2, l since l is a unit in this case. We also have
p´1, lq2 “ p´1qϵplq and p´1, lql “

`

´1
l

˘

“ p´1qϵplq. The product is equal
to one.

3. If a “ l, b “ l1 with l and l1 primes, then we can suppose that l ‰ l1.
If l “ l1, then by Proposition 2.5.5 we have pl, lq “ pl,´l2q “ pl,´1q,
which is a case we have discussed. If l ‰ l1 and l1 “ 2, then pl, 2qv “ 1
for v ‰ 2, l. We also have pv, 2q2 “ p´1qωplq and pl, 2ql “

`

2
l

˘

“ p´1qωplq.
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The product is equal to one. If l ‰ l1 and they are different then 2,
then pl, l1qv “ 1 for v ‰ 2, l, l1. We also have pl, l1q2 “ p´1qϵplqϵpl

1q,
pl, l1ql “

`

l1

l

˘

and pl, l1ql1 “
`

l
l1

˘

. By quadratic reciprocity [5, p. 7] we
have:

`

l
l1

˘`

l1

l

˘

“ p´1q
ϵplqϵpl1q,

so the product is equal to one.

Lemma 2.6.2. Let S be a finite subset of Ω. The image of Q in
ś

vPS Qv is
dense in this product.

Proof. Since we use the product topology we are allowed to enlarge S. Sup-
pose that S “ t8, p1, . . . , pnu, where pi are distinct primes. Assume that
ϵ,N ą 0. We need to prove that for a point:

px8, x1, . . . , xnq P R ˆ Qp1 ˆ . . . ˆ Qpn ,

there exists x P Q such that |x ´ x8|8 ă ϵ and vpipx ´ xiq ě N for all i. If
we can find x P Q such that this holds for the point pax8, ax1, . . . , axnq, then
the point x{a has the desired properties. We conclude that we are allowed
to assume that xi P Zpi for all i. By the Chinese remainder theorem using
relatively prime integers pN1 , . . . , p

N
n , there exists x0 P Z such that we have

vpipx0 ´ xiq ě N for all i. Now choose q ě 2, which is relatively prime to all
pi. The rational numbers of the form a{qm for a P Z and m ě 0 are dense in
R, because 1{qm can get infinitely small. We can thus find number u “ a{qm

such that:
|x0 ´ x8 ` upN1 . . . pNn | ď ϵ.

The number x “ x0 ` upN1 . . . pNn suffices, since:

vpx ´ xiq ě mintvpipx0 ´ xiq, vpi
`

upN1 . . . pNn
˘

u ě N.

The following theorem is proven in [5, p.24]

Theorem 2.6.3. Let paiqiPI be a finite family of elements in Qˆ and let
pϵi,vqiPI,vPΩ be a family of numbers equal to ˘1. In order that there exists
x P Qˆ such that pai, xqv “ ϵi,v for all i P I and all v P Ω, it is necessary and
sufficient that the following conditions be satisfied:

1. Almost all the ϵi,v are equal to 1.

2. For all i P I we have
ś

vPΩ ϵi,v “ 1.

3. For all v P Ω there exists xv P Qˆ
v such that pai, xvqv “ ϵi,v for all i P I.
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Theorem 2.6.4 (Hasse’s local-global principle). A nondegenerate quadratic
form f represents 0 if and only if for all v P Ω, the form fv represents 0.

Proof. If f represent 0, then it is clear that fv represents 0 for all v P Ω.
Conversely suppose that fv represents 0 for all v P Ω. By Proposition 1.5.8
we can write f „ a1x

2
1 ` . . . ` anx

2
n. We look at four cases.

1. If n “ 2, then we assume that f “ x2
1 ´ ax2

2. Since f8 represents 0
we have that a ą 0. When we write a “ pd11 . . . pdll , with pi different
primes, we see that a is a square in Q if all di are even. Since a is
square in all Qpi , we have that vpipaq is even, so di is even for all i.

2. If n “ 3, then we assume that f “ x2
1 ´ax2

2 ´ bx2
3. By Proposition 2.5.5

we can multiply a and b by squares, so we assume that a and b are
square free integers. By symmetry of the Hilbert symbol we can also
assume that |a|8 ď |b|8. We prove by induction on m “ |a|8 ` |b|8. If
m “ 2, then a “ ˘1 and b “ ˘1, so:

f “ x2
1 ˘ x2

2 ˘ x2
3.

If f “ x2
1 ` x2

2 ` x2
3, then f8 only has a trivial solution, so we don’t

look at this case. In the other cases f represents 0. If m ą 2, then
|b|8 ě 2 and we will show that a is square modulo a prime p with p | b.
If a ” 0 pmod pq, then we are done, so suppose that a ı 0 pmod pq

or in other words that a is a p-adic unit in Qp. By hypothesis there
exists px, y, zq P Q3

p such that z2 ´ ax2 ´ by2 “ 0. We can force that
at least one of x, y and z is in Zˆ

p by multiplying the solution with

p´ inftvppxq,vppyq,vppzqu. Since p | b, we have z2 ” ax2 pmod pq. If x ” 0
pmod pq, then z ” 0 pmod pq and by2 ” 0 pmod p2q. We assumed that
vppbq “ 1, so y ” 0 pmod pq, which is a contradiction. We conclude
that x ı 0 pmod pq, so since z2 ” ax2 pmod pq, we have that a is
square modulo p. We conclude that a is a square modulo b using the
Chinese remainder theorem (b is square free). There exists an integer
t such that a ” t2 pmod bq and also a ” pt` cbq2 pmod bq for all c P Z.
This means that we can choose t in such a way that |t| ď |b|{2. There
also exists an integer b1 such that bb1 “ t2 ´ a. This shows that bb1

is a norm of the extension kp
?
aq{k where k “ Q or k “ Qp. Because

bb1 P Npkˆ
a q we have that b P Npkˆ

a q if and only if b1 P Npkˆ
a q. Using the

same argument as in Proposition 2.5.4, we conclude that f represents
0 in k if and only if f 1 “ x2

1 ´ ax2
2 ´ b1x2

3 represents 0 in k. We have
that:

|b1
| “

ˇ

ˇ

ˇ

ˇ

t2 ´ a

b

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

t2

b

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

a

b

ˇ

ˇ

ˇ
ď

|b|

4
` 1 ă |b|,
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since |t| ď |b|{2 and |b| ě 2. We can write b1 in the form b2u2 with b2

a square free integer and u an integer, so |b2| ă |b|. By the induction
hypothesis f2 “ x2

1 ´ ax2
2 ´ b2x2

3 represents 0 and because f2 „ f 1 we
know that f 1 represents 0 and we conclude that f represents 0.

3. If n “ 4, then we assume that f “ ax2
1 ` bx2

2 ´ pcx2
3 ` dx2

4q. By
assumption, for all v P Ω we have that fv represents 0 and by Corollary
1.5.7 there exists xv P Qˆ

v such that the form g “ ax2
1 ` bx2

2 ´ xvy
2
1 and

h “ cx2
3 ` dx2

4 ´ xvy
2
2 represent 0. We have that g represents 0 if and

only if xvg represents 0 and:

xvg „ xvax
2
1 ` xvbx

2
2 ´ y21,

represents 0 if:

pxva, xvbqv “ pxv, xvqvpxv, abqvpa, bqv “ pxv,´abqvpa, bqv “ 1.

This is equivalent to saying that pxv,´abqv “ pa, bqv. We conclude
that:

pxv,´abqv “ pa, bqv and pxv,´cdqv “ pc, dqv for all v P Ω.

By Lemma 2.6.1, we can use Theorem 2.6.3, so there exists x P Qˆ

such that:

px,´abqv “ pa, bqv and px,´cdqv “ pc, dqv for all v P Ω.

We conclude that f represents 0 by as similar argument as made before.

4. If n ě 5, then we assume that f “ h ´ g, where h “ a1x
2
1 ` a2x

2
2 and

g “ ´pa3x
2
3 ` . . .` anx

2
nq. We prove by induction. Let S be the subset

of Ω consisting of 8, 2 and the prime numbers p such that vppaiq ‰ 0
for an i ě 3. It is clear that S is finite. If v P S, then fv represents
0 by assumption. By Corollary 1.5.7 there exists av P Qˆ

v which is
represented by h and g. This means that there exits x1,v, . . . , xn,v P Qv

such that:
hpx1,v, x2,vq “ av “ gpx3,v, . . . , xn,vq.

Define nv “ 1 if v ‰ 2 and n2 “ 3. By Lemma 2.6.2 we can choose
x1, x2 P Q such that |xi´xi,8|8 ă |xi,8|8 and xi ” xi,v pmod pvppavq`nvq

for every v P S ´ t8u. Now, for every v P S ´ t8u, we have:

a “ hpx1, x2q ” hpx1,v, x2,vq “ av pmod pvppavq`nvq
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We see that a{av ” 1 pmod pnvq. Using Theorem 2.4.10 and Theorem
2.4.9 we conclude that a{av is square in Qˆ

v if v P S ´ t8u. Since
|xi ´xi,8|8 ă |xi,8|8, we conclude that a{a8 is a square in Rˆ. Define
f1 “ az2 ´ g. If v P S, then g represents av in Qv and also a because
a{av is a square in Qˆ

v . We see that f1 represents 0 in Qv. Assume
v R S. Note that f1 “ az2 ´ g represents 0 if g1 “ a3x

2
3 ` a4x

2
4 ` a5x

2
4

represents 0. Using a similar argument as in the case n “ 4 this is the
case if:

p´a5a3,´a5a4q “ p´1,´dvpg1qqpa3, a4qpa3, a5qpa4, a5q “ 1,

which is equivalent to saying that p´1,´dvpg1qq “ ϵvpg1q. We have
that ´a3, . . . ,´a5 are v-adic units, because v R S. We have seen in
the proof of Theorem 2.5.9 that pu, u1qv “ 1 for units u and u1. We
conclude that f1 represents 0 for all v P Ω. The rank of f1 is n ´ 1,
so by the inductive hypothesis we have that f1 represents 0 in Q. We
conclude that g represents a in Q and since h represents a in Q, we
have that f represents 0.

Corollary 2.6.5. If a P Qˆ, then a nondegenerate quadratic form f repre-
sents a if and only if for all v P Ω, the form fv represents a.

Proof. By Corollary 1.5.6, the form f “ fpx1, . . . ,n q represents a if and
only if f ´ axn`1 represents 0. The corollary follows from the local-global
principle.
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