Q\W}{% Utrecht

T
>

N University

Early warning for gravitational wave signals
from binary neutron star coalescence using field

programmable gate arrays

Master’s Thesis
submitted in conformity with the requirements for the degree of
Master of Science in Physics (MSc)
Master’s degree programme Experimental Physics

45 EC

Supervisor: Prof. dr. Chris Van Den Broeck
Second Examiner: Dr. Marc van der Sluys
Daily Supervisors: Melissa Lopez, Quirijn Meijer

Submitted by: Ana Isabel Silva Martins

June 2024

"It is better to ask for forgiveness than to ask for permission."

— Melissa Lopez, my daily supervisor, about cluster usage

Abstract

The present thesis is a proof-of-concept study for the possibility for a machine learning-based pipeline to
run on an field programmable gate array in order to detect gravitational waves emitted by the early inspiral
of binary neutron star mergers. It explores two main neural network models, GregNet and GWaveNet, and
their performance at different parts of the inspiral phase of binary neutron star mergers. At a false alarm
probability of 1%, they achieve accuracies of 66.81% and 76.22% respectively. It is found that GregNet is
1.5 times faster at inference than GWaveNet on the graphical processing unit and 5.6 times on the central
processing unit. Still, the models would be very similar in cost when run as part of a pipeline. The models
are successfully adapted to run on the field programmable gate array and quantized. GregNet is compiled to
run on the field programmable gate array. The models in general run the fastest in the graphical processing
unit. However, the graphical processing unit is also the least energy-efficient and most costly, while the

field programmable gate array is the least costly.

In Chapter 1, we motivate the need for this study. In Chapter 2, we go over the formalism of gravitational
waves and the functioning of the detectors; we explore related work and set some research aims. In Chapter
3, the process behind the study is explained, from describing and the treatment of the time series data we
work with, to creating the neural networks and embedding a field programmable gate array with it. In Chap-
ter 4, we present the results of the study, including the training of the neural networks, their performance,
how long and how much energy they take to test and what making these models part of a pipeline would
mean in terms of costs. In Chapter 5, we present the main results of the study and our outlook on future
work. Appendix D contains a comprehensive manual for how to work with the Kria KV260, including all
of the details, from the start-up to how to quantize and compile personalized neural network models. Ad-
ditionally, a GitHub repository is provided, with all of the code and supporting documents used to generate

the results for this study [1].

The author would like to firstly thank her supervisors, Prof. dr. Chris van den Broeck, Dr. Marc van der
Sluys, Melissa Lopez and Quirijn Meijer for their continuous support and valuable feedback, with a special

thank you to Melissa for not only giving me academic, but also emotional support.

Thank you to Nikhef for lending me the necessary computing resources for this study and thank you espe-
cially to the people behind the Stoomboot cluster for lending me a helping hand multiple times, in particular

Dennis van Dok, Mary Hester and Roel Aaij. This project would not have been possible without you.
Thank you to my cohort for never letting me eat lunch alone and for always pushing me to be better.

Lastly, thank you to my family and friends for never complaining about my worsening humour as the
deadline for this thesis got closer and closer and for their permanent encouragement all the way from the

other side of Europe. I could not have made it without you.

Dedicated to my parents.

Dedicado aos meus pais.

Contents

1 Preface 1
2 Introduction 3
2.1 Einstein’s theory of general relativity: The formalism of gravitational waves 3
2.1.1 Themetric tensor o e e e e e 3

2.1.2 Einsteinfieldequations L Lo 3

2.1.3 Linearized general relativity Lo o 4

2.1.4 Constraints on gravitational waves 6

2.1.5 Solution for gravitational waves: The stretching and squeezing of space 7

2.2 Gravitational waves: Detectors and sources L. 8
2.2.1 Sources of gravitational waves Lo 8

22.1.1 Onneutron starso e e e 10

2.2.2 Gravitational wave detectors Lo e 12

2.2.2.1 Interferometer reSPONSE v v v b e e e e e e e 14

2.2.3 Adetectionpipeline 16

2.2.3.1 State of the art: Matched filtering 16

22.3.1.1 Foundations 16

2.2.3.1.2 Evidence for gravitational waves through matched filtering pipelines 18

22313 Challenges 19

2.2.3.2 Towards multimessenger astrophysics 20

22321 Deeplearning 21

2.2.3.2.2 Field programmable gate arrays 22

23 Relatedwork 24

CONTENTS ii
2.4 Research aims: Low latency neural network deployment 24
3 Methodology 26

3.1

32

33

Working with time series data from binary neutron star coalescence gravitational wave signals 26

3.1.1 Descriptionofdata 26
3.1.1.1 O3 Gaussiandata 31
3.1.2 Datapreparation e e e e e e 31
3.1.3 Datastoringandloading L L 32
Creating a neural network to distinguish BNS coalescence GW signals from noise 32
3.2.1 Reference neural network: GregNet 33
3.2.1.1 Batchnormalization L L. 33
3.2.1.2 One-dimensional convolution 33
3.2.1.3 Activation functions L. 35
32.14 Maximumpooling 35
3.2.1.5 Flattening L 35
32.1.6 Linearlayer 36
3.2.1.7 Overview of the architecture 36
322 GWaveNet 39
3221 Gateactivationo e e e e e 39
3222 Ixlconvolutions. 40
3.2.2.3 Skip-connections e 41
3.2.2.4 Dilated causal convolutions Lo 42
3.2.2.5 Overview of architecture 43
3.2.3 Hyper-parameter tuningo e e e e e 46
3.2.4 Training features e 46
3.24.1 Curriculum Learning L oL 46
3.2.4.2 Adaptive learningrateo 47
3243 Earlystopping e 47
Embedding a field programmable gate array with a neural network 48
3.3.1 Specifications of the field programmable gate array 48
3.3.1.1 Comparison with state-of-the-art hardware 50
3.3.2 Inspecting model compatibility, 50
3.3.3 Post-training quantization 55

CONTENTS

4 Results
4.1 Trainingresults e e e
4.2 Performanceresults L
43 Timingresults L e
4.4 Energy consumption i e e e e e e e e e
4.5 How muchdoesthiscost?

5 Conclusions

5.1 Future work

Appendices

A Model details

Al GregNet e e
A2 GWaveNet. e

B Optimizer algorithms

B.1 AdaMax e,
B.2 AdamW e e e

C Code snippets

C.1 Dilated causal convolutions

C.2 ModuleWavenet e e e

D Manual for the Kria KV260

D.1 VErsions o e e,

D.2 Start-up e

D.3 Preparing the neural network for the field programmable gate array: Vitis Al

D.3.1 Preparation
D.3.2 Docker
D.3.2.1 IfyouhaveaccesstoaGPU
D.3.2.2 Ifyoudo not have accesstoaGPU
D.3.2.3 Running the Docker container
D.3.3 Condaenvironment
D.3.4 Modelinspector

D.3.5 Quantizer e e

il

57
57
60
65
67
69

70
71

72

73
73
73

76
76
76

78
78
78

CONTENTS

D.3.6 Compiler
D.4 Model deployment

Bibliography

v

Acronyms

1D one-dimensional

2D two-dimensional

AdaMax adaptive moment estimation with maximum
Al artificial intelligence

AMD Advanced Micro Devices

ANN artificial neural network

APU application processing unit

aLIGO advanced LIGO

BBH binary black hole

BH black hole

BNS binary neutron star

CBC compact binary coalescence
CE cosmic explorer

CNN convolutional neural network
CPU central processing unit

CUDA compute unified device architecture
DP DisplayPort

DNN deep neural network

DL deep learning

DPU deep learning/data processing unit
EOS equation of state

ET Einstein Telescope

CONTENTS

FAP

FLOP

FN

FP

FPGA

GAN

GNN

GPU

GR

GRB

GW

IP

KAGRA

HDL

LIGO

LISA

LR

LSTM

LTS

LUT

MMA

ML

NN

NS

NSBH

03

04

oS

PE

PINN

PISNR

false alarm probability

floating point operation

false negative

false positive

field programmable gate array
generative adversarial network
graph neural network

graphical processing unit

general relativity

gamma-ray burst

gravitational wave

intellectual property

Kamioka Gravitational Wave Detector
hardware description language
Laser Interferometer Gravitational-Wave Observatory
Laser Interferometer Space Antenna
learning rate

Long Short-Term Memory

long term support

look-up table

multi-messenger astrophysics
machine learning

neural network

neutron star

neutron star-black hole binary
observing run 3

observing run 4

operating system

processing engine

physics-informed neural network

partial inspiral signal-to-noise ratio

CONTENTS

PL
PLD
PS
PSD
PTQ
QAT
RAM
ReLU
RNN
ROC
sGRB
SNR
SoC
SOM
SSH
TAP
TN
TP

uu

programmable logic
programmable logic device
processing system

power spectral density
post-training quantization
quantization-aware training
random access memory
rectified linear unit
residual neural network
receiver operating characteristic
short gamma-ray burst
signal-to-noise ratio
system-on-a-chip

system on module

secure shell protocol

true alarm probability

true negative

true positive

Utrecht University

vii

Chapter

Preface

In recent years, Astrophysics and adjacent sciences have been expanding at an astronomical pace. A key

reason for this growth is the constant detection of gravitational waves (GWs).

The first GW detection was made on 14 September 2015, and it was caused by the merger of two black
holes (BHs). Soon after, on 17 August 2017, we detected the first merger of two neutron stars (NSs).
This detection was historic and paved the way for a new field: multi-messenger astrophysics (MMA).
Having detected this merger with GW detectors allowed for other messengers to take a look at the event
and, as a consequence of this, we were able to link binary neutron star (BNS) mergers to short gamma-ray
bursts (SGRBs), to further constrain the equation of state (EOS) for the matter inside a NS and study the
tidal effects acting on the two coalescing bodies, to make a new independent measurement of the Hubble

constant, to measure the speed of GWs with great accuracy and to suggest the origin for many heavy metals.

However, the event was very particular, as the merger happened very close to Earth (~ 40 Mpc away,
compared to the earlier detected binary black holes (BBHs), which were ~ 10 times farther) and a similar
detection and follow-up has not happened since. As such, we are in need of a fast and accurate detection
method for the early stages of BNS mergers, which the present thesis touches on by exploring the possibility
of running a machine learning (ML)-based pipeline on an field programmable gate array (FPGA) for low-

latency detection, i.e. with minimal delay in processing signals.

The author recognizes the significant benefits these large-scale scientific experiments can bring to society
and the world, but she is also conscious of the potential harm they can cause. The manufacturing and use
of state-of-the-art hardware are causing substantial damage to the environment and this is only predicted
to increase, with the manufacturing of computer hardware predicted to take up more than 20% of global
energy usage by 2030 [2] and computation energy predicted to hit the world’s energy production capacity
by 2040 [3].

As such, this study was made with that in mind. The current search pipelines take too much time and com-
puting power. Their continued use will be unfeasible, especially once we enter the era of third-generation

detectors. Additionally, the hardware that is currently used is part of the significant problem that is techno-

CHAPTER 1. PREFACE 2

logical waste. The turnover for central processing units (CPUs) and graphical processing units (GPUs) is
even smaller than their lifetimes, with the technology becoming outdated in a matter of a couple of years
[4] and there being a constant need to produce a new generation of hardware. Also, the energy needed for

the computations, of course, only adds to the problem.

The detection method, based on deep learning (DL), proposed in this study takes significantly less comput-
ing resources than the current state of the art. Furthermore, it proposes the use of hardware that is much
more environmentally-friendly, production-wise, as it lasts longer than the current state-of-the-art hardware,

and computationally-wise, as it has low power consumption and is efficient at processing tasks: the FPGA.

Chapter 2

Introduction

2.1 Einstein’s theory of general relativity: The formalism of gravita-

tional waves

GWs are an astronomical phenomenon that were first introduced by Oliver Heaviside in 1893 [5] and
later by Henri Poincaré [6] in 1905 as the gravitational equivalent of electromagnetic waves. They were
first mathematically demonstrated by Albert Einstein [7, 8] as a consequence of his Theory of general

relativity (GR) [9]. In this Section, we dive into Einstein’s theory of GR and its solution for GWs.

2.1.1 The metric tensor

The metric tensor encodes the information needed to describe the geometry of spacetime, including its
curvature and the effects of gravity. Spacetime is the model GR is based on; it fuses the three known
dimensions of space with the one known dimension of time in one continuum space. It can be written as
the flat Minkowski metric of special relativity, 1,y, with, in the weak field limit, a small perturbation due

to weak gravitational fields, /1y, where |y | < 1:

guv = Nuv +hyy. 2.1

2.1.2 Einstein field equations

Einstein first proposed the Einstein field equations in 1915 [10], and they relate matter with spacetime
deformity. They are given by:

8nG
Guv == TTN\/, (22)

where G and c are the gravitational constant and the velocity of light in vacuum, and 7y is the energy-

momentum tensor, whereas the left-hand side of the equation is the Einstein tensor, given by

1
Guv = R‘U,V - ERg‘uv, (23)

CHAPTER 2. INTRODUCTION 4

where Ry and R are, respectively, the Ricci tensor and the Ricci scalar, which are defined from the Riemann
o .
tensor, Rqu :

R(X

upy = 9TV — TG, + TG, Ty — Ty, Ty 2.4)

Ve B

where Fﬁv are called the Christoffel symbols, defined as:
1
Ty = 58"(9v8up + ugvp — Ipguv). (2.5)

The Ricci tensor follows from taking the trace of the Riemann tensor, i.e., when there is a repeated index

on the Riemann tensor, such that R,y = R‘L ov» and, in turn, the Ricci scalar is defined as R = R%,.

2.1.3 Linearized general relativity

In order to describe how GWs behave, it is useful first to linearize the Einstein field equations. To do this,
the metric tensor, g,y should be filled in with its expanded version (Equation (2.1)) and, since /y 1s only a
small perturbation, only linear terms with it and its derivatives should be kept. Starting with the linearized

Christoffel symbols, we use that dgn pv = 0 and neglect terms with higher orders of Ay :
1
ng = Egﬁa(avguﬁ + augvﬁ - aﬁguv)

1
= E(nﬁa +hﬁa)(a\’(rluﬁ +huﬁ) + aﬂ(nvﬁ +hvﬁ) - aﬁ(nuv +huv))

1
= 317 (Ohyp + Suhvg — Ighuv). (2.6)

With this, we now turn to the linearized version of the Riemann tensor by using this definition and neglecting
the higher-order terms of 4,y once again, which means we can neglect the last two terms of the original
expression. We start from our definition in (2.4):
oa o [0/ a P _ 17a 1P
Ryupy = 9Ty = WLigy + TgpLvn = Typlg,

1
= 5 (91 (Ouhvp + Ivhyp — Iphvy) — 0N (uhpo + Iphuc — dohpy))|

| =

In order to compress this expression, we can multiply the equation by the metric on the left:
Reupy = graRyipy
1
1
— E(aﬁa‘uhvf + aﬁ avh‘uf - aﬁ a»rhvu - avauhﬁr - a\/aﬁh‘uf + a\/&fchﬁ“)

1

CHAPTER 2. INTRODUCTION 5

From this, we get that the linearized Ricci tensor is given by:

1
Ruv = 8P Toupy = 59 uhye — 9" Ochyy — Oyuh + Ay Ich). (2.9)

h% is simply the trace of /.y, h, and d*d; can be defined as the d’ Alembertian operator, 0. Rewriting:

1
Ryy = 5(afaﬂhw — Ohyy — dyOuh+ dydzhy). (2.10)

Moreover, by consequence, the linearized Ricci scalar can be written as:

1
R=Rj =g"'Ryy = E(Wauh‘; — Ohy — 0" 9yh+ 0" dchy))

= 9%yht — Oh. (2.11)

Finally, the linearized Einstein tensor is given by substitung the linearized identities we found into Equation
(2.3):

1
Guv — RHV - ERg”V

1 1
= 59 Quhy — Dy — dyduh+ dyIchf) = STy (9P dshg — Dh). 2.12)

However, the usual form of the linearized Einstein field equations is in terms of a new tensor Euv = hyv —
%nuvh, for simplicity of notation. By switching out A,y = Euv + %Tluvh into equation (2.12), we can get to

a simpler version of the linearized Einstein tensor and, in turn of the linearized Einstein field equations:
1|, _ 1 _ 1 — 1
1 o 1

1 — 1 — 1 — 1

2

— 1
1

= 5(0%0uhye — Ohyy + Iy chy, —NuvdP dshy), (2.13)

165G

DE“\/ + n“v&aaﬁZBa - aaa\/ﬁuﬁ - aaa‘uﬁav — —C—4Tuv. (214)

In order to further simplify this, we consider a coordinate transformation to our metric that will not spoil its

form by constraining ourselves to small changes in coordinates: x’* = x* + £, Under this transformation,

CHAPTER 2. INTRODUCTION 6

it can be shown that:

uy = Muv +huy — &y — A&y, (2.15)

where we identify:

h/uv = hyy — (Iu&v +vEy). (2.16)

Because of their close form to electromagnetism, these are called gauge transformations. The Lorentz gauge

condition dictates that there always exists a gauge transformation such that:

0 hyy = 0. (2.17)

Under this choice of gauge, Equation (2.14) further simplifies into:

— l6nG
Furthermore, away from the source (e.g. a detector of GWs on earth), the energy-momentum tensor tends

to zero, and we get:

2.1.4 Constraints on gravitational waves

We are interested in knowing how many degrees of freedom GWs have. A spacetime metric is a 4x4 tensor,
thus, having 16 components. However, Euv is a symmetric tensor, so the amount of degrees of freedom
reduces to 10. In the Lorentz gauge condition (Equation (2.17)), there is a free v index, thus reducing the

number of degrees of freedom by 4.

We can further use gauge transformations, h;w = hyy — (duy +9vEy), to impose the following constraints

on l_zuv:

h, =0, (2.20)
Ty = 0. (2.21)

Equation (2.20) indicates that E#v is traceless and so Euv = hyy. With no free indices, this condition
reduces the number of degrees of freedom of GWs from 6 to 5. Equation (2.21) lets us drop the time-time
and time-space components. This condition has a free y index but, with the previous contraint from the
Lorentz gauge, 8‘%“0 =0, so it only restricts us 3 degrees further. In the end, we are left with two degrees

of freedom.

CHAPTER 2. INTRODUCTION 7

2.1.5 Solution for gravitational waves: The stretching and squeezing of space

What do these two degrees of freedom look like? Looking at Equation (2.19), we can recognise a wave
equation, whose solution for the plane wave can give us an intuition for later reaching a more general form

(now using only space components):

—

hij = A;j(k) cos(wt — k-), (2.22)

where @ = ck. From the Lorentz gauge (2.17), we get that k'A; ;= 0. Taking this and the traceless condition

(2.20), and choosing the direction of propagation along the z-axis, without loss of generality, /;; must be of

the form:
h+ h>< 0
hiT = he —hy 0| coslo(r—z/c)]. (2.23)
0 0O O

h. and h, can be any expression, but we choose this convenient name whose reason will be clarified later.

The gauge that leads to this solution is called the transverse-traceless gauge.

The spacetime metric will then take the form:

guv = Nuv +hyy

-1 0 0 0
| 0 1+hicos[o(t—z/c)] hxcos|o(t—z/c)] O 224)
]l hy cos[o(t —z/c)] 1 —hycoslw(t—z/c)] O]’ '
0 0 0 1
and ds*> = g, ydxtdx is given by:
ds? = —c2dr* + (14 hy cos[o(t — z/c)])dx®> + (1 — hy cos[@(t —z/c)])dy?
+2hy cos[@(t —z/c)]dxdy + dZ?, (2.25)

where ds? is known as the line element and it describes the infinitesimal displacement between two events

in spacetime.

To make it more explicit what this means physically, it is useful to look at the effects of 4. and k. separately.
If hy #0and hy =0, we get:

ds? = —c*dt® + (14 h cos[@(t —z/c)))dx* + (1 — hy cos|o(r — z/c)])dy* + dZ?, (2.26)

which demonstrates that space in the x and y directions is stretched and squeezed periodically. On the other
hand, if 2, =0 and i, # 0, we get:

ds? = —c2dr* + dx® + dy* + 2h, cos[@(t — z/c)]dxdy + dz°. (2.27)

CHAPTER 2. INTRODUCTION 8

To get a proper intuition for what this means, it is convenient to change coordinate systems, (ct,x,y,z) —
(ct,x',y',z), where the prime coordinates are rotated 45° from the original coordinates over the z-axis. Doing

this, we get:
ds? = —c*dt®> + (14 hy cos[@(t — z/c)))dx* + (1 — hy cos[o(t — z/c)])dy* + dz*. (2.28)

Once again, this demonstrates the periodical stretching and squeezing of space, but this time at a 45° angle

to the previously shown polarisation. This effect is shown in Figure 2.1.

fase: Wgwt=0 Wgwt =1/2 Wgwt=n wWgwt=3m/2

@ Q

hy

@ S
2 ®
I I
Q Z
Q 2
hx : j

Figure 2.1: Effect of the + and x polarisations of a GW on a ring of test particles. For the + polarization,
once space is stretched in the vertical direction, it is also squeezed in the horizontal direction. After half
a period, the opposite happens. For the x polarization, when space is stretched at a 45° angle, it is also
squeezed at a -45° angle, and vice-versa.

2.2 Gravitational waves: Detectors and sources

In the previous Section, we derived the mathematical formulation of GWs. In this Section, we dive into
what the sources of GWs are and which one we will focus on, GW detectors and their functioning, how

detections are made from detector data and what our proposal for a new detection method is.

2.2.1 Sources of gravitational waves

GWs can be emitted by several different sources, such as [11, 12]:

* A merger of two compact astrophysical objects, also referred to as a compact binary coalescence
(CBC), such as a BBH, a BNS or a neutron star-black hole binary (NSBH),

* A single fast-spinning massive object, with any bumps on or imperfections in its spherical shape, such

as an asymmetric NS,

CHAPTER 2. INTRODUCTION 9

* A burst, such as a supernova explosion, a magnetar flare or a cosmic string cusp,
* A primordial background of GWs.
The main modelled sources of GWs are CBCs.

A CBC event is made up of two compact astrophysical objects orbiting around each other in a wide orbit,
and GWs are emitted, due to a break in symmetry, consequence of the two objects not being identical. The
emission of GWs consumes energy, so this orbit will shrink. The objects will orbit closer and closer to each
other, at higher and higher frequencies, until their orbit is close to circular, called a quasi-circular inspiral.
At around 10 Hz, the GW signals fall in the sensitivity band of our current detectors [13] and they start being
able to detect. As the objects orbit around each other, we are in the so-called inspiral phase. The system
keeps losing energy until the objects are sufficiently close and then collapse towards each other, merging
into a new, highly excited compact object. This part of the CBC event is called the merger. The new object
will then de-excite, a process called the ringdown, and settle into a dormant state. A visual representation of
a CBC event is shown in Figure 2.2, as is a graph showing the corresponding strain over time as detected by
the Laser Interferometer Gravitational-Wave Observatory (LIGO) Hanford and LIGO Livingston detectors
[14] for GW 150914 [15], the first ever detected GW. [16]

Out of the sources for CBC events, in this study we are interested in BNSs. GW signals from BNSs
are particularly interesting for MMA, due to their long inspiral phase and their production of observable
signals across multiple wavelengths and messengers. MMA based on BNS mergers is focused not only on
observing the binary system and its remnants but also on learning more about the individual components,

diving deeper into dense matter physics and the nature of NSs.

CHAPTER 2. INTRODUCTION 10

Inspiral Merger Ringdown

¢ eo¢ oGO

|

5

)

= 0.0

©

! . U
-0.5-
-1.0-

0.30 0.35 0.40 0.45
Time (s)
. Taken from [16].

Figure 2.2: Representation of a CBC event and the corresponding GW strain over time as detected by LIGO
Hanford (red) and LIGO Livingston (blue) for the GW150914 event

2.2.1.1 On neutron stars

NSs are highly compact astrophysical objects, and they appear as the outcome of the collapsing of the core
of a massive star [17]. The existence of NSs was predicted shortly after the discovery of the neutron but
only confirmed in 1968, when regular radio pulses emitted by PSR B1919+21 were detected [18].

Even though the EOS for nuclear matter under the extreme conditions of a NS has been studied since
the 1930s [19] and many restrictions have been set, its final form is still unknown. Figure 2.3 shows
many possibilities for EOS, as well as constraints set by GR, causality (dP/dp = cgound < ¢? [20]) and
observations. It further shows the masses of observed binary radio pulsars. Detections of GW signals from
NSs are vital to constrain the possible tidal effects suffered by coalescing objects. Tidal forces arise from
the variation in gravitational attraction in the objects involved in a coalescence, with the side facing the
other object experiencing a stronger gravitational pull than the one facing away. Consequently, a tidal bulge
is created, deforming the objects. Understanding the extent of this effect and its factors will lead us to
further constrain the NS EOS, since knowing how tidal deformability acts will give us the information of

mass as a function of radius.

CHAPTER 2. INTRODUCTION 11

o WSO
25 o AP3 L,'.l?‘.:"-'l 5

2.0

1.5

Mass (M)

1.0

0.5

8 9 10 11 12 13 14 15
Radius (km)

Figure 2.3: Theoretical mass-radius relation formulations for the EOS of the matter inside a NS for the
possibilities of only nucleonic matter (blue), nucleonic plus exotic matter (pink), and strange quark matter
(green). What each individual formulation means is beyond the scope of this study, and this Figure simply
aims to demonstrate the landscape of the current theoretical predictions for the NS EOS. The horizontal
lines represent the masses determined for observed binary radio pulsars. NSs with mass-radius in the upper
left region are disallowed as a consequence of GR and causality and NSs with mass-radius in the lower right
region are limited by the observation of the highest-frequency known pulsar, at 716 Hz. Taken from [21].

There are currently no firm theoretical constraints on the maximum possible mass of a non-rotating NS.
However, the most massive NS measured to date, J0740+6620, had the mass of 2.141“8:(1)8M@ [22], for
a 68.3% credibility interval. The theoretical predictions for the lower bound are more contentious. The
minimum predicted mass from GR, nearly independent from the EOS, is 0.1M [23]. However, it is
thought that a NS with mass that low would not form since it depends on the mass of the original massive
star whose core collapsed, and according to this, a more realistic estimate is closer to 1M, [24]. The
NS with the smallest mass measured to date was part of the binary pulsar J0453+1559, with a mass of

1.174£0.004M, [25].

A BNS merger is a CBC event where both of the compact objects are NSs. BNS mergers have a long ob-
servable quasi-circular inspiral time, in the order of minutes to hours [26], depending on detector sensitivity.

We are interested in being able to detect a GW in this inspiral phase, in order to prepare for the merger.

For a long time before current detections, it has been predicted that once the merger happens, a short,
hard gamma-ray burst (GRB) is emitted from the system [27], furthering the possibility for MMA and the

possibility to learn more about BNS systems in general.

CHAPTER 2. INTRODUCTION 12

2.2.2 Gravitational wave detectors

Current state-of-the-art GW detectors are called interferometric detectors [28], and they are inspired by the
Michelson interferometer [29]. Figure 2.4 shows the layout of a detector. In these, a source laser beam
is split in two by a beam-splitting mirror. Each of these two laser beams then travels through a long tube,
called the detector arm, and gets reflected by a mirror at the end of it. The light then travels back to the
beam-splitting mirror, where it is redirected to a photodiode and read by a light detector. In this basic setup,
the laser interferometer is set up so that, under no perturbation, once the beams get to the light detector, they
are out of phase by half a wavelength. This causes destructive interference, so no signal is read. If there is
a perturbation in space, causing the stretching and squeezing of the length of the arms, then the light beams
will not be perfectly out of phase, and there will be a signal. This is due to the beams still travelling at the

speed of light and not being affected by the ripples caused by the GW.

7 4 Y
e & Detector Detector ” "}t
H.: --n-_‘--\ ‘_.M i arm arm 77 / 4
Mirror 0 Beam-splitting aily” M
VAV . mirror

Y A
A puy

Laser
source iv
Normal situation Gravitational wave detection
: /‘_\\ ,;A /“_‘ ,.-" \‘

J o\ j’. II"'\._ .
N A S +.N0 signal
/ ‘\)."I

A\

,”f ._. I"_ .
aWa *. Signal

/
J \/ \.
Figure 2.4: Layout of a laser interferometer. Taken from [28].

As seen in Section 2.1, space is perturbed by GWs, which in a detector translates to its arms being stretched
and squeezed, changing their length and, hence, the path that light has to travel is different than in the
unperturbed case. To determine how much this change in path is, let us momentarily consider a GW with
only plus polarisation approaching the detector arms, with possibly perturbed lengths L, and Ly, and no z

component. Equation (2.25) simplifies to:

ds® = —c2dr* + (1 4+ hy cos[o(t — z/c)])dx®> + (1 — hy cos[@(t —z/c)])dy?
+2hy cos[@(t —z/c)]dxdy + dz?
= —c2d® + (1 +h)dx* + (1 — h)dy*. (2.29)

The geodesic for a photon in this light path is null, thus ds*> = 0. Hence, Equation (2.29) gives us the

CHAPTER 2. INTRODUCTION

displacement of each coordinate:

dt h
dx=— %c<1+—)dt
2
cdt h
dy=—~c|1—<|dt,
R (2)
where we Taylor expanded over 4. Integrating both sides, we get:
Xmirror h h
/ dx=cAt |14+ |=Li=cAt|1+=<),
Xbeam splitter 2 2
Ymirror h h
/ dy:cAt(l——)ﬁLycht(l——).
Ybeam splitter 2 2

The difference between the lengths of the two arms is then:
AL=L,—L,=cAth=Lh,

where L is the unperturbed length of the arms.

13

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

The amplitude of a gravitational wave, A, also called gravitational wave strain for the CBC signals we are

interested in studying is of the order of 1072 [30]. We can relate the strain to the detectors using Equation

(2.34). For example, for the Virgo detector, for which each detector arm has a length of 3 km [31], we are

detecting differences in the length of the arms in the order of 10~!8 m, around a hundred times smaller than

the size of a proton!

Since the effects we are aiming to detect are so small, even LIGO’s 4 km detector arms [32] are not enough

to detect what we aim to. To solve this, one of the main features that was introduced is called the Fabry-

Perot cavities [33]. These consist of introducing two new mirrors, one in each arm, near the beam splitter

[32], as shown in Figure 2.5. The laser in each arm gets reflected inside the each cavity about 300 times,

increasing the effective distance travelled from 4 km to about 1200 km.

CHAPTER 2. INTRODUCTION 14

Basic Michelson
Interferometer with 4 km
Fabry Perot Cavities

Mirror
4 km

V

| Easer :

JA

Figure 2.5: Layout of a laser interferometer with Fabry-Perot cavities. Mirrors are inserted near the beam-
splitter, forming the Fabry-Perot resonant cavities. Taken from [34].
2.2.2.1 Interferometer response

In order to understand how GWs truly affect a detector, let us think about them from the reference frame of
the detector, where the x-axis spans one arm and the y-axis spans the other. As such, we can write the line

element as:
ds* = —c*dt* 4 (8 + hij)dx' dx/, (2.35)

where 8% is the Kronecker delta and only the space components are considered for the perturbation, as we
verified is valid in Section 2.1.4. Since light moves in null geodesics, ds* = 0, and, when considering what

happens to the x-arm, we can set dy = dz = 0, and vice-versa for the y-arm, leaving us with:
dr* = (1+ hy)dx?, dt* = (1+hyy)dy*. (2.36)
Similarly to Equations (2.32) and (2.33), we can integrate over the space between the mirror and the beam

splitter (ignoring the Febry-Perot cavities for this demonstration) in order to get the time it takes for light to

travel between the two, when there is a perturbation:

1 1
Aty ~ (1 + Ehxx) L/c, Aty = (1 + Ehyy) L/c. (2.37)

CHAPTER 2. INTRODUCTION 15

The output of a detector, called gravitational wave strain, is then given by:

At, — At 1
h(t) = xA—toy = 5 (= hyy), (2.38)

where At is the time it takes for light to travel along the unperturbed length of the arms.

We now want to relate the gravitational wave strain to our original + and X polarizations. For that, we

perform a coordinate transformation according to the rotation matrix:

cos¢p sing O 1 0 0 cosy siny 0
R=| —sin¢g cos¢ O 0 cos® —sin6 —siny cosy O], (2.39)
0 0 1 0 sin® cos6 0 0 1

with the corresponding angles as shown in Figure 2.6. As such, we perform the following operation:
hij = RATTRY),;, (2.40)

where h/TT j is the metric perturbation in the (x',)’,7') frame, in its transverse-traceless form, as defined in

Section 2.1.5. Finally, using Equation (2.38), we get the strain in terms of the + and x polarizations:

1

hzi(hx _hyy):F+(97¢a‘l’)h++F><(97¢7W)h><, (241)

where F . are the beam pattern functions, defined by:

Fi(0,0,y)= %(1 +cos?) cos(2¢) cos(2y) — cos O sin(2¢) sin(2y), (2.42)

F(0,0,y) = %(1 + cos? 0) cos(2¢) sin(2y) 4 cos O sin(2¢) cos (2y). (2.43)

By analysing Equations (2.42) and (2.43), one can easily see that the current two-armed perpendicular detec-
tors have a very obvious fault: they are blind to certain directions. If ¢ = %, then cos(2¢) = cos(7/2) =0,

making both equations equal to zero.

In order to get accurate and useful readings, it is essential to have a network of detectors. A network of at
least three detectors allows us to localise the source in the sky, allowing for MMA. Additionally, a network

of detectors allows us to reduce the impact of other sources of perturbation, called glitches.

Glitches are short-duration noise artifacts that appear in detector data and can mimic GWs. These can be
caused by a number of non-astrophysical sources, such as instrumental artifacts or environmental distur-
bances [35]. Glitches are classified according to their nature and shape, with the main types being the blip,

fast scattering, koi fish, low-frequency burst, tomte, and whistle [36].

GWs are currently detected by pipelines based on Bayesian statistics [37], with help from tools like BayesWave
[38]. More recently, neural networks (NNs) [39] have started to enter the scene by acting as triggers for

events. This study is a proof-of-concept for the latter.

CHAPTER 2. INTRODUCTION 16

Figure 2.6: Coordinate system where a GW is propagating in the direction 7/, stretching and squeezing
space in the x’ and y’ directions; it is angled according to 6 and ¢ from the detector coordinates, whose
arms extend along the x and y directions and are in the plane perpendicular to z.

2.2.3 A detection pipeline
2.2.3.1 State of the art: Matched filtering

2.2.3.1.1 Foundations Take a time series, s(¢), such that:
s(t) = h(t) +n(t), (2.44)

that represents a GW signal A(r) buried in, ideally, stationary Gaussian noise with zero mean n(¢). In a
real-world setting, the noise is not ideal, in part due to the aforementioned glitches. There are two possible
hypothesis for this problem:

Hypothesis 1 (H1): The null hypothesis, when there is no signal buried in the noise, and s(t) = n(t).
Hypothesis 2 (H2): The alternative hypothesis, when there is a signal buried in the noise, and s(t) =
h(t) +n(t) with h(t) # 0.

Matched filtering is a method for modelled searches that aims to find the optimal filter K(¢), or correspond-
ing GW template, that is able to identify a waveform in A(z), assuming Hypothesis 2, while filtering out
the noise n(z) through maximizing its detection statistic. Let S be the expected value of §, our observation,

when a signal is present (h(z) # 0) and N be the root-mean-square of § when no signal is present (h(z) = 0):

S=(§)n, N= ()2 (2.45)

We can integrate the signal against our optimal filter K(¢) to reach expressions for S and N, where * repre-

CHAPTER 2. INTRODUCTION 17

sents the complex conjugate and ~ represents the Fourier transform of the function:
S— / " di (VK (1) = / " dt (n(t) + h(1))K (1) = / " arh(DK (1)
= [_ar(nR (), (2.46)
N = J12(0) = (5(0) g = 1/ (20))

o Fwaeone]
— \//_O;dt/:odt’ (n(t)n(f"))K(1)K(1') = \//_deésn(m[g(mz’ (2.47)

where we used that (n(¢)) = 0 and (h(t)) = h(t), with the averaging happening over the whole GW signal.

Su(f) represents the detector noise power spectral density (PSD) in the frequency domain and is defined by

the following equation:

F (PR = 380~ (7). (2.48)

The detection statistic for matched filtering is called signal-to-noise ratio (SNR) (denoted as p), and it can
be defined as:

5 - P (HK'(f)
(ARG 20Tedr R

p=S/R= - (2.49)
JIdr SR GE \/2f _ay K
n(f)
where we introduce K'(f) = %Sn (f)K(f). More compactly, we can write:
_ (K e
= el = VKD, (2.50)
where (a|b) is the inner product defined as:
_4re [TTUU)
(alb) _4Re/0 ATk (2.51)

Thus, the SNR is the inner product between the GW strain /4 and a unit vector K’. The SNR will then be
maximal when 4 and K’ are aligned, such that the optimal filter function will take the form:

R(f) s{}).

(2.52)

Matched filtering-based pipelines have been used ever since we started using the current interferometric

detectors to search for GWs.

CHAPTER 2. INTRODUCTION 18

2.2.3.1.2 Evidence for gravitational waves through matched filtering pipelines The existence of
GWs was first verified on 14 September 2015 after the detection of a GW signal emitted by a BBH
merger, referred to as GW 150914 [15], discovered by the LIGO [14] and Virgo [40] collaborations through
a matched filtering pipeline. The signal was detected by the two active detectors belonging to the LIGO
collaboration: LIGO Livingston and LIGO Hanford.

The first time a GW signal from a BNS was detected was on 17 August 2017 by the LIGO-Virgo net-
work of detectors, and it was named GW170817. Its electromagnetic counterpart, GRB 170817A, was
detected by INTEGRAL SPI-ACS [41] and Fermi-GBM [42] independently 1.7 seconds after the coales-
cence, which was the first experimental evidence that BNS mergers and GRB are connected [26]. The host
galaxy NGC4993 was localized by the 1M2H Collaboration [43] at 10.9 hours after the merger. Figure 2.7
displays the projections of the 90% confidence regions from the localisations of the experiments. It also
shows the discovery image 10.9 hours after the merger and an image from the DLT40 Collaboration [44] of
the galaxy 20.5 days pre-merger, where we can clearly see that a new transient appeared [45]. Following the
localisation of the source, optical telescopes closely monitored the afterglow of the event. It was observed
that what started as a GRB went on to lose energy until only radio waves remained [46]. GW170817 /
GRB 170817A was the first event that truly benefited from MMA, as experiments based on GW detectors,
electromagnetic telescopes and, in particular, optical telescopes were all able to contribute. The event was
revolutionary in many ways. In particular, other than, as already mentioned, proving the relation between
BNS mergers and sGRB and further constricting the NS EOS, it allowed for an independent measurement
of the Hubble constant [47], it enabled an accurate measurement of the speed of GWs (the same as the

speed of light) [45] and it suggested the origin for many heavy metals [48]. [49]

LIGO

30° \ : . Swope +10.9 h
LIGO/ ’ — ;
Virgo - 4 ' |
f 4 - ; N
Fermi/ ' A
o GBM — E J
16h 12h 8h
DLT40-20.5d
IPN Fermi /
INTEGRAL
a -
\ .
-30° \ W W -30°
y

Figure 2.7: Sky localization of GW170817 / GRB 170817A. Taken from [45].

Since 2007, the LIGO and Virgo Collaborations have agreed to share and analyse the data collected by their

CHAPTER 2. INTRODUCTION 19

detectors and jointly publish their results. The Kamioka Gravitational Wave Detector (KAGRA) Collabo-
ration [50] joined the agreement in 2019.

Thanks to the existence of this network of detectors, we are able to confirm detections by looking for
detector coincidences and, as such, many GWs have been detected to date, some of whose components
and remnants can be viewed in Figure 2.8. The most recent at the time of writing is GW230529_181500
[51], which was detected during the fourth observing run of the LIGO-Virgo-KAGRA detectors network.
The GW is thought to have been emitted by a merger between a NS and an object in the lower mass gap.
The lower mass gap is a gap in the mass distribution of compact objects, spanning approximately from
3M, to SM), thought to separate the heaviest NSs from the lightest stellar-mass BH [52]. This makes us
believe that, as detector sensitivity improves and new generations of detectors are introduced, it will soon
be possible to detect more exotic objects, such as NSs and objects in the mass gap, more frequently. With
more and more data about harder-to-detect objects incoming, the present study is particularly relevant, as it
will allow for fast and sustainable first trigger alerts. Through this, the correct identification of early BNS
inspirals will be able to provide more insight at the intersection of astrophysics, dense matter, gravitation

and cosmology.

Masses in the Stellar Graveyard

in Solar Masses

Updated 2020-05-16
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Figure 2.8: Masses of components of CBC signals and the corresponding remnants. Taken from [53].

2.2.3.1.3 Challenges As much as matched filtering has contributed to GW searches up until now, it also
has its faults.

Matched filtering requires modelled waveforms to compare the signals to and is performed based on tem-

plate banks. Template banks are composed of modeled waveforms with specific combinations of system

CHAPTER 2. INTRODUCTION 20

parameters, spanning the likely parameters for the astrophysical sources of GWs we expect to detect [54].
However, this method lacks the flexibility to detect unanticipated phenomena. Let us say that GR does not
predict certain physical phenomena well enough or that there are phenomena that it does not even predict
at all: matched filtering would never be able to detect those. The method biases our predictions towards the
theoretical ones, not allowing us to reflect the true population of GWs and not granting us the opportunity

to explore new physics outside of GR.

Matched filtering is also highly computationally intensive, which makes the time required to analyse the
data and obtain results significant. It is important to be able to do a low-latency follow-up of any candidate
events in order to allow for MMA. Furthermore, matched filtering costs a lot of resources and energy. This
is especially relevant for the current scientific landscape, where we build huge experiments that consume
vast amounts of energy and contribute massively to climate change. Thus, whilst trying to create a good
societal impact by exploring the unexplored, we are indeed just creating more pollution and leaving the

world worse off than we initially found it.

Third-generation detectors, Laser Interferometer Space Antenna (LISA) [55] and the Einstein Telescope
(ET) [56], will be the biggest challenge for matched filtering. More and more different data will become
available, as different bands of frequency emerge and sensitivity increases, changing the paradigm of how
we currently use matched filtering. Third-generation detectors will increase the volume of the Universe to
be explored. The template banks matched filtering is based on would have to be expanded to accommo-
date these new possibilities, requiring more resources and increasing the computational load on matched
filtering-based pipelines. Using matched filtering-based pipelines for GW searches in third-generation de-
tectors will be unfeasible.

2.2.3.2 Towards multimessenger astrophysics

BNS coalescence signals have a very long orbiting stage before their merger, which means that out of the

common detectable sources, this would be the one most likely to allow for early detection.

Since it is now known that it is highly likely that BNSs emit a sGRB, and its subsequent afterglow, detecting
the GWs emitted by the early inspiral of the BNS and locating it is essential for MMA. If other types of
detectors, such as electromagnetic and, in particular, optical telescopes, look for the upcoming merger in
the sky, we will not only be able to gather more information about the event, but it will also further help
us confirm that the event was indeed a BNS merger. With the event information, we can further restrict
the BNS EOS, bringing us closer to discovering how dense matter behaves, through analysing how tidal
deformability affects the individual components. Moreover, in particular, if the electromagnetic messengers

can constrain distance and inclination, masses can be better constrained from GW data.

The (almost) simultaneous detection of GW 170817 and GRB 170817A, as well as the identification of the
host galaxy and the observation of the afterglow, was a revolutionary event that showed just the tip of the

iceberg of what MMA can achieve.

The goal of this study is to explore the possibility of setting a DL-based pipeline to run on an FPGA

CHAPTER 2. INTRODUCTION 21

(introduced in Section 2.2.3.2.2) that is able to detect GWs emitted by the early inspiral of a BNS at the

lowest possible frequency.

2.2.3.2.1 Deep learning DL [57] is the subfield of ML based on artificial neural networks (ANNs).
NN are often used in the context of supervised learning, where input examples X, associated with a label
v, also known as the target, perform future predictions based on past evidence. NNs take inspiration from
the human brain and how humans learn. The simplest instance of a NN, invented in 1943 [58] and first
implemented in 1957 [59], is called the perceptron, and it imitates the neuron. Figure 2.9 shows the layout

of the perceptron model.

x4
x6
x7 _> @

Figure 2.9: Visual representation of the perceptron model. The inputs x; are multiplied by learned weights
w; and added together, along with a bias term b. They are then fed to an activation function f to give an
output y.

The output of the perceptron is given by:

y=1f (anxiwi +b> ; (2.53)

where x; are the inputs of the network, w;j~(are the learnable weights, which are between 0 and 1, b is a
learnable bias, y is the output, and f is the activation function. The activation function mimics the firing
of a neuron and decides what the output will look like from the previous sum. A simple example of an

activation function is the binary step, where:

0, x<0
flx) = (2.54)
I, x>0.

The model weights are learned and optimized through the evaluation of a cost function, also referred to as

CHAPTER 2. INTRODUCTION 22

the loss function, which can be defined in many different ways, depending on the application. A common

example is the L2-norm cost function:
1
J(w,0) = 5|l =51, (2.55)

where we aim to minimize the difference between the ground truth, y, and the output of our model 4,,,
based on the trainable weights and bias. To minimize the cost function, NNs use an optimizing function,
the best-known being gradient descent. Gradient descent is a first-order iterative algorithm that updates the
model weights in the negative direction of the cost function, gradually reducing the error until a minimum

is reached.

A type of architecture that has been gaining momentum for some years now is the convolutional neural
network (CNN) [60], particularly for vision applications and, such as for this study, evaluation of time
series data. CNNs use convolutional layers as part of their architecture, which are layers based on the
mathematical notion of convolution. A convolution operation applies a sliding (learned) filter to the input,
to produce feature maps. These filters capture specific patterns in the data; for example, a horizontal line
filter might detect horizontal strokes typical of digits like 2, 4, 5, and 7, while a (semi-)circle filter might
identify rounded shapes present in digits such as 2, 3, 5, 6, 8, and 9. By combining these filters, the CNN
can infer the presence of digits like 2 or 5 based on the patterns detected. Further refinement is achieved by

incorporating additional filters tailored to recognize other distinctive features.

Information like which activation function to use, the kernel size, or the learning rate to use with the opti-

mizing function are called the model’s hyperparameters.

NN are quickly becoming the standard predictors for applications in all sciences and engineering. Once
they are trained and the optimal weights are learned, NNs are exceptionally fast at predicting and highly
accurate, given an informed architecture for each application. However, it is worth to mention that NN are
difficult to interpret, as they are somewhat of a black box. This problem may, nevertheless, be mitigated by
using architectures fit for each problem, particularly physics-informed neural networks (PINNs) [61], and

by inspecting the relation between the intrinsic parameters of the input and the NN’s output.

2.2.3.2.2 Field programmable gate arrays FPGAs are a subset of programmable logic devices (PLDs),

consisting of an array of programmable logic blocks and routing channels, as shown in Figure 2.10.

Each logic block is constituted by a 4-input look-up table (LUT) and a flip-flop, as shown in Figure 2.11. A
LUT is a data structure that contains pre-computed values of certain operations, in order to bypass the need
for real-time computations and speed up processes running on the FPGA. On the other hand, a flip-flop is
a digital memory circuit that switches between two states based on its input, storing information at a low

cost. A logic block has four LUT inputs, a clock input, and a single output.

FPGAs are able to perform multiple tasks simultaneously due to their hardware design, based on multiple
logic gates and flip-flops, where each task can have their own set. On the other hand, parallel computing

in CPUs or GPUs involves software, sharing hardware resources, and its efficiency is limited by the soft-

CHAPTER 2. INTRODUCTION 23

Input/Output Blocks

Logic Blocks

e
HE BN

Programmable
Interconnect

/
BN l\\

Figure 2.10: Architecture of an FPGA. Taken from [62].

| 4-Input | —
Inputs :: LBE;_U D FAip Ot
Haop

- Clock —e]>

Figure 2.11: Architecture of a logic block. Taken from [63].

ware’s ability to manage the concurrency of the tasks. Furthermore, this type of architecture allows for
custom digital circuits using hardware description languages (HDLs), meaning the FPGA architecture can
be customized using software, such as Vivado [64], making it so that it can become customized for partic-
ular tasks. The customization of the hardware of FPGAs is outside of the scope of this study, but it is an

interesting notion to explore in future work.

The main processing unit in recent FPGAs is the deep learning/data processing unit (DPU), but FPGAs also
have an integrated CPU. The DPU is able to concentrate on data-centric computations and data transfer

operations, while its CPU can handle application support tasks, such as interacting with the user.

In general, FPGAs are an affordable high-performance computing alternative to the traditional CPUs and
GPUs s, built to be faster and more energy-efficient. FPGAs are used in a multitude of industries, such as but
not limited to aerospace, automotive, broadcasting, data centres, medical and video and image processing

[65], usually for low-level bulk data processing.

In this study, we undertake the task of embedding an FPGA with a NN built for the detection of the early
inspiral of BNS mergers. FPGAs have been used in physics applications for many years, mainly in decision-
making tasks that need to be performed in the order of microseconds, such as the ones at CERN [66].

Similarly, GW searches need low-latency triggers to detect the signal coming before the merger happens,

CHAPTER 2. INTRODUCTION 24

in order to allow for MMA. As such, we are confident in the potential of FPGAs for GW searches.

2.3 Related work

Baltus et al. (2021) [67] used a CNN as a binary classifier for BNS merger signals, as a proof-of-concept for
a pipeline based on unmodelled prediction. The work used only the inspiral part of the signal, i.e. before the
merger happened, to train and test the model, aiming for early alert. Baltus et al. (2022) [68] complemented
the first study by introducing curriculum learning, starting to train the network with easier cases (bigger
frequencies as the maximum cut-off) and later leaning onto more difficult cases (smaller frequencies). The
work achieved much of what it aimed to do, but it had some limitations. The proposed model was very
shallow for very large data, resulting in insufficient constraints on the NN. The precision of the model was
not optimal, with many unexplained false positive alerts. The whitening portion of the data preparation took

a long time, which slowed down the whole pipeline.

The current state of the art for audio generation is a model called WaveNet [69]. This work takes ideas from
other revolutionary works, such as 1x1 convolutions [70] and residual NNs [71]. It also explores the idea of
gated activation, making it easier for the network to filter through irrelevant information. WaveNet has also
recently started to be adapted to be used as a classifier [72]. WaveNet takes a lot of state-of-the-art ideas for

NNs, so it is very complex and challenging to implement.

FPGAs have recently started to be used for DL applications [73] [74]. A focus has been recently put
on physics applications [75], with a relevant study by Que et al. on embedding FPGAs with graph neural
networks (GNNs) for high-energy applications [76]. These studies are all based on up-and-coming software

for programming the NN for deployment on the FPGA, with significant work needed to make them work.

2.4 Research aims: Low latency neural network deployment

Matched filtering is widely used in GW search pipelines, but NN-based pipelines are slowly entering the
scene, with their inference time being much faster than that of matched filtering [39]. The present study

similarly leverages NN models for their rapid classification abilities.

Furthermore, current GW search pipelines are run in CPUs and, more recently, GPUs. GPUs were designed
to render video and graphics, optimising them for matrix calculations. Thus, NN predictions can be made
quickly since NNs boil down to simple matrix calculations. The main processing unit in an FPGA, the
DPU, is also excellent at fast matrix multiplication. FPGAs also have an embedded CPU; the existence
of the DPU offloads networking and communication workload from the CPU, making it free to handle
application support tasks. FPGAs have a much lower upfront and upkeep cost than that of CPUs and GPUs
and a longer lifetime: FPGAs can last up to decades, whereas a GPU under heavy use, such as running GW
search pipelines, will last around 5 years [77]. Possibly the biggest advantage of FPGAs is their low power
consumption compared to other high-performance computers. The energy efficiency of FPGAs makes them

an even more affordable option, and they will have much less environmental impact than the current state-

CHAPTER 2. INTRODUCTION 25

of-the-art hardware. FPGAs are also able to perform multiple tasks in parallel thanks to their architecture.
Lastly, FPGAs have the capability to have their hardware redesigned to suit the needs of the NN application,

which will not be touched on by this study but is a great exploration point for future work.

This study aims to combine fast detection methods with hardware built for low latency to detect the early
inspiral of BNSs. The early detection of GWs from BNS mergers is crucial for advancing our understanding
of the Universe through MMA. By identifying these events promptly, we can trigger follow-up observations
across the electromagnetic spectrum, enhancing our ability to study these events and, consequently, their
individual components. This will not only deepen our understanding of these astrophysical phenomena but
also contribute to broader fields, such as dense matter physics, cosmology, and heavy element formation.
Through our innovative approach, we aspire to set a new standard for early detection, paving the way for

groundbreaking discoveries in the era of MMA.

Chapter

Methodology

After having defined the current state of the art for GW searches and our competing proposal, in this Chapter

we turn to the specifics that make this study so remarkable.

3.1 Working with time series data from binary neutron star coales-

cence gravitational wave signals

In this Section, we delve into working with time-series data extracted from BNS coalescence GW signals.

The data used are the foundation for training and testing our NN models.

3.1.1 Description of data

In this study, we employ the dataset used by Baltus et al. [68], as we are interested in enhancing the
performance, in terms of accuracy and speed, of this previous work. Each data sample consists of a one-
dimensional (1D) whitened time series, composed of solely noise in 50% of cases, and noise with a simu-
lated GW signal, also referred to as an injection, from a BNS coalescence added in the other 50% of cases.
Whitening is a data preprocessing step that involves transforming the data so that the spectrum of the signal
is flattened [78]. For each time series, a sample of what the detector signal would look like is generated for

each of the LIGO-Virgo detectors, using the same parameters.

The signals mimic GW signals from BNS coalescence with individual component masses between 1M,
and 3M., to encompass all the possible masses for NSs, as explored in Section 2.2.1.1. The sources are
uniformly distributed over the sky and spin effects were considered, including precession effects. The
waveform approximant used to generate the injections is SpinTaylorT4, and they are generated in the
time domain. Taylor waveforms are based on post-Newtonian theory, thus being ideal for approximating
the inspiral phase of a CBC [79]. In this study, we use only the early inspiral parts of the mergers, making a
Taylor waveform the most logical choice for simulating the effect of a GW. We use the SpinTaylorT4

approximate in particular as it simulates solely the inspiral phase of the signal.

CHAPTER 3. METHODOLOGY 27

The original injection is over 300 seconds of data. However, the data are divided into five subsets, with
cut-off maximum frequencies sampled from a Gaussian distribution with a standard deviation of 2.5 Hz and
mean of 40, 35, 30, 25, and 20Hz for each subset, as shown in Figure 3.1, each with 300 seconds of data,

corresponding to 155648 data points per sample. The averages of the minimum and maximum frequencies

in each data set are described in Table 3.1.

Minimum frequencies Minimum frequencies
Maximum frequencies Maximum frequencies
800 800+
600 1 600
€ S
3 =1
(o] o
o o
400 400
200 2001
0 " " y y " 0 y y y y
10 20 30 40 50 60 0 10 20 30 40 50 60
Frequency Frequency
(a) (b)
Minimum frequencies Minimum frequencies
800 Maximum frequencies 8001 Maximum frequencies
700
600 600+
= 5001 -
= c
3 3
O 400 © 400
300
200+ 2004
100
0 ; y ; ; 0 T y ;
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Frequency Frequency
(c) (d)
Minimum frequencies
8001 Maximum frequencies
600 A
IS
=3
o
© 400
2004
0 ; .
0 10 20 30 40 50 60
Frequency

(e)

Figure 3.1: Histogram of the minimum and maximum frequencies of the signals for training (a) data set 1,
(b) data set 2, (c¢) data set 3, (d) data set 4 and (e) data set 5.

CHAPTER 3. METHODOLOGY

Data set

Minimum frequency (Hz)

Maximum frequency (Hz)

1

R W

12.9
12.8
12.6
12.3
11.7

40.0
35.0
30.0
25.0
20.0

28

Table 3.1: Averages of maximum and minimum frequencies for each data set. The minimum frame is
chosen such that all signals are 300 s long.

Together with the time series, we have the parameters of the event, such as the component masses, the

component spins, the SNR, and the partial inspiral signal-to-noise ratio (PISNR) of each detector and the

network. The PISNR is a concept that is introduced by Baltus et al. [67] and describes the corresponding

SNR for the signal up until the cut-off point before the merger. We choose to use the PISNR as a main

parameter of the signals, instead of the usual SNR, as the merger and ringdown phases of the events are not

included in our data strains, and the PISNR ends up being the effective SNR of our data. Figure 3.2 shows
the difference in distribution between the SNR and the PISNR and Figure 3.3 shows the PISNR distribution
for each of the data sets. The highest PISNRs reach between 100 and 200, making these samples extremely

quiet when compared to samples including the merger phase of the signal.

CHAPTER 3. METHODOLOGY 29

1000 netSNR netSNR
netPISNR 1000 netPISNR
800 800
£ 600 £ 600
3 3
(s} (s}
(&} (o]
400 400
200 200
0 0
10! 102 10t 102 103
SNR SNR
(a) (b)
1000 netSNR netSNR
netPISNR 1000 netPISNR
800
800
g 600 € 600
3 >
o o
(] (@]
400 400
200 200
0 0
10t 102 10° 10t 102 103 104
SNR SNR
(c) (d)
1400 netSNR
netPISNR
1200
10001
€ 8001
>
[o}
(&}
6001
400
2001
0
10! 102 103 104 105
SNR
()

Figure 3.2: Histogram of the SNR and PISNR of the network of the detectors for training (a) data set 1, (b)

data set 2, (c) data set 3, (d) data set 4 and (e) data set 5. The x-axes are set to logarithmic scale. See Table
3.1 for a definition of the data sets.

CHAPTER 3. METHODOLOGY

400 - Maximum frequency 40
Maximum frequency 35
350+ B Maximum frequency 30
300. EEE Maximum frequency 25
B Maximum frequency 20
250
€
3
S 200
1501
100 1
“ | |“Il
0 II | I‘iiilii*lluhlﬂ.ll :
0 20 40 60 80 100

PISNR

Figure 3.3: Distribution of PISNR of the test subset for each of the data sets.

30

CHAPTER 3. METHODOLOGY 31

3.1.1.1 O3 Gaussian data

The NNs were trained on Gaussian-noise data, based on the theoretical predictions for observing run 3 (03)
of the LIGO-Virgo detector network. The O3 Gaussian noise is generated from the design-sensitivity PSD
for each of the three detectors, advanced LIGO (aLIGO) [80] and Advanced Virgo [31]. The generation
of the data was performed using the PyCBC package [81]. In particular, the noise time series were gen-
erated from the aLIGOaLIGO140MpcT1800545 and aLIGOAdVO3LowT1800545 theoretical PSDs,
respectively for the LIGO and Virgo detectors.

The data highly depends on the PSDs of each detector. The PSD is a measure of power over different
frequencies in a signal and it provides a comprehensive description of the noise characteristics of a detector.
Through the PSD of a detector, we can better understand its sensitivity at different frequencies. The PSDs
of the Advanced Virgo and aLIGO detectors and, in contrast, of the ET and cosmic explorer (CE) (still in

the planning phase) detectors are shown in Figure 3.4.

10—37]
Virgo (03)
39 LIGO Hanford (O3)

~ 107 —— LIGO Livingston (03)
lg —— Einstein Telescope
:; 10714 —— Cosmic Explorer
@
o
a 10—43 i
©
é_ 10—45 i
V)]
g :
2 107474
o

10—49 i

10 100 4096

Frequency (Hz)

Figure 3.4: PSDs of the alLIGO (Hanford and Livingston), Advanced Virgo, ET and CE detectors.

3.1.2 Data preparation

Some data preparation is done before the data are fed to the NNs. Firstly, the 1D data are loaded and stacked
such that we end up with a N x d x L tensor, where N is the number of samples, d is the number of detectors,
and L is the time series length. A visual representation can be seen in Figure 3.5. For the NNs described in

this study, we always use d = 3. Tests were done with d = 1 but they showed that the NNs perform better
ford =3.

The order in which the samples are stored is randomized, taking an array with numbers from 1 to n and

drawing without replacement and following that order.

We used approximately 70% of the data for training the NNs, 10% for validation and 20% for testing. A

CHAPTER 3. METHODOLOGY 32

d
/\—‘\)

L

Figure 3.5: Shape of the input data.

tensor like the one described above is created for each of the three (training, validation, and testing) batches,
where, for each data set, as described in Table 3.1, a total of N = 11200 samples were used for each class,
totalling 80000 samples for training, 10000 for validation and 22000 for testing the NNs.

3.1.3 Data storing and loading

To speed up training and testing, we carefully designed the way data is stored and then loaded into memory
for when we are ready to train the NNs and how much random access memory (RAM) is taken up by

loading up the data since we are using a GPU to train the NNs.

The data are laid out in the tensors described in Section 3.1.2, being divided into different batches because
of RAM constraints and, once all of the tensors are ready, they are all stored in . npz files from the NumPy
package [82]. This file type allows for multiple NumPy arrays to be stored in a single file and then be loaded
one by one according to a key. Using this type of data file allows for the data to be well organised as well

as quickly loaded into memory once it is needed for training and testing.

The GPU used to train the NNs for this study is the NVIDIA Tesla V100 [83], with 32GB of available
RAM. Thus, the memory is a limiting factor, and the data were stored in batches of 200.

3.2 Creating a neural network to distinguish BNS coalescence GW

signals from noise

The goal of creating a NN for this study is to have a binary classifier that distinguishes between when the
data contain only noise (the negative class) and when the data contain noise and an injected GW signal (the

positive class).

CHAPTER 3. METHODOLOGY 33

In this study, two NNs were trained and embedded into the FPGA. We started by recreating the NN de-
scribed by Baltus et al. [68], henceforth referred to as GregNet, to have a point of comparison, and then
explored an implementation of WaveNet, henceforth referred to as GWaveNet. Both of the architectures are

implemented using the PyTorch package [84].

3.2.1 Reference neural network: GregNet

We started by recreating the network described by Baltus et al.1,[68], with some slight changes, to have a
reference point. It is useful to first look at what types of transformations make up the architecture, as well

as other building blocks, such as activation functions, and later move to an overview of the full architecture.

3.2.1.1 Batch normalization

Batch normalization [85] is used to combat the problem of internal covariate shift, through normalizing
layer inputs. It normalizes the inputs to have a mean of zero and a standard deviation of one, stabilizing and

accelerating the training process.

The formula for batch normalization is given by:

x—E[x]
= - 3.1
Y Var[x]%—ey—i_ﬁ7 G-D

where x is the input data and E[x] and Var[x] are the correspondent expectation value and variance, € is a
given parameter used for numerical stability, ¥ and B are learnable bias parameters and y is the output of

the batch normalization layer.

3.2.1.2 One-dimensional convolution

1D convolutional layers are inspired by the mathematical notion of convolution and are now used broadly

in DL [86]. A way to visualize a 1D convolution is shown in Figure 3.6.

A layer with input size (N, Gy, Lip) will have output size (N, Cout, Lout), Where the output for each sample i
is given by:
Cin—1
y(Niacoutj) = b(Coutj> + Z W(Coutjak) *X(Nhk)a (3.2)
k=0
where N is the batch size, C is the number of channels, L is the length of the signal, b is the bias, w are the
weights, x is the inputs and y is the outputs. The operator * is the cross-correlation operator, defined for two

discrete functions f and g as:

(fxg)nl = i glm+nl, (3.3)

where f[m]| denotes the complex conjugate of f|m].

CHAPTER 3. METHODOLOGY 34

e
1DConv

X4 —_— —
1DConv - 1DConv

X7

Figure 3.6: Visual representation of an example of 1D convolutions. The cream blocks represent the input
data, with a length of seven and three channels. The orange and burgundy blocks represent hidden layers,
with lengths of five and three, respectively, and five and three channels. The brown block represents the
output. The blue outlines represent the 1D convolutions, with kernel size three.

The length of the output, Loy is given by:

L Lin + 2 x padding — dilation x (kernel_size — 1)
out —

1 3.4
stride th 34

where padding, dilation, kernel_size, and stride are parameters of the convolution!. The depth of the output,
on the other hand, is governed by the chosen number of output channels, alternatively called filters. The
kernel size of the convolution is how many data points the convolution can see at once. In the example in
Figure 3.6 the kernel size is three. The padding is how much is added to the edges of the output to extend
the input to the convolution. In Figure 3.6 padding is zero, but if we added one zero on each end of the
input and used those points as part of the convolutions, then padding would be one and so on. The dilation
is the spacing between the elements in the kernel. In Figure 3.6 the dilation is one, but if the input for the
first pass were x1, x3 and x5 instead, then the dilation would be two. The stride is how many data points the
network skips between each pass. In Figure 3.6 the stride is zero, but it would be one if the second pass was

for x4, x) and x5, instead of what it currently is, x5, x5 and x.

IThese concepts are difficult to explain with words. vdumoulin has comprehensive visualizations for each in two-dimensional
(2D), with the concepts being able to be generalised for 1D [87].

CHAPTER 3. METHODOLOGY 35

3.2.1.3 Activation functions

As introduced in Section 2.2.3.2.1, activation functions calculate the output of an operation layer based on

its inputs and weights.

Two different activation functions were used overall in the making of this architecture: the rectified linear
unit (ReLU) activation function for the hidden layers and the Sigmoid activation function for the activation
of the output of the NN. ReLU is a fast and simple activation function, linear for positive inputs, that
mitigates the vanishing gradients problem (where gradients become very small during backpropagation,
making the training process less effective), and thus is very popular as an activation function for hidden
layers. Sigmoid, on the other hand, is non-linear, outputting values between zero and one and thus being
a good choice for a final activation function in binary classification, also since it does suffer from the

vanishing gradients problem.
Given an input x, the ReLLU activation function [88] is described by:
ReLU(x) = max(0,x), (3.5)

and the Sigmoid activation function by:

1

Sigmoid(x) = o(x) Trexp(—)"

(3.6)

3.2.1.4 Maximum pooling

Max pooling is a downsampling technique that reduces the length dimension of the input. In max pooling
[89], a window slides over the input, similar to what is represented in Figure 3.6, and takes the maximum
value out of the values in its field of vision (kernel). The output layer for each sample N; with class C; is

given by:

y(Ni,Cj k) = max x(N;,Cj, stride X k+m), (3.7)

m=0,...,kernel_size—1

and the length of the output layer is once again given by Equation (3.4).

3.2.1.5 Flattening

Flattening is necessary as it converts the multi-dimensional output from the convolutional layers into a 1D

input, necessary for fully-connected layers.

The flattening layer [90] flattens the input with C channels into having only one channel, by taking each

channel and putting it at the end of the previous one in a single dimension, as shown in Figure 3.7.

CHAPTER 3. METHODOLOGY 36

X1

X 4 _— B — —
| H 1DConv H 1DConv Flatten

Figure 3.7: Visual representation of a flattening layer. We go from three channels in the burgundy blocks
into one channel in the brown blocks through the use of a flattening layer, that adds each channel at the end
of the previous one in 1D.

3.2.1.6 Linear layer

The linear, or dense, layer [91] follows the principle of the perceptron, explained in Section 2.2.3.2.1, by
using Equation (2.53).

3.2.1.7 Overview of the architecture

The architecture of GregNet is illustrated in Figure A.1 and further described in Table A.1 in Appendix A,
where the layers are the ones defined in PyTorch. The size of the padding and the dilation are omitted as
they are always set to zero and one, respectively. The full model, whose visualization is generated by the

torchviz package [92], can be seen in Figure 3.8, totalling 6,179,303 trainable parameters.

The optimizer used was adaptive moment estimation with maximum (AdaMax), a variant of Adam based
on the infinity norm, with a weight decay of 107> and the learning rate (LR) used was 8 x 107>, Weight
decay is a regularization technique used to penalize complexity, by multiplying the sum of squares of the
weights by a regularization parameter and adding it to the loss function. The Adam and AdaMax algorithms
are both used for stochastic optimization [93]. The AdaMax optimizer is based on Algorithm 1 in Appendix
B.

CHAPTER 3. METHODOLOGY 37

The chosen loss function was the cross-entropy loss [94], as the study is based on a classification task. The

cross-entropy loss, or logistic regression loss, is given by:

N
!
Ln=1n chlog eXp(n.c) (3.8)

l 'x7 - b b
®3) N leXp(x,”) e

where N is the batch size, C is the number of classes, and C = 2 for our case, w, is the weight of each class

¢, Xnc 1s the input of sample n and class ¢, and y, . is the ground truth of sample n and class c.

In the original work, the authors weighted the positive class in the BCELos s function by a factor of 0.4 to
reduce the number of false positives. We opted for using a different implementation of the cross-entropy loss
in PyTorch, the BCEWithLogitsLoss [95]. The BCEWithLogitsLoss function is more numerically
stable than using a sigmoid function followed by the plain BCELoss function implemented in PyTorch, as
it uses the log-sum-exp trick to fuse the two operations into one layer. The original weighting factor was

used by passing it through the pos_weight argument.

CHAPTER 3. METHODOLOGY 38

Figure 3.8: Full architecture of GregNet. We start by using batch normalization on the input. Next, we
perform a convolution with a kernel size of 16 and 32 filters, followed by a ReLLU activation function, and
a max pooling layer with a kernel size of four and a stride of four. Then, we perform a convolution with
kernel size of eight and 64 filters, again followed by a ReLU activation function and a max pooling layer
with the same sizes. This three-layered structure is repeated three more times, with convolution kernel sizes
four, eight and 16 and 128, 256 and 256 filters. Then, a flattening layer is applied, bringing the number of
channels down to one and the length of the hidden layer to up 37632. Lastly, two linear layers are applied,
with lengths of the output 128 and one, respectively, with a ReLLU activation function after the first one and
a Sigmoid activation function after the second.

CHAPTER 3. METHODOLOGY 39

3.2.2 GWaveNet

GWaveNet is inspired by the model by van den Oord et al. [69], called WaveNet. WaveNet was created with
the goal of audio generation and is the state of the art. We take inspiration from it based on the fact that our
time series detector data is audio-like. Additionally, the concept of using a WaveNet-like model for GW

data purposes has been briefly successfully explored [96, 97].

Once again, we will first go over the transformations and building blocks of GWaveNet, and then take a

look at the full architecture implemented. Let us go over these innovative ideas in chronological order!

3.2.2.1 Gate activation

A first example of gate activation was introduced in 1997 as a feature of the Long Short-Term Memory
(LSTM) architecture [98], incorporating a specialized gating mechanism that allows the NN to learn and
remember patterns in sequential data, such as time-series data. It enables the NN to selectively remember

useful information and forget useless one based on the context, acting as a logic gate.

Gate activation is implemented by passing the output of two independent instances, duplications of the
output at that point in the model, after passing through a causal convolution layer and a batch-normalization
layer into hyperbolic tangent (tanh) [99] and logistic sigmoid [100] activation functions. After this, the

output from each activation function is multiplied. This is illustrated in Figure 3.9.

The hyperbolic tangent activation function is given by its usual mathematical definition:

_ exp(x) —exp(—x)
tanh(x) = exp(x) Fexp(—x)’ 3.9

and the sigmoid function is the same one as used for the activation of the output of GregNet, defined in
Equation (3.6).

Gate activation is solely used as the activation for the Module Wavenet layers, whereas for the activation
of the hidden linear layers, we used the ReLLU activation function (Equation (3.5)), and for the activation
of the output, we used the sigmoid activation function (Equation (3.6)), as in GregNet. We use ReLU for
the linear layers due to its simplicity and efficiency, whereas gated activation is ideal for capturing complex
relations in sequential data. Using a combination of the two, we can make the most out of computational
efficiency while still maintaining the ability to model intricate data patterns.

CHAPTER 3. METHODOLOGY 40

X1 x,1
X — | x
z Tanh 2
I}
X3 X3
S—
X1 xlll
X - xll
2 Sigmoid 2
X3 x113

Figure 3.9: Visual representation of gate activation. The cream blocks are two instances of a duplicated
input. The orange blocks are hidden layers, with the first being a product of using the tanh activation
function on the input and the second of using the sigmoid activation function. These two are then multiplied,
in burgundy, and we get to an output, in brown.

3.2.2.2 1x1 convolutions

1x1 convolutions were first introduced by Szegedy et al. in 2014 as a feature of GoogLeNet [70], to reduce
dimensionality and perform feature combination. 1x1 convolutions can be seen as a non-linear counterpart
to the usual max-pooling layer, but pooling depth-wise instead of length-wise, or to the usual flattening
layer, as they can learn non-linear relations and lower the number of input channels without being compu-

tationally costly.

1x1 convolutions arise from usual convolutions, with kernel size one and number of output channels smaller
than the number of input channels. In our case, we choose to set the number of output channels of the 1x1
convolution to one. 1x1 convolutions earn the name "1x1" as they are usually implemented in 2D problems,
but in our case, they are used in 1D convolutions: as such, the term "1x1" is an abuse of notation, kept for
consistency with the original work. 1D convolutions of kernel size one are performed, looking at each data

point individually and computing the weighted sum for all channels. This is illustrated in Figure 3.10.

CHAPTER 3. METHODOLOGY 41

X1 I V1
X2 I V2
X3 I Y3
X4 — Va

L M 1x1 ConvlD

X5 Vs
X6 Ye
X7 Y7

Figure 3.10: Illustration of a 1x1 convolution. The cream blocks represent the input, with a length of seven
and three channels. The 1x1 convolution is represented in burgundy, and it has a kernel size of one and one
filter. This results in an output, in orange, with the same length but with a new depth of one.

3.2.2.3 Skip-connections

Together with gate activation, skip-connections help the NNs learn and remember relations in the data. They
were first introduced in 2015 by He et al. as the main selling point of the residual neural network (RNN)
architecture [71], in order to explore deeper NN models without them forgetting about the nature of the

input.

Skip-connections provide shortcut connections that skip certain layers of the NN, allowing the network to
learn the differences between input and output, also referred to as residual mappings, as opposed to the full
mappings. This is illustrated in the original paper, as well as in Figure 3.11, where the x identity is fed to

the to the NN again after it has undergone other transformations, in order to help it remember its nature.

CHAPTER 3. METHODOLOGY 42

X

Y

weight layer
F(x) J relu

weight layer

X

identity

Figure 3.11: Illustration of a skip-connection. The initial input x is saved and then added to the output
of the second weight layer in order for the model to remember the input identity and mitigate the risk of
overfitting. Taken from [71].

3.2.2.4 Dilated causal convolutions

Causal convolutions were introduced in 2016 by van den Oord et al. [69] as a way to treat temporal data
such that the model will not violate the time ordering of the samples. A comprehensive visualization for

causal convolutions is included in their paper and can be seen in Figure 3.12.

® ® & 5 S 5 0 5 & 9 0 Output

O O 0O O 0O O O O 0 O O

Hidden Layer

QO 0 0 0 0 0 0 O 0 O O

Hidden Layer

O 0 0 0 0 0 O O 0 O O

Hidden Layer

© © 0 06 © © 6 © © 0 o

Input

Figure 3.12: Visual representation of a causal convolution. For each new hidden layer, time laws are
respected, as we can see from there not being any arrows going from right to left. Taken from [69].

Next, dilation, introduced in Section 2.2.3.2.1, is added to the convolutional layers with exponentially
growing values for each of the convolutions. This approach allows the NN to capture a larger context of the
signal without increasing the computational load significantly. As such, the NN’s ability to detect complex

patterns over long time scales in the data is enhanced.

The dilated causal convolution effect is achieved by leveraging padding and dilation in a usual convolution

(see Section 3.2.1.2) and a code implementation for PyTorch is shown in Listing C.1 in Appendix C.

An earlier implementation of WaveNet for GW searches [97] opted against using the causal convolutions
feature. However, we decide to include it, since it makes for a more closely PINN, as it forces the NN to

follow time laws.

CHAPTER 3. METHODOLOGY 43

3.2.2.5 Overview of architecture

The architecture of the GWaveNet model is as described in Table A.2 in Appendix A, where the layers
are the corresponding functions in PyTorch and ModuleWavenet is defined as described in Listing C.2 in
Appendix C. The ModuleWavenet blocks are further illustrated in Figure 3.13, where i is the layer counter,
from O to 6. The full architecture of the NN is displayed in Figure 3.14, totaling 522,598 parameters.

(x)
/)
4 \4
Convld Convld
#Output channels = 64 #Output channels = 64
Kernel size = 16 Kernel size = 16
Stride = 2 Stride = 2
Padding = (kernel size — 1) x dilation Padding = (kernel size — 1) x dilation
Dilation = 2° Dilation = 2!

Figure 3.13: Architecture of a ModuleWavenet block. An input x, in cream, gets duplicated and each copy
gets fed into a causal convolution block, in orange, followed by a batch normalization layer, in burgundy.
Then, one of the outputs gets fed into a tanh activation function, in brown, and the other into a sigmoid, also
in brown, and the two instances are multiplied, in green. This is the main output of the ModuleWavenet
block, in dark blue. Still, the output also gets added to a copy of the initial input, in light blue, and that is
saved as the residual output of the block, in dark blue.

We use the Kaiming uniform weight initialization method in order to initialize the weights of the filters of
our convolutions, so that training becomes more stable. This method was introduced in 2015 by He at al.
[101] in order to address problems with non-linearities that older weight initilization methods had and it is
particularly useful for NNs using the ReLU activation function. As such, we use weight initialization after
the 1x1 convolution and before the first ReLU unit. The weights will have values sampled from a uniform

distribution between —b and b, the bounds, where:

b = gain x 4 | 3, . (3.10)
fan_in

The gain for using the ReLU function is v/2 and fan_in is the number of input units. This weight initializa-

tion layer is placed after the 1x1 convolution and before the expected ReLLU activation function.

CHAPTER 3. METHODOLOGY 44

We opted for using the AdamW optimizer [102], since recently it has been shown that models trained with
Adam may not generalize well. Thus, AdamW emerges as an improved version of Adam where weight
decay is performed outside of the moving averages and it is only proportional to the weight itself. AdamW
is based on Algorithm 2 in Appendix B [103].

The chosen loss function was the cross-entropy loss (Equation (3.8)), the same one as used for GregNet,

since it is a widely used cost function for this type of application.

CHAPTER 3. METHODOLOGY 45

Figure 3.14: Full architecture of GWaveNet. The input goes through seven Module Wavenet blocks, de-
scribed in Figure 3.13, and the residual outputs of each are saved and added at the end of the module blocks.
After that, a 1x1 convolution is used to bring the number of channels to one, followed by a ReLLU activation
function. Next, two linear layers are applied, with a ReLU in between, and final lengths of 50 and one.
Lastly, a sigmoid activation function is used to distribute the predictions between zero and one.

CHAPTER 3. METHODOLOGY 46

3.2.3 Hyper-parameter tuning

Having the NN architecture set, one still needs to find its optimal hyper-parameters for the application, as
introduced in Section 2.2.3.2.1. This means deciding on hyper-parameters, such as the LR during training,
what type of activation functions should be used where, how many filters should be used in the convolu-
tions, or even what the minibatch size should be within the constraints of the available hardware. Hyper-

parameters are everything to do with how the training process goes.

During the early stages of this project, the hyper-parameter optimization framework Optuna [104] was
used. Optuna does a hyper-parameter search automatically, given certain constraints, based on the ML
algorithm of choice. It also has pruners implemented, making unfruitful trials be pruned without having to
run the full algorithm. Even though Optuna is very helpful, with the amount and size of data we are using,
training our models quickly started taking too long to be able to use Optuna, since its point is to try different
combinations of hyper-parameters, to find the best one. After working with it for this study, we found that
indeed Optuna is better-suited for ML models that take a shorter time to train, such as tree-based models or
shallower NNs.

Thus, as a trade-off between high performance and computational complexity, the final hyper-parameters

presented were found by hand, starting on the foundation that the trials with Optuna left us.

3.2.4 Training features

As mentioned in Section 3.1.2, our data was divided into training, validation, and testing portions. Our
training procedure followed this division as well. The NNs were trained for a certain amount of epochs
(iterations over the entire training set), where, for each, the NN saw and learned from the training set, and
saw but did not learn from the validation set, i.e. the weights were not adapted according to it. Thus, every
time the NNs saw the validation set, it was as if they were seeing it for the first time. This is done to
control the performance of the NN and avoid overfitting. Overfitting is a term used for when a supervised
learning algorithm fits too well on the data that it is seeing and learning from and does not perform equally
on data that it is seeing for the first time. This can be observed through the loss function: as the training
loss continues to decrease, the validation loss starts increasing, indicating that the model is not generalising
well. After all of the epochs and once training is finished, the NNs were tested on a completely new set of
data, the test set. This approach is used commonly in ML, as the validation set is used for hyper-parameter
tuning purposes. The final results are, thus, based on the test set and are shown in Chapter 4 are all based

on the performance of the NNs on this set.

To improve performance and avoid overfitting, our training procedure implemented the methods described
in the following Sections.
3.24.1 Curriculum Learning

To push our NNs to be able to detect a signal as early as possible, curriculum learning [105] was used.

Curriculum learning is a training feature where the NN first gets shown the easy cases and then gets shown

CHAPTER 3. METHODOLOGY 47

progressively harder cases to detect.

In this study, curriculum learning was implemented by first showing the NNs cases where we were closer
to the merger of the BNSs in time, i.e. at higher frequencies, and then showing cases further and further
away, i.e. at lower frequencies, with the specifications shown in Table 3.1. The standard procedure for using
curriculum learning for GW searches is through starting with higher SNR and lowering it progressively

[106], so this method, also implemented by Baltus et al. [68], is a new feature.

Thus, the NN initially trained on 16000 samples and validated on 2000 samples from data set 1 for a certain
amount of epochs. Then, the already trained NNs were trained on 16000 samples from data set 1 and 16000
samples from data set 2 and validated on 2000 samples from data set 1 and 2000 samples from data set 2,
and so on, until, on the fifth run, the NNs were trained and validated on data from all data sets, 1, 2, 3, 4

and 5. At the very end, the NNs were tested on 4400 samples from each of the data sets.

3.2.4.2 Adaptive learning rate

During this study, it was verified that it was harder and harder for GWaveNet to not overfit as more data sets
were introduced, and overfitting was happening much earlier. As such, an adaptive LR was introduced for
the training of this model. The LR starts as 2 x 1073 and drops as the runs go with LR = LR;;,1 /#data set,
where the data sets go from 1 to 5.

3.2.4.3 Early stopping

To further avoid overfitting, two early stopping algorithms were implemented.

The first algorithm consists of initially giving an arbitrarily large number as the maximum number of epochs
that the NN will train for, and then stopping the training earlier, depending on the performance of the NN
on the validation set. In particular, the training would stop if the validation loss of epoch e, Jyajidation (€) Was
a minimum delta value, €, away from the best (i.e. lowest, since we want to minimise the loss), JB:ﬁhaﬁon
for more than or equal to n patience epochs, or if the validation loss was more than € worse than the best

validation loss for more than or equal to n patience epochs. Mathematically, we stop training if:

|Jvalidation (€) — Baelsitdation(ebemﬂ <é& (e— ebeSt) >n. (3.11)

For our NNs, € = 0.0001 and n = 2, with the maximum number of epochs to train for set as 20.

The second early stopping algorithm consists of getting the best model post-training. For each run, even if
the first algorithm did not stop the run early, this algorithm goes and picks the model at the epoch where the
validation loss was the best (i.e. lowest) and saves that model, to then be loaded on the next run, and so on,
until the fifth and last round, where the best model for that run is also saved, and the test set is tested on this

best saved model.

CHAPTER 3. METHODOLOGY 48

3.3 Embedding a field programmable gate array with a neural net-

work

The goal of embedding an FPGA with our pre-trained NN is to have it running on low-latency inference
mode, to detect the signals as early as possible. Furthermore, the environmental impact of an FPGA is

significantly lower than a GPU, as well as its energy consumption.

Details about the FPGA, as well as the whole process needed to embed the NNs into it, can be found on

Appendix D.

3.3.1 Specifications of the field programmable gate array

The FPGA used for the study is part of the Advanced Micro Devices (AMD) Kria KV260 Vision Al Starter
Kit [107]. As such, we opted for using the software associated with it, Vitis Al [108], for the NN deploy-

ment.

The DPUCZDXASG intellectual property (IP) is a standalone module and can be used in any FPGA, hav-
ing, however, been specifically designed for the Zynq UltraScale+ MPsystem-on-a-chip (SoC), included
in the Kria KV260, and it is optimized for pre-built vision applications based on CNNs. A diagram of
the multiple blocks that make up the DPUCZDXS8G is shown in Figure 3.15. The DPU is composed of a
high-performance scheduler module, a hybrid computing array module, an instruction fetch unit module,
and a global memory pool module. The DPUCZDXS8G IP is implemented in the programmable logic (PL)
of the Zynq UltraScale+ MPSoC with direct connections to the processing system (PS). It requires acces-
sible memory locations to read and store the data used for the NNs. A program running on the application

processing unit (APU) also needs to connect with the DPU for data transfers. [109]

The hardware architecture of the DPUCZDXS8G is outlined in Figure 3.16. After start-up, the DPUCZDX8G
fetches instructions from off-chip memory to control the given program that was passed on to it. The on-chip
memory focuses on more particular low-latency instructions, like buffer activation functions and interme-
diate feature maps. The PEs use the built-in multipliers, adders, and accumulators to further accelerate the
applications. [110]

The DPUCZDXS8G IP can be configured with different provided architectures, namely B512, B800, B1024,
B1152, B1600, B2304, B3136, and B4096. These architectures are related to the parallelism of convolu-
tions, with the most recent, fastest, and most flexible one being B4096, at 4096 peak operations per cycle,
and thus the one used for this study. [111]

CHAPTER 3. METHODOLOGY 49

-
=

Hybrid Computing Array

© AMD (2023)

X22327-072219

Figure 3.15: Block diagram of the DPUCZDXS8G, with its distinct components, namely the APU, the DPU
and the processing engine (PE). Taken from [109].

Off-Chip Memory

Processing System (PS)

CPU Memory Controller

f [
4 y

-

Fetcher | Data Mover |..‘-a:’ 5

; 33

orcpen]38
=

[Ee]

Dispatcher | BRAM Reader/Writer | 5 <

© AMD (2023)

X22332-022420

Figure 3.16: Hardware architecture of the DPUCZDXS8G. Taken from [110].

CHAPTER 3. METHODOLOGY 50

3.3.1.1 Comparison with state-of-the-art hardware

The CPU used for the inference testing in this study was the AMD EPYC 7551P 32-Core Processor CPU
[112]. At launch date, it cost around 9 times [113] as much as the AMD Kria KV260 [107] and it has an
expected lifetime of around 5 to 10 years. The GPU used for inference was the NVIDIA GeForce GTX
1080 GPU [114]. At launch date, it cost around three times [115] the amount of the AMD Kria KV260.
The expected lifetime is 3 to 5 years. However, both CPU and GPU technology quickly advance. These
last-generation devices will become obsolete even before their lifetime is over, unable to compete with other
newer devices. In fact, the GPU used for inference is now, 8 years after its launch, considered obsolete and
the one we used will be replaced soon. The Kria KV260, on the other hand, has an expected lifetime of
around 10 to 15 years. Additionally, because it is customizable, it is easy to make changes to it so that it is
always competitive and does not quickly become obsolete. The carbon footprint of using FPGAs instead of
these traditional processing units is significantly lower, not only because it uses less energy when operating,

but also thanks to their effective lifetime.

3.3.2 Inspecting model compatibility

To run our NNs on the FPGAs, we first need to prepare the models, by first checking if they will be com-
patible with the FPGA and the chosen architecture, as described in the present Section, and then quantizing

and compiling them, as outlined in Section 3.3.3.

To indeed check if our models are compatible with the DPU, we pass our models through the model in-
spector provided by AMD, with some slight changes to their code. Once again, all details are outlined in

Appendix D.

The first modification needed for the models to work on the FPGA is that all layers that are based on 1D
transformations be passed onto their 2D versions. This is such because the Kria KV260 is designed for
vision applications and as such it is only prepared for operations with 2D samples. The 2D version of the
NN will henceforth be referred to as their original names with "2D" at the end. This could be reworked in

future work by redesigning the FPGA hardware to suit these needs.

The output of the model inspector for GregNet2D and GWaveNet2D can be observed respectively in Figures
3.17 and 3.18. The black ellipses represent the input and output, the red ellipses represent the layers running
on the CPU of the FPGA, and the blue ellipses represent the layers running on the DPU of the FPGA. We
want to maximize the number of layers running on the DPU, since this is specifically designed for data
processing and thus should perform inference of the NN faster. However, and because the FPGA is also
able to run processes on the DPU and the CPU at the same time, on top of being able to perform multi-

threading, we are not necessarily concerned with making every layer run on the DPU.

Since our goal is both to have a good performance and a fast performance, changes were made to the NNs

for more layers to be able to run on the DPU instead of the CPU, to make the process faster.

For GregNet, the first three layers, that deal with reshaping the data from 1D to 2D, are flagged as not able

CHAPTER 3. METHODOLOGY

typenndet iny
name:GregNet2D:

assigned dovice:
out shaperl, 3

type:nndct_reshape. -
samo OrSgeizB, SregNoiznine o 5

out el 5155658, 1

typenndct_permute B
e GrogNet2D: GrogNotZD/rot. 9 s, transpose 0

out. shape“[[l, 195648, l, kil

med deviceicp:

- B type:nndct_cast T
7 name: stgNsLZD Gregeni775 ™~
(

N out ,)mp@ IRCCITE

- fypemndct batch nomm —
D. 1 D)
Sgned e am
— out shaper1, 135648, 1, 31) —

o typemndct_relu
Q same Grogitrz8) CregNoD oL slpior 15
e device:dpu

- out shapelil, 155633, 1, 3211

i

o Fpemndet maxpool *\\
C >
T - —

out Shapmitl 53608 52

— oinndet_conv2d
B R ~

assigned device:dpu
out Shapedl1, 38901, 1, 6411 -

assigned device:dpu

typemndet relu R
(name:GragNet2D, GragNet2D/Rel Ulrelulret. 19 ~
~ out shaper (1, 38801 1. 6411

e devica g

_ typemndet maxpool
o pox —
out Shaped(1, 9725, 1, 641) g

out hapedl1, §72, 1, 1281) -

typeimndet.relu —
name: Gl‘egNecZD GrsgNstQD/l\eLU[relu]/mc 23 ™~
igned devic

out Shapmitl 8755, {Paan

NarpriYRomndet comv2d A
Q o

< o TSI \>

signed dovico:dpu
- out shape:([1, 2430, 1, 128]]

type:nndet, co
(name:GregNet2D: rmg\mzn/r(,..vz(nl onvélrat.25
assiqned device:dpu.
— out shaper1, 2423, 1, 3561)

\//

- pe:nndet_relu —

namo-GrogNot2. orogNe G /RoLUreluliot 27
assigned device:dpu

out shapedl1, 2423, 1, 25611 -

— _ type mndct_maxpool \\\\
< oo AT S
— out slnpa 1" 605, 1, 25611 ///
— —

(appVpemndet convzd N . TN
i et)

~—_ out'shaped, 390, 1, 2561)

— ypemndct relu ‘
Q name:GrogNet2D GragoZDMeLUreubot 31
e dsvicodny

//

_ an SIS

iypemndot_maxpool —
assigned deviceidp

- out shaped[1, 147, 1, 25611

type:nndot_reshape

N £2D/1 3: -
< gt D

typemnndct_den: ~—
name:GregNet2D: GrsgNsﬂD/Lmsar[f:l]/ru 35 N
assigned deviceic D
ut shape:itL, 13811 _—
penndetr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>