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Abstract
We say that an abelian variety satisfies the Hasse principle if it has a Q-rational point whenever it has R-
rational point and a Qp-rational point for all primes p. For every abelian variety it is possible to construct
its Tate-Shaferevich group. The elements of this group correspond with twists of the abelian variety that
violate the Hasse principle. So the study of abelian varieties that violate the Hasse principle is equivalent
to the study of their Tate-Shafarevich group.

In a recent paper by Flynn and Shnidman (2022) it is shown that for any prime p > 3 there exist
absolutely simple abelian varieties over Q with arbitrarily large p-torsion in their Tate-Shafarevich group.
In this thesis we will examine how Flynn and Shnidman achieved this result by constructing explicit µp-
covers of certain Jacobians that violated the Hasse principle. Furthermore, we will explore how we can
generalize these results to arbitrary integers n and what the µn-covers of such Jacobians look like in this
case.

Additionally, we examine the case p = 2 by approaching a paper by Lemmermeyer and Mollin (2003)
using the language of µ2-covers and contrasting the results we acquire with the results of the paper.
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1 Introduction
In mathematics one often encounters situations where a global result can be turned into a local one or vice
versa. An example of turning a local result to a global one are partitions of unity, which are used in analysis
and geometry to combine a collection of locally defined functions into a globally defined one. Generally
however, it is more common and easier to turn a global condition into a local condition. One such example
occurs in number theory when looking at rational solutions of equations. The rational numbers embed
into the real numbers and the p-adic numbers for all primes p, so it is possible to find a local solutions
over the real numbers and the p-adic numbers from global rational solutions. Naturally, the question arises
whether it is possible to reverse this process and construct global solutions from local solutions. We say
that an algebraic variety Y satisfies the Hasse principle if Y (Q) ̸= ∅ whenever Y (Qp) ̸= ∅ for all primes
p ≤ ∞ of Q. The Hasse-Minkowski theorem shows that the Hasse principle holds for quadratic forms over
the rational numbers, but in general the principle does not hold. An example of a violation of the Hasse
principle by Selmer is the cubic form 3x3+4y3+5z3 = 0 [22]. This particular is a genus one curve C, and
thus represents a torsor under its Jacobian, the elliptic curve E = Pic0(C). For elliptic curves the Tate-
Shafarevich group X(E) parametrizes the locally trivial E-torsors and [C] is thus a non-trivial element
of X(E), whose order in X(E) turns out to be 3. Studying the Tate-Shafarevich group thus provides
an opportunity to study varieties which violate the Hasse priniciple. For an abelian variety A over Q the
Tate-Shafarevich group X(A) parametrizes the A-torsors which violate the Hasse principle.

In this thesis we will be looking at the paper "Arbitrarily large p-torsion in Tate-Shafarevich groups."[5].
In this paper the authors Flynn and Shnidman look at Jacobians of curves of the form yp = x(x−1)(x−a).
They construct µp-covers of these Jacobians and show that for certain values of a they can twist these covers
to find covers that violate the Hasse principle. This shows that for any prime p there exist absolutely simple
abelian varieties over Q with arbitrarily large p-torsion in the Tate-Shafarevich group.

The main result of the paper is the following theorem. To state the theorem we define
(
q
l

)
p
= 1 if q is

a p-th power in Q∗l , otherwise we define
(
q
l

)
p
= −1.

Theorem 1.1. Let p > 3 be a prime. Let g = p − 1 and let u, v be integers not divisible by 3. Consider the
variety Ã ⊂ A2g+1

Q defined by the equations

ypi = xi(xi − 3uk)(xi − 9vk) and zp =
g∏
i=1

xi(xi − 3uk). (1)

for i = 1, . . . , g. The symmetric group Sg acts on Ã and the quotient Ã/Sg birational to a unique g-dimensional
abelian variety A over Q.

Let U be the set of primes dividing 3puv(u− 3v). Suppose k is the product of the primes p1, . . . , pt, which
are distinct primes not contained in U , that satisfy the following conditions:

1.
Ä
pi
pj

ä
p
= 1 for all i ̸= j in {1, 2, . . . , t},

2.
Ä
pi
q

ä
p
= 1 for all i in {1, 2, . . . , t} and all q ∈ U ,

3.
Ä
q
pi

ä
p
= 1 for all i in {1, 2, . . . , t} and all q ∈ U − {3},

4.
Ä

3
pi

ä
p
= −1 for all i in {1, 2, . . . , t}.

Let I be any proper non-empty subset of {1, . . . , t} and let q =
∏
i∈I pi. Let X̃ ⊂ A2g+1

Q be defined by the
equations

ypi = xi(xi − 3uk)(xi − 9vk) and qzp =
g∏
i=1

xi(xi − 3uk). (2)

for i = 1, . . . , g. Then X̃/Sg is birational to an A-torsor X that violates the Hasse principle, and the class
of X in X(A) has order p.

This theorem gives us an explicit construction of A-torsors X which violate the Hasse principle.
From this theorem we can deduce that the Tate-Shafarevich groups of simple abelian varieties over Q

have arbitrarily large p-torsion.
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Theorem 1.2. For every prime p and every integer k ≥ 1, there exists an absolutely simple abelian variety A
over Q with #X(A)[p] ≥ pk.

Since this gives us an explicit construction we can construct varieties whose Tate-Shafarevich group
contains elements of arbitrarily large p-torsion. A minimal example for p = 29 of such a variety is given
by the authors.

Example 1.3. Let X̃ ⊂ A28
Q × A28

Q × A1
Q be the variety defined by the 28 equations

y29i = xi(xi − 3 · 386029093 · 545622299)(xi + 9 · 386029093 · 545622299)

for i = 1, . . . , 28, as well as the additional equation

386029093zp =

28∏
i=1

xi(xi − 3 · 386029093 · 545622299).

Then X̃/Sg is birational to a torsor X for a 28-dimensional abelian variety A over Q. Moreover, X violates
the Hasse principle and represents an order 29 element of X(A).

We will try to generalize these results and examine n-torsion in the Tate-Shafarevich group for integers
of the form n = p1 . . . pt where p1, . . . , pt are distinct primes. We will construct µn-covers in this case and
we will examine their properties. In particular, we will find that these µn-covers decompose uniquely into
µpi -covers by looking at how the µn-action on our µn-covers decomposes into µpi -actions. This approach
is based on equivalence of categories where we describe a µn-cover of a variety Y in terms of invertible
sheaves on Y .

We will start in Section 2 by going over the prelimaries we will need for this thesis. We will then
move on to Section 3 where we introduce µp-covers and µp-descent on these covers. We will be following
the contents and structure of [5] for this section. This section serves to introduce notation and various
constructions we will use. Since this section is quite technical in the original paper, we will omit most of
the proofs and refer to the paper for the proofs. In Section 4 we will specialize the discussion to Jacobians
of superelliptic curves. We will construct the µp-covers of such Jacobians and describe what the maps for
µp-descent look like.

In Section 5 we prove Theorem 1.1. We show that the torsors violate the Hasse principle by showing
that they contain Ql-points for all primes l ≤ ∞, but no Q-points. This goes well for almost all primes, but
for the primes l = pi we have to be careful. Here we show that locally at these primes the torsion points
D0 = (0, 0)−∞ and D1 = (3uk, 0)−∞ on J generate a certain quotient of J(Qpi) for each prime pi and
use the special prime 3 to show these local points do not glue to a global point. The choice of 3 here is not
special. In Section 6 we use the Chebotarev density theorem and a result by Masser to show that for any
t ≥ 0 we can find suitable primes p1, . . . , pt for Theorem 1.1 and that the variety A is absolutely simple.
We can then use Theorem 1.1 to deduce Theorem 1.2.

In Section 7 we will generalize the results of Flynn and Shnidman and examine µn-covers for an integer
n which is a product of distinct primes p1, . . . , pt. We will show that these µn-covers decompose into µpi -
covers in a unique manner for all the primes pi. We also try extend these results to find arbitrarily large
n-torsion in the Tate-Shafarevich group and discuss where we fall short of proving this. Lastly, in Section
8 we apply the theory of µp-covers to the case where p = 2. In a paper by Lemmermeyer and Mollin [13]
they prove that the elliptic curve y2 = x(x2 − k2) has arbitrarily large 2-torsion in the Tate-Shafarevich
group for certain k. We examine their results through the lens of µ2-covers and discuss the differences of
working with µ2-covers and µp-covers for odd primes p.
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2 Preliminaries

2.1 Some scheme theory
We will use the language of algebraic varieties and schemes throughout this thesis, which can be found in
Section I and Section II of [7]. In this section we will highlight some specific terms and constructions that
will come up in the paper.

2.1.1 Group schemes

In this section we will go over the concepts of group schemes and introduce the main example of a group
scheme that we will be working with.

For this let us recall the definition of a group.

Definition 2.1 (Group). A group is a pair (G,m), where G is a set and m : G × G → G is a map of sets,
called the multiplication map, satisfying the following properties:

1. The map m is associate, i.e., we have that m(g,m(g′, g′′)) = m(m(g, g′), g′′) for all g, g′, g′′ ∈ G.

2. There exists a unique element e ∈ G such that m(g, e) = m(e, g) = g for all g ∈ G.

3. For every element g ∈ G there exists an element i(g) ∈ G such that m(g, i(g)) = m(i(g), g) = e.

This gives us an element e ∈ G called the identity element and a i : G → G called the inverse map.
Therefore, we can call a set G a group if we can specify that the quadruple (G,m, e, i) exists and satisfies the
above axioms.

With the above definition of a group we define a group scheme as follows:

Definition 2.2 (Group scheme). A group scheme over S is a pair (G,m) where G is a scheme over S and
m : G×S G→ G is a morphism of schemes over S such that for every scheme T over S the pair (G(T ),m) is
a group.

We get the morphisms of schemes over S, e : S → G and i : G → G, corresponding to the identity and
inverse morphism respectively, such that for every scheme T over S the quadruple (G(T ),m, e, i) satisfies the
above axioms equal to the definition of a group.

An important group scheme that is related to the primary group scheme that we will be working with
is the multiplicative group scheme over F .

Example 2.3 (Multiplicative group scheme). Let F be a field. The multiplicative group scheme over F is
defined as Gm,F := SpecF [T, T−1]. The morphism m : Gm,F ×F Gm,F → Gm,F is defined by the homomor-
phisms:

F [T, T−1] → F [T, T−1]⊗F F [T, T−1], (3)
T 7→ T ⊗F T. (4)

The identity morphism e : SpecF → Gm,F is then defined by the homomorphism

F [T, T−1] → F, (5)
T 7→ 1, (6)

and the inverse morphism i : Gm,F → Gm,F is defined by the homomorphism

F [T, T−1] → F [T, T−1], (7)
T 7→ T−1. (8)

The primary group scheme we will be working with is the F -group scheme µn of the n-th roots of
unity, which is a closed subvariety of the multiplicative group scheme.
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Example 2.4 (Roots of unity). Let n be a positive integer. We define the n-th roots of unity over F as the
group scheme over F given by µn,F := Spec(F [T ]/(Tn − 1)). The morphism m : µn,F ×F µn,F → µn,F is
defined by the homomorphisms:

µn,F → µn,F ⊗F µn,F , (9)
T 7→ T ⊗F T. (10)

The identity morphism e : SpecF → µn,F is then defined by the homomorphism

µn,F → F, (11)
T 7→ 1, (12)

and the inverse morphism i : Gm,F → Gm,F is defined by the homomorphism

µn,F → µn,F , (13)
T 7→ T−1. (14)

Definition 2.5 (Algebraic variety). An algebraic variety V over a field F is a geometrically reduced separated
scheme of finite type over F , where we omit the nonclosed points of the base space.

With this definition in mind we define a group variety as:

Definition 2.6 (Group variety). Let F be a field. A group variety over F is an algebraic variety V over F
together with regular maps

m : V×FV → V (multiplication), (15)
i :V → V (inverse), (16)

and an element e ∈ V (F ) such that the structure on V (F̄ ) defined by m and i is a group structure with
identity element eV = e.

2.2 Abelian varieties
In this section we will introduce abelian varieties and introduce important concepts and tools related to
them. The approach we take will be based on Milne’s notes on abelian varieties [15].

Definition 2.7 (Abelian variety). An abelian variety A is a group variety that is complete.

As the name implies the group structure on A turns out to be commutative, but to show this requires
some technical work, so we will refer to Milne’s notes [15, Corollary I.1.4]. We will write the group law
additively and the identity element e will be denoted by 0.

We will introduce some basic properties of abelian varieties. A property that all group varieties share,
and thus abelian varieties, is that they are smooth. For this let V be a group variety over a field F . We can
define the right translation ta by an element a ∈ V as the composite

V → V × V
m−→ V, (17)

x 7→ (x, a) 7→ x+ a. (18)

On the level of points, this map is given by x 7→ x+a. This map is an isomorphism V → V with inverse ti(a).

Lemma 2.8. Every group variety V is smooth.

Proof. Every variety contains a smooth dense open subvariety U . Using translates we can cover the whole
of V with U .

Another property of abelian varieties is that they are projective. Similar to showing commutativity,
proving this is not trivial and we refer to Milne’s notes [15, Chapter I.6].

We can now define morphisms of abelian varieties as follows.

Definition 2.9 (Homomorphisms of abelian varieties). A homomorphism f : A → B is a morphism of
varieties and also a group homomorphism. We define the kernel of f as the fibre of f over 0B , i.e., it is the
set ker f = f−1(0B).
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A particular type of homomorphisms we are interested in are isogenies.

Definition 2.10 (Isogenies). We call a homomorphism α : A → B of abelian varieties an isogeny if α is
surjective and has finite kernel.

We define the degree of α as its degree as a regular map, i.e., the degree of the field extension [F (A) :
α∗F (B)]. If α is separable then the degree is equal to the size of the kernel of α. Given another isogeny g :
B → C we get that deg(g ◦ f) = deg(g) deg(f).

Proposition 2.11. Let α : A → B be a homomorphism of abelian varieties. The following statements are
equivalent:

1. α is an isogeny,

2. dimA = dimB and α is surjective,

3. dimA = dimB and kerα is finite,

4. α is finite, flat and surjective.

Proof. For a proof we refer to Milne [15, Proposition I.7.1].

An example of an important isogeny is multiplication by a positive integer n.

Example 2.12 (Multiplication by n). Let A be an abelian variety of dimension g and let n be a positive
integer. Then the homomorphism nA : A→ A given by

a 7→ na = a+ · · ·+ a, (19)

is an isogeny of degree 2g. Let f : A→ B be an isogeny of degree n. Then we have that ker f ⊂ kernA, so we
can factor nA as nA = h ◦ f for some isogeny h : B → A.

Another type of abelian varieties we are interested in are absolutely simple abelian varieties.

Definition 2.13. LetA be an abelian variety over a field F . We say thatA is simple if for every abelian variety
B ⊆ A, we have that B = A or B = ∅. We say that A is absolutely simple if it is simple over the algebraic
closure of F .

The most elementary example of an absolutely simple abelian variety is an elliptic curve.

Example 2.14. Let E be an elliptic curve. Then E is an absolutely simple abelian variety. Since E has
dimension 1, every proper abelian subvariety must have dimension 0. So the only proper subvariety of E is
the empty set.

For n a positive integer not divisible by the characteristic of F we define

An(F ) := ker(nA : A(F ) → A(F )), (20)

has order n2g and is a free Z/nZ-module of rank 2g. For a field F we denote its separable closure by F sep.
For a fixed prime l ̸= char(F ), we define the Tate module as the limit

TlA = lim
←
Aln(F

sep), (21)

and we write VlA = TlA⊗Zl
Ql. For an abelian variety A one can show that End0(A) = End(A)⊗Q is a

finite-dimensional algebra over Q. We can then express an element of End0(A) as a polynomial.

Definition 2.15 (Characteristic polynomial). Let A be an abelian variety over a field F . For α ∈ End0(A)
there is a monic polynomial Pα(X) ∈ Q[X] of degree 2g such that P (n) = deg(nA − α) for all n ∈ Z. We
call Pα(X) the characteristic polynomial of α. If we write P (X) =

∑2g
i=0 aiX

i, then we define the trace of α
as Tr(α) := −a2g−1 and the norm as Nm(α) := degα = a0.

We stated this definition as a fact, but it requires technical work to get to this statement and we refer
to [15, Chapter I.10] of Milne’s notes. We are primarily interested in the following result which we will
state without proof.

Proposition 2.16 ([15], Proposition I.10.23). Let K be a Q-subalgebra of End(A)⊗Q and assume that K
is a field. Let f = [K : Q]. Then Vl(A) is a free K ⊗Q Ql-module of rank (2 dimA)/f . Therefore, the trace
of α, as an endomorphism of A, is (2 dimA/f)TrK/Q(α) and deg(α) = NmK/Q(α)

2 dimA/f .
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2.2.1 The dual abelian variety

In this section we will introduce the dual variety Â of an abelian variety A. This dual variety naturally
comes as a pair with A and serves to parametrize the elements of Pic0(A).

We start with the Theorem of the Square which tells us that:

Theorem 2.17 ([15], Theorem I.5.5). For all invertible sheaves L on A and points a, b ∈ A(k) we have an
isomorphism of sheaves:

t∗a+bL ⊗ L ≃ t∗aL ⊗ t∗bL. (22)

Remember that the Picard group of a variety X is the set of isomorphm classes of invertible sheaves of
X and is denoted by Pic(X). By tensoring the isomorphism (22) with L−2 we find that

t∗a+bL ⊗ L−1 ≃ (t∗aL ⊗ L−1)⊗ (t∗bL ⊗ L−1), (23)

using the properties of the tensor product. This tells us that the map a 7→ t∗aL ⊗ L−1 is a homomorphism
which we will denote by λL : A(k) → Pic(A). We then define Pic0(A) as the subgroup of Pic(A) such that
λL = 0, or in other words, it is the group containing the ismorphism classes of invertible sheaves L on A
such that t∗aL ≃ L for all a ∈ A(F̄ ).

Let us consider the sheaf m∗L ⊗ p ∗ L−1 on A × A, where m and p are the maps sending (b, a) to
b + a and b respectively. Let q be the projection on the other component. Then we can think of the sheaf
m∗L ⊗ p ∗ L−1 as a family of invertible sheaves on A = p(A × A) parametrized by A = q(A × A). If we
choose a point a ∈ A(F ) we get the invertible sheaf (m∗L⊗ p ∗L−1)|A×{a}. Note that on A×{a} the map
m corresponds to ta and p to the identity, so we find that

(m∗L ⊗ p ∗ L−1)|A×{a} = t∗aL ⊗ L−1 = λL(a). (24)

We can see that the sheaf m∗L⊗ p ∗ L−1 gives us another way to characterize the group Pic0(A). For this
we define the following set:

K(L) = {a ∈ A | (m∗L ⊗ p ∗ L−1)|A×{a} is trivial}. (25)

Looking at the F -points of K(L) we find that

K(L)(F ) = {a ∈ A(F ) |λL(a) = 0}. (26)

We can now state the following result:

Proposition 2.18. For an invertible sheaf on A, the following conditions are equivalent:

1. K(L) = A,

2. t∗aL ⊗ L−1 on AF̄ , for all a ∈ A(F̄ ),

3. m∗L ≃ p∗L ⊗ q∗L.

Proof. For a proof we refer to Milne [15, Proposition I.8.4].

Thus we can now define the group Pic0(A) as follows:

Definition 2.19. The group Pic0(A) is the set of all isomorphism classes of invertible sheaves L of A satisfying
the conditions of Proposition 2.18.

With the above description of Pic0(A) the elements work nicely in the following way. Let α, β : V → A
be two morphisms of varieties. We can write the sum α+ β as m ◦ (α× β). The isomorphism of the third
statement of Proposition 2.18 then tells us that

(α+ β)∗L ≃ α∗L ⊗ β∗L. (27)

This gives us a homomorphism of groups

Hom(V,A) → Hom(Pic0(A),Pic(V )), (28)

and in particular if we set V = A we get a homomorphism

End(A) → End(Pic0(A)). (29)

Inductively applying (27) to the isogeny nA = 1A + · · ·+ 1A we find that (nA)∗L ≃ Ln.
We can now give a definition of the dual variety.
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Definition 2.20 (Dual of an abelian variety). Consider the pair (Â,P) with Â and abelian variety and P
an invertible sheaf on A× Â, that satisfy the universal properties:

1. P{0}×“A is trivial and for a ∈ Â, P|A×{a} is an element of Pic0(Aa),

2. For any variety T over F and L an invertible sheaf on A× T such that L{0}×T is trivial and for t ∈ T ,
L|A×{t} is an element of Pic0(At), there is a unique morphism f : T → Â such that (1× f)∗P ≃ L.

We call Â the dual variety of A and we call P the Poincaré sheaf.

Remember that we described the dual variety as a way to parametrize elements of Pic0(A). Let us
examine how this takes place. For this we consider a field extension F ⊆ L and we set T = Spec(L). Let L
be an invertible sheaf on AL = A×Spec(L) satisfying the universal property. Then we have that L|AL

lies
in Pic0(AL). In particular, we have that Â(L) = Pic0(AL), so we get a one to one correspondence between
the L-points of Â and the isomorphism classes of sheaves in Pic0(AL). If we make the substitution L = F̄

we get that Â(F̄ ) = Pic0(AF̄ ). The invertible sheaf L described before corresponds to a unique morphism
f : Spec(F̄ ) → Â. Since Pic0(AF̄ ) is parametrized by the family of sheaves {Pa | a ∈ Â(F̄ )}, it follows that
there is a unique point af ∈ Â(F̄ ) such that Paf ≃ L.

So the dual abelian variety Â has the properties we desire. Additionally, for every abelian variety
A the dual variety Â exists and is unique up to unique isomorphism by the universal property. For the
construction of the dual variety we refer to Milne’s notes [15, Chapter I.8]. Once we have the dual of an
abelian variety A, we can look at the dual variety of the dual itself and we find that ̂̂A ≃ A.

Let α : A → B be a homomorphism of abelian varieties and let PB be the Poincaré sheaf on B × “B.
By the universal property of the dual variety the invertible sheaf (α × 1)∗PB on A × “B gives rise to a
homomorphism α̂ : “B → Â such that (1 × α̂)∗PA ≃ (α × 1)∗PB . On the level of points, the map α̂ is the
map Pic0(B) → Pic0(A) that sends the isomorphism class of an invertible sheaf on B to its inverse image
in A. Additionally, if α is an isogeny then we have the following result:

Theorem 2.21 ([15], Theorem I.9.1). If α : A → B is an isogeny, then the dual morphism α̂ : “B → Â is
an isogeny with kernel’kerα, the Cartier dual of kerα. Equivalently, the exact sequence

0 → kerα→ A→ B, (30)

gives rise to a dual exact sequence
0 →’kerα→ “B → Â. (31)

Corollary 2.22. Let α : A → B be an isogeny. Then the morphism ̂̂α :
̂̂
A → ““B is equal to α up to post-

composition with an automorphism of B ≃ ““B.

Proof. By Theorem 2.21 the kernel of the morphism ̂̂α :
̂̂
A → ““B is equal to ’’kerα. Note that we have

an isomorphism ’’kerα ≃ kerα. So the kernels of α and ̂̂α are equal and the isogenies are equal up to
automorphism.

Definition 2.23 (Polarization). An isogeny of an abelian variety A is an isogeny λ : A → Â such that,
over F̄ , λ becomes of the form λL for some ample sheaf L on AF̄ . The degree of the polarization λ is the
same as its degree as an isogeny. We call an abelian variety equipped with a polarization a polarized abelian
variety. If additionally, the polarization λ has degree 1, then the pair (A, λ) is called a principally polarized
abelian variety.

For a principally polarized abelian variety (A, λ)we can identifyAwith its dual Â via its polarization λ,
since it is an isogeny of degree 1 and thus is an isomorphism of abelian varieties.

2.2.2 Jacobian of a curve

Let C be a curve over F of genus g. It is possible to attach an abelian variety to C which inherits the group
structure of Pic0(C). This abelian variety is called the Jacobian variety of C and in this section we will go
over the relevant properties of Jacobians. Our approach is based on Milne’s notes [15, Chapter III].

Let us first specify what we mean by a curve over F of genus g.
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Definition 2.24 (Curve). Let F be a field. We define a curve C over F as a projective, smooth algebraic
variety over F̄ of dimension 1, that is defined by polynomials with coefficients in F . We define the genus of C
as the number

g(C) := dimF H
1(C,OC). (32)

This definition of the genus is formally the geometric genus and equal to the arithmetic genus, since we require
our curves are smooth.

Recall that for varieties V and T over a fieldF the T -valued points of V are given by V (T ) = Hom(T, V ).
For a curve C over F and T a smooth variety over F let L be an invertible sheaf on C × T . Let q : C × T
be the projectionm on the second coordinate. We can define a functor P 0

C acting on T as follows:

P 0
C(T ) = Pic0(C × T )/q∗Pic0(T ). (33)

We call P 0
C the Picard functor and it is a contravariant functor from the category of varieties over F to

the category of abelian groups. We can think of the elements of P 0
C(T ) as families of invertible sheaves of

degree zero on C parametrized by T , modulo the trivial families.

Definition 2.25 (Jacobian variety). The Jacobian variety of C is the unique abelian variety J = Jac(C)
over F , for which there is a natural transformation P 0

C → J such that P 0
C(T ) → J(T ) is an isomorphism

whenever C(T ) ̸= ∅.

The definition assumes that the Jacobian variety exists and Theorem III.1.6 of [15] ensures that this
is the case.

From the definition we see that for any field F ⊆ L for which C(L) ̸= ∅ we have that

Pic0(C) = P 0
C(L) ≃ J(L). (34)

A classic example of a Jacobian is an elliptic curve.

Example 2.26 (Elliptic curve over Q). An elliptic curve E over Q is a projective plane curve of the form
Y 2Z = X3 + aXZ2 + bZ3 over Q such that 4a3 + 27b2 ̸= 0. Equivalently, the elliptic curve E is a smooth
projective curve of genus one together with a distinguished point O, which without loss of generality we take
to be the point at infinity [25, Proposition III.3.1].

Let Div0(E) be the group of divisors of degree zero and let Pic0(E) be the the quotient of Div0(E) by the
group of principal divisors. This makes Pic0(E) the group of divisor classes of degree zero on E and it is equal
to the Jacobian on E. The Riemann-Roch theorem tells us that the map

E(F ) → Pic0(E) , P 7→ [P −O], (35)

is a bijection. This induces a group structure on E which coincides with the group law on E defined by the
chords and tangents construction.

We can characterize the Jacobian variety of a curve via the symmetric powers of a curve. For this let r be
a positive integer. Let Sr be the symmetric group of degree r. It acts on Cr, the product of r copies of C, by
permuting the factors. We define the r-th symmetric powers SymrC of C as the quotient whose underlying
topological space is Cr/Sr. We say that a morphism φ : Cr → T is symmetric if φ ◦ σ = φ for all σ ∈ Sr.
Then there exists a symmetric morphism π : Cr → SymrC such that any symmetric morphism φ : Cr → T
over F factors through π. We also have for any affine open subset U of C, that Symr(U) is an affine open
subset of SymrC and it holds that Γ(Symr(U),OSymr(C)) = Γ(Ur,OCr )Sr .

For any point P ∈ C(F ) we define the map fr which is given by

fr : Cr → J , (P1, . . . , Pr) 7→ [P1 + · · ·+ Pr − rP ] (36)

on the level of points. This is a symmetric morphism so it induces a morphism frsym : Symr(C) → J . We
denote the image of frsym with W r, which forms a closed subvariety of J . It turns out that, for r ≤ g, the
morphism frsym : Symr(C) →W r is a birational morphism [15, Theorem III.5.1].

In particular, if r = g we get a surjective birational morphism fgsym : Symg(C) → J . Another important
case is when r = g − 1. Since the closed subvariety W g−1 of J is birationally equivalent to Symg−1(C) it
is of dimension g− 1. This turnsW g−1 into a divisor on J which we will denote by Θ. The Θ-divisor plays
an important role as it turns out that the Jacobian variety is principally polarized via the Θ-divisor.

Theorem 2.27 ([15], Theorem III.6.6). The map φL : J → Ĵ is an isomorphism.

This means that we can identify J with its dual Ĵ via the Θ-divisor.
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2.3 The Chebotarev density theorem
In this section we will introduce the Chebotarev density theorem. The Chebotarev density theorem de-
scribes the behaviour of primes splitting in a field extension F over Q and tells us how such primes are
distributed among the prime numbers. To almost every prime number we can assign an invariant called
the Frobenius element, which is a well-defined conjugacy class in the Galois group Gal(F/Q). The theorem
then says that the asymptotic distribution of these invariants is uniform over the Galois group.

To make the notion of this distribution precise we introduce the Dirichlet density.

Definition 2.28 (Dirichlet density). Let S be a set of prime numbers. We say that S has Dirichlet density α
if

lim
s→1+

∑
p∈S p

−s∑
p p
−s → α, (37)

where s→ 1+ means that we take the limit s→ 1 from above in R.

In practical terms, the Dirichlet density describes the probability of encountering the primes that satisfy
the conditions of the set S. A Dirichlet density that is easy to compute is the case when S contains all the
prime numbers, as the Dirichlet density then is equal 1. The other extreme case is when S is a finite set.

Corollary 2.29. A finite set of prime numbers has Dirichlet density 0.

Proof. For a finite set of prime numbers S we have that
∑
p∈S p

−s is a finite number when we take the
limit s → 1+. On the other hand, the sum

∑
p p
−s tends to ∞ when we take the limit s → 1+ and the

result follows consequently.

To formulate the density theorem we must first introduce the Frobenius elements of prime numbers.

Definition 2.30 (Decomposition group). Let L/F be a Galois extension. Let q be a prime of L above p a
prime of F . The decomposition group Dq = Dq/p of q is the subgroup of Gal(L/F ) fixing q, i.e.,

Dq = {σ ∈ Gal(L/F ) |σ(q) = q}. (38)

Let OL be the ring of integers of L. An element σ of the decomposition group Dq acts on the residue
field OL/q of q by x (mod q) 7→ σ(x) (mod q). This map is well-defined as q is fixed by σ and we get a
natural map

Dq → Gal(OL/q / OF /p),

σ 7→ σ : x (mod q) 7→ σ(x) (mod q).

This map is surjective [17, Proposition 9.4]. The decomposition group measures to what extent the prime
p splits in OL into different prime ideals. Since Dq contains all the automorphisms of Gal(L/F ) that fix q,
it follows that the cosets of Gal(L/F )/Dq each permute q to a different prime above p. In particular, we
see that p does not split if and only if Dq is equal to Gal(L/F ). On the other hand, p totally splits if and
only if Dq is equal to {id}.

Related to the decomposition group we can also define the inertia group as follows.

Definition 2.31 (Inertia group). Let L/F be a Galois extension and q a prime above p. The inertia sub-
group Iq = Iq/p of q is the normal subgroup of Dq that acts trivially on OL/q, i.e.,

Iq = ker(Dq → Gal(OL/q / OF /p)). (39)

Since the map Dq → Gal(OL/q / OF /p) is surjective we get an isomorphism of groups Dq/Ip ≃
Gal(OL/q / OF /p). Since Gal(OL/q / OF /p) is cyclic it is generated by the Frobenius map ϕ(x) 7→
x|OF /p|.

Definition 2.32 (Frobenius element). The Frobenius element Frobq/p is the element of Dq/Ip that maps
to ϕ.

It is intuitively less clear at first glance, what information the inertia group and the Frobenius element
contain about the splitting of primes compared to the decomposition group. The following proposition
makes it clear how these two objects are related to the splitting of primes.
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Proposition 2.33. Let L/F be a Galois extension of number fields. Let q be a prime of L above p, a prime
of F . Let eq/p denote the ramification index of q and let fq/p denote the inertia degree of q. Then we have
that:

1. |Dq/p| = eq/p · fq/p,

2. |Iq/p| = eq/p,

3. The order of Frobq/p is fq/p.

Proof. A proof for 1. and 2. can be found in [17, Proposition 9.6]. Note that the Frobenius element
generates Gal(OL/q / OF /p). So we have that

|⟨Frobq/p⟩| = |Gal(OL/q / OF /p)| = |Dq/p|/|Iq/p| = eq/p · fq/p/eq/p = fq/p. (40)

Example 2.34 (Frobenius element of a cyclotomic extension). Let ζn be a primitive n-th root of unity and
consider the Galois extension Q(ζn)/Q. Let p be a prime number that does not divide n and let q be a prime of
Q(ζn) above p. The prime p is then unramified, so eq/p = 1 and the inertia subgroup is equal to Iq/p = {id}.
Thus we find that Dq/p = ⟨Frobq/p⟩.

The Frobenius element Frobq/p acts as x 7→ xp onOQ(ζn)/q by definition. So we find that Frobq/p(ζn) ≡ ζpn
(mod q). By the congrunce condition on p, the n-th roots of unity are distinct modulo p. So they are also
distinct modulo q and we can conclude that Frobq/p(ζn) = ζpn.

In particular, we have that

fq/p = order of Frobq/p = order of p in (Z/nZ)∗. (41)

We can now state the Chebotarev density theorem as follows.

Theorem 2.35 (Chebotarev density theorem). Let F/Q be a finite Galois extension. For a conjugacy class C
of Gal(F/Q) the set SC = {p unramified in F/Q such that Frobp ∈ C} has Dirichlet density

|C|
|Gal(F/Q)|

. (42)

Proof. A proof can be found in [18] or [17, Theorem 13.4].

Example 2.36 (Dirichlet’s theorem). Let F be the field Q(ζn). Let p be a prime number that does not
divide n. There exists an isomorphism ϕ : (Z/nZ)∗ → Gal(Q(ζn)/Q) sending a (mod n) 7→ (ζn 7→ ζan).
So Gal(Q(ζn)/Q) is an abelian group and its conjugacy classes contain only one element. Let Ca denote the
conjugacy class of ϕ(a mod n). By the previous example we find that Frobp = Ca if and only if p ≡ a
(mod n).

Now let a be an integer that does not divide n. Then the set {p unramified in F/Q such that p ≡ a
(mod n)} = {p unramified in F/Q such that Frobp = Ca} has Dirichlet density 1/φ(n) by the Chebotarev
density theorem, where φ is the Euler totient function.

2.4 Torsors and coverings
2.4.1 Galois cohomology

In this sectionwewill introduce some of the theory of Galois cohomology and introduce the groupsH0(GF , A)
and H1(GF , A). We will do this by first looking at the cohomology of finite groups and then making the
adjustment to fit that theory to the theory of Galois cohomology. Our approach is based on [25, Appendix
B].

Let G be a finite group and letM be an abelian group on which G acts. We denote the action of G on
M by m 7→ mσ for all m ∈M and σ ∈ G.
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Definition 2.37 (G-module). Let M be an abelian group with an action of G on it. We say that M is a
(right) G-module if the action of G onM satisfies

mid = m, (43)
(m+m′)σ = mσ +m′σ, (44)

(mσ)τ = mστ , (45)

for all m,m′ ∈M and σ, τ ∈ G.
For two G-modules M and N , we say that a homomorphism ϕ : M → N is a G-module homomorphism

if it commutes with the action of G, i.e.,
ϕ(mσ) = ϕ(m)σ. (46)

Definition 2.38 (The 0-th cohomology group). The 0-th cohomology group of the G-module M is the
group H0(G,M) of G-invariant elements ofM ,

H0(G,M) :=MG = {m ∈M |mσ = m for all σ ∈ G}. (47)

If we have an exact sequence of G-modules

0 → P
ϕ−→M

ψ−→ N → 0, (48)

we get an exact sequence of invariant G-modules

0 → PG
ϕG

−−→MG ψG

−−→ NG, (49)

with the ϕG and ψG the morphisms restricted to the invariant modules. It is clear that imϕ ⊆ kerψ. For
the converse let m ∈ MG such that ψG(m) = 0. The previous exact sequence tells us that there exists an
element p ∈ P such that ϕ(p) = m, but this element does not necessarily lie in PG. To show that this
element gets fixed by G we have that

ϕ(pσ) = ϕ(p)σ = mσ = m = ϕ(p). (50)

Since ϕ is injective it follows that pσ = p and we have that imϕ = kerψ. Note that ψG is not necessarily
surjective.

It is possible to measure the lack of surjectivity by examining the following object.

Definition 2.39 (The first cohomology group). LetM be a G-module. The group of 1-cochains is defined as
the group

C1(G,M) = {maps ξ : G→M}. (51)

We use the notation ξσ to mean ξ(σ). The group of 1-cocylces is then defined as the group

Z1(G,M) =
{
ξ ∈ C1(G,M) | ξστ = ξτσ + ξτ for all σ, τ ∈ G

}
, (52)

and the group of 1-coboundaries is the group

B1(G,M) = {ξ ∈ C1(G,M) | there exists an m ∈M such that ξσ = mσ −m for all σ ∈ G}. (53)

Note that for all m ∈M and σ, τ ∈ G we have that

mστ −m = mστ −mτ +mτ −m = (mσ −m)τ + (mτ −m), (54)

so it follows that B1(G,M) ⊆ Z1(G,M).
We define the first cohomology group ofM as the quotient group

H1(G,M) =
Z1(G,M)

B1(G,M)
. (55)

In other words, two 1-cocycles are equivalent if their difference has the form σ 7→ mσ −m for some m ∈M .

The first cohomology group ofM allows us to extend the sequence (49).
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Proposition 2.40. Let
0 → P

ϕ−→M
ψ−→ N → 0, (56)

be an exact sequence of G-modules. The there exists a long exact sequence

0 → H0(G,P ) → H0(G,M) → H0(G,N)
δ−→ H1(G,P ) → H1(G,M) → H1(G,N). (57)

The connecting homomorphism δ is defined as follows:
Let n ∈ H0(G,N) = NG. Choose an m ∈ M such that ψ(m) = n and define a cochain ξ ∈ C1(G,M)

by ξσ = mσ −m. Note that ψ(mσ −m) = nσ − n = 0, so the values of ξ lies in kerψ = imϕ. Thus, by the
injectivity of ϕ the values of ξ lie in P and it follows that ξ ∈ Z1(G,P ). We define δ(n) to be the cohomology
class of ξ in H1(G,P ).

Proof. A proof can be found in [2].

We will now define cohomology for the absolute Galois group. This is a profinite group so we need to
take some additional considerations.

Let F be a perfect field and let F̄ be its algebraic closure. Let GF := Gal(F̄ /F ) be the Galois group
of F̄ over F . The group GF is the inverse limit of Gal(L/F ) as L varies over all the finite extensions of K.
This makes GF a profinite group together with the profinite topology. For a GF -moduleM we requireM
to be an abelian group equipped with a discrete topology with an action of GF onM such that the action
is continuous with respect to the topologies on GF andM .

The 0-th Galois cohomology group for a GF -module M is then defined in the same way as the 0-th
cohomology group for a finite group

H0(GF ,M) :=MGF = {m ∈M |mσ = m for all σ ∈ GF }. (58)

The first Galois cohomology group is defined in a similar way to the finite group case, but we require
additional structure on the maps we are working with.

Definition 2.41 (The first Galois cohomology group). LetM be aGF -module. We say that a map ξ : GF →
M is continuous if it is continuous with respect to the profinite topology onGF and the discrete topology onM .

The group of continuous 1-cocycles from GF toM , denoted by Z1
cont(GF ,M), is the subset of Z1(GF ,M)

containing all the continuous cocycles, i.e.,

Z1
cont(GF ,M) = {ξ ∈ Z1(GF ,M) | ξ is continuous}. (59)

Since M has the discrete topology every coboundary σ 7→ mσ −m is automatically continuous. So we have
that B1

cont(GF ,M) = B1(GF ,M).
We then define the first cohomology group of the GF -moduleM as the quotient group

H1(GF ,M) =
Z1
cont(GF ,M)

B1(GF ,M)
. (60)

The exact sequence from Proposition 2.40 is the same for Galois groups.

Theorem 2.42. Let
0 → P

ϕ−→M
ψ−→ N → 0, (61)

be an exact sequence of GF -modules. The there exists a long exact sequence

0 → H0(GF , P ) → H0(GF ,M) → H0(GF , N)
δ−→ H1(GF , P ) → H1(GF ,M) → H1(GF , N), (62)

with the connecting homomorphism defined as in Proposition 2.40.

Proof. The proof is the same as the theorem for finite groups.
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2.4.2 The Selmer group and the Tate-Shafarevich group

Let F be a perfect field and let A and B be abelian varieties over F . Consider the exact sequence

0 → A[ϕ] → A
ϕ−→ B → 0, (63)

with ϕ : A → B an isogeny of abelian varieties and with A[ϕ] denoting the kernel of ϕ. With the use of
Galois cohomology we can extend this exact sequence to the long sequence

0 → A[ϕ](F ) → A(F )
ϕ−→ B(F )

δ−→ H1(GF , A[ϕ]) → H1(GF , A)
ϕ−→ H1(GF , B), (64)

which gives us the short exact sequence

0 → B(F )/ϕ(A(F ))
δ−→ H1(GF , A[ϕ]) → H1(GF , A)[ϕ] → 0. (65)

Remember that a place v of F is an equivalence class of absolute value functions on F and that Fv is
a completion with respect to the place v [6, Chapter 3.5]. Let v be a place of F and let Fv denote the
completion of F with respect to v. We can fix an extension of v to the algebraic closure F̄ , which gives us
an embedding F̄ ⊂ F̄v. This gives us a decomposition group Gv ⊂ GF which acts on A(F̄v) and B(F̄v).
So we can take the Galois cohomology on A(F̄v) and B(F̄v) as before and get the exact short sequence

0 → B(Fv)/ϕ(A(Fv))
δ−→ H1(Gv, A[ϕ]) → H1(Gv, A)[ϕ] → 0. (66)

We have the natural inclusionsGv ⊂ GF andA(F̄v) andB(F̄v). The corresponding restriction maps allows
us to make the following commutative diagram:

0 B(F )/ϕ(A(F )) H1(GF , A[ϕ]) H1(GF , A)[ϕ] 0

0
∏
v B(Fv)/ϕ(A(Fv))

∏
vH

1(Gv, A[ϕ])
∏
vH

1(Gv, A)[ϕ] 0

δ

δ

(67)
From this commutative diagram we can construct the following two groups.

Definition 2.43 (Selmer group of ϕ). Let ϕ : A → B be an isogeny of abelian varieties. The Selmer group
of ϕ of A is the subgroup of H1(GF , A[ϕ]) defined by

Sel(ϕ)(A/F ) = ker

{
H1(GF , A[ϕ]) →

∏
v

H1(Gv, A)

}
. (68)

Definition 2.44 (Tate-Shafarevich group of A). Let A be an abelian variety. The Tate-Shafarevich group
of A is the subgroup of H1(GF , A) defined by

X(A/F ) = ker

{
H1(GF , A) →

∏
v

H1(Gv, A)

}
. (69)

In the next section we will discuss how the elements of the group X(A/F ) measure the extent to
which the Hasse principle fails to hold for A.

Theorem 2.45. Let ϕ : A→ B be an isogeny of abelian varieties defined over F . We have the following exact
sequence

0 → B(F )/ϕ(A(F )) → Sel(ϕ)(A/F ) → X(A/F )[ϕ] → 0. (70)

Proof. This follows directly from the commutative diagram (67) and the definition of the Selmer and
Tate-Shafarevich group.
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2.4.3 Torsors

In this section we will introduce torsors. These are objects that will play an important role in our paper.
We will start by looking at torsors of elliptic curves E and then generalize to torsors of abelian varieties.
One important tool that torsors give us is the twisting principle, which relates twists of elliptic curves E
to the first cohomology group H1(GF , E). Our approach is based on [25, Chapter X.2-3].

Definition 2.46 (G-torsor). Let G be group. A G-torsor is a set T together with a simple transitive action α :
G × T → T of G on T , i.e., for all elements t, t′ ∈ T there exists a unique g ∈ G such that tg = t′ and
if gx = x then g = e.

A morphism of G-torsors T and T ′ is a morphism of T and T ′ that respects the group action of E.

Example 2.47 (Torsors under E). Let E be an elliptic curve over a field F . A torsor under E is a pair (C, µ)
where C is a smooth projective curve of genus one defined over F , together with a morphism µ : E × C → C
defined over F that induces a simple transitive action on F̄ .

A morphism of torsors C and C ′ is an isomorphism of curves C → C ′ that respects the action of E.

The trivial torsor under E is the torsor (E,+) where + : E × E → E is the usual group law on E.
Every torsor under E is then a twist of (E,+). Remember that a twist of a curve is defined as.

Definition 2.48 (Twist of a curve). Let C be a smooth projective curve over F . A twist of C is a smooth
curve C ′ over F that is isomorphic to C over F̄ .

Now let (C, µ) be a torsor under E. By definition the action of E on C is defined over F . We fix a
point p0 ∈ C and define the map θ : E → C by P 7→ µ(P, p0). Then, for any σ ∈ GF such that pσ0 = p0 we
have that

θ(P )σ = µ(P, p0)
σ = µ(Pσ, pσ0 ) = µ(Pσ, p0) = θ(Pσ), (71)

so θ is defined over F (p0). Because the action on C is simply transitive the map θ has degree one and
thus θ is an isomorphism. So every torsor under E is indeed a twist of (E,+).

Definition 2.49 (Weil-Châtelet group for E). Let (C, µ) and (C ′, µ′) be torsors under E. We say that (C, µ)
and (C ′, µ′) are equivalent if they are isomorphic over F . The collection of equivalence classes of torsors
under E is called the Weil-Châtelet group for E and is denoted by WC(E/F ).

We have the following characterization for the trivial class of (E,+) in WC(E/F ).

Proposition 2.50. Let (C, µ) be a torsor under E. Then (C, µ) is in the trivial class if and only if C(F )
contains a point.

Proof. Let (C, µ) be in the trivial class. Then there is an isomorphism ϕ : E → over F . So ϕ(O) lies
in C(F ).

Conversely, assume there is a point p0 in C(F ). Consider the map θ : E → C given by P 7→ µ(P, p0). As
described before, this map is an isomorphism defined over F (p0) = F , so (C, µ) is in the trivial class.

The following theorem relates the twists of curves C to the first cohomology group H1(GF , C).

Theorem 2.51 ([25],Theorem X.2.2). Let C be a smooth projectiver curve over F . For each twist C ′ of C,
choose an F̄ -isomorphism ϕ : C ′ → C and define the map ξσ = ϕσϕ−1 ∈ Aut(C). We then have that:

1. The map ξ is a 1-cocycle and its associated cohomology class in H1(GF ,Aut(C)) is denoted by {ξ}.

2. The cohomology class {ξ} is determined by the F -isomorphism class of C ′ and is independent of choice
of ϕ. We thus obtain a natural map

Twist(C/F ) → H1(GF ,Aut(C)). (72)

3. The map in 2. is a bijection. In other words, the twists of C up to F -isomorphism, are in one-to-one
correspondence with elements of the cohomology set H1(GF ,Aut(C)).
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Proof. For 1, note that
ξστ = ϕστϕ−1 = (ϕσϕ−1)τ (ϕτϕ−1) = (ξσ)

τξτ , (73)
for all στ ∈ GF .

For 2, let C ′′ be another twist of C that is F -isomorphic to C ′. We choose a F̄ -isomorphism ψ : C ′′ → C
and we will show that the 1-cocycles ϕσϕ−1 and ψσψ−1 are cohomologous. Let θ : C ′′ → C ′ be the F -
isomorphism between C ′′ and C ′. We consider the element α = ϕθψ−1 ∈ Aut(C). Then we have that

(ασ)(ψσψ−1) = (ϕθψ−1)σ(ψσψ−1) = ϕσθσψ−1 = (ϕσϕ−1)(ϕθψ−1) = (ϕσϕ−1)α. (74)

So the 1-cocycle ϕσϕ−1 and ψσψ−1 differ by the 1-coboundary induced by α. So they are cohomologous.
For the proof of 3. we refer to the proof provided in [25].

Let R ∈ E be a point and consider the translation map τR : E → E. For all points P,Q ∈ E we
have that τR(P + Q) = τR(P ) + Q = P + τR(Q), so τR respects the group law of E and is thus an
automorphism of (E,+). Conversely, an automorphism of (E,+) is a map ϕ : E → E such that ϕ(P+Q) =
ϕ(P ) + Q = P + ϕ(Q) for all P,Q ∈ E. In particular, if we take Q to be the point at infinity O we get
that ϕ(P ) = P + ϕ(O), so the map ϕ is the translation map by ϕ(O). Since the translation maps are
determined by the points of E with which you translate, we get an isomorphism Aut(E,+) ≃ E. This
observation together with Theorem 2.51 gives us the following result:

Corollary 2.52. The torsors under E, viewed as twists of (E,+), are parametrised up to isomorphism
by H1(GF , E).

We will now introduce torsors for abelian varieties. The proofs are similar to the case of elliptic curves
so we will omit them. For a detailed approach we refer to [12]

Definition 2.53 (Torsor underA). LetA be an abelian variety over a field F . A torsor underA is a pair (V, µ)
where V is a variety together with an F -morphism µ : A× V → V such that

µ(F̄ ) : A(F̄ )× V (F̄ ) → V (F̄ ), (75)

is a simply transitive action.
A morphism of torsors V and V ′ is a morphism of varieties V → V ′ that respects the action of A.

We call the torsor (A,+) the trivial torsor. Similar to the case of elliptic curves we define the Weil-
Châtelet group of torsors under A.

Definition 2.54 (Weil-Châtelet group for A). Let (B,µ) and (B′, µ′) be torsors under A. We say that (B,µ)
and (B′, µ′) are equivalent if they are isomorphic over F . The collection of equivalence classes of torsors
under A is called the Weil-Châtelet group for A and is denoted by WC(A/F ).

Again, we can describe theWeil-Châtelet group in terms of the first Galois cohomology groupH1(GF , A).

Proposition 2.55 ([12], Proposition 4). There is a canonical bijection between the first Galois cohomology
group H1(GF , A) and the Weil-Châtelet group WC(A/F ).

We have the same characterization for the trivial class of (A,+).

Proposition 2.56 ([12], Proposition 4). Let (C, µ) be a torsor under A. Then (C, µ) is in the trivial class if
and only if C(F ) contains a point.

Remember that we defined the Tate-Shafarevich group of A as the group

X(A/F ) = ker

{
H1(GF , A) →

∏
v

H1(Gv, A)

}
. (76)

From Proposition 2.55 it follows that we can define X(A/F ) equivalently as

X(A/F ) = ker

{
WC(A/F ) →

∏
v

WC(A/Fv)

}
. (77)

By Proposition 2.56 the elements of X(A/F ) represent torsors under A which contain an Fv-rational
point for every place v of F . The non-trivial elements additionally contain no F -rational points, so these
torsors violate the Hasse principle. In this sense the Tate-Shafarevich group measures the extent to which
the Hasse principle holds for A.
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2.4.4 Coverings

A covering of a topological space is defined in the following way.

Definition 2.57 (Covering). Let X be a topological space. A space over X is a topological space Y together
with a continuous map p : Y → X. A morphism between two spaces pi : Yi → X, (i = 1, 2) over X is given
by a continuous map f : Y1 → Y2 making the diagram commute

Y1 Y2

X

p1

f

p2 . (78)

A covering of X is a space Y over X such that the projection p : Y → X satisfies the condition: for every
point x ofX there is an open neighbourhood Vx of x such that the preimage p−1(Vx) decomposes as a disjoint
union of open subsets Ui of Y , where Ui is homeomorphic to Vx under the restriction of p to each Ui.

A morphism between two coverings of X is then a morphism of spaces over X.

An important group of coverings are the coverings that arise from group actions on topological spaces.
For this we need the action to satisfy the following property:

Definition 2.58 (Even group action). Let G be a group acting continuously from the left on a topological
space Y . The action of G is even if each point y ∈ Y has some open neighbourhood U such that the open
sets gU are pairwise disjoint for all g ∈ G.

For a topological space Y with a group G acting on the left, we can form the quotient space G\Y . As
a topological space it consists of the orbits under the action of G and its topology is the quotient topology.
Then, the projection Y → Y \G is a covering if the action of G is even.

Lemma 2.59. If G is a group acting evenly on a connected space Y , the projection pG : Y → G\Y turns Y
into a cover of G\Y .

Proof. The map pG is surjective and by the definition of an even group action each x ∈ G\Y has an open
neighbourhood of the form V = pG(U) as described in Definition 2.58. Taking the preimage now shows
that pG satisfies the condition of a covering.

For a covering of a scheme we require some additional structures on the covering map.

Definition 2.60. We call a finite morphism of schemes ϕ : X → S locally free if the direct images sheaf ϕ∗OX

is locally free of finite rank. If additionally each fibre XP of ϕ is the spectrum of a finite étale κ(P )-algebra,
where κ(P ) denotes the residue field at P , then ϕ is called a finite étale morphism.

A finite étale cover is a surjective finite étale morphism.

To see what this additional structure achieves consider the case where π : X → Y is a covering
of schemes, where Y is an abelian variety over a field F and X is a Y -scheme together with a simply
transitive group action of F . Assume this cover is geometrically connected. Every connected finite étale
cover of YF̄ is an abelian variety by [16, §18]. This turns X into an abelian variety over the algebraic
closure F̄ . Because X is isomorphic to an abelian variety over F , it follows that X is a torsor under this
abelian variety.
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3 µp-covers and µp-descent
Let Y be an abelian variety over a field F of characteristic not p. Let µp be the F -group scheme of the p-th
roots of unity. A µp-cover of Y is a Y -scheme X together with a simply transitive action of µp. The µp-
covers of Y form a category Mp(Y ) whose morphisms are isomorphisms of Y -schemes that respect the
action of µp. It is possible to think about µp-covers in terms of line bundles on Y , which we will describe
now.

Proposition 3.1. There is an equivalence of categories between Mp(Y ) and the category of pairs (L, η)
where L is an invertible sheaf on Y and η : L⊗p ≃ OY is an isomorphism. Here, the morphisms (L, η) →
(L′, η′) are isomorphisms g : L → L′ such that η′ ◦ g⊗p = η.

Proof. A proof can be found in [1] or [16, Proposition II.7.3]. We will describe the functor in both direc-
tions, similar to the proof in the paper, to describe the correspondence.

If π : X → Y is a µp-cover, then there is a Z/pZ-grading on the OY -module

π∗OX = OY ⊕
p−1⊕
i=1

Li (79)

where each Li is the invertible subsheaf of π∗OX on which µp acts by ζ · s = ζis. The algebra structure
of π∗OX gives isomorphisms Li⊗Lj ≃ Li+j , where indices are to be taken modulo p and where L0 = OY .
So, we obtain an isomorphism L⊗p1 ≃ OY .

Conversely, starting with a pair (L, η), we can define a sheaf of OY -algebras OY ⊕
⊕p−1

i=1 L⊗i using the
isomorphism η to define the multiplication L⊗i ⊗ L⊗⊗j ≃ L⊗i+j ≃ Li+j−p on the factors with i+ j ≥ p.
The relative spectrum of this sheaf over Y is then naturally endowed with a µp-action making it a µp-
cover.

This proposition allows us to think of the µp-cover π : X → Y as the corresponding pair (L, η).
The line bundle L ∈ Pic(Y )(F ) is called the Steinitz class of π. Because η gives us an isomorphism
between L⊗p ≃ OY , it follows that L is a p-torsion line bundle. So it follows that that L ∈ “Y [p](F ), where
by definition “Y = Pic0(Y ) is the dual abelian variety.

Using the pair (L, η) we can construct more µp-covers by scaling η : L⊗p → OY with any element r ∈
F ∗. Two such µp covers (L, rη) and (L, sη) are isomorphic if and only if r/s ∈ F ∗p. Given two µp-
covers (L, η) and (L′, η′), the tensor product (L ⊗ L′, η ⊗ η′) is a µp-cover again. We denote the set
of µp-covers with H1(Y, µp).

Lemma 3.2. The µp-cover π : X → Y corresponding to (L, η) is geometrically connected if and only if L ̸≃
OY .

Proof. A proof can be found in [5, Lemma 2.5].

Let π : X → Y be a geometrically connected µp-cover corresponding to (L, η), so L ̸≃ OY . Since every
connected finite étale cover of the abelian variety YF is itself an abelian variety [16, §18], we find that X
becomes an abelian variety over the algebraic closure F . Because X is isomorphic to an abelian variety
over F , it follows that X is a torsor under this abelian variety.

The abelian variety that X is a torsor for will be the distinguished µp-cover with Steinitz class L.
Starting with the line bundle L, let ψ̂ : “Y → “Y /⟨L⟩ be the degree p isogeny obtained from modding out L.
Let ψ : AL → Y be the dual isogeny, which is also of degree p, where AL denotes the dual of “Y /⟨L⟩. We
can give ψ the structure of a µp-cover by considering the isomorphism:

kerψ ≃ ’ker“ψ ≃ ’Z/pZ = Hom(Z/pZ,Gm) ≃ µp (80)

The first isomorphism is a standard result for the dual of an isogeny [15, Theorem V.9.1]. The second
result follows from the fact that ker(ψ̂) = ⟨L⟩ ≃ Z/pZ, since ⟨L⟩ by a p-torsion element. For the last
isomorphism, note that the homomorphisms φ : Z/pZ → Gm are determined by which element 1 gets
sent to. Since 1 has order p in Z/pZ it follows that φ(1) = ζp where ζp is some p-th primitive root of
unity or 1 for the trivial homomorphism φ0. Let φk denote the homomorphism such that φk(1) = ζkp for
some 1 ≤ k ≤ p−1. For 0 ≤ k, k′ ≤ p−1, we then have that φk ·φk′ = φk+k′ and φpk = φ0, where the indices
are taken modulo p. Identifying φk with some primitive p-th root of unity in µp, where 1 ≤ k ≤ p − 1,
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gives us an isomorphism between Hom(Z/pZ,Gm) and µp. Because we have p− 1 different choices of k,
we acquire p − 1 different isomorphisms between ker(ψ) and µp. These isomorphisms correspond to the
different Z/pZ-gradings we can put on ψ∗AL. There is exactly one isomorphism such that the µp-cover
structure for ψ has Steinitz class L1 ⊂ ψ∗AL isomorphic to L, so we choose this structure for ψ.

Lemma 3.3. Let π : X → Y be a µp-cover with non-trivial Steinitz class L ∈ “Y [p](F ). Then π is a twist of
the µp-cover ψ : AL → Y and X is a torsor for AL.

Proof. A proof can be found in [5, Lemma 2.6].

We have described how we acquire the distinguished µp-cover AL → Y with Steinitz class L for each
non-zero L ∈ “Y [p](F ). Together with this cover comes a distinguished isomorphism η : L⊗p ≃ OY , which
we will describe now. We will consider the case where Y is the Jacobian of a curve to simplify the process.

Let C be a smooth projective geometrically integral curve over F and let J = Pic0(C) be its Jacobian.
Let g be the genus of C and thus the dimension of the abelian variety J . Let D ∈ J [p](F ) be a divisor
class of order p. Let J → J/⟨D⟩ be the quotient and let ψ : AD → Ĵ be the corresponding dual isogeny,
where AD is the dual of J/⟨D⟩. By the above discussion, it follows that ψ is a µp-cover of Ĵ corresponding
to a pair (L, η). We can identify J and Ĵ via the canonical principal polarization λ : J → Ĵ . Thus we can
view ψ as a µp-cover of J and η as an isomorphism L⊗p → OJ . We will often refer to the µp-covers of the
Jacobian J by the µp-cover of the curve that is associated to J .

By construction these µp-covers are abelian varieties, but in general the µp-covers corresponding to
pairs (L, rη), where r ∈ F ∗, may only be torsors for abelian varieties. The following lemmas describe which
µp-covers have rational points, and thus are abelian varieties. For this, fixD ∈ J [p](F ) and (L, η), as above.
Given P ∈ J(F ), we can construct the µp-cover ψP = tp ◦ ψ : AD → J , where tp : J → J is translation by
P . The µp-cover is endowed with the same µp-action as ψ, but with a different structure map to J . The
Steinitz class of ψP is isomorphic to the Steinitz class of ψ, since it lies in Pic0(C) and is thus invariant
under translation. If ψP corresponds to the pair (L′, η′), then we can choose an isomorphism L ≃ L′.
Under this isomorphism we must have that η′ = rP η for some element rP ∈ F ∗. Any other choice of
isomorphism L ≃ L′ differs by a scalar, so rP is well-defined up to F ∗p.

Lemma 3.4. The map P 7→ rP induces an injective map ∂D : J(F )/ψ(AD(F )) → F ∗/F ∗p.

Proof. A proof can be found in [5, Lemma 3.1].

Lemma 3.5. The image of ∂D is the set of r ∈ F ∗/F ∗p such that the µp-cover (L, rη) has a rational point.

Proof. A proof can be found in [5, Lemma 3.3].

The following lemma can be used to give an explicit formula for the homomorphism ∂D.

Lemma 3.6. Let F (J) be the function field of J and view η−1 : OJ → L⊗p as a global section of L⊗p. Fix
an embedding of L as a subsheaf of F (J), so that η−1 is a non-zero element f of F (J). Let Q be such that Q
and Q+ P are in a domain of definition for f . Then ∂D(P ) = rP = f(P +Q)/f(Q), up to p-th powers.

Proof. A proof can be found in [5, Lemma 3.5].

Thinking of η−1 as a function on J allows us to distinguish the unique µp-cover (L, η) corresponding
to ψ : AD → J among all µp-covers with Steinitz class L.

Lemma 3.7. A µp-cover corresponding to the data (L, η) is isomorphic to the µp-cover AL = AD → J if and
only if the value f(0J) of the function f = η−1 ∈ F (J) at 0J is a p-th power in F ∗.

Proof. A proof can be found in [5, Lemma 3.6].

Remember that points of Symg(C) correspond to effective degree g divisors E on C and that the
map Symg(C) → J sending E 7→ E − g · ∞ is birational. So we get an isomorphism of function
fields F (Symg(C)) ≃ F (J).

Lemma 3.8. Suppose pD = div(f̃) for some f̃ ∈ F (C). ThenL ≃ OJ(D̃) for a divisor D̃ on J such that pD̃ =
div(f), where f ∈ F (J) ≃ F (Symg(C)) is the rational function f(

∑g
i=1(xi, yi)− g · ∞) =

∏g
i=1 f̃(xi, yi).

Proof. A proof can be found in [5, Lemma 3.7].
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Let H = {D1, . . . , Dm} ⊂ J [p](F ) be a subset of Fp-linearly independent elements. For each i =

1, . . . ,m, let ψi : Ai → J be the µp-covers corresponding to Di. Let AH = ÷J/⟨H⟩ and let ψH : AH → J be
the isogeny dual to J → J/⟨H⟩. Then we have the homomorphism

∂̃H : J(F ) →
m∏
i=1

F ∗/F ∗p (81)

sending P to (∂D1(P ), . . . , ∂Dm(P )).

Lemma 3.9. The map ∂̃H induces an injection ∂H : J(F )/ψH(AH(F )) ↪→
⊕m

i=1 F
∗/F ∗p.

Proof. A proof can be found in [5, Lemma 3.8].

Assume now that C is a curve over Q. Everything discussed so far also holds for F = Q or F = Ql, for
any prime l ≤ ∞. For a fixed D ∈ J [p](Q), let

Sel(AD) ⊆ Q∗/Q∗p (82)

be the subgroup of classes r with the property that for every prime l, the class of r in Q∗l /Q
∗p
l in the

image of ∂D : J(Ql)/ψ(AD(Ql)) → Q∗l /Q
∗p
l , for every prime l. In other words, an element of Sel(AD) is

a µp-cover X → J with Steinitz class D and such that X(Ql) ̸= ∅ for every prime l.
For an abelian variety A over Q the group X(A) is the group of A-torsors which are trivial over Ql for

all primes l ≤ ∞.

Proposition 3.10. Let X(AD) be the Tate-Shafarevich group of AD. There is an exact sequence

0 → J(Q)/ψ(AD(Q)) → Sel(AD) → X(AD)[ψ] → 0 (83)

where X(AD)[ψ] is the kernel of the map X(AD) → X(J) induced by ψ.

Proof. A proof can be found in [5, Lemma 3.9].

The group Sel(AD) is isomorphic to the usual Selmer group

Selψ(A) ⊂ H1(F,A[ψ]) ≃ H1(F, µp) ≃ F ∗/F ∗p. (84)

Thus it is finite, which can also be seen from the following proposition.

Proposition 3.11. Let l ̸= p a prime of good reduction for J . Then the image of ∂D : J(Ql) → Q∗l /Q
∗p
l is

equal to the subgroup Z∗l /Z
∗p
l .

Proof. A proof can be found in [5, Lemma 3.10].
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4 Jacobians andµp-covers for curves of the form yp = x(x − e1)(x − e2)

Let p > 3 a prime. Let e0, e1 and e2 be distinct integers and consider the smooth projective curve C over Q
with affine model

yp = (x− e0)(x− e1)(x− e2). (85)

Without loss of generality we can assume that e0 = 0. This affine model is smooth and it has a single
rational point at infinity denoted by ∞. The genus of the curve is g = p− 1 from [26, §1].

Let J be the Jacobian of C. The subgroup J(Q)[p] has rank at least 2, because it contains Di =
[(ei, 0)−∞] for i ∈ {0, 1, 2}. We have that D0 +D1 +D2 = div(y) so D0 +D1 +D2 is equal to 0 in J . Let
H := ⟨D0, D1⟩. We can define the following abelian variety:

Â = J/H. (86)

For D := D0 +D1 we define the variety “B = J/⟨D⟩. (87)

For these varieties we can define the quotient isogenies ϕ̂ : J → Â and ψ̂ : J → “B. By duality we get the
dual isogenies ϕ : A → Ĵ and ψ : B → Ĵ . Furthermore, via the canonical principal polarization we can
identify J with its dual and acquire the maps ϕ : A→ J and ψ : B → J . This turns A and B into µp-covers
of J . We also define the varieties ADi = J/⟨Di⟩ for i ∈ {0, 1, 2} in this manner, with the corresponding
isogenies ψi : ADi

→ J . Note that B ≃ AD2
, because D = −D2.

We now get the map

J(Q)/ϕ(A(Q))
∂H

−−→ Q∗/Q∗p ×Q∗/Q∗p (88) g∑
j=1

(xj , yj)− g · ∞

 7→

Ñ
g∏
j=1

xj ,

g∏
j=1

(xj − e1)

é
(89)

as described in the Lemmas 3.6, 3.8 and 3.9. From [21, Proposition 2.7] it follows that the divisor

g∑
j=1

(xj , yj)− g · ∞, (90)

with xj , yj ∈ Q, on the left hand side is Galois stable, i.e. its divisor class can be represented by a Q-
rational divisor, because C(Q) ̸= ∅. This map is well-defined whenever the xj and xj − e1 are non-zero.
By [10, VI §4 Lemma 3] it is possible to find a representative in every class in J(Q)/ϕ(A(Q)) such that the
map ∂H is well-defined.

We can construct similar homomorphisms for the other varieties we have defined:

∂Di :J(Q)/ψi(ADi
(Q)) → Q∗/Q∗p (91) g∑

j=1

(xj , yj)− g · ∞

 7→
g∏
j=1

(xj − ei) (92)

for ADi
with i ∈ {0, 1, 2}. Similar to ∂H this description only makes sense whenever the xj − ei are

non-zero. However from these maps we find that

∂D0 · ∂D1 · ∂D2

Ñ g∑
j=1

(xj , yj)− g · ∞

é =

g∏
j=1

xj(xj − e1)(xj − e2) =

g∏
j=1

ypj = 1, (93)

since the xj and yj lie on the curve C. So we get the identity:

∂D0 · ∂D1 · ∂D2 = 1. (94)

This allows us to describe our homomorphisms on classes where they are not well-defined. One particular
example which will come up is described in the following lemma.
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Lemma 4.1. We have
∂H([(0, 0)−∞]) = [e−11 e−12 ,−e1], (95)

and
∂H([(e1, 0)−∞]) = [e1, (e1 − e2)

−1]. (96)

Proof. Note that themap ∂H can be described by themappingP 7→ (∂D0(P ), ∂D1(P )) forP ∈ J(Q)/ϕ(A(Q)).
Combining this with (94) we find that:

∂H([(0, 0)−∞]) = [∂D1([(0, 0)−∞])−1 · ∂D2([(0, 0)−∞])−1, ∂D1([(0, 0)−∞])]

= [e−11 e−12 ,−e1].

In a similar way, we find that ∂H([(e1, 0)−∞]) = [e1, (e1 − e2)
−1].

Lastly, for B we have the homomorphism

∂D :J(Q)/ψ(B(Q)) → Q∗/Q∗p, (97) g∑
j=1

(xj , yj)− g · ∞

 7→
g∏
j=1

xj(xj − e1). (98)

This gives us the following commutative diagram which we will use in the next section

J(Q)/ϕ(A(Q)) Q∗/Q∗p ×Q∗/Q∗p

J(Q)/ψ(B(Q)) Q∗/Q∗p

∂H

∂D

(99)

where the right vertical map is given by [r1, r2] 7→ [r1r2].
We can find birational models for µp-covers of J given a Steinitz class. For our case we will look at the

Steinitz class of D = D0 +D1. The distinguished µp-cover for this Steinitz class is the cover B → J . Let
this µp-cover correspond with the data (L, η). By Lemma 3.7 we have that f(0J) is a p-th power in Q∗
where f = η−1 ∈ Q(J). For any point P ∈ J(Q)/ψ(B(Q)) we have that ∂D(P ) = rP = f(P + Q)/f(Q)
by Lemma 3.6. Taking Q = 0J we can rewrite this equation to get

f(P ) = f(P + 0J) = f(0J)rP = 1, (100)

since f(0J) is a p-th power. The fact that rP is equal to 1, follows from the fact that the cover B → J
is isomorphic to (L, η). Because pD = div(x(x − e1)), it follows from Lemma 3.8 that 1 = f(P ) =
[x(x− e1)](P ). Since P can be written in the form

∑g
i=1(xi, yi)− g · ∞ we finally get the equation

zp =

g∏
i=1

xi(xi − e1). (101)

where the variable zp comes from lifting the equation out of Q∗/Q∗p. Together with the birational model
for J given by the equations

ypi = xi(xi − e1)(xi − e2). (102)
for 1 ≤ i ≤ g, we get a birational model for B. Recall that this model has the same equations (1) of the
variety Ã in Theorem 1.1.

Finally for r ∈ Q∗, the µp-cover (L, rη) is described by the equations

ypi = xi(xi − e1)(xi − e2). (103)

for 1 ≤ i ≤ g, together with the additional equation

rzp =

g∏
i=1

xi(xi − e1). (104)

which is twisted by r. If we identify B with the abelian variety Ã/Sg of Theorem 1.1, then the above
equations correspond with the equations (2) of the variety X̃ in Theorem 1.1.
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5 The proof of Theorem 1.1
We now further specialize the curve (85) and look at the curve Cu,v given by the affine model:

C = Cu,v : y
p = x(x− 3u)(x− 9v). (105)

where u, v are integers not divisible by 3 and p is a prime larger than 3. Let J be the Jacobian of C and
let A and B be the µp-covers from the previous section.

For certain primes q, we locally know the size of J(Qq)/ϕ(A(Qq)) from the following lemma:

Lemma 5.1. Let q be a prime such that q ≡ 1 (mod p). Then we have that #J(Qq)/ϕ(A(Qq)) = p2.

Proof. The (q − 1)-th roots of unity in Fq are given by F×q . By the structure of finite fields this is a cyclic
group of order q − 1. Our congruence condition on q tells us that there is an element ζ in F×q generating
a subgroup of order p. It follows that this is a primitive p-th root of unity. Because p and q are coprime it
follows by Hensel’s lemma that we can lift this element to an element in Q∗q and we can conclude that Q∗q
contains a primitive p-th root of unity ζ.

For any field that contains ζ, we get an automorphism (x, y) 7→ (x, ζy) of C. Interpreting (x, y) as an
element of div(C), we can define the pushforward ζ∗ : div(C) → div(C) as ζ∗(x, y) = (x, ζy) and we can
extend this map Z-linearly to other divisors. This induces a homomorphism ζ∗ : J → J sending [D] 7→
[ζ∗D] by [25, Proposition II.3.6]. So we get a ring embedding ι : Z[ζ] ↪→ End(J). For an element nζi
in Z[ζ] with n ∈ Z and 0 ≤ i ≤ p−1 and a divisor class [D] in J the map ι(nζi) acts on [D] by ι(nζi)(D) =
[n · (ζ∗D)]. Note that Q(ζ) ≃ Z[ζ]⊗Q forms a Q-subalgebra under this embedding. So by [15, Proposition
V.10.23] it follows that deg(ι(α)) = NmQ(ζ)/Q(α)

2.
The kernel of ϕ̂ : J → Â is then equal to the kernel of the endomorphism 1 − ι(ζ). This follows from

the fact that elements in ker(1 − ι(ζ)) satisfy the relation ζ∗P ∼ P for a point P ∈ J . In particular, a
point P of the form [(x, y)] would satisfy the relation if y = 0. So it follows that

ker(ϕ̂) = ⟨D0, D1⟩ ⊆ ker(1− ι(ζ)). (106)

Since the size of the kernel of 1− ι(ζ) is equal to #ker(1− ι(ζ)) = NmQ(ζ)/Q(1− ζ)2 = p2 = #⟨D0, D1⟩,
we can conclude that the kernels of ϕ̂ and 1− ι(ζ) are equal. Thus the maps 1− ι(ζ) and ϕ̂ are equal up
to post-composition with an automorphism. So A and Â are isomorphic to J over any field containing ζ
and thus in particular over Qq. Let ϕ(q) : A(Qq) → J(Qq) denote the induced homomorphism on Qq. The
local Selmer ratio is defined as

cq(ϕ) =
#cokerϕ(q)

#kerϕ(q)
=

#J(Qq)/ϕ(q)(A(Qq))
#A(Qq)[ϕ(q)]

. (107)

By [23, Corollary 3.2] we have that
cq(ϕ) = cq(J)/cq(A), (108)

where the right hand side is the ratio of the Tamagawa numbers at q. Abstractly, the Tamagawa mea-
sure c(G) of a semisimple algebraic group G defined over a global field k, is the canonical normalization
of a Haar measure onG(A) where A is the adele ring of k. The Tamagawa number ofG is then the volume
of G(A)/G(k) under the Tamagawa measure. For the details of this construction we refer to [27, Chapter
II] or [19, Chapter §5.3].

Since J ≃ A over Qq this ratio is 1. We also have that #A(Qq)[ϕ] = p2, which gives us the re-
sult #J(Qq)/ϕ(A(Qq)) = #A(Qq)[ϕ] · cq(ϕ) = p2.

We would like to specialize our curves even further. To do this we introduce a non-zero integer k which
is to be determined and look at the curve

Ck = Cu,v,k : yp = x(x− 3uk)(x− 9vk). (109)

Another model for this curve is k3yp = x(x − 3u)(x − 9v). From this we can see that Ck is a µp-twist
of C = Cu,v : y

′p = x′(x′− 3u)(y′− 9v) via the mapping x 7→ kx′ and y′ 7→ p
√
k3. Let Jk, Ak and Bk be the

corresponding abelian varieties of Ck similar as before. These are then µp-twists of J,A and B as well.
For two primes q and l, let

(
q
l

)
p
= 1 if q is a p-th power in Q×l and let it be equal to −1 otherwise. We

have the exact sequence from Proposition 3.10

0 → Jk(Q)/ψ(Bk(Q))
∂D

−−→ Sel(Bk) → X(Bk)[ψ] → 0. (110)
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Proposition 5.2. Let U be the set of primes that divide 3puv(u − 3v). Suppose k is a product of distinct
primes p1, . . . , pt not contained in U , which satisfy:

1.
Ä
pi
pj

ä
p
= 1 for all i ̸= j in {1, 2, . . . , t},

2.
Ä
pi
q

ä
p
= 1 for all i in {1, 2, . . . , t} and all q ∈ U ,

3.
Ä
q
pi

ä
p
= 1 for all i in {1, 2, . . . , t} and all q ∈ U − {3},

4.
Ä

3
pi

ä
p
= −1 for all i in {1, 2, . . . , t}.

Then we have for all i that pi ∈ Sel(Bk) and pi ̸∈ ∂D(Jk(Q)). More generally, if q =
∏
i∈I p

ai
i , with I ⊂

{1, . . . , t} a proper and non-empty subset and 1 ≤ ai ≤ p− 1, then q ∈ Sel(Bk) and q ̸∈ ∂D(Jk(Q)).

Proof. Using Lemma 4.1 we have that

∂H([(0, 0)−∞]) = [3−3u−1v−1k−2,−3uk], (111)

∂H([(3uk, 0)−∞]) = [3uk, 3−2u−1(u− 3v)−1k−2]. (112)
For j ̸= i ∈ {1, . . . , t} by assumption we have that u, v, (u−3v), pj are p-th powers in Q∗pi . So in Q∗pi/Q

∗p
pi ×

Q∗pi/Q
∗p
pi we have that the above elements are equal to [3−3p−2i , 3pi] and [3pi, 3

−2p−2i ] respectively. These
elements are linearly independent so by Lemma 5.1 they generate ∂H(Jk(Qpi)/ϕ(Ak(Qpi)). Note that we
need to check if pi ≡ 1 (mod p) before we can apply the lemma. Since 3 is not a p-th power in Qpi we
have that Fpi contains all p-th roots of unity.

Let [r1, r2] in ∂H(Jk(Q)/ϕ(Ak(Q)). We shall consider the elements of Q∗p/Q∗pp as p-th power-free num-
bers. Proposition 3.11 tells us then that the product of r1r2 lies inZ∗l /Z

∗p
l for primes l ̸= p of good reduction

for J . So the prime l does not divide r1r2. By taking r2 = 1 we can see that r1 is not divisible by l, likewise
for r2 by taking r1 = 1. It follows that the primes of good reduction are the primes outside {p1, . . . , pt}∪U .
To see this let the function f(x, y) = yp−x(x−3uk)(x−9vk) describe the curve Ck. Looking at the partial
derivatives we see that ∂yf(x, y) = pyp−1, so l possibly has bad reduction if l = p or if f(x, 0) is not sepa-
rable. If l = p, then we have that f(x, y) ≡ (y − p

√
x(x− 3uk)(x− 9vk))p modulo p, since Fp is a perfect

field. So we have bad reduction at p. In the case that y = 0 the discriminant of x(x − 3uk)(x − 9vk) is
given by 38u2v2k6(u− 3v)2, so we have bad reduction if l divides 3uvk(u− 3v). Thus the integers r1 and
r2 are only divisible by the primes in {p1, . . . , pt} ∪ U .

Let us assume that there is no i such that pi divides r1 and 1/r2 to the same power. Then every pi will
divide r1r2 by a positive power, since we can multiply by 1 = ppi . So r1r2 cannot be equal to an individual
prime pi and in particular it cannot be of the form

∏
i∈I p

ai
i with I a non-empty proper subset of {1, . . . , t}

and 1 ≤ ai ≤ p− 1.
So assume to the contrary that there exists some i such that pi divides r1 and 1/r2 to the same power.

The element [r1, r2] is a product of [3−3p−2i , 3pi] and [3pi, 3
−2p−2i ] in ∂H(Jk(Qpi)/ϕ(Ak(Qpi)), since they

generate the subgroup. Looking only at the pi-adic valuation we have that

[r1, r2] ≡ [p−2i , pi]
a · [pi, p−2i ]b ≡ [pb−2ai , pa−2bi ], (113)

for some a, b ∈ Z. Passing to Q∗pi/Q
∗p
pi we get that

r1r2 ≡ pa−2b+b−2ai = p−b−ai , (114)

which implies that b = −a. Looking back at [r1, r2] we thus see that

[r1, r2] = [3−3p−2i , 3pi]
a · [3pi, 3−2p−2i ]−a = [3−4ap−3ai , 33ap3ai ], (115)

with 0 ≤ a ≤ p− 1. From this we find in Q∗pi/Q
∗p
pi that

r31r
4
2 = 3−12a+12ap−9a+12a

i = p3ai . (116)

Because 3 is not a p-th power in Q∗pi it implies that 3 divides r31 and 1/r42 to the same power. For j
an index different from j, we also have that the elements [3−3p−2j , 3pj ] and [3pj , 3

−2p−2j ] generate the
subgroup ∂H(Jk(Qpj )/ϕ(Ak(Qpj )). Writing [r1, r2] in terms of these elements again we see that

[r1, r2] = [3−3p−2j , 3pj ]
a · [3pj , 3−2p−2j ]b = [3b−3apb−2aj , 3a−2bpa−2bj ], (117)
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and passing to Q∗pj/Q
∗p
pj we find that

r31r
4
2 = 3−5a−5bp−2a−2bj . (118)

Because we know that 3 divides r31 and r42 to the same power we must have that a = −b. From this it
follows that pj divides r1 and 1/r2 to the same power following the computations of the case of pi. Since
this holds for any choice of j, we can conclude that no pj divides r1r2. In particular r1r2 cannot be of the
form

∏
i∈I p

ai
i as described before.

Since ∂H(Jk(Q)/ϕ(Ak(Q))maps surjectively onto ∂D(Jk(Q)/ψ(Bk(Q)), we can conclude that elements
of the form

∏
i∈I p

ai
i with I a non-empty proper subset of {1, . . . , t} and 1 ≤ ai ≤ p − 1 do not lie

in ∂D(Jk(Q)/ψ(Bk(Q)).
Now to show that each pi lies in Sel(Bk) we must show that pi lies in ∂D(Jk(Ql)/ψ(Bk(Ql)) for each

prime l. For each prime l ∈ {p1, . . . , pt}∪U different from pi, we have that pi is a p-th power in Q∗l by the
assumptions of the proposition. So pi lies in ∂D(Jk(Ql)/ψ(Bk(Ql)) since pi is equal to the image of the
identity under ∂D. This argument also holds for the infinite prime as pi is a p-th power inR, since it is equal
to p

√
pi. In the case that l = pi, we note that ∂H([(0, 0) −∞]) = [3−3p−2i , 3pi] and ∂H([(3uk, 0) −∞]) =

[3pi, 3
−2p−2i ] in Q∗pi . So it follows that ∂D([(0, 0) − ∞]) = [3−2p−1i ] and ∂D([(3uk, 0) − ∞]) = [3−1p−1i ].

Dividing the first element by the square of the second element gives us our desired result. Lastly, for the
case that l ̸∈ {p1, . . . , pt} ∪ U we note that ∂D(Jk(Ql)/ψ(Bk(Ql)) is equal to Z∗l /Z

∗p
l by Proposition 3.11.

Since l and pi are coprime it follows immediately that pi lies in Z∗l /Z
∗p
l = ∂D(Jk(Ql)/ψ(Bk(Ql)). So we

can conclude that pi ∈ Sel(Bk).

Putting everything discussed so far we can give a proof of Theorem 1.1.

Proof of Theorem 1.1. Let Ck again be the smooth projective curve defined by the affine model yp =
x(x − 3uk)(x − 9vk). Let Jk be the Jacobian of Ck and let Bk be the abelian variety that corresponds to
the distinguished µp-cover of D = D0 +D1. From the equations (1) that define Ã and our discussion of
models in Section 4 we see that Ã/Sg is also the distinguished µp-cover of the Steinitz class of D. So it is
birational to Bk which has genus p− 1 = g. Since X̃ is a µp-twist of Ã by the action of q, it follows that X̃
is an Ã-torsor. Thus it follows that X̃/Sg is birational to a Bk-torsor X that corresponds to this twist.

By combining Lemma 3.5 and Proposition 5.2 it follows that X has no rational point since q does not
lie in ∂D(Jk(Q)/ψ(Bk(Q)). Likewise it does have a point in Q∗l for every prime l, since q lies in Sel(Bk)
by Proposition 5.2.

Lastly, we show that the class ofX has order p inX(Bk). The Bk-torsorX arises from scaling Bk with
the element q as described in Section 3. Since qp ∈ Q∗p the µp-cover we get from scaling Bk with qp is
isomorphic to Bk and we can conclude that the class of X in X(Bk) has order p.

As a corollary we als have the following result for X(Bk).
Corollary 5.3. Let Ck be the curve as described in proposition 5.2. Then #X(Bk)[p] ≥ pt−1.
Proof. From Proposition 3.10 we have the exact sequence

0 → Jk(Q)/ψ(Bk(Q)) → Sel(Bk) → X(Bk)[ψ] → 0. (119)

The products of the form
∏
i∈I p

ai
i as described in Proposition 5.2 lie in Sel(Bk) but not in the sub-

group ∂D(Jk(Q)/ψ(Bk(Q))). From the exact sequence it follows that these products do not lie in the
kernel and are non-trivial elements of X(Bk/Q)[ψ]. In particular, we can look at the single primes pi and
look at the intersection of ∂D(Jk(Q)/ψ(Bk(Q))) with the subgroup of Sel(Bk) generated by {p1, . . . , pt}.

This subgroup has dimension at most 1 as an Fp-vector space. To see this we consider two linearly
independent elements of this subgroup of the form q =

∏
i∈I p

ai
i and q′ =

∏
i∈I p

a′i
i . Since these elements

lie in ∂D(Jk(Q)/ψ(Bk(Q))) we must have that I = {1, . . . , t} and 1 ≤ ai, a
′
i ≤ p − 1. Without loss of

generality we can assume that a1+a′1 = 0modulo p, since we can scale q and q′ such that this holds. But this
means that their product is of the form q =

∏
i∈I′ p

ai+a
′
i

i , where I ′ = {2, . . . , t} and 0 ≤ ai, a
′
i ≤ p−1. The

only way this product lies in ∂D(Jk(Q)/ψ(Bk(Q))) is if ai+a′i = 0modulo p. This gives us a contradiction
and we can conclude that the dimension is at most 1.

By looking at the exact sequence we can see that the image of ⟨p1, . . . , pt⟩ in X(Bk)[ψ], denoted
by ⟨p1, . . . , pt⟩, has dimension at least t − 1. We have that deg(ψ) = p, since deg(ψ) = deg(ψ̂) =

#ker(ψ̂) = #⟨D⟩, so X(Bk)[ψ] ⊂ X(Bk)[p]. We can conclude that #X(Bk)[p] = pdimFp (X(Bk)[p]) ≥
pdimFp (⟨p1,...,pt⟩) ≥ pt−1.
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6 The proof of Theorem 1.2
For the proof of Theorem 1.2 we need two additional results.

Proposition 6.1. For any u, v as above and any t ≥ 0, there are primes p1, p2, . . . , pt satisfying the conditions
of Lemma 5.1.

Proof. Let K = Q(ζp) where ζp is a primitive p-th root of unity. We will use induction on t. If t = 0 we
satisfy the conditions and we are done.

We will assume that t > 0 and that there exists primes p1, . . . , pt−1 that satisfy the conditions. The case
for t = 1 follows from the same process we will describe below, if we take k = 1, so from now on assume
that t ≥ 2. Let k be the product p1p2 . . . pt−1, let N be the product of the primes that divide puv(u− 3v)k
and let ζpN be a primitive pN -th root of unity. Let L be the compositum of Q(ζpN ) together with all of the
fields Q( p

√
q) with q a prime dividing N inside Q. Because L is a finite compositum of Galois extensions it

is a Galois extension of Q.
Furthermore it is an abelian extension of K. To show this we will look at extensions of K of the

form K(ζN ) and K( p
√
q) for all q dividing N . The Galois groups of these extensions are cyclic groups of

order N and thus abelian. For K(ζN ) the Galois group permutes the N -th roots of unity and for the other
extensions their Galois groups permute the roots of xp − q, thus effectively also permuting N -th roots of
unity. Let L′ be the compositum inside of Q of these extensions of K and consider the restriction map:

Gal(L′/K) → Gal(K(ζN )/K)×
∏
q |N

Gal(K( p
√
q)/K), (120)

σ 7→ (σ|K(ζN ), (σ|K( p
√
q))q|N ). (121)

By [11, Proposition IV.1.14.] this map is injective and we can conclude that L′ is an abelian extension
of K. We claim that L′ = L. Note that K(ζN ) = Q(ζpN ) and that K( p

√
q) = Q(ζp, p

√
q) ⊇ Q( p

√
q), so we

have that L ⊆ L′. For the other inclusion we have that ζp ∈ Q(ζpN ) ⊂ L. So it follows that ζnp ( p
√
q)m lies

in L for any q dividing N . Hence L contains Q(ζp, p
√
q) for any prime q dividing N . So L′ ⊆ L and we can

conclude that L is an abelian extension of K.
Finally let E = Q( p

√
3) and let F = EL the compositum of E and L, which is a Galois extension of Q

by the same token.
We have that E and L are linearly disjoint over Q. We can see this because E/Q is totally ramified

at 3, while L is unramified at 3. This gives us the exact sequence

0 → (Z/pZ) → Gal(F/Q) → Gal(L/Q) → 0. (122)

Here the first non-trivial arrowmaps n ∈ Z/pZ to the automorphism that sends ζmp
p
√
3 to ζm+n

p
p
√
3 and acts

trivially on the other basis elements. The second arrow is given by the restriction map. The Chebotarev
density theorem then tells us that there exists a prime pt whose Frobenius conjugacy class in Gal(F/Q) is
not trivial but restricts to the trivial class in Gal(L/Q).

By construction, pt splits completely in any subfield of L. In particular it splits completely in Q(ζpN ),
so we have that pt ≡ 1 (mod pN). From this we can find that pt is a p-th power in Q∗q for q a prime
dividing 3pN . For q a prime dividing N but not 3p, we can reduce the above congruence to pt ≡ 1
(mod q). So we have that xp − pt ≡ xp − 1 (mod q) has a solution and we can conclude that pt is a p-th
power in Q∗q by Hensel’s lemma. For q = p, we have that p2|pN and thus we get the congruence pt ≡ 1
(mod p)2. So q is a p-th power by applying Hensel’s lemma again. For q = 3 every unit is a p-th power
in Z3 so pt is one too. Similarly, pt splits completely in Q( p

√
q) for all q|N , so the polynomial xp − q has

solutions modulo pt. Thus the primes q are p-th powers mod pt.
Lastly, we need to check that 3 is not a p-th power in Q∗pt . If it were a p-th power in Q∗pt , then the

polynomial xp−3 would have a root in Q∗pt . This would imply that pt has a degree 1 prime above 3 in E by
Kummer-Dedekind. Remember that pt ≡ 1 (mod p), so it follows that ζp ∈ Q∗pt . Thus the polynomial xp−3
has all its roots inQ∗pt and consequently pt splits completely inE. By construction pt splits completely in L,
so it also splits completely in F = EL. But this gives a contradiction since pt has non-trivial Frobenius
conjugacy class in Gal(F/Q), so it does not split completely in F .

The only thing we need to prove Theorem 1.2 now is to show that for every genus p we can find values
of u, v and k such that Jk is absolutely simple, and thus Bk as well.
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Lemma 6.2. For each prime p > 3, there exist u, v, k ∈ Z as in Proposition 5.2 such that Bk is absolutely
simple.

Proof. We will consider the Jacobian of the curve C : yp = x(x − 1)(x − t) over Q(t). This Jacobian
is absolutely simple since there is a value of t ∈ C that makes the curve isomorphic to yp = x3 − 1,
namely t = 1

2 +
√
3
2 i. The Jacobian of yp = x3 − 1 is absolutely simple by [8][9]. By a result of Masser

[14], the geometric endomorphism ring for 100% of specializations of t ∈ Q is the same as the generic
endomorphism ring. In particular, for real numbers d, h ≥ 1 we define vex(d, h) to be the set of specializa-
tions t such that the geometric and generic endomorphism ring are not the same, satisfying [Q(t) : Q] ≤ d
and h(t) ≤ h, where h(t) is the Weil height function at t. Let ω(S) be the least degree of any poly-
nomial that vanishes on the finite subset S ⊂ C(C) but not identically on C. The result then states
that ω(vex(d, h)) ≤ c(max{d, h})λ where c is a constant depending only on C and J , the Jacobian of C,
and λ is a constant depending only on g = p− 1, the genus of C. Taking d = 1, this implies that there are
only a finite amount of specializations of Q such that the endomorphism rings are not the same.

Since the generic abelian variety is geometrically simple, this endomorphism ring is a division field, and
so 100% of the specializations are simple as well. For t = a/b ∈ Qwe can take a to be divisible by exactly 3
and b not divisible by 3. In other words, we have many curves of the form y′p = x′(x′ − 1)(x′ − 3v/u)
with u, v ∈ Z not divisible by 3, with absolutely simple Jacobian. Under the map we x′ 7→ x/3u and y′ 7→
y/

p
√
33u3, we see that this is a twist of the curve yp = x(x− 3u)(x− 9v) and we can conclude that there

exists curves of this form with absolutely simple Jacobian.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. For the case of p = 2 we refer to [13] or [4]. For the case of p = 3 we refer to [3].
Let p > 3 and k ≥ 1. Let Ck be the curve (109). From Lemma 6.2 we find u, v, k ∈ Z such that Bk is
absolutely simple. By Corollary 5.3 we know that #X(Bk)[p] ≥ pt−1 for a given set of primes p1, . . . , pt.
Furthermore, Proposition 6.1 tells us that for any t ≥ 0 we can find such primes. So we can take t = k+1
and get the desired result.
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7 Generalizing from p to n

We have examined p-torsion in the Tate-Shafarevich group and found that it can be arbitrarily large. A
natural question to ask is whether we can also generalize this result to an arbitrary integer n. For this, we
first examine the case that n has the form n = p1 . . . pt where p1, . . . , pt are distinct primes.

7.1 The case n = p1 . . . pt

Let n = p1 . . . pt be a product of the distinct primes p1, . . . , pt. Let Y be an abelian variety over a field F of
characteristic not dividing n. Similar as in Section 3 we will introduce µn-covers. For this let µn be the F -
group scheme of the n-th roots of unity. A µn-cover of Y is then a Y -scheme X with a simply transitive
action of µn and we get the category Mn(Y ) of all µn-covers of Y , whose morphisms are µn-equivariant
isomorphisms. Via Proposition 3.1, it was possible to think of a µp-cover as a pair (L, η) where L is an
invertible sheaf on Y and η : L⊗p ≃ OY an isomorphism. The same results hold for n by replacing all
the p’s with an n. In fact, most of the results in Section 3 hold under this substitution and we will assume
that these results hold under this substitution unless specified otherwise.

While it is nice that all of these results work out for n, we still need to work locally with primes so we
would like to decompose the µn-cover into µpi -covers for i ∈ {1, . . . , t} if possible. For this we first have
the following lemma.

Lemma 7.1. Using the notation of Proposition 3.1, let π : X → Y be a µn-cover with a corresponding
pair (L, η). We can construct µpi -covers πpi,j : Xi,j → Y of Y for i ∈ {1, . . . , t} corresponding to the
pair (L⊗j·

n
pi , η

⊗j· npi ) where 1 ≤ j ≤ pi − 1.

Proof. By Proposition 3.1 it is sufficient to find a pair (Lpi,j , ηpi,j) such that Lpi,j is an invertible sheaf
on Y together with an isomorphism ηpi,j : L

⊗pi
pi,j

→ OY where 1 ≤ j ≤ pi − 1. For this we can take Lpi,j
to be L⊗j·

n
pi . This is an invertible sheaf on Y as L is invertible. The isomorphism ηpi,j is then given by the

following isomorphisms:

ηpi,j :
Ä
L⊗j·

n
pi

ä⊗pi ≃ L⊗j·n ≃
(
L⊗n

)j ≃ O⊗jY ≃ OY , (123)

where the second to last isomorphism is given by η⊗j and the other isomorphisms follow from the prop-
erties of tensor products of OY -modules. So the isomorphism ηpi,j is given by η⊗j . By the equivalence of
categories we thus find a µpi -cover πpi,j : Xi,j → Y of Y with corresponding pair (Lpi,j , ηpi,j). Here Xi,j

is the relative spectrum of the sheaf of algebras that is generated by Lpi,j as described in Proposition 3.1.
Let (L, η) → (L′, η′) be a morphism of µn-covers where g : L → L′ is an isomorphism such that η′ ◦

g⊗n = η. This gives us an isomorphism between g⊗j·
n
pi : L⊗j·

n
pi → L′⊗j·

n
pi , which we will denote by gpi,j .

Consequently, this gives us a morphism between the µpi -covers (Lpi,j , ηpi,j) and (L′pi,j , η
′
pi,j

), since we
have that

η′pi,j ◦ g
⊗pi
pi,j

= η′⊗j ◦ (g⊗j·
n
pi )⊗pi = η′⊗j ◦ g⊗j·n = (η′ ◦ g⊗n)⊗j = η⊗j = ηpi,j . (124)

So morphisms of µn-covers behave well under this construction for a fixed choice of j.

Note that whenwewere discussing themorphisms of the µpi -covers we constructed in the above lemma,
we specified that our choice of j was fixed between the µpi -covers. The following lemma explores the
situation where the choices of j differ between the µpi -covers.

Lemma 7.2. Let (L, η) → (L′, η′) be a morphism of µn-covers where g : L → L′ is an isomorphism such
that η′ ◦ g⊗n = η. Let (Lpi,j , ηpi,j) and (L′pi,j′ , η

′
pi,j′

) be the µpi -covers of (L, η) and (L′, η′) respectively,
as described in Lemma 7.1. Assume that j and j′ are distinct integers modulo pi. Then there exists a mor-
phism (Lpi,j , ηpi,j) → (L′pi,j′ , η

′
pi,j′

) of µpi -covers if and only if (Lpi,j , ηpi,j) is not geometrically connected.

Proof. We will first assume that there exists a morphism of µpi -covers (Lpi,j , ηpi,j) → (L′pi,j′ , η
′
pi,j′

). This
gives us an isomorphism betweenLpi,j andL′pi,j′ . We also have an isomorphism betweenL′pi,j′ andL⊗j

′· npi

given by (g−1)
⊗j′· npi . This gives us an isomorphism Lpi,j ≃ L⊗j

′· npi , or equivalently L⊗(j−j
′)· npi ≃ OY .

Since j and j′ are distinct non-zero integers modulo pi, it follows that pi does not divide j − j′. So
there exists an integer k such that k(j − j′) ≡ j (mod pi). This gives us an isomorphism OY ≃ O⊗kY ≃
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L⊗k(j−j
′)· npi ≃ L⊗j·

n
pi . By Lemma 3.2 this implies that the µpi -cover (Lpi,j , ηpi,j) is not geometrically

connected.
Now assume that (Lpi,j , ηpi,j) is not geometrically connected, so Lpi,j ≃ OY by Lemma 3.2. In partic-

ular, this means that (L, η) is geometrically connected neither. This means that L ≃ OY so η is scalar
multiplication by some r ∈ F ∗. By diagram (123) it follows then that ηpi,j is equal to rj for all j.
Let 1 ≤ k ≤ pi − 1 be the integer such that k · j = j′ (mod pi). Then we have the following isomor-
phisms

Lpi,j ≃ OY ≃ O⊗kY ≃ L⊗kpi,j ≃ Lpi,j′ , (125)

by the properties of the tensor product of OY -modules and the properties of L. Let ρ denote the isomor-
phism Lpi,j → Lpi,j′ . Since the isomorphisms Lpi,j → OY andOY → Lpi,j′ are given by scalar multiplica-
tion with pi

√
r
j and pi

√
r
−j′ respectively, it follows that ρ is given by scalar multiplication with pi

√
r
j
/ pi
√
r
−j′ .

From this it follows that ηpi,j′ ◦ ρ = ηpi,j and ρ is a morphism of µpi -covers (Lpi,j , ηpi,j) → (Lpi,j′ , ηpi,j′).
As described in the previous lemma we also have a morphism of µpi -covers (Lpi,j′ , ηpi,j′) → (L′pi,j′ , η

′
pi,j′

)
given by gpi,j′ . So gpi,j′ ◦ ρ is a morphism of µpi -covers (Lpi,j , ηpi,j) → (L′pi,j′ , η

′
pi,j′

), which gives us our
desired result.

In the proof we implicitly used the fact that the µn-cover (L, η) is not geometrically connected if its µpi -
cover (Lpi,j , ηpi,j) is not geometrically connected. We will make this explicit.

Lemma 7.3. The µn-cover π : X → Y corresponding to (L, η) is not geometrically connected if and only if
the µpi -covers πpi,j : Xi,j → Y corresponding to (Lpi,j , ηpi,j) for one of the i ∈ {1, . . . , t} and 1 ≤ j ≤ pi − 1
is not geometrically connected.

Proof. Assume that π : X → Y is not geometrically connected. By Lemma 3.2 this means that L ≃ OY .
By the properties of the tensor product of OY -modules and the properties of L we get the isomorphisms

OY ≃ O
⊗j· npi
Y ≃ L⊗j·

n
pi ≃ Lpi,j , (126)

for all choices of i ∈ {1, . . . , t} and 1 ≤ j ≤ pi − 1. So πpi,j : Xi,j → Y is not geometrically connected
either.

Now assume that πpi,j : Xi,j → Y is not geometrically connected for one of the i ∈ {1, . . . , t} and 1 ≤
j ≤ pi − 1. So we have an isomorphism Lpi,j ≃ OY and ηpi,j is scalar multiplication by some r ∈ F ∗.
In this case, Xi,j is isomorphic to Y ×F F ( pi

√
r) as an F -scheme which is not geometrically connected.

Since (Xi,j ,OXi,j ) is a subscheme of (X,OX)), it follows that π : X → Y is not geometrically connected.

From Lemma 7.1 we see that given a µn-cover (L, η) we can construct the µpi -covers (Lpi,j , ηpi,j) for
all i ∈ {1, . . . , t} and 1 ≤ j ≤ pi − 1. When taking this approach we need to specify which µpi -cover we
are taking with respect to j when we are only considering the µpi -covers of (L, η) for a specific prime pi.
However, it turns out that when we are considering the µpi -covers of (L, η) for all primes pi at once then
we do not need to specify this distinction and there is a canonical way that the µn-cover (L, η) decomposes
into µpi -covers. We do this by looking at how the action of µn acts on L and how it decomposes in terms
of actions of µpi .

Lemma 7.4. Let π : X → Y be a µn-cover with a corresponding pair (L, η). Then (L, η) decomposes uniquely
into µpi -covers πpi : Xi → Y with corresponding pair (Lpi , ηpi), determined by the action of µn on L. So π
decomposes uniquely as the tensor product ⊗ti=1πpi .

Conversely, let πpi : Xi → Y be a collection of µpi -covers with corresponding pairs (Lpi , ηpi) for i ∈
{1, . . . , t}. We can construct a unique µn-cover π : X → Y with corresponding pair (L, η), such that its
induced µpi -covers are πpi for all i ∈ {1, . . . , t}.

Proof. We will consider the sheaf of OY -modules

π∗OX =

n−1⊕
i=0

Li. (127)

We can write Li as Li ≃ ⊗tj=1L
aij
pi for some 0 ≤ aij ≤ pj − 1. The aij need to be chosen such that the

action of ζn on both sides of the equation is the same. The action of ζn on the left-hand side is given
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by ζn · s = ζins. By Lemmma 7.1 Lpi is given by L⊗j·
n
pi for some 1 ≤ j ≤ pi − 1. So the action of ζn

on Laijpi is given by ζn · s = ζ
aij ·j n

pi
n s = ζ

aij
pi s, since ζ

j n
pi

n is some primitive pi-th root of unity. Thus on the
right-hand side the action is given by ζn · s = (

∏t
j=1 ζ

aij
pj )s = ζ

∑t
j=1 aij pj

n s. Comparing the equations on
both sides we need to solve i ≡

∑t
j=1 aijpj (mod n) for all i ∈ {0, . . . , n− 1}. By the Chinese remainder

theorem we find a unique solution for every i and it follows that

π∗OX =

n−1⊕
i=0

Li =
n−1⊕
i=0

Ñ
t⊗

j=1

L
aij
pj

é
=

t⊗
j=1

(
n−1⊕
i=0

L
aij
pj

)
=

t⊗
j=1

πpj∗OX (128)

which gives us the desired result.
Let πpi : Xi → Y be a collection of µpi -covers with corresponding pairs (Lpi , ηpi) for i ∈ {1, . . . , t}.

Let ζpi be the pi-th primitive root such that the action of µpi onLjpi is given by ζpi ·s = ζjpis for 0 ≤ j ≤ pi−1.
Let ζn be the n-th primitive root given by ζn =

∏t
i=1 ζpi . We consider the invertible sheaf L :=

⊗t
i=1 Lpi .

Let s = ⊗ti=1si be an element of L where si ∈ Lpi . We define an action of µn on L by defining the action
as ζn ·s = ⊗ti=1ζpisi. This gives us a Z/nZ-grading on the sheaf

⊕n
i=0 Li, where ζn ·s⊗ti=1 ζ

j
pisi for s ∈ Lj

and 0 ≤ j ≤ n − 1. As a final step, we need to find an isomorphism η : L⊗n → OY . For this we will
consider the isomorphism

η : L⊗n =

t⊗
i=1

(L⊗pipi )
n
pi ≃

t⊗
i=1

O
⊗ n

pi

Y ≃ OY , (129)

where the first isomorphism is given by⊗ti=1η
⊗ n

pi
pi and the second isomoprhism follows from the properties

of tensor products. Thus we find an isomorphism η : L⊗n → OY given by η := ⊗ti=1η
⊗ n

pi
pi . By the

equivalence of categories the pair (L, η) gives us a µn-cover π : X → Y . By the arguments earlier in this
lemma we see that the induced µpi -covers of (L, η) are given by (Lpi , ηpi).

Wewill now examine howmorphisms of µpi -covers combine into amorphism of µn-covers. Consider the
collection of µpi -covers (Lpi , ηpi) → (L′pi , η

′
pi) given by isomorphisms gpi : Lpi → L′pi such that η′pi ◦g

⊗pi =
ηpi where i ∈ {1, . . . , t}. Let (L, η) and (L′, η′) be µn covers as constructed as above. We must find an
isomorphism g : L → L′ such that η′ ◦ g⊗n = η. The isomorphism

⊗t
i=1 Lpi = L ≃ L′ =

⊗t
i=1 L′pi gives

us an obvious choice for g, namely the map g := ⊗ti=1gpi . To see that this map satisfies our conditions we
check that

η′ ◦ g⊗n = ⊗ti=1η
′
pi

⊗ n
pi ◦

(
⊗ti=1gpi

)⊗n
= ⊗ti=1

(
η′pi ◦ g

⊗pi
pi

)⊗ n
pi = ⊗ti=1η

⊗ n
pi

pi = η (130)

and we see that g satisfies η′ ◦ g⊗n = η. So morphisms behave well under this construction and we are
done.

Example 7.5. Let n = 6 = 2 · 3. Consider a µ6-cover π : X → Y over Y with a corresponding pair (L, η).
Looking at the sheaf

π∗OX = OY ⊕ L⊕ L2 ⊕ L3 ⊕ L4 ⊕ L5 (131)
≃ (OY ⊗OY )⊕

(
L3 ⊗ L4

)
⊕
(
OY ⊗ L2

)
⊕
(
L3 ⊗OY

)
⊕
(
OY ⊗ L4

)
⊕
(
L3 ⊗ L2

)
(132)

≃
(
OY ⊕ L3

)
⊗
(
OY ⊕ L2 ⊕ L4

)
(133)

= π2∗OX ⊗ π3∗OX . (134)

We see that the action of ζ6 decomposes into an action of ζ2 and ζ23 , since L ≃ L3 ⊗ L4. Thus we get a
decomposition into the µ2-cover corresponding to (L2, η2) and the µ3-cover (L3, η3), whereL2 := L3 andL3 :=
L4.

We can now think of a µn-cover π : X → Y in terms of the pair (L, η) and its induced µpi -covers πpi :
Xi → Y with corresponding pairs (Lpi , ηpi). We will call the line bundles L,Lpi ∈ Pic(Y )(F ) the Steinitz
classes of π and πpi respectively. Since these line bundles are n-torsion and pi-torsion bundles respectively,
we can continue the notation from Section 3 and let L ∈ “Y [n](F ) and Lpi ∈ “Y [pi](F ) where “Y = Pic0(Y )
is the dual abelian variety.

We now know how the action of a µn-cover decomposes. The next thing we will look at is how mor-
phisms and isomorphisms are affected under this decomposition. We have seen that we could scale µp-
covers and we can do the same in the case where we replace p with n.
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Given a µn-cover (L, η) we acquire a different µn-cover (L, rη) by scaling η : L⊗n → OY with r ∈ F ∗.
Two such µn-covers (L, rη) and (L, sη) are isomorphic if and only if r/s ∈ F ∗n. We can carry this process
over through the decomposition and get a µpi -cover (Lpi , rη). In particular, an isomorphism of µn-covers in
this manner induces an isomorphism of µpi -covers. If r/s = tn was a n-th power, then it is also a pi-th power
as tn = (tn/pi)pi . Likewise, if (Lpi , rηpi) and (Lpi , sηpi) are isomorphic µpi -covers for all i ∈ {1, . . . , t},
then r/s is a pi-th power for all i. Since F is a field it follows that r/s is a p1 . . . pt = n-th power as well,
so we get an isomorphism of µn-covers (L, rη) and (L, sη) this way.

Given two µn-covers (L, η) and (L′, η′), their tensor product (L ⊗ L′, η ⊗ η′) is another µn-cover. This
construction follows for µpi -covers (Lpi , ηpi) and (L′pi , η

′
pi), and we get the tensor product (Lpi ⊗L′pi , ηpi ⊗

η′pi) for all i ∈ {1, . . . , t}. We let H1(Y, µn) denote the set of µn-covers of Y and we get an isomor-
phism H1(Y, µn) ≃ ⊗ti=1H

1(Y, µpi) from Lemma 7.4.
We have seen in Section 3 for a geometrically connected µp-cover π : X → Y corresponding to (L, η)

thatX is a torsor for the abelian variety AL. We will proceed with a similar construction for our µn-covers.
By Lemma 7.3 if π : X → Y is a geometrically connected µn-cover corresponding to the pair (L, η), then
the induced µpi -covers πpi : Xi → Y corresponding to (Lpi , ηpi) are geometrically connected as well. So
X is a torsor for a family of abelian varieties and we will examine how these are related to each other.

Similar to Section 3, let ψ̂ : “Y → “Y /⟨L⟩ be the degree n isogeny obtained from modding out L.
Let ψ : AL → Y be the dual isogeny, which is also of degree n, where AL denotes the dual of “Y /⟨L⟩. We
give ψ the structure of a µn-cover and we have that

kerψ ≃ ’ker“ψ ≃ ’Z/nZ = Hom(Z/nZ,Gm) ≃ µn. (135)

By the chinese remainder theorem we have that µn ≃
∏t
i=1 µpi , which suggests that there exist isoge-

nies ψpi : ALpi
→ Y for the induced µpi -covers such that µpi ≃ kerψpi . Indeed, let ”ψpi : “Y → “Y /⟨Lpi⟩

be the degree pi isogeny by modding out Lpi and let ψpi : ALpi
→ Y be its dual isogeny. By Lemma 7.4

every element of ⟨L⟩ is generated by the Lpi , so we get an isomorphism ⟨L⟩ ≃
∏t
i=1⟨Lpi⟩.

We can consider the following diagram:“Y “Y /⟨L⟩“Y /⟨Lpi⟩
“ψ

‘ψpi

“qi (136)

Here ψ and ψpi are the usual quotient isogenies and“qi is the projection from“Y /⟨Lpi⟩ to“Y /⟨L⟩. The kernel
of the projection is given by the image of ⟨Lpj ⟩j ̸=i in “Y /⟨Lpi⟩. Thus the degree of “qi is equal to n/pi and
we have that deg(ψ̂) = n = n ·n/pi = deg(“qi) deg(”ψpi) = deg(“qi◦”ψpi). So we have a commutative diagram
of isogenies and we get the dual diagram:

Y AL

ALpi

ψ

qi
ψpi

(137)

Here qi is the isogeny dual to “qi.
These maps give us the isomorphisms

kerψ ≃ µn ≃
t∏
i=1

µpi ≃
t∏
i=1

kerψpi . (138)

We get φ(n) = φ(p1) . . . φ(pt) = (p1−1) . . . (pt−1) different isomorphisms which correspond to the Z/nZ-
gradings on ψ∗AL. We choose the isomorphism such that the µn-cover ψ : AL → Y has Steinitz class L1 ⊂
ψ∗OAL isomorphic to L. This choice of isomorphism then determines the isomorphisms kerψpi ≃ µpi such
that the action of Z/piZ on ψ∗ALpi

corresponds to the action of Z/piZ on the µpi -covers in the decomposi-
tion of L. The µpi -cover corresponding to ψpi must have Steinitz class L1 ⊂ ψpi∗OALpi

isomorphic to Lpi
by Lemma 7.4.

We can now prove the analogue of Lemma 3.3 for n and expand on it.
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Lemma 7.6. Let π : X → Y be a µn-cover with non-trivial Steinitz class L ∈ “Y [n](F ). Then π is a twist
of the µp-cover ψ : AL → Y and we have that X is a torsor for AL. Furthermore, if πpi : Xi → Y are the
induced µpi -covers with non-trivial Steinitz classes Lpi ∈ “Y [pi](F ), then the πpi are twists of the µpi -covers
ψpi : ALpi

→ Y and Xi is a torsor for ALpi
.

Proof. The proof for the first part of the lemma will be similar to the proof of [5, Lemma 2.6] and will be
included for the sake of clarity.

If ψ : AL → Y corresponds to (L, η), then π : X → Y corresponds to (L, sη) for some s ∈ F ∗. Over
the field F ( n

√
s), there is an isomorphism ρ : AL → X of µn-covers which satisfies

ρg(P ) = n
√
s
g
/ n
√
s+ ρ(P ) (139)

for all g ∈ Gal(F/F ) and P ∈ AL. This makes sense since n
√
s
g
/ n
√
s ∈ µn. The torsor AL × X → X is

given by (P,Q) 7→ ρ(P + ρ−1(Q)). Let g ∈ Gal(F/F ) and P,Q ∈ AL. Then we have that[
ρ(P + ρ−1(Q))

]g
= ρg(P g + (ρ−1)g(Qg)) (140)
= ρ(P g + ρ−1(Qg)− n

√
s
g
/ n
√
s) + n

√
s
g
/ n
√
s (141)

= ρ(P g + ρ−1(Qg))− n
√
s
g
/ n
√
s+ n

√
s
g
/ n
√
s (142)

= ρ(P g + ρ−1(Qg)), (143)

where we used that (ρ−1)g(P ) = − n
√
s
g
/ n
√
s + ρ(P )−1 in (141) and the fact that ρ is µn-equivariant as

a µn-cover morphism in (142). From this we see that the torsor structure is defined over F .
Let ψpi : ALpi

→ Y be the induced µpi -covers of ψ corresponding to the pairs (Lpi , ηpi). Since π :
X → Y corresponds to the pair (L, sη), we must have that the induced covers of π correspond to the
pair (Lpi , sηpi). Let the line bundle Lpi be given by L⊗j·

n
pi for some 1 ≤ j ≤ pi− 1 as described in Lemma

7.1. Then the induced isomorphism ρpi : ALpi
→ Xi is given by ρ⊗j from (123). The action of Gal(F/F )

is given by
ρgpi(P ) = ( n

√
s
g
/ n
√
s)⊗j + ρ(P )pi (144)

for all g ∈ Gal(F/F ) and P ∈ ALpi
. The rest of the proof is similar as before and we are done.

Similar to Section 3 we will specialize ourselves to the situation of Jacobians. Let C be a smooth
projective geometrically integral curve over F , and let J = Pic0(C) be its Jacobian. Let g be the genus
of the curve and thus the dimension of the abelian variety J . We let D ∈ J [n](F ) be a divisor class of
order n and we consider the quotient ψ̂ : J → J/⟨D⟩. We let ψ : AD → Ĵ be the dual of this isogeny,
where AD is the dual of J/⟨D⟩. We identify Ĵ with J via the canonical principal polarization and thus
acquire a µn-cover ψ : AD → J with corresponding pair (L, η). We can choose the µn-cover structure
on ψ such that L ∈ Pic0(Ĵ)(F ) gets mapped to D under the isomorphism ˆ̂

J ≃ J . Thus we can associate L
with D and we have for the induced µpi -covers (Lpi , ηpi) that Lpi corresponds with Dpi :=

n
pi

·D. So we
get the induced µpi -covers ψpi : ADpi

→ J .

7.2 Jacobians and µn-covers for curves of the form yn = x(x − e1)(x − e2)

We will now examine the Jacobian of curves of the form yn = x(x−e1)(x−e2) and look at their µn-covers,
similarly to the case where n = p. Additionally, we will also examine the µpi -covers of such Jacobians.

Let n = p1 . . . pt be a product of the distinct primes p1, . . . , pt. Let e0, e1 and e2 be distinct integers and
consider the smooth projective curve C over Q with affine model

yn = (x− e0)(x− e1)(x− e2). (145)

Without loss of generality we can assume that e0 = 0. This affine model is smooth and it has a single
rational point at infinity denoted by ∞. The genus of the curve is equal to g = p − 2 if 3 divides n and
equal to g = p− 1 otherwise by [26, §1].

Let J be the Jacobian of C. The subgroup J(Q)[n] has rank at least 2, because it contains the ele-
ments Di = [(ei, 0) − ∞] for i ∈ {0, 1, 2}. We have that D0 + D1 + D2 = div(y) so it is equal to 0 in J .
Let H := ⟨D0, D1⟩. We can define the following abelian variety:

Â = J/H. (146)
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For D := D0 +D1 we define the variety “B = J/⟨D⟩. (147)

For these varieties we can define the quotient isogenies ϕ̂ : J → Â and ψ̂ : J → “B. By duality we get the
dual isogenies ϕ : A → Ĵ and ψ : B → Ĵ . Furthermore, via the canonical principal polarization we can
identify J with its dual and acquire the maps ϕ : A→ J and ψ : B → J . This turnsA andB into µn-covers
of J . We also define the varieties ADi

= J/⟨Di⟩ for i ∈ {0, 1, 2} in this manner, with the corresponding
isogenies ψi : ADi → J . Note that B ≃ AD2 , because D = −D2.

We now get the map

J(Q)/ϕ(A(Q))
∂H

−−→ Q∗/Q∗n ×Q∗/Q∗n (148) g∑
j=1

(xj , yj)− g · ∞

 7→

Ñ
g∏
j=1

xj ,

g∏
j=1

(xj − e1)

é
(149)

as described in the Lemmas 3.6, 3.8 and 3.9. From [21, Proposition 2.7] it follows that the class of the
divisor

∑g
j=1(xj , yj)−g ·∞, with xi, yi ∈ Q, can be represented by aQ-rational divisor, because C(Q) ̸= ∅.

This map is well-defined whenever the xj and xj − e1 are non-zero. By [10, VI §4 Lemma 3] it is possible
to find a representative in every class in J(Q)/ϕ(A(Q)) such that the map is well-defined.

We can construct similar homomorphisms for the other varieties we have defined:

∂Di :J(Q)/ψi(ADi(Q)) → Q∗/Q∗n (150) g∑
j=1

(xj , yj)− g · ∞

 7→
g∏
j=1

(xj − ei) (151)

for ADi
with i ∈ {0, 1, 2}. Here this description also only works on the classes for which the map is

well-defined. However from these maps we find that

∂D0 · ∂D1 · ∂D2

Ñ g∑
j=1

(xj , yj)− g · ∞

é =

g∏
j=1

xj(xj − e1)(xj − e2) =

g∏
j=1

ynj = 1, (152)

since the xj and yj lie on the curve C. So we get the identity:

∂D0 · ∂D1 · ∂D2 = 1. (153)

This allows us to describe our homomorphisms on classes where they are not well-defined. We can describe
the behaviour of ∂H on the roots similar to Lemma 4.1.

Lemma 7.7. We have
∂H([(0, 0)−∞]) = [e−11 e−12 ,−e1], (154)

and
∂H([(e1, 0)−∞]) = [e1, (e1 − e2)

−1]. (155)

Proof. The proof is similar to the proof of Lemma 4.1.

Lastly, for B we have the homomorphism

∂D :J(Q)/ψ(B(Q)) → Q∗/Q∗n, (156) g∑
j=1

(xj , yj)− g · ∞

 7→
g∏
j=1

xj(xj − e1). (157)

This gives us the following commutative diagram which we will use in the next section

J(Q)/ϕ(A(Q)) Q∗/Q∗n ×Q∗/Q∗n

J(Q)/ψ(B(Q)) Q∗/Q∗n

∂H

∂D

(158)
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where the right vertical map is given by [r1, r2] 7→ [r1r2].
We can find birational models for µn-covers of J given a Steinitz class. For our case we will look at the

Steinitz class of D = D0 +D1. The distinguished µn-cover for this Steinitz class is the cover B → J . Let
this µn-cover correspond with the data (L, η). By Lemma 3.7 we have that f(0J) is an n-th power in Q∗
where f = η−1 ∈ Q(J). For any point P ∈ J(Q)/ψ(B(Q)) we have that ∂D(P ) = rP = f(P + Q)/f(Q)
using Lemma 3.6. Taking Q = 0J we can rewrite this equation to get

f(P ) = f(P + 0J) = f(0J)rP = 1. (159)

since f(0J) is an n-th power and the cover B → J is isomorphic to (L, η), so rP = 1. Because nD =
div(x(x− e1)), it follows from Lemma 3.8 that 1 = f(P ) = [x(x− e1)](P ). Since P can be written in the
form

∑g
j=1(xj , yj)− g · ∞ we finally get the equation

zn =

g∏
j=1

xj(xj − e1). (160)

where the variable zn comes from lifting the equation out of Q∗/Q∗n. Together with the birational model
for J given by the equations

ynj = xj(xj − e1)(xj − e2). (161)

for 1 ≤ j ≤ g, we get a birational model for B.
Finally for r ∈ Q∗, the µn-cover (L, rη) is described by the equations

ynj = xi(xj − e1)(xj − e2). (162)

for 1 ≤ j ≤ g, together with the additional equation

rzn =

g∏
j=1

xj(xj − e1). (163)

which is twisted by r.

7.2.1 The µpi -covers of yn = x(x − e1)(x − e2)

We fix the index i for the prime pi dividing n for this section. Let J denote the Jacobian of the curve (145)
as described in the previous section. The subgroup J(Q)[pi] of J(Q)[n] has rank at least 2 as well, as this
subgroup contains the elements Dpi,j :=

n
pi

·Dj for j ∈ 0, 1, 2. We also have that Dpi,0 +Dpi,1 +Dpi,2 =
n
pi
(D0+D1+D2) =

n
pi
·div(y), so the sumDpi,0+Dpi,1+Dpi,2 is equal to 0 in J . LetHpi := ⟨Dpi,0, Dpi,1⟩.

We can define the following abelian variety:

Âpi = J/Hpi . (164)

For Dpi := Dpi,0 +Dpi,1 we define the variety

B̂pi = J/⟨Dpi⟩. (165)

For these varieties we can define the quotient isogenies ”ϕpi : J → Âpi and ”ψpi : J → B̂pi . By duality
we get the dual isogenies ϕpi : Api → Ĵ and ψpi : Bpi → Ĵ . Furthermore, via the canonical principal
polarization we can identify J with its dual and acquire the maps ϕpi : Api → J and ψpi : Bpi → J . This
turns Api and Bpi into µpi -covers of J . These are the induced µpi -covers of the µn-covers ϕ and ψ of the
previous section. We also define the varieties Api,Dj = J/⟨Dpi,j⟩ for j ∈ {0, 1, 2} in this manner, with the
corresponding isogenies ψpi,j : Api,j → J . Note that Bpi ≃ Api,D2 , because Dpi = −Dpi,2.

This gives us the map

J(Q)/ϕpi(Api(Q))
∂Hpi−−−→ Q∗/Q∗pi ×Q∗/Q∗pi (166) g∑

j=1

(xj , yj)− g · ∞

 7→

Ñ
g∏
j=1

xj ,

g∏
j=1

(xj − e1)

é
(167)
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as described in the Lemmas 3.6, 3.8 and 3.9. From [21, Proposition 2.7] it follows that the class of the
divisor

∑g
j=1(xj , yj)−g ·∞, with xj , yj ∈ Q, can be represented by aQ-rational divisor, becauseC(Q) ̸= ∅.

This map is well-defined whenever the xj and xj − e1 are non-zero. By [10, VI §4 Lemma 3] it is possible
to find a representative in every class in J(Q)/ϕ(Api(Q)) such that the map is well-defined.

We can construct similar homomorphisms for the other varieties we have defined:

∂Dpi,j :J(Q)/ψpi,j(ADpi,j
(Q)) → Q∗/Q∗pi (168)[

g∑
k=1

(xk, yk)− g · ∞

]
7→

g∏
k=1

(xk − ej) (169)

for ADpi,j
with j ∈ {0, 1, 2}. Here this description also only works on the classes for which the map is

well-defined. However from these maps we find that

∂Dpi,0 · ∂Dpi,1 · ∂Dpi,2

Ñ g∑
j=1

(xj , yj)− g · ∞

é =

g∏
j=1

xj(xj − e1)(xj − e2) =

g∏
j=1

ynj = 1, (170)

since the xj and yj lie on the curve C. So we get the identity:

∂Dpi,0 · ∂Dpi,1 · ∂Dpi,2 = 1. (171)

This allows us to describe our homomorphisms on classes where they are not well-defined and we get a
direct analogue of Lemma 7.7.

Lemma 7.8. We have
∂Hpi ([(0, 0)−∞]) = [e−11 e−12 ,−e1], (172)

and
∂Hpi ([(e1, 0)−∞]) = [e1, (e1 − e2)

−1]. (173)

Proof. The proof is similar to the proof of Lemma 4.1.

Lastly, for Bpi we have the homomorphism

∂Dpi :J(Q)/ψ(Bpi(Q)) → Q∗/Q∗pi , (174) g∑
j=1

(xj , yj)− g · ∞

 7→
g∏
j=1

xj(xj − e1). (175)

This gives us the following commutative diagram which we will use in the next section

J(Q)/ϕpi(Api(Q)) Q∗/Q∗pi ×Q∗/Q∗pi

J(Q)/ψpi(Bpi(Q)) Q∗/Q∗pi

∂Hpi

∂Dpi

(176)

where the right vertical map is given by [r1, r2] 7→ [r1r2].
We can find birational models for µpi -covers of J given a Steinitz class. For our case we will look at the

Steinitz class ofDpi = Dpi,0+Dpi,1. The distinguished µpi -cover for this Steinitz class is the coverBpi → J .
Let this µpi -cover correspond with the data (Lpi , ηpi). By Lemma 3.7 we have that f(0J) is a pi-th power
in Q∗ where f = η−1 ∈ Q(J). For any point P ∈ J(Q)/ψpi(Bpi(Q)) we have that ∂Dpi (P ) = rpi,P =
f(P +Q)/f(Q) using Lemma 3.6. Taking Q = 0J we can rewrite this equation to get

f(P ) = f(P + 0J) = f(0J)rpi,P = 1. (177)

since f(0J) is a pi-th power and rpi,P = 1 because the cover Bpi → J is isomorphic to (Lpi , ηpi). Be-
cause piDpi = div(x(x− e1)), it follows from Lemma 3.8 that 1 = f(P ) = [x(x− e1)](P ). Since P can be
written in the form

∑g
j=1(xj , yj)− g · ∞ we finally get the equation

zpi =

g∏
j=1

xj(xj − e1). (178)
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where the variable zpi comes from lifting the equation out of Q∗/Q∗pi . Together with the birational model
for J given by the equations

ynj = xj(xj − e1)(xj − e2). (179)

for 1 ≤ j ≤ g, we get a birational model for Bpi .
Finally for r ∈ Q∗, the µpi -cover (Lpi , rηpi) is described by the equations

ynj = xj(xj − e1)(xj − e2). (180)

for 1 ≤ j ≤ g, together with the additional equation

rzpi =

g∏
j=1

xj(xj − e1). (181)

which is twisted by r.

7.3 Computing #J(Qq)/ϕ(A(Qq)))

Similarly to the case where n = p, we will specialize the curve (145) and look at the curve Cu,v given by
the affine model:

C = Cu,v : y
n = x(x− 3u)(x− 9v). (182)

Here u, v are integers not divisible by 3 and n = p1 . . . pt a product of distinct primes p1, . . . , pt. Let J
be the Jacobian of C and let A and B be the µn-covers from the previous section and let Api and Bpi be
the µpi -covers from the previous section for all 1 ≤ i ≤ t.

We can determine the size of J(Qq/ϕ(A(Qq))) for certain primes q similar to Lemma 5.1:

Lemma 7.9. Let q be a prime such that q ≡ 1 (mod n). Then we have that #J(Qq)/ϕ(A(Qq))) = n2 ·∏t
i=1 cq(J)/cq(Api).

Proof. The congruence condition on q implies that Q∗q contains the n-th roots of unity. Consequently, this
means that Q∗q also contains the pi-th roots of unity, since pi divides n for all 1 ≤ i ≤ t. Let ζk denote a
primitive k-th root of unity where k ∈ {n, p1, . . . , pt}.

Since Qq contains ζk, we get an autotomorphism (x, y) 7→ (x, ζky) on C. If we interpret (x, y) as a
divisor on C, then we can define the pushforward ζk∗ : div(C) → div(C) as ζk∗(x, y) = (x, ζky). We can
extend this map Z-linearly to all divisors of C and acquire a homomorphism ζk∗ : J → J sending [D] 7→
[ζk∗D] by [25, Proposition II.3.6]. This gives us a ring embedding ι : Z[ζk] ↪→ End(J) which is described
in the following way: For an element mζik in Z[ζk] with m ∈ Z and 0 ≤ i ≤ k− 1, the element ι(mζik) acts
on a divisor class [D] in J by ι(mζik)[D] = [m · (ζk∗D)]. Note that Q(ζk) ≃ Z[ζk]⊗Q forms a Q-subalgebra
under this embedding. By [15, Proposition V.10.23] we have that deg(ι(α)) = NmQ(ζk)/Q(α)

2g
f where g is

the genus of J and f = [Q(ζk) : Q] = φ(k).
Let us assume that k = pi for some 1 ≤ i ≤ t. The kernel of”ϕpi : J → Âpi is given by ⟨Dpi,0, Dpi,1⟩. The

kernel of the endomorphism 1− ι(ζpi) is given by all points P in J such that P ∼ ι(ζpi)(P ). In particular,
a point P of the form [(x, y)] satifies the relation if y = 0. So it follows that

ker(”ϕpi) = ⟨Dpi,0, Dpi,1⟩ ⊂ ker(1− ι(ζpi)). (183)

In contrast to Lemma 5.1, the kernels of 1− ι(ζpi) and”ϕpi do not coincide since the size of ker(1− ι(ζpi))

is equal to NmQ(ζpi )/Q(1− ζ)
2g

pi−1 = p
2g

pi−1

i , which is strictly larger than the size of ker(”ϕpi).
Let ϕ(q)pi : Api(Qq) → J(Qq) denote the induced homomorphism on Qq. The local Selmer ratio is

defined as

cq(ϕpi) =
#cokerϕ(q)pi
#kerϕ(q)pi

=
#J(Qq)/ϕ(q)pi (Api(Qq))

#Api(Qq)[ϕ
(q)
pi ]

. (184)

By [23, Corollary 3.2] we have that
cq(ϕpi) = cq(J)/cq(Api), (185)

where the right hand side is the ratio of the Tamagawa numbers at q.
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Let us now examine ϕ(q) : A(Qq) → J(Q) the induced homomorphism of ϕ : A(Q) → J(Q). Similar
to ϕ(q)pi we define the local Selmer ratio as

cq(ϕ) =
#cokerϕ(q)

#kerϕ(q)
=

#J(Qq)/ϕ(q)(A(Qq))
#A(Qq)[ϕ(q)]

. (186)

The result of [23, Corollary 3.2] only applies to isogenies with degree equal to a power of a prime, so we
will take a different approach to show that cq(ϕ) = cq(J)/cq(A).

Recall that equation (138) tells us that ker(ϕ) ≃
∏t
i=1 ker(ϕpi), so we find that#kerϕ(q) =

∏t
i=1 #kerϕ(q)pi .

For #cokerϕ(q) we can find a similar by looking at the dual of the cokernel. For the dual of the cokernel
we have that

cokerϕ = ‘kerϕ =
’
ker

̂̂
ϕ = ker ϕ̂, (187)

since ϕ is isomorphic to ̂̂ϕ by Corollary 2.22 and because the cokernel of ϕ is equal to the dual of kerϕ.
Since ker ϕ̂ = ⟨D0, D1⟩ ≃

∏t
i=1⟨Dpi,0, Dpi,1⟩ =

∏t
i=1 ker

”ϕpi we find that

#cokerϕ(q) = #ker ϕ̂(q) =

t∏
i=1

#ker ϕ̂
(q)
pi =

t∏
i=1

#cokerϕ(q)pi . (188)

Combining this with (185) and (186) we find that

cq(ϕ) =
#cokerϕ(q)

#kerϕ(q)
=

t∏
i=1

#cokerϕ(q)pi
#kerϕ(q)pi

=

t∏
i=1

cq(ϕpi) =

t∏
i=1

cq(J)/cq(Api). (189)

Since the kernel of ϕ is isomorphic to µn it follows that #A(Qq)[ϕ(q)] = n2. So we get that

#J(Qq)/ϕ(q)(A(Qq)) = #A(Qq)[ϕ(q)] ·
t∏
i=1

cq(J)/cq(Api) = n2 ·
t∏
i=1

cq(J)/cq(Api). (190)

We find that#J(Qq)/ϕ(A(Qq))) = n2 ·
∏t
i=1 cq(J)/cq(Api)which makes us run into some trouble. The

proof of Proposition 5.2 relies on the fact that the two elements ∂H([(0, 0)−∞]) and ∂H([(3uk, 0)−∞])
are linearly independent. Since in the setting of Proposition 5.2 we have that #J(Qq)/ϕ(A(Qq))) = p2,
these elements generate all of J(Qq)/ϕ(A(Qq))). In the above proof the genus of A makes it not possible
to find an isomorphism between J and A or Api over Qq. So we need to directly calculate the Tamagawa
numbers or find a different method. Unfortunately, my experience with measure theory is not sufficient
to see this through.

One observation we can make is that we acquire Api by taking the quotient of A with a finite set, as
seen from the diagram (137) and its dual diagram (136). This could mean that the Tamagawa numbers of
A and Api are equal. In that scenario we get that #J(Qq)/ϕ(A(Qq))) = n2 · (cq(J)/cq(A))t, so we would
only need to calculate the Tamagawa numbers cq(J) and cq(A) in this scenario.
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8 Lemmermeyer and Mollin in the language of µ2-covers
In this sectionwewill look at the paper "On Tate-Shafarevich groups of y2 = x(x2−k2)" by F. Lemmermeyer
and R. Mollin [13] and look at their results through the lens of µ2-covers. We will see how our methods
are applicable and compare our results with their findings.

We will consider an elliptic curve Ek over Q with affine model

y2 = x(x2 − k2) = x(x− k)(x+ k), (191)

where k ≥ 1 is some integer. This affine model is smooth and we denote the point at infinity with ∞ to
stay consistent with previous notation. Since Ek is an elliptic curve its genus is equal to 1.

Let Jk = Pic0(Ek) be the Jacobian of Ek. Note that the morphism P 7→ [P −∞] from Ek to Pic0(Ek) is
an isomorphism, so we can always think of Jk as the elliptic curve Ek. It is well known that the 2-torsion
points of an elliptic curve are given by Ek[2] ≃ (Z/2Z)2 [25, Corollary III.6.4.] and in our case the 2-
torsion points are given by Ek[2] = {∞, (0, 0), (k, 0), (−k, 0)}. We will denote these points by D0 = (0, 0),
D1 = (k, 0) and D2 = (−k, 0). We have an equality of divisors D0 +D1 +D2 = div(y), so in Jk we have
that D0 +D1 +D2 = 0. We let H = ⟨D0, D2⟩ and define the abelian variety”Ak = Jk/H. (192)

Likewise for D = D0 +D2, we define the variety”Bk = Jk/⟨D⟩, (193)

This gives us the quotient isogenies ϕ̂ : Jk → ”Ak and ψ̂ : Jk → ”Bk, and their corresponding dual
isogenies ϕ : Ak → Jk and ψ : Bk → Jk. In a similar way we define the varieties Ak,Di = Jk/⟨Di⟩ with
isogenies ψi : Ak,Di

→ Jk for i ∈ {0, 1, 2}. Note that we have an isomorphism Bk ≃ Ak,D1
, as D = −D1

in Jk.
We can define the map

∂H : Jk(Q)/ϕ(Ak(Q)) → Q∗/Q∗2 ×Q∗/Q∗2 (194)
[(x, y)−∞] 7→ (x, x+ k) (195)

as described in the Lemmas 3.6, 3.8 and 3.9. Because Ek has Q-rational points, by [21, Proposition 2.7]
the divisor class [(x, y)−∞] is Q-rational. By [10, VI §4 Lemma 3] every class in Jk(Q)/ϕ(Ak(Q)) can be
represented by a divisor, such that x and x− k are non-zero. So the map ∂H is well-defined.

We can construct similar homomorphisms for the other varieties we have defined:

∂Di :Jk(Q)/ψi(Ak,Di(Q)) → Q∗/Q∗2 (196)
[(x, y)−∞] 7→ x− ei, (197)

where ei =


0, if i = 0

k, if i = 1

−k, if i = 2

, for Ak,Di whenever i ∈ {0, 1, 2}. We can use the identity (94) to describe the

maps ∂Di on classes that evaluate to 0. In particular, we can give a more general description of ∂H(ek)
for k ∈ {0, 1, 2}, because we can divide squares out in Q∗/Q∗2.

Lemma 8.1. Let H = ⟨Di, Dj⟩. We introduce the following notation ∂Di(ek) := ∂Di([(ek, 0) − ∞])
and ∂H(ek) := ∂H([(ek, 0)−∞]). We have the following expression for ∂H :

∂H(ek) =


[∂Di(ek), ∂

Dj (ek)], if k ̸= i, j,

[
∏
l ̸=k ∂

Dl(ek), ∂
Dj (ek)], if k = i,

[∂Di(ek),
∏
l ̸=k ∂

Dl(ek)], if k = j.

(198)

Proof. We consider ∂Di(ek). If k ̸= i then we can evaluate ∂Di(ek) as it is. If k = i then we can use the
identity (94) and find that

∂Di(ek) =
∏
l ̸=k

∂Dl(ek)
−1 =

∏
l ̸=k

∂Dl(ek).

The expression of ∂H follows from these observations.
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Lastly, for Bk we have the homomorphism

∂D :Jk(Q)/ψ(Bk(Q)) → Q∗/Q∗2, (199)
[(x, y)−∞] 7→ x(x− k). (200)

This gives us the following commutative diagram which we will use in the next section

Jk(Q)/ϕ(Ak(Q)) Q∗/Q∗2 ×Q∗/Q∗2

Jk(Q)/ψ(Bk(Q)) Q∗/Q∗2

∂H

∂D

(201)

where the right vertical map is given by [r1, r2] 7→ [r1r2]. We can apply this map on the results of Lemma
8.1 to get the following results:

Corollary 8.2. The element ∂H(ek) gets mapped to

∂H(ek) 7→
®
∂Di(ek)∂

Dj (ek), if k ̸= i, j,

∂Dl(ek), otherwise,
(202)

under the right vertical map of diagram (201) where l ̸= i, j.

We will construct birational models of Jk for a µn-cover with Steinitz class D = D0 + D1. The dis-
tinguished µ2-cover for this Steinitz class is the cover Bk → Jk. Let this µ2-cover correspond with the
data (L, η). By Lemma 3.7 we have that f(0J) is a square in Q∗ where f = η−1 ∈ Q(Jk). For any
point P ∈ Jk(Q)/ψ(Bk(Q))we have that ∂D(P ) = rP = f(P+Q)/f(Q) using Lemma 3.6. TakingQ = 0Jk
we can rewrite this equation to get

f(P ) = f(P + 0Jk) = f(0Jk)rP = 1, (203)

since f(0Jk) is a square and because the cover Bk → Jk is isomorphic to (L, η), so rP = 1. Because nD =
div(x(x − k)), it follows from Lemma 3.8 that 1 = f(P ) = [x(x − k)](P ). Since P can be written in the
form (x, y)−∞ we finally get the equation

z2 = x(x− k), (204)

where the variable z2 comes from lifting the equation out of Q∗/Q∗2. Together with the birational model
for Jk given by the equation

y2 = x(x− k)(x+ k) (205)

we get a birational model for Bk.
Finally for r ∈ Q∗, the µp-cover (L, rη) is described by the equation

y2 = x(x− k)(x+ k), (206)

together with the additional equation
rz2 = x(x− k). (207)

which is twisted by r.

8.1 Finding elements of the Selmer group
In Section 5 we specialized the curve C : yp = x(x−e1)(x−e2) to be of the form Ck : yp = x(x−3uk)(x−
9vk), where p > 3 is a prime and u, v ∈ Z are not divisible by 3. However, we are now working with curves
of a specific form, namely y2 = x(x − k)(x + k), so we cannot make a specialization of this form and we
will have to see which of our previous results can be applied and which have to be modified. The first
lemma we encountered, Lemma 5.1, is still applicable and can be worded more strongly.

Lemma 8.3. For all odd primes q, we have that #Jk(Qq)/ϕ(Ak(Qq)) = 22.

Proof. The proof is the same as the proof of Lemma 5.1, with all instances of p replaced with 2.
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When we look at the analogue of Proposition 5.2 we run into some complications. The first problem we
face is that previously the integer 3 in the curveCk played a crucial role in proving Proposition 5.2, since the
images of ∂H([(0, 0)−∞]) and ∂H([(3uk, 0)−∞]) contained powers of 3 across the localizations Q∗piQ

∗p
pi ×

Q∗pi/Q
∗p
pi for all pi. This allowed 3 to act as a global prime over all localizations and carry across information

between the localizations. Secondly, the localizations Q∗l /Q∗2l contain less structure than Q∗l /Q
∗p
l . Lemma

8.3 tells us that J(Qq)/ϕ(A(Qq)) is generated by 2 elements of order 2, which limits our options for finding
certain congruences. Lastly, we need to consider which set of conditions our primes need to satisfy as in
the paper [13] and as in Proposition 5.2. Considering these complications we might consider a different
choice of divisor D, and consequently a different subspace H.

We will proceeed in proving analogue of Proposition 5.2 in the following way. We consider the elliptic
curve Ek : y2 = x(x2 − k2) where k = p1 . . . pm is a product of odd primes. Let Jk be the Jacobian of
this elliptic curve. We let ψ : Bk → Jk denote the dual isogeny acquired by modding out the divisor D =
Di +Dj for some 0 ≤ i < j ≤ 2 and subsequently ϕ : Ak → Jk denotes the dual isogeny of modding out
the subspace H = ⟨Di, Dj⟩. We will first show that pi lies in the Selmer group Bk for all i and all choices
ofD. We define the Selemer group of Bk as the subgroup Sel(Bk) ⊆ Q∗/Q∗2 of classes r with the property
that for every prime l ≤ ∞, the class of r in Q∗l /Q∗2l is in the image of ∂D : J(Ql)/ψ(Bk(Ql)) → Q∗l /Q∗2l .
We can now state the first part of our analogue:

Proposition 8.4. Let k = p1 . . . pm be a product of distinct odd primes satisfying (pi/pj) = 1 for all i ̸= j in
{1, . . . ,m}. Then for all i we have that pi ∈ Sel(Bk).

Proof. We fix an index 1 ≤ i ≤ m. We would like to show that pi ∈ Sel(Bk). For this we show that pi lies
in ∂D(Jk(Ql)/ψ(Bk(Ql))) for all choices of D and all primes l.

Let us first assume that l is of the form pj where j is distinct from the index i. By our assumptions
on k, pi is a square in Q∗pj . So pi is equal to the image of the identity under ∂D for any choice of D. The
same argument holds for l = 2, as all odd primes are squares modulo 2. If l is not equal to pj for all j or 2,
then pi lies in the image ∂D by Proposition 3.11 because the discriminant of Ek is only divisible by 2 and
the primes pi.

Lastly for l = pi, we can directly find elements of Jk(Ql)/ψ(Bk(Ql)) that get mapped to pi. If D =
D0 +D1, then ∂D([(0, 0) −∞]) = −1 · −k = k. Note that pj is a square in Qpi for j distinct from i and
thus k is equal to pi in Qpi . In the case where D = D0 + D2, we have that ∂D(0) = −k. So the case
where D = D0 + D2 is only applicable whenever the primes pi are equivalent to 1 (mod 4), since −1 is
a square then. Lastly if D = D1 + D2, then ∂D(k) = 2 · 2k = k so by the previous argument it is equal
to pi.

Now we will examine if we can prove that pi does not lie in ∂D(Jk(Q)) for certain choices of D, using
the methods employed in Proposition 5.2. We will continue with the notation introduced in Lemma 8.1.
Before we get started with the proposition we will first prove the following lemma.

Lemma 8.5. Let k = p1 . . . pm be a product of distinct primes satisfying (pi/pj) = 1 and (−1/pi) = −1 for all
i ̸= j in {1, . . . ,m}. Let D = Di +Dj where 0 ≤ i < j ≤ 2 and H = ⟨Di, Dj⟩. We can find 0 ≤ k < k′ ≤ 2
such that ∂H(ek) and ∂H(e′k) are linearly independent in Q∗pl/Q

∗2
pl

×Q∗pl/Q
∗2
pl

for all possible pairs of D and
all primes pl. Furthermore, these two elements will generate all of ∂H(Jk(Qpl)/ϕ(Ak(Qpl)).

Proof. By the conditions on the primes the element k is equal to pl in Q∗pl/Q
∗2
pl

×Q∗pl/Q
∗2
pl
.

Let D = D0 + D1. By Lemma 8.1 we find that ∂H(0) = [−1,−pl], ∂H(k) = [pl, 2] and ∂H(−k) =
[−pl,−2pl] inQ∗pl/Q

∗2
pl
×Q∗pl/Q

∗2
pl
. We can interpret elements ofQ∗pl/Q

∗2
pl
×Q∗pl/Q

∗2
pl

as squarefree elements.
So if we want to check if two elements are linearly independent, it is sufficient to check that their product
is not equal to [1, 1]. With this in mind it is easy to see that these elements are all pairwise linearly
independent.

Similarly, for D = D0 +D2 the elements ∂H(0) = [−1, k], ∂H(k) = [k, 2k] and ∂H(−k) = [−k, 2] are
pairwise linearly independent. Lastly, forD = D1+D2 we have that the elements ∂H(0) = [−k, k], ∂H(k) =
[2, 2k] and ∂H(−k) = [−2k, 2] are pairwise linearly independent.

By Lemma 8.3 these two elements will generate all of ∂H(Jk(Qpi)/ϕ(Ak(Qpi)).

We can now prove the proposition.

Proposition 8.6. Let k = p1 . . . pm be a product of distinct primes satisfying (pi/pj) = 1 and (−1/pi) = −1
for all i ̸= j in {1, . . . ,m}. Then pi does not lie in ∂D(Jk(Q)) forD = D0+D2. More generally, if q =

∏
i∈I pi

where I ⊂ {1, . . . ,m} is a non-empty proper subset, then q does not lie in ∂D(Jk(Q)) for D = D0 +D2.
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Proof. We fix a prime pl for 1 ≤ l ≤ m. Let D = Di +Dj where 0 ≤ i < j ≤ 2 and H = ⟨Di, Dj⟩. From
Lemma 8.1 we find that.

∂H(ek) =


[∂Di(ek), ∂

Dj (ek)], if k ̸= i, j,

[
∏
l ̸=k ∂

Dl(ek), ∂
Dj (ek)], if k = i,

[∂Di(ek),
∏
l ̸=k ∂

Dl(ek)], if k = j.

(208)

And by Lemma 8.5 we have that ∂H(ek) and ∂H(ek′) are linearly independent for every choice of 0 ≤ k <
k′ ≤ 2 in Q∗l /Q∗2l ×Q∗l /Q∗2l and generate all of ∂H(Jk(Qpl)/ϕ(Ak(Qpl)).

Similar to the proof of Proposition 5.2, we consider an element [r1, r2] in ∂H(Jk(Q)/ϕ(Ak(Q))) and
we will show that r1r2 cannot be of the form q =

∏
i∈I pi where I ⊂ {1, . . . ,m} is a non-empty proper

subset. By Proposition 3.11 the integers are only divisible by the primes in {p1, . . . , pm, 2}. If there is no l
such that pl divides both r1 and r2 to the same power, then all the pl divide r1r2. So r1r2 cannot be of the
form q as described above.

Now assume pl divides r1 and r2 to the same power. We know that the pair of ∂H(ek) and ∂H(ek′)
generate all of ∂H(Jk(Qpl)/ϕ(Ak(Qpl))), so [r1, r2] = ∂H(ek) for some 0 ≤ k ≤ 2 or [1, 1]. We will apply
the mapping [r1, r2] 7→ r1r2 from diagram (201) to ∂H(ek) for every choice of k. This allows us to check
for which choices of k the product r1r2 is divisible by pl. The elements −1 and 2 will act as global primes
in this proof similar to the element 3 in Proposition 5.2. We will use these global primes to check what
the representatives of [r1, r2] are in ∂H(Jk(Qpl′ )/ϕ(Ak(Qpl′ ))) for l

′ an index different from l. We want
to show that r1r2 are not divisible by pl′ then and conclude that r1r2 is not of the form q =

∏
i∈I pi

where I ⊂ {1, . . . ,m} is a non-empty proper subset. We will do this for all choices of D = Di +Dj .
The case D = D0 +D1:

Let D = D0 + D1. Because of the condition on our primes, in ∂H(Jk(Qpl)/ϕ(Ak(Qpl))) we get the ele-
ments ∂H(0) = [−1,−pl], ∂H(k) = [pl, 2] and ∂H(−k) = [−pl,−2pl]. Under the mapping [r1, r2] 7→ r1r2
it follows that ∂H(0) 7→ pl, ∂H(k) 7→ 2pl and ∂H(−k) 7→ 2. Since r1r2 is not divisible by pl, it follows
that [r1, r2] is equal to [1, 1] or ∂H(−k). In the former case r1r2 is not divisible by 2 and in the latter case
it is divisible by 2.

Now we will determine what the representative of [r1, r2] is in ∂H(Jk(Qpl′ )/ϕ(Ak(Qpl′ ))). Similar
to above, applying the mapping [r1, r2] 7→ r1r2 to ∂H(ek) we see that ∂H(0) 7→ pl′ , ∂H(k) 7→ 2pl′

and ∂H(−k) 7→ 2. So [r1, r2] is equal to [1, 1] or ∂H(0) if r1r2 is not divisible by 2 and it is equal to ∂H(k)
or ∂H(−k) otherwise. In both cases there exists a representative for [r1, r2] such that r1r2 is divisible by pl′ .
Thus we conclude that r1 and r2 are not necessarily divisible by pl′ to the same power if D = D0 +D1.

The case D = D1 +D2:
Let D = D1 + D2. In ∂H(Jk(Qpl)/ϕ(Ak(Qpl))) we now have that ∂H(0) = [−pl, pl], ∂H(k) = [2, 2pl]
and ∂H(−k) = [−2pl, 2]. Under the mapping [r1, r2] 7→ r1r2 it follows that ∂H(0) 7→ −1, ∂H(k) 7→ pl
and ∂H(−k) 7→ −pl. Since r1r2 is not divisible by pl, it follows that [r1, r2] is equal to [1, 1] or ∂H(0). In
the former case r1r2 is not divisible by −1 and in the latter case it is divisible by −1.

Now we will determine what the representative of [r1, r2] is in ∂H(Jk(Qpl′ )/ϕ(Ak(Qpl′ ))). Similar
to above, applying the mapping [r1, r2] 7→ r1r2 to ∂H(ek) we see that ∂H(0) 7→ −1, ∂H(k) 7→ pl′

and ∂H(−k) 7→ −pl′ . So [r1, r2] is equal to (1, 1) or ∂H(k) if r1r2 is not divisible by −1 and it is equal
to ∂H(0) or ∂H(−k) otherwise. In both cases there exists a representative for [r1, r2] such that r1r2 is
divisible by pl′ . Thus we conclude that r1 and r2 are not necessarily divisible by pl′ to the same power
if D = D1 +D2.

The case D = D0 +D2:
Let D = D0 + D2. In ∂H(Jk(Qpl)/ϕ(Ak(Qpl))) we now have that ∂H(0) = [−1, pl], ∂H(k) = [pl, 2pl]
and ∂H(−k) = [−pl, 2]. Under the mapping [r1, r2] 7→ r1r2 it follows that ∂H(0) 7→ −pl, ∂H(k) 7→ 2
and ∂H(−k) 7→ −2pl. Since r1r2 is not divisible by pl, it follows that [r1, r2] is equal to (1, 1) or ∂H(k).
In the former case r1r2 is not divisible by 2 and in the latter case it is divisible by 2. Note that in both
cases r1r2 is not divisible by −1.

Now we will determine what the representative of [r1, r2] is in ∂H(Jk(Qpl′ )/ϕ(Ak(Qpl′ ))). Similar
to above, applying the mapping [r1, r2] 7→ r1r2 to ∂H(ek) we see that ∂H(0) 7→ −pl′ , ∂H(k) 7→ 2
and ∂H(−k) 7→ −2pl′ . Since r1r2 is not divisible by −1 it follows that [r1, r2] is equal to (1, 1) if r1r2
is divisible by 2 or ∂H(k) otherwise. In both cases r1r2 is not divisible by pl′ . So we can conclude that r1
and r2 are divisible by pl′ to the same power if D = D0 +D2.

Since this holds for all choices of l′ different from l it follows that r1r2 is not of the form q =
∏
i∈I pi

where I ⊂ {1, . . . ,m} is a non-empty proper subset. Since ∂H(Jk(Q)/ϕ(Ak(Q))) maps surjectively onto

44



the group ∂D(Jk(Q)/ψ(Bk(Q))), it follows that elements of the form q do not lie in ∂D(Jk(Q)/ψ(Bk(Q))).
So the proposition holds for D = D0 +D2.

In the proof of Proposition 8.6 we see that we need a different choice of D to acquire the results of
Proposition 5.2. Furthermore, we have the two different elements 2 and −1 in Proposition 8.6 that can
serve the role of the prime 3 in Proposition 5.2. For D = D0 +D1 and D = D1 +D2 it is not possible to
find the desired results. In the former case we see that we only need 2 to act as a global prime, while in
the latter case we only need the element −1 to act as a global prime. In the case where D = D0 +D2 it is
important that −1 is not a square modulo pi, but 2 being a square does not impact our results. There is a
certain asymmetry in the way the elements of ∂H(Jk) are represented in Q∗pi/Q

∗2
pi ×Q∗pi/Q

∗2
pi in this case

that allows us to get our results.
We can now prove the analogue of Corollary 5.3 and we will see that the proof is simpler now that we

are working in a characteristic 2 setting.

Corollary 8.7. Let Ek be the same as in Proposition 8.6. Then #X(Bk)[p] ≥ 2m−1.

Proof. From Proposition 3.10 we have the exact sequence

0 → Jk(Q)/ψ(Bk(Q)) → Sel(Bk) → X(Bk)[ψ] → 0. (209)

The products of the form
∏
i∈I pi as described in Proposition 5.2 lie in Sel(Bk), but these products do

not lie in the subgroup ∂D(Jk(Q)/ψ(Bk(Q))) of Sel(Bk). From the exact sequence it follows that these
products do not lie in the kernel of X(Bk)[ψ] and are non-trivial elements of X(Bk/Q)[ψ]. In particular,
we can look at the single primes pi and look at the intersection of ∂D(Jk(Q)/ψ(Bk(Q)))with the subgroup
of Sel(Bk) generated by {p1, . . . , pm}. This subgroup contains at most the element p1 . . . pm = k and thus
has a dimension of at most 1 as an F2-vector space.

By looking at the exact sequence we can see that the image of ⟨p1, . . . , pm⟩ in X(Bk)[ψ], denoted
by ⟨p1, . . . , pm⟩, has dimension at least m − 1. We have that deg(ψ) = 2, since deg(ψ) = deg(ψ̂) =

#ker(ψ̂) = #⟨D⟩, so X(Bk)[ψ] ⊂ X(Bk)[2]. We can conclude that #X(Bk)[2] = 2dimF2 (X(Bk)[2]) ≥
2dimF2 (⟨p1,...,pm⟩) ≥ 2m−1.

This corollary implies that the Tate-Shafarevich group can be arbitrarily large depending on the number
of primes in the product k. Unfortunately, it is impossible to find more than 1 prime satisfying the condi-
tions of Proposition 8.6. By the law of quadratic reciprocity we have for primes p and q that (p/q)(q/p) =
(−1)

p−1
2 ·

q−1
2 . Since the conditions of Proposition 8.6 imply that p, q ≡ 3 (mod 4), we have that p−12 · q−12 =

2+4m
2 · 2+4n

2 = 1 + 2(m + n + 2mn) for some integers m,n ∈ Z. Because this number is odd it follows
that (p/q)(q/p) = −1, so if we would assume that k = p1p2 then only one of (p1/p2) = 1 or (p2/p1) = 1
can satisfy the conditions of Proposition 8.6.

8.2 A proof of Proposition 10
The paper of Lemmermeyer and Mollin concludes with the following proposition:

Proposition 8.8. [13, Proposition 10] Let k = p1 . . . pm be a product of primes pi ≡ 5 (mod 8) such
that (pi/pj) = +1 whenever i ̸= j. Then #X(“E/Q) ≥ 2m−1 if m is odd and #X(“E/Q) ≥ 2m−2 if m
is even.

The paper does not give a proof for this statement, so we will provide one here for completeness. To
prove this proposition we have the following exact sequence

0 →W (“E/Q) → S(ψ)(“E/Q) → X(“E/Q)[ψ] → 0. (210)

Here ψ is the dual isogeny of the 2-isogeny ϕ : E → “E associated with a rational point of order 2. In
the sequence W (“E/Q) is the Weil-Chatelet group of “E, S(ψ)(“E/Q) is the Selmer group associated to ψ
and X(“E/Q)[ψ] the Tate-Shafarevich group of ψ.

Additionally, we require a theorem and lemma from the paper. The proofs of these statements can be
found the paper. We need the following lemma:
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Lemma 8.9. [13, Lemma 3.] Let k = p1 . . . pm be a product of distinct odd primes pi and write k = b1c1 for
some squarefree b1 > 0. Then b1 ∈ Sel(ψ)(“E/Q) if and only if the following conditions are satisfied:

1. (c1/p) = 1 or (−c1/p) = 1 for all primes p | b1.

2. (b1/p) = 1 or (−b1/p) = 1 for all primes p | c1.

3. b1 ≡ ±1 (mod 8) or c1 ≡ ±1 (mod 8).

And we need the theorem:

Theorem 8.10. [13, Theorem 7.] Assume that k = p1 . . . pm is a product of distinct odd primes pi ≡ ±3
(mod 8) such that (pi/pj) = 1 whenever i ̸= j. Additionally, assume that there is at most one index i such
that pi ≡ +3 (mod 8). ThenW (“E/Q) = ⟨−1, k⟩.

We can now proceed to the proof of the proposition.

Proof of Proposition 10: We can approximate #X(“E/Q) using the sequence (210). From this we find
that #X(“E/Q)[ψ] = #S(ψ)(“E/Q)/#W (“E/Q). So we will need to determine the sizes of S(ψ)(“E/Q)

andW (“E/Q), and use the inclusion #X(“E/Q) ⊇ X(“E/Q)[ψ] to get the desired approximation.
Let k = p1 . . . pm be a product of primes with pi ≡ 5 ≡ −3 (mod 8) such that (pi/pj) = +1 when-

ever i ̸= j. In particular, this means that none of them are equivalent to 3 (mod 8). So we can apply
Theorem 8.10 and find thatW (“E/Q) = ⟨−1, k⟩.

To determine the size of the Selmer group we use Lemma 8.9. By the construction of k we automatically
satisfy conditions 1. and 2. from the lemma for any choice of non-zero c1. An even product of pi’s is
congruent to 1 (mod 8), so either b1 or c1 must be a product of such distinct pairs to satisfy condition 3..

In the case that m is odd this means that b1 is equal to a sole prime pi or a product of the form pi
with pairs of the form pjpk where i, j and k are distinct integers. Thus we have that ⟨pi | 1 ≤ i ≤ m⟩ ⊆
S(ψ)(“E/Q). Since −1 ∈ W (“E/Q) we can further conclude that ⟨−1, pi | 1 ≤ i ≤ m⟩ ⊆ S(ψ)(“E/Q).
Note that this subset contains all of the squarefree divisor that satisfy the conditions of Lemma 8.9, so
we can conclude that it is equal to the Selmer group. Thus we get that #X(“E/Q) ≥ #X(“E/Q)[ψ] =

#S(ψ)(“E/Q)/#W (“E/Q) = 2m+1/22 = 2m−1.
The case wherem is even follows in a similar way except here b1 is a product of pairs pipj where i and j

are distinct integers. From this it follows that S(ψ)(“E/Q) = ⟨−1, pipj | 1 ≤ i < j ≤ m⟩, so #S(ψ)(“E/Q) =

2m and we conclude that #X(“E/Q) ≥ 2m−2.

What is particular about this case is that the lower bound of the Tate-Shafarevich group depends on
the number of primes in the product k, since the exponent depends on whether m is even or odd. This
distinction is not there when we are working with µ2-covers or in the other case mentioned in the paper
of Lemmermeyer and Mollin [13, Corollary 8].

46



9 Conclusion
In this thesis we showed that we can generalize the results of the paper of Flynn and Shnidman to µn-covers
where n is a product of distinct primes p1 . . . pt. In this setting it is possible to decompose the µn-cover
(L, η) uniquely into µpi -covers (Lpi , ηpi). We could not fully translate the results of Flynn and Shnidman.
In particular, for Lemma 7.9 we find the result J(Qq)/ϕ(A(Qq))) = n2 ·

∏t
i=1 cq(J)/cq(Api) and we find

an extra factor
∏t
i=1 cq(J)/cq(Api) which we do not have in the case of n = p. Further research into the

Tamagawa numbers of the µpi -covers of µn-covers could shed more light on this situation.
We also applied the theory of µp-covers to the work of Lemmermeyer and Mollin and it showed that the

theory is also applicable to elliptic curves. We saw that we got similar results to Lemmermeyer and Mollin
with regards to the size of the Tate-Shafarevich group of the elliptic curve defined by y2 = x(x2 − k2) and
we also have arbitrarily large 2-torsion for this curve. However, this number depends on the number of
primes in k = p1 . . . pm and due to the conditions that we put on our primes and the global prime −1, the
only possibility is when k is equal to a single prime. This method using µ2-covers can be an alternative
approach to computing the size of the Tate-Shafarevich group of elliptic curves as opposed to conventional
methods like using p-descent for a prime p, but you need to be careful with choosing proper global primes.
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