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ABSTRACT

Responsible Auditing: Privacy Constrained Fairness

Estimation for Decision Trees

The protection of sensitive data becomes more vital, as data increases in value

and potency. Furthermore, the pressure increases from regulators and society on model

developers to make their Artificial Intelligence (AI) models non-discriminatory. To

boot, there is a need for interpretable, transparent AI models for high-stakes tasks.

In general, measuring the fairness of any AI model requires the sensitive attributes of

the individuals in the dataset, thus raising privacy concerns. In this work, the trade-

offs between fairness, privacy and interpretability are further explored. We specifically

examine the Statistical Parity (SP) of Decision Trees (DTs) with Differential Privacy

(DP), that are each popular methods in their respective subfield. We propose a novel

method, dubbed Privacy-Aware Fairness Estimation of Rules (PAFER), that can esti-

mate SP in a DP-aware manner for DTs. DP, making use of a third-party legal entity

that securely holds this sensitive data, guarantees privacy by adding noise to the sen-

sitive data. We experimentally compare several DP mechanisms. We show that using

the Laplacian mechanism, the method is able to estimate SP with low error while guar-

anteeing the privacy of the individuals in the dataset with high certainty. We further

show experimentally and theoretically that the method performs better for DTs that

are more interpretable.
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NEDERLANDSE ABSTRACT

Gegevensbescherming en privacy worden steeds crucialer naarmate gegevens

waardevoller en potentieel krachtiger worden. Bovendien neemt de druk van regelgev-

ing en de samenleving toe op ontwikkelaars van Artificial Intelligence (AI) modellen

om ervoor te zorgen dat hun modellen niet discriminerend zijn. Ten slotte is er behoefte

aan interpreteerbare, transparante AI modellen voor taken met grote belangen. Over

het algemeen vereist het meten van de fairness van ieder AI model de gevoelige ken-

merken van de individuen in de dataset, waardoor privacy dus in het gedrang komt. In

dit werk worden de afwegingen tussen fairness, privacy en interpreteerbaarheid verder

onderzocht. We onderzoeken specifiek de Statistical Parity (SP) van beslisbomen door

middel van Differentiële Privacy (DP). Dit zijn alle drie populaire methodes in hun

respectievelijke onderzoeksvelden. We stellen een methode voor, genaamd Privacy-

Aware Fairness Estimation of Rules (PAFER), dat SP kan schatten terwijl rekening

wordt gehouden met DP voor op beslisbomen. DP, waarbij gebruik wordt gemaakt

van een derde partij die veilig omgaat met deze gevoelige gegevens, garandeert privacy

door ruis toe te voegen aan de gevoelige gegevens. Verschillende ruis mechanismen voor

DP worden empirisch vergeleken. We laten experimenteel zien dat met behulp van het

Laplace-mechanisme de methode in staat is om SP met een lage fout te schatten, terwijl

de privacy van de individuen in de dataset met grote zekerheid wordt gegarandeerd.

We tonen ook experimenteel en theoretisch aan dat de methode beter presteert voor

beslisbomen die beter interpreteerbaar zijn.
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1. Introduction

The methods from the scientific field of AI, and in particular Machine Learning

(ML), are increasingly applied to tasks in socially sensitive domains. Due to their dis-

criminative power, ML models are used within banks for credit risk assessment [1], aid

decisions within universities for new student admissions [2] and aid bail decision-making

within courts [3]. Algorithmic decisions in these settings can have far going impacts,

potentially increasing disparities within society. Numerous notorious examples exist of

algorithms causing harm in this regard. In 2015, Google Photos new image recognition

model classified some black individuals as gorillas [4]. This led to the removal of the

category within Google Photos. The Dutch Tax & Customs administration used a

model for fraud prediction that targeted people with multiple nationalities [5]. This

later led to the resignation of the cabinet of the Dutch government [6].

The application of ML should clearly be done responsibly, giving rise to a field

that considers the fairness of algorithmic decisions. Fair ML is a field within AI con-

cerned with assessing and developing fair ML models. Fairness in this sense closely

relates to equality between groups and individuals. The main notion within the field

is that models should not be biased, that is, have tendencies to over/underperform

for certain (groups of) individuals. This notion of bias is different from the canonical

definition of bias in statistics, i.e. the difference between an estimator’s expected value

and the true value. In short, similar individuals should be treated similarly, and de-

cisions should not lead to unjust discrimination. Non-discrimination laws for AI exist

within the EU [7] and more are upcoming [8]. Partly due to the scandal, the Dutch

government now has a register of all the algorithms used within it [9].

An additional property that responsible ML models should have, is that they

are interpretable. Models of which the decision can be explained, are preferred as

they aid decision-making processes affecting real people. In a loan application setting,

users have the right to know how a decision came about [10]. The field of Explainable
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Artificial Intelligence (XAI), is concerned with building models that are interpretable

and explainable.

Inherently, ML models use data. Thus, there is also a tension between the use of

these models and privacy, especially for socially sensitive tasks. Individuals have several

rights when it comes to data storage, such as the right to be removed from a database

[7]. It is also beneficial for entities to guarantee privacy so that more individuals trust

the entity with their data. Some data storage practices are discouraged such as the

collection of several protected attributes [7]. These attributes, and thus the storage

practices thereof, are sensitive. Examples include the religion, marital status and

gender of individuals. Another reason for the outcry regarding the fraud prediction

system was the irresponsible sharing and storage within the Dutch government of the

sensitive private data of thousands of individuals [5]. In industrial settings, numerous

data leaks have occurred. Social media platforms are especially notorious for privacy

violations, with Facebook even incurring data breaches on multiple occasions [11, 12].

This work will investigate these three pillars of Responsible AI, investigating a novel

method that is at the intersection of these three themes.

1.1. Problem Statement

To assess and improve fairness precisely, one needs the sensitive attributes of the

individuals that a ML model was trained on. But these are often absent or limitedly

available, due to privacy considerations. Exactly here lies the focal point of this work,

the assessment of the fairness of ML models, while respecting the privacy of the indi-

viduals in the dataset. These conflicting goals make for a difficult problem that is also

fairly novel. A focus is placed on DTs, a class of interpretable models from XAI since

these types of models are likely to be used in a sensitive setting. There are thus four

goals in this work: fairness, privacy, interpretability and of course performance.
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1.2. Research Questions

The main goal of this work is to develop a method that can estimate the fairness

of an interpretable model with a high accuracy while respecting privacy. A method,

named Privacy-Aware Fairness Estimation of Rules (PAFER), is proposed that can

estimate the fairness of a class of interpretable models, DTs, while respecting privacy.

The method is thus at the intersection of these three responsible AI values. The

research questions (RQs), along with their research subquestions, (RSQs) are:

RQ1 What is the optimal privacy mechanism that preserves privacy and mini-

mizes average Statistical Parity error?

(a) RSQ1.1 Is there a statistically significant mean difference in Absolute Sta-

tistical Parity error between the Laplacian mechanism and the Exponential

mechanism?

RQ2 Is there a statistically significant difference between the Statistical Par-

ity errors of PAFER compared to other benchmarks for varying Decision Tree

hyperparameter values?

RSQ2.1 At what fractional minleaf value is PAFER significantly better at

estimating Statistical Parity than a random baseline?

RSQ2.2 At what fractional minleaf value is the perfect estimator signifi-

cantly better at estimating Statistical Parity than PAFER?

1.3. Outline

This work is divided into several Chapters, which each consist of sections and

subsections. The upcoming Chapter 2 will cover the related literature and theoretical

background that is relevant to this research. Chapter 3 describes the novel method

that is proposed in this work. Finally, Chapter 4 describes the performed experiments,

their results and thorough analysis, along with future work and a conclusion.
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2. Background and Related Work

This chapter discusses work related to the research objectives and provides back-

ground to the performed research. Each section belongs to a subset in the Venn diagram

that Figure 2.1 shows. It consists of the three main pillars of this work and responsible

AI: fairness, interpretability and privacy, along with their intersections.

P

I

F

PAFER

Figure 2.1. The three pillars of this proposal: Privacy (P ), Interpretability (I) and

Fairness (F ) and their intersections P ∩ I, P ∩ S, I ∩ S and P ∩ I ∩ S shown in a

Venn diagram. Section 2.1, Section 2.2 and Section 2.4 cover the main pillars F, I

and P , respectively. Section 2.3 covers F ∩ I, Section 2.5 covers P ∩ I, Section 2.6

covers P ∩ F and methods that cover all three occur in Section 2.7 and Section 2.6.

PAFER, the method proposed in this work, is at the intersection of all three pillars.

2.1. Fairness Definitions

This section discusses several fairness definitions, on an individual level, as well

as on a group level. Fairness in an algorithmic setting relates to the way an algorithm

handles different (groups of) individuals. Unjust discrimination1 is often the subject

when examining the behavior of algorithms with respect to groups of individuals. For

this work, only fairness definitions relating to supervised ML were studied, and this is

the largest research area within algorithmic fairness.

1What exactly is unjust discrimination is a social construct and changes over time [13].
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In 2016, the number of papers related to fairness surged. Partly, due to the

new regulations such as the European GDPR [7] and partly due to a popular article by

ProPublica which examined racial disparities in recidivism prediction software [14]. Be-

cause of the young age of the field and the sudden rise in activity, numerous definitions

of fairness have been proposed since. Most of the definitions also simultaneously hold

multiple names; this section aims to include as many of the names for each definition.

The performance-oriented nature of the ML research field accelerated the develop-

ment of fairness metrics, quantifying the fairness for a particular model. The majority

of the definitions can therefore also be seen, or rewritten, as a measuring stick for the

fairness of a supervised ML model. This measurement may be on a scale, which is the

case for most group fairness definitions, or binary, which is the case for some causal

fairness definitions.

This section discusses three different types of fairness metrics: group fairness in

Subsection 2.1.1, individual fairness in Subsection 2.1.2 and causal fairness in Subsec-

tion 2.1.3.

2.1.1. Group Fairness

Group fairness is the most popular type of fairness definition as it relates most

closely to unjust discrimination; this subsection explains some of the most popular

group fairness definitions. Individuals are grouped based on a sensitive, or protected

attribute, A, which partitions the population. This partition is often binary, for in-

stance when A denotes a privileged and unprivileged group. In this subsection, we

assume a binary partition for ease of notation, but all mentioned definitions can be ap-

plied to K-order partitions. Some attributes are protected by law, for example, gender,

ethnicity and age. Technically, however, in all group fairness definitions, the sensitive

attribute may be any feature.

The setting for these definitions is often the binary classification setting where
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Y ∈ {0, 1}, with Y as the outcome. This is partly due to ease of notation, but more

importantly, the binary classification setting is common in impactful prediction tasks.

Examples of impactful prediction tasks are granting or not granting a loan [1], accepting

or not accepting students to a university [2] and predicting recidivism after a certain

period [3]. In each setting, a clear favorable (1) and unfavorable (0) outcome can

be identified. Thus, unless mentioned otherwise, we assume the binary classification

setting in the following definitions.

2.1.1.1. Statistical Parity. SP is a decision-based definition, which compares the dif-

ferent positive prediction rates for each group [15]. SP, also known as demographic

parity, equal acceptance rate, total variation or the independence criterion, is by far

the most popular fairness definition. The mathematical definition is:

SP = p(Ŷ = 1|A = 1)− p(Ŷ = 1|A = 0), (2.1)

where Ŷ is the decision of the classifier. An example of SP would be the comparison

of the acceptance rates of males and females to a university.

Note that Equation 2.1 is the SP-difference but the SP-ratio also exists. US law

adopts this definition of SP as the 80%-rule [16]. The 80%-rule states that the ratio of

the acceptance rates must not be smaller than 0.8, i.e. 80%. Formally:

80%-rule = 0.8 ≤ p(Ŷ = 1|A = 1)

p(Ŷ = 1|A = 0)
≤ 1.25, (2.2)

where the fraction is the SP-ratio. SP is easy to compute and does not require the actual

outcome labels. These advantages make it one of the most used fairness definitions.

2.1.1.2. Conditional Statistical Parity. A different version of SP is Conditional Statis-

tical Parity [15]. This definition is similar to SP, except it allows conditioning on some
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legitimate features, L. Mathematically, Conditional SP is defined as:

Conditional SP = p(Ŷ = 1|A = 1, L = l)− p(Ŷ = 1|A = 0, L = l), (2.3)

where l is the instantiation of the legitimate features L. An example of Conditional

SP would be a comparison of the acceptance rates of male and female applicants to a

university conditioned on their average final grades. If there is an imbalance, there is an

even stronger indication of unjust discrimination than an imbalance in (unconditional)

statistical parity. An advantage of this approach is that it is less ‘naive’ than regular SP.

The metric, however, is only useful when every legitimate feature that is conditioned

on is properly justified.

2.1.1.3. Equalized Odds. Another, also very common, fairness definition is the Equal-

ized Odds (EOdd) metric [17]. It is also known as disparate mistreatment or the

separation criterion. EOdd requires that the probabilities of being correctly positively

classified and the probabilities of being incorrectly positively classified are equal across

groups. Thus, the definition is twofold; both false positive classification probability

and true positive classification probability should be equal across groups. Formally:

EOdd = p(Ŷ = 1|Y = y, A = 1)− p(Ŷ = 1|Y = y, A = 0), y ∈ {0, 1}. (2.4)

An example of applying EOdd would be to require that both whites and people of

color have equal probability to be predicted to not recidivate, under both ground truth

conditions, separately. An advantage of EOdd is that, unlike SP, when the predictor

is perfect, i.e. Y = Ŷ , it satisfies EOdd.

2.1.1.4. Equality of Opportunity. A relaxation of EOdd is the fairness definition Equal-

ity of Opportunity (EOpp) [17]. It just requires the equality of the probabilities of cor-

rectly predicting the positive class across groups. In other words, where EOdd requires

that both true positive and false positive classification rates are equal across groups,
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EOpp only requires the former. Formally:

EOpp = p(Ŷ = 1|Y = 1, A = 1)− p(Ŷ = 1|Y = 1, A = 0). (2.5)

An example of applying EOpp would be to just require that whites and people of

color have equal probability to be predicted to not recidivate given that they did not

actually end up recidivating. If there was an imbalance, one group would receive more

freedom, even though the other group would equally deserve it based on their actions.

An advantage of EOpp is that it is not a bi-objective, and thus is more easily optimized

for compared to EOdd.

2.1.1.5. Predictive Equality. A very similar relaxation of EOdd is the fairness defini-

tion Predictive Equality (PrEq) [3]. It just requires the equality of the probabilities

of wrongly predicting the positive class across groups. In other words, where EOdd

requires that both true positive and false positive classification rates are equal across

groups, PrEq only requires the latter. Formally:

PrEq = p(Ŷ = 1|Y = 0, A = 1)− p(Ŷ = 1|Y = 0, A = 0). (2.6)

An example of applying PrEq is to require that whites and people of color have equal

probability to be predicted to not recidivate given that they did actually end up recidi-

vating. If there is an imbalance, one of the groups would receive more freedom, even

though they would abuse it. An advantage of PrEq is that it is not a bi-objective, and

thus is more easily optimized for compared to EOdd.

2.1.1.6. Calibration. Calibration, also known as the sufficiency criterion, is a fairness

definition based on the scores, S, of a model [18]. It requires the equality of the

probabilities of the outcomes across scores and groups. Usually, the scores are binned

such that S is partitioned into different score bins s. An extension of calibration is

well-calibration and then these equal probabilities should be calibrated to match with
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the exact score. A model is calibrated if:

p(Y = 1|S = s, A = 1) = p(Y = 1|S = s, A = 0) = s, ∀s. (2.7)

An example of applying well-calibration is requiring that for each (binned) predicted

probability of receiving a loan, the fraction of people who actually pay it back is equal

to the predicted score for females and males. If there is an imbalance for a certain s,

one group is wrongly treated differently by the model, given the actual outcomes. A

disadvantage of Calibration is that it requires the scaling of the probabilities of the

outcomes, and some models may not allow for this. Calibration is useful in situations

when the labels are correctly acquired, as it does not transform any of the bias in the

data. All previously mentioned definitions were bias-transforming, as they required

equality across predictions.

2.1.1.7. Accurate Coverage. Accurate Coverage is a fairness definition that requires

that the prediction probabilities are equal to the outcome rates in the data [19]. For-

mally:

p(Ŷ = 1|A = a) = p(Y = 1|A = a), a ∈ {0, 1}. (2.8)

For instance, in a loan application setting, when the payback rate of males is 60% and

for females is 50% in the data, the classifier should also predict 60% of males and 50%

of females to pay back their loan. Accurate Coverage is also a definition that maintains

the status quo, as it assumes the correctness of the labels in the dataset.

2.1.1.8. Rawlsian Min-Max. Rawlsian Min-Max fairness is a popular definition in the

research area of fairness where sensitive attributes are (partially) unavailable [20, 21].

The definition originates from the work by philosopher John Rawls on distributive

justice and his difference principle [22, p.155]. It is based on the idea that the group

with the worst utility should be maximal (minimal group–maximal utility). The utility
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can be any sort of function for a group but is often an evaluation metric of a ML model

specifically for that group. Formally:

Rawlsian Min-Max = arg max
m∈M

min
a∈{0,1}

UDA=a
(m), (2.9)

where UDA=a
(m) is the utility of model m out of all possible models M , applied only

on instances from a dataset D that have protected attribute a. This notation was

borrowed from [21]. The definition is similar to requiring a minimal performance for

each group.

2.1.1.9. Burden. A very different kind of definition but nonetheless group related, is

Burden [23]. The definition relates to model-based counterfactuals; a perturbation

of an instance such that the classification, m(x), of the instance changes. Given a

method that can generate these counterfactuals, the distance can be calculated for each

individual between their instance, x, and their nearest counterfactual, c∗. Formally,

the definition of Burden then is:

Burden =
1

|DA=1|
∑

x∈DA=1

d(x, c∗)− 1

|DA=0|
∑

x∈DA=0

d(x, c∗) ∀x→ m(x) = 0, (2.10)

where |DA=a| is the size of (un)privileged group a in dataset D and d(x, c∗) is the

distance between individual x and its closest counterfactual c∗. The distance is an

indication of recourse; the amount of attributes an individual has to change to be

classified favorably [24]. An imbalance in Burden implies that, on average, one group

must change more of their observed behavior to be correctly classified. Burden can

be seen as an extension of SP but counterfactual generation is often a time-heavy

process, making the extension costly [25]. Burden can also be used to compare the

recourse of two similar individuals, i.e. be used as an individual fairness metric. The

next subsection details some of these metrics.
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2.1.2. Individual Fairness

Whereas the previous definitions were all based on comparisons between groups,

the following individual fairness definitions look at the fairness of a ML model given

two individuals. Individual fairness may be preferred as the overall goal of fairness is to

obtain equality across individuals and not groups. Although the upcoming definitions

often still involve sensitive attributes, they do not partition the population based on

them.

2.1.2.1. Causal Discrimination. An intuitive definition of individual fairness is that of

Causal Discrimination [26]. A classifier is fair based on Causal Discrimination if the

model classifies instances which have the same attribute values to the same class. If

individuals only differ on sensitive attributes, they are also considered equal and must

also belong to the same class according to the model. Formally:

Causal Discrimination = (xi = xj)→ (m(xi) = m(xj)), i ̸= j, (2.11)

where xi is the ith instance x. Duplicating instances and changing sensitive attributes

is an often-used method to test Causal Discrimination. Although an intuitive defini-

tion, ironically, Causal Discrimination is often insufficient as a metric because of the

underlying causal influences of the sensitive attributes.

2.1.2.2. Fairness through awareness. Fairness through awareness is based on the idea

that similar individuals, who are similar with respect to the classification task, should

be treated similarly by the ML model [15]. It is the most well-known individual fairness

definition and is sometimes even called individual fairness. Fairness through awareness

requires that if two individuals x1, x2, are within distance d1(x1, x2) of each other, then

their prediction distributions must be no greater than d2(x1, x2) of each other. These

distance and distribution difference functions are task-specific and the Dwork et al.

give some pointers towards sensible functions [15]. For example, the distance metric
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could be the normalized difference in age and the distribution difference function could

be the difference in predicted probabilities for the positive outcome. An advantage

of this metric is that it is general, in fact, causal discrimination can be expressed in

terms of fairness through awareness. Moreover, the definition is more fine-grained than

statistical parity, as adhering to it also reduces SP in sub-groups [15].

2.1.2.3. Fairness through unawareness. Fairness through unawareness is the idea that

blinding a ML model from sensitive features ensures that individuals are all treated

fairly. It is thus a procedural fairness definition. This definition is merely an idea, as

it does not apply in practice. More often than not, task-related features are correlated

with sensitive features, which the model still picks up on [27]. Still, recent legislation

requires omitting the sensitive features from training data [8].

2.1.3. Causal Fairness

The final type of fairness definition that is discussed in this section is causal

fairness. Causal fairness requires a causal model that represents the causal relations

between the features and the outcome. Figure 2.2 gives two examples of such models.

Using this causal model one can infer some fairness properties of the classification task.

The field often assumes that these causal models were built using expert knowledge,

as opposed to using the dataset.

2.1.3.1. Unresolved Discrimination. Unresolved Discrimination directly relates to the

structure of the causal model [28]. When each path from the sensitive attribute to

the outcome goes only via resolving variables, the causal model satisfies Unresolved

Discrimination. Resolving variables are justified causes of the outcome (similar to con-

ditional statistical parity). The right causal model of Figure 2.2 displays no unresolved

discrimination, as the only path from vertex A to Y is via R. For this definition, it is

necessary that the causal model is correct to not falsely assure or alarm.
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Figure 2.2. Two examples of Causal Graphs. A = Sensitive Attribute, Y = Outcome,

R = Resolving Feature and P = Proxy Feature.

2.1.3.2. Proxy Discrimination. Proxy Discrimination also directly relates to the struc-

ture of the causal model [28]. Proxy features are those that are highly indicative of

the sensitive attribute. The causal model satisfies Proxy Discrimination, if there is no

path from the sensitive attribute to the outcome via a proxy feature. The left causal

model of Figure 2.2 displays no proxy discrimination, as there is no path from vertex

A to Y via P . For this definition, it is necessary that the causal model is correct to

not falsely assure or alarm.

2.1.3.3. Counterfactual Fairness. A well-known causal fairness definition is Counter-

factual Fairness [29]. Counterfactual fairness requires that if we generate a counterfac-

tual, using a fully specified causal model, in which we change a sensitive attribute for

an individual, x, the distribution of the prediction for that individual does not change.

It is thus a causal individual fairness definition. Formally, the following equation must

hold in Counterfactual Fairness:

p(ŶA←1 = y|X = x,A = 1) = p(ŶA←0 = y|X = x,A = 1) y ∈ {0, 1}, (2.12)

where ŶA←a is the prediction for an individual in the circumstance where A = a.
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For example, if we want to predict the success of a single student at a university

and observe and use their final grades, but these are influenced by their race, the

model might be counterfactually unfair. If we change the race of an individual, the

final grades change and the distribution of the prediction might also change. An

advantage of this approach is that it is less naive than other instance perturbation

methods such as Causal Discrimination, because we take into account the change of

the other variables. Creating a fully specified causal model, however, is time-consuming

and complex, especially for a large number of features.

2.1.3.4. Individual Direct Discrimination. Individual Direct Discrimination compares

the outcome rates of two groups that are similar to an individual [30]. It is also a

causal individual fairness definition. The first group is the one in which the sensitive

attribute is the same, and the other when it is different. A causal model is used to

determine the similar individuals from both groups. The similarity is based on what

degree features are causes of the outcome; features that differ greatly but have the

same causal effect on the outcome are considered similar. If the difference in outcome

rates of the two groups exceeds some threshold, the model is deemed causally unfair,

according to Individual Direct Discrimination. An advantage of this metric is that it

evades the use of counterfactuals.

2.1.3.5. Total Effect. Total Effect compares the acceptance rates across groups, by

changing the sensitive attribute and measuring the difference in outcome along all

causal paths connecting the two [31]. If the difference in acceptance rates exceeds

some threshold, the model is deemed causally unfair, according to Total Effect. This

calculation also uses counterfactuals, like counterfactual fairness, except it is now ap-

plied on a group level. Total Effect, also known as Average Causal Effect and Average

Treatment Effect, is the fairness definition that coincides the most with SP. Because

Total effect uses a causal model, Total Effect measures the change in acceptance rates

for the entire population, whereas SP measures it only for a sample of the population,

i.e. those in the dataset.
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2.1.3.6. Equality of Effort. Equality of Effort is similar to the previously discussed

Burden fairness definition. It also focuses on how much an individual has to change

in order to change their outcome. Like Burden, a model satisfies Equality of Effort if

individuals in both groups have to change a certain (indirect) causal influence equally

as much to change the outcome. The causal model is used in a similar fashion as

Individual Direct Discrimination; to represent each group. Then, the minimal change

to a certain causal influence such that it changes the outcome is calculated and averaged

over the group. If the differences in minimal change exceed some threshold, the model

is deemed causally unfair, according to Equality of Effort. While an intuitive definition,

only assessing the change in one causal influence is often insufficient. Equality of Effort

concludes the discussion of fairness metrics; the next section highlights another pillar

of responsible AI: interpretability.

2.2. Interpretable Models

This section outlines a class of models with inherently high interpretability, DTs,

that are central to this work. The interpretability of a model is the degree to which

the classifications and the decision-making mechanism can be interpreted. The field

of XAI is concerned with building systems that can be interpreted and explained.

Complex systems might need an explanation function that generates explanations for

the outputs of the system. Some methods may inherently be highly interpretable,

requiring no explanation method, such as DTs. Interpretability may be desired to

ensure safety, gain insight, enable auditing or manage expectations.

2.2.1. Decision Trees (DTs)

A DT is a type of rule-based system that can be used for classification problems.

The structure of the tree is learned from a labelled dataset. Figure 2.3 gives an example

of a DT. DTs consist of nodes, namely branching nodes and leaf nodes. The upper

branching node is the root node. To classify an instance, one starts at the root node

and follows the rules which apply to the instance from branching node to branching
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warm blooded

no fur has fur

cold blooded

Figure 2.3. A simple DT with two branching nodes and three leaf nodes, that

determines whether an animal is a mammal. A leaf node with an inner circle denotes

a positive classification, i.e. the majority of the instances in that node are mammals.

node until no more rules can be applied. Then, one reaches a decision node, also called

a leaf node. Every node holds the instances that could reach that node. Thus, the root

node holds every instance. Decision nodes classify instances based on the class that

represents the most individuals within that node.

There are two effective ways to determine the structure of a DT, given a labelled

dataset. The most common way is to have a function that indicates what should be

the splitting criterion, e.g. x1 < 7, in each branching node. These heuristic functions

look at splitting criteria to partition the data in the node such that each partition

is as homogeneous as possible w.r.t. class. An example of such a heuristic is entropy,

intuitively defined as the degree to which the class distribution is random in a partition.

A greedy process then constructs the tree, picking the best split in each individual

node. Optimal DTs are a newer set of approaches, that utilize methods from dynamic

programming and constrained optimization [32]. Their performance is generally better

as they approach the true DT more closely than greedily constructed DTs. However,

their construction is computationally heavy.

The interpretability of a DT is determined by several factors. The main factor
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is its height, the number of times the DT partitions the data. The DT in Figure 2.3

has a height of 2. Very shallow Decision Trees are sometimes also called decision

stumps [33]. The minleaf DT hyperparameter also influences the interpretability of

a DT. The minleaf value constrains how many instances should minimally hold in

a leaf node. The smaller the value, the more splits are required to reach the set

minleaf value. Optimal DTs cannot have a tall height due to their high computational

cost. Greedy DTs can be terminated early in the construction process to maintain

interpretability. Closely related to height is the number of decision nodes in the tree.

This also influences the interpretability of DTs, as the more decision nodes a DT has,

the more complex the DT is. Finally, DTs built with numeric features might become

uninterpretable because they use the same numeric feature over and over, leading to

unintuitive decision boundaries.

In general, DTs are interpretable because they offer visualizations and use rules,

which are both easy to understand for humans [34]. Major disadvantages of DTs are

that they are incapable of capturing linear relations and that their construction is very

sensitive to changes in the data. Still, their performance, especially the ensembles of

DTs, are state-of-the-art for prediction tasks on tabular data [35].

2.3. Fair Interpretable Models

Where the previous sections were on improving the responsibility of ML models

in one dimension, this section highlights models that focus on both fairness and inter-

pretability. Several attempts have been made to improve the fairness of interpretable

models1. In general, fairness-enhancing methods can fall under three categories: pre-

processing, in-processing and post-processing [36]. Pre-processing methods focus on

the data aspect of the ML pipeline, aiming to eliminate bias before the model training

phase. In-processing methods work in tandem with the ML model during training, of-

ten adding a fairness objective to the optimization function of a model. Post-processing

methods work on the outputs of a ML model, changing the classifications to ensure the

1Note that estimating the fairness of interpretable models is trivial if privacy is not a factor.
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satisfaction of some fairness metric. Multiple types of methods may be combined. The

focus of this section is on the interpretable models that were previously introduced.

For each model, we name the type of processing method.

2.3.1. Fair Decision Trees

As mentioned, two well-performing approaches exist for the construction of DTs.

Fairness-enhancing methods exist for both approaches which are highlighted in the

same order as they appeared in the previous subsection.

2.3.1.1. Heuristic-Based Decision Trees. Kamiran & Calders introduced the most pop-

ular method for enhancing the fairness of DTs [37]. The method, now known as Dis-

crimination Aware Decision Trees (DADT), has two phases. The first phase of DADT

constructs a tree where the homogeneity of the sensitive attribute is incorporated into

the splitting heuristic function. DADT can thus be considered an in-processing method.

The second phase of DADT relabels the decision nodes in such a way that fairness

is maximally improved and accuracy minimally worsened. The relabeling phase is

phrased as a KNAPSACK problem [38], and is also solved greedily. Due to this second

phase, DADT can also be considered a post-processing method. The heuristic that

creates decision nodes that are both homogeneous w.r.t. group membership and class

membership, pairs the best with the relabeling phase. The paper verifies this both

experimentally and explains it by the fact that fewer leaf nodes have to be relabeled

to prevent discrimination.

2.3.1.2. Optimal Decision Trees. For group fairness, there is one line of work regarding

optimal fair DTs that was initiated by Aghei et al. [39]. This work was extended by

Jo et al. who gave a formulation to construct optimally fair DTs based on Mixed

Integer Optimization [40]. The method is obviously an in-processing approach as it

adds a fairness objective to the optimal DT problem. Aside from this formulation, the

authors propose an approach that solves the problem for a certain DT height, and then
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optimally branches out from that tree. Both implementations, however, are very slow

and practically, heights of more than three are out of reach. The framework can be

used to optimize for SP, conditional SP, PrEq, EOpp and EOdd. For each definition,

a slack parameter can be specified, like in the 80%-rule, such that an array of DTs can

be generated. The paper shows an improvement in terms of fairness and accuracy over

DADT.

Recent work hugely improves the speed of the former method, but can only

improve statistical parity [41]. Linden et al. do note that the method “can easily

be extended to support other notions of group fairness” [41, p.3]. The method is

named DPFair. The speed improvements mainly stem from more smartly pruning the

search space and writing the algorithm in a faster programming language. One major

downside of these approaches is that they require the binarization of the features in the

dataset. And even then, for large datasets with a large number of features, construction

of optimally fair DTs can take more than an hour.

For individual fairness, there is one method that was proposed by Ranzato &

Zanella [42]. The paper uses the equivalence between individual fairness and stability,

a notion found in robust ML. The authors build upon their own work [43], to propose

a method that constructs an individually fair set of DTs, using a genetic algorithm.

The authors name the method Fairness Aware Tree Training (FATT). The paper ex-

perimentally verifies that the method is far more individually fair than other fairness

unaware DT methods while giving in little on accuracy. The authors also propose to

let the parameters of the trees generated by FATT be the hyperparameters for fairness

unaware Decision Trees, e.g. setting the maximum height of the ‘naive’ DTs to the

height of the trees generated by FATT. These types of DTs give in far less in terms of

accuracy and, using the ‘fair’ parameters, still provide a substantial individual fairness

improvement. FATT is an interesting approach but as it is the only work consider-

ing individual fairness, it cannot yet be compared to other methods and definitions of

individual fairness.
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2.4. Privacy Definitions

The final main pillar of responsible AI that this work discusses is privacy. Privacy,

in general, is a term that can be used in multiple contexts. In its literal sense, privacy

relates to one’s ability to make personal and intimate decisions with nothing interfering.

In this work, however, privacy relates to the degree of control one has over others

accessing personal data about them. This is also known as informational privacy. The

less personal data others access about an individual, the more privacy the individual

has. This section discusses several techniques to increase informational privacy.

2.4.1. Differential Privacy (DP)

Differential Privacy (DP) [44] is a notion that gives mathematical guarantees

on the membership of individuals in a dataset. In principle, it is a promise to any

individual in a dataset, namely: ‘You will not be affected, adversely or otherwise,

by allowing your data to be used in any analysis of the data, no matter what other

analyses, datasets, or information sources are available’ [45]. More specifically, an

adversary cannot infer if an individual is in the dataset. DP can be applied when

sharing data, or an analysis of the data. ML models are ways of analysing data and

therefore can also promise to adhere to DP. Another guarantee that DP makes is that

it is immune to post-processing, i.e. DP cannot be undone [45].

2.4.1.1. Definition. The promise of DP can be mathematically guaranteed up to a

probability ε. A higher ε guarantees more privacy. This parameter ε is the privacy

budget. The main means of guaranteeing the promise of DP is by perturbing the data,

i.e. adding noise to the data. In the context of building ML models, this noise may be

added to the parameters of the ML model or to its training data. At any rate, there is

a query, q(·), for data3, to which DP adds noise. Because DP is based on membership

inference, the formal definition compares two neighboring datasets, D and D′, in which

3This query may come from a user of a ML model or from a developer that requires training data.
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only one instance differs. For these datasets, ε, δ-DP formally is:

p(A(q(D)) ⊆ range(A)) ≤ exp(ε) · p(A(q(D′)) + δ ⊆ range(A)), (2.13)

where A is a randomized mechanism around a query q(·), range(A) is the range of all

outcomes the mechanism can have. If δ = 0, ε-DP is satisfied. DP-mechanisms thus

randomize query answers in some way.

2.4.1.2. Global Sensitivity. How much noise ought to be added, depends on the dif-

ference the inclusion of one worst-case individual in the dataset makes for the query

answer. This is known as the sensitivity, ∆q, how sensitive a query answer is to a

change in the data [44]. Formally:

∆q = max
D,D′

||q(D)− q(D′)||1, (2.14)

which is also know as the ℓ1-sensitivity or the global sensitivity.

2.4.1.3. Laplace Mechanism. Several techniques exist to randomize query answers, of

which the most common one is the Laplacian mechanism [44], for queries requesting

real numbers4. The mechanism involves adding noise to a query answer, sampled from

the Laplace distribution, centered at 0 and with a scale equal to ∆q
ε
. The Laplace

mechanism can be formalised as:

A(D, q(·), ε) = q(D) + Lap(
∆q

ε
), (2.15)

where Lap(∆q
ε
) is the added Laplacian noise.

2.4.1.4. Randomized Response. For answers with a binary answer, Randomized Re-

sponse may be used [46]. This procedure is ln(3)-differentially private [45]. The pro-

4An example of such a query might be: ‘What is the average age of females in the dataset?’.
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cedure is as follows:

(i) Flip a coin.

(ii) If it is heads, respond truthfully.

(iii) Else, flip another coin.

(iv) If it is heads, respond 0, else 1.

The responses 0 and 1 are placeholders for actual answers and should be mapped to

the query appropriately. The procedure originates in social sciences where respondents

might be not so inclined to answer truthfully with regard to criminal activities. This

procedure ensures that the respondents cannot be charged for their answers.

2.4.1.5. Exponential Mechanism. A different noise schema is the Exponential mech-

anism [47], used for categorical, utility-related queries5. For these sorts of queries, a

small amount of noise may completely destroy the utility of the query answer. A utility

function, uD(r), is defined over the categories, r ∈ R, for a certain dataset D. The

exponential mechanism is sensitive w.r.t. the utility function, ∆u, not with respect to

changes in r. The exponential mechanism can be formally defined as:

p(A(D, u,R, ε) = r) ∝ exp(
εuD(r)

2∆u
). (2.16)

In other words, the probability of the best category being chosen is proportional to

e
εuD(r)

2∆u .

2.4.1.6. Gaussian Mechanism. The Gaussian mechanism adds noise based on the Gaus-

sian distribution, with N (0, σ). The mechanism is similar to the Laplacian mechanism

in this sense. DP holds if σ ≥
√
2 ln(1.25

δ
)∆2

ε
[45]. The term ∆2 is the global ℓ2-

sensitivity; instead of using the ℓ1-norm in Equation 2.14, ∆2 uses the ℓ2-norm. The

Gaussian mechanism can be deemed a more ‘natural’ type of noise, as it adds noise

5An example of such a query might be: ‘What is the optimal attribute to partition the dataset in terms

of class?’ Such a query can be found in the next section.
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that is often assumed to be present in measurements. A disadvantage is that both δ

and ε must be in (0, 1), so ε-DP can never be met.

2.5. Privacy Aware Interpretable Models

This section discusses the construction of DTs in a DP-aware manner. At the

intersection of privacy and interpretability, several works exist that prevent data leakage

via interpretable models or via developers of interpretable models.

2.5.1. Privacy Aware Decision Trees

There are three main works on the construction of DTs with DP guarantees, the

rest of the field is more concerned with creating decision forests which have better

performance. This holds in general, not only in a privacy-constrained setting. This

subsection discusses the three works in chronological order. The setting that this body

of work assumes is that a DT developer has limited access to the data via a curator

that they can send queries to. The answers to these queries should be perturbed via

DP-mechanisms.

Blum et al. first introduced DTs with DP [48]. It was more of a proof-of-concept;

the authors rewrote the information gain splitting criterion to make it differentially

private. Querying the necessary quantities for each node and adding Laplacian noise

to the answers ensures DP. For the leaf nodes, the class counts are queried, as is the

case for all other approaches mentioned. The method, however, requires a large privacy

budget which in turn makes the answers to the queries noisy. It also can not handle

continuous features but does allow for trees with a height equal to the total number of

features.

The improvement on this method came from offloading the bulk of the compu-

tation to the data curator [49]. The method that is proposed in [49] simply queries

for the quantities in each node and the best attribute to split on. The latter is used
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to construct the tree and the former to cleverly determine the termination of the tree

construction. The improvement also stems from the fact that the method in [48] used

overlapping queries which hurts the privacy budget. This problem is not present in [49],

where the queries for nodes for each height are non-overlapping. Friedman & Schuster

used the exponential mechanism, which relies on the sensitivity of the utility function,

in this case, the splitting criterion. It is experimentally verified that when the criterion

is the error rate, the accuracy is the highest. This method can handle continuous vari-

ables in theory but the inclusion of them in the training set severely hurts the predictive

performance. Moreover, the height of the DT can at maximum be five. The method

still improved performance significantly, however, due to the more clever queries and

noise addition.

The final improvement in this line of work was found by Mohammed et al.. They

disregard the first query concerned with the node quantities and instead focused solely

on the queries for the best splitting criterion, allowing more privacy budget to be spent

on each query [50]. This approach comes at the cost of a more robust termination cri-

terion, that has less flexibility than the one in [49]. Through experimental evaluation,

a very robust termination criterion is determined, which is: stop at a height of four.

Using this termination procedure, the performance of the method is experimentally

shown to outperform the previous method. However, this method excludes the possi-

bility of using continuous features, but this is not a large downside as it is discouraged

for the approach in [49] that this method builds upon.

2.6. Privacy Aware Fair Models

This section discusses methods that simultaneously have an eye for fairness and

DP. These objectives may be competing not only in the sense that fairness sometimes

requires sensitive attributes but also in the sense that fairness-enhancing models might

leak more information from certain groups [51]. Note that this section discusses works

from different fields and with different settings, unlike previous sections where goals

were more uniform.
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2.6.1. Querying Fairness

Hamman et al. explore the idea of querying the actual group fairness metrics in a

recent paper [52]. The scenario they assume is that ML developers have some dataset

without sensitive attributes for which they build models, and therefore query SP and

EOdd from a data curator. It is established in [52] that if the developers have bad

intentions, they can identify a sensitive attribute of an individual using one unrealistic

query, or two realistic ones. The main idea is that the models, for which they query

fairness metrics, differ only on one individual, giving away their sensitive attribute via

the answer. This result is then extended using any number of individuals. When the

sizes of the groups differ greatly, i.e. |DA=0| ≪ |DA=1|, using compressed sensing [53],

the number of queries is in O(|DA=0| log( N
|DA=1|

)), with N = |DA=1 +DA=0|, the total

number of instances. The authors propose a mitigation strategy named Attribute

Conceal, using smooth sensitivity. This is a sensitivity notion that is based on the

worst-case individual in the dataset. DP is ensured for any number of queries by

adding noise to each query answer. It is experimentally verified that using Attribute

Conceal, an adversary can predict sensitive attributes merely as well as a random

estimator.

2.6.2. Post-processing Method

Jagielski et al., in [54], transform a fairness-enhancing post-processing [17] and

in-processing approach [55]. They also consider the setting where only the protected

attribute remains to be private. They adapt both fairness enhancing algorithms, op-

timizing for EOdd, to also adhere to DP. The former is based on the fractions in the

data adhering to different combinations of Ŷ = ŷ, A = a and Y = y. These are fed

into a linear program to determine the optimal decision thresholds for each individ-

ual group, a. The privacy extension comes from perturbing these fractions using the

Laplacian distribution. Albeit intuitive, the method performs quite badly and requires

access to the sensitive attributes at test time. Therefore, the latter approach is intro-

duced, which is based on a zero-sum game between a hypothesis selector that finds
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the best-performing model and a regulator that points out EOdd violations to them

based on gradient descent. The equilibrium that is arrived at in the game, is the best

trade-off between EOdd and accuracy. The hypothesis selector is considered to adhere

to DP if sensitive attributes are absent from its input. The fairness regulator is made

differentially private by adding Laplacian noise to the gradients of the gradient descent

solver. The results of this approach are only satisfactory for large privacy budgets.

2.7. Fairness Without Sensitive Data

This section highlights a number of methods that aim to enhance fairness without

accessing sensitive data. Research towards these methods is a reasonably new subarea

within fairness research. Research has addressed a range of availabilities, from one

sensitive attribute missing to no information on the sensitive groups at all. These

methods are often developed using datasets with sensitive features because evaluation

would otherwise be impossible.

2.7.1. Proxy Fairness

Gupta et al. were one of the first to measure fairness when a sensitive feature is

missing [19]. They propose to measure and improve the fairness of another sensitive

group instead, e.g. mitigating gender bias as a proxy for racial bias. The bias mitigation

is most effective if the proxy group and the true sensitive group are semantically related,

but this need not be the case. The authors then experimentally show that using

the post-processing method from [17] on a proxy group, increases fairness in terms

of Accurate Coverage and EOpp for the proxied group. The effectiveness, however,

depends on the fairness metric. The experiments show that EOpp is more difficult to

improve using a proxy group. An advantage of Proxy Fairness is that it can be used

with any class of models, and thus also interpretable models.
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2.7.2. Fairness Using Distributionally Robust Optimization (DRO)

Hashimoto et al. were one of the very first methods to investigate bias in a setting

where sensitive data is entirely unavailable [20]. The authors even presume that the

number of sensitive groups is unknown. The proposed method can be applied to the

class of stochastic gradient descent models. The method is applied in a setting where

users from a group give queries to a model, e.g. a speech recognition model, and are

assumed to use the model less if the performance is worse. This gives rise to the Rawl-

sian Min-Max fairness definition, as this aims to have a maximal minimum performance

for each group. By sampling around the data generation process, and minimizing the

maximum loss for all possible groups within that sample, Rawlsian Min-Max fairness

is ensured. By careful sampling, each group is represented. Distributionally Robust

Optimization (DRO), upweights the samples in the minority groups. The method per-

forms well, i.e. the maximum loss is low, if the instances with a low loss are all from

minority groups. The paper empirically verifies the results on an auto-complete service,

observing retention when DRO is used or not. Applying DRO causes higher retention

rates for both groups.

2.7.3. Adversarially Reweighted Learning (ARL)

Lahoti et al. build upon DRO and also investigate Rawlsian Min-Max fairness [21].

The authors apply Rawlsian Min-Max fairness to computationally identifiable groups,

instead of all possible groups. An adversarial neural network identifies these groups,

by identifying regions with high expected error rates. Another model is responsible

for classification. The paper introduces Adversarially Reweighted Learning (ARL),

upweighting samples in identified regions, such that the classification model performs

better for these regions, thus optimizing Rawlsian Min-Max fairness. The paper details

numerous experiments including comparisons with DRO, Inverse Probability Weighting

[56] and Min-Diff [57], as well as an analysis of the learned weights, the identified groups

and the robustness of ARL to label and representation bias. It is concluded that ARL

achieves comparable or better performance than the aforementioned methods. The
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learned weights show to be higher for minority groups and become lower when the size

of the minority group increases. As with DRO, ARL is shown to be prone to label bias,

because then some misclassified instances are not from minority groups. The authors

conclude that representation bias is not an issue for both methods. Finally, the authors

observe that ARL performs worse when the groups are less identifiable. ARL is thus

preferred over DRO when one suspects that the groups can be easily identified, perhaps

if some features are historically proxy features for sensitive attributes.

2.7.4. Fair Related Features (FairRF)

Zhao et al. also consider a loss-based model and the unavailability of any sensitive

information [58]. However, they assume that some features are heavily related to

sensitive features and that these are known or estimated. By regularizing the covariance

between the predictions of the model and the related features, fairness is enhanced. The

method, named Fair Related Features (FairRF), learns a specific penalty term for each

related feature, based on its covariance with the predictions. This leads to a constrained

optimization problem that is solved by alternatingly updating the model parameters

and the penalty terms. An advantage of FairRF is that it incorporates a regularization

importance hyper-parameter, enabling developers to find the right balance between

fairness and accuracy. Through empirical verification, it is shown that the selected set

of related features may be noisy. FairRF is also experimentally compared with other

methods, including ARL. FairRF gives up a bit of accuracy for fairer results in terms

of SP and EOpp.

2.7.5. Fairness Using Knowledge Distillation

Chai et al. introduce the latest advancement in fairness without sensitive data

in [59]. It utilizes knowledge distillation, the concept that an overfit complex teacher

model can provide the labels for a simpler student model. The predictions of the teacher

model and the actual labels are combined to form a smooth continuous labelling. The

hypothesis in [59] is that discrimination is most easily prevented close to the decision
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boundary1. The student model is trained on the smooth labelling, which causes a focus

on correctly classified instances for which there is a large difference between the actual

label and the smoothed label. This improves the performance in regions with more

instances from minority groups. Via empirical evaluation, the method is shown to

outperform DRO, ARL and FairRF, giving up less accuracy while achieving more fair

predictions in terms of SP and EOdd. When the smoothing parameter is increased, i.e.

the amount of influence the teacher has on the new labels, EOdd is shown to improve.

2.7.6. Proxy Models

Several approaches exist that replace the missing sensitive data with a prediction

of these variables. The models predicting sensitive variables are often called proxy

models. Proxy models get their training labels from other (publicly available) datasets.

A notorious example is Bayesian Improved Surname Geocoding, which used the Naive

Bayes approach to predict ethnicity based on surname and address [61]. In general,

proxy models underestimate fairness [62]. Nevertheless, a bank that applied Bayesian

Improved Surname Geocoding received a fine of 98 million US dollars [63]. The main

disadvantage of proxy models is that they deteriorate in performance the fewer proxy

features are present in the data. Due to their dual-use2, also noted by Awasthi et al.

they are not reviewed in this work [64]. The approach, however, is quite popular and

a decently sized body of research aims towards it.

2.8. Related Work & Background Conclusion

In general, we see a lack of fair, privacy-preserving methods for rule-based meth-

ods, specifically DTs. Hamman et al. investigate the fairness of models in general

without giving in on privacy [52], but the method lacks validity. The developers, in

their setting, do not gain intuition on what should be changed about their model to im-

prove fairness. One class of models that lends itself well to this would be DTs, as these

1This idea is also explored in the post-processing method named Reject Option Classification [60].
2The prediction of sensitive attributes also enables unjust discrimination.



30

are modular and can be pruned, i.e. rules can be removed. DTs are the state-of-the-art

for tabular data [35] and sensitive tasks are often prediction tasks for tabular data1.

A method that can identify unfairness in a privacy-aware manner for DTs would be

interpretable, fair and differentially private, respecting some of the pillars of responsi-

ble AI. PAFER aims to fill this gap, querying the individual rules in a DT. The next

chapter will introduce the method.

1Examples are university acceptance [2], bail decision making [3] and credit risk assessment [1].
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3. Proposed Method

This chapter describes Privacy-Aware Fairness Estimation of Rules (PAFER),

the core of this work. PAFER is a novel method to estimate the fairness of DTs. The

following sections dissect the proposed method, starting with a section on the assump-

tions and specific scenarios for which the method is built (Section 3.1). The successive

section provides a detailed description of the procedure (Section 3.2), followed by the

pseudocode (Subsection 3.2.5) and a section that details some theoretical properties

(Subsection 3.2.6).

3.1. Scenario

PAFER requires a specific, albeit common, scenario for its use. This section

describes that scenario and discusses how common the scenario actually is.

3.1.1. Assumptions

PAFER is a method that requires a certain setting, which comes with several

assumptions. Firstly, PAFER is made for an auditing setting, in the sense that it

is a method that is assumed to be used at the end of a development cycle. PAFER

does not mitigate bias, it merely estimates the fairness of the rules in a DT. Secondly,

we assume that a developer has constructed a DT that makes binary decisions about

people. The developer may have had access to a dataset containing individuals and

some task-specific features, but this dataset does not contain a full specification of

sensitive attributes on an instance level. The developer now wants to assess the fairness

of their model using SP. We lastly assume that a third party exists that does know these

sensitive attributes on an instance level, and is willing to share them using some safe

private protocol. Based on these assumptions, the fairness of the DT can be assessed,

using the third party and PAFER.
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3.1.2. Prevalance of Scenario

The scenario that was described in the previous subsection can occur in the real

world under varying circumstances. This subsection enumerates some assumptions and

their prevalence in the real world. Firstly, it is common to see a rule-based method

built for a sensitive task [65, 66]. Rules are able to explain the decision process, al-

lowing individuals that are affected by the system to receive explanations about the

decision affecting them. Secondly, binary decision-making is also quite common for

sensitive tasks. Prominent examples include university acceptance decision making [2],

recidivism prediction [14] and loan application evaluations [1]. Moreover, multiclass

decision-making problems can be rewritten as binary decision problems, as shown in

Corollary 3.1. Thirdly, it is often the case that model developers do not have access

to sensitive attributes. Simply because of regulations [7], or because they were not

deemed necessary when gathering the data. Lastly, it is quite common that a devel-

oper worries about fairness after the construction of their model. This may be due to

newly imposed regulations [8], due to a compliance check by an auditing body or due

to newly created awareness of machine bias [14]. Furthermore, when sensitive data

is absent, the development of a fair rule-based system becomes difficult. There are

currently no fair, interpretable, sensitive attribute agnostic classifiers, as is apparent

from Chapter 2.

What is uncommon, however, is a third party that has all the sensitive attributes

of the individuals in the dataset, and is also willing to share them. As data is the

new oil [67], sharing data becomes more and more difficult. Since, however, fair and

interpretable sensitive attribute agnostic classifiers are currently lacking (Chapter 2),

this assumption becomes necessary. This work can thus be seen as an exploration of

this cooperation between developer and data holder, to determine the privacy risks and

utility of such an exchange.
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3.2. Privacy-Aware Fairness Estimation of Rules: PAFER

We propose Privacy-Aware Fairness Estimation of Rules (PAFER), a method

based on DP [45], that enables the calculation of SP for DTs while guaranteeing privacy.

PAFER sends specifically designed queries to a third party to estimate SP. PAFER

sends one query for each decision-making rule and one query for the overall composition

of the sensitive attributes. The size of each (un)privileged group, along with the total

number of accepted individuals from each (un)privileged group, allows us to calculate

the SP. Let a rule be of the form x1 < 5 ∧ x2 = True. The query then asks for the

distribution of the sensitive attributes for all individuals that have properties x1 < 5

and x2 = True. In PAFER, each query is a histogram query as a person cannot

be both privileged and unprivileged. The query to determine the general sensitive

attribute composition of all individuals can be seen as a query for an ‘empty’ rule; a

rule that applies to everyone1. It can also be seen as querying the root node of a DT.

3.2.1. PAFER and the privacy budget

A property of DTs is that only one rule applies to a person. Therefore, PAFER

queries each decision-making rule without having to share the privacy budget between

these queries. Although we calculate a global statistic in SP, we query each decision-

making rule. This is possible due to some noise cancelling out on aggregate, and, for

DTs, because we can share the privacy budget over all decision-making rules. This

intuition was also noted in [68].

Because PAFER queries every individual at least once, half of the privacy budget

is spent on the query to determine the general sensitive attribute composition of all

individuals, and the other half is spent on the remaining queries. Still, reducing the

number of queries reduces the total amount of noise. PAFER therefore prunes non-

distinguishing rules. A redundant rule can be formed when the splitting criterion of

the DT improves but the split does not create a node with a different majority class.

1In logic this rule would be a tautology, a statement that is always true, e.g. x1 < 5 ∨ x1 ≥ 5.
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3.2.2. PAFER and Statistical Parity

The definition of SP that PAFER calculates differs slightly from the most com-

mon, original definition [15], to support intersectional fairness analyses and to ensure

the SP value is in [0, 1]. When A is a K-ary sensitive attribute, the metric that PAFER

calculates is:

SP = min

(
p(Ŷ = 1|A = a)

p(Ŷ = 1|A = b)

)
, a, b ∈ {0, 1, 2, . . . , k − 1}, a ̸= b. (3.1)

The SP value is always in [0, 1], as we arrange the fraction such that the smallest

‘acceptance rate’ is in the numerator and the largest is in the denominator.

3.2.3. DP mechanisms for PAFER

Three commonly used DP mechanisms are apt for PAFER, namely the Laplacian

mechanism, the Exponential mechanism and the Gaussian mechanism. The Laplacian

mechanism is used to perform a histogram query and thus has a sensitivity of 1 [45].

The Exponential mechanism uses a utility function such that uD(r) = q(D)−|q(D)−r|

where r ranges from zero to the number of individuals that the rule applies to, and q(D)

is the true query answer. The sensitivity is 1 as it is based on its database argument,

and this count can differ by only 1 [45]. The Gaussian mechanism is also used to

perform a histogram query and has a sensitivity of 2, as it uses the ∆2-sensitivity.

3.2.4. Invalid Answer Policies

The Laplacian mechanism and Gaussian mechanism add noise in such a way that

invalid query answers may occur. A query answer is invalid if it is negative, or if it

exceeds the total number of instances in the dataset1. A policy for handling these

invalid query answers must be chosen. In practice, these are mappings from invalid

1Note that is common for a histogram query answer to exceed the number of individuals in a decision

node by a certain amount. We, therefore, do not deem it as an invalid query answer.
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values to valid values. We provide several options in this subsection.

Table 3.1. The proposed policy options for each type of invalid query answer. A

policy consists of a mapping chosen from the first column and a mapping chosen from

the second.

Negative Too Large

0 uniform

1 total - valid

uniform

total - valid

Table 3.1 shows the available options for handling invalid query answers. The

first column shows policies for negative query answers and the second column shows

policies for query answers that exceed the number of individuals in the dataset. The

‘uniform’ policy replaces an invalid answer with the answer if the rule would apply

to the same number of individuals from each un(privileged) group. The ‘total - valid’

policy requires that all other values in the histogram were correct and thus together

allow for a calculation of the missing value by subtracting it from the total.

3.2.5. PAFER Pseudocode

Algorithm 1 shows the pseudocode for PAFER.

3.2.6. Theoretical Properties of PAFER

We theoretically determine a lower and upper bound of the number of queries

that PAFER requires for a k-ary DT in Theorem 3.1. The lower bound is equal to

two, and the upper bound is 2h−1 + 1, dependent on the height of the DT, h. Note

that PAFER removes redundant rules to reduce the number of rules. The larger the

number of rules, the more noise is added on aggregate.

Corollary 3.1. Any DT that classifies for a binary decision problem that uses non-

binary splits, can be converted to a DT that solely uses binary splits.
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Algorithm 1 PAFER(A, D, ε,DT, policy,K), outputs estimated SP

{A is a DP mechanism that introduces noise}

{D is a database with N instances}

{ε is the privacy budget}

{DT is a binary Decision Tree composed of rules}

{policy is a mapping that transforms invalid query answers to valid query answers}

{K is the number of sensitive groups for the sensitive attribute}

accept rates← zeros(1,K) {accept rates is a row vector of dimension K, initialized

at 0}

total← A(True,D, 1
2
ε)

for q ∈ DT do

if q is favorable then

accept rates +=
policy(A(q,D, 1

2
ε))

total

end if

end for

ŜP = min(accept rates)
max(accept rates)

return ŜP

Proof. Assume a DT has nodes with an arbitrary number of splits k, with clauses

A,B,C, . . . ,K. Converting this to a binary decision process can be achieved by chain-

ing each clause, i.e. for each clause a split is created of the form A or ¬A. The latter of

the two branches is then chained to B or ¬B, and so forth. This process is schemati-

cally shown in Figure 3.1. Since we have proven this property for an arbitrary number

of splits in a node, the property holds for any k-ary DT.

Theorem 3.1. The number of queries required to estimate SP for PAFER is lower

bounded by 2 and upper bounded by 2h−1 + 1.

Proof. Assume that we have constructed a DT for a binary classification task. By

Corollary 3.1, the DT can be converted to a binary tree, since it classifies for a binary

classification problem. Further assume that this (converted) binary DT, has height h.

To estimate SP, for each sensitive attribute the total size is required, |DA=a|, as well as
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Figure 3.1. A schematic display of the process by which a binary tree that has

non-binary splits can be converted into a binary tree for a binary decision process.

The dotted lines . .
.
, denote that the pattern of the DT can be repeated an arbitrary

number of times.
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Figure 3.2. The smallest number of favorable decision rules in a decision tree for a

binary classification problem. The leaf node with an inner circle denotes a leaf node

in which the majority of the individuals are classified favorably in the training set.

The dotted line, . .
.
, denotes that the pattern can go on indefinitely.

the number of individuals from each (un)privileged group that is classified favorably by

the DT. By definition, the first quantity requires 1 histogram query. The latter quantity

requires a query for each favorable decision rule in the tree. A branching node that

creates one leaf node and one other branching node, adds either an unfavourable or a

favourable classification rule to its DT. The most shallow binary tree is schematically

shown in Figure 3.2. Only 1 histogram query is required for this tree, thus the lower

bound for the number of required queries for PAFER is 1+1 = 2. A perfectly balanced

binary tree is shown in Figure 3.3. In this case, the number of favourable decision rules

in the tree is 1
2
2h = 2−12h = 2h−1. As, by the properties of PAFER, each split that

creates two leaf nodes adds both a favourable and an unfavourable classification rule to

the DT. In a perfectly balanced tree (amongst others), all nodes at h−1 are such nodes.

Half of the nodes at h are thus favourable and half are unfavourable. This amounts

to 2h−1 histogram queries. The upper bound for the number of required queries for

PAFER is thus 2h−1 + 1.
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Figure 3.3. The largest number of favorable decision rules in a decision tree for a

binary classification problem. The leaf nodes with an inner circle denote a leaf node

in which the majority of the individuals are classified favorably in the training set.

The dotted lines, . .
.
, denote that the pattern can go on indefinitely.
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4. Evaluation

This chapter evaluates the proposed method in the previous chapter, PAFER.

Firstly, Section 4.1 describes the experimental setup, detailing the used datasets in

Subsection 4.1.1, and the two experiments in Subsection 4.1.2 through Subsubsec-

tion 4.1.3.1. Secondly, Section 4.2 displays and discusses the results of the experiments.

4.1. Experimental Setup

This section describes the experiments that answer the research questions. The

first subsection describes these datasets and details their properties. The subsections

thereafter describe the experiments in order, corresponding to the research question

they aim to answer.

4.1.1. Datasets

This subsection describes the datasets that are used to answer the research ques-

tions. The datasets form the test bed on which the experiments can be performed.

We chose three datasets, namely Adult [69], COMPAS [14] and German [70]. They

are all well known in the domain of fairness for ML, and can be considered bench-

mark datasets. The datasets are publicly available and pseudonymized; every privacy

concern is thus merely for the sake of argument.

4.1.1.1. Properties. These three datasets were chosen because they possess some im-

portant properties. Importantly, they vary in size and are very popular in fairness for

ML research. Each dataset models a binary classification problem, enabling the calcu-

lation of various fairness metrics. Table 4.1 shows some other important characteristics

of each dataset.
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Table 4.1. Properties of the three chosen publicly available datasets.

Dataset # Rows # Features Sens. attrib. Task

Adult 48842 14
race, sex, age,

country of origin
Income > $50000

COMPAS 7214 53 race, sex, age Recidivism after 2 years

German 1000 24
race, sex, age,

country of origin
Loan default

4.1.1.2. Pre-processing. This subsubsection describes each pre-processing step for ev-

ery chosen dataset. Some pre-processing steps were taken for all datasets. In every

dataset, the sensitive attributes were kept separate. Every sensitive attribute except

age was binarized, distinguishing between privileged and unprivileged groups. The

privileged individuals were White men living in their original country of birth, and

the unprivileged individuals were those who were not male, not White and not living

in their original country of birth. We now detail the pre-processing steps that are

dataset-specific.

Adult. The Adult dataset comes with a predetermined train and test set. The

same pre-processing steps were performed on each one. Rows that contained missing

values were removed. The “fnlwgt” column, which stands for “final weight” was re-

moved as it is a relic from a previously trained model and unrelated features might

cause overfitting. The final number of rows was 30162 for the train set and 15060 for

the test set.

COMPAS. The COMPAS article analyzes two datasets, one for general recidivism

and one for violent recidivism [14]. Only the dataset for general recidivism was used.

This is a dataset with a large number of features (53), but by following the feature

selection steps from the article1, this number reduced to eleven, of which three are

sensitive attributes. The other pre-processing step in the article is to remove cases in

1https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb

https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb
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which the arrest date and COMPAS screening date are more than thirty days apart.

The features that contain dates are then converted to just the year, rounded down.

Missing values are imputed with the median value for that feature. Replacing missing

values with the median value ensures that no out-of-the-ordinary values are added to

the dataset. The dataset does not come with a preset train set and test set. The

dataset was manually split according to the same proportions as the Adult dataset

(roughly 1
3
). The final number of rows was 4115 for the train set and 2057 for the test

set, totalling 6172 rows.

German. The German dataset is a nearly perfect dataset for our purposes; it

contains no missing values. The gender attribute is encoded in the marital status

attribute, which required separation. The dataset does not come with a preset train

set and test set. The dataset was, therefore, manually split according to the same

proportions as the Adult dataset (roughly 1
3
). The final number of rows is 667 for the

train set and 333 for the test set, totalling 1000 rows.

4.1.2. Experiment 1: Comparison of DP mechanisms for PAFER

Experiment 1 was constructed such that it answeredRQ1; what DP mechanism is

optimal for what privacy budget? The best performing shallow DT was constructed for

each dataset, using grid search and cross-validation, optimizing for balanced accuracy.

The height of the DT, the number of leaf nodes and the number of selected features

were varied. The parameter space can be described as {2, 3, 4} × {3, 4, 5, 6, 7, 8, 9,

10, 11, 12} × {sqrt, all, log2}, constituting tuples of (height, # leaf nodes, # selected

features). Section A.1, in the Appendix, shows the final trained pruned DTs. The out-

of-sample SP of each DT is also provided in Table 4.2. The experiment was repeated

fifty times with this same DT, such that the random noise, introduced by the DP

mechanisms, could be averaged. Initially, we considered the Laplacian, Exponential

and Gaussian mechanisms for the comparison. However, after exploratory testing, we

deemed the Gaussian mechanism to perform too poorly to be included. Table 4.3 shows

some of these preliminary results. The performance of each mechanism was measured
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using the Average Absolute Statistical Parity Error (AASPE), defined as follows:

AASPE =

#runs∑
i

1

# runs
|SPi − ŜPi|, (4.1)

where # runs is the number of times the experiment was repeated, SPi and ŜPi are

the true and estimated SP of the ith run, respectively. The metric was calculated

out of sample, i.e., on the test set. The differences in performance were compared

using an independent t-test. The privacy budget was varied such that forty equally

spaced values were tested with ε ∈ (0, 1
2
]. Initial results showed that privacy budgets

larger than 1
2
offered very marginal improvements. Table 4.3 shows a summary of the

preliminary results for Experiment 1. Experiment 1 was performed for both ethnic-

ity, sex and the two combined. The former two sensitive features were encoded as a

binary feature, distinguishing between a privileged (white, male) and an unprivileged

(non-white, non-male) group. The latter sensitive feature was encoded as a quater-

nary feature, distinguishing between a privileged (white-male) and an unprivileged

(non-white or non-male) group. Whenever a query answer is invalid, as described in

Subsection 3.2.4, a policy must be chosen for calculation of the SP metric. In Ex-

periment 1, the uniform answer approach was chosen, i.e., the size of the group was

made to be proportional to the number of sensitive features and the total size. The

proportion of invalid query answers, i.e., # invalid answers
# total answers

, was also tracked during this

experiment. This invalid value ratio provides some indication of how much noise is

added to the query answers.

Table 4.2. The out-of-sample Statistical Parity of each constructed DT in Experiment

1. Note that the Sex-Ethnicity attribute is encoded using four (un)privileged groups,

and the others are encoded using two.

A

Dataset
Adult COMPAS German

Ethnicity 0.65 0.78 0.90

Sex 0.30 0.84 0.90

Sex-Ethnicity 0.23 0.72 0.78
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Table 4.3. Preliminary results for Experiment 1 with larger privacy budgets. Results

were averaged over 25 runs, except for ε = 1
2
. The Gaussian mechanism was tested

with δ = 1
1000

. The performance was measured using the AASPE.

ε Laplacian Exponential Gaussian Gauss. Invalid Ratio

0.50 0.02320 0.34350 - -

0.55 0.02065 0.30289 0.32484 0.330

0.60 0.01872 0.25780 0.28916 0.305

0.65 0.01329 0.27566 0.26961 0.230

0.70 0.01026 0.30831 0.27676 0.250

0.75 0.01353 0.32444 0.26572 0.260

4.1.3. Experiment 2: Comparison of different DTs for PAFER

Experiment 2 was constructed in such a way that it answered RQ1; what is

the effect of DT hyperparameters on the performance of PAFER? The minleaf value

was varied such that eighty equally spaced values were tested with minleaf ∈ (0, 1
5
].

In the initial results, shown in Table 4.4, when the minleaf value exceeded 1
5
, the

same split was repeatedly chosen for each dataset. Even though minleaf < 1
2
, a

risk still occurs that one numerical feature is split over and over. Therefore, each

numerical feature is categorized by binning it. The bins were established by generating

five different DTs, that used all the numerical features. An average splitting value

was determined for each height across DTs, that was kept at a maximum of seven1.

Averages were rounded to the nearest natural number. The privacy budget was defined

such that ε ∈ { 1
20
, 2
20
, 3
20
, 4
20
, 5
20
}. The performance was again measured in AASPE, as

shown in Equation 4.1. The metric was measured out of sample, i.e., on the test set.

The performance for each minleaf value was averaged over fifty potentially different

DTs. The same invalid query answer policy was chosen as in Experiment 1, replacing

each invalid query answer with the uniformly distributed answer. The performance

of PAFER was compared with a baseline that uniformly randomly guesses an SP

1Based on the “Magic Number 7”, as humans can generally hold seven ± two pieces of information in

memory, and thus, also, seven rule clauses in memory [71].
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Table 4.4. Preliminary results for Experiment 2. The performance was measured

using AASPE. The results were averaged over 25 runs.

minleaf

ε
1
20

1
10

3
20

1
5

1
4

1
5

.0828 .0532 .0407 .0323 .0194

1
4

.0711 .0325 .0235 .0187 .0119

3
10

.0486 .0282 .0188 .0149 .0128

value in the interval [0, 1). A one-sided t-test determined whether PAFER significantly

outperformed the random baseline.

4.1.3.1. Experiment 2.1: Interaction between ε and minleaf hyperparameters. The SP

metric is also popular due to its legal use in the United States, where it is used to deter-

mine compliance with the 80%-rule [16]. Thus, the UAR (Unweighted Average Recall)

of PAFER was calculated for each minleaf value, to obtain an indication of whether

PAFER was able to effectively measure this compliance. UAR is the average of class-

wise recall scores. This was done by rounding each estimation down to its decimal

value, thus creating ‘classes’ that the UAR could be calculated for. To gain more in-

tuition about the interaction between ε and minleaf value, the following metric was

calculated for each combination:

UAR− AASPE =
∑
c∈C

1

|C|
× #true c

#c
−

#runs∑
i

1

# runs
|SPi − ŜPi| (4.2)

Ideally, AASPE is minimized and UAR is maximized, thus maximizing the metric

shown in Equation 4.2. Besides the metric, the experimental setup was identical to

Experiment 2. Therefore, the same DTs were used for this experiment, only the metrics

differed.
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Figure 4.1. A comparison of the Laplacian and Exponential DP mechanism for

different privacy budgets ε. When indicated, from the critical ε value to ε = 1
2
, the

Laplacian mechanism performs significantly better (p < .05) than the Exponential

mechanism. The uncertainty is pictured in a lighter color around the average.

4.2. Results

This section describes the results of the experiments and also provides an analysis

of the results. Results are ordered to match the order of the experiments.

4.2.1. Results for Experiment 1

Figure 4.1 answers RQ1; the Laplacian mechanism outperforms the Exponential

mechanism on seven out of the nine analyses. The Laplacian mechanism is significantly

better even at very low privacy budgets (ε < 0.1). The error of the mechanism generally

decreases steadily, as the privacy budget increases. This is an expected behavior. As

the privacy budget increases, the amount of noise decreases. The Laplacian mechanism

performs the best on the Adult and COMPAS datasets, because their invalid value ratio

is small, especially for ε > 1
10
.
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The Exponential mechanism performs relatively stable across analyses, however,

its performance is generally bad, with errors even reaching the maximum possible error

for the German dataset. This is probably due to the design of the utility function,

uD(r), which does not differentiate enough between good and bad answers. Moreover,

the Exponential mechanism consistently adds even more noise because it guarantees

valid query answers. The Laplacian mechanism does not give these guarantees, and

thus relies less on the chosen policy, as described in Subsection 3.2.4. The mechanism

performs somewhat decently on the intersectional analysis for the Adult dataset. This

is due to it being an easy prediction task, the Laplacian mechanism starts at a similarly

low error.

Figure 4.1 shows that the invalid value ratio consistently decreases with the pri-

vacy budget. This behavior is expected, given that the amount of noise decreases as

the privacy budget increases. The invalid value ratio is the largest in the intersec-

tional analyses because then the sensitive attributes are quaternary. The difference

between the invalid value ratio progression for the Adult and COMPAS datasets is

small, whereas the difference between COMPAS and German is large. Thus, smaller

datasets only become problematic for PAFER between 6000 and 1000 rows. Experi-

ment 2 sheds further light on this question.

For the two cases where the Exponential mechanism is competitive with the

Laplacian mechanism, the invalid value ratio is also large. When the dataset is small,

the sensitivity is relatively larger, and the chances of invalid query answers are larger.

Note that the error is measured out-of-sample, so, for the German dataset, the his-

togram queries are performed on a dataset of size 333. This effect is also visible in the

next experiment.

4.2.2. Results for Experiment 2

Table 4.5 through Table 4.10 show the results for Experiment 2. The tables

clearly show that PAFER generally significantly outperforms the random baseline. For
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Table 4.5. Results for Experiment 2 on the Adult dataset and the binary ethnicity

sensitive attribute. A * indicates that PAFER performed significantly better than the

random baseline.

minleaf

ε
1
20

1
10

3
20

1
5

1
4

1
1000

p < .001* p < .001* p < .001* p = .001* p = .039*

1
100

p < .001* p < .001* p < .001* p < .001* p < .001*

1
5

p < .001* p < .001* p < .001* p < .001* p < .001*

Table 4.6. Results for Experiment 2 on the Adult dataset and the binary sex sensitive

attribute. A * indicates that PAFER performed significantly better than the random

baseline. A ♢ indicates that the random baseline performed significantly better than

PAFER.

minleaf

ε
1
20

1
10

3
20

1
5

1
4

1
1000

p = .999♢ p = .87 p = .57 p = .02* p = .02*

1
100

p < .001* p < .001* p < .001* p < .001* p < .001*

1
5

p < .001* p < .001* p = .02* p = .02* p < .001*

Table 4.7. Results for Experiment 2 on the Adult dataset and the quaternary

sex-ethnicity sensitive attribute. A * indicates that PAFER performed significantly

better than the random baseline.

minleaf

ε
1
20

1
10

3
20

1
5

1
4

1
1000

p < .001* p < .001* p < .001* p < .001* p < .001*

1
100

p < .001* p < .001* p < .001* p < .001* p < .001*

1
5

p < .001* p < .001* p < .001* p < .001* p < .001*

small privacy budgets (ε ≤ 1
10
) and small minleaf values (minleaf = 1

1000
), PAFER

does not strictly perform better, for instance in Table 4.9. PAFER is even significantly

outperformed by the random baseline in some cases, such as in Table 4.6 and Table 4.10,

for similarly small values of ε and minleaf. PAFER thus performs poorly with a small

privacy budget, but also on less interpretable DTs. When the minleaf value of a DT
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Table 4.8. Results for Experiment 2 on the COMPAS dataset and the binary

ethnicity sensitive attribute. A * indicates that PAFER performed significantly

better than the random baseline.

minleaf

ε
1
20

1
10

3
20

1
5

1
4

1
1000

p < .001* p < .001* p < .001* p < .001* p < .001*

1
100

p < .001* p < .001* p < .001* p < .001* p < .001*

1
5

p < .001* p < .001* p < .001* p < .001* p < .001*

Table 4.9. Results for Experiment 2 on the COMPAS dataset and the binary sex

sensitive attribute. A * indicates that PAFER performed significantly better than the

random baseline.

minleaf

ε
1
20

1
10

3
20

1
5

1
4

1
1000

p = .94 p = .46 p = .27 p = .015* p < .001*

1
100

p < .001* p < .001* p < .001* p < .001* p < .001*

1
5

p < .001* p < .001* p < .001* p < .001* p < .001*

Table 4.10. Results for Experiment 2 on the COMPAS dataset and the quaternary

sex-ethnicity sensitive attribute. A * indicates that PAFER performed significantly

better than the random baseline. A ♢ indicates that the random baseline performed

significantly better than PAFER.

minleaf

ε
1
20

1
10

3
20

1
5

1
4

1
1000

p = 1♢ p = 1♢ p = 1♢ p = 1♢ p = .98♢

1
100

p = .38 p < .001* p < .001* p < .001* p < .001*

1
5

p = 0.99♢ p < .001* p < .001* p < .001* p < .001*

is small, it generally has more branches and branches are longer, as it takes more splits

to reach the desired minleaf size. Both of these factors worsen the interpretability of

a DT [72].

Another factor negatively impacting the performance of PAFER is the size of the
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dataset and the number of (un)privileged groups. The baseline significantly outper-

forms PAFER in Table 4.10 for all ε and minleaf = 1
1000

. This is due to the smaller

leaf nodes, but also due to the smaller dataset (N = 6000), and the quaternary sex-

ethnicity sensitive attribute. This reduces the queried quantities even further, resulting

in worse performance for PAFER. Then, the (un)privileged group sizes are closer to

zero per rule, which increases the probability of invalid query answers. PAFER’s worse

performance on smaller datasets, and less interpretable DTs is a clear limitation of the

method.

The results for PAFER compared to a perfect estimator are very lop-sided; the

perfect estimator significantly outperforms PAFER across all datasets, sensitive at-

tribute analyses, minleaf values and privacy budgets with p ≪ .001.

4.2.2.1. Results for Experiment 2.1. Figure 4.2 through Figure 4.7 show the results

for Experiment 2.1. Experiment 2.1 shows that PAFER is unreliable in its ability

to predict adherence to the 80%-rule. For some datasets and sensitive attributes,

PAFER performs quite well, e.g. reaching around 90% UAR, as shown in Figure 4.6

and Figure 4.2. For other datasets and sensitive attributes, PAFER performs rather

poorly, reaching no higher than 50% UAR on the Adult dataset with the binary sex

attribute, as shown in Figure 4.3.

Nonetheless, a pattern emerges from Figure 4.2 through Figure 4.7 regarding the

UAR - AASPE. Of course, PAFER performs better for privacy budgets larger than

3
20
. However, PAFER also performs better for certain minleaf values. The ‘hotspot’

differs between the Adult and COMPAS dataset, minleaf = 1
10

and minleaf = 3
20
,

respectively, but the range seems to be from 7
100

to 1
5
. The ideal scenario for PAFER

thus seems to be when a privacy budget of at least ε = 3
20

is available, and the examined

DT has leaf nodes with a fractional minleaf value of at least 7
100

.

This final experiment also replicates some of the results of Experiment 1 and

Experiment 2. The middle plot in Figure 4.2 through Figure 4.7 shows that PAFER
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with the Laplacian mechanism performs better for larger privacy budgets. These plots

also show the previously mentioned trade-off between interpretability and performance

of PAFER; the method performs worse for smaller minleaf values. Lastly, the per-

formance is generally lower for the COMPAS dataset, which holds fewer instances.

Experiment 2.1 thus aptly acted as a replicating sanity check.
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Figure 4.2. The hyperparameter space for the Adult dataset and the binary ethnicity

attribute.



53

Figure 4.3. The hyperparameter space for the Adult dataset and the binary sex

attribute.
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Figure 4.4. The hyperparameter space for the Adult dataset and the quaternary

sex-ethnicity attribute.
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Figure 4.5. The hyperparameter space for the COMPAS dataset and the binary

ethnicity attribute.
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Figure 4.6. The hyperparameter space for the COMPAS dataset and the binary sex

attribute.
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Figure 4.7. The hyperparameter space for the COMPAS dataset and the quaternary

sex-ethnicity attribute.
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5. Conclusion & Future Work

This Chapter concludes this work. It provides answers to the research questions

in Section 5.1, summarizes the entire work in Section 5.2 and provides suggestions for

future work in Section 5.3.

5.1. Answers to the Research Questions

This section will answer the research questions (RQs) and research subquestions

(RSQs), as posed in Section 1.2.

RQ1 What is the optimal privacy mechanism that preserves privacy and mini-

mizes average Statistical Parity error?

The optimal DP mechanism in Experiment 1 was the Laplacian mechanism, as shown

in Figure 4.1. It performed optimally, in the sense that it achieved a low AASPE at

small privacy budgets. This varied from 0.05 error at ε = 0.1, to an error of 0.1 at

ε = 0.25. The preliminary results showed that the Gaussian mechanism was also far

from optimal, even for large privacy budgets Table 4.3.

RSQ1.1 Is there a statistically significant mean difference in Absolute Statistical

Parity error between the Laplacian mechanism and the Exponential mechanism?

Yes, the Laplacian mechanism significantly outperformed the Exponential mechanism

at very low privacy budgets, on seven out of the nine performed analyses. The Gaussian

mechanism proved also to be of no match for the Laplacian mechanism, even at large

privacy budgets Table 4.3.

RQ2 Is there a statistically significant difference between the Statistical Parity

errors of PAFER compared to other benchmarks for varying Decision Tree hyperpa-

rameter values?

Yes, for nearly all trials in Experiment 2, there was a significant difference in error
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between PAFER and the random baseline. In fact, for all trials in Experiment 2, there

was a significant difference in error between PAFER and the perfect estimator, in favor

of the perfect estimator.

RSQ2.1 At what fractional minleaf value is PAFER significantly better at es-

timating Statistical Parity than a random baseline?

The answer depends on the sensitive attribute that is analyzed and the dataset. In

Experiment 2, for the Adult dataset, a fractional minleaf value of 1
100

ensured that

PAFER significantly outperformed the random baseline, as shown in Table 4.7. For

the COMPAS dataset and intersectional analysis, a privacy budget of ε = 1
20

was not

enough to statistically prove that PAFER outperformed the random baseline, as shown

in Table 4.10.

RSQ2.2 At what fractional minleaf value is the perfect estimator significantly

better at estimating Statistical Parity than PAFER?

A minleaf value of 1
5
is not large enough to make PAFER competitive with the perfect

estimator. The perfect estimator outperformed PAFER across all datasets, sensitive

attribute analyses, minleaf values, and privacy budgets with p ≪ .001.

5.2. Summary

This work has shed light on the trade-offs between fairness, privacy and inter-

pretability, by introducing a novel, privacy-aware fairness estimation method called

PAFER. There is a natural tension between the estimation of fairness and privacy,

given that sensitive attributes are required to calculate fairness. This applies also to

interpretable, rule-based methods. The proposed method, PAFER, alleviates some of

this tension.

PAFER should be applied on a DT in a binary classification setting, at the end of a

development cycle.

PAFER guarantees privacy using mechanisms from DP, allowing it to measure SP for

DTs.
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We showed that the minimum number of required queries for PAFER is 2. We also

showed that the maximum number of queries depends on the height of the DT via

2h−1 + 1, where h is the height.

In our experimental comparison of several DP mechanisms, PAFER showed to be ca-

pable of accurately estimating SP for low privacy budgets (ε = 1
10
) when used with the

Laplacian mechanism. This confirms that the calculation of SP for DTs while respect-

ing privacy is possible using PAFER. PAFER further showed to perform worse when

the audited DT is less interpretable.

Experiment 2 showed that the smaller the leaf nodes of the DT are, the worse the

performance is. PAFER thus trades off privacy and accuracy of estimation with inter-

pretability; the smaller the minleaf value is, the less interpretable a DT is.

Future work can look into other types of DP mechanisms to use with PAFER, and

other types of fairness metrics, e.g. EOdd and PrEq.

5.3. Limitations & Future Work

This section describes some avenues that could be further explored regarding

PAFER, with an eye on the limitations that became apparent from the experimental

results. We suggest an extension of PAFER that can adopt three other new fairness

metrics in Subsection 5.3.1 and suggest examining the different parameters of the

PAFER Algorithm in Subsection 5.3.2.

5.3.1. Other fairness metrics

The most obvious research avenue for PAFER is the extension to support other

fairness metrics. SP is a popular, but simple metric that is not correct in every sce-

nario. We thus propose three other group fairness metrics that are suitable for PAFER.

However, with the abundance of fairness metrics, multiple other suitable metrics are

bound to exist.

The EOdd metric compares the acceptance rates across (un)privileged groups and
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dataset labels. In our scenario (Section 3.1), we assume to know the dataset labels,

as this is required for the construction of a DT. Therefore, by querying the sensitive

attribute distributions for favorably classifying rules, only for those individuals for

which Y = y, PAFER can calculate EOdd. Since these groups are mutually exclusive,

ε does not have to be shared. PrEq would also fit this approach. Since EOpp is a variant

of EOdd, this can naturally also be measured using this approach. A downside is that

the number of queries is multiplied by a factor of two, which hinders performance.

However, this is not much of an overhead because it is only a constant factor.

5.3.2. Other input parameters

Examining the input parameters of the PAFER estimation algorithm in Algo-

rithm 1, three clear candidates for further research become visible. These are the DP

mechanism, A, the model that is audited, DT , and the policy for handling invalid

query answers. Subsubsection 5.3.2.1 through Subsubsection 5.3.2.3 discuss each input

parameter, in order.

5.3.2.1. The DP mechanism. The performance of other DP mechanisms can be ex-

perimentally compared to the currently examined mechanisms, using the experimental

setup of Experiment 1. Experiment 2 shows that there is still room for improvement,

as a random guessing baseline significantly outperforms the Laplacian mechanism on

multiple occasions.

The work of Hamman et al. in [52] shows promising results for a simple SP

query. They use a DP mechanism based on smooth sensitivity [73]; a sensitivity that

adds data-specific noise to guarantee DP. If this DP mechanism could be adopted for

histogram queries, PAFER might improve in accuracy. Currently, PAFER improves

poorly on less interpretable DTs. An improvement in accuracy might also enable

PAFER to audit less interpretable DTs.

Other mechanisms may be available if the query merely asks whether the DT
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adheres to the 80%-rule, i.e. if the SP of the DT is larger than 0.8. In this case, the

Sparse Vector Technique is available [45]. This technique would allow for the auditing

of multiple models without sharing the privacy budget. This would also make the

method suitable for different types of ML models.

5.3.2.2. The audited model. PAFER, as the name suggests, is currently only suited

for rule-based systems, and in particular DTs. Further research could look into the

applicability of PAFER for other rule-based systems, such as fuzzy-logic rule systems

[74], rule lists [75] and association rule data mining [76]. The main point of attention is

the distribution of the privacy budget. For DTs, only one rule applies to each person,

so PAFER can query all rules. For other rule-based methods, this might not be the

case.

Aytekin made the connection between Neural Networks and DTs explicit, show-

ing that for any activation function, a Neural Network can be written as a DT [77].

Applying PAFER to extracted DTs from Neural Networks could also be a future re-

search direction. However, the Neural Network must have a low number of parameters,

or else the associated DT would be very tall. DTs with a tall height work worse with

PAFER, so the applicability is limited.

5.3.2.3. The invalid value policy. Every experiment in this work used the same invalid

value policy, namely the uniform approach. Further research can test other policies, to

potentially improve PAFER’s performance on smaller datasets and less interpretable

DTs. Especially the 0 and 1 negative policies are intuitive, given that a negative

query answer has a relatively high probability of being close to 0 or 1. The Gaussian

mechanism currently relies a lot on the chosen invalid value policy, so investigation

of better policies might make the Gaussian mechanism more competitive with the

Laplacian. In total, Table 3.1 gives rise to 2 × 4 = 8 policies, providing enough

experimental avenues.
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A. Additional experimental results

A.1. Pruned decision trees of Experiment 1

This section includes the DTs that were trained for Experiment 1. They are

pruned, in the sense that non-distinguishing rules were removed.

Figure A.1. The pruned DT that was used in Experiment 1 for the Adult dataset.
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Figure A.2. The pruned DT that was used in Experiment 1 for the COMPAS dataset.
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Figure A.3. The pruned DT that was used in Experiment 1 for the German dataset.
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Figure A.4. The behavior of PAFER for different DTs. The uncertainty is pictured in

a lighter color around the average.

A.2. Additional Experiment for RSQ1

Figure A.4 shows a clear answer to the second research question; the effect of the

minleaf DT hyperparameter is clearly visible. The fewer instances the leaf nodes of the

DT hold, the worse the performance of PAFER. Figure 4.1 alluded to this effect, show-

ing a worse performance for the small German dataset. Figure A.4 shows that there

is a trade-off between the interpretability of the DT and the performance of PAFER.

When the minleaf value is low, the branches of the DT are generally longer and more

abundant. Both more branches and longer branches in a DT negatively impact the

interpretability of the DT [72]. Figure A.4 clearly shows improving performances for

higher minleaf values.
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