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Abstract

Influence maximization is pivotal in network analysis, identifying crit-
ical individuals for optimal information spread. This thesis introduces a
novel dynamic non-progressive diffusion model, extending traditional ap-
proaches to address real-world scenarios that evolve over time. To tackle
the challenges of dynamic influence maximization, this thesis proposes an
innovative framework that integrates dynamic graph embedding with re-
inforcement learning. Experimental evaluations reveal the effectiveness of
this framework, notably excelling on datasets characterized by recurring
edges. While showcasing the potential of this integration, this thesis also
acknowledges areas for enhancement, especially concerning sparse datasets.
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1 Introduction

Influence maximization is a fundamental problem in social network analysis that
focuses on identifying a subset of individuals within a network whose activation
would result in the maximum spread of influence across the entire network [1, 2].
The central idea behind influence maximization is to strategically select a limited
number of nodes, often referred to as seed nodes, in order to maximize the adop-
tion of a certain behavior, information, or innovation within a social network. This
problem finds applications in various fields, including viral marketing, recommen-
dation systems, epidemic modeling, and opinion propagation [3, 4]. The influence
maximization problem has attracted significant attention due to its practical im-
plications in harnessing the power of network effects for targeted dissemination.

Influence maximization is intricately tied to diffusion models, forming the foun-
dation of its approach [5]. Diffusion models provide a framework to simulate how
information, behaviors, or innovations spread through a network. Influence max-
imization leverages these diffusion models to identify the most strategic set of
initial nodes that would trigger the largest propagation cascade, thus capitalizing
on the dynamics of influence propagation to optimize seed node selection.

Diffusion models, discussed in [6], can be classified as progressive and non-
progressive (NP) models. Progressive models allow nodes to activate and stay
active permanently, whereas NP models enable nodes to switch between active
and inactive states [7, 8]. While much attention has been given to progressive
models in information diffusion studies, these models fall short in capturing sce-
narios like declining user interest revitalized by external events, cyclic fashion
trends, or disease dynamics [8]. Non-progressive models are essential for accurate
representation of such cases.

Moreover, to accurately model influence propagation, diffusion models need to
be defined on dynamic graphs [9, 10]. Real-world networks are inherently dynamic,
rendering static graphs inadequate in capturing evolving interactions. Incorpo-
rating temporal aspects through dynamic graph representations allows diffusion
models to better predict influence dynamics in complex social networks. Although
traditionally favored for simplicity and efficiency, static graphs disregard temporal
dynamics and struggle to depict evolving network interactions.

The dynamic non-progressive model is really important because it brings to-
gether two important things from real life. It combines the flexibility of non-
progressive models, where nodes can become active and inactive multiple times,
with the idea of looking at networks that change over time. This helps us describe
situations where people’s interest goes up and down, or where things happen in
cycles. Regular models can’t handle these well. By mixing these two ideas, the
dynamic non-progressive model can understand and predict how things spread in
networks that are always changing. It’s like seeing the bigger picture of how things
move in networks that behave in complex ways.

In summary, a dynamic non-progressive diffusion model is of great practical im-
portance. However, to the best of my knowledge, there is no existing dynamic non-
progressive diffusion model. Therefore, in this thesis a dynamic non-progressive
diffusion model extended for Independent Cascade (IC) model [11], a well-known
diffusion model, is proposed. And based on this, the dynamic non-progressive
influence maximization problem is defined.
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After examining existing research, it becomes evident that reinforcement learn-
ing offers a promising avenue for addressing influence maximization (IM) problems
[12, 13, 14]. However, the current array of reinforcement learning-based methods
faces challenges when confronted with dynamic IM scenarios. In light of this,
this thesis introduces an innovative approach that integrates the state of the art
dynamic graph embedding, TGNs, with a well-known reinforcement learning al-
gorithm, Dueling Double DQN.

The proposed framework is rigorously evaluated through comprehensive ex-
periments to assess its viability. Moreover, a comparative analysis is conducted
between the novel framework and other contemporary methodologies on real-world
datasets. The experimental findings demonstrate the framework’s strong perfor-
mance in datasets characterized by frequent recurring edges, while revealing room
for improvement in handling sparse datasets.

In conclusion, the integration of dynamic graph embedding and reinforcement
learning presents a promising avenue for enhancing the efficacy of influence max-
imization in dynamic networks. The experimental validation and comparative
analysis provide insights into the framework’s strengths and potential areas for
enhancement, ultimately contributing to the advancement of dynamic influence
maximization methodologies.

In the subsequent sections, this article is organized as follows. Section 2 intro-
duce the basic concepts used in this thesis. Section 3 proposed the dynamic non-
progressive diffusion model and defined the research focus of this thesis, dynamic
non-progressive influence maximization problems. Some existing well-known diffu-
sion models are also introduced. Section 4 provides an review of the existing litera-
ture on influence maximization and its associated challenges, shedding light on the
gaps that motivate the need for our proposed framework. Section 5 presents the
design and formulation of the proposed framework, synthesizing dynamic graph
embedding and reinforcement learning for enhanced influence maximization in dy-
namic networks. Section 6 outlines the comprehensive experiments conducted to
validate the framework’s effectiveness and present a comparative analysis against
state-of-the-art methods using real-world datasets, highlighting the strengths and
limitations of the proposed framework. Section 7 concludes the article and suggest-
ing potential avenues for future research in the evolving field of dynamic influence
maximization.

2 Preliminaries

In this section, basic concepts used in this thesis will be introduced in case the
reader is unfamiliar with them.

2.1 Social Network Models

In the paper [15], it is proposed that the representation of social networks can
be characterized predominantly by three models: the static graph model, the
snapshot model, and the continuous model. This is followed by this thesis. Science
this is written by myself, I used what is in [15] in this subsection.
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2.1.1 Static Graph Model

When using a static graph, the social network is represented by a directed graph
G = (V,E), where V is the node set and E is the edge set. Each node in V repre-
sents an individual which can have attributes that represent the individual, such
as age, organizational attributes, etc. Each edge in E represents an interaction
between individuals, such as following, sending a message, etc. which can also
be attributed to indicate the properties of the interaction. The direction of an
edge represents the initiator of an interaction. As the example shown in Fig. 1(a),
nodes 1-7 represent users 1-7, respectively. Edge (1, 4) represents an interaction
initiated by user 1 to user 4, and the other edges have similar meanings.

2.1.2 Snapshot Model

In the discrete model, a dynamic social network existing between ts and te is
represented with a series of snapshots, denoted by G = {G1, · · · , Gi, · · · , Gn}.
The time interval [ts, te] is divided into n sub-intervals and the length of each
sub-interval is l = (te − ts)/n. For each snapshot Gi = (Vi, Ei), Vi is the node set
at time ts + i ∗ t and Ei is the edge set including all edges within time interval
[ts + i ∗ t, ts + (i + 1) ∗ t]. As the example shown in Fig. 1(c), the 40 time-units
are divided into 4 intervals. In the first snapshot, all the nodes exist in the social
network at time 10 and the timestamps of all the edges are within the time interval
[0, 10].

2.1.3 Continuous Model

In the continuous model, a dynamic social network existing between time ts and
te is represented by a directed graph with edges and nodes annotated with times-
tamps, denoted by G = (V,E, T ). V and E are the collections of nodes and edges
over time [ts, te]. Edges and nodes have the same meaning as in the static diagram
and can also be attributed. T : V,E → t ∈ [t0, t0 +h] is a function that maps each
node and edge to timestamps between time ts and te. The timestamps of nodes
represent the time when the node exists in the social network and the timestamps
of edges indicate when the interaction took place.

Comparison Between Continuous and Snapshot Model By definition, the
continuous model record in detail when each change in a social network occurs.
The snapshot model simply records the current network at regular intervals which
makes changes that occur during the time interval not recorded. As the example
shown in Figure 1, the edges (1, 2), (1, 4) and (2, 3) are sequential. However,
this sequential order is not reflected in the snapshot model, meaning that there
is a loss of information. This information is crucial, for example node 1 cannot
indirectly pass information to node 3 via node 2, because the interaction of nodes
2 and 3 occurs after the interaction of nodes 1 and 2. However, in the snapshot
model, such transmission is possible.

The three models contain increasing amounts of evolving informa-
tion, with the static model containing no evolving information and
the continuous model containing all evolving information. But con-
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Figure 1: These are three different ways of representing a social network. There
are seven users in this small simulated social network, which exists for a total of
40 time-units. Within these 40 time-units, users may leave, join the network or
interact with other users.

sequently, the complexity of these three models increases in order and
the problems defined on them become more difficult to deal with [16].

2.2 Combinatorial Optimisation

Combinatorial Optimisation (CO) is the study of mathematical methods to find
optimal solutions to discrete events and is a classical and important branch of
Operations Research. Combinatorial optimization is characterized by the fact
that most problems are NP-complete, i.e. there is essentially no algorithm for the
problem that gives the desired solution in a tolerable time (i.e. polynomial time)
when the sum of the number of variables and constraints for all specific problems is
large. The standard form of the combinatorial optimization problem is as follows
[17]: Find x to

minimize f(x)

subject to gi(x) ≥ 0 i = 1, ...,m

hj(x) = 0 j = 1, ..., p

(1)

where f , gi and hj are general functions of x ∈ Rn. Typical combinatorial opti-
mization problems are traveling salesman problem (TSP) [18] and minimal span-
ning tree (MST) [19] etc.

6



3 Problem Definition

In this section, a general introduction to the influence maximization (IM) problem
will be given first. Then specific variation of the IM problem that will be
addressed in this thesis will be illustrated in Subsection 3.3.

3.1 General Influence Maximization Problem

The Influence Maximization (IM) Problem centers on the identification of a set
of initial nodes within a network, commonly known as seed nodes, that, when
activated, propagate influence through the network in a manner that maximizes
the spread of this influence [1, 2]. The calculation of the influence of the node(s) is
based on how influence diffuses among networks, i.e. diffusion model. The formal
definition of the influence of a seed set (influence function) is given below.

Definition 3.1 (Diffusion Model) A diffusion model, denoted as M , consti-
tutes a formal mathematical framework employed to characterize the intricate pro-
cess of the dissemination of information, innovation, influence, or any analogous
form of contagion across an interconnected network comprising nodes. This model
functions as a comprehensive mechanism aimed at describing the dynamics govern-
ing the manner in which entities within the network adopt novel states, contingent
upon the behaviors exhibited by their interconnected counterparts.

Definition 3.2 (Influence Function) Within the context of a social network
denoted as G = (V,E), a designated diffusion model represented by M , and a
selected seed set denoted as S ⊆ V , the influence function, denoted as σG,M(S), is
a well-defined mathematical function. This function operates within the realm of
social networks and leverages the parameters of the information diffusion model
M , the specific social network structure G, and the seed set S. Its primary purpose
is to facilitate the calculation of the quantified extent of influence propagated by the
members of the seed set S. This quantification pertains to the cumulative count of
nodes that undergo activation, including the aggregated temporal duration of their
activation, due to the influence emanating from the nodes within the seed set S.

Based on the definition of influence function, the formal definition of influence
maximization problem can be given below:

Definition 3.3 (Influence Maximization (IM) Problem) [6] Given a social
network G, a diffusion model M and the budget (a positive integer) k. The influ-
ence maximization problem is to find a k-size seed set S ⊆ V that can maximize
the influence function σG,M(S), i.e. arg max

S
σG,M(S), where |S| is the size of S.

It is clear from the above definition that the choice of diffusion model can
significantly impact the selection of optimal seed nodes. Different influence maxi-
mization problems are categorized according to the diffusion model selected. Thus
the diffusion models are described in detail next.
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3.2 Diffusion Models and Classification of IM Problems

3.2.1 Diffusion Models

There are a large number of existing diffusion models. In this thesis, diffusion
models will be categorized in two different dimensions, for a total of four types of
diffusion models (see Figure 2). In this subsection, these two dimensions will first
be described and their practical implications in real life will be presented. Then
typical diffusion models in each type will then be presented.

Progressive

Non-Progressive

Dynamic Static

Static Progressive (Classic)

Diffusion Model / IM Problem

Static Non-Progressive

Diffusion Model / IM Problem

Dynamic Progressive

Diffusion Model / IM Problem

Dynamic Non-Progressive

Diffusion Model / IM Problem

Figure 2: Classification of diffusion models and Influence Maximization (IM) prob-
lems. The category indicated in the bottom left corner is the one that this thesis
focuses on.

The first dimension is progressive or non-progressive. In progressive diffu-
sion model the nodes that are influenced cannot be deactivated (once a node is
influenced it cannot be restored to an uninfluenced state). In contrast, in the non-
progressive model, a node is influenced which, after a period of time, will return
to the uninfluenced state.

The second dimension is the diffusion model is defined in static or dynamic
graphs. In diffusion models defined on static graphs, the influence diffusion pro-
cess is described independently of time. These models focus on understanding how
information, influence, or behavior spreads through a network without consider-
ing temporal aspects. The relationships and connections between nodes in the
graph remain fixed throughout the diffusion process. In contrast, diffusion models
defined on dynamic graphs take into account time-dependent constraints on the
diffusion process. These models recognize that the connections between nodes can
change over time, and the diffusion process itself can be influenced by temporal
dynamics. This allows for a more realistic representation of how information or
influence spreads in real-world scenarios where network connections evolve over
time.

The following is the description of typical diffusion models among the four
categories.
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Static Progressive Diffusion Models Static progressive diffusion models are
the most classic models, and most existing diffusion models are static progressive
diffusion models. Independent Cascade (IC) model, Linear Threshold (LT) model,
and Triggering (TR) model are three most famous static progressive diffusion
models.

The Independent Cascade Model was originally proposed by Jacob Goldenberg
et al. [20] in their study of marketing models. The basic assumption of the model
is that the success of an attempt by node u to activate its neighbor node v is
an event with a probability pu,v. The probability of a node in an inactive state
being activated by a neighboring node that has just entered an active state is
independent of the activity of neighbors that have previously attempted to activate
the node. In addition, the model makes the assumption that any node u in the
network has only one chance to try to activate its neighbor node v. Whether it
succeeds or not, at subsequent moments u itself remains active but it no longer
has influence, and this class of nodes is called uninfluential active nodes. The
diffusion process stops when no more inactive nodes can be activated.

The influence probability pu,v can be assigned by a specific model or learning
from real-world datasets. The most commonly used model is weighted cascade
(WC) [6]. It sets pu,v to be 1/dinv , where dinv is the in-degree of node v. Learning
influence probability from data is first proposed by Saito et al. [21]. They used
pectation Maximization (EM) algorithm to calculate probabilities of all edges to
maximize the total likelihood of all actions. [22] and [23] etc. also proposed
methods for learning probabilities from real-world datasets.

In 1978 Mark Granovetter investigated the potential resistance of users being
influenced by those around them involved in a collective activity and thus also
participating in that activity, proposing a threshold model of collective behaviour
[11]. The linear threshold model assigns a threshold to each node v that represents
the ease with which the node can be influenced. Nodes w adjacent to node v are
influenced by node v with a non-negative weight bv,w and the sum of bv,w of all
neighbors w of v is less than or equal to 1. For a node v in an inactive state,
node v will only be activated if the sum of the influence of its active neighbor
nodes is greater than or equal to its threshold θv, i.e. the decisions of individuals
in the network depend on the decisions of all its neighbor nodes. And the active
neighboring nodes of node v can participate in activating v multiple times. The
diffusion process stops when no more inactive nodes can be activated. The weight
bv,w is assigned similarly to influence probability in the IC model.

Triggering (TR) model is proposed by Kempe et al. [6] which combines IC
and LT models. Each node v randomly selects a triggering set Tv from a given
distribution on the set of incoming neighbor nodes. At timestep t, for each inactive
node v, activate v if there is a point in Tv that is active at timestep t − 1. The
diffusion process stops when no more inactive nodes can be activated.

Static Non-Progressive Model The first non-progressive model is proposed
by Kempe et al., who proposed the IC and LT model, in the same paper [6]. On
the base of IC and LT model, each activate node will turn to inactivate state at
each time step.

Another well-known and widely used static non-progressive model is the SIS
model [24]. SIS stands for ”Susceptible-Infectious-Susceptible, capturing the tran-
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sitions individuals undergo between susceptible and infectious states in a popula-
tion. In the SIS model, individuals within the population are categorized into two
main groups, susceptible and infectious. Susceptible individuals have not been
infected by the disease but can become infected through contact with infectious
individuals. Infectious individuals are infected with the disease and have the po-
tential to transmit it to susceptible individuals. The fundamental assumption of
the model is that infectious individuals recover after a period of time and then be-
come susceptible again, creating a cycle: susceptible individuals become infected,
become infectious, recover, and then become susceptible once more. This cyclic
process continues, simulating the disease’s spread within the population. Key pa-
rameters of the SIS model often include infection rate, representing the probability
of a susceptible individual becoming infected upon contact with an infectious indi-
vidual, and recovery rate, representing the probability of an infectious individual
recovering after a certain period.

The SIS model, originally designed for infectious disease spread, can also be
adapted to describe the diffusion of influence or information in social networks. In
this context, individuals oscillate between being receptive to influence (susceptible)
and actively propagating it (infectious). The transmission dynamics, resembling
infection and recovery, mirror the way ideas or behaviors can spread through
a population, capturing the ebb and flow of influence as individuals adopt and
transmit it within the network.

There are some other static non-progressive diffusion models to model such
static non-progressive influence diffusion progress, such as [8]. However, these
models have not been widely used since they were proposed, so they will not
be described in detail. Compared with classic static progressive models, static
non-progressive model gets less attention and therefore there are fewer models.

Dynamic Progressive Model Gayraud et al. [25] defined two variants of the
IC and LT mode separately. These four diffusion models are defined based on the
discreet dynamic social network model. The two variants of IC model are named
tEIC (transient Evolving Independent Cascade) and p(persistent)EIC. In tEIC, a
node u can only activate its neighbors immediately after the time instance in which
it becomes active. In this case, the diffusion of items and the activation capacity
of nodes in the network is transient. Formally, infectious nodes at time t − 1
are given a single chance to activate their inactive neighbors at time t. The main
difference with the IC model is that because the graph is dynamic, the neighboring
nodes of a node are different at each timestep. In pEIC, infectious nodes at time
t − 1 are given a single chance to activate their inactive neighbors at time t and
beyond. Thus the ability of a node to influence other nodes is persistent. The
extensions to the LT model are also divided into two types (persistent and transient
influence), named pELT and tELT respectively. In contrast to the LT model, a
node accumulates the influence of active nodes it has encountered in the past in
pELT. In tELT, the total incoming weight of live edges is computed only over the
live edges present in a single graph instance. Liu et al. [26] proposed a variety
of LT model. The model is defined based on the discreet model. All activated
nodes of an unactivated node will try to activate it with a certain probability. As
in the LT model, this node will be activated once a pre-set threshold has been
exceeded. There are other works that have proposed dynamic diffusion models
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[25, 27]. These models are all based on discrete graph models and extend from
well-known static models, such as the LT and IC models.

Dynamic Non-Progressive Model To the best of my knowledge, there is no
dynamic non-progressive model so far.

3.2.2 Classification of IM Problems

The definition of Influence Maximization (IM) problems and their corresponding
solutions are intricately linked to the underlying diffusion model’s dynamics and
characteristics [3]. Thus, according to these four categories of diffusion model,
IM problems can also be categorized into four corresponding categories. The IM
problem defined on static progressive diffusion models are the classic IM problem
which is most IM researches focus on. The IM problems defined on static non-
progressive and dynamic progressive diffusion models are static non-progressive
and dynamic progressive IM problems respectively. The IM problem defined on
dynamic non-progressive diffusion models are dynamic non-progressive IM prob-
lem. Since there is no existing dynamic non-progressive diffusion models, there is
no research on dynamic non-progressive IM problems so far.

3.3 Proposed Problem

Most diffusion models are progressive. In most scenarios like product purchases,
the progressive assumption aligns well: buying a product often involves a com-
mitment that isn’t easily undone. But there are still some scenarios that can’t
be described by such progressive models [8]. Take, for instance, the scenario of
a user adopting a mobile app. Over time, the initial attraction to the app might
wane, leading to reduced usage. However, the user’s interest could be revived
when a friend informs her about a new and exciting feature added to the app.
In response, she might decide to give the app another shot and resume using it.
Additionally, the release of new app versions could entice the user to reconsider
and potentially start using it again with a certain probability. Another example
involves the cyclical nature of fashion trends. Choices that are currently in vogue
can fall out of favor only to regain popularity in the future, mirroring the cyclic
trends observed in social choices. Consider yet another scenario where users en-
gage actively in a particular activity for a period before eventually disengaging.
This can be seen in the adoption of features on content sharing platforms, such as
the ”like” or ”favorite” button for posts, various filters for photo editing, or the
act of ”checking in” to a location or event.

Unlike the first dimension that both directions have practical applications.
In the second dimension, the model defined on dynamic graphs is more in line
with reality, since social networks are naturally dynamic. The diffusion models
defined on static graphs are more to simplify the model because, as mentioned in
Subsection 2.1, static graphs contain no evolving information but are the easiest to
deal with. However, given the dynamic nature of social networks, it is the models
defined on dynamic graphs that should be of more concern, even if this makes the
problem more difficult to deal with.
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The non-progressive property is naturally related to the dynamic property.
For example, the time length that a node returns from activate state to inactive
state is a temporal feature. A static progressive mode cannot capture such non-
progressive property well as static models do not contain any evolving information
at all. In contrast, the dynamic model, specially the dynamic model defined on the
continuous model, can well remain the evolving information of a social network.
So, a dynamic non-progressive model can capture such non-progressive property
to the maximum extent possible.

Therefore, dynamic non-progressive diffusion models are of great
practical importance. Correspondingly, the dynamic non-progressive
influence maximization problem defined on such dynamic non-progressive
models is research-worthy. Nevertheless, since there is no existing dy-
namic non-progressive diffusion model nor studies on dynamic non-
progressive IM problem.

Hence, a dynamic non-progressive diffusion model, named DNPIC,
which is extended from the IC model is first presented. The definition of
DNPIC is as follows (A more specific description of DNPIC can refer to 1):

Definition 3.4 (DNPIC) The DNPIC optimizes diffusion models for evolving
information dynamics on a continuous dynamic graph. Initially activated nodes
stay active, while others transition from inactive to active state upon successful
activation, persisting for tinactive time units. Given a directed edge eij(t), if node
i is active, it strives to activate j. Upon success, j’s inactive period resets at time
t+ tinactive. The DNPIC’s influence function computes the average active time per
node (excluding initial activations). It encapsulates activation dynamics’ impact
via this equation:

Influence(v) =
1

ttotal

ttotal∑
t=0

I(v active at t),

where ttotal is the total simulation time, and I is the indicator function.

Having given this dynamic non-progressive diffusion model, the problem that
this thesis wants to solve: the dynamic non-progressive IM problem can
also be given.

Definition 3.5 (Dynamic Non-Progressive IM Problem) Given a dynamic
social network G = (V,E, T ) modeled with the continuous model, a dynamic non-
progressive diffusion model (referred to as DNPIC in this thesis) denoted by M ,
and a budget k (a positive integer), the Dynamic Non-Progressive Influence Max-
imization (DNPIM) problem is defined as follows:

The objective of the DNPIM problem is to identify a k-size seed set S ⊆ V that
maximizes the average duration of time each node, excluding the initially activated
nodes, remains in the active state. This is formulated as the function σDNP (S),
computed by:

σDNP (S) =

∑
v∈V−S τv

|V − S|
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Algorithm 1 DNPIC

Require: Dynamic graph with continuous model: G = (V,E, T ), initially acti-
vated node set: U , transition time from active to inactive state: tinactive
Initialize dictionary D to store activation times for each node
Sort edges E by timestamp
for eij(t) in E do
if i ∈ U or D[i][−1] ≤ t ≤ D[i][−1] + tinactive then
if random(0, 1) ≤ pij(t) then
D[t].append(t)

end if
end if

end for
Initialize total active time as 0
for vi in V do
for D[vi][j] in D[vi] do
if D[vi][j] + tinactive ≥ D[vi][j + 1] then
total active time+ = D[vi][j + 1]−D[vi][j]

else
total active time+ = tinactive

end if
end for

end for
return total active time

Here, τv represents the cumulative sum of time durations during which node
v remains in the active state. The problem aims to select an optimal seed set S
that effectively propagates influence over time within the dynamic social network
G using the dynamic non-progressive diffusion model M .

3.4 Properties of Proposed Problem

In this subsection, two important properties of the proposed problem, NP-hardness
and being combination optimization problem will be discussed.

3.4.1 NP-hardness

The NP-hardness of the influence maximization problem has been proven by [6].
The dynamic non-progressive IM problem as a variant of the IM problem should
also be NP-hard. Since this is not the focus of this thesis, a detailed proof is not
be given here.

The NP-hard nature of the influence maximization problem has several impor-
tant implications and considerations:

• Computational Complexity: An NP-hard problem implies that finding
the exact optimal solution is generally difficult, especially for larger instances
of the problem. For large networks, finding the exact optimal solution may
require exponential time, which is infeasible in practice.
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• Algorithm Design: Due to the problem’s NP-hardness, researchers often
focus on developing approximation algorithms and heuristic methods to find
solutions that are close to optimal within a reasonable time. These algo-
rithms do not guarantee finding the true optimal solution, but they can
provide good solutions within an acceptable timeframe.

3.4.2 Combination Optimization Problem

Previous researches [1, 2] have proved that classic influence maximization problems
is a combination optimization problem for the following reasons:

• Combinatorial Nature: The problem requires selecting a subset of nodes
from the entire set of nodes. This selection process involves choosing which
individuals to target for initial activation in order to maximize the spread
of influence. The number of possible subsets grows combinatorially with the
size of the node set V , leading to a combinatorial search space.

• Optimization Objective: The objective is to maximize the expected spread
of influence in the network by selecting the most influential nodes. This
objective function typically involves a complex and non-linear relationship
between the selected nodes and the resulting spread of influence. Finding
the optimal subset is not straightforward and often involves solving a max-
imization problem subject to certain constraints.

• Constraints: There are constraints on the size of the subset to be selected
(i.e., |S| = k). Additionally, some versions of the problem might introduce
constraints to ensure diversity in the selected subset or limit the budget
available for initial activations.

• Search Strategy: The problem involves searching through the space of all
possible subsets of nodes to find the one that maximizes the influence spread.
This requires employing optimization algorithms that explore different com-
binations of nodes to determine the best subset.

• NP-Hardness: The influence maximization problem is known to be NP-hard,
which means that as the size of the network grows, the time needed to find
the optimal solution increases exponentially. This characteristic aligns with
the behavior of many combination optimization problems.

Since dynamic non-progressive IM problem still fits properties of IM prob-
lem mentioned above, dynamic non-progressive IM problem is still a combination
optimization problem.

4 Related Work

4.1 Graph Embedding

Graph embedding is a technique used in the field of machine learning and network
analysis to transform graph data into continuous vector representations, often in a
lower-dimensional space. The primary goal of graph embedding is to capture the
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structural information of a graph in a way that facilitates downstream machine
learning tasks, such as node classification, link prediction, and clustering. Tradi-
tional machine learning algorithms struggle to process graph data directly due to
its irregular and discrete nature. Graph embedding addresses this challenge by
projecting nodes into a continuous vector space, where algorithms designed for
numerical data can be applied more effectively [28].

Depending on the type of graph being processed, graph embedding can be
categorized into dynamic and static graph embedding.

4.1.1 Static graph embedding

The embedding results generated by static graph embedding are fixed and do
not change over time. For the same node or edge, its embedding vector remains
consistent across different time points since this method only considers the graph’s
structure without accounting for temporal changes. Techniques like DeepWalk
[29], node2vec [30], GraphSAGE [31], and graph convolutional networks (GCN)
[32] are commonly employed for static graph embedding. Since static graphs are
not the main research object of this thesis, these methods are not described in
detail. For a detailed survey, please refer [28].

4.1.2 Dynamic graph embedding

Dynamic graph embedding can indeed be classified into two main categories, each
addressing different aspects of handling evolving graph data.

Snapshot-Based Dynamic Graph Embedding: In this type of approach,
the dynamic graph is treated as a series of snapshots, each representing the graph
at a specific time point. The focus is on generating embeddings for individual
snapshots, and the embeddings can be quickly updated as the graph evolves.
However, the final embeddings do not explicitly encode the temporal evolution
information. This method is suitable for scenarios where real-time updates are
required, and the primary interest lies in the current state of the graph rather
than the temporal patterns of change. EvolveGCN [33] is a representative of this
type of approach. Since this type of approach is not involved in this thesis, it is
not presented further.

Temporal Dynamic Graph Embedding: This type of approaches aims to
capture the temporal evolution of the graph explicitly in the embedding space.
It involves learning embeddings that not only represent the graph’s structure but
also incorporate information about how nodes and edges evolve over time. It
typically requires modeling time as a parameter and optimizing embeddings to
minimize the difference between node representations across different time points.
Temporal dynamic graph embedding is well-suited for analyzing and understand-
ing the changing dynamics and trends in the graph over time. Some methods use
random wandering, which differs from random wandering in static graphs by the
addition of temporal constraints[34, 35]. More methods use RNNs to update node
representations when changes on edge happen.[36, 37].

The best performing and widely used method in this category is the TGNs
proposed by Rossi et al. [38]. They designed a novel combination of memory
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modules and graph-based operators which makes TGNs can significantly outper-
form previous approaches while being more computationally efficient.

4.2 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning concerned with how
agents learn to make sequential decisions through interactions with an environment
[39]. In RL, an agent learns to take actions in an environment to maximize a
cumulative reward signal.

Markov Decision Process A fundamental framework in RL is the Markov
Decision Process (MDP) [40], represented by the tuple (S,A, P,R), where:

• S: Set of states

• A: Set of actions

• P: State transition probabilities

• R: Reward function

At each time step t, the agent is in a state st ∈ S, selects an action at ∈ A,
and receives a reward rt+1 ∈ R. The agent then transitions to a new state st+1

according to the probabilities P (st+1|st, at).

Policy and Value Functions A policy π is a strategy that defines the agent’s
actions in different states. It is denoted as π(a|s), representing the probability of
taking action a in state s. The goal is to find an optimal policy π∗ that maximizes
the expected cumulative reward. Figure 3 illustrates the action-reward feedback
loop of a generic RL model.

The value function V π(s) represents the expected cumulative reward starting
from state s and following policy π: V π(s) = Eπ [

∑∞
t=0 γ

trt+1|s0 = s] , where γ ∈
[0, 1] is the discount factor.

The action-value function Qπ(s, a) represents the expected cumulative reward
starting from state s, taking action a, and then following policy π: Qπ(s, a) =
Eπ [
∑∞

t=0 γ
trt+1|s0 = s, a0 = a] .

Bellman Equations In reinforcement learning, the Bellman equations [42] play
a crucial role in representing the relationships between current and future values of
states and actions. These equations are fundamental for solving Markov Decision
Processes (MDPs) and finding optimal policies.

The value function V π(s) represents the expected cumulative reward an agent
can achieve starting from state s and following policy π. The Bellman equation
for the value function is given by:

V π(s) =
∑
a

π(a|s)

(
R(s, a) + γ

∑
s′

P (s′|s, a)V π(s′)

)
,

where:
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Figure 3: Action-reward feedback loop of a generic RL model[41]

• V π(s) is the value of state s under policy π.

• π(a|s) is the probability of taking action a in state s according to policy π.

• R(s, a) is the immediate reward obtained when transitioning from state s to
a new state after taking action a.

• γ is the discount factor that trades off the importance of immediate and
future rewards.

• P (s′|s, a) is the probability of transitioning to state s′ given that action a is
taken in state s.

• V π(s′) is the value of the next state s′ under policy π.

The action-value function Qπ(s, a) represents the expected cumulative reward
an agent can achieve starting from state s, taking action a, and following policy
π. The Bellman equation for the action-value function is given by:

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′)Qπ(s′, a′),

where the variables have the same meanings as in the value function Bellman
equation.

The Bellman equations provide a recursive way to compute the value of states
and actions based on their immediate rewards and the expected future rewards.
Solving these equations helps in finding the optimal policy that maximizes the
expected cumulative reward over time.

Reinforcement Learning Algorithms There are various algorithms in RL
that aim to learn optimal policies and value functions. Some common ones include:

• Q-Learning [43]: A model-free algorithm that learns action-value functions
and uses an exploration-exploitation strategy to find optimal policies.

• Policy Gradient Methods [44]: These algorithms directly optimize policy
parameters to find policies that maximize expected rewards.
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• Deep Q Networks (DQN) [45]: Q-Learning is combined with deep neural
networks to handle complex state spaces and achieve state-of-the-art results
in many domains.

• Proximal Policy Optimization (PPO) [46]: A family of policy optimization
algorithms that ensure stable policy updates.

• Actor-Critic Methods [47]: These algorithms combine policy-based and value-
based approaches to improve learning efficiency.

These algorithms are used in various applications like robotics, game playing,
and autonomous systems.

4.2.1 Deep Q Networks (DQN)

Deep Q Networks (DQN) [45] is a milestone algorithm that combines Q-learning
with deep neural networks to approximate the optimal action-value function Q∗(s, a)
(see Figure 4). DQN addresses the limitations of tabular Q-learning in handling
large state spaces. The DQN algorithm uses an experience replay buffer, where
transitions (s, a, r, s′) are stored and randomly sampled for learning. The tar-
get Q-network, denoted as Q−, is used to stabilize learning by decoupling target
updates from online updates.

The DQN objective minimizes the mean squared Bellman error:

L(θ) = E
[(

r + γ max
a′

Q−(s′, a′; θ−)−Q(s, a; θ)
)2]

,

where θ are the network parameters, (s, a, r, s′) are the transition elements, γ is
the discount factor, and θ− are the target network parameters.

Figure 4: Deep Q Networks (DQN)

Dueling DQN Dueling DQN [48] is an extension of DQN that aims to im-
prove the efficiency of value function estimation. It introduces a separate network
architecture to estimate the state value V (s) and action advantages A(s, a) inde-
pendently (see Figure 5 for a compassion between DQN and Dueling DQN). This
separation helps the network learn the value of each state without being influenced
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by the specific action taken. The final Q-value is then obtained by combining the
state value and action advantages:

Q(s, a) = V (s) + A(s, a) (2)

This architecture allows the network to focus on learning the general value of
states and the impact of actions on those values, leading to more stable value
estimates.

Figure 5: A popular single stream Q-network (top) and the dueling Q-network
(bottom) [48]

Double DQN Double Deep Q Networks (Double DQN) [49] is an advancement
of the DQN algorithm that aims to address the overestimation bias present in Q-
learning and DQN. Double DQN uses two separate networks to mitigate this bias,
namely the main network and the target network. The action with the highest
Q-value is selected using the main network, but the Q-value itself is evaluated
using the target network, resulting in the equation:

Q(s, a) = R(s, a) + γQ(s′, arg max
a′

Q(s′, a′; θ); θ−) (3)

where θ are the parameters of the main network, θ− are the parameters of
the target network, R(s, a) is the immediate reward, γ is the discount factor, and
arg maxa′ Q(s′, a′; θ) is the action that maximizes the Q-value in the target state
s′. This separation of action selection and Q-value evaluation helps to reduce
the overestimation of Q-values, leading to more accurate learning and improved
performance.
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4.2.2 CO Meets RL

Traditional algorithms for CO problems include exact, approximate and heuristic
approaches. Combinatorial optimization problems are not feasible to solve using
brute force due to the excessive number of combinations that exist. These conven-
tional methods can speed up the calculation to some extent. However, according
to the survey by Bengio et al. [50] and Mazyavkina et al. [51], traditional algo-
rithms still suffer from relying on manual heuristics to make decisions, being too
computationally expensive and mathematically ill-defined.

Machine learning can make such decisions in a more principled and optimized
way. And among machine learning methods, reinforcement learning usually leads
to the best performance and highest efficiency for following reasons:

• Rapid and Optimal Learning: Reinforcement learning algorithms can learn
rapidly and optimize their actions based on rewards or penalties received
from the environment [52]. This allows the agent to quickly adapt and
improve its performance over time.

• No Expert Knowledge Required: Traditional methods for solving combina-
torial optimization problems often rely on hand-crafted heuristics or expert
knowledge. In contrast, reinforcement learning obviates the need for expert
knowledge or pre-solved instances [51]. The agent learns to make decisions
and find solutions through trial and error, without relying on predefined
rules or heuristics.

• Scalability and Computation Efficiency: Deep reinforcement learning (DRL)
approaches have shown advantages over traditional methods in terms of scal-
ability and computation efficiency [53]. DRL algorithms can handle large-
scale combinatorial optimization problems and make efficient use of compu-
tational resources.

• Exploration and Exploitation: Reinforcement learning algorithms balance
exploration and exploitation. They explore different actions and strategies
to discover optimal solutions while also exploiting the knowledge gained from
previous experiences [51]. This allows the agent to search for better solutions
and avoid getting stuck in suboptimal solutions.

For these reasons, reinforcement learning has been increasingly used to solve
CO problems recently.

4.3 Non-machine Learning Influence Maximization Meth-
ods

As introduced in Subsection 3.4.2, IM problem is a combination optimization prob-
lem. According to the properties of CO problem and its solutions (introduced in
Subsection 4.2.2), non-machine learning methods have some unavoidable draw-
backs, especially in the face of today’s increasingly large scale social networks.
Moreover, non-machine learning approaches are not the focus of this thesis, so
researches focus on using non-machine learning methods to solve IM problems
are not discussed here. If interested, a detailed discussion can be found in the
Appendix A.
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4.4 Machine Learning Influence Maximization Methods

Different from many traditional non-machine learning influence maximization meth-
ods are often designed or tailored specifically to certain diffusion models or assump-
tions. These methods might rely on simplifications or assumptions that are not
applicable across different diffusion models, limiting their generalizability. Ma-
chine learning-based influence maximization methods are not tied to specific as-
sumptions about the diffusion process, and they can learn from data how influence
propagates through networks in different scenarios. Therefore the categorization
of machine learning based IM methods will no longer be based on the type of IM
problem targeted, but on the method of machine learning used.

The first thing to face in applying a machine learning to solving IM problems
is how to feed graphs into machine learning models because the original graph
data is very sparse and large in size. Graph embedding (introduced in Subsection
4.1) provides a good solution. Almost all machine learning based approaches first
transform the graph into low-dimensional vectors via (improved) graph embedding
methods in order to allow the graph to be fed into the machine learning model.
Based on the models of machine learning used, machine learning based approaches
can be classified into three categories: supervised, unsupervised, and reinforcement
learning.

4.4.1 Unsupervised Learning Methods

Due to the complexity of IM problem, labeled datasets are difficult to obtain which
makes unsupervised machine learning to be the dominant approach to solve the
IM problem. Based on the output of the machine learning models, unsupervised
approaches can be divided into two categories. The first category of methods
outputs the optimal seed set directly. The other category of methods only outputs
the node embeddings preserving IM-related features and the seed set is generated
based on these node embeddings.

The FastCover proposed by Ni et al. [54] is a typical first-category approach.
They reduce the IM problem to a budget-constrained d-hop dominating set prob-
lem (kdDSP). They designed a multi-layer GNN named graph reversed attention
network (GRAT) that captures the diffusion process among neighbors. The key
idea of the method is train the model to learn a scoring mechanism for scoring the
influence of each node in the range of [0, 1] and selecting the top-k nodes can form
the optimal seed set. The parameters of the GRAT are trained by optimizing a
differentiable loss function in an unsupervised manner. The authors claim that
FastCover can find a better quality solution while achieving a speed increase of
more than 1000 times.

The second category of methods focuses more on designing a graph embed-
ding model that preserves IM-related properties. Zhang et al. [55] designed a
GCN with adjustable number of layers for different sizes of networks to balance
scalability and performance. A self-labeling mechanism was designed to train the
network with a more nodal degree. After obtaining these node embeddings, they
devised a distance(between difference node embedding vectors)-based heuristic to
generate the seed set. Similarly, Li et al. [56] designed a random walk based
graph embedding method for heterogeneous graphs. They find a set for each node
that contains all relevant nodes based on the cosine similarity of the two node
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embeddings and a pre-set similarity threshold. The top-k nodes that appear most
frequently in these node sets are selected to generate the optimal set of seeds.

While unsupervised learning methods can solve the problem of lack of labelled
data, it is difficult to design objectives or guidelines to guide the training of the
model in a comprehensive and reasonable manner. Methods for processing graph
embedding results are sometimes designed for part of the diffusion model.

4.4.2 Supervised Learning Methods

In order to address the problem of lack of datasets, which hinders the application
of supervised machine learning methods to IM problems, many studies have also
attempted to propose some efficient labeling methods. Kumar et al. [57] use the
influence of node under SIR and IC model as the label. They transfer the IM
problem to a pseudo-deep learning regression problem. They use a big real-world
dataset to train a Graph Neural Network (GNN) based regressor. The input of the
model is centrality-based feature vectors which are composed of node embedding
(generated using an existing graph embedding method sturc2vec [58]) and features
of each node. The output of the model is the influence of each node. Then,
transfer the trained model is used to predict the influence of nodes on the target
network. With the influence of nodes in the new dataset, they simply choose the
top-k nodes to form the seed set. Soon after, they proposed another supervised
method [59] where they still convert the IM problem to a classical regression task.
The difference is that they use graph-based long short-term memory (GLSTM) to
solve the problem. The experimental results show that the change in the use of
the model significantly improves the performance.

Overall, the approach to data labeling opens up the possibility of applying a
wider variety of machine-learning models to IM problems. Compared to traditional
methods, machine learning-based approaches can further reduce time complexity
and improve reliability. However, this approach requires a high degree of generality
in the datasets used for training. As there is little research on the subject, it is
still worth exploring whether models trained on a small variety of datasets can be
applied to all types of social networks.

4.4.3 Reinforcement Learning Methods

Li et al. [60] first used RL to solve the classic IM problem and proposed the
framework named DISCO that composes GNN and DQN. For the IM problem,
They use an existing graph embedding method named structure2vec [61] as a basis
for graph embedding, and the actual formula used to update the update vectors
iteratively is shown as follows:

x(i)
v := ReLU(α1

∑
u∈N(v)

x(i−1)
u + α2

∑
u∈N(v)

ReLU(α3w(v, u)) + α4av) (4)

where α1, α2, α3, α4 are parameters, ReLU is the Rectified Linear Unit of a neural
network, x

(i)
v is the node representation of node v in the i−th iteration, N(v) refers

to the neighboring nodes of node v, av refers to whether the node is selected into
the seed set (1 for selected, 0 for unselected). At the start of the iteration, all node
representations are initialized to q-dimensional zero vector. After a maximum of
about 4 rounds, all node representations will reach their final state.
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The modified structure2vec achieves end-to-end learning by combining with
DQN [45]. In the RL components, the Q function can predict the marginal in-
fluence gain of a node based on the generalized node representation is defined as
follows:

Q(v, S,Θ) = βT
1 ReLU([β2

∑
u∈V

µ(I)
u , β3µ

(I)
v ]) (5)

where [, ] is the concatenation operator, β1, β2, β3 are parameters, and Θ refers
to all the parameters α1, ..., α4, β1, ..., β3. Using the neural network to train a
Q function to predict the marginal influence gain of a node can avoid the high
complexity of using traditional methods. In order to improve the efficiency of
training, they propose to first use randomly sampling some subgraphs from the
graph and train using these subgraphs. They also provide some trained models
and claim that these models are applicable to all types of graphs. Shortly after,
they proposed the PIANO framework [12], which is an evolved version of DISCO.
Its general idea is the same as DISCO, but it refines the algorithm design and
theoretical analysis and adds a large number of comparative experiments.

Based on DISCO, Wang et al. [62] proposed the IMGER. They use graph
attention networks for graph embedding. Compared to DISCO, additional weights
can be learned for the edges, allowing for more realistic scenarios to be applied.
In addition, they use Double DQN, which is otherwise similar to DISCO.

To improve the efficiency of RL-based IM algorithms, some approaches in-
tegrate network pruning techniques to focus computational resources on more
important nodes or sub-networks. Manchanda et al. proposed the GCOMB [63]
framework to address the IM problem by introducing a node quality assessment
mechanism. GCOMB trains the model using both network embedding and Q-
learning. In GCOMB, a graphical neural network named GraphSAGE [31] is used
for pruning poor nodes and learning embeddings of good nodes in a supervised
manner. Q-learning considers only needs to consider the good nodes left after
pruning to generate the seed set.

Chen et al. [64] claim that both GCOMB and PIANO are graph-specific
as they are trained on subgraphs, and GCOMB is based on supervised learning
which introduced large extra computational overhead and efforts of hand-crafting
the learning pipeline, so they provided a new method named ToupleGDD which
is a end-to-end reinforcement learning framework. They designed a three cou-
pled graph neural networks (GNNs) for network embedding and double deep Q-
networks (DQNs) for parameters learning. Besides, their model is trained on
several small randomly generated graphs with a small budget and tested on com-
pletely different networks under various large budgets which make it not graph-
specific. According to the experiment, ToupleGDD performed similarly to IMM
[65] but had better performance in running time and shows strong generalization
ability.

Though these reinforcement learning based methods partly address the short-
comings of supervised and unsupervised learning based methods, one significant
disadvantage they all have is using static graph embedding methods.
This means they can’t (hardly) handle dynamic influence maximization
problems as the evolving information is ignored in the whole framework.

23



5 Methodology

From the last section, it can be seen that non-machine learning methods for influ-
ence maximization often lack adaptability and scalability due to their reliance on
rigid assumptions, limiting their effectiveness in capturing real-world complexities
and hindering their applicability to diverse diffusion models and network struc-
tures. Compared to traditional methods, supervised and unsupervised machine
learning-based methods can further reduce time complexity and improve reliabil-
ity. However, supervised learning methods require labelled datasets and a high
degree of generality in the datasets used for training. The unsupervised learning
methods may solve the problem of lacking labelled datasets, but they also suffer
from the difficulty of designing objectives or guidelines to guide the training of
the model in a comprehensive and reasonable manner.

Reinforcement learning offers a promising solution to the aforementioned draw-
backs by enabling adaptability and scalability in influence maximization. Unlike
non-machine learning methods, reinforcement learning can learn optimal strategies
through interactions with the environment, effectively adapting to diverse diffu-
sion models and network structures. Reinforcement learning agents can adapt
their strategies based on real-time feedback, mitigating the need for rigid assump-
tions. Additionally, reinforcement learning methods can handle unlabelled data
by learning from rewards obtained through exploration, alleviating the labeling
requirement of supervised learning. Moreover, reinforcement learning provides
a framework for defining objectives and guidelines for training in a flexible and
comprehensive manner, addressing the challenges faced by unsupervised learning.

It is clear that reinforcement learning is by far the best way to solve IM prob-
lems. However, existing reinforcement learning based methods suffer from the
inability to deal with dynamic IM problems due to the static graph embedding
methods used. The goal of the thesis is to solve this drawback by com-
bining dynamic graph embedding methods with reinforcement learning
algorithms and propose a method for dynamic non-progressive IM prob-
lem where there is no effective solution yet. To achieve the goal, a novel
framework, named DNPRL, is proposed.

5.1 Framework

Give the large state spaces caused by the large number of nodes in the social
network, the reinforcement learning algorithm used in this framework (see Figure
6) is DQN [45]. For better performance the extension made by Dueling DQN [48]
and Double DQN [49] (Dueling Double DQN) is included.

The definition of RL components are introduced in Subsection 5.3. The struc-
ture of the main Q-network and the target Q-network of double DQN are intro-
duced in Subsection 5.4.

The dynamic social network is first transferred to node representations using
the dynamic graph embedding method TGNs which is introduced in Subsection
5.2). For one episode (one episode represents a complete sequence of node addi-
tions starting from an empty set set until termination and each addition is named
a step), the agent interacts with the environment for a predetermined number
of time steps, representing the budget for the seed set. During each step, the
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agent selects an action based on Eepsilon-greedy strategy which is introduced in
Subsection 5.5. After one episode, the reward of all actions in this episode is
calculated according to Equation 7. These experiences, composed of the current
state, selected action, reward, and next state, are stored in the replay memory
for later use. After each episode, the main Q-network is updated several times
by the method introduced in Subsection 5.6 and the exploration rate is updated
to gradually shift the agent’s focus from exploration to exploitation as training
progresses. After a fixed number of episodes, the main Q-network’s weights are
updated to the target Q-network to stabilize the learning process.

Upon achieving convergence and stability, the refined model becomes amenable
to the purpose of optimal seed set selection. Importantly, the singular training
of the model effectively obviates the necessity for repetitive retraining to accom-
modate varying seed set budgets. By virtue of this efficiency, the model’s efficacy
extends across the spectrum of seed set budgets, with only the selection of a
solitary seed set budget (k) sufficing to yield a model that robustly caters to di-
verse budget constraints. This streamlined approach markedly streamlines the
deployment process, affording seamless adaptability to various scenarios without
incurring the computational overhead entailed by recurrent retraining endeavors.

The framework is also described specificly by Algorithm 2.

Seed Set

DNPIC

Pre-generated Node 
Representations

Reward

ε-greedy

State

Action

Replay Memory

Q Network
Target

Network

(State, Action, Reward, Next state)

Double DQN loss

(State, Action) (Next state)

(Reward)

Predicted Q Target QGradient

Environment

Figure 6: General framework of DNPRL

5.2 Graph Embedding

The graph embedding method we selected is TGNs [38]. The framework of TGNs
is shown in Figure 7. TGNs also use the encoder-decoder model. The encoder
maps dynamic graph to node embeddings and the decoder uses node embeddings
as input to do a task-specific prediction such as link prediction. TGNs mod-
els continuous-time dynamic graphs as a sequence of time-stamped events. The
addition and deletion of both nodes and edges can be seen as an event.

The core modules of TGNs are as follows:

• Memory The memory of the model at time t consists of a vector si(t) for
each node i the model has seen so far. si(t) is a vector and and is initialized
to a zero vector. The memory of a node is updated after an event (e.g.
interaction with another node or node-wise change), and its purpose is to
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Algorithm 2 Training process

Require: Number of episodes M , budget of seed set k, discount factor γ, learning
rate α, target Q-network update frequency C, initial exploration rate ϵinitial,
minimum exploration rate ϵmin, exploration decay rate ϵdecay, size of replay
buffer B, number of updates to main Q-network T , tinactive

1: Initialize replay memory D with size B
2: Initialize main Q-network Q with random weights
3: Initialize target Q-network Q̂ with same weights as Q
4: Initialize exploration rate ϵinitial
5: Pre-generate node representations using TGNs
6: for episode = 1 to M do
7: Reset environment state s
8: for t = 1 to k do
9: Calculate Q(s, a; θ) for each action a
10: Set Q(s, a; θ) for each action a that selects nodes already in the seed set
11: With probability ϵ select a random valid action at, otherwise select at =

arg maxa Q(s, a; θ)
12: Execute action at, observe reward rt and next state st+1

13: Set s← st+1

14: end for
15: Calculate reward rt of each action at according to Equation 7
16: for t = 1 to k do
17: Store transition (s, at, rt, st+1) in replay memory D
18: end for
19: for t = 1 to T do
20: Sample a random mini-batch of transitions (si, ai, ri, si+1) from D
21: Compute target values: yi = ri + γQ̂(si+1, arg maxaQ(si+1, a; θ); θ−)
22: Update main Q-network weights using gradient descent according to

Equation 3
23: end for
24: end for
25: Update exploration rate: ϵ← max(ϵmin, ϵ− ϵdecay)
26: Every C steps, update target Q-network weights: θ− ← θ

represent the node’s history in a compressed format. Due to this specific
module, TGNs have the capability to memorize long term dependencies for
each node in the graph. When a new node is encountered, its memory is
initialized as the zero vector, and it is then updated for each event involving
the node.

• Message Function and Aggregator For each event involving node i, a
message is computed to update i’s memory. Experiments show that the fol-
lowing method of generating messages is optimal. For a node-wise event
vi(t), the message mi(t) = si(t

−)||t||vi(t) is generated. For a edge-wise
event eij(t), two messages mi(t) = si(t

−)||sj(t−)||∆t||eij(t) and mj(t) =
sj(t

−)||si(t−)||∆t||eij(t) are generated. Here, si(t
−) is the memory of node i

just before time t.
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Figure 7: Framework of TGNs[38]

In the same batch, it is high likely that there are multiple events involving
the same node i. For efficiency reasons, a mechanism is designed to aggre-
gate these messages. Experiments show that retaining only the most recent
messages (mi(t)) is the best strategy.

• Memory Updater The memory of a node is updated upon each event
involving the node itself which can be represent with mem(mi(t), si(t

−)).
mem a learnable memory update function, e.g. a recurrent neural network
such as LSTM or GRU.

• Embedding The embedding module is used to generate the temporal em-
bedding zi(t) of node i at any time t. The main goal of the embedding module
is to avoid the so-called memory staleness problem and better aggregation
of information of neighbors. The embedding module can be implemented
with

zi(t) =
∑

j∈nk
i ([0,t])

h(si(t), sj(t), eij, vi(t), vj(t)) (6)

where h is a learnable function. Experiments show that temporal graph
attention network can led to the best performance. Specific information
about temporal graph attention network can be found in the original paper.

The main reasons that TGNs is selected are as follows:

• In this framework, the node representations need to be able to contain evolv-
ing information of nodes. So, only the temporal dynamic graph embedding
methods are applicable instead of snapshot-based dynamic graph embed-
ding methods. And, TGNs is a typical temporal dynamic graph embedding
method.

• Among temporal dynamic graph embedding methods, TGNs has the best
performance and is the most widely used one.
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• It can support multiple tasks to train the model, especially dynamic link pre-
diction. The main goal of dynamic link prediction is to forecast which new
connections are likely to form in the network as it evolves. The performance
on dynamic link prediction task can well reflect how well the node represen-
tations can response the evolving information of nodes. So, this is strongly
correlated with the spread of influence. The node representations generated
by the TGNs well contain the attributes related to influence maximization,
so the generated node representations can be directly used to calculate the
marginal gain of adding a node into the seed set without the need to include
them in the training process of reinforcement learning.

5.3 Definition of RL Components

The definition of RL components are as follows:

• State (St): The state at time step t, denoted as St, is formed by connecting
the node representations generated by Temporal Graph Networks (TGNs)
with a one-hot vector X that represents the current seed set. The length of
the one-hot vector is equal to the total number of nodes in the graph. Each
element of the one-hot vector X is a binary indicator that signifies whether
the corresponding node is part of the current seed set. Specifically, a value
of 1 indicates that the node is in the seed set, while a value of 0 indicates
that the node is not in the seed set. For example, Xi = 0 denotes that node
i is not included in the seed set.

• Action (At): An action At taken at time step t corresponds to the addition
of a node v to the current seed set St. This action is chosen from the set of
nodes that are not currently present in the seed set, i.e., v /∈ St.

• Transition: A transition occurs when a node i is selected to be added to the
seed set. This selection causes the corresponding element Xi of the one-hot
vector to change from 0 to 1, reflecting the inclusion of node i into the seed
set.

• Reward (Rt): The reward of an action is calculated after one episode. After
one episode, a set of actions {A1, ..., Ai, ..., Ak} that select nodes {v1, ..., vi, ..., vk}
correspondingly will generate. The reward Rt for an action Ai is defined as

Ai = σDNP ({v1, ..., vi, ..., vk})
single inf(i)∑k
j=1 single inf(j)

(7)

where single inf(i) is the influence of node i, calculated by

single inf(i) = σDNP (i) (8)

Different from the normal way to define reward Rt = σDNP (S ∪ {i}) −
σDNP (S). The drawback of this normal reward way is that the reward for the first
action in one episode will be far greater than all following actions. However, this
is not because the node selected by the first action have greater influence than
other nodes, but simply because it was the first node to be selected and no node in

28



the entire network had been influenced before that. In other words, the influence
of the first selected node is overestimated.

To avoid this, the reward of an action is defined after a episode. In such way,
the reward is calculated based on all the actions in one episode and assigned to
each action according to their influence. This will reward each action more in line
with the influence of the chosen node. A example is given in Table 3. See this
example for a more detailed description.

5.4 Q-network

Since the Dueling Double DQN is used, the Q-network (See Figure 8) is composed
of three networks, main network, value network and adventure network.

Node 1 [0.42, … , -0.93][0]
Node 2 [-0.71, … , 0.94][1]

…
Node n [0.01, … , -0.34][0]

Temporal Graph Attention 
Network

Main Network

Value
Network

Adventure
Network

Input

Figure 8: Structure of the Q network

The main network is a multi layer temporal graph attention network proposed
by TGNsby Rossi et al. [38] which can aggregate information of neighboring nodes.
Specifically,

h
(l)
i (t) = MLP(l)(h

(l−1)
i (t)∥h̃(l)

i (t))

h̃
(l)
i (t) = MultiHeadAttention (l)(q(l)(t), K(l)(t), V (l)(t))

q(l)(t) = h
(l−1)
i (t)∥ϕ(0)

K(l)(t) = V (l)(t) = C(l)(t)

C(l)(t) = [h
(l−1)
1 (t)∥ei1(t1)∥ϕ(t− t1), . . . , h

(l−1)
N (t)∥eiN(tN)∥ϕ(t− tN)]

(9)

where ϕ(·) represents a generic time encoding [66], ∥ is the concatenation op-
erator.

After passing through the main network, each node is represented with a c-
dimensional vector, where c is adjustable. The concatenation of these vectors
yields a one-dimensional vector and the length of the vector is c × |V |, where
|V | is the number of nodes. This connection formed vector is fed into the value
network V (S; Θ1) and adventure network and A(S, v; Θ2).

Both the value network and adventure network are Multilayer Perceptron
(MLP). The number of layers of the MLP and the size of each layer is adjustable.
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It is only necessary to ensure that the size of the output of Value Network is (1, 1)
and the size of the output of Adventure Network is (|V |, 1).

The final output of the Q-network is calculated with Equation 2.

5.5 Epsilon-greedy Algorithm

The Epsilon-greedy algorithm is a widely used approach in reinforcement learning
to balance between exploration and exploitation. It allows the agent to select
the action with the highest estimated value (exploitation) most of the time, while
occasionally choosing a random action (exploration) to ensure comprehensive ex-
ploration of the action space.

At each time step t, the agent chooses an action at based on the following
policy:

at =

{
argmaxaQ(s, a; θ), with probability 1− ϵ,

random action, with probability ϵ,
(10)

where Q(s, a; θ) represents the estimated action value for state s and action a, θ
denotes the parameters of the Q-network and ϵ is the exploration rate, controlling
the probability of selecting a random action.

To avoid the agent selecting the node that has already in the seed set, the
estimated action value for state s and action a that choose the node already in
the seed set will be set to ”-inf” representing negative infinity. When doing a
random action, the node selected by the random action will be checked. If it has
already been in the seed set, this action will be ignored and do a random action
again.

Initially, the exploration rate ϵ is often set to a relatively high value, encour-
aging the agent to explore different actions. As training progresses, ϵ is gradually
reduced using a decay schedule. This allows the agent to rely more on the learned
action values, striking a balance between gathering new experiences and exploiting
existing knowledge.

5.6 Training the Q-Network

For each training session, a random mini-batch of experiences is sampled from the
replay memory. Target Q-values are computed based on the immediate reward
and the estimated future value of the next state using the target Q-network. The
main Q-network’s weights are updated using gradient descent (see Equation 3) to
minimize the difference between predicted and target Q-values.

6 Experiments

In this section, several experiments are conducted to validate the design sound-
ness and performance of the proposed DNPRL framework. The code used for
experiments can be found at https://github.com/YunmingHui/Master-Thesis.
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6.1 Datasets

Three different datasets used to carry out experiments are UC-IRV, Bitcoinalpha
and Bitcoinotc. All of them can be structured as continuous graph models. The
statistics of 3 datasets are shown in Table 1. The detailed information of datasets
are as follows. The datasets used are same as those used in [15]. Science this is
written by myself, I used what is in [15] in this subsection.

Dataset Node number Edge number Start time End time Multiple edges
UC-IRV 1,889 59,835 15/04/2004 26/10/2004 Yes

Bitcoinalpha 3,783 24,186 0 164,246,400 No
Bitcoinotc 5,881 35,592 0 164,442,412 No

Table 1: Statistics of three datasets. Multiple edges indicate weather existing
multiple edges whose start and end nodes are same but timestamp is different

• UC-IRV[67] UC Irvine messages dataset includes the users that sent or
received at least one message in a Facebook-like Social Network originat-
ing from an online community for students at the University of California,
Irvine. The database contains a total of 59,835 online messages, each mes-
sage contains the sender, receiver and time of sending. The dataset is used
to form a directed dynamic social network. Each edge represents a mes-
sage which is directed from the sender of the message to the receiver of the
message. In this dataset an edge with same start and end node will appear
multiple times at different time points.

• Bitcoinalpha1 Bitcoinalpha is a who-trusts-whom network of people who
trade using Bitcoin on a platform called Bitcoin Alpha. The dataset contains
a total of 24,186 credit rating records from one user to another. Each record
contains the person who made the credit rating and the person who was
rated, the rating level and the time the rating was made. The dataset is
used to form a directed dynamic social network. Each edge represents a
credit rating record which is directed from the rating maker to the rate. In
this dataset, any edge will appear only once.

• Bitcoinotc2 Bitcoinotc is similar to Bitcoinalpha, but it is collected from an-
other Bitcoin platform, Bitcoin OTC. The number of records in this dataset
is 35,592. The format of records is the same as that of Bitcoinalpha. In this
dataset, any edge will appear only once.

6.2 Experimental Settings

The following experiments are carried out:

• Nodes representation pre-generation The node representations of three
datasets are pre-generated by TGNs and tested with dynamic link prediction
task

1http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
2https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

31

http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html


• Parameters turning Several experiments are carried out to find the opti-
mal parameters.

• Ablation study Several experiments are carried out to evaluate the neces-
sarily of different parts of DNPRL.

• Modele training The models for the three datasets are trained with the
optimal parameters and the training processes are analysed.

• Framework evaluation The framework is evaluated by comparing with
several state of the art methods.

6.3 Metrics

The metrics used in experiments are as follows:

• Dynamic link prediction The dynamic link prediction experiment is a
common practice in dynamic graph embedding research, aiming to evaluate
the model’s capacity to forecast the formation of links between nodes over
time. By employing a dynamic graph dataset with distinct time snapshots,
the model’s ability to capture evolving relationships is assessed. The evalua-
tion hinges on the Area Under the ROC Curve (AUC) and Average Precision
(AP) metrics. AUC measures the model’s proficiency in distinguishing ac-
tual linkages from non-existent ones, while AP gauges the trade-off between
precision and recall. Elevated AUC and AP values signify enhanced pre-
dictive performance, indicative of the model’s adeptness at identifying links
within the dynamic graph’s temporal evolution.

• Activation time The activation time is average length of time each node,
except the initially activated nodes, is in active state (calculated by DNPIC).
The larger the activation time is, the higher the influence of the seed set is.

• Episode score The episode score refers to the activation time caused by
the seed set formed from the actions the agent done in one episode. As
the higher activation time indicates the larger influence of the seed set, the
higher episode score means the actions made by the agent is better.

• training curve The training curve reflects the multiple learning pro-
cesses of a RL model. Taking Figure 16 as an example curve, the line
indicate the average episode score of each episode and the shaded areas
show extreme values that deviate from the mean. Taking the last episode
as an example. The average episode score of the last episode of all learning
processes is around 205,000, the biggest episode score of the last episode
among the learning processed is around 221,000, the smallest episode score
of the last episode among the learning processed is around 201,000.
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6.4 Dynamic Graph Embedding

6.4.1 Parameters for Dynamic Graph Embedding

The graph embedding method TGNs is implied using code3 provided by authors.
The parameters of TGNs used in experiments are as follows: the dimension of node
embedding is 64, the learning rate is 0.001, the drop out rate is 0.1, the batch seize
is 200, the number of epochs is 50, the number of neighbours to sample is 20, the
embedding model us graph attention network whose number of layer is 1 and
number of heads used in attention layer is 2. The parameters of all three datasets
are the same.

6.4.2 Node Representations Pre-generation and Evaluation

Since the node representations are the basis of the entire framework and all sub-
sequent processing are based on them, the quality of the generated node represen-
tations needs to be ensured. As motivated in Subsection 5.2, as a commonly used
metric, the dynamic link prediction task is used to evaluate the pre-trained node
reprsentations.

Since there is randomness in the process of node representation generation.
The TGNs are run 5 times for each dataset and the node representations with
the best performance on dynamic link prediction task is used for the follow-up
experiments. 80% of the data in the dataset is used for training and evaluation,
20% of the data in the dataset is used for testing. The performance of dynamic
link prediction task on the three dataset is shown in Table 2.

Dataset UC-IRV Bitcoinalpha Bitcoinotc
AUC 0.904 0.855 0.846
AP 0.906 0.856 0.862

Table 2: Link prediction task results on the three datasets

To the UC-IRV dataset, the model exhibits strong performance with an AUC of
0.904 and an AP of 0.906. These high values indicate that the node representations
effectively capture the evolving relationships between nodes, enabling accurate
link prediction. Moving to the Bitcoinalpha dataset, the model maintains solid
performance with an AUC of 0.855 and an AP of 0.856. Although slightly lower
than the UC-IRV dataset, these results suggest that the node representations
continue to provide meaningful insights into the changing link patterns within this
dataset. Finally, the Bitcoinotc dataset also demonstrates commendable results,
featuring an AUC of 0.846 and an AP of 0.862. Notably, the high AP score
suggests that the node representations excel in predicting dynamic link changes
within this dataset.

The experiment results show that the node representations in the model ex-
hibit strong performance across all three dynamic link prediction datasets. The
consistently high AUC and AP scores indicate that the representations effectively
capture the evolving nature of node relationships, making them valuable assets
for accurately predicting changes in link connectivity within dynamic networks.

3https://github.com/twitter-research/tgn
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This performance underscores the significance of the employed node representation
method for dynamic network analysis.

6.5 Parameter Turing and Setting

In this subsection, the results of experiments carried out for parameter turning
purpose are shown and discussed. The determined optimal parameters can be
found in Subsection 6.5.4.

All the experiments in this subsection are carried out 5 layers to
avoid the randomness and analysis the robustness of different settings.

6.5.1 Network Structure

To determine the best structure of the Q-network, two different networks with
different number of layers are designed (see Figure 9). In both networks, the size
of the temporal graph attention network is fixed for 2 layers but sthe dimension of
vectors representing each node is different. For the large network, the dimension
of vectors representing each node is 2, making the output of the temporal graph
attention network is a 2|v| vector. Both the value and adventure networks both
have two layers. To the value network, the output of the first layer is 1.5|V |, and
the output of the second layer is 1.5|V |. For the small network, the dimension
of vectors representing each node is 2, making the output of the temporal graph
attention network is a |v| vector. Both the value and adventure networks both
only have a fully connected layer.

2*|V|

(a) Large network (b) Small network

2*|V| |V| 1

2*|V| 1.5*|V| |V|

|V|

|V| 1

|V| |V|

Figure 9: Two networks with different size

Two different models using these two different network structures are trained
for the UC-IRV network. When training the model, the parameters are kept the
same except for the size of the network used which is different. The training curves
of the two models are shown in Figure 10

The experiments show that although the smaller network converge faster than
the larger network, the average episode score is worse after both two models are
stable. Therefore, this large network is chosen.

6.5.2 Frequency to Update Target Q-network

In this subsection, different update frequencies of target Q-network are tested to
get the optimal frequency to update the target Q-network. The tested update
frequencies includes every 200, 150, 100 and 50 episodes.

Four different models are trained for UC-IRV with these four different updating
frequencies. The training curves of the four different models are shown in Figure
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Figure 10: Training curve of two models with different network size

11. The experiments show that updating the target Q-network every 200 episodes
can lead to the highest episode score with the convergence time (training time)
similar to other settings. Therefore, the frequency that update the target q-
network every 200 episodes is chosen.

6.5.3 Learning Rate

In this subsection, different learning rates are tested to get the optimal learning
rate. The tested learning rates includes 1e− 2, 1e− 3 and 1e− 4. Three different
models are trained for Bitcoinalpha with these three different learning rates.

The training curve of the three different models are shown in Figure 12. Exper-
iments show that learning rate 1e− 4 is too low which make the model get stuck
in local minima and struggle to escape. The small steps taken during updates
are not sufficient to overcome barriers and reach a better global minimum. This
makes the performance of the trained model very poor. Learning rate 1e − 2 is
too low making the training process very unstable and leading the model to fail
to converge. This learning rate 1e − 3 is more appropriate and allows the model
to obtain a good performance. Thus, the learning rate 1e− 3 is chosen.

6.5.4 Parameters for RL

Based on the parameters turning experiments carried out before. The parameters
are set as follows: the learning rate is 1e−3, the dimension of node representations
is 64, the size of replay buffer is 10000, the discount factor is 0.95, the batch size
is 32, initial exploration rate is 1, minimum exploration rate is 0.2, exploration
decay rate is 0.98, the frequency to update Target Q-network is every 200 episodes,
number of updates to main Q-network is 5, the budget of seed set used for training
is 30.
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Figure 11: Training curve of four models with different frequencies to update
Target Q-network

6.6 Ablation Study

In this subsection, several ablation studies are carried out to validate the necessity
of each part of in the proposed framework.

6.6.1 Dueling Double DQN

As described in Subsection 4.2, the dueling double DQN is an extension to DQN
which fuses the improvements to DQN made by dueling DQN and double DQN.
In this experiment, it will be verified that both two extensions contribute to the
final result.

To verify the necessity of using Dueling Double DQN, four models are trained
for UC-IRV using the DQN, Dueling DQN, Double DQN, and dueling double DQN
respectively. The training curves of the four different models are shown in Figure
13.

From the experimental results, it is clear that Dueling Double DQN has the
best performance for the following three reasons.

• Average episode score On average episode score, Dueling Double DQN
is the highest. Average episode score intuitive indication of how well the
final trained model performs on the dynamic non-progressive IM problem.
Obviously, models trained by Dueling Double DQN has the highest average
episode score.

• Robustness Ensuring robustness, characterized by the presence of random-
ness across multiple experiments, holds significant importance. Given the
considerable time investment required for training, a low degree of model ran-
domness (i.e., high robustness) alleviates the necessity for repetitive training
iterations to attain the optimal model. This concept is illustrated in Figure
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Figure 12: Training curve of three models with three different learning rates

13, where the influence area of Dueling Double DQN is minimized, signify-
ing the robust nature of the model training process facilitated by Dueling
Double DQN.

• Convergence speed Dueling Double DQN converges slightly slower than
DQN and Doubel DQN, but faster than Dueling DQN. Although the con-
vergence rate is slightly lower, given that Dueling Double DQN leads to far
better average episode score. Therefore, it is worthwhile to sacrifice some of
the convergence speed to bring about greater gains in average episode score.

In conclusion, based on the comparison of four different DQN algorithms
(DQN, Dueling DQN, Double DQN, and Dueling Double DQN) in addressing the
UC-IRV problem, the experimental results unequivocally demonstrate the neces-
sity of employing the Dueling Double DQN approach. With the highest average
episode score and proven stability across multiple experiments, Dueling Double
DQN not only preserves valuable time and resources during practical training
but also justifies its slightly slower convergence rate. Considering the substan-
tial performance advantage it offers in terms of average episode scores, opting for
the Dueling Double DQN algorithm emerges as a prudent choice for tackling the
dynamic non-progressive IM problem.

6.6.2 Reward Strategy

In this subsection, the proposed strategy will be compared with the normal reward
strategy introduced in Subsection 5.3 to validate the rationality and necessity of
the proposed methodology.

Two different models are trained for UC-IRV with the proposed reward strategy
and the proposed reward strategy. The training curves of the two different models
are shown in Figure 14.
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Figure 13: Training curve of four models with different DQN algorithms

From the experiments, it is clear that the proposed reward strategy is far
superior to the normal reward strategy, from average episode score, robustness
and convergence speed.

To explain the reasons for this advantage, ten points will be randomized. These
ten points will be used as the actions made by the agent in an episode. Then the
reward of these ten actions will be calculated using two different strategies. The
results are shown in Table 3.

Derived from the conducted experiments, a salient observation becomes evi-
dent: within the rewards computed using the conventional reward strategy, the
initial action stands out with a markedly high reward. Conversely, subsequent
actions exhibit considerably lower rewards in contrast to the first action. Interest-
ingly, despite the augmented reward for the first action, the actual influence of its
corresponding node remains limited. This incongruity highlights a significant con-
cern related to the conventional reward strategy, wherein an overestimation of the
initial action is apparent, consequently introducing complexities to the training
process.

In contrast, the introduced reward strategy rectifies this phenomenon. The
recalibrated approach mitigates the pronounced overestimation associated with
the first action and yields more precise reward allocations. Consequently, the
training process substantially benefits from this corrective measure. Based on
these empirical insights, the adoption of the proposed reward strategy emerges as
both an imperative and well-justified improvement.

To conclude, this subsection effectively establishes the validity and necessity
of the proposed novel reward strategy. By comparing it with the conventional
approach, it becomes evident that the new strategy surpasses it in terms of perfor-
mance metrics such as average episode score, robustness, and convergence speed.
Additionally, through an experiment involving ten specific actions, the shortcom-
ings of the conventional strategy are highlighted. The proposed strategy rectifies
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Figure 14: Training curve of two models with proposed reward strategy and the
proposed reward strategy

Action 399 8 41 104 522 31 2 102 18 40
Normal

Reward Strategy
0.6247 0.1605 0.0192 0.0556 0.0138 0.0202 0.0290 0.0298 0.0156 0.0157

Proposed
Reward Strategy

0.0235 0.0057 0.1124 0.0471 0.0590 0.0412 3.6410 0.0471 5.446 0.4201

Influence 91 22 434 182 228 159 14049 182 21017 1621

Table 3: Reward of 10 random actions calculated with proposed reward strategy
and normal reward strategy. The first row is the node selected by each action.
The second and third rows are the rewards of corresponding actions calculated by
the two reward strategies. The fourth row is the influence of corresponding node
calculated with the method introduced in Subsection 5.3.

the overestimation of the initial action’s importance, thus addressing training dif-
ficulties associated with skewed rewards.

6.6.3 Necessity of Pre-generating Node Representations

In the framework, the node representations are pre-generated. In fact, the network
used for graph embedding can also be incorporated into the training process. Two
different models are trained for UC-IRV with and without pre-generating the node
representations.

For better comparison, the results of only one training session are shown. The
model trained with pre-generating the node representations is trained for 8 hours
and the model trained without pre-generating the node representations is trained
for 24 hours.

The experiments (see Figure 15) show that adding the network used for graph
embedding into the training process will extremely increase the complexity of
training. The model without pre-generating the node representations is only
trained for around 100 episodes for 24 hours compared with the model with pre-
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Figure 15: Training curve of two models with and without pre-generating the node
representations

generating the node representations is trained for around 600 episodes for 8 hours.
What’s worse, the model without pre-generating the node representations cannot
converge within 24 hours.

In short, pre-generated node representations speed up training and convergence
and lead to better performance.

6.7 Model Training

In this subsection, the training process of the models for the three datasets using
the optimal parameters is demonstrated and evaluated. The training of the three
models is performed over ten repetitions.

The training process of the model for UC-IRV, shown in Figure 16), exhibits
a remarkable trait of relatively swift convergence, typically reaching convergence
around the 300-epoch mark. This convergence behavior is notably consistent
across multiple training runs, as evidenced by the comparatively narrow shaded
region on the graph. In stark contrast, the training processes of the models de-
signed for Bitcoinalpha and Bitcoinotc present a distinctly different profile (as
shown in Figure 16 and Figure 18 respectively), characterized by a slower con-
vergence trajectory. Notably, the model tailored for Bitcoinalpha demands a sig-
nificantly more extended training period, often necessitating approximately 800
epochs to achieve convergence.
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Figure 16: Training curve of final model for UC-IRV

Figure 17: Training curve of final model for Bitcoinalpha
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Figure 18: Training curve of final model for Bitcoinotc

For each dataset, the repeatability between the nodes in seed sets generated
by the 10 models obtained from 10 training sessions is tested. Taking the seed sets
with 10 as an example, the results are shown in Table 4. Similar to the conclusions
drawn from the analysis of the training process, the repetition rate of seed sets
generated from the model trained for UC-IRV is higher, the repetition rate of seed
sets generated from the model trained for UC-IRV are relatively low.

Dataset UC-IRV Bitcoinalpha Bitcoinotc
Repeatability 68.9% 50.2% 41.9%

Table 4: Repetition rate between nodes in seed sets (taking size of seed set = 10
as an example) generated by models trained multiple times

Overall the training process of the model on UC-IRV is more undetermined
and the generated model is more stable. The robustness on UC-IRV is high. Lower
robustness on Bitcoinalpha and Bitcoinotc may require multiple repetitions of the
experiment to select a better model.

6.8 Framework Evaluation

In this subsection, the quality of seed set generated is evaluated by comparing
with that generated by other state of the art influence maximization methods.

6.8.1 Baselines

To evaluate the performance of the framework, four state of the art methods are
chosen as the baselines. As there are no existing dynamic non-progressive influ-
ence maximization methods. One greedy method (CELF), a static reinforcement
learning method (ToupleGDD), a dynamic progressive method (INDDSN), and a
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static non-progressive method (TSGC) are chosen as the baselines. As all four
baselines have already introduced in Section , here are just the reasons given for
choosing them.

• CELF[68] The CELF algorithm is often selected as a baseline in influence
maximization due to its computational efficiency and simplicity. Its ability
to efficiently identify influential seed nodes makes it a practical benchmark
for evaluating the performance of other algorithms. CELF’s established
reputation in the field and its widespread use as a comparison point enable
consistent and meaningful comparisons between different studies, while also
reflecting the trade-off between algorithm complexity and influence spread
performance.

• ToupleGDD[64] ToupleGDD is the latest method that employ reinforce-
ment learning to process IM problem and outperforms other similar rein-
forcement learning-based algorithms. The proposed framework is also based
on reinforcement learning, so ToupleGDD is chosen as the baseline. The
code and model used for evaluation is provided by the authors, available on
https://github.com/Dtrycode/ToupleGDD.

• INDDSN[10] INDDSN is the most recognized method among the approaches
to solving dynamic progressive IM problems. The reason for choosing IN-
DDSN as baseline is to verify that the progressive approach cannot be ap-
plied to the non-progressive problem as the progressive IM problem is sig-
nificantly different from the non-progressive problem.

• TSGC [69] TSGC is the most recognized method among the approaches
to solving static non-progressive IM problems. The reason for choosing IN-
DDSN as baseline is to verify that the static non-progressive approach cannot
be applied to the dynamic non-progressive IM problem as the the dynamic
nature of the network will make a difference to the problem.

Except the ToupleGDD, the code for the other three baselines methods is
reproduced by myself according to the original paper.

6.8.2 Influence Spread

This subsection performs quantitative and qualitative analysis of the nodes se-
lected by various methods to evaluate the performance of the proposed method.
To quantitative analysis, the metrics for measuring the performance of methods
is average of the length of time each node, except the initially activated nodes,

is in active state, i.e. σDNP (S) =
∑

v∈V −S τv

|V−S| , where τv is the sum of time length
for which node v is active. In order to reflect the generalizability of the training-
generated model to corresponding dataset, the quality of seed sets is tested on
DNPIC (proposed diffusion model) with different time to return to inactive state
tinactive and budget of seed set k.

The tested different time to return to inactive state tinactive are 1,440 (1 days),
10,080 (7 days), and 86,400s (60 days). The best performing models are chosen
due to the high level of randomness in the model training process. The results are
shown in Figure 19, Figure 20, and Figure 21.
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Figure 19: Influence of seed sets with different size on diffusion with tinactive =
1, 440

Figure 20: Influence of seed sets with different size on diffusion with tinactive =
10, 080

Figure 21: Influence of seed sets with different size on diffusion with tinactive =
86, 400

First, the proposed method is compared with TSGC and INDDSN comprehen-
sively.

The results unmistakably showcase the proposed method’s remarkable superi-
ority over TSGC across all evaluated cases. This stark contrast gains significance
from the fact that TSGC operates as a static, non-progressive method within the
realm of influence maximization (IM). This demonstration firmly substantiates
the pivotal role of network dynamics in shaping the IM landscape. The limita-
tions of methods grounded solely in static IM paradigms become apparent when
confronted with the complexities of dynamic IM challenges. Evidently, the explo-
ration of dynamic, non-progressive IM problems holds profound implications.

Furthermore, the proposed method exhibits competitive performance against
INDDSN in the majority of scenarios. Notably, INDDSN represents a dynamic
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progressive approach, implying that the transition from a progressive to a non-
progressive stance inherently introduces shifts within the IM framework. However,
while the progressive to non-progressive shift is perceptible, it pales in comparison
to the dynamic-to-static transformation in terms of its observable impact.

The proposed method is next compared to CELF and ToupleGDD. What is
clear is that the proposed method has a good performance on UC-IRV, but is less
effective on Bitcoinalpha and Bitcoinotc. Therefore the analysis will first focus on
UC-IRV.

On the UC-IRV dataset, the proposed method performs comparably to CELF.
Considering CELF’s nature as a greedy algorithm, this indicates that the proposed
method demonstrates strong performance across different models and various sizes
of seed sets. It’s important to note that the model is solely trained on a diffusion
model with a fixed seed set size. This highlights the generalization capability of
the proposed method within a single dataset. This is particularly significant, as
scenarios involving distinct recovery times from an activated state to an inactivated
state hold practical importance and may be encountered.

On the Bitcoinalpha and Bitcoinotc dataset, the proposed methods performs
worse than CELF and ToupleGDD. I hypothesize that the main reason behind
this is there are large number of repeated edges in UC-IRV. A shown in Tabble
1, there are only 1,899 nodes in UC-IRV, however 59,835 edges. In comparison,
Bitcoinalpha and Bitcoinotc, with 3,783 and 5,881 nodes, respectively, exceed UC-
IRV, but the number of edges is only 24,186 and 35,592, respectively, which is far
below UC-IRV. This phenomenon makes the probability of a node being activated
again once it reverts from an activated state to an inactive state relatively low
in Bitcoinalpha and Bitcoinotc. In other words, the properties of non-progressive
and dynamic is weaker in these two datasets. This is corroborated by the better
performance on UC-IRV in the dynamic link prediction task. It is quite possi-
ble that TGNs themselves do not handle this type of dataset well, making the
method end up performing poorly. This is why ToupleGDD does not perform
well on UC-IRV. Since ToupleGDD uses static graph embedding method, when
the dynamic and non-progressive nature of the dataset is strong, the static graph
embedding method is unable to deal with the dynamic nature well, which makes
the performance worse.

The above analysis illustrates the better performance of the proposed method
on dense and dynamic social networks. In addition, the proposed method has a
good generalization to a single dataset, eliminating the need to repeat training the
model several times when the size of the set and the parameters in the diffusion
model change.

6.8.3 Running Time

The running time of different methods are shown in Table 5. Although the pro-
posed method requires a separate model to be trained for each dataset, the time
taken is much less than that of ToupleGDD, which is also a reinforcement learn-
ing method. Although ToupleGDD can obtain a model for all datasets, the model
needs to be retrained when the diffusion model is changed. As noted in chapter
3.2, there are a large number of existing diffusion models. In applications where
multiple diffusion models need to be processed, the running time will become
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uncontrollable. However, it has to be recognized that if only a single diffusion
model is considered and multiple datasets need to be processed, ToupleGDD has
a definite advantage.

Although both TSGC and INDDSN have relatively short run times, they are
not relevant for discussion given that they are not as effective as the other methods.
It is worth mentioning that CELF, as the most classical method, still has an
advantage in terms of runtime, although it sometimes performs slightly worse
than the proposed method or ToupleGDD.

Method CELF TSGC INDDSN
Proposed Method ToupleGDD

Training Execution Training Execution
UC-IRV 4 hour 3 min 0.5-1.5 hour 3 hour <1 min

52 hour
<1 min

Bitcoinalpha 3 hour 5 min 0.5-1 hour 8 hour <1 min <1 min
Bitcoinotc 7 hour 7 min 1-2.5 hour 16 hour <1 min <1 min

Table 5: Running time of different methods

6.9 Qualitative Analysis

In this subsection, experiments are carried out to seed if the framework is working
as pre-designed. More specifically, whether the agent can make optimal decisions
according to different states. Taking the final model trained for the UC-IRV as
an example, the 10 actions with highest q-value at the first 5 states are shown in
Table 6.

Actions with highest q-value 1 2 3 4 5 6 7 8 9 10
State 1 8 26 232 94 31 430 43 11 473 142
State 2 8 26 232 94 31 430 43 473 11 142
State 3 8 26 94 232 31 430 43 473 142 18
State 4 8 26 94 232 31 430 43 473 142 18
State 5 8 26 94 31 430 232 473 43 142 18

Table 6: The nodes selected by 10 actions with highest q-value at the first 5 states.

It is obvious that for different states, the actions with the highest q-value
choose almost the same nodes only slightly different in order. This is different
from what was pre-designed. And the ordering of the q-values of these actions is
very close to the ordering of the influence of the selected nodes.

In response to this phenomenon, I see two possible reasons. The first is that the
difference between each state (see Figure 22) is very small. After each action, only
one number changes in the one-hot vector used to represent the seed set. With
such a large input, it is difficult for such a small difference to make a significant
difference to the output of the neural network.
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Node 1 [0.42, -0.38, … , 0.78, -0.93]
Node 2 [-0.71, 0.19, … , 0.71, -0.94]

…
Node n [0.01, -0.29, … , 0.71, -0.34]

[0]
[0]
…

[0]

State 1

64

Node 1 [0.42, -0.38, … , 0.78, -0.93]
Node 2 [-0.71, 0.19, … , 0.71, -0.94]

…
Node n [0.01, -0.29, … , 0.71, -0.34]

[0]
[1]
…

[0]

State 2

64

Figure 22: Difference between two states. The difference is marked in red.

The second possible reason is during the training process in order to keep the
process running smoothly. The selection of nodes that already exist in the seed
set is artificially set as unselectable, rather than learning so that the agent no
longer selects these nodes. This makes the agent not focus on learning to make
the best decision based on different states, but rather on learning the influence of
each node. The decision is then made directly based on the level of influence.

7 Conclusion and Future Work

7.1 Conclusion

This master thesis focus on the dynamic non-progressive IM problem which is
a variant of the IM problem that has not yet been studied before. This thesis
carefully scrutinizes the relevant researches on the IM problem and illustrates
the practical significance of this variant of dynamic non-progressive. Given the
absence of a dynamic non-progressive diffusion model, a dynamic non-progressive
diffusion model extended from the IC model, named DNPIC is proposed. Through
the analysis of related researches, it is found that reinforcement learning is the most
suitable for solving IM problems, but the existing methods based on reinforcement
learning can’t deal with dynamic IM problems well. Therefore, this thesis proposed
a framework that combines dynamic graph embedding and reinforcement learning.
Experiments are conducted to analyze the plausibility of this framework. And this
framework is compared with other state of the art methods on real datasets. The
experiment results show that the framework performs well on the dataset with a
large number of repeated edges, but performs relatively poorly on sparse datasets.

7.2 Future work

The poor performance on sparse datasets is partly due to the lower quality of node
representations. This is due to the fact that existing graph embedding methods,
TGNs, is used directly without being adapted accordingly for the IM problem,
and TGNs itself performs poorly on sparse datasets. Therefore, a dynamic graph
embedding method more suitable for IM problems is an interesting research di-
rection.

It is also worth thinking about how to incorporate influence maximization re-
lated attributes (e.g., the current seed set) into the state. In the current framework
influence maximization related attributes are only included in the state with the
current seed set and the percentage in the state is quite low. This makes the
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influence of influence maximization related attributes on the agent’s action policy
is quite low.

In order to allow the training process to continue without being interrupted
by invalid actions (actions choose the node already in the seed set), these invalid
actions are set unselectable, instead of letting the agent learn such strategy. In
turn, the node representations are invariant, which makes the agent according
easy to ignore the differences between different states. How to change this defect
is also worth exploring. One possible approach is to give a larger negative reward
when the agent chooses an illegal action. However the size of the negative reward
needs to be tested in more experiments.

In addition, the use of Dueling Double DQN leads to unavoidable need for
training a model for each dataset. Although the use of pre-trained node represen-
tations somewhat mitigates the resulting time-consuming problem, it still doesn’t
meet practical usage requirements. Therefore, it is also worth exploring the use
of methods such as transfer learning to make it possible to obtain a model that
works for all datasets. think transfer leaning is a very promising technique for
solving this problem.
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A Non-machine Learning Influence Maximiza-

tion Methods

The non-machine learning influence maximization methods are categorized ac-
cording to the type of IM problem being solved. Since there is no research related
to dynamic non-progressive IM problem yet, there are a total of three categories.

A.1 Classic Static Progressive IM Problem

In this section, non-machine learning approaches for solving classic IM problems
will be reviewed. The main non-machine learning methods include simulation-
based approaches, proxy-based approaches, and sampling-based approaches.

The classic IM problem under IC, LT, TR, and CT diffusion models has been
proven to be NP-hard which makes related studies try to find approximate solu-
tions with theoretical guarantees.

Most approaches proposed to solve the classic IM problem are based on the
greedy framework as shown in Algorithm 3. The greedy framework iteratively puts
a node u that can provide the maximum marginal gain to the influence function
to the seed set S. According to the diffusion model, violently computing the
influence function would be time-consuming and infeasible for any real dataset, so
how to estimate the influence function efficiently has become a concern for almost
all studies.

Algorithm 3 Greedy

Input: graph: G, size of seed set: k, diffusion model: M , influence function: σ
Output: seed set: S

1 begin
2 S ← ∅ for i← 1 to k do
3 u← arg max

u∈V−S
(σG,M(S ∪ {u})− σG,M(S)) S ← S ∪ {u}

56



A.1.1 Simulation-based Approaches

Most simulation-based approaches use Monte Carlo (MC) simulation to estimate
it. Kempe et al. [6] first proposed a framework that integrates the MC simulation
into the greedy algorithm to solve the classic IM problem. They basically follow
the greedy framework shown in Algorithm 3. The difference is that they estimate
the influence function using MC simulation. To an influence function σG,M(U), MC
simulation is used to simulate the activation process and outputs the estimated
number of nodes that can be activated. To each influence function, the MC
simulation is run r times and the final results are averaged.

This algorithm has the 1 − 1
e
− ϵ approximation guarantee and runs in time

O(ϵ−2k3n2m log n). The approximation ratio is acceptable, however, the running
time is too large for practical applications. For a simple real-world dataset, it
may take days to get the result. So, many follow-up studies are proposed to
reduce running time. There are two main ways to reduce the complexity, which
are reducing the usage of MC simulations and reducing the complexity of MC
simulation.

Reducing Usage of MC Simulation Leskovec et al. [68] proposed CELF
which reduces the usage of MC simulations by designing an early stop mechanism
that identifies and prunes unimportant nodes. In an unoptimised MC simulation,
each node would need to be traversed, which is very time-consuming. In CELF,
each node has an upper bound which is its maximum marginal gain in the past
iteration. The upper bound makes it unnecessary to calculate its marginal gain
when the maximum marginal gain of an already visited node is already greater
than its upper bound. In traversing the nodes, the nodes will be ordered in de-
scending order by their upper bounds, and then the nodes will be traversed in turn.
Once this mechanism is triggered, the current iteration will be terminated and the
upper bound of each visited node will be updated to the latest marginal gain.
This mechanism has greatly improved efficiency, allowing the greedy framework
to run 700 times faster. But, it does not improve the worst-case time complexity.
On the basis of CELF, Goyal et al. [70] proposed CELF++ which further pruning
unimportant nodes by including the maximum marginal gain of the nodes that
have been visited before. Such improvements can further increase the execution
efficiency of the CELF algorithm by 35-55%.

Although CELF algorithms (including the CELF++ algorithm) can effectively
improve the efficiency, their execution efficiency on large-scale networks is still
unsatisfactory. In particular, at the initial stage, the CELF algorithm needs to
establish an initial upper bound for each node in the social network, and the
algorithm can execute very slowly when the number of nodes in the network is
high. To speed up the establishment of the upper bound, Zhou et al. [71] proposed
UBLF that can quickly establish the upper bound of each node by matrix analysis.
Nevertheless, UBLF can only be applied to the IM problem based on IC and LT
diffusion models.

Reducing MC Completely Approaches to reduce the complexity of MC sim-
ulations are less common and not mainstream. Wang et al. [72] proposed CGA
which divides the graph into communities, and then it uses the influence of each
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node within its community to determine which nodes are selected as seeds. Jiang
et al. [73] proposed a method based on Simulated Annealing (SA) to reduce the
complexity of MC simulations.

In summary, the advantage of simulation-based approaches is that the vast
majority of them are not specific to a particular diffusion model, as they are based
on simulations in a diffusion model. In addition, simulation-based approaches
usually can provide any theoretical guarantees. However, the disadvantage is that
even with the pruning technique applied, the number of MC simulations that need
to be performed is still high and the complexity of the simulations can hardly be
reduced [74].

A.1.2 Proxy-based Approaches

To avoid the high computation completely of estimating the influence function
using MC simulation, some studies proposed methods that use proxy models to
estimate the influence function. According to the survey by Li et al. [1], there
are two different types of proxy models. There are two different types of models.
The first, which transforms the IM problem into a problem of ranking the influ-
ence of users, is called the influence ranking proxy. The second, which simplifies
the diffusion model to reduce the complexity of the algorithm according to its
characteristics, is called the diffusion model reduction model.

Diffusion Model Reduction Proxy The main idea of the diffusion model
reduction proxy is to generate a proxy model to replace the original diffusion
model to reduce the complexity of MC simulation. There are two main ways to
build a proxy model. There are two main ways to build a proxy model. the first
way is to reduce the stochastic diffusion model to a deterministic model. The
second way is to limit the range of influence of a single node to a certain number
of hops. The reduction of the model is generally performed on the IC and LT
models.

The first method proposed to reduce IC model is proposed by Kimura et al.
named Shortest-Path Model (SPM) [75]. The core idea of the Shortest-Path Model
is that node u only influences node v by the shortest path. In the same paper,
they also proposed SP1M, where the restrictions on paths have been relaxed by
a jump. Among all the proxy models of IC model, the most well-known one is
MIA/PMIA model [76]. MIA limits the diffusion of influence of a node u to a
local tree structure rooted at u which changes the diffusion process from random
to deterministic which can avoid the MC simulation. The tree construction process
is as follows. They first proposed the maximum influence path MIP (u, v) which
is the path with the maximum influence probability among all paths from u to
v. Then to a node u, both an in-arborescence subgraph ending with u and an
out-arborescence subgraph starting from u are built using the Dijkstra shortest-
path algorithm. The maximum influence in-arborescence MIIA(u, θ) containing
all MIPs ended with u with propagation probabilities larger than a given threshold
θ and the maximum influence out-arborescence MIOA(u, θ) containing all MIPs
started from u with propagation probabilities larger than θ. Based on the pruned
trees, all nodes that can be affected by node u can be identified. PMIA improves
MIA by updating the arborescence subgraph after adding a node to the seed set
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which stops existing seeds from blocking the influence of future seeds. Kim et
al. [77] further reduce the IC model using a similar way to MIA named IPA.
IPA additionally prunes paths with propagation probabilities less than a given
threshold.

Chen et al. [76] proposed a proxy model of LT model named LDAG which is
similar to PMIA. Instead of arborescence subgraph, LDAG used directed acyclic
graphs (DAGs) to reduce the LT model. Each node is attached to a DAG using
the Dijkstra SP algorithm. Similarly, they also set a threshold θ to prune the
paths with low probability. The influence of nodes is estimated based on DAGs.
However, the computation of DAGs is time-consuming. They propose LDAG at
the cost of reliability but with a significant reduction in computational complexity
i.e. LDAG is sub-optimal. Goyal et al. [78] proposed SIMPATH algorithm where
the influence of the seed set can be estimated by counting paths starting from all
the nodes in the seed set which is NP-hard. In contrast to LDAG, they accelerate
counting by retaining edges with likelihood below a threshold θ.

The main disadvantage of diffusion model reduction proxy is that methods
usually can only be applied to a single diffusion model and have no expand ability,
although some methods such as [79] can be applied to both IC and LT models.
But the advantage is that they are designed to suit the characteristics of the model
making them achieve good performance.

Influence Ranking Proxy The general idea of influence ranking proxy is rank-
ing nodes according to a metric similar to the influence of users. The seed set is
generated from the ranking which makes the design of an appropriate metric cen-
tral to this type of approach.

There are a number of algorithms such as PageRank [80] and LeaderRank [81]
that already provide metrics for ranking users in social networks. The design
ideas for these metrics, such as centrality, are similar to what is needed in the IM
problem. But using these indicators directly would present two main problems
[1]. The first is the problem of influence overlap. For example, two nodes both
score high in PageRank, but there may be many duplicate users that both nodes
can influence. Since the size of the seed set is limited, it is clear that both nodes
should not be selected for the seed set. The second is that a higher level of these
metrics does not mean a higher level of impact [4, 6].

Therefore, based on these traditional metrics, many studies have proposed new
metrics that take influence into account. Chen et al. [4] proposed a degree proxy
named DEGDIS. DEGDIS solves the influence overlap problem by reducing the
influence of all neighboring nodes of a node with a certain factor when it is selected
into the seed set. Such a strategy solves the problem of overlapping influence
between neighboring nodes, but the overlap of influence between all non-directly
connected nodes remains unaddressed. Liu et al. [82] proposed a quantitative
metric, named Group-PageRank, that can efficiently estimate the upper bound of
the influence of a group of nodes by extending PageRank from a single node to
a group of nodes. They still follow the greedy framework, but instead of using
MC simulations to estimate influence, they use their proposed Group-PageRank,
which effectively improves the efficiency of their approach. The Group-PageRank
only works for IC model. Jung et al. proposed IRIE [83] which derived a system
of linear equations with n variables to estimate the influence of each node. There
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are many other studies that proposed this kind of proxy, such as SPIN [84] and
IMRANK [85] etc.

The biggest problem with influence ranking proxy is that it’s hard to com-
pletely solve the problem of influence overlap. But such a transformation can
reduce the computational complexity to a large extent.

In summary, the proxy-based approaches are effective in reducing the computa-
tional complexity and in most cases give acceptable performance results. However,
these approaches do not give theoretical guarantees and they mostly work only on
specific models and are less scalable.

A.1.3 Sampling-based Approaches

Sampling-based approaches can also be named sketch-based approaches. The gen-
eral idea of sampling-based approaches is to sample enough sketches (realizations)
from the graph and then solve the IM problem based on these sketches. This
effectively avoids the considerable time-consuming MC simulations required in
simulation-based approaches. Based on the way in which sampling is carried out,
such approaches can be divided into two categories, forward influence sampling
(FIS) and reverse influence sampling (RIS).

In FIS, the sketch is constructed by extracting a subgraph. The extraction is
guided by an instance of the influence process. Then, the influence of a seed set is
estimated by these sketches. There are many typical FIS-based approaches such
as: NEWGREIC [4], StaticGreedy [86], StaticGreedyDU [86], PRUNEDMC [87],
SKIM [88] etc. The efficiency of FIS is significantly higher than that of simulation-
based approaches and preserves approximation guarantee. However, the sampling
of FIS is based on the whole graph, the time complexity is still too high to run
on large graphs. As a result, the FIS is now no longer in use. However, inspired
by the FIS, a more efficient RIS were proposed and has successfully replaced the
RIS. Therefore, in this subsection the focus will be on the more efficient RIS.

RIS is first proposed by Borgs et al. [89]. The core idea of RIS is random
reverse reachable (RR) set. A random RR set is generated by the following ways:
(1) randomly select a node u ∈ V , (2) randomly sample a subgraph g from G, (3)
the RR set contains all the node that can reach u through a path in g. Roughly
speaking, a random RR set contains nodes that can influence u. In application,
multiple random RR sets need to be constructed. The more a node appears in
these random RR sets, the greater its ability to influence others. For IM problem,
the more nodes in a node set appear in random RR sets, the more likely it is the
optimal seed set. The general framwwork of RIS-based approaches is shown in
Algorithm 4.

Algorithm 4 RIS

Input: graph: G, size of seed set: k, number of random RR sets to generate: θ
Output: seed set: S

4 begin
5 S ← ∅ R← θ random RR sets for i← 1 to k do
6 n← node with the most appearances in random RR sets in R add n to S

remove all random RR sets in R that contain n
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The number of random RR sets to be generated is the key to balancing effi-
ciency and performance. The higher the number, the better the performance but
the higher the complexity, and vice versa. Thus, determining the amount of gener-
ation becomes critical. Borgs et al. [89] proposed a strategy that keeps generating
random RR sets until the number of nodes involved in the generation process is
greater than a predefined threshold. To more accurately establish the relationship
between the number of random RR sets and approximation loss, Tang et al. [90]
directly build the relationship in their method TIM/TIM++ which also follows
the RIS framework.

RIS-based approaches Reduced time complexity but increased space complex-
ity [1] because all random RR sets have to be stored in the memory and a large
number of samples have to be generated. Wang et al. [91] proposed a lazy sam-
pling technique (BKRIS). They first provide a low bound on the optimal number
of random RR sets which leads to a lower θ. Then, they utilize the bottom-K
minHash technique and it is not necessary to fully materialize all θ sketches in the
process of generating the seed set.

Overall, sampling-based approaches have advantages over both of the ap-
proaches already described. It can increase efficiency while having a rigorous
approximation guarantee. But there are still drawbacks that cannot be ignored.
Firstly, the space complexity is extremely high, requiring the storage of a large
number of random RR sets. secondly, the parameter setting is difficult, the num-
ber of random RR sets is difficult to determine, and even additional computational
complexity is required to determine the number of random RR sets.

A.2 Static Non-Progressive IM Problem

kempe et al. [6] proposed that the non-progressive IC and LT model can be re-
duced to a progressive model by replicating each node for every timestamp in the
time horizon under consideration, and connecting each node to its neighbors in
the previous timestamp. This way all the algorithms developed for the progres-
sive model can be used for the non-progressive model. However, replicating a
large network for each timestamp over a large time horizon will clearly make this
approach impractical for large social networks containing millions of nodes. [8]
Therefore, this approach is mainly of theoretical interest.

Devi et al. [69] proposed a model named ICIRS that can capture the non-
progressive influence diffusion process and proposed a model named TSGC that
shows a good performance on the ICIRS model. TSGC first divide the graph
into different non-overlapping communities. Each of the communities is taken as
a subgraph by ignoring the connecting links between them. The most influential
users are identified by using each node’s local and global centrality measures in
the given sub-graph of a graph. Finally, the ranking of each node is performed by
calculating the Iscorep of each node within a whole network.

The vast majority of IM-related research has focused on the study of progres-
sive IM problems, and these two methods are the ones that, to the best of my
ability, have actually proposed solutions for non-progressive IM problems.
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A.3 Dynamic Progressive IM Problem

The dynamic progressive IM problem is first proposed by Aggarwal et al. [10].
They formalized the problem and proposed heuristics to solve the problem. They
first propose a method, DynInfluenceVal, to evaluate the influence of a given set of
nodes. Then, they proposed forward-influence and backward-influence algorithms
to solve the dynamic influence maximization problem. The forward-influence al-
gorithm combines the greedy approach with forward temporal analysis in order to
determine the most influential points in the network. It first evaluates the dynamic
influence spread from each individual node by using DynInfluenceVal and nodes
are sorted. Different combinations of top-ranked nodes are tested using DynInflu-
enceVal to select the most optimal one. In the inverse algorithm, they turn the
problem into an optimization problem to obtain the best combination. Zhuang
et al. [9] assume that changes in the graph can only be detected by probing a
small number of nodes at regular intervals. So, they split the problem into two
parts to solving it. The first construct a subgraph by probing a set of nodes in the
underlying graph such that the influence diffusion can be best observed. Then,
the seed set that can maximize the influence on the underlying graph is found on
the subgraph. These two methods are single-step seeding methods that seed set is
decided at one time. Besides it, there is also a sequential seeding strategy. In this
strategy, the seeds are decided in the process of the simulation of influence spread-
ing without making any assumption about the spreading process. Michalski et al.
[92] proposed a method taking this strategy. They use dynamic graphs in the form
of snapshots and one node is determined in each snapshot. In each snapshot, the
inactivated node having the highest degree centrality along with nodes that are
activated in the last snapshot will be set as seed. An influence-diffusion model
will be used to simulate influence diffusion in this snapshot. All the nodes that
are activated after the influence diffusion process are still activated in the next
snapshot. There are some other works that proposed solutions to the dynamic IM
problem, such as [26] and [93], which are all based on traditional methods.
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