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Abstract

Recent advancements in computer vision, particularly with transformer-
based models, offer promising potential for establishing new benchmarks in
automated pain assessment through facial expressions. This thesis explores
the efficacy of the Video Swin Transformer (VST), a recent approach that
leverages temporal dynamics and offers a potential for nuanced detection ca-
pabilities of pain through varying scales. Our study involves applying the
VST and comparing its performance against other transformer-based state-
of-the-art models such as the Swin Transformer and the Vision Transformer
(ViT). Through ablation studies, we demonstrated the positive impact of in-
corporating a higher temporal depth length into the model. Additionally, we
evaluated the use of Focal loss to mitigate the issue of an imbalanced class
distribution found in the UNBC McMaster dataset, which turned out to be
insufficient. Furthermore, our research also focused on the generalizability
of our models across different datasets, highlighting the need for more di-
verse datasets in training phases. Through the extraction of attention maps,
we gained insights into the explainability, particularly the focus points of
our models, confirming their utilization of pain-related regions for decision-
making. The results were promising: our best models, VST-0 and VST-1-
TD, set new benchmarks with F1-scores of 0.56±0.06 and 0.59±0.04, respec-
tively, and achieved comparable state-of-the-art AUC scores of 0.85±0.04 and
0.87±0.03. This thesis underscores the potential of the VST architecture not
only in automated pain assessment but also its broader applicability in the
analysis of facial expressions.
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1 Introduction

Pain, defined by Merskey et al. (25) as “an unpleasant sensory and
emotional experience associated with actual or potential tissue damage, or
described in terms of such damage”, is critical in clinical diagnostics and
treatment. Effective pain assessment plays an essential role in healthcare,
that can guide treatment decisions and patient management. However, inac-
curate pain assessment can lead to serious consequences, including inappro-
priate treatment.

In recent years, automated pain assessment through tracking facial
expressions has gained more interest. Facial expressions, especially those
specific to pain, have emerged as reliable indicators of pain experience. Un-
like other modalities, such as neural activity monitoring, facial expressions
can be conveniently tracked through video processing without the need for
a complex setup. While expert assessment of pain via facial expressions is
possible, it is often costly and impractical for frequent and real-world appli-
cations. Therefore, automation presents a promising solution for continuous
and accurate monitoring of pain experiences over extended periods. Using
advanced technologies to objectively measure and interpret facial pain indi-
cators has the potential to improve patient outcomes in clinical settings.

The field of computer vision is growing quickly, with a clear shift
from traditional Convolutional Neural Network (CNN) approaches to mod-
els based on transformers. Vision Transformers (ViTs) (20) have set new
state-of-the-art performance in various vision tasks, including pain detection
and pain intensity estimation. However, ViTs are not without limitations,
such as their high computational complexity. To address these issues, new
architectures like the Shifted Window (Swin) Transformer (47) have been
developed. Swin Transformers have gained popularity due to their ability
to outperform ViTs, particularly in frame-level image processing. However,
in the context of pain, where facial dynamics play an important role, the
capabilities of the spatiotemporal counterpart, the Video Swin Transformer
(VST) (48), are particularly promising.

This research thesis aims to contribute to the field of automated pain
assessment by investigating the impact of the Video Swin Transformer on
pain detection. With the inclusion of spatiotemporal information, the VST
is a potentially better alternative to the original Swin Transformer for au-
tomated pain assessment. We hypothesized that the architectural advance-
ments of the VST over the ViT would also positively influence the pain detec-
tion performance. Additionally, this study further investigates the general-
ization capabilities of transformer-based models across different pain contexts
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and their explainability, providing a holistic understanding of transformer-
based models in automated pain assessment. As this research is centered
around the VST, further ablation studies about design and training deci-
sions are examined.

The structure of this thesis is as follows: it begins with the defined re-
search questions in Chapter 2, followed by a detailed literature review divided
into two parts. The first part (Chapter 3) provides a general overview of pain
and its assessments, while the second part (Chapter 4) discusses the relevant
literature and technical foundations crucial for our methodology. This is fol-
lowed by a description of the used datasets in Chapter 5. Subsequently, in
Chapters 6 and 7 an overview of our methods, including the model pipeline
and experiments, is presented. Finally, the obtained results are presented,
followed by a discussion and conclusion in Chapters 9 and 10.

2 Research Questions

The project’s preliminary main and sub-research questions are outlined
in this chapter. The subsequent literature study discusses the basis and
motivation, while the methodology and experiment section provide the used
methods and the planned experiments to address these research questions.
The following research questions are considered in the scope of this study:

• Main Research Question: How do Video Swin Transformers per-
form in the automated assessment of pain through facial expressions?

To investigate the performance of the Video Swin Transformer model
on this specific task, we conducted several experiments using a variety of
evaluation methods. The study also involves comparative analysis with other
state-of-the-art models like (1) the original Swin Transformer and (2) the Vi-
sion Transformer, along with results from prior research on the same task.
Additionally, the research project covers multiple ablation studies, including
the analysis of the generalizability and explainability of these models in au-
tomated pain detection. The following sub-research questions address more
specific aspects within the study’s broader scope:

• 1. Sub-research Question: How does incorporating temporal dy-
namics of pain at the video-level impact the performance of automated
pain detection compared to solely frame-level analysis?

The first sub-research question is addressed by the comparison of the
Video Swin Transformer (video-level) with its spatial counterpart, the Swin
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Transformer (frame-level). With this comparison, we can analyze how in-
cluding temporal information has an impact on automated pain detection
performance.

• 2. Sub-research Question: To what extent does increasing the tem-
poral depth input of Video Swin Transformers enhance pain detection
capabilities?

This sub-research question explores if extended temporal depth, which
captures more information about pain dynamics, can improve performance.
To answer this question, the study evaluates a Video Swin Transformer with
an extended temporal depth and compares it with the same model without
the extension.

• 3. Sub-research Question: How does the use of Focal loss during
training on the imbalanced UNBC McMaster dataset, in comparison
with oversampling techniques, impact the detection of pain?

This sub-research question explores strategies for handling dataset im-
balances, specifically with the UNBC McMaster dataset, known for its skew
in pain class distribution. To address this, the study compares the Video
Swin Transformer model trained on UNBC McMaster with two different ap-
proaches: (1) oversampling the minority pain class, a common technique
in the literature, and (2) Focal loss, another method designed to deal with
class imbalances during training. This comparison aims to evaluate the ef-
fectiveness of Focal loss and which approach achieves better pain detection
performance.

• 4. Sub-research Question: How do Video Swin Transformer-based
pain detectors generalize across different pain contexts?

To tackle this sub-research question, we are conducting experiments
using two well-known and widespread pain datasets: (1) the UNBC McMas-
ter, which focuses on shoulder pain, and (2) BioVid, which centers on heat
pain. By training the model on the UNBC McMaster dataset and after-
ward testing it on the BioVid dataset, we aim to get insights into the Video
Swin Transformer’s capability to generalize across these pain contexts. The
generalizability results of the Video Swin Transformer are also compared to
those of other state-of-the-art models to evaluate their relative performance
in cross-dataset validation.
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• 5. Sub-research Question: Can model-specific explainability meth-
ods generate plausible explanations for the outputs of Video Swin,
Swin, Vision Transformer-based pain expression detection models, and
how do the explanations generated differ among the model architec-
tures?

To address this question, we are applying model-specific explainability
techniques to explain the decisions made by these models in detecting pain
expressions. Afterwards, the generated explanations are analyzed, compared,
and evaluated for plausibility. Through this research, we try to overcome the
gap between complex model outputs and meaningful, interpretable findings
in the domain of automated pain expression detection.

3 Literature Study: Pain Assessment

In this part of the literature study, a general overview of the pain phe-
nomena and their assessments is given. First, pain and its responses are
analyzed from the biological point of view, with a focus on behavioral re-
sponses in the form of facial expressions. In this section, the Facial Action
Coding System (FACS), facial expressions associated with pain, and chal-
lenges recognizing these specific facial expressions are discussed. Secondly,
clinical pain assessment methods, which can be categorized into self-report
and observable techniques, are described, and their benefits and drawbacks
are pointed out, motivating the need for automation in this field. Lastly,
automated pain assessment is examined, showing the problem definition of
this task, its variability in approaches, and the most important challenges.
Therefore, several studies in this domain are inspected, evaluated, and clas-
sified according to the topic.

3.1 Pain responses and facial expression

As mentioned in the introduction, pain is a complex human experience
on a sensory and emotional level. In the first place, its purpose is through
psychological and physiological elements to warn and protect living beings
from actual or potential damages (66). This protective mechanism encourage
the affected one to act appropriately to minimize the harm. For instance, if
someone puts their hand on a hot stove, this individual will experience pain
throughout the heat and, hence, has a reflexive withdrawal of the hand from
the stove. In this case, with pain, the body gives a signal to act and avoid
further damage like severe burns. In general, pain can occur in several forms
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(e.g., acute, chronic, or neuropathic pain), as well its causes can differ, for
instance, by injuries, illnesses, or inflammations (56).

Despite these differences, the human body’s response to pain is often
similar, whereby the responses to pain can be mainly divided into two cate-
gories: physiological and behavioral. Physiological responses are understood
to be changes in neural activity, general vital signs, and hormonal release
(10), while behavioral responses refer to the observable actions and expres-
sions - more specifically facial expressions, body movements, and vocalization
- that individuals show in response to pain. With behavioral responses, an
individual communicates the pain and tries to get potential help, likely due
to evolutional reasons to increase the survival rate (90). Particularly facial
expressions function as a reliable indicator of pain as there are facial expres-
sions specifically associated with pain, which are also relatively consistent
over a whole variety of clinical pain situations (65) (75) (64). Studies such
as the work by Simon et al. (76) showed that there is a significant distinc-
tion between facial expressions that are pain-related and those that represent
other basic emotions. Furthermore, Kunz et al. (43) manifests the increase of
facial movements with rising pain intensity, pointing out the distinctiveness
among pain intensities.

Research related to facial expressions or facial recognition tasks is usu-
ally based on the Facial Action Coding System (FACS) released by Ekman
et al. (22). It is considered the gold standard for objectively analyzing fa-
cial expressions. More specifically, it describes facial expressions based on
Action Units (AUs) each representing different facial muscle activity and
breaking down facial expressions into unique elements of muscle movements.
In total, the coding system contains 44 AUs, by which a subset is related to
pain. This subset includes the following AUs (65): Lowering of brows (AU4),
cheeks raising (AU6), lid tightening (AU7), nose wrinkling (AU9), rising the
upper lip (AU10), and eye closing (AU43).

An example of a painful facial expression with AU6, AU9, AU43 is
illustrated in Figure 1. Important to note is that these AUs do not imply
the existence of a single, uniform facial expression of pain that remains con-
stant across all individuals and situations. Instead, individuals frequently
show partial components of this subset or mix these specific facial actions in
varying ways (80).

As a metric for the quantification of pain based on these facial ex-
pressions, the study by Prkachin and Solomon (65) introduced the Prkachin-
Solomon-Pain-Intensity (PSPI) scale. This scale, well-known in the domain
of facial pain research, offers a standardized methodology to quantify pain
intensity by evaluating specific pain-related facial AUs. In the PSPI scale,
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Figure 1. Example of pain-related Action Units - AU6, AU9, and AU43 (89)

each action unit is rated on a six-point ordinal scale, where 0 denotes absence
and 5 represents maximum intensity. The complete formula to calculate the
PSPI is shown below:

PSPI score = AU4 + max(AU6, AU7) + max(AU9, AU10) + AU43 (1)

In this formula, AU43 is binary, taking values of either 0 or 1, whereas
the other action units (AU4, AU6, AU7, AU9, and AU10) can reach up
to an intensity level of 5. Consequently, the resulting pain scale covers 16
distinct levels (3×5+1=16). Overall, the scale is an important metric in
observable pain assessment methods and is used in annotating pain intensities
within datasets of facial expressions, for example in the UNBC McMaster
pain dataset (49).

Although specific facial expressions are indicative of pain (76), recog-
nizing them is not always straightforward and provides challenges. One of
the difficulties is that pain often appears together with other emotions, lead-
ing to ambiguous or blended facial expressions (90). Additionally, individual
variation makes this challenge even more difficult (53). People differ signifi-
cantly in their facial expressiveness, with some showing noticeable pain signs
and others possibly expressing less obvious, more difficult ones. These dif-
ferences in expressiveness can make consistent and accurate pain recognition
a challenging task.
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3.2 Clinical pain assessment

Pain assessment is an essential aspect of clinical care, as it plays a
central role in diagnosing and managing several medical conditions. The
evaluation of pain often relies on the individual’s self-report, where they
consciously communicate their perception of pain (16). This self-reporting
can take various forms, including spoken or written communication and even
gestures. In clinical settings, self-reporting methods are typically categorized
into three main types: Numerical Rating Scales (NRS) (21), Visual Analogue
Scales (VAS) (54), and Verbal Rating Scales (VRS) (18).

• Numerical Rating Scales (21): This method involves using a numerical
scale to assess pain intensity. Patients are asked to rate their pain on a
scale, which is useful for maintaining pain diaries and tracking changes
over time.

• Visual Analogue Scales (VAS) (54): VAS utilizes a visual line with two
endpoints, representing ”no pain” and ”extreme pain.” This scale offers
a good level of differentiation in pain intensity and is often favored for
its simplicity.

• Verbal Rating Scales (VRS) (18): VRS assesses pain through various
verbal descriptors, allowing patients to choose words that best describe
their pain. This method is particularly useful for patients who may
find it challenging to quantify pain numerically.

Additionally, there are other pain assessment scales tailored to spe-
cific patient groups, such as the elderly (96). The choice of pain assessment
method depends on the clinical environment and the patient’s condition.
Self-report methods are often considered the gold standard for pain assess-
ment because pain is a highly subjective experience (16). Subjective assess-
ments align well with self-reporting, as they offer insights into the individual’s
unique pain experience. Moreover, self-reporting is convenient to apply and
is economically advantageous in clinical practice. However, it is essential to
acknowledge that self-report methods are not always feasible or suitable for
all patients. Self-report methods can be limited by the need for verbal com-
munication and cognitive functionality, which may be impaired in certain
patient populations (33). Moreover, these methods can introduce bias and
variance due to their goal-oriented and controlled nature (15).

As an alternative to self-reporting, observational pain assessment scales
are available. These scales rely on the observation of behavioral pain re-
sponses, such as facial expressions, movements, or vocalizations, to assess
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pain. Some observational scales also incorporate physiological responses. Ob-
servational scales are often designed for specific patient populations, includ-
ing infants and pre-verbal toddlers, elderly individuals with severe dementia,
and critically ill or unconscious patients (33)(96). Facial expression analysis,
often using the FACS, is a prevalent method in these observational scales.
They can be invaluable for patients who cannot provide self-report assess-
ments. Indeed, they also have their drawbacks. The primary disadvantage
is the effort required for training and experience to apply them accurately
(23)(37)(2). In clinical environments facing worker shortages and economic
pressures, the use of observational scales can be challenging to implement
consistently, leading to potential inaccuracies in pain assessment.

3.3 Automated pain assessment

The research in (30) showed that frequent and accurate pain monitor-
ing is essential for the patient’s outcome as it can significantly improve the
patient’s diagnosis and, consequently, lead to better treatment for each indi-
vidual. In the previous chapter, we highlighted the limitations of observable
pain scales, which often result in inaccurate and infrequent pain measure-
ments. Addressing this issue, automation presents a promising solution for
more effective pain assessment. In this chapter, we will explore the gen-
eral pipeline of Automated Pain Assessment (APA) systems, along with an
overview of previous research and design decisions.

3.3.1 Pipeline of Automated Pain Assessment system

Figure 2. Pipeline APA system

The general pipeline of an APA system includes several steps, as de-
picted in Figure 2. To begin, a signal input is required to assess pain, provid-
ing information about the pain status of the individual in question. Various
modalities, including single-modal and multimodal approaches, have been
explored in previous research. For modalities in pain assessment, physio-
logical and behavioral responses can be considered, as discussed in Chap-
ter 3.1. Behavioral responses, which can often be recorded in a contact-
less and non-intrusive manner, offer a practical advantage over physiologi-
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cal responses. Some physiological responses, such as brain activation data
(e.g., EEG recordings), are generally limited to experimental settings, ex-
pensive, and require significant preparation. Hence, behavioral responses are
frequently preferred for signal acquisition in many investigations. Notably,
facial expressions have proven to be a reliable indicator of pain (65). Con-
sequently, most of the previous approaches in APA have employed camera-
based methods to analyze pain through facial expressions (89). Due to the
practicality and performance of facial expressions as a modality for pain as-
sessment, our research also centers around this modality.

In the second step of the pipeline, the input modalities often require
preprocessing before they can be used in a classifier model. This preprocess-
ing may involve feature extraction, label preprocessing, face frontalization, or
data cleaning. Feature extraction can be often seen as a separate step in the
pipeline, as it includes often separate methods. For simpler machine learn-
ing classifiers such as Support Vector Machines (SVM) or Logistic Regression
(LR), feature extraction from images is a common requirement. Various fea-
ture extraction methods, including Histogram of Oriented Gradients (HOG)
or generic appearance features, are applied to create features that can then
be used in these classifiers. Conversely, for approaches utilizing deep neural
networks, feature extraction as a preprocessing step is often not required, as
these networks can automatically learn and extract relevant features from
the raw data.

In the classification step, there is a distinction between conventional
machine learning approaches and deep learning methodologies. We follow
this categorization as we go through representative works in the field in the
next subchapter. Among the various deep learning methodologies, attentive
models can be seen as a subgroup. The Video Swin Transformer, for instance,
falls under this category.

Another layer of granularity in classifier methodologies is based on
their input dimensions. The input dimensions can generally be categorized
into two groups: those centered on spatial aspects, which operate solely on
frame-level data, and those involving spatiotemporal methods, incorporating
a temporal dimension. The latter is especially crucial in contexts like pain
assessment, where the progression and transition of facial expressions or other
indicators over time provide valuable insights. Lastly, the output phase of
APA systems can be typically distinguished in binary detection and pain
intensity estimation.

In the following subchapter, we will discuss representative works in
the field of automated pain assessment, providing descriptions and analy-
ses of their methodologies. Note that we consider in the following chapter
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only related work working with non-attention-based approaches as attentive
approaches are discussed in the Chapter 4.

3.3.2 Representative work of non-attention-based automated pain
assessment

Non-Deep Learning Approaches. Initial developments in the field
of automated pain assessment were based on pattern matching and tradi-
tional machine learning techniques. Several studies investigated different
feature extraction methods, and these preprocessed representations were em-
ployed as inputs in subsequent machine learning models instead of raw pix-
els. In their first efforts at automating pain assessment, Ashraf et al. (5)
aimed at frame-level pain detection, recognizing the presence or absence of
pain using the UNBC McMaster shoulder pain dataset. In order to cap-
ture facial appearances and shapes as features from the images, they used
Active Appearance Models (AAM). In the final step, the extracted represen-
tations derived from the AAM were then, with a recall of 82% and a false-
positive-rate of 30%, classified into pain or no-pain categories using SVM.
Another successful study in the initial investigations was conducted by Khan
et al. (39). This research study proposed an alternative feature extraction
approach, again using the UNBC McMaster dataset. They employed the
Pyramid Histogram of Orientation Gradients (PHOG) to capture shape in-
formation, while appearance information was extracted using the Pyramid
Local Binary Pattern (PLBP). This combination is intended to yield a more
discriminative representation of facial expressions. With these extracted fea-
tures together, the study experimented with several machine learning mod-
els, including SVM, Random Forest, Decision Tree, and 2-Nearest Neighbors
(2NN). The results indicated promising performance, particularly when em-
ploying the 2NN model (96.9% accuracy). Furthermore, some works also
applied Scale Invariant Feature Transform (SIFT) to extract feature vectors.
For instance, the work by Neshov and Manolova (60), which focused on facial
expression analysis for automatic pain recognition with the same dataset as
the previous studies. The first step involved locating specific landmarks on
the face using the Supervised Descent Method (SDM). Subsequently, feature
vectors were extracted employing the SIFT, followed by an SVM classifier.
This study showed that using SIFT achieved an accuracy of ∼96%, and is
comparable to the best-performing model mentioned by Khan et al. (39).

One of the limitations of the aforementioned studies was their exclusive
focus on spatial information. These do not take the potential significance of
the temporal axis under consideration. As mentioned previously, facial ex-
pressions, especially those relating to pain, can be best understood within a
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temporal context as dynamics of facial expressions often appear across mul-
tiple frames. Recognizing this potential, Werner et al. (87) took a different
approach by focusing on the temporal dynamics of facial expressions. Instead
of just relying on frame-level features, they employed “activity descriptors”,
which are essentially sequence-level feature signals derived from facial land-
marks and head pose. Their experiments were not limited to the UNBC
McMaster database but extended to the BioVid Heat Pain Database as well.
Their temporal integration not only showed the importance of sequence-based
information but also outperformed the previous state-of-the-art methods in
pain classification on both databases. Furthermore, another approach to
use the temporal dimension was developed by Werner et al. (88). This re-
search centered on spatiotemporal pain detection using the BioVid Data Set.
Particularly, they employed optical flow analysis on a frame-by-frame basis,
allowing them to extract spatiotemporal features.

Both papers highlight the benefits of temporal integration in the field
of automated pain detection. Their developments provide a basis for our
experiments, in which we are using the Video Swin Transformer model to
further explore temporal dynamics.

Deep Learning Approaches. With the advancement of deep learn-
ing, researchers explored many novel techniques in APA systems. While some
studies applied pure Deep Neural Networks (DNNs), others (92)(72)(44) used
these networks to produce high-level representations. Often in combination
with traditional handcrafted features, these representations were then fed
into another deep neural network or traditional machine learning models for
pain prediction. This idea of combining both handcrafted and deep-learned
features was presented in the research by Yang et al. (92), where the au-
thors showed a fusion method that merges low-level local descriptors with
high-level neural network-produced features.

Research conducted by Semwal and Londhe (71) introduces a compu-
tationally efficient convolutional neural network (CNN) for pain recognition.
Unlike existing techniques that rely on handcrafted features or deep, compu-
tationally expensive CNNs, this paper proposes a shallower CNN with only
three convolutional layers. Evaluated on the UNBC McMaster shoulder pain
dataset, the approach achieved 93.34% accuracy in multiclass pain recog-
nition, outperforming handcrafted feature-based methods and other deeper
CNNs in performance.

The study by Tavakolian and Hadid (78) presents a spatiotemporal con-
volutional network designed for pain intensity estimation from facial video
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sequences. The presented network captures various temporal facial expres-
sion variations using 3D convolutions with differing temporal depths. Exper-
imental results on the UNBC-McMaster Shoulder Pain and BioVid datasets
demonstrate the strength of including temporal information. Notably, in
their ablation studies, they found out that their model with a temporal depth
of 32 outperformed the ones with a lower number. Investigations further into
the temporal aspect were made by Rodriguez et al. (67), highlighting the
effectiveness of Long short-term memories (LSTM) in pain detection. In this
study, a two-step model was applied starting with a CNN model captur-
ing first the spatial information. Following this, an LSTM model processed
the CNN’s output, covering the spatiotemporal relationships in the image
sequences with a temporal depth of 16 frames. It is interesting to note
that although the CNN performed admirably on its own, the addition of the
LSTM model increased the area under the curve (AUC) measure by about
4%. This shows again the potential of spatiotemporal information in the field
of automated pain assessment.

Other representative work focusing on attentive transformer models,
like Vision Transformers, will be elaborated on in the following chapter.

4 Literature Study: Methodology

The relevant studies regarding our methodology are covered in detail
in this section of the literature study. Since the Vision Transformer and the
Video Vision Transformer (ViViT) are the predecessors of the Swin trans-
former family and share similar principles and characteristics, it is necessary
to understand their features and capabilities. Following the review of the
ViT design and its associated work with automated pain assessment, we will
continue to emphasize the original Swin Transformer architecture and its ben-
efits over the ViT. This will then form the basis of an analysis of the Video
Swin Transformer. Following, the theoretical background and associated re-
search on cross-dataset validation within this field will be explored in order
to address the cross-dataset validation in our experiments. Additionally, in-
terpretability and explainability are discussed, together with model-specific
explainability methodologies, which provide the framework for the fifth sub-
research question. Last but not least, we will talk about imbalanced class
distribution in datasets, which is common in the facial expression domain,
and how to handle this problem.
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4.1 Vision Transformer and Video Vision Transformer

Natural language processing (NLP) had a revolution with the intro-
duction of transformer architectures, which were introduced in the paper by
Vaswani et al. (81). However, the first time the power of transformers was
successfully used in the field of computer vision was with the Vision Trans-
former (ViT) (20). Its performance was shown to not only be comparable but
often outperform the previous state-of-the-art architectures, which were pri-
marily based on CNNs, or Recurrent Neural Networks (RNNs), in a variety
of computer vision tasks. The advantage of ViT is, unlike CNNs and RNNs,
its capability to process global characteristics of images using self-attention
mechanisms, which more efficiently capture long-range relationships in data.
In the next subchapter, we will give a technical overview of the ViT, including
its spatiotemporal counterpart, the ViViT.

4.1.1 Technical overview

Figure 3. Overview of the ViT architecture (20)

The ViT is an adapted version of the transformers used in NLP to
be used for image data. An overview of the ViT architecture is illustrated
in Figure 3. The entire architecture is displayed on the left, while a more
detailed cutout of the transformer encoder block is displayed on the right.
As can be observed, the whole architecture consists of several steps, which
are explained as follows:
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Image patch division, linear projection, and embeddings. In
the context of NLP, transformers work on a sequence of words. In order to
apply this idea to computer vision, an image is processed by dividing it into
fixed-sized patches throughout. The patch division is required because, when
combined with the transformer design, which operates globally, treating every
pixel as a patch would cause a computational overload. In the second stage,
these patches are flattened into a single vector termed patch embeddings,
which are obtained by concatenating the channels of all the pixels in a patch
and then linearly projecting it to the required input dimension. This series
of embeddings is preceded by an embedding of a learnable class. Moreover,
positional embeddings are utilized to represent local context because self-
attention is computed globally inside transformers. This set of embeddings,
which now includes both the content and the spatial information of the image,
is given into the transformer encoder.

Transformer block. The patch embeddings will be passed into a
transformer encoder block as input in the next stage. Notably, there may
be many following transformer encoders across the entire ViT architecture.
One encoder block (see right side of Figure 3) consists of a multi-headed
self-attention (MSA) and a multi-layer perceptron (MLP) block which in-
troduces two layers with Gaussian Error Linear Unit (GELU) non-linearity.
Additionally, each MSA and MLP block has a normalization layer in front of
it, which improves the efficiency of deep encoding transformer learning (85).
A residual connection follows each of these blocks, adding the layer’s input
and output (7).

Since the scaled dot-product attention (81) (see left side of Figure
4) is a component of the multi-headed attention block, it is crucial to un-
derstand the idea of self-attention before moving on to it. The self-attention
can be calculated using the Equation 2:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

The attention mechanism makes use of three variables: Query (Q),
Key (K), and Value (V), as can be seen in the formula. Each of these three
variables —which are matrices— was calculated from an input vector and
three corresponding trained weight matrices. The dot product of the Query
and Key matrices, scaled by the root of their length

√
dk, and multiplied by

the Value matrix are used to calculate the self-attention’s final output.
Returning to the multi-headed attention block, its structure is de-

picted on the right side of Figure 4. It uses multiple self-attention layers
parallel, each containing a set of training matrices. The self-attention layers’
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Figure 4. Scaled Dot-Product Attention (l) and Multi-Head Attention (r) (81)

outputs are concatenated, and the resulting matrix is multiplied by another
training matrix to produce the output. The underlying idea of multi-head
attention is to enable varied attention to different parts of the sequence with
each pass.

Classification head. Lastly, a classification head is attached to the
transformer encoder’s output. During pre-training, an MLP with a single
hidden layer, and during fine-tuning, a single linear layer construct the clas-
sification head. It is required for mapping the learned feature representations
to task-specific outputs, such as class labels in image classification tasks.

Video Vision Transformer. To be able to handle spatiotemporal
data like sequences, which include both a time dimension and spatial dimen-
sions, the Video Vision Transformer was developed as an adaptation of the
ViT. The ViViT was published by Arnab et al. (4) and works similarly to
the ViT along with some adaptations in the embeddings and the transformer
encoder. Firstly, regarding the authors, embedding spatiotemporal data can
be approached via Uniform Frame Sampling or Tubelet Embedding. By in-
dependently embedding uniformly sampled frames, the former concatenates
these tokens together to create a large 2D image, while the latter expands
embedding to 3D by linearly projecting spatiotemporal ”tubes,” which are
similar to 3D convolution. Secondly, the research paper describes four spa-
tiotemporal model variations: (1) Spatio-temporal attention model which
processes all spatiotemporal tokens together (2) Factorised encoder model
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that employs separate transformer encoders for spatial and temporal inter-
actions (3) Factorised self-attention (4) Factorised dot-product. The four ap-
proaches can be observed in Figure 5. It was found that the spatio-temporal
attention model is the most straightforward approach and outperformed the
others, although it needs to be considered that the computational complexity
is quadratic.

Figure 5. Spatiotemporal model design variations for ViVit (4)

4.1.2 Related work using ViT and ViViT

Previous research on the ViT and the ViViT showed the potential of
this architecture and the used attention mechanism. Starting with the foun-
dational paper of the ViT (20), the model marked a shift in image recognition
tasks by achieving state-of-the-art results on benchmarks like ImageNet with
88.55% accuracy and CIFAR-100 with 94.55%. Similarly, the original paper
of the ViViT model (4) has shown competitive performance on large-scale
video datasets such as Kinetics 600 with a Top-1 accuracy of 85.8%. Both,
the ViT and its spatiotemporal counterpart, show the potential to outper-
form previous non-attentive architectures like ResNet or EfficientNet.

Facial expression recognition and AU detection tasks are related to au-
tomated facial pain assessment. Moreover, the application of the ViT and
ViViT models on these tasks has been as well explored with promising out-
comes. The approach by Sun et al. (77) uses ViTs for part-based face recog-
nition. They introduce a so-called part fViT pipeline, using a lightweight
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CNN to predict facial landmarks, and then apply ViT on patches around
these landmarks for enhanced face recognition. This method achieves state-
of-the-art accuracy on multiple benchmarks, for instance on CFP-FP with
an accuracy performance of 99.21%. Similarly, but on a spatiotemporal level,
the study by Tu et al. (82) demonstrated the effectiveness of ViViTs in AU
detection, introducing an approach that integrates the Video Vision Trans-
former with a CNN backbone to efficiently capture temporal facial changes.
This hybrid model not only significantly outperformed the baseline model of
the Affective Behavior Analysis in-the-wild (ABAW) competition in 2023 by
a notable 14% but also showed comparable results with the top-performing
teams from the previous year’s competition. Another approach emphasizing
the aspect of multiple scales for facial expressions, which is also an important
characteristic of our used Video Swin Transformer, was introduced through
the Progressive Multi-Scale Vision Transformer (PMVT) byWang et al. (84).
The proposed architecture, which is at its core based on the ViT, includes a
multi-scale self-attention mechanism that can flexibly attend to a sequence
of image patches to encode the important features for AUs. Experimental
results show that PMVT improves the accuracy of several AUs on the BP4D
and DISFA datasets.

For the direct application of ViT in pain assessment, the research by
Xu and Liu (91) was one of the first focusing on pain estimation from facial
expressions using transformer-based architecture. The reported approach in
this work focuses on end-to-end pain intensity estimation on the spatiotem-
poral level and consists, similar to the mentioned studies on AU detection
(77) (82), of both a CNN and a transformer. Before being processed by
a transformer model that predicts the pain intensity, pain-related features
are first recognized and retrieved from the input images using a ResNet
architecture with bottleneck attention modules. One of their findings was
that a pure transformer alone does not work for pain assessment. In fur-
ther developments, Fiorentini et al. (27) have challenged the findings by
Xu and Liu (91) regarding the ineffectiveness of pure transformers in pain
assessment. Introducing a fully attentive pipeline using ViT on spatial and
ViViT spatiotemporal levels, their work has set new benchmarks in the do-
main. Trained on the 3D-registered and frontally-aligned UNBC-McMaster
dataset, their best models demonstrated state-of-the-art performance in bi-
nary pain detection. Both ViT and ViVit could achieve F1-scores of 0.55.
Interestingly, their ViViT, which incorporates temporal information through
uniform frame sampling, did not outperform its spatial counterpart. This
suggests that the spatiotemporal approach in transformer models may not
be more effective than the spatial aspect alone.
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4.2 Swin Transformer

Even though the ViT is highly effective at several computer vision
tasks, it has drawbacks. ViTs, for example, have difficulty processing images
with a high resolution, mainly due to the fact that their computational com-
plexity is quadratic in relation to the image size. This means that processing
images using a ViT becomes inefficient for high-resolution tasks. Addition-
ally, the fixed scale tokens in ViTs may perform worse in some applications
since they might struggle for tasks involving visual features of different scales.
As a successor of the ViT and to address the mentioned problems of it, the
Swin Transformer was proposed by Liu et al. (47). It achieves better perfor-
mance on many computer vision tasks and is designed with greater efficiency.
The Swin Transformer ensures a more flexible and sophisticated processing
of images by taking into account the variable scales of visual features rather
than handling visual data uniformly. These qualities may also be beneficial to
our automated pain detection task. Facial expression, including pain-related
expressions, may differ significantly in size and intensity. For example, a
small facial twitch or a tiny movement of the eyebrow could be signs of pain.
Because of ViTs’ fixed scale token limitation, these nuances may not be fully
captured. Since the Swin Transformer can adapt to different visual scales,
it may be able to detect pain more accurately and precisely by registering
even the smallest movements and facial expressions. The following chapters
will go deeper into the Swin Transformer’s technical overview, discussing its
design and functions. We will also discuss relevant works and contributions
in general and in the field of APA.

4.2.1 Technical overview

An architecture overview of the Swin Transformer is given in Figure
6. The Swin Transformer starts by dividing an input RGB image into non-
overlapping patches, just like its predecessor, the ViT. Every one of these
patches is seen as an individual token. The features of a token are obtained
by concatenating the RGB values of its raw pixels. Selecting a 4x4 patch size
results in a feature dimension of 4x4x3 = 48 for each patch. This raw-valued
feature is projected by a linear embedding layer to an arbitrary dimension,
represented mathematically by ’C’. The first step of the procedure includes
this transformation via linear embedding, and two Swin transformer blocks
come after it. Looking at the architecture in more detail shows that the
”Patch Merging” block and the ”Swin Transformer Block” are the two com-
ponents of each stage that comes after the first stage. These blocks represent
the two key concepts, hierarchical feature maps and shifted window attention
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which ensure the adaptive and efficient processing of an image.

Figure 6. Technical overview of the Swin Transformer architecture (tiny) (47)

Patch merging. The patch merging block in the Swin Transformer
architecture represents how the hierarchical feature maps concept is imple-
mented in the Swin Transformer. The idea behind the concept is to create a
hierarchy of feature representations from the input data by gradually merging
and down-sampling successive feature maps. This allows us to capture both,
fine-grained details and larger abstractions. While ViT is primarily based
on consistent low-resolution feature maps across its architecture, the hierar-
chical structure of the Swin Transformer allows it to learn a wider range of
visual features. Looking more detail into the implementation of this concept,
downsampling the feature maps by a factor of ’n’, the patch merging process
concatenates the features of each group of n x n neighboring patches. Ref-
erencing Figure 7, the patch merging mechanism can be divided into three
distinct steps for an example where n=2 and 4x4 patches (a): First, the in-
put image patches are separated into multiple groups, with 2x2 neighboring
patches in each group (b). Second, the 2x2 patches are concatenated along
the depth dimension inside each group (c). After each group’s depth-wise
stacking is completed, the results are combined to create the downsampled
feature map (d). After this operation, the input is downsampled, changing
from its original form of H x W x C to (H/n) x (W/n) x (n²*C).

Swin Transformer Blocks. Further to the patch merging, the Swin
Transformer presents another block designed to enhance its attention mech-
anism. This can be achieved through changing the ViT’s original attention
module. The Swin Transformer block is made up of two separate blocks, as
Figure 6 (b) shows. The structure of each of these subunits consists of a
normalization layer, an attention module, another normalization layer, and
an MLP layer. The difference appears in the kind of attention module that
is used. A window multi-head self-attention (W-MSA) module is included in
the first transformer block, and a shifted window multi-head self-attention
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Figure 7. Patch merging process

(SW-MSA) module is used in the second block.
While the standard multi-head self-attention, used by ViT, operates

under a global self-attention - considering interactions between all patches
against one another - the W-MSA version restricts this attention to each
respective patch window (see Layer 1 in Figure 8). This specific method
ensures that the computational complexity of the W-MSA is linear in respect
to the number of patches, or, alternatively, the size of the image. Compared
to the quadratic complexity of the conventional multi-head self-attention, this
offers a notable optimization. Nevertheless, there is a specific problem with
using window-based self-attention alone. There is potential that reducing
self-attention within each window will reduce the network’s overall modeling
performance. To be able to get around this constraint, the Swin Transformer
uses the second block — which has a SW-MSA module — after the first W-
MSA module.

Figure 8. The shifted window approach for self-attention computation (47)

The SW-MSA provides cross-window connections as part of its proce-
dure. This is achieved by shifting the windows by a factor of W/2, where W
is the window size, towards the lower right corner (see Layer 1+1 in Figure
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8). But this moving procedure leaves patches that are without a window. A
so-called cyclic shift approach is implemented into the Swin Transformer to
compensate for the imbalance produced by the shift. Here, the remaining
patches are moved to windows without a full patch set. Notably, with this
cyclic shift, a window may now include patches that were not adjacent to
the original feature map. In order to preserve the integrity of the attention
mechanism, self-attention is limited to neighboring patches by masking these
areas. The cyclic shift process is shown in Figure 9.

Figure 9. Cyclic shift process (47)

4.2.2 Related work using Swin Transformers

The Swin Transformer represents a significant advancement, building
upon the foundation set by the ViT. This is not just theoretical; it has been
also proven in practice, for example in the original paper (47), the Swin
Transformer achieved a comparable state-of-the-art Top-1 accuracy of 87.3%
on the ImageNet dataset.

Shifting the focus to the field of facial expression recognition, the Swin
Transformer has shown promising potential as well. The study by He et
al. (32) is particularly notable, using the Swin Transformer to classify both,
macro and micro facial expressions. This research highlights the model’s
capability to capture fine-grained facial expressions, as shown by its better
performance over the MEGC 2022 spotting baseline and comparable results
in the MEGC 2021 task. Additionally, the research conducted by Kim et al.
(41) explores a multi-modal Swin Transformer approach applied to the Aff-
Wild2 dataset, which integrates visual, temporal, and audio data for facial
expression recognition. Although their approach does not only include facial
expressions, the potential of the Swin Transformer could be shown with a
good F1 performance of 0.357 on the Aff-Wild2 dataset.

In the more specific automated pain assessment, the role of the Swin
Transformer, though in its first stages, is beginning to be recognized. One
of the few studies is from Nerella et al. (59), demonstrating an end-to-end
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framework employing the Swin Transformer for identifying pain-related AUs
within the Pain-ICU dataset. The Swin Transformer’s strength is highlighted
by its outperformance of the ViT, achieving an F1-score of 0.88 and an
accuracy of 0.85. Further research in this area is made in a study by Yuan
et al. (94) focused on pain intensity recognition from partially occluded
facial expressions, a common challenge in intensive care settings. The study’s
approach, involving the pre-training of the Swin Transformer with masked
faces in the UNBC dataset, resulted in a good performance in binary and
four-level pain intensity measurement tasks with accuracies of 97.38% and
95.25%.

4.3 Video Swin Transformer

The Video Swin Transformer published by Liu et al. (48) is an exten-
sion of the original Swin Transformer architecture, specifically adapted to
handle video data. Building upon the foundations given in the original Swin
Transformer paper (47), this variant introduces additional mechanisms for
managing the temporal dimension in video data. Due to the additional tem-
poral dimension, the amount of processing data is significantly higher than
in the 2D version, making the locality inductive bias in its self-attention
module even more important. Compared to approaches that use a global
self-attention module on video data, such as in the ViViT, the VST is very
beneficial regarding the computational and memory aspects. In the subse-
quent subchapters, the technical overview of the architecture is given, point-
ing out the differences to the original Swin Transformer.

4.3.1 Technical overview

Figure 10. Technical overview of the Video Swin Transformer architecture (tiny) (48)

An overview of the Video Swin Transformer architecture is presented
in Figure 10. In terms of the input, the Video Swin Transformer processes
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input videos defined by dimensions T × H × W × 3, where T represents the
number of temporal frames and H × W × 3 specifies the pixel dimensions.
Each 3D patch of size 2 × 4 × 4 × 3 is considered as an individual token,
leading to a total number of T/2 × H/4 × W/4 3D tokens, with each patch
includes a 96-dimensional feature. These features are then as well linearly
embedded into a dimension denoted by ’C’. It is important to note that the
patch merging does not downsample in the temporal dimension and, hence,
focuses only on the spatial level. The patch merging process in each stage
otherwise works identically to the original Swin Transformer. Furthermore,
the architecture introduces new MSA-3D blocks where the W-MSA and SW-
MSA of the original structure are replaced by their 3D counterparts. In
this setup, the multi-head self-attention is applied to non-overlapping 3D
windows.

Figure 11. Example of 3D shifted windows (48)

As an example, consider an input consisting of 8×8×8 tokens. If we
apply a window size of 4×4×4, it results in a total of 2×2×2=8 windows in a
given layer l, where each window independently undergoes MSA. This step is
visually represented in Figure 11. Regarding the shifted window mechanism,
the 3D windows are shifted along the temporal, height, and width axes. The
shift is quantified by the formula (P/2, M/2, M/2) tokens, where P and M
represent dimensions of the shift in the temporal and spatial axes, respec-
tively. For instance, in layer l + 1 of the example, the windows are shifted
by (2, 2, 2) tokens, leading to a new configuration of 3×3×3=27 windows.
However, to maintain computational efficiency and neighboring patches, the
same masking technique is applied as used in the original Swin Transformer.
Following this strategy, the number of windows for computation remains with
8 windows.
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4.3.2 Related work using Video Swin Transformers

In terms of related work, the original paper of the VST (48) demon-
strates its effectiveness on benchmark datasets and compares it with the
ViViT model. For example on the Kinetics 600, the Video Swin Transformer
could reach a state-of-the-art accuracy of 86.1%, which is an improvement
compared to the ViViT on this dataset (85.8% accuracy). However, there
appears to be a lack of research on applying the VST to facial expression
recognition or automated pain assessment tasks, highlighting the need for
further exploration in this area.

4.4 Cross-dataset validation and generalization

In data-driven research, particularly in the development of machine
learning models, a common practice is to use a single dataset where both
training and test data originate from the same source domain. This way,
however, might create a significant bias since models that are trained and
optimized on a particular domain or context might not be able to generalize
well across multiple datasets for the same task. Recognizing this challenge,
the cross-dataset survey by Zhang et al. (95) attempts to address it by giving
an overview of different cross-dataset generalization methods. Cross-dataset
validation is a notable technique among these methods. Using this technique,
a model trained on one dataset (training dataset) is tested against other
datasets (validation datasets) that were not used for the model’s training
but are from a different domain or context. This procedure is important
for assessing the model’s robustness and generalizability in different settings,
and for making sure the model continues to function well and be reliable even
when it encounters data that is not from the training set.

Cross-dataset validation is also important in the specific case of auto-
mated pain assessment. Different situations and causes of pain may appear
as different types of pain, such as shoulder-related pain (UNBC McMaster)
versus heat-related pain (BioVid). Furthermore, datasets can have varia-
tions not only in pain contexts but also in their setup and design. While the
UNBC McMaster dataset is a clinical dataset, primarily consisting of video
recordings of patients with shoulder pain under clinical examination condi-
tions, the BioVid heat pain dataset represents an experimental setup, where
participants are exposed to controlled heat stimuli to trigger pain responses.
Such variability is a significant challenge for automated pain assessment sys-
tems, making cross-dataset validation an important part of assessing their
adaptability to different pain contexts. Gkikas and Tsiknakis (31) presents
in their survey a significant issue in the field of automated pain detection -
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most research is based on a single dataset, leading to a lack of information
about the robustness and domain generalization of proposed approaches.

To address these gaps, some studies have investigated cross-dataset
validation in the pain assessment field. For instance, Dai et al. (17) exper-
imented with combining pain and emotion-detection datasets to develop a
real-time pain assessment system with enhanced generalization capabilities.

Furthermore, the research conducted by Othman et al. (62) highlights
the need for more comprehensive studies to enhance the robustness of pain
assessment models. The authors advise using multiple datasets in the facial
pain detection field due to the reasons mentioned earlier. In their study, they
investigate the generalization capability of several pain recognition models by
applying cross-dataset validations with two benchmark pain datasets, BioVid
and X-ITE. Their results demonstrated that their models performed well in
cross-dataset validation. However, it is important to note that both datasets
are experimental datasets.

Another relevant research about cross-dataset validation by Prajod et
al. (63) focused on the challenges when testing models trained on clinical
(UNBC McMaster) on experimental (BioVid) pain datasets and vice versa.
The clinical pain model, trained on the UNBC McMaster, although per-
forming robustly within its dataset, demonstrated a considerable decline in
performance when evaluated against the experimental BioVid dataset. In
contrast, the experimental pain model showed consistent performance across
both datasets, suggesting its better generalization capabilities.

4.5 Interpretability and explainability

The interpretability of models and the explainability of their predic-
tions are important research fields in regard to the trust and reliability of
applications, especially within the medical sector. Interpretability refers to
the extent to which the internal mechanics of a machine or deep learning
model can be understood by humans (40). Explainability, on the other
hand, involves the ability to explain the outcomes of these models in human-
understandable terms (57). In the medical field, where decisions can have
significant consequences on patient health and treatment outcomes, the im-
portance of these concepts is significant. Trust in AI systems by healthcare
professionals and patients is based on the transparency and comprehensibility
of the decision-making process.
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4.5.1 Model-agnostic vs. model-specific explainability

Deep learning systems, such as VST, are often not inherently inter-
pretable. This limitation leads to a greater focus on the explainability
of specific predictions from these models. When addressing explainability,
a distinction is made between model-agnostic and model-specific methods.
Model-specific methods are tailored to the architecture of a particular model,
providing insights into its unique decision-making process. For instance, in
transformer-based models, attention visualization is a common approach. By
visualizing the attention maps, which show how different parts of an input
image receive varying degrees of attention from the model, it is possible to
identify the important location on the image during decision-making. In
contrast, model-agnostic methods offer a more flexible solution, which can
be applied across various machine learning models regardless of their spe-
cific architecture. However, model-agnostic methods like perturbation-based
techniques (28)(29) or SHAP (51) often require significant computational
resources to generate heatmap visualizations and may not always offer the
same level of accuracy as model-specific methods (13). Consequently, our
focus will be on specific transformer-based attention visualization methods,
given our use of these models.

In the following sections, we look into the existing methods for extract-
ing attention visualizations specifically tailored to ViT and Swin Transformer
models. Furthermore, their application in related work on automated pain
assessment is described, followed by their findings from a qualitative analysis
of the heatmaps.

4.5.2 Extraction of attention visualization from transformer-based
models

Visualization techniques for explaining predictions of transformer-based
models are relatively underexplored compared to other architectures. The
first attempts to visualize attention in ViT models are adapted versions
from techniques originally developed for CNNs, such asGradient-weighted
Class Activation Mapping (Grad-CAM) (70) and Layer-wise Rele-
vance Propagation (LRP)(6). However, both Grad-CAM and LRP are
not specific to transformer architectures and do not explicitly consider the
transformer’s unique attention mechanisms. While they have been success-
fully applied in automated pain assessment using non-transformer models
(14, 86), their adaptation to transformer-specific models in this field is lim-
ited.

A significant advancement in the explainability of transformers, partic-
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ularly ViT, came with the work of Abnar et al. (1), who introduced a more
effective technique known as Attention Rollout. This technique works un-
der the assumption that self-attention within transformers is linearly stacked
and uses the aggregation of attention scores across different layers. This
method has also been applied in automated pain assessment research. Some
work related to automated pain assessment (34) (27) extracted the attention
out of the models through Attention Rollout and visualized them. Fioren-
tini et al.(27), for instance, extracted attention maps from their ViViT model
trained on automated pain detection; some of these attention maps are shown
in Figure 12.

Figure 12. Example attention visualization of ViViT by Fiorentini et al.(27)

However, this method, despite its advancements, has limitations. It pri-
marily focuses on the self-attention mechanism of transformers and overlooks
other components of the architecture. Moreover, it lacks class discriminative
capabilities, meaning it cannot discern whether the contribution of attention
is positive or negative. Building upon the foundation laid by this attention
visualization technique, Chefer et al. (13) proposed an improved Atten-
tion Rollout. They include additional transformer-specific elements, using
as well gradients of the attention matrix to generate the attention visualiza-
tion. Their method involves multiplying the relevancy matrix element-wise
with the attention matrix gradient and consider the positive value, although
in later work by Chefer et al. (12) it was stated that the relevancy matrix
can be simply replaced by the attention matrix itself. Furthermore, Chefer et
al. (13) conducted a performance analysis, employing perturbation and seg-
mentation tasks to evaluate the efficiency of their approach. Their findings
indicate a significant improvement over previous methods.

While these methods were mainly centered around the ViT, there is a
noticeable gap in the literature regarding the extraction of attention maps
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from successors and variations of the ViT, such as the Swin Transformer.
Due to the architectural differences, including the hierarchical structure, ex-
tracting attention maps through Attention Rollout is more challenging in
this case. Nevertheless, the application and adaptation of this improved
Attention Rollout on the Swin Transformer were approached in the
work by Nguyen et al. (61). They investigated two main differences in the
architectures that needed to be considered when applying the method to
the Swin Transformer. The first step handles the hierarchical structure of
the Swin Transformer, which is achieved by using the row average for the
merging patch as the value for the merged patch’s corresponding row. This
allows one to determine the product of the score matrix of two successive
layers with differing feature map sizes. Second, the previous Rollout meth-
ods focused only on combining the tokens in a linear way and ignored other
elements, such as linear transformation, because they treated each token
equally. But in the Swin Transformer architecture, layer normalization is
used, which means that each token’s value is divided by its standard devia-
tion. Therefore, Nguyen at al. (61) considered the statistical differences of
each token in normalization layers by dividing each column of the resulting
matrix by the standard deviation of the corresponding token. With their
adapted variant, they get reasonable attention visualizations for the Swin
Transformer, and, furthermore, they applied the adapted version to the ViT
model, which also improved the output by reducing noise. To date, there
is no known research that has extracted attention visualization from Swin
Transformer for automated pain assessment or similar research fields.

4.5.3 Qualitative analysis of attention visualization in automated
pain assessment

As mentioned in the subchapter before, related work has already suc-
cessfully extracted attention visualization maps from prediction in automated
pain detection through facial expressions.

For instance, attention maps from specific frames predicted by Fioren-
tini et al.’s model (27) effectively focus on critical pain-related facial areas
such as the forehead, brows, eyes, and cheeks. This focus aligns with specific
AUs (AU4, AU6, and AU43) associated with pain expressions, demonstrat-
ing that the model is not only learning to identify random facial features but
is actually recognizing pain-relevant regions.
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4.6 Imbalanced class distribution in datasets

Imbalanced class distribution in datasets is a common challenge in
machine learning that should be considered during training models. This
imbalance happens when the number of instances of one class significantly
outnumbers that of another, resulting in a skewed distribution that can have
a great effect on the learning process and decrease model performance. This
is particularly problematic in the field of facial expressions, for instance, in
the UNBC McMaster dataset, which includes pain expressions. Difficulties
such as the rarity of actual pain expressions within a video sample, combined
with the high cost and difficulty of accurate frame-level labeling, contribute
to the imbalance in this sector. However, numerous techniques, both at
the data and classifier levels, were developed to reduce the negative effects
of imbalanced datasets. The next subsection briefly describes two common
data-level approaches, undersampling and oversampling, as well as their ap-
plications in the field. Furthermore, a more recent classifier-level technique,
the Focal loss (46), is introduced, along with its potential in the domain of
automated pain assessment.

4.6.1 Undersampling and oversampling

Random undersampling Random undersampling involves reducing the
number of samples in the majority class. This approach can speed up training
by decreasing the dataset size, which is particularly useful for large datasets.
It also has significant drawbacks, including the loss of valuable information
and the potential to worsen existing imbalances, making it less suitable for
extreme cases of imbalance as it the case, for example, in the UNBC Mc-
Master dataset. Nevertheless, it was also applied in studies (9, 67) using this
pain-related dataset, but mainly for pain intensity estimation tasks.

Random oversampling In contrast, random oversampling increases the
number of examples in the minority class by randomly duplicating them.
This method is straightforward to implement and is particularly useful in
smaller datasets. Despite its advantages, it can lead to overfitting and may
result in a loss of generalization capability.

Nevertheless, recent studies consistently demonstrate the superiority of
oversampling in managing dataset imbalances, for example in the work by
Buda et al. (11) with CNNs. Oversampling has been shown to effectively
mitigate imbalance without causing overfitting and outperforming under-
sampling and other methods. Another study on the effectivity of over- and
undersampling was done by Mohammed et al. (58), which also indicated the
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superiority of the oversampling method.
In the field of automated pain assessment, oversampling has been suc-

cessfully applied in several studies (8, 52) using the unbalanced UNBC Mc-
Master dataset, as well as in the state-of-the-art study by Fiorentini et al.
(27) on pain detection. However, comprehensive investigations addressing
the specific imbalances of the UNBC McMaster dataset remain scarce and
inconsistent across studies.

4.6.2 Focal loss

Looking at the drawbacks of the previous methods, Focal loss (46)
presents an alternative to traditional sampling methods. Focal loss modifies
the Cross-entropy loss function to focus more on hard-to-classify examples,
which are typically from the minority class. By decreasing the relative loss
for samples from the majority class and focusing more on minority examples,
Focal loss aims to improve the robustness of the model without requiring
changes in the class distribution of the dataset.

Mathematically, the Focal loss can be expressed as:

FL(pt) = −αt(1− pt)
γ log(pt) (3)

,where pt is the model’s estimated probability for the class with label y = 1,
αt is a weighting factor for the class, and γ is a focusing parameter that
adjusts the rate at which easy examples are down-weighted.

The method was initially introduced by Lin et al. (46) to address
the significant challenge of foreground-background class imbalance in object
detection tasks and surpassed the performance of previous state-of-the-art
methods. Since its introduction, Focal loss has also been adapted for use
in classification problems beyond its original application in object detection.
Particularly, it has been successfully applied in medical image analysis, where
imbalanced data is a common issue. For instance, in the study by Duyen et
al. (45), Focal loss demonstrated substantial promise in enhancing auto-
matic skin cancer classification systems, which also suffer from heavy class
imbalances. Similarly, the technique has been employed in lung nodule clas-
sification, another area affected by class imbalance. Tran et al. (79), for
example, applied Focal loss combined with data augmentation techniques,
achieving an accuracy of 97.2%. This result is comparable to other state-of-
the-art methods, which highlights the potential of Focal loss to migate the
challenge with imbalanced datasets. Despite these successful applications,
the use of Focal loss in automated pain assessment, particularly in imbal-
anced scenarios such as those presented by the UNBC McMaster dataset,
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remains unexplored. This gap in the literature suggests a promising area
for future research, as Focal loss could be an effective alternative to current
techniques such as oversampling. In the scope of this research, this gap is
tried to be filled by applying the Focal loss in automated pain detection.

5 Data

To provide an overview of the data used in our research, the two
datasets, the UNBC McMaster and the BioVid Heat Pain dataset, are dis-
cussed and analyzed in this chapter.

5.1 UNBC McMaster

The UNBCMcMaster Shoulder Pain Expression Archive Database (50)
was created by researchers from the University of Northern British Columbia
and McMaster University. In our research, this dataset plays an essential role
in training and evaluating the performance of the Video Swin Transformer
and its comparison models. This database is among the most widely used
datasets in pain recognition research due to its rich annotations and focus on
shoulder-related pain expressions. An example image sequence of the dataset
is provided in Figure 13.

Figure 13. Data example of the UNBC McMaster dataset(50)

Looking at the dataset organization, it contains video recordings of 25
patients who experienced shoulder pain and participated in active and passive
range-of-motion tests for both affected and unaffected shoulders. The par-
ticipant demographic is balanced with 12 male and 13 female subjects. No-
tably, the dataset is limited to visual facial expressions and does not include
multimodal data. It consists of 200 video sequences with a total of 48398
FACS-coded frames. These frames are annotated with the PSPI scores and
include sequence-level self-report and observer measures. Moreover, 66-point
AAM landmarks are provided with each image.
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However, it presents a challenge with variable frame sizes; in the dataset
15838 frames at a resolution of 320x240 and 32560 frames at 352x240. An
important characteristic of the dataset is its imbalanced distribution towards
lower PSPI scores; specifically, 82.71% of the frames have a PSPI score of 0,
while 17.02% have a score ≥ 1. This imbalance is depicted in Table 1, which
details the frequency of each PSPI score range.

PSPI Score Frequency Proportion
0 40029 82.71%
1-2 5260
3-4 2214
5-6 512
7-8 132 17.02%
9-10 99
11-12 124
13-14 23
15-16 5

Table 1. Frequency of PSPI Score Ranges in the UNBC McMaster Dataset

5.2 BioVid Heat Pain

The BioVid Heat Pain Database (83) was developed by the Neuro-
Information Technology group at the University of Magdeburg and the Med-
ical Psychology group at the University of Ulm. For our research, particularly
for our fourth sub-research question, the dataset allows us to test the gener-
alizability of our model in a different pain context compared to the UNBC
dataset.

In more detail, the dataset includes a multimodal collection with con-
trolled experimental pain settings, capturing data on skin conductance, ECG,
EMG, EEG, and a multiple-camera setup that incorporates depth informa-
tion through a Kinect camera. In the collection process, 90 subjects were
exposed to heat pain induced at four intensities, with annotations extend-
ing from no pain to four levels of pain stimuli. The temperatures for the
pain stimulation were individually adjusted to each subject’s pain threshold
and tolerance, with each of the four pain levels being stimulated 20 times
in a randomized order, holding the maximum temperature for 4 seconds. In
Figure 14, an example frame is illustrated.

The BioVid dataset is partitioned into five parts (A-E), with each fo-
cusing on different setups. Our research focuses on part A due to its inclu-
sion of unoccluded faces, which is relevant for our facial expression analysis.
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Figure 14. Data example of the BioVid heat pain dataset(83)

Moreover, part A consists of pain stimulation without facial EMG, provid-
ing frontal video and biomedical signals as raw and preprocessed data. It
encompasses 8700 samples from 87 subjects, categorized into 5 classes, with
20 samples per class and subject over time windows of 5.5 seconds.

In a binary pain detection scenario, as is the case in this study, there
is a noticeable dataset imbalance towards the pain class, which constitutes
80% of the data, contrasting with the UNBC Dataset.

6 Methodology

This chapter discusses the methodology of the research project, which
offers an overview of our automated pain detection pipeline. This includes
detailed discussions on preprocessing, the models employed, and the evalua-
tion techniques applied. Following the methodology, we explain the experi-
ments conducted in Chapter 7, illustrating how the methodology pipeline is
concretely applied in our research experiments.

To start, Figure 15 visualizes our pipeline. On the left, we have our
starting point: a dataset containing facial expression samples for pain de-
tection. In our research, we used two datasets, with the primary focus on
the UNBC McMaster dataset (50), while the BioVid dataset (83) is partially
used for cross-dataset validation. Both datasets undergo a consistent pre-
processing procedure before being fed into the model. This involves label
preprocessing, face frontalization, and subsequence generation. However, the
latter is only applied to our spatiotemporal model, the Video Swin Trans-
former. Chapter 6.1 provides a detailed explanation of these preprocessing
steps and highlights their differences between the datasets. After preprocess-
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Figure 15. Pipeline of our automated pain detection system
*only applied in VST classifier

ing, the core of our approach lies in the classifier model. We examined
three architectures: the Video Swin Transformer, the Swin Transformer, and
the Vision Transformer. Among these, the Video Swin Transformer is the
central model in this research. Chapter 6.2 offers a more detailed technical
description at the implementation level and outlines the specific pipelines for
each of these three models. The outputs from these models are passed to
a MLP classification head, which determines whether the facial expression
indicates pain or no pain. This classification head integrates an adaptive
average pooling layer, followed by a linear layer responsible for generating
the final output. To evaluate our approach, we used a mix of quantitative
and qualitative methods, described in Chapter 6.3. These methods allowed
us to thoroughly assess the effectiveness, generalizability, and explainability
of our automated pain detection pipeline.

6.1 Preprocessing

As shown in the preprocessing part of the pipeline in Figure 15, we
undertake three steps: 2D face frontalization, label preprocessing, and sub-
sequence generation. These preprocessing steps are important to ensure that
the data is in a suitable format for training our models. In the following,
the preprocessing steps are explained, including the face frontalization pro-
cess, which is applied for both datasets in the same way, and the remaining
preprocessing, which is further described for each dataset separately.
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6.1.1 2D face frontalization

To standardize the orientation of faces and make them consistent across
samples, face frontalization is applied. In this research, the 2D face frontal-
ization technique provided by RetinaFace (19) with its re-implementation
(73)(74) is applied to all our sample frames for both datasets. Unlike prelim-
inary experiments with 3D frontalization using PRNet (26), which showed
noise and distortions in cases where the face is in a unfavorable or covered
position, RetinaFace’s 2D frontalization aligns faces more accurate in these
challenging scenarios. Afterwards, the frames are normalized and resized to
224x224 pixels, which ensures uniformity across the samples after the face
frontalization. Examples from UNBC McMaster and BioVid databases after
the processing is given if Figure 16.

Figure 16. UNBC (left) and BioVid (right) samples after preprocessing

6.1.2 Preprocessing UNBC-McMaster

Fold Division. As described in Chapter 6.3.1 in more detail, for eval-
uating the models, a five-fold cross-validation is performed, with each fold
including samples from five participants. To ensure consistency and compara-
bility between the folds, they should have similar class distributions between
each other. One division that fulfills this was determined by Fiorentini et al.
(27) and the specific class distributions for each fold are presented in Table
2. Due to the similar class distributions and for comparability reasons, this
division scheme was preserved.

Data Cleaning. In addition to fold division, data cleaning was con-
ducted to enhance dataset quality. Noisy or unusable frames, such as some
that are entirely black, were identified and removed from the dataset.

Label Preprocessing. The original PSPI scores in the UNBC anno-
tations are transformed into binary labels: 0 for no pain (PSPI = 0) and 1
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Fold Label 0 Label 1
1 79.15% 20.85%
2 80.41% 19.59%
3 83.98% 16.02%
4 82.58% 17.42%
5 85.52% 14.48%

Table 2. Fold division of UNBC McMaster by Fiorentini et al. (27)

for pain (PSPI > 0).
Subsequence Generation. For the VST models, subsequences of

frames are generated to capture temporal dynamics. Unlike concatenating
frames in 2x2 grids using the uniform frame sampling technique, as done in
previous work by Fiorentini et al. (27), we stack frames along an additional
temporal axis following the tubelet embedding. Furthermore, a temporal
depth of four frames is chosen, as previous research, such as the ViViT ap-
proach by Fiorentini et al. (27), suggests that a sub-sequence length of four
frames may be adequate, considering the minimum duration of AUs. Re-
garding the label, it is determined by the last frame of each subsequence.
Furthermore, frames at the video’s beginning are artificially extended by
duplicating the first frame to maintain temporal depth.

6.1.3 Preprocessing BioVid

Data Cleaning. As well as for the UNBC dataset, first, data clean-
ing steps were performed. Initially, 20 participants were removed from the
dataset as recommended by the publisher of the dataset (83), resulting in a
dataset comprising 67 subjects. Additionally, a small amount of noisy data,
such as frames where RetinaFace failed to identify a face due to occlusion,
were excluded.

Label Preprocessing. Unlike the UNBC dataset, the annotations in
the BioVid dataset are not on a frame level but on a sequence level. These
annotations include one no pain level (BL1) and four levels of pain (PA1-4).
In our preprocessing, we assigned the class 0 (no pain) to the BL1 samples
and considered only the two highest pain levels (PA3 and PA4) as the pain
class. This decision was based on prior experiments by Yang et al. (93),
which indicated less differentiation between the first pain levels and the no
pain class. Therefore, the remaining pain levels (PA1 and PA2) were not
considered in our experiments.

Subsampling of Videos. Given that the BioVid dataset serves as the
test set in our cross-dataset validation and is not used for training, not all
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frames of each sequence were required. Investigation by Werner et al. (88)
into subsampling each sequence of the BioVid dataset revealed that pain
activity typically begins about two seconds after the temperature plateau is
reached. Therefore, for videos of pain levels PA3 and PA4, we selected 3
frames per subsequence from seconds 3, 4, and 5. Frames from second two,
where pain activity just started, were not considered. To maintain a balanced
class distribution, for the videos of the BL1 level, 6 frames were extracted
per subsequence from seconds 0.5, 1.5, 2.5, 3.5, 4.5, and 5.5. In total, each
subject contributed 240 samples (3 painful frames per PA3 and PA4 class
video, 6 non-painful frames per BL1 class video, 20 videos from all classes
per subject), resulting in a dataset comprising around 16.000 samples.

Subsequence Generation. For our spatiotemporal models, subse-
quence generation for the BioVid dataset follows the same approach as for
the UNBC samples. Frames are stacked along a temporal axis, combining the
main frame with the previous three frames to capture temporal dynamics.

6.2 Models

In this section, we provide a detailed description of our models on both
technical and implementation levels. Our model implementations are based
on the official PyTorch implementation, offering various architecture variants
and modification possibilities for all our used model types. Moreover, all
models were trained on a RTX 3060 GPU.

6.2.1 Video Swin Transformer

In the official paper of the Video Swin Transformer (48), four archi-
tecture variants are proposed. The official PyTorch implementation provides
three of these variants (tiny, small, base). To choose the best variant for
our research project, we needed to consider a trade-off between model size
and computational complexity. We decided to use the small variant for our
main VST and its variants as it offers the same number of layers as the base
model but with 0.5× of the base model’s computational complexity, due to
its smaller number of channels in the hidden layers of the first stage. For our
VST models, a pretrained model trained on Kinetics 400 dataset (38) is used,
with a total of 49.8 million parameters. Regarding the input, the patch size
is set to 2x4x4 pixels, and the window size is 2x7x7 patches. Furthermore,
our VSTs have a temporal depth of four frames, except for the one used
in the temporal depth experiment using eight frames. The channel number
of the hidden layers in the first stage (C) is set to 96. The model consists
of four stages with the number of layers [2,2,18,2], respectively. Each layer
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block comprises a Video Swin Transformer block and an MLP head. The
model-specific pipeline is presented in Figure 10 from Chapter 4.3.1 provid-
ing a technical overview of the VST. However, the figure illustrates the tiny
variant of the VST instead of the small variant used.

6.2.2 Swin Transformer

For the original Swin Transformer (47), PyTorch also offers multiple
architecture variants, and for consistency and better comparability with our
VST models, the small variant was chosen. Our implementation of the
Swin Transformer leverages a pretrained model trained on the ImageNet-
1K dataset (69), resulting in a total of 49.6 million parameters. Unlike the
VST, the Swin Transformer operates solely on spatial data, thus eliminating
the need for a temporal component. Consequently, the input configuration
for the Swin Transformer consists of a patch size of 4x4 pixels and a win-
dow size of 7x7. The architecture of the Swin Transformer resembles that
of the VST, with each layer comprising a Swin Transformer Block instead
of a Video Swin Transformer Block. The number of layers and the channel
number of hidden layers in the first stage remain consistent with the VST
model as well as the remaining components of the architecture.

6.2.3 Vision Transformer

Within the PyTorch framework, several implementations of ViT are
available, including variants such as base, large, and huge, as proposed in
the original paper of the Vision Transformer (20). Given the absence of a
small variant, the base variant is selected for our study, although differences
in model sizes must be considered during comparative analysis. Similar to
our approach with the Swin Transformer, we employ a pretrained ViT model
trained on the ImageNet-1K dataset (69). The used ViT uses a patch size of
16x16 pixels, and contains 12 layers, each incorporating attention head and
fully connected layers. Following the layers, the model employs a MLP head
for classification. Furthermore, when looking at the model size, the model
has a total of 86.6 million parameters.

6.3 Evaluation

In this subsection, we describe the evaluation methods for our mod-
els, including both quantitative and qualitative evaluation. To begin with,
the used five-fold cross-validation process is explained. Following that, the
quantitative measurements are motivated and described. In addition, we in-

43



troduce the statistical test employed to compare performance metrics across
models. Lastly, the qualitative evaluation methods are presented, which are
mainly relevant for the explainability research.

6.3.1 Five-fold cross-validation

For the training and evaluation procedure, we are using a five-fold cross-
validation, similar to the approach used in the study by Fiorentini et al. (27).
As mentioned before in Chapter 6.1.2, the dataset is divided into five subsets
with similar class distribution containing each five subjects. Each model
architecture is trained on four of these folds and tested on the remaining
one, resulting in five individual models in total per model architecture. This
allows us to systematically assess the model architecture’s performance across
different subsets of the data. We report performance metrics for each fold
individually and also calculate the average and standard deviation across all
folds to provide a comprehensive assessment of models performance. This
cross-validation strategy helps reduce potential biases and ensures that our
models performance represent a general picture across the whole dataset.
This approach is especially important in studies involving subject data, where
the ability to generalize across different individuals is key and not overfit on
specific subjects.

6.3.2 Quantitative evaluation

In the quantitative evaluation of model performance for automated pain
assessment, selecting an appropriate metric is important but also not always
easy. The choice of metric mostly depends on the nature of the dataset,
particularly its class distribution. For the primary dataset considered in this
research, namely UNBC McMaster, the presence of unbalanced class distri-
bution restricts the choice of suitable metrics. In contrast, the videos in the
BioVid dataset are subsampled in such a way that the class distribution is
balanced. Another important aspect of the metric selection is to consider
its comparability with related work, suggesting using similar metrics as pre-
vious research did. Looking at the previous literature study about related
automated pain assessment approches, we highlighted that Fiorentini et al.
(27) reported the F1-score and the AUC on their state-of-the-art models.
Furthemore, they focused on F1-Score during hyperparameter optimization.

F1-Score The F1-score is the first metric we use for our quantitative analy-
sis. This metric represents the harmonic mean of precision and recall, offering
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a balanced approach to assessing a model’s performance. The formula for
calculating the F1-score is:

F1 =
2× TP

2× TP + FP + FN
(4)

,where TP represents true positives, FP false positives, and FN false nega-
tives.

Given the imbalanced nature of the UNBC McMaster dataset, the F1-
score provides a more reliable evaluation than the accuracy metric, which
can be misleading in skewed datasets. In this case, accuracy may reflect
high performance even when the model mainly predicts the majority class.
However, the F1-score balances precision and recall, reducing the impact of
class imbalances. Moreover, our models are optimized with the F1-Score,
which ensures comparability with the work by Fiorentini et al. (27).

Area Under the Curve (AUC) The AUC, representing the Area Under
the Receiver Operating Characteristic (ROC) Curve, is another important
metric for our evaluation. This metric provides an aggregate measure of a
model’s performance across all possible classification thresholds. The AUC is
especially valuable in scenarios with imbalanced datasets because it reflects
the model’s ability to distinguish between classes, regardless of threshold
settings.

The AUC is selected for two primary reasons. First, AUC tends to be
more stable in imbalanced datasets compared to the F1-score, as evidenced
by Jeni et al. (35) indicating that it is less susceptible to dataset skew.
Second, AUC allows comparability with related work, such as Fiorentini et
al. (27), who also reported this metric alongside the F1-score.

Accuracy While not focusing on accuracy for the UNBCMcMaster dataset
due to its skewed class distribution, we report it when performing cross-
dataset validation on the balanced BioVid dataset. Accuracy, defined as the
proportion of correct predictions among total predictions, is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

,where TP represents true positives, TN true negatives, FP false positives,
and FN false negatives.

In balanced datasets like BioVid, accuracy can be a useful metric for
assessing overall performance.
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6.3.3 Statistical significance tests

To answer some of the project’s research questions, model comparison
needs to be done. To compare the quantitative performance of two models
if they are significant different of each other, a suitable statistical test is
required. This study used McNemar’s test (55) for all model comparisons.
The statistical test was chosen because of its basic assumptions — random
samples, independence, and mutually exclusive groups — that align with
the facts of the used data. It assumes that each model contains at least 25
samples, as is the case in our studies. The null and alternative hypotheses
for this test are as follows:

• H0: The error proportion on the test set for both classifiers is similar.

• H1: The error proportion on the test set for both classifiers is different.

The null hypothesis H0, that the classifier has a similar proportion of
errors on the test set, can be accepted or rejected depending on the signifi-
cance level of the experiment’s chosen alpha value and the test’s determined
p-value. The null hypothesis can be maintained if the p-value is greater
than the alpha. In our case the alpha value was chosen to be 0.05. For the
statistical test, the predictions on the test set across all folds are included.

6.3.4 Qualitative evaluation

In this section, we present the qualitative evaluation methods used
in the explainability part of our research. Specifically, we focus on how
to extract attention visualization maps from the predictions made by our
models. These visualizations are important for understanding how our Video
Swin Transformer, Swin Transformer, and Vision Transformer models focus
on different areas of the input during the decision-making process.

Given that the method proposed by Nguyen et al. (61) is currently
the only one applicable to Swin Transformers, we followed the methodology
outlined by the authors, focusing on the last two layers of the architecture.
In the case of our spatiotemporal variant of the Swin Transformer, our VST,
we introduced an adaptation to the method. Specifically, we extracted at-
tention visualizations from all four frames of our temporal depth separately
and subsequently averaged them. For our ViT model, we implemented the
Attention Rollout technique by Chefer et al. (13), as it works similar to
the method by Nguyen et al. (61), but for the ViT architecture. Similar
to the other two models, the last two layers were considered for the Rollout
techniques applied to our ViT.
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7 Experiments

Following the presentation of the methodology for this research project,
this chapter covers the experiments that were conducted and how the meth-
ods were applied to them. Furthermore, two separate subchapters explain
the hyperparameter optimization and the fine-tuning process.

7.1 Overview of experiments

7.1.1 Automated pain detection using Video Swin Transformers

Goal: The primary objective of this experiment is to investigate the
performance of the Video Swin Transformer (VST) in automated pain detec-
tion, addressing the main research question. Additionally, we aim to explore
the hyperparameter space of the VST to evaluate the optimal configuration.

As a starting point of the research, we establish a VST and evaluate
its performance on the given classification task. This model will serve as a
reference for subsequent experiments.

Our approach follows the general pipeline shown in Figure 15, which
incorporates the VST model described in Chapter 6.2.1 as the core classifier.
For training and testing of our model we are using the UNBC-McMaster
dataset and apply the described five-fold cross-validation. The fine-tuning
details are described in the Chapter 7.3. Moreover, hyperparameter opti-
mization with a range of hyperparameters is performed to determine the
best configuration for pain detection using the VST. For the evaluation of
our model we are focusing on the F1-score and the AUC, addressing the
challenges posed by imbalanced datasets.

In the subsequent chapters, the resulting VST model of this experiment
is denoted as the “main VST” or “VST-0” to make a distinction between this
model and its further variations.

7.1.2 Performance comparison of VST and other model architec-
tures

Goal: Building upon the previous experiment, the goal of this exper-
iment is to gain further insights into the effectiveness of the VST, including
the spatiotemporal component, compared to other state-of-the-art models on
automated pain detection under the same conditions. This experiment tack-
les also the main research question as well as the first sub-research question
about including the temporal dynamics of pain.
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To further assess the performance of our VST model, we conduct com-
parisons with two different model architectures:

The first model we compare against is the original Swin Transformer,
which operates on frame-level data, unlike our VST, which operates on video-
level data. This comparison allows us to investigate how the spatiotemporal
component of the VST influences its performance in automated pain detec-
tion and whether the temporal dynamics in a painful face are significant for
a correct prediction.

The second model for the comparison is the Vision Transformer, a
predecessor of the Swin Transformer known for its SOTA performance on
automated pain detection in previous literature by Fiorentini et al. (27).
Instead of re-using the results of the previous literature, we want to en-
sure a fair comparison with our other models regarding preprocessing, hy-
perparameter tuning, etc., and, therefore, train our own ViT under same
conditions. Initially, we planned to compare with the ViViT to further un-
derstand the differences in architecture types on a spatiotemporal level and
how the design variances of the VST affect performance in automated pain
detection. However, the only available pretrained models were trained us-
ing 32 frames as temporal input. Preliminary experiments using only four
frames, as in our VST model, with these pretrained models showed very poor
performance. Artificial extension of the frames was considered but deemed
infeasible due to excessive training time, exceeding the scope of this research
project. Nonetheless, using the ViT as a comparison model can still pro-
vide valuable insights. Comparing it with our original Swin Transformer,
as both work with single frames rather than sequences, offers an insightful
comparison.

The pipeline for both comparison models is similar to the VSTs one,
except for skipping the subsequence generation, as both models operate on
frame-level data, and using the Swin Transformer (Chapter 6.2.2) and the
Vision Transformer (Chapter 6.2.3) as classifiers. Furthermore, all models
undergo the same hyperparameter optimization and fine-tuning processes.
Similar to the evaluation of the VST, performance evaluation of the com-
parison models will focus on the F1-score and the AUC. When comparing
the models, we use the McNemar test to determine if there are significant
differences in performance between the models.

For the following experiments, the main VST and these two comparison
models are indicated as our main models. Within the comparison models,
the Swin Transformer is denoted as “ST-0”, the ViT as “ViT-0”.
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7.1.3 VST with extended temporal depth

Goal: The goal of this experimentation is to gain further insights into
the temporal axis of VSTs through the integration of additional temporal
pain dynamics. This investigation aims to answer the second sub-research
question by analyzing the impact of extended temporal depth on VST model
performance.

This experiment explores the impact of temporal depth on the VST
performance. Our main VST model operates with a temporal depth of four
frames as input. For this variation, we increase the temporal depth to eight
frames. This change provides insights into the usage of the length of the
sequence and its impact on performance. The choice of eight frames doubles
the input length compared to the main model, potentially leading to signifi-
cant differences in performance while remaining computationally feasible.

Evaluation and comparison methods in this experiment remain consis-
tent with the previous experiments, focusing on the F1-score and the AUC.
The McNemar test is employed to determine if there are significant differ-
ences in performance between the VST with extended temporal depth and
the main VST model.

This variant is in the subsequent sections indicated as “VST-1-TD”.

7.1.4 Training of VST using Focal loss

Goal: Another experiment aims to investigate an alternative tech-
nique, the Focal loss (46), to deal with imbalanced datasets like the UNBC
McMaster. The effectivity of this loss function is tested when training the
VST in pain detection scenarios, answering the third sub-research question.

In the previous models, Cross-Entropy loss with oversampling of the
minority class is used to cope with the imbalanced nature of the UNBC
dataset. Nevertheless, in this analysis the Focal loss, detailed explained in
Chapter 4.6, without biased sampling is applied and its performance is com-
pared with the one of our main VST. The applied evaluation and comparison
methods are the same as in the previous experiments.

This variation will be referred to as “VST-2-FL” in the sections that
follow.

7.1.5 Cross-domain generalizability

Goal: Another essential aspect of this research, which is covered by
the fourth sub-research question, is to gain insights into the generalization

49



capabilities of our main VST and its comparison models (Swin Transformer
and ViT).

To address this objective effectively, we conducted a cross-dataset vali-
dation experiment to measure the performance of our models on unseen data
from a different pain domain. Specifically, we assess how well our best mod-
els, trained on the UNBC dataset, performed when tested on samples from
the BioVid dataset, where participants experienced a different form of pain,
specifically heat-induced pain.

In addition to the variance in pain types, several other factors distin-
guish the two datasets. Notably, there are disparities in demographic charac-
teristics such as age groups; particularly, participants in the UNBC dataset
are older compared to those in BioVid. Furthermore, there are differences in
the setups, with BioVid adopting an experimental environment while UNBC
relies on clinical settings. Additionally, BioVid participants wear EEG caps,
a setup absent in the UNBC dataset.

These differences present an opportunity to gain insights into the gener-
alizability of our models across diverse contexts. By accounting for variations
not only in pain stimuli but also in demographic profiles and settings, we aim
to provide a comprehensive evaluation of the model’s ability to generalize.
In addition to the F1 score and the AUC, we also consider accuracy for eval-
uation, as the BioVid test set we are using is equally balanced regarding
classes.

All the training and test combinations are summarized in Table 3.

Table 3. Cross-dataset validation for testing model generalizability

Model Fold Training Dataset Testing Dataset
VST-0 1 - 5 UNBC BioVid
Swin-0 1 - 5 UNBC BioVid
ViT-0 1 - 5 UNBC BioVid

7.1.6 Explainability

Goal: The final experiment has been conducted to answer the last
sub-research question and aims to investigate the explainability of our main
models, and how the focus points from the attention visualization differs
between the models.

First, we extract attention maps from individual samples predicted by
our main VST, Swin Transformer, and ViT model, following the methods
proposed in Chapter 6.3.4. The results of these attention visualizations are
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represented as heatmaps indicating where the model pays the most atten-
tion. To obtain a general overview of the parts responsible for the models’
decisions and the relevance of different parts of the face, we average multiple
attention visualizations. Doing this, we categorize the averaged heatmaps
into four categories of a confusion matrix: false positive, false negative, true
positive, and true negative samples. For each category, we extract 100 sam-
ple heatmaps and average them. Furthermore, a qualitative analysis is done,
where we further observe, analyze, and discuss these focus points, exploring
why they may appear for a specific model, and why they differ. The knowl-
edge of pain-specific AUs and the FACS is also used to support our analysis
and conclusions.

7.2 Hyperparameter optimization

The performance of our models is significantly affected by the optimal
values of a number of model and training hyperparameters. To determine
the best values for these hyperparameters, a hyperparameter optimization
process was conducted. Given that we train the models on a five-fold cross-
validation setup, it was aimed to identify the best hyperparameters for each
fold separately, resulting in five optimal combinations per model architecture.
To achieve this, we employed a nested cross-validation framework, with an
overview provided in Figure 17. It is appropriate for our five-fold cross-
validation setup despite being computationally expensive, and ensures that
the hyperparameters are selected unbiased without seeing the test set. This
bias can be criticized in previous work by Fiorentini et al. (27), as the
best hyperparameters were selected using directly the test set and without a
separate validation set.

In the outer iteration of our nested cross-validation, we iterated over the
main folds, as outlined in Table 2. Each iteration involved holding one fold as
the test set (colored orange) while using the remaining four folds for training
(colored green/blue). Within the nested cross-validation, an additional inner
iteration involved holding out one of these training folds (colored green) as
a validation set (colored blue) for hyperparameter tuning. This approach
ensured that our test set remained unseen during the hyperparameter opti-
mization process, thereby preventing bias. For each main fold in the outer
iteration, we obtained four scores from the inner iterations, which were then
averaged. The hyperparameter combination with the best averaged score for
each fold was selected for our final optimized model.

For the hyperparameter optimization process, we utilized the Optuna
framework (3), employing the Tree-structured Parzen Estimator (TPE) sam-
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Figure 17. Overview of hyperparameter optimization through nested cross-validation

pler. The TPE sampler performs Bayesian optimization on kernel fitting and
is recommended for cases with fewer trials and uncorrelated parameters, as
is the case here. Due to comparison reasons as this was also done in pre-
vious work by Fiorentini et al. (27), the optimization aimed to maximize
the F1-score. We conducted the tuning for each main fold with 20 trials,
supplemented by preliminary optimization results under the same conditions
performed with manual grid search (only for VST-0, ST-0, and ViT-0), re-
sulting in a total of 35 trials for each fold.

Table 4. Hyperparameter Space

Hyperparameter Valuespace
Learning Rate loguniform(1E − 05, 1E − 01)
Weight Decay 0, loguniform(1E − 06, 1E − 03)
Batch Size choice(16, 32)
Unfrozen Blocks choice(0, 2, 4, 6, 8)
Alpha choice(0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9)
Gamma choice(1.0, 1.5, 2.0, 2.5, 3.0)

Given the computational resources required for the optimization pro-
cess, we limited the hyperparameter space to specific main hyperparameters
and possible values, as detailed in Table 4. These hyperparameters were
consistent across all models, with the exception of the Focal loss-specific pa-
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rameters, which were included only in the experiment where Focal loss was
applied. The key training hyperparameters included learning rate and weight
decay for the Adam optimizer, batch size, and the two focal-loss-specific hy-
perparameters, alpha and gamma. Additionally, model hyperparameters,
such as the number of unfrozen layer blocks, were considered. Unfrozen lay-
ers indicate the layers that are fine-tuned during training, with 0 unfrozen
layers implying that only the classification head is fine-tuned. For example,
setting 4 unfrozen layers means that the last four layers of the model are
unfrozen and fine-tuned in addition to the classification head.

7.3 Model fine-tuning

Having determined the best hyperparameter combinations through our
hyperparameter optimization process, we proceeded with the final fine-tuning
of our models on each fold. Experiments conducted beforehand, together
with insights from previous work by Fiorentini et al. (27), indicated that our
models begin to overfit on the training set after just one epoch of training.
Therefore, to prevent overfitting, we decided to train our models uniformly for
just one epoch. For the loss function during training, we employed the com-
mon Cross-entropy loss, given our binary classification task. Additionally, to
address the class imbalance present in our dataset, we applied oversampling
of the minority class. However, in the case of the Focal loss experiment, we
are using Focal loss instead of Cross-entropy loss, but without oversampling.
As briefly mentioned in the previous hyperparameter optimization section,
for the optimizer used during training, we employed the Adam optimizer (42)
as it is a widely used optimization algorithm. It is often recommended as
default optimizer algorithm (68) known for its effectiveness as it requires min-
imal hyperparameter tuning and offers faster computation time compared to
some other optimization algorithms.

8 Results

In this chapter, the results of our experiments are presented, starting
with the hyperparameters optimization results for each model. Furthermore,
the performance of our main Video Swin Transformer in comparison with
the Swin and Vision Transformer is given, followed by an examination of
the effects of temporal depth extension and Focal loss in VST. Additionally,
the cross-dataset validation results to assess the generalizability of our main
models are shown. Finally, we look into the findings from our explainability
research, including attention visualization and qualitative analysis.

53



8.1 Hyperparameter optimization

In Table 5 and 6, we present the optimal training and model hyperpa-
rameters for each fold of our models. Additionally, we provide the averaged
F1-score on the validation sets.

Model Fold Learning Rate BS Weight Decay UB Val Set F1

VST-0 1 1E − 03 32 0.0 8 0.51
2 1E − 03 32 0.0 2 0.55
3 1E − 03 32 0.0 8 0.50
4 1E − 03 32 0.0 8 0.51
5 1E − 03 16 2E − 04 6 0.45

ST-0 1 7E − 04 32 3E − 04 8 0.47
2 2E − 04 16 5E − 04 8 0.49
3 1E − 05 16 2E − 05 8 0.40
4 1E − 03 16 8E − 05 6 0.46
5 3E − 04 16 1E − 04 4 0.38

ViT-0 1 2E − 04 32 1E − 05 8 0.52
2 1E − 04 32 3E − 06 8 0.55
3 5E − 05 16 7E − 05 8 0.56
4 7E − 05 16 2E − 06 8 0.57
5 2E − 04 16 4E − 06 8 0.53

VST-1-TD 1 1E − 04 16 2E − 06 0 0.45
2 2E − 03 16 2E − 04 4 0.54
3 3E − 03 32 2E − 05 2 0.45
4 5E − 04 16 1E − 05 8 0.51
5 4E − 05 32 4E − 04 4 0.41

Table 5. VST-0, ST-0, ViT-0, VST-1-TD models best hyperparameters for each fold (UB
= Unfrozen Blocks; BS = Batch Size)

Briefly looking the resulting hyperparameters, there are almost no sig-
nificant patterns observable across the models. However, it is noticeable that
VST-0, ST-0, and ViT-0 have a tendency for a higher number of unfrozen
blocks. Furthermore, in VST-0, 4 out of 5 folds performed the best with the
default weight decay of 0. Additionally, the learning rate tends to be lower
for ViT-0 and the VST-2-FL compared to the other models.

When looking at the validation set scores, the ViT-0 seems to perform
the best out of all the models, followed closely by our main VST-0 model. In
contrast, compared to other models in our investigation, ST-0 and VST-2-FL
with Focal loss perform relatively worse on the validation sets.
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Model Fold Learning Rate BS Weight Decay UB γ α Val Set F1

VST-2-FL 1 2E − 03 16 1E − 06 0 2.0 0.85 0.34
2 2E − 05 32 2E − 05 4 1.5 0.7 0.50
3 1E − 05 32 3E − 04 4 2.5 0.75 0.46
4 3E − 05 16 8E − 06 6 1.0 0.6 0.44
5 1E − 05 32 6E − 06 2 2.5 0.75 0.43

Table 6. VST-2-FL models best hyperparameters for each fold (UB = Unfrozen Blocks;
BS = Batch Size)

8.2 Model results

In the following, the results of our main models, including Video Swin
Transformer (VST-0), Swin Transformer (ST-0), and Vision Transformer
(ViT-0), are presented. After looking at the performance of our model sepa-
rately, we analyse their outcome in a comparative way between the models.

8.2.1 Video Swin Transformer (VST-0)

Looking at the results of our VST-0 in Table 7, the model achieved an
average F1-score of 0.56 with a standard deviation of 0.06, and an AUC of
0.85 with a standard deviation of 0.04. Notably, the first fold reached the
highest F1-score (0.65), while the fifth fold exhibited the highest AUC score
(0.89). Conversely, the second (0.50) and fourth (0.49) folds demonstrated
the lowest F1-scores within the VST-0 model’s performance.

Fold Test Set F1 Test Set AUC
1 0.65 0.87
2 0.50 0.79
3 0.55 0.87
4 0.49 0.81
5 0.61 0.89

Mean 0.56 0.85
Std 0.06 0.04

Table 7. VST (VST-0) model results on test set for each fold

8.2.2 Swin Transformer (ST-0)

The results of the ST-0 model across each fold are shown in Table 8.
The average F1-score is 0.53 with a standard deviation of 0.04, while the
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average AUC is 0.80 with a standard deviation of 0.02. The best-performing
fold for F1-score is the 5th, with a value of 0.60. For AUC, the best results
are observed in the 4th fold, with 0.83, followed closely by the 5th fold with
an AUC of 0.82. Conversely, the poorest performance across both metrics
comes from fold 3, with an F1-score of 0.49 and an AUC of 0.77.

Fold Test Set F1 Test Set AUC
1 0.52 0.78
2 0.49 0.81
3 0.49 0.77
4 0.53 0.83
5 0.60 0.82

Mean 0.53 0.80
Std 0.04 0.02

Table 8. Swin Transformer (ST-0) model results on test set for each fold

8.2.3 Vision Transformer (ViT-0)

The performance results for the Vision Transformer (ViT-0) model
are summarized in Table 9. For this model, the mean of the F1-score is
0.55±0.09, while the mean of the AUC is 0.87±0.04. The best-performing
fold in terms of F1-score is the 5th fold, achieving a score of 0.67. This fold
also demonstrates the highest AUC of 0.93. The lowest F1-score comes from
the 2nd fold, with a score of 0.39, while the corresponding AUC is 0.81.

Fold Test Set F1 Test Set AUC
1 0.60 0.88
2 0.39 0.81
3 0.56 0.89
4 0.54 0.85
5 0.67 0.93

Mean 0.55 0.87
Std 0.09 0.04

Table 9. Vision Transformer (ViT-0) model results on test set for each fold

8.2.4 Comparison between the models

The comparison among the three models, VST-0, ST-0, and ViT-0, is
depicted in Figure 18, that shows two bar plots illustrating the performance
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Figure 18. Performance comparison of VST-0, ST-0, and ViT-0 on each fold

of each model per fold for both, F1-Score and AUC. Next to the bar plots,
the mean value for each model from the previous sections are summarized
again in a table.

Looking from a general point of view, our ST-0 model consistently un-
derperforms relative to the other two models, with a mean F1-score of 0.53
and an average AUC of 0.80. This is also evident in three out of five folds
where it ranks as the lowest. However, it exhibits the smallest standard
deviation under the three models, which usually indicates greater stabil-
ity. Regarding the other two models, our VST-0 (0.56) and ViT-0 (0.55)
are performing on the F1-score relatively close, although our VST model
indicates a slightly better mean, suggesting it might be the best model of
the three regarding the F1-score. On the other hand, our ViT-0 achieves a
slightly higher mean AUC (0.87) compared to VST-0 (0.85), and, therefore,
the best-performing of our models when looking at the AUC.

VST-0 vs. ST-0 In a more particular comparison, the VST-0 generally
outperforms ST-0 in most folds on both performance metrics. The difference
between the two models performance on all folds together is statistically sig-
nificant, with a p-value of 5.98E−07 derived from the McNemar significance
test. The performance differences may come from the fact that VST-0 incor-
porates a spatiotemporal component, whereas ST-0 operates only on spatial
data. Furthermore, the assumption that including the temporal pain dynam-
ics could be beneficial for detecting pain is further reinforced by the fact that
both models were designed and trained under similar conditions.

VST-0 vs. ViT-0 Comparing VST-0 and ViT-0, both models operate on
a similar level of performance, although there is a significant difference proven
by our statistical test with a p-value of 0.024. As mentioned before, the VST-
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0 performs better on the F1-score, and the ViT-0 on the AUC. For imbalanced
dataset, the AUC would be probably the more reliable metric (36), although,
here, they also indicate comparable performance on that. In particular on
fold-level, ViT-0 shows better results across most folds, but VST-0 stands out
on the folds one and two, where it clearly outperforms ViT-0 in terms of F1-
score. Moreover, the standard deviation for F1-score is lower in VST-0 (0.06
compared to ViT-0’s 0.09), indicating that it might be more stable. Looking
at these findings, it seems that both models show comparable performance.
An important aspect that needs to be mentioned for this comparison is that
the ViT-0 is as a base variant implemented compared to our VST-0 (small
variant). As a result, the number of parameters is affected and may lead to
an unfair comparison. To confirm this, further investigation is necessary, for
example, training the VST-0 as well on a comparable base variant, which
was not possible in the scope of this research project.

ViT-0 vs. ST-0 In the final comparison between ViT-0 and ST-0, the
ViT-0 model distinctly outperforms ST-0 on both F1-score and AUC, with
statistical significance of their predictions shown by a p-value of 3.53E − 12.
This trend is also given across most folds, that may suggest a potential supe-
riority of the Vision Transformer architecture for automated pain detection.
Nevertheless, as mentioned before, this conclusion should be considered with
caution due to the differences in model sizes and parameters. Further re-
search and fair comparisons might be needed to draw definitive conclusions
about the relative performance of these architectures.

8.3 Temporal depth extension results

Fold Test Set F1 Test Set AUC
1 0.62 0.88
2 0.56 0.85
3 0.54 0.84
4 0.60 0.87
5 0.62 0.92

Mean 0.59 0.87
Std 0.04 0.03

Table 10. Video Swin Transformer with temporal depth extension (VST-1-TD) models
results on test set for each fold

In Table 10, we present the results for the Video Swin Transformer with
a temporal depth extension of eight frames (VST-1-TD). This variant of the
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main VST model demonstrates a mean F1-Score of 0.59 with a standard
deviation of 0.04 and a mean AUC of 0.87 with a standard deviation of 0.03,
which indicates a improvement compared to the VST-0 model. The best
performance is observed in fold four and five, where the F1-score reaches
0.62, while fold 5 achieves the highest AUC of 0.92. The lowest performance
occurs in fold 3, with an F1-score of 0.54 and an AUC of 0.84.

Figure 19. Performance comparison of VST-0 and VST-1-TD on each fold

VST-0 vs. VST-1-TD Figure 19 presents similar bar plots as before com-
paring the performance of VST-0 and VST-1-TD on each fold. The extension
from four to eight frames leads to a significant improvement in performance
across the majority of the folds, with VST-1-TD generally outperforming
VST-0 on both F1-score and AUC. Across the performance mean values,
VST-1-TD shows a clear advantage over VST-0. The statistical significance
of this improvement is confirmed by the McNemar test, having a p-value of
2.24E − 09. The observed improvement suggests that capturing more tem-
poral depth may allow the model to recognize facial pain dynamics more
accurately, resulting in better performance on F1-Score and AUC. Addition-
ally, the VST-1-TD shows a slightly lower standard deviation, indicating
greater stability in performance across the folds. All these aligns with the
earlier findings from the VST-0 and ST-0 comparison, which indicates that
the temporal component is essential for automated pain detection. However,
the computing time for the VST-1-TD model is almost double that of the
VST-0 due to the extended temporal depth.

8.4 Focal loss VST results

The results for the VST trained with Focal loss (VST-2-FL) are dis-
played in Table 11. This variant of the VST model shows an average F1-score
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of 0.44 with a standard deviation of 0.11, and a mean AUC of 0.77 with a
standard deviation of 0.09. More specifically, the best-performing fold for
VST-2-FL is fold 5, with an F1-score of 0.65 and an AUC of 0.87. In con-
trast, the worst-performing fold is fold 2, with an F1-score of 0.34 and an
AUC of 0.71. Notably, fold 4 also has a low AUC of 0.71.

Fold Test Set F1 Test Set AUC
1 0.36 0.77
2 0.34 0.71
3 0.44 0.79
4 0.43 0.71
5 0.65 0.87

Mean 0.44 0.77
Std 0.11 0.09

Table 11. Video Swin Transformer trained with Focal loss (VST-2-FL) models results on
test set for each fold

VST-0 vs. VST-2-FL Figure 20 illustrates the performance compari-
son between VST-0 (the main VST trained with Cross-Entropy loss and
oversampling) and VST-2-FL. The VST-2-FL model consistently underper-
forms compared to VST-0 in almost all folds, and the performance gap is
significant. Statistical significance between the two models’ performances is
confirmed by the McNemar test, with a p-value of 0.0. Besides, the higher
standard deviation in VST-2-FL (0.11 for F1-score and 0.09 for AUC) reflects
greater variability and lower stability across the folds. The Cross-Entropy
loss in combination with oversampling appears to provide a better and more
consistent performance.

Figure 20. Performance comparison of VST-0 and VST-2-FL on each fold
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8.5 Comparison with previous work

To evaluate the performance of our models in the context of previous
research, a comparison table, Table 12, is given. The table presents the
average F1-score and AUC for each of our models and the best-performing
models from the work by Fiorentini et al. (27). This previous work is known
for its SOTA performance in automated pain detection, using similar fold
divisions and experimental conditions. They proposed a Vision Transformer
(ViT-1-D) and a Video Vision Transformer (ViViT-1-D), making these mod-
els relevant for our comparison. As mentioned in the previous chapters in the
comparison between ViT-0 and VST-0/ST-0, these Vision Transformer mod-
els differ from our VST and Swin Transformer variants in terms of model size
(base variants). Additionally, the ViViT approach uses a grid system rather
than a separate temporal axis, providing another point of differentiation in
terms of video models.

Model name F1-Score AUC

ViT-1-D (27) 0.55 ±0.15 0.88
ViViT-1-D (27) 0.55 ±0.13 0.86

VST-0 0.56 ±0.06 0.85 ±0.04
ST-0 0.53 ±0.04 0.80 ±0.02
ViT-0 0.55 ±0.09 0.87 ±0.04
VST-1-TD 0.59 ±0.04 0.87 ±0.03
VST-2-FL 0.44 ±0.11 0.77 ±0.09

Table 12. Performance comparison of our models with previous work

Looking at the F1-score metric in the comparison table, the VST-1-TD
achieves a new SOTA performance with a mean F1-Score of 0.59, surpassing
the ViT-1-D and ViViT-1-D (both 0.55). Our VST-0 also slightly outper-
forms the previous SOTA with a score of 0.56. Although the previous work
reported a SOTA AUC of 0.88, our VST-1-TD and ViT-0 models achieved
comparable results with AUCs of 0.87. These scores slightly outperform the
ViViT-1-D model (0.86). Across our models, there’s a noticeable reduction in
standard deviation compared to previous work. The lowest values are found
in our ST-0 and VST-1-TD, indicating improved consistency across folds.
Given these comparisons, our models show promising improvements over the
previous SOTA in terms of F1-score and comparable results in AUC. Addi-
tionally, the reduced standard deviation suggests greater reliability. Consid-
ering the difference in model sizes, there might be additional potential for
the VST architecture to outperform ViT-1-D on AUC if trained on similar
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model variants. This suggests that future work could focus on optimizing
the VST architecture or re-evaluating the models with a more comparable
structure to provide a fairer comparison.

8.6 Cross-dataset validation results

To assess the generalizability of our three main models (VST-0, ST-0,
and ViT-0), we conducted a cross-dataset validation. The results from the
best models on each fold on the BioVid test set are summarized in Table 13.

F1 Score AUC Accuracy

Fold VST-0 ST-0 ViT-0 VST-0 ST-0 ViT-0 VST-0 ST-0 ViT-0

1 0.54 0.43 0.59 0.60 0.57 0.60 0.58 0.53 0.57
2 0.47 0.64 0.41 0.60 0.59 0.60 0.57 0.53 0.56
3 0.61 0.56 0.41 0.58 0.54 0.59 0.55 0.54 0.57
4 0.42 0.41 0.47 0.60 0.56 0.60 0.55 0.52 0.58
5 0.52 0.38 0.52 0.59 0.58 0.59 0.57 0.53 0.57

Mean 0.51 0.48 0.48 0.59 0.57 0.60 0.56 0.53 0.57

Table 13. Cross-database comparison on different metrics

Given that the BioVid dataset has no class imbalance, we also included
accuracy along with F1-score and AUC. Regarding the F1-score, the VST-
0 model (0.51) is the best on average, outperforming the ST-0 and ViT-0
models (both 0.48). For the accuracy and AUC, the ViT-0 model outperforms
the others with an AUC of 0.60 and accuracy of 0.57, although the VST-
0 is close behind. The ST-0 model tends to perform the worst across all
three metrics. These findings suggest that the VST-0 and ViT-0 models
have comparable generalizability, while the ST-0 model underperforms in
terms of cross-database validation. This supports the observation that a
spatiotemporal approach, such as that in VST-0, has an advantage over
purely spatial models like ST-0. Nevertheless, none of the models showed
excellent performance in the cross-dataset validation, especially when looking
at accuracy.

8.7 Explainability results

In this section, we present the results of our explainability analysis,
which uses attention maps to identify the key focus points of each model
during prediction. For each of our three models (VST-0, ST-0, and ViT-0),
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the outputs are displayed in the form of confusion matrices, which shows the
average attention focus for different prediction outcomes (true positive, true
negative, false positive, and false negative).

8.7.1 Attention visualization Video Swin Transformer

The confusion matrix in Figure 21 presents the averaged attention vi-
sualizations for the VST-0 model. The subject in the background serves only
as an example and for facial orientation, rather than representing a specific
frame extraction as the attention visualization shows the output averaged
from 100 randomly selected samples.

Figure 21. Attention visualization confusion matrix for VST outputs

True Positive In cases where the VST-0 model correctly identifies pain,
the attention is focused in the middle face region, but particularly around
the eyes and brows. The affected pain-specific AUs include: AU4 (lowering
of brows), AU9 (nose wrinkling), AU7 (lids tight), AU43 (eyes closed), and
slightly AU10 (raising the upper lip). Additionally, there is high focus on
the chin region, specifically regions affected during AU16 (lower lip depress),
which is not typically pain-specific.

False Positive When the model wrongly predicts pain, the focus remains
similar to true positive cases, but with greater attention on the chin region
and additional focus beyond the lip corner.
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True Negative In correct no-pain predictions, the attention shifts to other
areas, focusing more on the eyes (AU43 - eyes closed) and beyond the lip
corners. The model also pays attention to the cheek region, which may be
related to absence of AU6 (cheek raiser), and around chin.

False Negative When the model fails to detect pain, the attention pattern
is similar to true negatives, but with more focus on the chin, cheeks, and
mouth regions. There’s less attention on AU43 (eyes closed), and more on
the forehead.

8.7.2 Attention visualization Swin Transformer

The following Figure 22 presents the attention visualizations for the
Swin Transformer (ST-0) model.

Figure 22. Attention visualization confusion matrix for Swin Transformer outputs

True Positive In cases where the model correctly identifies pain, the fo-
cus is centered around the nose region, highlighting AU9 (nose wrinkling).
Additionally, there is attention towards the brows (AU4 - lowering of brows)
and below the eyes (AU7 - lids tight), indicating a strong attention on pain-
specific AUs.

False Positive When the model incorrectly predicts pain, the attention
visualizations are quite similar to those in true positive cases, with notable
focus on regions related to AU9 and AU4. Interestingly, there is also a
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slight focus on the left and right corners of the image, which might indicate
background noise, potentially leading to incorrect predictions.

True Negative In correct no-pain predictions, the model’s attention shifts
to the eyes region (AU43 - eyes closed) and slightly to AU9 (nose wrinkling).
The primary focus, however, is on the side chin region, indicating regions
with an appearance change during AU20 and AU16, which are generally not
associated with pain.

False Negative In cases where the model fails to detect pain, the focus is
similar to true negatives, but with less attention on the eyes and no focus on
the nose region.

8.7.3 Attention visualization Vision Transformer

The explainability results for the Vision Transformer are given in Fig-
ure 23, showing the corresponding attention visualization confusion matrix.

Figure 23. Attention visualization confusion matrix for ViT outputs

True Positive In cases where the ViT-0 model correctly identifies pain,
the attention is primarily focused on the nose region, corresponding to the
pain-specific AU9 (nose wrinkling). The focus also spreads towards the eyes,
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particularly AU43 (eyes closed) and AU7 (lids tight). Notable attention is ob-
served in the mouth, lip corners, and chin regions, covering AU14 (dimpler),
AU15 (lip corner depressor), and AU16 (lower lip depress). Slight attention
is also observed in the brow region, indicating AU4 (lowering of brows), but
this is less significant.

False Positive In cases where the model incorrectly predicts pain, the
attention visualizations are similar to the true positive cases, but with slightly
more attention on the eyes and nose regions and less on the mouth and chin
regions. The brow region is not significantly focused on in these cases.

True Negative In correct no-pain predictions, the focus is mainly on the
very low side of the chin region, which is relevant to AU16 (lower lip depress),
although this could be background noise in some samples. There is also slight
attention in the brow area, indicating AU4 (lowering of brows), as well as
around the eyes with AU7 (lids tight), cheeks with AU6 (cheeks raising), and
the mouth and lip corners.

False Negative When the model fails to detect pain, the attention is sim-
ilar to the true negative cases, but with a much stronger focus on the chin
region, related to AU16 (lower lip depress), but also background information.
The brow region is absent in these cases.

8.7.4 Attention comparison of true positives between the models

This chapter presents a comparative analysis of our three model at-
tention maps, focusing on true positive cases. A composition of these maps
from all three models can be seen in Figure 24.

(a) VST (b) Swin Transformer (c) ViT

Figure 24. True positive attention maps
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All three models demonstrate that they actually learned to use regions
and AUs associated with pain to predict the pain class. The VST model
extends its focus across the middle face region, particularly concentrating
on the nose and eyes. It also spreads its attention towards the mouth and
forehead, and notably, includes the chin region. The Swin Transformer shows
a similar attention distribution, centered around the nose, brows, and eyes.
However, it does not significantly extend towards the mouth region, which
shows a more localized focus compared to VST. In contrast, the ViT shares
similar attention patterns with the VST, especially around the nose and eyes
and extends similarly towards the mouth and chin regions.

Regarding AUs, the attention mechanisms of all these models share a
focus likely corresponding to the following pain-related AUs:

• AU4 - lowering of brows

• AU7 - lids tight

• AU9 - nose wrinkling

• AU43 - eyes closed (mainly for VST and ViT)

Furthermore, the VST and the ViT also together pay attention to the
mouth region, indicating potentially the AU10, which is a raise in the upper
lip. Interestingly, it seems that these two models also pay attention towards
non-pain-specific regions like the chin region (AU16 - lower lip depress).

9 Discussion and Limitations

This chapter focuses on the discussion and limitations of our research.
Firstly, the key findings, interpretations, and implications for each research
question are discussed, followed by the research limitations and ideas for
future work.

9.1 Research questions

How do Video Swin Transformers perform in the automated as-
sessment of pain through facial expressions? In this study, we inves-
tigated the efficiency of Video Swin Transformers for the automated detection
of pain using facial expressions. This was motivated by the model’s potential
to capture different scales and nuances of pain dynamics while remaining
computationally efficient at high resolution when compared to Vision Trans-
formers. Our findings indicate that VST models, particularly when including
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an extended temporal depth, can indeed deliver state-of-the-art performance
in this domain. The results demonstrated that the main VST model, desig-
nated as VST-0, achieved an F1-score of 0.56 and an AUC of 0.85. Further
enhancements in model performance were observed with our optimized VST
model (VST-1-TD), which used a temporal depth of eight frames, achieving
a higher F1-score of 0.59 and an AUC of 0.87. When compared to the repro-
duced Vision Transformer model (ViT-0) from prior state-of-the-art research,
both our VST-0 and VST-1-TD models showed improvements in F1-score,
with the VST-1-TD also surpassing the ViT model in terms of AUC. More-
over, our results also highlight the significant outperformance of the Swin
Transformer model ST-0 by our VST models, demonstrating the superiority
of VST over its spatial counterparts in handling the dynamic aspects of facial
expressions associated with pain.

Building on these findings, it is evident that the best performing VST
models not only met but exceeded the benchmarks set by all comparison
models in terms of both F1-score and AUC. This reinforces the idea that the
architectural characteristics inherent to Video Swin Transformers - specif-
ically, their scaling principle and the inclusion of temporal information -
significantly impact the detection of nuanced and dynamic pain expressions.

Furthermore, our analysis indicates that the VST models, VST-0 and
VST-1-TD, were capable of outperforming the previous state-of-the-art model
reported by Fiorentini et al. (27), which had an F1-score of 0.55 and an AUC
of 0.88. Our models not only surpassed this in F1-score but also delivered
comparable results in terms of AUC. This comparison as well as with our re-
produced ViT-0 model, however, should be contextualized within the frame-
work of model sizes and capacities. The Vision Transformer models used in
previous studies were typically based on a larger ’base’ model, in contrast to
our ’small’ model variants for both the VST and Swin Transformer, intro-
ducing a potential difference in model capabilities due to the deviation in the
number of parameters. This difference suggests that the superiority of our
VST models might be even more significant if a fair comparison were made
with equivalent model sizes.

A critical examination of the performance differences between the Vi-
sion Transformer (ViT-0) and Swin Transformer (ST-0), both operating at
the spatial level, suggests that at first glance, the Swin family architecture
does not necessarily have clear superiority over the ViT. Nevertheless, this
comparison must be seen differentiated by considering as well the significant
differences in model sizes, which requires further research to have a fair and
balanced evaluation.

However, the improved performance of the Video Swin Transformer
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models, especially looking at the VST-1-TD, holds considerable implications
for the field of automated pain detection systems. This study represents the
first known application of VST technology on this task, achieving state-of-
the-art results in terms of F1-score and offering performance that is compa-
rable with state-of-the-art in terms of AUC. The successful implementation
and good results of the VST models highlight the architecture’s potential
and establish it as a promising approach for this specific task. One of the
most significant implications of our findings is the validation of the VST ar-
chitecture for effectively capturing both temporal dynamics and fine-grained
spatial details in facial expressions associated with pain. Furthermore, the
given computational efficiency of VSTs for high resolution data suggests that
they are not only better at dealing with the nuances of pain detection, but
also are more suitable for integration into real-time systems. The impli-
cations of the findings are not only limited to the field of automated pain
detection, but also can be used in related fields, like pain intensity estimation
or any automation working with facial expressions.

How does incorporating temporal dynamics of pain at the video-level
impact the performance of automated pain detection compared to
solely frame-level analysis? To address the first sub-research question
regarding the impact of incorporating temporal dynamics at the video-level,
we focused on a comparative analysis between the Video Swin Transformer
(VST-0) and the Swin Transformer (ST-0). These models share a similar ar-
chitectural foundation but differ in their handling of temporal components.
Our findings show a notable performance enhancement in automated pain
detection when temporal information is included. Specifically, VST-0, which
integrates temporal information, achieved an F1-score of 0.56 compared to
0.53 for ST-0 and an AUC of 0.85 compared to 0.80 for ST-0. This represents
a significant improvement in both metrics by including temporal information.

The different performance between VST-0 and ST-0 clearly highlights
the significance of the temporal component in automated pain detection.
This comparative study was structured under nearly identical conditions
for both models, including similar preprocessing steps, model size, and the
number of layers, which strengthens the validity of our conclusion. These
findings align with previous research on the temporal dynamics of pain
(87)(88)(78)(67), which has demonstrated success in incorporating tempo-
ral information in non-transformer models. However, our results present a
challenge to recent studies involving transformer models, such as the work by
Fiorentini et al.(27), who did not observe significant improvements with the
inclusion of temporal data in Vision Transformers compared to Video Vision

69



Transformers. In contrast to Fiorentini et al.’s method (27), which employed
uniform frame sampling to create a 2x2 grid across frames in 2D format,
our approach applies the tubelet embedding technique. This technique in-
volves a more explicit integration of temporal depth with spatiotemporal 3D
“tubes”, suggesting that the method of incorporating temporal information
is essential. In Fiorentini et al.’s study (27), the absence of a significant im-
provement might be attributed to their methodological approach rather than
the ineffectiveness of temporal information itself. Our use of the tubelet tech-
nique, which aligns more closely with the inherent design principles of the
VST, appears to be more effective for this application. This implies that not
just the inclusion but also the method of integrating temporal data plays an
essential role in enhancing the performance of transformer-based models in
pain detection tasks.

The given insights from this sub-research question confirm the cru-
cial role of temporal dynamics in improving the performance of automated
pain detection systems, particularly for transformer-based models. Moreover,
given the discovery that the method of integrating temporal data probably
affects performance, further studies could compare different temporal inte-
gration techniques on several architectures to determine the most effective
approach in automated pain assessment. In a more general context, the im-
portance of temporal information could also be transferred to related tasks
regarding facial expressions.

To what extent does increasing the temporal depth input of Video
Swin Transformers enhance pain detection capabilities? To further
understand the impact of temporal dynamics on pain detection capabilities,
our research extended to exploring the effect of increasing the temporal depth
in Video Swin Transformers. Building upon the positive findings with tem-
poral integration, we compared the performance between VST models con-
figured with four and eight frames. The extension to eight frames resulted in
a significant performance improvement, with the F1-score increasing by 5.4%
(from 0.56 to 0.59) and the AUC increasing by 2.4% (from 0.85 to 0.87).

Our results confirm that enhancing the temporal depth from four to
eight frames not only retains the benefits of temporal integration but also
improved them. While the prior research by Fiorentini et al.(27) have sug-
gested that a minimum of four frames might be sufficient to capture the
full dynamics of the most prolonged AU, our findings challenge this claim,
demonstrating superior performance with an eight-frame temporal depth.
This suggests that a four-frame depth may not adequately capture the com-
plete dynamics of pain expressions.

70



Furthermore, our findings are in line with other related research, in-
dicating that increased temporal depths can reach better performance in
automated pain detection trained on UNBC McMaster. For instance, Ro-
driguez et al.’s application (67) of a 16-frame depth in their LSTM models,
and Tavakolian and Hadid’s research (78), which highlighted that a 32-frame
temporal depth significantly outperformed models with a lower number of
temporal depth, support our conclusions. The effect of a even higher tem-
poral depth, for instance 16 or 32 frames, is not investigated in our research
scope, but has potential for further investigations.

However, extending the temporal depth introduces a trade-off, particu-
larly in terms of computational efficiency, which could impact the feasibility
of real-time applications. The decline in computational efficiency with in-
creased temporal depth necessitates a balanced approach, where the benefits
of improved detection capabilities must be weighed against the increased
computational demands. Further research is needed to identify an optimal
balance, possibly through more detailed experiments that also consider com-
putational time and resources used.

How does the use of Focal loss during training on the imbalanced
UNBC McMaster dataset, in comparison with oversampling tech-
niques, impact the detection of pain? This research question investi-
gated the impact of using Focal loss versus the oversampling technique on
the detection of pain in the imbalanced UNBC McMaster dataset. These
included training the Video Swin Transformer model using Focal loss (VST-
2-FL) and comparing its performance against the ones of the main VST
using oversampling (VST-0). The comparative analysis gives insights into
the efficiency of each method in addressing class imbalances and enhancing
model performance. The findings showed that the VST-2-FL model trained
with Focal loss reported an average F1-score of 0.44 and a mean AUC of
0.77, but significantly underperformed in all metrics compared to the VST-0
model. Furthermore, the VST-0 not only achieved higher scores but also
demonstrated greater stability across different test folds.

These findings suggest that Focal loss might not be effective for ad-
dressing data imbalance in the context of automated pain detection. The
reason could also include the limited experimental setup. For example, in
the hyperparameter optimization of the Focal loss model, where essential
hyperparameters such as the focusing parameter gamma and the weighting
factor alpha were potentially not optimally set. As the number of trials for
hyperparameter optimization was limited to 20 due to computational con-
straints, it may not have been sufficient to find the optimal settings. This
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configuration might not provide the required emphasis on minority samples
of the pain class, leading to suboptimal training results. Moreover, oversam-
pling techniques, which increase the representation of minority classes by
duplicating samples, might have provided a more straightforward and effec-
tive method for addressing the imbalance as it works in the data level. This
approach directly changes the data distribution that the model encounters
during training, which can sometimes achieve better performance than work-
ing on the classifier level during training. Another contributing factor could
be the training constraint where models were trained for only one epoch due
to early convergence observed in other models. This limited training period
might not have allowed the Focal loss enough time to properly adjust and
stabilize, which is particularly important given that Focal loss can some-
times lead to slower convergence or instability in training if not configured
correctly.

Although this was the first known attempt to apply Focal loss to au-
tomated pain assessment, and the results did not favor Focal loss over the
oversampling method, this exploration opens the door to further research. It
highlights the need for more extensive hyperparameter tuning and potentially
more adaptive training strategies to explore the full capabilities of Focal loss
in imbalanced datasets like those used for pain detection. This initial study
could motivate additional research to refine the application of Focal loss and
investigate its efficiency with enhanced computational resources.

How do Video Swin Transformer-based pain detectors generalize
across different pain contexts? This sub-research question explores the
capability of our models, particularly our Video Swin Transformer, to gen-
eralize across diverse pain contexts by using cross-dataset validation. More
specifically, our models trained on a clinical dataset, the UNBC McMaster,
are tested on the BioVid dataset, which is an experimental dataset. The
VST-0 model showed the highest average F1-score, while the ViT-0 model
scored slightly better in terms of AUC and accuracy. Both model architec-
tures indicate better generalizability across datasets compared to the ST-0
model, which consistently showed lower performance across all metrics. This
pattern was also observed in the within-dataset validation, where the VST
outperformed the Swin Transformer, strengthening the aspect of the spa-
tiotemporal component also regarding generalizability.

Despite these insights, the results also present that none of the models
has excellent generalization abilities, particularly when assessed on accuracy.
Although the accuracy is above baseline, it still falls short of what might be
considered good. This can be due to significant differences in the settings
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of the datasets (clinical vs. experimental) or the presence (BioVid) versus
absence (UNBC) of EEG caps, among other factors. Another difficulty in
generalizing is the behavioral differences in the expression of pain captured
across the datasets.

Our findings align with those of Prajod et al. (63), who noted simi-
lar challenges in generalization. They observed that models trained on the
UNBC dataset struggled to recognize pain in the BioVid dataset due to dif-
ferences in pain expression behavior. Particularly, participants in the BioVid
dataset frequently closed their eyes, also in no pain cases, a behavior less
common in the clinical context of the UNBC dataset. This behavioral devia-
tion leads to significant performance decrease, as the models fail to generalize
the specific pain-related characteristics from one context to another. Dai et
al. (17) also highlight the difficulty of transferring learned pain recognition
across datasets with distinct characteristics. They pointed out that the envi-
ronment, as well as the experimental setup, such as the presence or absence
of certain control equipment like EEG caps, can drastically affect the perfor-
mance of pain assessment models. Ertugrul et al. (24), in their cross-domain
experiments on AU detection, found similar challenges, indicating that gen-
eralizability issues go beyond automated pain detection and also affect AU
detection models.

Our study helps fill the gap in cross-dataset validation in automated
pain assessment research and contributes to the very few works that have
tested their models in different pain context and dataset settings. Our find-
ings examine the challenges of cross-dataset validation, particularly moving
from a clinical to an experimental dataset, suggesting that further improve-
ment in model generalizability is necessary. Furthermore, it highlights the
need for models to be trained on more diverse datasets that include a broader
range of pain expressions and contexts to improve their generalizability.

Can model-specific explainability methods generate plausible ex-
planations for the outputs of Video Swin, Swin, Vision Trans-
former-based pain expression detection models, and how do the
explanations generated differ among the model architectures? The
last research questions is addressing the explainability of our models, particu-
larly the plausibility of explanation and their differences between the models.
Our study successfully applied the approach proposed by Nguyen et al. (61)
to Swin Transformer models, which is a novelty in the field of automated
pain assessment. This adaption, together with conventional ViT attention
extraction method by Chefer et al. (13), allowed us to extract and analyze
attention maps, showing how these models focus on their predictions.
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Our models potentially learned to recognize pain-specific AUs effec-
tively. This is indicated from their attention focusing mainly on regions as-
sociated with pain expressions. Common pain-related AUs identified across
all models include AU4 (lowering of brows), AU7 (lids tight), and AU9 (nose
wrinkling). In addition, for the VST and ViT, pain-specific AU43 (eyes
closed), but also attention in the non-pain-specific chin region.

The relation to Fiorentini et al.’s results (27) further validates our ap-
proach, as similar attention patterns to pain-related areas have been demon-
strated in their work, which reinforces the reliability of our models’ learning
focus.

Interestingly, we observed that background noise plays a role in the
Swin Transformer’s predictive errors, leading to false positives. This could
demonstrate the disadvantages of using 2D face frontalization instead of its
3D version, even though its mentioned advantages.

This study is one of the first known work to apply the method by
Nguyen et al. (61) for extracting attention maps from Swin Transformers.
The success of these applications not only encourage for further investigations
into the explainability of future models but also suggests potential uses of
Swin Transformer explainability in other domains.

The implications of our findings extend to the broader field of explain-
able AI, particularly improving trustworthiness in automated systems used
within the medical sector. By demonstrating that these models genuinely
learn and focus on pain-related AUs, we contribute to the potential for these
technologies to assist in clinical settings.

9.2 Limitations and future work

Model Comparison One of the limitations of our work is the differences
in model size between the Video Swin Transformer and comparison mod-
els, specifically the ViT. As mentioned before, this needs to be considered
and might lead to an unfair comparison on the architecture level. Including
comparison models for a fairer comparison between ViT (base variant) and
(Video) Swin Transformer (small variant) would require more computational
availability to train them on base variants.

ViViT Comparison Not being able to include a ViViT comparison model
to compare our VST directly on a spatiotemporal level with the Vision Trans-
former architecture is another limitation. This is due to the restricted choice
of pre-trained models for ViViT and the limited computational resources to
train it on existing pre-trained models. Future research can address this
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problem and work on a comparable ViViT model that integrates temporal
information through tubelet embeddings.

Temporal Depth Investigation While our findings suggest that increas-
ing the temporal depth from four to eight frames improves performance, it
remains unclear whether extending this further would continue to yield ben-
efits. Future research should explore beyond the eight-frame setup, possibly
testing up to 16 or 32 frames, to determine the optimal temporal depth that
balances performance with computational efficiency.

Computational Aspects and Real-Time Applications While our re-
search demonstrated the potential of the (Video) Swin Transformer architec-
ture for automated pain detection, our focus was on effectiveness at “lower”
resolutions (224x224). The (Video) Swin Transformer’s advantage lies in
its computational efficiency not correlating with resolution, making it supe-
rior for high-resolution images compared to Vision Transformers in terms of
computational aspect. However, the computational aspect and the real-time
applicability of (Video) Swin Transformer were not part of this research.
This aspect can be further investigated to demonstrate the superiority of
(Video) Swin Transformer in high-resolution cases in a comparative analysis
with Vision Transformers, for example.

Hyperparameter Optimization Although hyperparameter optimization
was performed in the experiment, it might be limited in terms of tested pa-
rameters and the number of trials. Due to the high computational costs as-
sociated with nested cross-validation in combination with the expense of our
models, this research was restricted in finding the optimal hyperparameters.
With more extensive hyperparameter optimization, the Focal loss models
could be further improved and may get more insightful results.

Preprocessing and Background Noise Attention visualization indi-
cated that background noise may affect model performance, particularly for
the Swin Transformer model. This might be because of our preprocessing
and the face frontalization on a 2D level instead of 3D. To avoid this, fu-
ture work can investigate more in the 3D technique and try to mitigate the
mentioned disadvantages of it.

Dataset Variability and Generalization Most of the current research,
including this study, relies heavily on the UNBC McMaster dataset. Our
cross-dataset validation showed, that there is a critical need for datasets
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that covers a wider variety of pain contexts and expressions to ensure that
models are not only effective but also generalizable across different settings
and populations. Future work should focus on acquiring or creating more
diverse datasets, which could help in developing models that are robust across
various real-world scenarios.

Qualitative Evaluation Our results highlight that while certain AUs are
recognized as pain-related across all models, such as the chin region, they
are not universally pain-specific. This suggests a need for deeper exploration
into the role and relevance of different AUs in pain detection. Future research
could look into how models prioritize different AUs and the potential for
discovering new pain-related AUs that have not yet been extensively studied.

Pain Intensity Estimation This study is limited to pain detection, but
related tasks like pain intensity estimation or similar facial expression do-
mains can be further researched. Future work can investigate these tasks
using our method.

10 Conclusion

This research thesis investigated the capabilities of Video Swin Trans-
formers in the automated assessment of pain through facial expressions. We
compared the Video Swin Transformers models against both Swin Trans-
formers and Vision Transformers to evaluate their performance efficiency.

Our findings demonstrated a notable advancement in the use of VST
for pain detection. The main VST model, VST-0, showed promising results
with an F1-score of 0.56±0.06 and an AUC of 0.85±0.04, which improved
further with temporal depth optimization in the VST-1-TD model, achieving
an F1-score of 0.59±0.04 and an AUC of 0.87±0.03. These results surpassed
those of our ViT and Swin Transformer model, which highlights the benefit
of incorporating temporal information and the potential of its architectural
characteristics in automated pain assessment.

Moreover, our research addressed several other aspects. For example,
the impact of increasing temporal depth, which showed improved detection
capabilities, or the comparison of different techniques for handling imbal-
anced datasets and their effects on model performance. Furthermore, insights
about generalizability and model explainability were given.

In conclusion, our Video Swin Transformer models have set new state-
of-the-art performance in automated pain detection, offering improvements
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over other transformer-based models, especially by effectively incorporating
temporal dynamics. The architectural advantages of VSTs in handling high-
resolution data and their computational efficiency make them a promising
solution for real-time applications. The broader implications of this study
not only enrich the field of automated pain detection but also set the way
for future innovations in related areas of facial expression analysis.
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