
Towards a measurable standard for software product

quality

A quantification of the ISO 25010 software product quality standard

Kouros Pechlivanidis (6527450)

Master’s Thesis
Business Informatics

Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands

Supervisor: Dr. Gerard Wagenaar
Second supervisor: Dr. Sietse Overbeek

4 April 2024

Preface

You are about to read the master thesis: ”Towards a measurable standard for software
product quality: A quantification of the ISO 25010 software product quality standard”.
This thesis has been written to fulfill the requirements of the master’s degree in Business
Informatics at Utrecht University. Foremost, I want to express my gratitude to Dr. Gerard
Wagenaar for assisting me during this research project during our sparring sessions. Besides
that, I want to thank Dr. Sietse Overbeek for fulfilling a role as a second supervisor and
taking the time to review my work. My deep appreciation also goes to my parents, who
have always put their trust in my academic career over the past five and a half years. I
want to express my gratitude to the participants of the focus groups and interviews for their
enthusiastic and proactive attitude during their participation in the study. Another word of
appreciation goes to my girlfriend, who listened to me and gave her support whenever I was
stuck on a problem while writing this thesis. Next, I would like to thank my housemates for
providing me with a professional and supportive environment while I was working on this
thesis. Finally, I would like to thank my fellow students and colleagues who reviewed my
work. Thank you all for your support and I hope you enjoy your reading.

i

Abstract

To compete in a competitive environment, continuous improvement of software product
quality is needed. Improvements in software product quality can be made by applying a
software product quality model. One of the most widely discussed software product quality
models is the ISO 25010 software product quality model. This study aims to assess the
feasibility of measuring software product quality using the ISO 25010 standard through a
literature review, focus groups, domain experts interviews, and a case application. 127
quantitative data values were identified for the eight quality characteristics. Subsequently,
domain experts evaluated the feasibility of the quantitative data values, concluding that for
52 quality characteristic, there would be no substantial effort in collecting the data, and
little technical expertise would be required to make the measurement. These results were
evaluated by applying the quantitative data values in a case. Ultimately, results show that
27 metrics could be directly derived from the case. Limitations of the study include the
lack of generalisability of results, and a lack of evaluation on the quality of the identified
quantitative data values Keywords: ISO 25010, Software Product Quality, Metrics

ii

Contents

Preface i

Abstract ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Software Product Quality . 1
1.2 Evaluating Software Product Quality . 2
1.3 Research Aim and Research Questions . 2

2 Research Method 5
2.1 Choosing a Design Science Methodology . 5
2.2 Applying DSRM . 6

2.2.1 Identify Problem & Motivate . 7
2.2.2 Define Objectives of Solution . 7
2.2.3 Design & Development . 7
2.2.4 Demonstration . 12
2.2.5 Evaluation . 12
2.2.6 Communication . 13

3 Literature Review 14
3.1 Defining ISO 25010 . 14

3.1.1 Functional Suitability . 15
3.1.2 Performance Efficiency . 15
3.1.3 Compatibility . 15
3.1.4 Usability . 15
3.1.5 Reliability . 16
3.1.6 Security . 16
3.1.7 Maintainability . 16
3.1.8 Portability . 16

iii

CONTENTS iv

3.2 Applying and Measuring ISO 25010 . 17
3.3 Summary . 19

4 Results 20
4.1 Focus Groups . 20

4.1.1 Focus Group 1 (FG1) . 20
4.1.2 Focus Group 2 (FG2) . 21
4.1.3 Focus Group 3 (FG3) . 22
4.1.4 Focus Group 4 (FG4) . 22
4.1.5 Focus Group 5 (FG5) . 23
4.1.6 Focus Group 6 (FG6) . 24
4.1.7 Creating a model . 24

4.2 Domain expert interviews . 35
4.2.1 Pilot interview . 35
4.2.2 Selected context . 36
4.2.3 Interview results . 37

4.3 Case Application . 46
4.3.1 Selected case . 47
4.3.2 Quantitative data values selection criteria 47
4.3.3 Measured data values . 50

5 Conclusion 53
5.1 Sub-question 1 . 53
5.2 Sub-question 2 . 54
5.3 Sub-question 3 . 54
5.4 Main research question . 54

6 Discussion 56
6.1 Scoping the research . 56
6.2 Threats to validity . 56

6.2.1 Construct validity . 57
6.2.2 Internal validity . 57
6.2.3 External validity . 58
6.2.4 Reliability . 58

6.3 Opportunities . 59

References 59

A ISO 25010 Sub-characteristics 64

B Focus group results 68

List of Figures

1.1 The ISO 9126 Software Product Quality Model [31] 2
1.2 The ISO 25010 Software Product Quality Model [15] 3

2.1 The DSRM process model [37] . 6
2.2 DSRM application overview . 13

3.1 Relationships between quality characteristics [19] 18

4.1 Software product event process . 47

v

List of Tables

2.1 Quality assessment for qualitative studies [28] 10
2.2 Quality assessment for quantitative studies [28] 11

4.1 Metrics excluded by applying the first exclusion criteria 26
4.2 Functional Suitability Metrics . 27
4.3 Performance Efficiency Metrics . 28
4.4 Reliability Metrics . 29
4.5 Usability Metrics . 30
4.6 Portability Metrics . 31
4.7 Compatibility Metrics . 32
4.8 Security Metrics . 33
4.9 Maintainability Metrics . 34
4.10 Functional Suitability Evaluation . 38
4.11 Performance Efficiency Evaluation . 39
4.12 Reliability Evaluation . 40
4.13 Usability Evaluation . 41
4.14 Portability Evaluation . 43
4.15 Compatibility Evaluation . 44
4.16 Security Evaluation . 45
4.17 Maintainability Evaluation . 46
4.18 Quantitative data values excluded from case 49
4.19 Number of included metrics per quality characteristic 50
4.20 Applied metrics . 52

A.1 ISO 25010 Software Product Quality Model Sub-characteristics 64

B.1 Focus group 1: quantitative data values . 68
B.2 Focus group 2: quantitative data values . 69
B.3 Focus group 3: quantitative data values . 70
B.4 Focus group 4: quantitative data values . 71
B.5 Focus group 5: quantitative data values . 72
B.6 Focus group 6: quantitative data values . 74

vi

Chapter 1

Introduction

This chapter introduces the topic of this thesis by explaining what software product quality
is, why organisations benefit from measuring software product quality and what attempts
have been made to measure software product quality. In addition, the motivation of this
study will be clarified by demonstrating a gap in literature. The motivation will be concluded
by listing the research aim and research questions.

1.1 Software Product Quality

Kitchenham and Pfleeger [27] state that software product quality is a complex and abstract
concept that can not be defined by a single accepted definition. Instead, the definition of
software product quality is dependent on the given perspective. From a manufacturers’
perspective, software product quality can be possibly defined by the conformance to specifi-
cation, while a user might emphasise fitness to use. A different definition by Fitzpatrick [14]
acknowledges all possible perspectives by seeing software product quality as the extent to
which an industry-defined set of desirable features are incorporated into a product so as to
enhance its lifetime performance. This definition emphasises that the quality of a software
product is evaluated to maximise the value delivered by the product over its entire lifetime.
A final definition by Pressman [40] further states that software product quality is the confor-
mance to explicitly stated functional and performance requirements, explicitly documented
development standards, and implicit characteristics that are expected of all professionally
developed software. By consolidating the definitions by Fitzpatrick [14] and Pressman [40],
we can conclude that when evaluating software product quality, it is important to consider
both functional and non-functional requirements, as well as considering that software prod-
uct quality is evaluated in the dimension of time. To compete in today’s market, continuous
improvement of software product quality is needed [41]. Software product quality is tightly
connected to the economics of the software product. To increase the quality of a software
product, the manufacturer of the software product incurs costs. By incurring these costs,
the manufacturer aims to generate benefits and reduce future costs that might arise due
to a lack of quality [41]. By measuring software product quality, manufacturers can make

1

CHAPTER 1. INTRODUCTION 2

well-informed choices on whether the benefits of quality gains outweigh the costs of quality
improvement.

1.2 Evaluating Software Product Quality

Significant improvements in software product quality can be made by applying a software
product quality model [11]. Over the past two decades, numerous frameworks have been
proposed with the aim of providing guidelines for evaluating software product quality. A
software product quality model is a model that aims to describe, assess and predict the qual-
ity of a software product. A widely discussed attempt at creating a generalisable software
product quality model is the ISO 9126 software product quality model [5, 7]. This claim is
attributed to the consensus that the strength of the model lies in distinguishing between in-
ternal and external quality attributes. Here, internal quality attributes are seen as attributes
that can be measured during the development process, where as external quality attributes
are attributes that are measured during testing [7]. The model is visualised in Figure 1.1.
In 2011, the ISO 9126 standard was replaced by ISO 25010, which extends ISO 9126 by
including more features to describe software product quality [1, 38]. The ISO 25010 model
is shown in Figure 1.2. ISO 9126 and ISO 25010 are hierarchical quality models. These
are models that decompose software product quality into multiple quality characteristics.
Each of these quality characteristics can be further decomposed in sub-characteristics. This
process is repeated until the chosen level of detail is achieved [49].

Figure 1.1: The ISO 9126 Software Product Quality Model [31]

1.3 Research Aim and Research Questions

A previous study on ISO 9126 (the precedent of ISO 25010) aimed to measure software
product quality by using a questionnaire that asked users of a software product questions

CHAPTER 1. INTRODUCTION 3

Figure 1.2: The ISO 25010 Software Product Quality Model [15]

on each of the six characteristics in ISO 9126 [25]. While a questionnaire might deem useful
for measuring a participants perception on a characteristic, it introduces subjectivity in the
evaluation [17]. As subjective findings might contradict facts on quality characteristics, it is
an interesting research avenue to find quality metrics that objectively measure each of the
characteristics in the software product quality standard. A different study aimed to create
an index for software product quality based on ISO 9126 by comparing the importance of
each of the six quality characteristics [5]. Subsequently, a checklist was used to test whether
the software product satisfied required criteria for fulfilment of the characteristics. The au-
thors conclude that a checklist is an insufficient measure for the quality characteristics and
more research on the quantification of the standard’s quality characteristics can be done [5].
An attempt to solve the shortcoming of insufficient metrics for quality characteristics was
done in the ISO 25023 standard. This standard is used in collaboration with ISO 25010 and
provides metrics that can be used to quantify each of the quality attributes in ISO 25020.
For instance, ISO 25023 describes that the ISO 25010 quality characteristic ’Performance
effiency’ can be measured with the metric ’Errors in task - the number of errors made by
the user during a task’. However, Nakai et al. [32] conclude that not every metric proposed
by ISO 25023 sufficiently measures the characteristic it aims to measure, thus demonstrating
the need to further study appropriate quantitative measures for ISO 25010. Additionally,
not all metrics proposed in ISO 25023 are objective and measurable, making it difficult for
organisations to accurately measure the software product quality of their products. Finally,
ISO 25023 does not draw any conclusions on how measurable each of the standard’s metrics
are, making it difficult to apply the standard to real world software products. [4].

As a result of this gap in literature, this study addresses the following main research question:

To what extent can software product quality be empirically measured using the
ISO 25010 standard?

CHAPTER 1. INTRODUCTION 4

By choosing this research question, the scope of the research will be to evaluate to what
extent the current ISO 25010 can be used to empirically measure software quality for all
software products, therefore choosing not to tailor the standard to a specific domain, ac-
cepting the shortcoming that for certain domains an adaptation of the standard might be
required. To elaborately answer the main research question, the following sub-questions will
be answered:

• SQ1: How can the characteristics of the ISO 25010 standard be defined?
Some characteristics included in ISO 25010, such as usability, are ambiguous and diffi-
cult to comprehend [3]. As a result, we need to further define each of the characteristics
with the purpose of finding quantitative data values that accurately represent the char-
acteristic according to its definition.

• SQ2: What quantitative data values can be used to measure each of the
standards characteristics?
Nakai et al. [32] concluded that the metrics in ISO 25023 do not always accurately
represent the construct they are supposed to measure and there are no studies propos-
ing an alternative set of metrics. As a result, quantitative data values that accurately
measure the characteristic they are supposed to measure need to be found. Addition-
ally, the scope of answering this sub-question will also be to evaluate whether it is
feasible to collect the required data values for a software product.

• SQ3: To which degree can the quantitative data values identified in SQ2 be
measured in practical usage scenarios?
After identifying a set of quantitative data values, practical contribution will be pro-
vided by evaluating how feasible it is to measure the quantitative data values in a real
world situation.

Chapter 2

Research Method

This chapter provides an overview of the research method chosen to conduct this study.
For each activity in the research method, an elaboration will be given on how the activity
contributes to answering the main research question.

As stated in Section 1.3, one of the research goals will be to find quantitative metrics for
the ISO 25010 characteristics and to evaluate how measurable these metrics are. As the goal
of this study will be to create an artifact (a set of quantitative data values), the problem
under discussion can be considered a design science problem. A design science problem is a
problem in which the aim is to (re)design an artifact, so that a chosen goal can be better
achieved [10, 50]. In this study, the chosen goal is to find a more factual representation of
software product quality by finding quantitative metrics for the ISO 25010 standard.

2.1 Choosing a Design Science Methodology

Research on design science has resulted in the creation of several design science process
models [34]. Choosing the appropriate design science process model is dependent on the
situation at hand. Venable et al. [48] have attempted to create a set of rules that can be
used as a guideline for choosing a suitable design science process model. When choosing a
design science process model for our research, the following rules should be considered:

1. The artefact should be demonstrated in a real-world situation, as a requirement for
answering SQ3 is to evaluate whether the found quantitative data values can be applied
in an actual usage scenario.

2. Research findings have to be communicated in form of a scholarly paper.

The Design Science Research Methodology (DSRM) process model by Peffers et al. [37]
satisfies the stated rules as the process model contains a separate demonstration phase , and
the communication of findings is done in the form of a research paper. Additionally, Venable
et al. [48] emphasise that DSRM is especially useful in cases where extensive adaptation
to daily use of the artefact is needed. As a requirement for answering SQ3 is to apply

5

CHAPTER 2. RESEARCH METHOD 6

the the quantitative data values to an actual usage scenario, this criteria can be applied
to the design science problem under discussion. The DSRM process model is summarized
in Figure 2.1. The next sections will describe how each of the activities in the process
model will be applied to our design science problem. A different well-cited design science
process model that was considered is the model by Vaishnavni and Kuechler [47], as this
model was explicitly created for design research in information systems. However, this model
has not been chosen because it does not explicitly describe a demonstration step, which is
required according to the previously mentioned rules. A second design science process model
reviewed is the design science cycle by Wieringa [50]. This model uses an iterative approach
that cycles between identifying problems, designing a treatment, validating the treatment,
implementing the treatment in a case and evaluating the treatment. This iterative cycle
consists of similar activities as DSRM and was considered as a candidate design science
process model for this study. In the end, the model by Peffers et al. [37] has been chosen
because it provides explicit guidelines for communicating the results of the design research,
which is a requirement for this study. Additionally, the model by Peffers et al. [37] includes
dedicated steps for defining the objectives of a solution and designing the solution, where as
the design science cycle by Wieringa [50] implicitly mentions both steps in the designing a
treatment phase. This distinction helps provide a clearer understanding of each phase.

Figure 2.1: The DSRM process model [37]

2.2 Applying DSRM

This section will elaborate on how DSRM will be applied to the situation at hand.

CHAPTER 2. RESEARCH METHOD 7

2.2.1 Identify Problem & Motivate

The goal of this activity is to identify the problem to which the designed artefact will be a
solution, and to justify the value of a solution [37]. Problem identification and motivation
was already performed in Chapter 1 and will therefore not be elaborately discussed in this
section. To briefly summarise the problems identified in Chapter 1:

• Previous attempts at measuring software product quality through the ISO standards
only used subjective metrics or elementary checklists, which might contradict facts
[5, 25].

• The proposed metrics in ISO 25023 do not measure the construct they are supposed
to measure well-enough and do not draw conclusions on how measurable each of the
standard’s metrics are in an actual usage scenario [32].

The value of a solution can be justified through related work that states that improvements
in software product quality are necessary to compete in today’s market, and significant im-
provements in software product quality can only be made when applying a software product
quality model [11, 41].

2.2.2 Define Objectives of Solution

The second activity in the process model is to define the objectives of a solution. After
performing this activity, it should be clear how a solution distinguishes itself from current
initiatives. The objectives of a solution should be rationally inferred from the problem
identification [37].

By inferring the objectives of a solution from the problem statement, the conclusion can
be made that the solution should use quantitative data values for measuring software product
quality. The solution should also be evaluated to justify that it solves the main shortcoming
of ISO 25023, meaning that the metrics should accurately represent the construct they are
supposed to measure. As ISO 25010 is a generalised software product quality model that is
not tailored to a certain industry, it is the objective to create an index that can be applied
to all sectors as well [18]. As some industries might consider certain quality characteristics
as more important than others, it will be the objective of the solution to make the results
generalisable to all industries.

2.2.3 Design & Development

The artefact that aims to solve the design science problem will be created during the design &
development activity. To develop the artefact, two activities will be performed: a literature
review and focus groups.

CHAPTER 2. RESEARCH METHOD 8

Literature Review

A literature review is a review of existing literature, with the goal of building a solid the-
oretical foundation for the proposed study. A literature review can be used to justify the
approach of the study and demonstrate a knowledge gap in the topic under discussion [29, 20].
A literature review can be considered systematic if a strict protocol is used for searching and
evaluating literature [6]. A systematic literature review is deemed appropriate when it is
necessary to address all research on a given topic [33]. In this study, a literature review is
used to answer SQ1: ”How can the characteristics of the ISO 25010 standard be defined?”.
Furthermore, the literature study will explore to what extent ISO 25010 has already been
applied in corporate settings and what attempts at quantifying the standard have already
been made. To achieve these objectives, evaluating all research on the topic is redundant,
making a systematic literature review unnecessary and time consuming. However, the liter-
ature review can still be planned using a systematic literature review protocol discussed in
scientific studies, with the only difference being that the literature review conducted for this
study does not address all papers on the topic. Xiao and Watson [51] conclude that each
successful systematic literature review uses the same five steps for conducting the review,
namely:

1. Search the literature

2. Screen for inclusion

3. Assess quality

4. Extract data

5. Analyze and synthesize data

In the first step, literature will be searched through an automated search on the Google
Scholar search engine. Xiao and Watson [51] state that during this phase, only the title
of candidate papers are considered. The search terms provided as input on Google Scholar
are retrieved from the research questions. Ultimately, this led to the following list of search
terms that will be applied:

(Measuring OR Applying) AND (ISO 9126 OR ISO 25010) AND (Characteristics OR Def-
initions)

In the second step, a list of inclusion and exclusion criteria will be used to create a subset of
the papers found when using the previously mentioned search terms. Xiao and Watson [51]
conclude that during the second step, both the title and abstract of the candidate papers
are assessed. Inclusion criteria define the characteristics of subjects in the study, where as
exclusion criteria describe attributes that prevent a subject from being included in the study
[8]. Patino & Ferreira [36] conclude that inclusion and exclusion criteria are unique as each

CHAPTER 2. RESEARCH METHOD 9

literature review has its own purpose, but criteria usually concern either the study popula-
tion, the nature of the intervention, the outcome variables, the time period, the cultural and
linguistic range or the methodological quality. The inclusion criteria that will be used for
this study are as follows:

1. Research papers that further define the characteristics of the ISO 9126 or ISO 25010
standard are included, as this topic contributes towards the goal of answering SQ1.

2. Research papers that apply ISO 9126 or ISO 25010 in a corporate setting, as these
studies can help identify potential quantitative data values that are feasible to measure
within an organisation.

3. Research papers that aim to quantify ISO 9126 or ISO 25010, as the methods and
techniques used in these studies can be valuable for this research.

The following list describes the selected exclusion criteria, also including a rationale for
exclusion:

1. Research papers not written in English or Dutch will be excluded, due to our limited
proficiency in other languages.

2. Research papers that discuss software product quality of software products developed
for academia will be excluded, as the scope of our study is to describe software product
quality of software products developed in a corporate environment.

3. Research papers that focus on extending the ISO 9126 or ISO 25010 software product
quality model for a specific industry will be excluded, as the goal of our study is to
research whether it is feasible to create a quantitative model that can be applied to all
industries.

During the third step, the quality of the papers will be assessed. Quality assessment of
papers is often done using a checklist. Different contents of the checklist are usually required
for qualitative and quantitative research [51]. As research in the field includes both quali-
tative and quantitative studies, a separate checklist will be used dependent on the research
method. Kmet et al. [28] designed two quality assessment checklists (for both qualitative
and quantitative studies) meant to be used in conjunction. These checklists have been cho-
sen because they have been well-cited, and explicitly support performing quality assessment
for both qualitative and quantitative research. When using these checklist, the quality score
is calculated by summing up the points scored by the paper for each checklist item, and
dividing by the total number of points available. Papers that scored under a certain thresh-
old were excluded. Kmet et al. [28] suggest that the chosen threshold can be dependent on
the time and budget constraints of the research, and can range from 0.55 (liberal) to 0.75
(conservative). As the goal of the literature study is to further explore what has already
been studied in the domain of software product quality, the liberal score of 0.55 has been

CHAPTER 2. RESEARCH METHOD 10

chosen. The checklists for assessing the quality of qualitative and quantitative studies have
been shown in Table 2.1 and Table 2.2 respectively.

Criteria YES (2) PARTIAL (1) NO (0)
1. Question / objective sufficiently de-
scribed?
2. Study design evident and appropri-
ate?
3. Context for the study clear?
4. Connection to a theoretical frame-
work / wider body of knowledge?
5. Sampling strategy described, rele-
vant and justified?
6. Data collection methods clearly de-
scribed and systematic?
7. Data analysis clearly described and
systematic?
8. Use of verification procedure(s) to
establish credibility?
9. Conclusions supported by the re-
sults?
10. Reflexivity of the account

Table 2.1: Quality assessment for qualitative studies [28]

CHAPTER 2. RESEARCH METHOD 11

Criteria YES (2) PARTIAL (1) NO (0) N/A
1. Question / objective sufficiently de-
scribed?
2. Study design evident and appropriate?
3. Method of subject/comparison group se-
lection or source of information/input vari-
ables described and appropriate?
4. Subject (and comparison group, if appli-
cable) characteristics sufficiently described?
5. If interventional and random allocation
was possible, was it described?
6. If interventional and blinding of investiga-
tors was possible, was it reported?
7. If interventional and blinding of subjects
was possible, was it reported?
8. Outcome and (if applicable) exposure
measure(s) well defined and robust to mea-
surement / misclassification bias? Means of
assessment reported?
9. Sample size appropriate?
10. Analytic methods described/justified
and appropriate?
11. Some estimate of variance is reported for
the main results?
12. Controlled for confounding?
13. Results reported in sufficient detail?
14. Conclusions supported by the results

Table 2.2: Quality assessment for quantitative studies [28]

The fourth step of the literature review is to extract the data from the selected papers.
For each paper, its author, topic, research method, results and conclusions will be noted.
These findings are used as input for the next step.

During the final step, the data will be analysed and synthesized. During this step, the
data will organised into a textual description, accompanied by figures and tables where
necessary. The output of this step is shown in Chapter 3.

Focus Groups

To develop the discussed artefact (quantitative data values for the ISO 25010 standard) and
answer SQ2, a series of focus groups will be conducted. A focus group is a technique used
in research in which a group of individuals selected by a researcher discuss a topic chosen
by the researcher based on personal experience [16]. The difference between a focus group

CHAPTER 2. RESEARCH METHOD 12

and a group interview is that a focus group relies on the interaction between participants,
where as a group interview emphasises the questions and responses between participants and
researcher [16].

The participants will be asked to find quantitative data values for each of the considered
quality characteristics. Before participants are allowed to discuss, a definition of the quality
characteristic is given. To take into account that participants will have limited time to
participate in the focus groups, the focus groups will be time-boxed to one and a half hour.
During the session, participants will be instructed to write down the identified quantitative
data values on a set of post-its. After finishing this activity, a list of quantitative data values
will be created.

2.2.4 Demonstration

To further demonstrate the feasibility of measuring the found metrics in a practical setting,
the results will be presented to domain experts. For each identified metric, the domain
experts will be shown the identified the data value. Afterwards, the following two questions
will be asked:

1. What source system(s) can be used as input for the data value?

2. How difficult is it to measure the data value from its source?

Through this demonstration, a light will be shed on any issues that might occur when
trying to measure the data value. The output of this activity will be an enriched list of data
values, where a source is provided for each identified data value. Additionally, each data
value will be accompanied by an indication of how difficult it would be to measure the data
value from its source.

2.2.5 Evaluation

The main goal of the evaluation activity is to observe how well the artefact serves as a
solution to a problem [37]. To achieve this goal and further answer SQ3, an attempt will
be made to measure a subset of the identified quantitative data values in an actual usage
scenario. This will be done by looking at a single case of a deployed software product. The
methods used to obtain the metrics from the case depend on the evaluated source during
the demonstration phase. Due to time constraints, we will prioritize measuring only those
quantitative data values that domain experts classified as readily measurable.

To further illustrate what has been discussed in the past three subsections, an overview of
the DSRM stages design & development, demonstration and evaluation, their corresponding
activities, and the research questions they address are shown in Figure 2.2.

CHAPTER 2. RESEARCH METHOD 13

Figure 2.2: DSRM application overview

2.2.6 Communication

The final activity in the DSRM process model is communication. During this activity,
the identified problem and the importance and effectiveness of the proposed artefact will be
displayed to relevant audiences [37]. In this study, relevant audiences will be other researchers
in the field of information technology, but also organisations that cooperated in this study
and benefit from the created artefact. Communication will be done by documenting research
findings in a thesis. Additionally, a presentation will be given to shed a light on the key
findings of this study.

Chapter 3

Literature Review

As discussed in Chapter 2, a systematic literature review will be performed as part of the
design and development activity in the DSRM process. The literature review results consist
of three parts. First, SQ1 will be answered by further elaborating on the eight characteristics
of the ISO 25010 Software Product Quality Model. Additionally, the definitions found in this
part will be used as input for the focus groups. Second, existing attempts at applying and
measuring ISO 25010 in a practical setting will be discussed. The results from this section
will be used to further explore what has already been studied on the topic of applying and
measuring the ISO 25010 software product quality model, and to apply their leanings to
our research. Third, a brief conclusion will be given to draw upon the key takeaways from
the systematic literature review. After using the search criteria listed in Chapter 2 and
applying the inclusion and exclusion criteria, a total of 18 papers was evaluated. After
assessing the quality of the papers, 14 papers were found to be eligible for inclusion. The
performed quality assessment of both included and excluded papers can be found in the
Github repository of the research project 1 Additionally, the official ISO 25010 standard [23]
has also been referenced to further define the software product quality model.

3.1 Defining ISO 25010

As an international standard for providing guidelines to assess software product quality, ISO
25010 has been widely researched. The ISO 25010 standard consists of two quality models,
each serving their own purpose. First, the quality-in use model is designed to measure the
quality of software from a users perspective. Second, the software product quality model
provides characteristics related to static properties of software and dynamic properties of
the software product [12]. As the scope of our study is to assess software product quality
by looking at quantitative data values organisations can capture, only the software product
quality model will be regarded, meaning that further assessment of the quality-in-use model
will be out of scope for this study. The ISO 25010 software product quality model is a three-

1https://github.com/KourosNL/ThesisMBI/tree/master/QualityAssessements.

14

https://github.com/KourosNL/ThesisMBI/tree/master/QualityAssessements

CHAPTER 3. LITERATURE REVIEW 15

level hierarchical model that divides software product quality (level one) into eight software
product quality characteristics (level two). Each software product quality characteristic is
further decomposed into multiple sub-characteristics. The software product quality model
has been previously visualised in Figure 1.2. In total, the standard has 31 sub-characteristics
[19]. To facilitate the focus groups and assist domain experts in finding quantitative data
values, it is vital to gain a more thorough understanding of each characteristic. Thus, the
following sub-sections will further discuss each of the eight quality characteristics. To limit
the scope of this literature review, only the level two quality characteristics will be defined.
A table of sub-characteristics and their definitions can be found in Appendix A.

3.1.1 Functional Suitability

In the ISO 25010 standard, functional suitability is the degree to which a product or system
provides functions that meet stated and implied needs when used under specified conditions
[23]. Typically, the functional suitability characteristic is tested by comparing requirements
against included functionality [13]. In the preceding ISO 9126 standard, functional suitability
was one of the five sub-characteristics of the functionality quality characteristic [5].

3.1.2 Performance Efficiency

ISO/IEC [23] defines performance efficiency as the “performance relative to the amount of
resources used under stated conditions”. To further elaborate on this definition, a software
system that scores well in the performance efficiency dimension has a response time that
fits the system requirements, as well as not taking up more resources than stated in the
requirements.

3.1.3 Compatibility

Compatibility is the degree to which a product, system or component can exchange infor-
mation with other products, systems or components [23]. Fahmy et al. [13] suggest that
compatibility is usually tested by checking whether the system is compatible with the avail-
able browsers, networks, hardware, mobile devices, and operating systems.

3.1.4 Usability

ISO/IEC [23] lists usability as a quality characteristic defined by “the degree to which a
product or system can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use”. From this definition, it is still unclear
what the specified users, goals, context and system are. Speicher [45] suggests that before
usability is evaluated, it is necessary to provide specific information on these elements.

CHAPTER 3. LITERATURE REVIEW 16

3.1.5 Reliability

Reliability is the degree to which a software product performs specified functions under
specified conditions for a specified period of time [23]. When testing reliability, a software
system will usually be exposed to unexceptionally high volumes and frequency of requests,
with the purpose of checking whether functionality still works under unusual conditions.

3.1.6 Security

In the ISO 25010 software product quality model, security is the “degree to which a product
or system protects information and data so that persons or other products or systems have the
degree of data access appropriate to their types and levels of authorization” [23]. Saptarini
et al. [44] suggest that to better measure security, security compliance could be added as a
sub-characteristic. However, the study by Saptarini et al. [44] only applied the characteristic
to academic information systems, not making implications about the generalisability of this
claim.

3.1.7 Maintainability

According to Peters and Aggrey [38], maintainability is the ability of a software product to
be modified, corrected, or adapted based on changes in the environment. This definition is
similar to the intended definition provided by ISO/IEC [23], where maintainability is the
“degree of effectiveness and efficiency with which a product or system can be modified by
the intended maintainers”. For this study, the definition by Peters and Aggrey [38] will
be used, as in the definition by ISO/IEC [23], it is not further specified who the intended
maintainers are. Additionally, Peters and Aggrey [38] provide further elaboration to the
definition by stating that modifications, corrections are adaptations are done due to changes
in the environment.

3.1.8 Portability

ISO/IEC [23] give the following definition for portability: “portability is the degree of ef-
fectiveness and efficiency with which a system, product or component can be transferred
from one hardware, software or other operational or usage environment to another”. As
both portability and compatibility are concerned with the deployment of software systems
to different varying environments, it is important to note their differences. Portability is
about making sure that software can be moved between environments, while compatibility
concerns the ability of a software system to operate within a given environment (and not
about the transfer between environments).

CHAPTER 3. LITERATURE REVIEW 17

3.2 Applying and Measuring ISO 25010

Applying the ISO 25010 software product quality model (and the preceding ISO 9126 soft-
ware product quality model) in a practical setting has been a widely researched topic. Fahmy
et al. [13] applied the software product quality model to the domain of e-book applications
and concluded that for this domain, the characteristics functional suitability, reliability, us-
ability, and performance efficiency were of higher importance. In this study, characteristics
were assessed by conducting a questionnaire asking participants whether the characteristic
was implemented ‘Poor’, ‘Fair’, ‘Good’ or ‘Excellent’ in the software product. The paper
concluded by claiming that their results could help in identifying areas in which e-book ap-
plications could use improvement. The claim that the importance of the individual quality
characteristics differs between industries is supported by Kadi et al. [26]. In their study on
applying ISO 25010 to cardiac decision support systems by looking at system requirements,
results indicated that for this particular domain, quality characteristics functional suitabil-
ity, reliability and performance efficiency were most important. A study with a similar
scope was conducted by Izzatillah [24]. In this study, a survey was conducted to prioritise
the importance of the sub-characteristics for an application within the transport services
domain. Study results indicated that functional appropriateness, non repudiation, and ap-
propriateness recognizability were the three sub-characteristics most prioritised for the given
application. Izzatillah [24] also studied whether the importance of sub-characteristics varied
between Android and IOS users, but no significant differences were found.

A different study applied ISO 25010 to the domain of cloud computing. The purpose of
this study was to evaluate whether ISO 25010 can be used to measure the quality of cloud
computing applications. Due to time constraints, the study only aimed to measure the time
behavior sub-characteristic that is part of the performance efficiency characteristic. Study
results indicated that in a typical cloud application, it is feasible to collect the required data
for measuring time behavior. However, the researchers also conclude that data collection is
a complex issue, as it is a time-intensive task and collecting data on system infrastructure
may affect the performance of the infrastructure itself [42]. A related study that also limited
its scope to applying only a single quality characteristic in a practical setting was conducted
by applying the functional suitability quality characteristics to ERP systems. In this study,
the ERP system under discussion was divided into functional modules. To determine the
functional suitability of a module, the required functionalities elicited from the business
were listed. The researchers subsequently tested features on whether they were present in
the module, and if the result from using the feature was the same as the expected result [35].

While the previous studies applied ISO 25010 to assess the quality of a software product,
Haoues et al. [19] applied the quality characteristics in the software product quality model to
select software architecture. In this research, the five most commonly used architectures in
the industry were analysed. After that, the study highlighted which quality characteristic is
used the most by each architecture. Finally, Haoues et al. [19] conclude that it is important
to study the relationships between quality characteristics to maintain software at a high
quality. Figure 3.1 displays the found relationships between quality characteristics. Where a

CHAPTER 3. LITERATURE REVIEW 18

positive relationship between quality characteristics is coded as a ‘+’, negative relationships
are coded as a ‘-’, and neutral relationships are coded as a ‘0’. Finally, relationships that
can be both positive and negative, depending on quality characteristic usage, have been
coded as ‘±’. Additionally, the authors conclude that a quality characteristic has a positive
relationship with itself, as the implementation of one of its sub-characteristics positively
affects the other sub-characteristics. The relationships between quality characteristics have
been further explored in a dedicated study on the mutual influences of software quality
characteristics [21]. Where the study by Haoues et al. [19] uses a survey based on literature
to identify relationships, Hovorushchenko and Pomorova [21] opted for a different research
method. In this research, the previously introduced ISO 25023 standard was used to identify
measures. As the measures in this standard can attribute to more than one sub-characteristic,
dependencies were found between sub-characteristics that use a same measure.

Figure 3.1: Relationships between quality characteristics [19]

Besides the studies applying ISO 25010 in a practical setting, applying the preceding ISO
9126 standard to a software system in use has also been the topic of a few research papers.
As ISO 25010 is an extension and replacement of ISO 9126, it is still useful to evaluate papers
that applied ISO 9126. Djouab and Bari [9] applied ISO 9126 to e-learning systems. In their
study, Djouab and Bari [9] aimed to map the key characteristics of e-learning systems to
ISO 25010. Ultimately, the conclusion was made that to measure software product quality
in the e-learning domain, additional quality characteristics were needed. A broader attempt
to apply the standard in a practical setting was done in mobile environments. In this
study, the researchers used ISO 9126 to evaluate how limitations of mobile applications
(frequent disconnection, limited storage capacity) affected software product quality. The
conclusion was drawn that mobile limitations will impact some ISO 9126 characteristics,
making the evaluation of the software product quality of mobile applications a complex task
[22]. The field of measuring ISO 9126 was further explored by Behkamal et al. [5] and was
previously introduced in Chapter 1. To briefly repeat and elaborate on what has already
been discussed, this study consisted of three parts. First, the ISO 9126 model was customised

CHAPTER 3. LITERATURE REVIEW 19

for the B2B domain. Second, analytical hierarchy process, a prioritisation technique, was
applied to prioritise the characteristics in ISO 9126. Third, the model was evaluated in a
case by carrying out a checklist derived from literature that asked participants whether a
sub-characteristic was present in the software product under discussion. The researchers
concluded that a checklist is insufficient for assessing the final quality of the software and
more research into finding quantitative criteria is required [5].

A study that uses a similar research method as Behkamal et al. [5] to measure the
quality of a software product was carried out on a software system in health care [39]. In
this study, analytical hierarchy process was used to calculate the importance of the quality
characteristics of ISO 25010 for the given application. A combination of objective and
subjective metrics were used to measure the sub-characteristics. To test the functional
suitability of the software product, black-box testing was applied. Black-box testing is a
testing method in which the actual output is compared to the expected output, also used
to measure functional suitability in the previously discussed study by Panduwiyasa et al.
[35]. Additionally, the reliability of the system was assessed using a technique called stress
testing. During a stress test, a software system is put under stress by sending large amounts
of data with very high frequency and volume to the system. Subsequently, it is measured
how the system functions under heavy load conditions. Finally, subjective data values were
introduced by distributing a questionnaire to measure the usability of the system.

3.3 Summary

This chapter further explored related work on the ISO 25010 software product quality model.
The definitions listed in the first subsection will be used in the focus groups, with the purpose
of gaining a common understanding on the quality characteristics. In the second subsection,
a consolidation of studies on the application and measurement of ISO 25010 was given.
A few conclusions on ISO 25010 can be drawn from this section. First, multiple studies
suggest that the importance and priority of the quality characteristics is dependent on the
domain for which the application is developed [13, 24, 26]. Second, quality characteristics
are dependent on each other, and researching these relationships is important for further
improving the quality of software products [19, 21]. Finally, multiple techniques, such as
checklists, can be used to measure the sub-characteristics of the software product quality
models [5]. Examples of techniques that measure objective values are black-box testing and
stress testing, where as questionnaires can be used as a technique to elicit subjective data
values [35, 39].

Chapter 4

Results

In this chapter, the results of the conducted focus groups and expert interviews will be
discussed. Moreover, the found quantitative data values have been applied in a case, which
will also be discussed in this chapter.

4.1 Focus Groups

As discussed in Section 2.23, the goal of the focus groups was to gain understanding into
the possible quantitative values that can be used to measure the eight ISO 25010 defined
quality characteristics. As each focus group was conducted in a different context (different
industry domains, different levels of experience, different technology stack, different roles
within the domain of software development), the following subsections will also elaborate on
the environment in which the focus group was conducted. The output of each focus group
(a list of quantitative data values per quality characteristic), can be found in Appendix B.
Additionally, the created transcripts can be found on the Github repository for the research
project 1.

4.1.1 Focus Group 1 (FG1)

The first focus group was conducted with three members of a data engineering platform team
in an organisation in the logistic sector, from now on referred to as LogOrg. The focus group
comprised two data engineers and one solution consultant, each with five, three, and twenty
years of experience, respectively, within the software industry. In total, the participants
came up with 32 quantitative data values. The focus group revealed a few insights that
require elaboration. The members of the focus group faced difficulties finding quantitative
measures for the portability quality characteristic and came to the conclusion that measuring
portability is not always wished for. One participant indicated: ”This assumes that this is a
good quality to have, to make it portable. Well, a lot of companies, including our company,

1https://github.com/KourosNL/ThesisMBI/tree/master/Transcripts/FocusGroups.

20

https://github.com/KourosNL/ThesisMBI/tree/master/Transcripts/FocusGroups

CHAPTER 4. RESULTS 21

made a very specific choice to make it a very low priority.”. The participants also faced
difficulties when trying to find objective measures for the security quality characteristic.
When the number of data breaches was proposed as a quantitative measure for security,
one of the participants made the remark that some quantitative data values for security
(such as the number of data breaches) can only be measured after an incident has happened,
making security a difficult quality characteristic to measure beforehand. On the other hand,
the participants agreed that the reliability quality characteristic was the easiest quality
characteristic to be demonstrated through quantitative data values, with one participant
stating: ”I think this is very measurable ... I think this is by far the most measurable
thing.”. Moreover, the participants expressed to have difficulties finding baselines for the
found metrics. To exemplify, in the discussion on reliability, the participants agreed that
using system up time was a good metric. However, the participants faced trouble on finding
out what should be the standard to compare the up time with. Ultimately, the participants
came to the conclusion that up time should be compared to the service level agreement for
up time. In this discussion, all participants agreed that by comparing up time against the
service level agreement, some sort of subjectivity was added as the metric is dependent on
how the service level agreement is defined. Finally, the focus group revealed that a single
quantitative data value does not necessarily represent the quality characteristic as a whole.
When discussing the number of people working on a product as a potential measure for
maintainability, the comment was made that a high number of people working on a product
does not necessarily mean that the product is not maintainable.

4.1.2 Focus Group 2 (FG2)

The second focus group was conducted with three members of a consultancy organisation
working together on a project with the goal of building a data platform for an organisation
in the logistic sector. The focus group consisted of a data engineer, a full-stack developer,
and a back-end developer, each with 1, 6, and 7 years of experience, respectively, within the
software industry. During this focus group, the members of the focus group noted 23 quan-
titative data values. During the discussion, the participants made a remark similar to what
was discussed during the first focus group, concluding that the portability quality character-
istic is not always important for a software product. Besides that, the discussion uncovered
new insights on the quality characteristics. During the discussion, an interesting note on
portability was raised. While not being included as a separate measure, the members of the
focus group proposed the idea that the measures of the other seven quality characteristics
should still hold when porting from one usage environment to another, thus being objective
representations for portability as well. When posed the question on whether a measure for
portability was related to the other quality characteristics, a participant answered: ”It still
has to be reliable, you still need to be able to work with it, it still needs to perform, it still
needs to do what it used to do.”. The previous note that a better representation of a quality
characteristic is given by adding more quantitative data values was once again exemplified
by the members of this focus group. The participants came to the consensus that measuring

CHAPTER 4. RESULTS 22

just the up time of a product does not provide a complete view on reliability, but measuring
the up time per functionality could also be of importance: ”Discord may be up 24 hours a
day, but if a hundred people still lose their conversations every day because they drop out,
you’re still not a hundred percent reliable, despite your up time being so.”. A different topic
that the participants briefly touched upon was the topic of interpretation. The participants
came to the consensus that the desired value of some of the quantitative data values was
dependent on the type of product. This was further illustrated through the quantitative data
value ’usage time’ for the usability quality characteristic. It was argued that some software
products, such as games, have better quality if users spend more time using the product.
Other products, such as web shops, may be more usable if users spend less time using the
product.

4.1.3 Focus Group 3 (FG3)

The third focus group consisted of four participants. All participants were students at
Utrecht University with professional experience working in the software industry besides
theirs studies. The participants were two data engineers, a data analyst, and a machine
learning operations engineer, each with 1.5, 1, 1.5 and 1 year of experience working in the
software industry. The members of the focus group proposed 17 quantitative data values.
During the focus group, an interesting discussion that requires elaboration took place. The
members of this focus group found it difficult to define a baseline for a measure, indicating
uncertainty on what to compare the found quantitative data value to. As a result, they
proposed the idea of adding interpretation to the values by measuring the value over time
for a given product. Finally, they also concluded that it is difficult to compare quality
characteristics between software products. As a result, the measured data values can only
be interpreted when comparing the product with itself in different iterations of the product.

4.1.4 Focus Group 4 (FG4)

The fourth focus group consisted of a lead engineer, a DevOps engineer, and one front-end
engineer working in a team implementing event driven software products within LogOrg, with
18, 6.5, and 6 years of experience working in the software industry respectively. In these
event driven software products, large quantities of business events are received each day.
After processing the events and applying business logic, they are represented in the front-
end of the application. In total, the members of the focus group introduced 41 quantitative
data values. During the focus group, the members had an interesting discussion on the
definition of functional suitability, delving more deeply into the the stated and implied needs
aspect. One participant argued that compliance to organisation rules should be a measure
of functional suitability as an implemented security requirement satisfies stated or implied
needs. However, a different participant argued that the product would still function without
the implemented security requirement, and that it should therefore not be a part of functional
suitability. In the end, the participants did not agree consensus on this definition. A different

CHAPTER 4. RESULTS 23

discussion on the definition of the quality characteristics was made when starting to discuss
compatibility. One of the participants made the critical remark that the industry usually
describes compatibility as the degree to which the system can be run on multiple platforms,
as opposed to the ISO 25010 definition, where compatibility is the degree to which the
product can exchange information with other products. Another interesting note on measure
interpretation was made during this focus group. The participants support the argument
made by the members of the third focus group, and also indicated that measures should
be interpreted by comparing the product with itself over different iterations. Measuring an
individual data value, or measuring the value over different products would not add any
meaning to the measurement. Furthermore, the participants further illustrated that for
some quantitative measures, it might be of value to measure them over a time frame, so no
additional penalty is provided for having a malfunctioning product in previous iterations:
”Also interesting, because let’s say a system is not secure, I’ve experienced a data breach, and
I’ve heavily invested in improvement, yet I still experienced a data breach in the past. Does
that say something about the security of my application now?”. Finally, the participants
agreed with the previously made remarks, indicating that bad measurements for a certain
quality characteristic do not necessarily result in a bad product: ”If you would measure all
metrics and your score for compatibility is zero. That is not necessarily a bad thing if it is
not a requirement.”.

4.1.5 Focus Group 5 (FG5)

The fifth focus group was performed with four data solution consultants, working on different
data platforms for their clients. The focus group members were a solution consultant and
two data engineers, each with twelve, five and six years of experience, respectively, within
the software industry. The participants introduced 41 different quantitative data values.
The previously made observation that measuring a single does not necessarily represent the
quality characteristic as a whole was once again confirmed during this focus group. While the
participants agreed that testing could be used to measure functional suitability, a high success
rate of functional tests does not necessarily result in a product that is functional suitable
for it’s purpose, with one participant commenting: ”Testing indeed, but is that the same as
appropriateness? Something can be perfectly tested but not matching its purpose. Think
of building a bike and getting squared wheels, or six wheels.”. Another interesting notion
was made on maintainability. Furthermore, one participant reasoned that maintainability
could potentially be the inverse of compatibility. When a product does not support many
exchange formats, less knowledge is required to maintain the product. Besides introducing
new ideas, the members of the focus group also confirmed a notion made by other focus
groups. The participants of the focus group agreed that the desired value of some of the
quantitative data values was dependent on the type of product, which was also mentioned in
FG4. Finally, one of the members of the focus group also made a remark on the difficulty of
thinking of objective measures for the quality characteristics, and concluded that usability
was the easiest quality characteristic to find quantitative data values for. The participant

CHAPTER 4. RESULTS 24

reasoned that this might be attributed to the fact that usability has many relevant aspects, so
separate data values can be used for measuring the efficiency, effectiveness, and satisfaction
of the software product.

4.1.6 Focus Group 6 (FG6)

The final focus group was conducted with three data solution consultants working together
on a project with the goal of building a data platform for LogOrg. The focus group members
were two data engineers, and a machine learning engineer, each with 8, 3 and 2.5 years of
experience, respectively, within the software industry. In total, the participants wrote down
36 quantitative data values. During this group discussion, the participants shared new ideas
on the topic of selecting a fitting baseline. When discussing performance efficiency, one par-
ticipant noted: ”You are writing a query and do not know that it can be faster until you
know that it can be faster ... So that is what I have in my mind. You only know it once you
have found the optimisation.”. This citation shows that it is difficult to select a baseline,
as the optimal value for the metric is often unknown. This fits the previously introduced
idea that for some quantitative data values, meaning is added by measuring the same value
multiple times over different iterations of the product. In the same context of measuring the
performance of a query, one of the participants posed that subjectivity can be minimised by
enriching a subjective measure with objective information: ”You are performing the mea-
surement based on your own experience. That includes subjectivity ... You can strengthen
subjectivity with objective information ... This query has to take this long because we have
this number of joins and each joins should take this long.”. Finally, during their discussion
on functional suitability, the members of the focus group also highlighted the importance
of data quality. While they came to a consensus that the number of complaints sent to
customer support could be valuable for functional suitability, the observation was made that
the number of complaints sent to customer support does not always represent the actual
number of complaints: ”In that case you should be able to measure complaints. Of course,
there will be a person who has a complaint, but does not file it.”.

4.1.7 Creating a model

The results of the focus groups have been summarised in eight models (one per quality
characteristic). When creating this model, a few considerations have been made:

• Duplicate quantitative data values were found between focus groups. As a result, the
model will contain a column indicating the Evidence for the found value. This number
indicates the number of focus groups proposing the measure (FG1, FG2, FG3, FG4,
FG5, FG6).

• Participants made the argument that some quantitative data values are specific to
a certain type of application or infrastructure. As a result, the model will contain
a column named Context. This column will contain information on the context in

CHAPTER 4. RESULTS 25

which the data value was mentioned. If the context was not explicitly stated by the
participants, this column will be left empty. If none of the quantitative data values for
a given quality characteristic have a value for this column, the column will be emitted
from the model (FG4).

• When looking at the list of identified data values, it becomes apparent that some
metrics can only be measured over a period of time as they provide insights into past
performance or outcomes. An example of this would be the number of data breaches for
the security quality characteristic, as this quantitative data value is always measured
over a particular time interval. On the other hand, some metrics can be measured or
evaluated at the current point in time, providing immediate feedback on the state of
the software product, such as the lines of code for the portability quality characteristic.
Ultimately, this led to the decision of including a Type column in the model, which
can have values ’over time’ or ’point in time’ (FG1, FG2, FG3, FG4, FG5, FG6).

• Some of the proposed metric rely on a subjective assessment. A record was considered
to be subjective if the value of measurement was dependent on human evaluation. An
example of a metric that falls under this category is the ’Net Promoter Score’. As the
Net Promoter Score is measured by asking users how likely they are to recommend the
software product to others, it is dependent on human evaluation. Records that rely on
a subjective assessment have been flagged by adding an asterisk to the metric name
(FG1, FG2, FG3, FG4, FG5, FG6).

Furthermore, a few proposed metrics have been excluded from the model by applying a
single exclusion criterion. Metrics that do not describe a measurable value were excluded:
During the focus groups, the participants wrote down their ideas on post-its. Some met-
rics introduced abstract concepts that could not be captured in a single quantitative data
value. If the meaning and measurement of the concept could not be directly derived from
the transcript, the decision was made to drop the metric from the model to prevent misin-
terpretation. An example of a metric that was dropped following this exclusion criteria is
the measure ’Maturity of tests’ for the maintainability quality characteristic. As it is unclear
what the maturity part of this metric refers to, and it does not result in a single measurable
value, the decision was made to exclude the metric from the maintainability model.

After applying the exclusion criterion, 31 values were excluded from the models. The
metrics dropped based on this exclusion criterion are found in Table 4.1.

CHAPTER 4. RESULTS 26

Quality Characteristic Metric
Functional Suitability Prod test

Load Test / target Load
User acceptance test
Number of search terms in search func-
tionality
Click behaviour

Performance efficiency Asking users if it fits performance needs
with a large sample
Stress test
Logging

Reliability Logging per function
Number of differences between software
instantiations

Usability Text to speech: how long to get to rel-
evant records
A/B testing
Time of day
User analysis: fits software implemen-
tation
Type of users

Portability Number of skills needed to change en-
vironments

Compatibility How actual is used technique
Number of interfaces
Types of fields
Number of changes to data structure
Version of the software / number of use
cases

Security Security controls of common chosen
framework implemented
Percentage that fits security require-
ments
Software up to date

Maintainability Maturity of CI/CD
Number of configuration parameters re-
quired to change
Total language popularity
Time spent between OPS and DEV
Used programming paradigm

Table 4.1: Metrics excluded by applying the first exclusion criteria

CHAPTER 4. RESULTS 27

After the exclusion criterion was applied, a total of 127 distinct metrics remained in
the models. This included 16 metrics for functional suitability, 17 metrics for performance
efficiency, 18 metrics for reliability, 12 metrics for usability, 15 metrics for portability, 13
metrics for compatibility, 19 metrics for security, and 17 metrics for maintainability. The
following tables show the created models for each quality characteristic. The tables have
been sorted on the evidence column in descending order, thus showing the most frequently
named metrics at the top of the table. The applied definitions for the identified quanitative
data values can be found in the Github repository dedicated to the research project 2.

Metric Evidence Type
Number of delivered functions /
number of required functions

2 Point in time

Percentage of succeeding tests 2 Point in time
Net Promoter Score* 2 Point in time
Number of changes needed to fit
to original requirements

1 Point in time

Market share 1 Point in time
Number of unsolvable issues sent
to customer support

1 Over time

Number of delivered functions /
number of functions that con-
tribute to main goal

1 Point in time

Number of clicks before action is
finished

1 Point in time

Test coverage 1 Point in time
Percentage of pixels equal to UI
design

1 Point in time

Large language model agrees that
implementation fits goal

1 Point in time

Team uses sprint review 1 Point in time
Implementation fits acceptance
criteria

1 Point in time

Number of issues 1 Over time
Number of users / number of is-
sues sent to customer support

1 Over time

Uptime 1 Over time

Table 4.2: Functional Suitability Metrics

2https://github.com/KourosNL/ThesisMBI/tree/master/Definitions.

https://github.com/KourosNL/ThesisMBI/tree/master/Definitions

CHAPTER 4. RESULTS 28

Metric Evidence Type Context
Memory utilisation 4 Over time
CPU utilisation 4 Over time
Network utilisation 3 Over time
Time to interactive 2 Point in time Front-end
Latency per user 1 Over time
Latency per increasing user 1 Over time
Latency difference per location 1
Resource costs / expected re-
source costs*

1 Over time

Used current / expected used cur-
rent*

1 Over time

Cyclomatic complexity 1 Point in time
Mobile app battery usage 1 Over time Mobile app
Cost per retry 1 Over time Event driven architec-

ture
Number of retries 1 Over time Event driven architec-

ture
Percentage of dead code 1 Point in time
Number of connections between
source system and other systems

1 Point in time

Execution time per function 1 Point in time
Execution time per function be-
fore refactoring / execution time
per function after refactoring

1 Point in time

Table 4.3: Performance Efficiency Metrics

CHAPTER 4. RESULTS 29

Metric Evidence Type
Uptime / service level agreement
uptime

2 Over time

Uptime 2 Over time
Mean time between failures 1 Point in time
Amount of data lost on failure 1 Point in time
Duration of 1% longest downtime 1 Point in time
Distribution downtime / max
downtime

1 Point in time

Uptime per functionality / service
level agreement uptime per func-
tionality

1 Over time

Number of reliability functionali-
ties implemented / number of re-
liability functionalities required

1 Point in time

Number of failed events / number
of successful events

1 Over time

Number of requests / service level
agreement number of requests

1 Over time

Number of functions that always
give the same result on the same
input / number of functions

1 Point in time

Number of backup options 1 Point in time
Number of users 1 Over time
Number of functions working un-
der stress test / number of func-
tions

1 Point in time

Accuracy of decimal values 1 Point in time
Latency per user 1 Over time
Mean response time to incidents 1 Over time
Mean recovery time to incidents 1 Over time

Table 4.4: Reliability Metrics

CHAPTER 4. RESULTS 30

Metric Evidence Type Context
Number of clicks to complete task 3 Point in time
Time to complete a task 3 Point in time
Product complies with accessibil-
ity standards

2 Point in time

Conversion rate 2 Point in time
Time of usage 2 Over time
Number of recurrent users 2 Over time
Number of social media tags 1 Over time
Net Promoter Score* 1 Point in time
Number of errors in front-end 1 Point in time Front end
Number of users using the appli-
cation each day

1 Over time

Number of times user expresses
positive emotion (facial recogni-
tion)

1 Point in time

Difference in task time between
fastest user and slowest user

1 Point in time

Table 4.5: Usability Metrics

CHAPTER 4. RESULTS 31

Metric Evidence Type Context
Number of major platforms you
can run on without code modifi-
cations

2 Point in time

Time to port to different platform 2 Point in time
Number of features functional on
platform / number of features still
working for new platform

2 Point in time

Number of actions needed to port
to different platform

2 Point in time

Number of supported clouds 2 Point in time
Platform specific lines of code /
lines of code

1 Point in time

Number of cloud agnostic services
used

1 Point in time

Number of supported devices /
Number of potential users

1 Point in time

Number of supported browser
versions

1 Point in time Web appli-
cation

Number of supported mobile
platforms

1 Point in time Mobile ap-
plication

Number of supported OS versions 1 Point in time
Number of supported real time
versions

1 Point in time

Lines of code 1 Point in time
Number of functions covered by
documentation / number of func-
tions

1 Point in time

Number of code changes needed
per function to port

1 Point in time

Table 4.6: Portability Metrics

CHAPTER 4. RESULTS 32

Metric Evidence Type
Number of data exchange formats
used accepted within industry

3 Point in time

Number of connected systems 2 Point in time
Percentage of API endpoints
compliant to organization stan-
dards

1 Point in time

Product has standardized API
documentation

1 Point in time

Number of functions exposed by
API / Number of functions avail-
able for user

1 Point in time

Number of connected systems /
Goal of number of connected sys-
tems

1 Point in time

Number of successful requests /
number of requests

1 Over time

Number of protocols used for
sharing information

1 Point in time

Number of supported operating
systems

1 Point in time

Number of packages / Number of
packages that can be shared with
different techniques

1 Point in time

Systems are connected through
standardized authentication

1 Point in time

Number of data formats not ac-
cepted within industry

1 Point in time

Number of API functions / num-
ber of documented API functions

1 Point in time

Table 4.7: Compatibility Metrics

CHAPTER 4. RESULTS 33

Metric Evidence Type
Number of security protocols
used

2 Point in time

Number of persons for which data
is lost

1 Over time

Percentage of data encrypted 1 Point in time
Product complies to GDPR 1 Point in time
Security breaches / Goal* 1 Over time
Number of users with access to
production / Number of users
with access

1 Point in time

Open security issues per severity
code

1 Point in time

Open security issues for infras-
tructure

1 Point in time

Number of people with admin
privilege

1 Point in time

Number of times break the glass
procedure activated

1 Over time

Number of actions performed
with elevated privileges

1 Over time

Number of lines of defense 1 Point in time
Number of data breaches per year
/ number of attacks

1 Over time

Number of points of failure 1 Point in time
Number of illegal users 1 Point in time
Product uses SSO for authentica-
tion

1 Point in time

Number of users not in a security
group

1 Point in time

Number of security layers 1 Point in time
Product has internet access 1 Point in time

Table 4.8: Security Metrics

CHAPTER 4. RESULTS 34

Maintainability Support Type
Lead time of new feature 2 Point in

time
Number of developers with
knowledge of techstack

2 Point in
time

Number of documented functions
/ number of functions

2 Point in
time

Cycle time of new feature 1 Point in
time

Cycle time of bugfix 1 Point in
time

Lead time of bugfix 1 Point in
time

Code coverage 1 Point in
time

Percentage of intended maintain-
ers who can maintain

1 Point in
time

Time to end of life for toolstack 1 Point in
time

Cyclomatic complexity 1 Point in
time

Time until new developer makes
first deployment to production

1 Point in
time

Percentage of dead code 1 Point in
time

Number of code changes per time-
frame

1 Over time

Number of functions / number of
classes

1 Point in
time

Number of bad code smells 1 Point in
time

Number of domain knowledge
holders

1 Point in
time

Years of experience maintainers 1 Point in
time

Table 4.9: Maintainability Metrics

CHAPTER 4. RESULTS 35

4.2 Domain expert interviews

The purpose of the interviews with domain experts was to gather more information on the
quantitative data values proposed during the focus groups. The interview transcripts are
provided in the Github repository for the research project 3. Specifically, We were interested
in discovering the source of the data value (what system or tool can be used to collect
the quantitative data value), and how feasible it would be to measure the value in a given
context. To determine the feasibility of measuring the data value, the domain experts were
presented two dimensions:

• Difficulty of obtaining data: Experts were asked to evaluate how difficult it was
to obtain the data. An ordinal scale consisting of values low, moderate and high were
used to assess how difficult it would be to extract the data from the source. A metric
would be labeled as low if the data was mostly available, or minimal effort was required
to make the data available. A metric would be labeled as moderate if the data could
possibly be extracted from the source, but cleaning or prepossessing would be needed
to make the data available. Finally, a metric would be labeled as high if the data was
mostly unavailable from the source, and extensive effort would be required to make
the data available.

• Technical expertise required: Experts were given the task to evaluate how much
technical expertise would be required to extract the data from its source. Again, an
ordinal scale consisting of values low, moderate and high were used. A metric was
labeled as low if basic technical skills were required to set up the measurement (such
as reading the data from a dashboard). A metric would be labeled as moderate if
technical skills were required, but implementing the measurement could be done by
most software developers. A metric was labeled high if advanced technical skills were
needed to extract the data from its source.

4.2.1 Pilot interview

A pilot interview with a principal software engineer was conducted with the goal of validating
the interview questions. During the pilot interview, the participant made two major remarks
on the questions posed during the interview.

First, the participant indicated that before answering questions on the source and the
feasibility of measuring the data, the context in which data was collected needed to be
specified as the source and feasibility of collecting the data is dependent on the context in
which the measurement is made. This was further illustrated by looking at the memory
utilisation metric for the reliability quality characteristic. In an on-premise environment,
memory utilisation is measured in a different way than in a cloud environment. As a result,
the participant faced difficulties answering questions on the quality characteristics without

3https://github.com/KourosNL/ThesisMBI/tree/master/Transcripts/DomainExpertInterviews.

https://github.com/KourosNL/ThesisMBI/tree/master/Transcripts/DomainExpertInterviews

CHAPTER 4. RESULTS 36

a predefined scope. Due to these difficulties, the decision was made to not use the results
from the pilot interview for the evaluation of the identified quantitative data values.

Second, the participant suggested that it was difficult to assign values on the chosen
ordinal scales for the feasibility dimensions as the descriptions of the categories were too
vague, making it difficult to distinguish between values low, moderate and high.

Based on the insights from the pilot interview, the interview questions were adjusted.
An attempt was made to minimise the difference in context between interviews to ensure
that all quality characteristics were evaluated from a similar perspective. This was done
by selecting one organisational context, and only select interviewees from two teams within
this context. The selected context will be further elaborated on in the next subsection.
Additionally, participants were explicitly asked to evaluate the quantitative data values using
their experience from the environment they were currently operating in.

Besides that, the descriptions for the ordinal scales were improved for both the difficulty
of obtaining data and technical expertise dimension. This refinement facilitated partici-
pants in classifying the quantitative data value into one of the labels low, moderate or high.
Consequently, the following descriptions were used for the feasibility dimensions.

Difficulty of obtaining data:

• Low: Data is readily available, minimal effort required to make the data available (1
hour - 1 day)

• Moderate: Data is possibly available, but effort is required for preproccessing and
cleaning (1 day - 1 week)

• High: Data is unavailable, extensive effort is required to make the data available (more
than 1 week)

Technical expertise required:

• Low: Basic technical skills required for implementing the measurement

• Moderate: Technical skills or knowledge on a specific technology are required, but
implementing the measurement can be done by most software developers.

• High: Advanced technical skills or in-depth knowledge on a specific technology are
required implementing the measurement

4.2.2 Selected context

To select an appropriate scope for evaluating the discovered quantitative data values, all
interviewees were data engineers or software engineers working for LogOrg. LogOrg is an
international enterprise operating in the logistics sector. In 2023, the organisation employed
over 30.000 people and had an annual revenue of over 3000 million euro. The organisation
deploys their software products to the cloud, using AWS as a cloud provider. Both teams

CHAPTER 4. RESULTS 37

use a combination of Python and Typescript to code their software products. In total, seven
interviews were conducted. The first two interviews were conducted with members of a data
engineering team at LogOrg. As an international enterprise, LogOrg produces large volumes
of data. Within the data engineering team, the interviewees work on building software
solutions that allow other teams within the organisation to consume the data according to
their needs. The other five interviews were carried out with software engineers working for
an enabling team in the e-commerce domain of the organisation. As an enabling team, the
software engineers build internal software products to enable other software teams within
the domain to develop their software products easier and faster.

4.2.3 Interview results

The figures below show the assessment of the domain experts on the metrics proposed during
the focus groups. For each figure, the caption will clarify whether the assessment was per-
formed with a member of the data engineering team or a member of the enabling team. The
cells for the columns ’Difficulty of obtaining data’ and ’Technical expertise required’ were
color coded. Green for all values that were assessed as ’Low’, orange was used for all values
evaluated as ’Moderate’, and using red for all values assigned as ’High’. When a participant
indicated that they did not know what label to assign, or the metric was not applicable to
their context, the color grey was given to the cell. The next eight sections will illustrate the
main outcomes of the interviews by showing the evaluation of the quantitative data values in
a table. In addition, a brief textual explanation will be provided to elaborate on the results
shown in the table. To deal with time constraints and allow the participants to elaborate on
the context of their answers, each quality characteristic was only evaluated once.

Functional Suitability

The functional suitability quality characteristic was conducted with a member of the enabling
team. In total, 10 quantitative data values were assessed as ’low’ on the difficulty of obtaining
data dimension, and five measures were evaluated as ’moderate’ on this dimension. For the
remaining metric (percentage of pixels equal to UI design), the difficulty of obtaining data was
evaluated as N/A as the participant did not have any prior experience comparing a screenshot
against a UI design and therefore expressed difficulty assessing this metric. Looking at the
technical expertise required dimension, 8 quantitative data values were evaluated as ’low’,
6 values were assessed as ’moderate’, and 1 value was determined to be ’high’. For the
metric determined to require a high level of technical expertise (number of changes needed
to fit to original requirements), the participant expressed that setting up this measurement
requires an aggregation of multiple sources. First, the number of changes needed should
be retrieved from the code base. Second, the original requirements need to be retrieved
from a project management tool. As combining these sources require extensive knowledge
on how changes to the codebase are applied, the technical expertise required for this value
was determined to be high. The participant defined a total of eight different sources for the
fifteen evaluated metrics. A project management tool, such as Jira or Github projects, was

CHAPTER 4. RESULTS 38

the most commonly named source. Additionally, the participant concluded that no source
could be assigned to determine the market share, as the participant suggested that the source
for this metric varies per situation. It usually involves doing some research on competitors,
but the interviewee did not draw any conclusions on how this research could be done. An
overview of the evaluated metrics is shown in Table 4.10.

Metric Source DOOD TER
Number of delivered functions / number of re-
quired functions

Project management tool

Percentage of succeeding tests CI/CD tool
Net Promoter Score User review
Number of changes needed to fit to original re-
quirements

Project management tool,
Version control repository

Market share N/A
Number of unsolvable issues sent to customer sup-
port

Project management tool

Number of delivered functions / number of func-
tions that contribute to main goal

Project management tool

Number of clicks before action is finished Analytics Tool
Test coverage Code quality tool
Percentage of pixels equal to UI design N/A
Large language model agrees that implementation
fits goal

Large language model

Team uses sprint review Team calendar
Implementation fits acceptance criteria Project management tool
Number of issues Project management tool
Number of users / number of issues sent to cus-
tomer support

Project management tool

Uptime Cloud dashboard

Table 4.10: Functional Suitability Evaluation

Performance Efficiency

The quantitative data values identified for the performance efficiency quality characteristic
were demonstrated in an interview with a member of the data engineering team. For the
difficulty of obtaining data dimension, 7, 3, and 3 quantitative data values were assessed as
low, moderate, and high respectively. The values that were evaluated as low are metrics that
are readily available by built-in dashboards provided by cloud services, or metrics that can
be easily retrieved from external tools, such as code analysis tools. As a result, all metrics
assessed as ’low’ on the difficulty of obtaining data dimension were also evaluated to be
’low’ on the technical expertise required dimension. For all metrics related to the latency
per user, the participant labeled the metrics to have a high difficulty of obtaining data. In

CHAPTER 4. RESULTS 39

the context of the interviewee, there are many types of users (data warehouses consuming
data exposed in the application by the interviewee, analysts querying the data). As the
source used to determine the latency various per user, and there are various use cases, the
participant concluded that there is not a single source, and collecting the data per case would
be time intensive. For the technical expertise required, evaluated values were similar to the
difficulty of obtaining data. The only difference was found for metrics related to performing
retries, where the technical expertise required was assessed as high. The participant stated
that knowing how to identify retries in a complex software environment requires a great
amount of technical knowledge on the produced software product, and could therefore not
be evaluated as moderate. For this quality characteristic, the most commonly identified
source was a cloud dashboard. As discussed before, the participant stated that the cloud
services used in their work provide dashboards that have built-in functionality for showing
some of the metrics for the performance efficiency quality characteristic. Finally, for eight
quality characteristics the participant was not able to evaluate a source, and therefore the
N/A value has been filled in for the metric. The evaluation of the performance efficiency
quality characteristic is displayed in Table 4.11.

Metric Source DOOD TER
Memory utilisation Cloud dashboard
CPU utilisation Cloud dashboard
Network utilisation N/A
Time to interactive N/A
Latency per user Dependent on user
Latency per increasing user Dependent on user
Latency difference per location Dependent on user
Resource costs / expected resource costs Cloud dashboard
Used current / expected used current N/A
Cyclomatic complexity N/A
Mobile app battery usage N/A
Cost per retry N/A
Number of retries N/A
Percentage of dead code Code analysis tool
Number of connections between source system and
other systems

N/A

Execution time per function Cloud dashboard
Execution time per function before refactoring /
execution time per function after refactoring

Cloud dashboard

Table 4.11: Performance Efficiency Evaluation

CHAPTER 4. RESULTS 40

Reliability

The reliability quality characteristic was evaluated by a member of the enabling team. For
the difficulty of obtaining data dimension, 7, 2, and 2 quantitative data values were assessed
as low, moderate, and high respectively. For the remaining metrics, a value of N/A was
provided. For these metrics, the participant indicated that they would not know how to
set up the measurement for the given value, and therefore they could not give an accurate
estimation on how difficult it would be to obtain the data and how much technical expertise
would be required. For the technical expertise required, 9 metrics were evaluated as low.
For both the moderate and high categories, only one quantitative data value was assigned.
For one metric (Number of functions that always give the same result on the same input /
number of functions), the participant concluded that extensive effort would be required to
measure the value, but no source could be identified. For the remaining metrics, a cloud
dashboard (similar to the previously discussed source for performance efficiency), was the
most commonly named source. The reliability evaluation is shown in Table 4.12.

Metric Source DOOD TER
Uptime / service level agreement uptime Cloud dashboard
Uptime Cloud dashboard
Mean time between failures Dependent on failure
Amount of data lost on failure Source tracking
Duration of 1% longest downtime Logs
Distribution downtime / max downtime Cloud dashboard
Uptime per functionality / service level agreement
uptime per functionality

Cloud dashboard

Number of reliability functionalities implemented
/ number of reliability functionalities required

N/A

Number of failed events / number of successful
events

Cloud dashboard

Number of requests / service level agreement num-
ber of requests

N/A

Number of functions that always give the same
result on the same input / number of functions

N/A

Number of backup options Availability zones
Number of users N/A
Number of functions working under stress test /
number of functions

Cloud dashboard

Accuracy of decimal values Source data, Target data
Latency per user N/A
Mean response time to incidents Dependent on incident
Mean recovery time to incidents Dependent on incident

Table 4.12: Reliability Evaluation

CHAPTER 4. RESULTS 41

Usability

For this quality characteristic, an interview with a software engineer working for the enabling
team was conducted. For the difficulty of obtaining data, 6 metrics were evaluated as low,
4 metrics were evaluated as moderate, and 1 metric was evaluated as high. Evaluation
for the technical expertise required was identical, except that the interviewee evaluated the
technical expertise required for the metric ’number of social media tags’ to be low. The
rationale behind this choice was that if the data were to be available, it does not rely on
a complex technical solution. As the products developed by the enabling team are internal
products not mentioned on social media, the interviewee interpreted this measure as the
number of times the product was mentioned by other teams in demo’s, considering a demo
to be a social medium. As it would be a labour intensive and manual process to count the
number of times the product would be mentioned, the difficulty of obtaining data was set
to high. The most commonly named source was an observability tool, which is a tool that
has access to large volumes of data (such as user behaviour data), and reports this data in a
highly granular level to its user [30]. During this interview, one metric was assessed as N/A
(Number of times user expresses positive emotion). The interviewee expressed that legally
it would not be feasible to collect the data, and therefore they could not make a proper
assessment on both the difficulty of obtaining data and the technical expertise required. The
assessment for the usability quality characteristic is provided in Table 4.13.

Metric Source DOOD TER
Number of clicks to complete task Observability tool
Time to complete a task Observability tool
Product complies with accessibility standards User review
Conversion rate Observability tool
Time of usage Observability tool
Number of recurrent users Observability tool
Number of social media tags Relevant social media
Net Promoter Score User review
Number of errors in front-end Analytics tool, user review
Number of users using the application each day Observability tool
Number of times user expresses positive emotion
(facial recognition)

N/A

Difference in task time between fastest user and
slowest user

Observability tool

Table 4.13: Usability Evaluation

Portability

In total, a member of the enabling team evaluated 15 metrics for the portability quality
characteristic. For the difficulty of obtaining data dimension, 10, 2, and 2 quantitative

CHAPTER 4. RESULTS 42

data values were assessed as low, moderate, and high respectively. Looking at the technical
expertise required, we conclude that more metrics are evaluated as moderate, with 6 metrics
assessed as moderate, 5 metrics assessed as low, and 3 metrics assessed as high. In the
discussion on performance efficiency, we concluded that the difficulty of obtaining data and
technical expertise required were equal for all quantitative data values retrieved using that
source (all metrics that could be retrieved via a cloud dashboard were evaluated as low on
both dimensions). This statement does not hold for the evaluation made for this quality
characteristic. The source named version control repository, a storage solution used to keep
track of different versions of the code base, was used as source for five different metrics. For
this source, three quantitative data values were assessed as low on both dimensions, where
as two quantitative data values were assessed as high on both dimensions. For the metrics
evaluated as low, the interviewee concluded that the measurement could be directly derived
from its source, or that an engineer could infer the value through a quick look through the
code base. The other two metrics (the time, and number of actions needed to port to a
different platform) could not be directly found in the source. Additionally, the interviewee
concluded that to measure this value, an analysis of both the current platform and the desired
platform is required to test whether a product is actually ported to the new platform. The
evaluation for portability is displayed in Table 4.14.

CHAPTER 4. RESULTS 43

Metric Source DOOD TER
Number of major platforms you can run on with-
out code modifications

Version control repository

Time to port to different platform Version control repository
Number of features functional on platform / num-
ber of features still working for new platform

Version control repository

Number of actions needed to port to different plat-
form

Version control repository

Number of supported clouds User agent string
Platform specific lines of code / lines of code Version control repository
Number of cloud agnostic services used N/A
Number of supported devices / Number of poten-
tial users

Analytics tool, User review

Number of supported browser versions User agent string
Number of supported mobile platforms User agent string
Number of supported OS versions User agent string
Number of supported real time versions User agent string
Lines of code Version control repository
Number of functions covered by documentation /
number of functions

Documentation platform

Number of code changes needed per function to
port

Documentation platform

Table 4.14: Portability Evaluation

Compatibility

A member of the enabling team was interviewed to create the evaluation for the compat-
ibility quality characteristic. We can conclude that most quantitative data values for this
characteristic score low or moderate on the difficulty dimension, with each of the two cat-
egories being assigned 3 and 10 values respectively. On the other hand, 7 metrics were
assessed as difficult on the technical expertise required dimension. During the interview, the
participant concluded that for many quantitative data values, in depth knowledge on a spe-
cific technology was needed. For example, when looking at the percentage of API endpoints
compliant to organisation standards, the participant stated that organisation standards can
be rather complex, and in-depth technical knowledge would be required to assess whether an
endpoint would be compliant. Similar to the portability quality characteristic, the version
control repository was the most commonly named source. The evaluation for this quality
characteristic can be found in Table 4.15.

CHAPTER 4. RESULTS 44

Metric Source DOOD TER
Number of data exchange formats used accepted
within industry

Version control repository,
Domain knowledge

Number of connected systems IP tracing
Percentage of API endpoints compliant to organi-
zation standards

Version control repository,
Company knowledge

Product has standardized API documentation Documentation Platform
Number of functions exposed by API / Number of
functions available for user

Version control repository

Number of connected systems / Goal of number of
connected systems

IP tracing

Number of successful requests / number of requests System logs
Number of protocols used for sharing information Version control repository
Number of supported operating systems Version control repository
Number of packages / Number of packages that
can be shared with different techniques

Version control repository

Systems are connected through standardized au-
thentication

Version control repository

Number of data formats not accepted within in-
dustry

Version control repository,
Domain knowledge

Number of API functions / number of documented
API functions

Version control repository,
Documentation platform

Table 4.15: Compatibility Evaluation

Security

This characteristic was assessed by a member of the data engineering team. The evaluation of
this characteristic is summarised in Table 4.16. By looking at Table 4.16, is is apparent that
a large number of metrics was evaluated as N/A. In the interview, the participant stated that
for the implementation of many security requirements, his team was dependent on a different
team within LogOrg. As this team is responsible for managing all cloud environments (and
their security) within LogOrg, the evaluation of the metrics would not be in the participants
scope. For 14 metrics, the participant was able to make an evaluation. In total, the difficulty
of obtaining data was evaluated as low for 9 metrics, moderate for 1 metric, and high for 4
metrics. Looking at the technical expertise required dimension, 10 metrics were evaluated
as low, 3 metrics were evaluated as moderate, and 1 metric was evaluated as high. Looking
at the sources for the evaluation, we can conclude that to measure the metrics relevant
to this characteristic, many different sources are used, varying from built-in security tools
provided by the cloud provider used by the interviewee, the version control repository and
the resources found in a cloud environment. Additionally, a data contract was specified as a
source for three metrics. In the context of the interviewee, a data contract is an agreement

CHAPTER 4. RESULTS 45

on two parties on how data is shared between two teams. The data contracts used by the
interviewee’s team also includes technical information, such as a description on how the
integration used for sharing data was built.

Metric Source DOOD TER
Number of security protocols used N/A
Number of persons for which data is lost Data Contract
Percentage of data encrypted Script
Product complies to GDPR GDPR specification
Security breaches / Goal Cloud security tool
Number of users with access to production / Num-
ber of users with access

Cloud environment

Open security issues per severity code Cloud security tool
Open security issues for infrastructure Cloud security tool
Number of people with admin privilege Version control repository
Number of times break the glass procedure acti-
vated

N/A

Number of actions performed with elevated privi-
leges

N/A

Number of lines of defense Version control repository
Number of data breaches per year / number of
attacks

N/A

Number of points of failure Data contract, Version con-
trol repository

Number of illegal users Cloud environment
Product uses SSO for authentication Company portal
Number of users not in a security group Cloud environment
Number of security layers N/A
Product has internet access Data contract

Table 4.16: Security Evaluation

Maintainability

The final quality characteristic that was assessed during the domain expert interviews is
maintainability. A summary of the evaluation, that was performed with a member of the
enabling team, is shown in Table 4.17. By looking at this table, we can conclude that
maintainability is the only quality characteristic that did not include any metrics evaluated
as high on either one of the two used dimensions. For the difficulty of obtaining data, 6
metrics were evaluated as moderate, where as the remaining 11 metrics were assessed as low.
For the technical expertise required dimension, 2 metrics were assessed as moderate, thus
having the remaining 15 metrics assessed as low. By looking at the sources, we can see that

CHAPTER 4. RESULTS 46

most metrics either use the version control repository or the project management tool as a
source. For all metrics evaluated as low, the participant stated that to make a measurement,
the value could be directly derived from its source, resulting in a low difficulty of obtaining
data. As looking up the value in a source is not a complex technical task, the technical
expertise required for most metrics was also evaluated as low.

Metric Source DOOD TER
Lead time of new feature Project management tool
Number of developers with knowledge of tech stack Version control repository,

Project management tool
Number of documented functions / number of
functions

Documentation platform

Cycle time of new feature Project management tool
Cycle time of bugfix Project management tool
Lead time of bugfix Project management tool
Code coverage Test coverage tool
Percentage of intended maintainers who can main-
tain

Version control repository

Time to end of life for tool stack Tool stack documentation
Cyclomatic complexity External tool
Time until new developer makes first deployment
to production

Project management sys-
tem, version control repos-
itory

Percentage of dead code Linter, Integrated develop-
ment environment

Number of code changes per time frame Version control repository
Number of functions / number of classes Version control repository
Number of bad code smells External tool
Number of domain knowledge holders Version control repository,

Project management tool
Years of experience maintainers Survey

Table 4.17: Maintainability Evaluation

4.3 Case Application

To further answer SQ3 and perform the evaluation phase of the DSRM process, a selected
subset of quantitative data values will be measured in a case. The following sections will
discuss the selected case, the data values that were measured, and their outcomes.

CHAPTER 4. RESULTS 47

4.3.1 Selected case

To accurately evaluate the insights given by domain experts, it is essential to evaluate the
quantitative data values for a software product within a context that closely mirrors the
context of the domain experts. The selected software product is a product created within
LogOrg, and is developed using a technology stack resembling the stack used by the inter-
viewed domain experts (cloud applications in AWS, with Typescript used as programming
language). To further understand the context of the case, it is vital to elaborate on the
organisational and technical context of the software product.

As a large international enterprise, the software ecosystem of LogOrg is a complex envi-
ronment that consists of numerous software products. All these software applications produce
large volumes of data, with data being shared between applications. Some applications ex-
pose their data through events, meaning that each time a business activity is conducted, an
event is sent out by the application. The goal of the chosen software product is to combine
and transform the events from these various sources, and provide a simple operational view
that can be used by other teams within LogOrg to answer business questions for various use
cases. To fulfill this goal, a cloud application deployed in AWS has been created. Events
from various sources are retrieved, and transformed in server-less environments. Afterwards,
the events are loaded in a database, which contains the latest state of an event. Each time
a change in database state takes place, an event is sent out to the users of the application,
notifying them of the newest state. This sequential process is visualised in Figure 4.1. The
same process is applied for each source. In total, the software product uses data from five
different sources. At the moment of writing, the product is still being fine tuned, and users
can not use the application yet.

Figure 4.1: Software product event process

4.3.2 Quantitative data values selection criteria

To deal with time-constraints, the decision was made to only measure quantitative data
values that experts evaluated as low on both the difficulty of obtaining data, and the technical
expertise required dimension. In total, domain experts evaluated 52 out of 127 quantitative
measures as low on both dimensions. Furthermore, two exclusion criteria were applied to
select appropriate quantitative data values for the case:

• Exclusion Criterion 1 (EC1): Metrics for which the source was unavailable
for the product were excluded. For instance, a domain expert indicated that the
conversion rate of an application could be measured through on observability tool.

CHAPTER 4. RESULTS 48

When an observability tool is available, the expert evaluated the metric as low on
both dimensions. However, the software product under discussion does not use an
observability tool. As a result, the metric was not directly measurable for the chosen
software product.

• Exclusion Criterion 2 (EC2): Metrics for which the software product does
not have the appropriate characteristics were excluded. An example of a metric
that was excluded based on this exclusion criterion is the compatibility metric ’number
of successful requests / total number of requests’. As the application does not expose
functionality through an API (and this is not a desired attribute), it is not appropriate
to measure this metric for the given software product.

After applying the exclusion criteria, a total of 16 metrics were excluded in the subset of
metrics being measured. A list of all the excluded quantitative data values, and the rationale
behind exclusion are listed in Table 4.18.

CHAPTER 4. RESULTS 49

Quality Characteristic Metric EC
Functional Suitability Implementation fits accep-

tance criteria
EC2

Performance Efficiency Resource costs / expected
resource costs

EC2

Execution time per function
before refactoring / execu-
tion time per function after
refactoring

EC2

Reliability Uptime / service level
agreement uptime

EC2

Uptime per functionality /
service level agreement up-
time

EC2

Number of functions work-
ing under stress test / num-
ber of functions

EC2

Usability Number of clicks to com-
plete task

EC1

Time to complete a task EC1
Conversion rate EC1
Time of usage EC1
Number of recurrent users EC2

Portability Number of features func-
tional on platform / number
of features still working for
new platform

EC2

Compatibility Product has standardized
API documentation

EC1

Number of successful re-
quests / number of requests

EC1

Number of API functions /
number of documented API
functions

EC1

Security Security breaches / Goal EC2
Maintainability Time until new developer

makes first deployment to
production

EC2

Table 4.18: Quantitative data values excluded from case

CHAPTER 4. RESULTS 50

4.3.3 Measured data values

After excluding 16 metrics, a total of 36 metrics were evaluated for the software product
under discussion.

Selecting a measurement timeframe

In Section 4.1.7, the quantitative data values were categorized into two types: ’over time’
metrics (measured over a period to provide insights into past performance or outcomes)
and ’point in time’ metrics (offering immediate feedback on the software product’s state).
To measure ’over time’ metrics effectively, determining the appropriate time frame for the
measurement is necessary. As discussed in Section 4.1.4, one of the focus groups made a
remark on selecting an appropriate time frame. Here, the participants argued that when a
product scored low on a metric in the past, but efforts were made to improve the score of
the metric, the product should not be penalised for its past deficits. To apply these insights
to our case, the decision was made to use the time elapsed since the latest release of the
software product as the time frame for measuring the quantitative data values. The latest
release of the software product was made six days before performing measurement.

Measuring quantitative data values

Using the selected time frame, the remaining quantitative data values were evaluated. Each
metric will be assessed to determine whether it could be evaluated from the case, accompa-
nied by a rationale explaining why measuring the metric was feasible or not. Results show
that interpretation and measurement are highly dependent on the software product and the
context it is deployed in.

Table 4.19 shows how many metrics were evaluated for each quality characteristic, and
how many metrics were directly measurable in the case.

Quality Characteristic # Metrics # Measurable
Metrics

Functional Suitability 5 2
Performance Efficiency 5 4
Reliability 3 2
Usability 2 2
Portability 4 3
Compatibility 1 1
Security 7 7
Maintainability 9 6

Table 4.19: Number of included metrics per quality characteristic

In total, a measurement was made for 27 metrics. For the remaining metrics, two common
reasons for not being able to perform a measurement were identified:

CHAPTER 4. RESULTS 51

1. For six metrics, it was unclear how the value could be extracted from the source. An
example of this is the metric ’Cycle time of new feature’. The used project management
tool did not specify which user stories are features, and which user stories are bug fixes.
Thus, making it unclear how the quantitative data value could be measured. Other
metrics in this category are: ’Number of delivered functions / number of required func-
tions’, ’Number of unsolvable issues sent to customer support’, ’Distribution downtime
/ max downtime’, ’Cycle time of bugfix’ and ’Cycle time of feature’.

2. For two metrics, it was clear how the value could be extracted from its source. However,
the value could not be directly derived, and additional effort would be required to make
the data available. An example of a metric in this category is ’platform specific lines
of code / lines of code’. As the software product has a code base with over 50.000
lines of code, it is a time intensive task to filter on platform specific lines of code. The
other metric in this category is ’the percentage of dead code’, which is a metric for
both portability and performance efficiency,

The final metric that could not be measured and does not fit into the two described
categories was ’Large language model agrees that implementation fits goal’ for the functional
suitability quality characteristic. As LogOrg does not allow sensitive company specific data
to be put into external large language models, this metric could not be measured.

The measured quantitative data values are illustrated in Table 4.20. To represent all
measurements as numeric values, boolean values have been coded as 1 for the value ’True’,
and 0 for the value ’False’.

Additionally, for a few metrics, a brief elaboration on how they were extracted from
their sources is required. First, to measure ’Memory utilisation’ and ’CPU utilisation’, the
average over a total of 11 serverless functions was used, as the product is not deployed to a
single instance. Second, to measure ’the number of major platforms you can run on without
code modifications’, cloud platforms were considered to be major platforms, as the software
product under discussion is a cloud application. Finally, two programming languages were
used to develop the product: Python and Typescript. As the metric ’Time to end of life for
tool stack’ does not indicate what value should be used, the value shows the end of life for
the technology with the shortest end of life out of the two.

CHAPTER 4. RESULTS 52

Metric Value
Team uses sprint review 0
Number of issues 1
Memory utilisation 78%
CPU Utilisation 0.003%
Number of connections between source system and
other systems

4

Execution time per function 191 milliseconds
Uptime 99.95%
Number of failed events / number of successful
events

0.00000260598%

Number of recurrent users 0
Number of users using the application each day 0
Number of major platforms you can run on with-
out code modifications

1

Lines of code 51574
Number of functions covered by documentation /
number of functions

5%

Number of packages / Number of packages that
can be shared with different techniques

0

Number of persons for which data is lost 0
Percentage of data encrypted 100
Open security issues per severity code 0
Open security issues for infrastructure 0
Number of people with admin privilege 2
Product uses SSO for authentication 1
Number of users not in a security group 0
Number of developers with knowledge of tech stack 2
Percentage of intended maintainers who can main-
tain

100

Time to end of life for tool stack 29 months
Number of code changes per time frame 3 since last re-

lease (6 days)
Number of domain knowledge holders 2
Years of experience maintainers 3

Table 4.20: Applied metrics

Chapter 5

Conclusion

The goal of this study is to evaluate the extent to which it is possible to measure the quality
of a software product using the ISO 25010 standard. To achieve this goal and structure
the study, the DSRM process model by Peffers et al. [37] was applied. The main research
question was addressed through three sub-questions. The first sub-question was addressed
by conducting a literature review. To address the second sub-question, six focus groups were
conducted to identify quantitative data values for the eight quality characteristics defined
in the ISO 25010 standard. The third sub-question was addressed through two subsequent
activities. First, eight interviews with domain experts were conducted to assess the feasibility
of measuring the identified quantitative data values in an actual usage scenario. Then, the
results from these expert interviews were evaluated by measuring a subset of quantitative
data values for a given software product. The results indicate that a set of quantitative data
values can be identified, but their measurement depends on the type of software product and
the context the product is deployed in.

5.1 Sub-question 1

The first sub-question answered in this research paper was: ”How can the characteristics of
the ISO 25010 standard be defined?”. The eight quality characteristics of the ISO 25010
standard have been further defined in Section 3.1. In this section, the descriptions from the
official specification of the ISO 25010 standard were used [23]. Furthermore, the literature
review revealed additional insights into the quality characteristics. Specifically, related work
found that the relative importance of the quality characteristics was dependent on the domain
in which the ISO 25010 model was deployed [13, 24, 26], and that there is a dependency
between quality characteristics, meaning that by improving a software product on one of the
quality characteristics, others would be affected [19, 21]. Additionally, it was determined that
while checklists can assess the quality characteristics of software product quality models, they
are deemed insufficient, indicating a need for further research into identifying quantitative
criteria [5].

53

CHAPTER 5. CONCLUSION 54

5.2 Sub-question 2

The second sub-question addressed in this study was: ”What quantitative data values can be
used to measure each of the standards characteristics?”. In total, 127 distinct quantitative
data values were found during six focus groups. The identified quantitative data values
for each quality characteristic are listed in Table 4.2 to Table 4.9. We found that some
quantitative data values were suggested during multiple focus groups, thus indicating more
evidence for the metric. Additionally, we concluded that some metrics are not applicable for
all software products and could only be measured for a specific type of software product (such
as mobile applications, or products deploying an event driven software architecture). The
found metrics could be divided into two main groups. The first group of metrics consisted of
quantitative data values that could be directly measured for a product, providing immediate
feedback on the state of the software product. The other group consisted of metrics that could
only be accumulated over a period of time as they provide insights into past performances. A
final observation made during the focus groups was that the identified metrics only provided
value if measured between different iterations of a software product. As each software product
is deployed in a unique context, participants concluded that comparing metrics between
different products was not useful.

5.3 Sub-question 3

The final sub-question discussed in this paper was: ”To which degree can the quantitative
data values identified in SQ2 be measured in practical usage scenarios”. Results from a
pilot interview indicated that selecting a scoped context is essential to determine the source
and assess the difficulty of obtaining the data, as well as the technical expertise required
to measure a quantitative data value. During a series of domain expert interviews, we
demonstrated that there was a difference in the measurability between the identified data
values. In total, domain experts determined that 52 out of 127 metrics had both a low
difficulty in obtaining the data and a low requirement for technical expertise. The evaluation
made by domain experts was presented in Table 4.10 to Table 4.17. We made an attempt
to measure these 52 metrics in an actual software product. Results show that out of the
52 metrics, 36 metrics were appropriate for the chosen software product. Out of these 35
metrics, 27 of those could be measured, while the remaining metrics could not be derived
due to either requiring additional effort for data collection or due to uncertainty regarding
how to collect the metric from its source. The measured values for the 27 quantitative data
values that could be measured were shown in Table 4.20.

5.4 Main research question

The answers of the sub-questions can be consolidated to answer the main research question:
”To what extent can software product quality be empirically measured using the ISO 25010

CHAPTER 5. CONCLUSION 55

standard?”. Results indicate that it is possible to identify quantitative data values that
empirically measure the quality of software products using the quality characteristics from
the ISO 25010 standard. However, the conclusion can be drawn that the applicability of the
metric is dependent on the type of software product, and not each identified quantitative data
value is generalisable to all software products. Additionally, we conclude that the feasibility
of measuring the quantitative data values in an actual usage scenario is also dependent on
the type of software product. To make an accurate assessment on the difficulty of obtaining
the data and the technical expertise required to set up the measurement, the context in
which the measurement is made needs to be specified. Finally, we have found that there is
a difference in what experts evaluate to be feasible to measure, and what can actually be
measured. Experts expected 55 quantitative metrics to be easily measurable in their context,
but only 27 metrics could be measured in a given case performed in a context similar to the
context the domain experts operated in. These research findings are in line with related work
on the ISO 25010 standard, where the relative importance of the quality characteristics was
dependent on the domain the standard was applied in, meaning that to properly apply the
ISO 25010 standard, the context of the software product is of importance [13, 24, 26]. As
differences were found in the feasibility evaluation made by experts, and the actual feasibility
of measuring the quantitative data values in a case conducted in the same domain, we argue
that the ISO 25010 model should not only be applied differently between domains, but also
within a singular domain between software products.

Chapter 6

Discussion

The final chapter of this thesis will pose a discussion on the research scope, elaborate on the
threats to validity of the study, and discuss opportunities for future research.

6.1 Scoping the research

Scoping the research has been an integral part of conducting this research project. By
identifying a gap in literature and a need to find a more empirical way of measuring software
product quality, the research was first scoped with the goal of creating one generalisable
model with quantitative data values applicable to all software products. Subsequently, the
research objective would be to assign weights to the created model, so that the model could
be used to identify a quality score for a software product. The argument is posed that in
the realm of software products, there is too much variety in product type, and the context
it is deployed in varies too much to create a list of quantitative data values that are relevant
to each product. As a result, it was not desired to assign weights to the created model, as
quantitative data values used for measurement would not be equal for all products. As a
result, the research was rescoped with the objective to find out how feasible it would be to
empirically measure software product quality using the ISO 25010 standard.

6.2 Threats to validity

The validity of the study concerns the trustworthiness of the study, and to what extent
the results are not biased by the researchers’ perspective [43]. In a study on the guidelines
for reporting studies in the domain of software engineering, the conclusion was drawn that
four types of validity are relevant to studies within the domain: Construct validity, internal
validity, external validity, and reliability [43]. The next four sub-sections will analyse each
of these validity threats for our research.

56

CHAPTER 6. DISCUSSION 57

6.2.1 Construct validity

Construct validity refers to the extent to which the studied measure represents what the re-
searcher has in mind [43]. An example related to construct validity in our research is whether
participants in the focus groups share the same perception of the quality characteristic as
the researcher. When differences in perception align, the created quantitative data values
might be inappropriate for the quality characteristic they are supposed to measure, thus
introducing a threat to construct validity. To minimise this threat to validity, focus group
participants were shown a definition of the discussed quality characteristic, ensuring that the
various participants apply the same definition when identifying quantitative measures. This
threat to validity could have been further mitigated by applying an additional evaluation
phase to the study. During this evaluation phase, the quality of the suggested quantitative
data values could be further assessed by asking experts on the ISO 25010 standards whether
they agree that the quantitative data value contributes to the construct it is supposed to
measure. Furthermore, construct validity is also relevant to the feasibility assessment made
during the domain expert interviews. When domain expert interviews do not have the same
perception on the meaning of the quantitative data values as the researcher, misalignment in
assessment can occur. To mitigate this threat to validity, an interview approach was chosen
instead of asking the participants to perform the feasibility assessment via a questionnaire.
By conducting an interview, the participants had the opportunity to ask for an elaboration
when the definition of the quantitative data value was unclear. Furthermore, a definition of
the quantitative data value was provided for metrics that were not self-explanatory. A limi-
tation of this approach is that researchers’ bias was introduced when participants asked to
elaborate on the definition of the quantitative data values. This resulted primarily from the
researcher’s previous experience in the software industry. This threat to validity could have
better mitigated by conducting an additional feasibility assessment with the participants of
the focus group suggesting the quantitative data values. By adding this additional phase,
the results from the domain expert interviews could have been better validated.

6.2.2 Internal validity

Internal validity refers to a case when a factor is affected by an investigated factor, but the
researcher might be unaware that the factor might also be affected by a third factor [43].
When conducting focus groups, a possible threat to internal validity could be that the con-
versation might be dominated by a few participants. This introduces bias, as it appears that
all participants support the choice for a suggested quantitative data value, but in reality the
choice to include the suggested value was made by the dominating party. In this case, the
investigated factor (a suggested quantitative data value, and its support among developers)
is affected by an unknown third factor (an imbalance between participants). During the
domain expert interviews, the threat of internal validity was mitigated by selecting partic-
ipants working on software products in a similar context. Ideally, this context would be
a single development team where each developer works on the same software product. As
the sample size was too small to evaluate all quality characteristics with one development

CHAPTER 6. DISCUSSION 58

team, participants from two development teams were recruited. This introduces a threat to
internal validity, as there might be more unknown differences between the context of the two
teams that affect their assessment on the quantitative data values.

6.2.3 External validity

External validity is defined as the extent to which it is possible to generalise the findings, and
to what extent the findings are of interest to parties not involved in the case [43]. An example
related to the external validity of this study is the degree to which the identified quantitative
data values are applicable to all software products. A threat to external validity is posed here,
as convenience sampling was used to select participants. As a result of convenience sampling,
three out of six focus groups were conducted using participants developing software products
for LogOrg. Ultimately, this poses the question whether the found quantitative data values
are applicable to software products not developed for LogOrg. To mitigate this threat, the
three other focus groups were carried out with participants outside of LogOrg. The same
threat of external validity is relevant to the insights drawn from the domain expert interviews
and case application. As all domain expert interviews were conducted with engineers at
LogOrg, and the selected software product is a product developed at LogOrg, we have to
be cautious when making general conclusions. The external validity of the study could be
improved by conducting a multi-case study, which is a type of study where multiple cases that
differ in some aspects are evaluated [46]. By conducting a multi-case study, the differences
and similarities between cases become apparent, thus opening up the possibility to make
more generalisable conclusions.

6.2.4 Reliability

Finally, reliability is the degree to which data and its analysis are dependent on the re-
searchers [43]. As the study has identified numerous quantitative data values, and each
data value was individually assessed, the research is prone to threats to reliability.Two mea-
sures were taken to mitigate threats to reliability. First, all interview transcripts have been
anonymised and published on a Github repository. This adds to the reproducibility of the
study, as this allows other researchers to make similar decisions to include and exclude quan-
titative data values from the models. Second, all decisions on the inclusion and exclusion of
quantitative data values have been documented in the paper, and the results of inclusion and
exclusion are shown in tables. One limitation related to reliability can be found in the case
study. The paper does show how a measurement was made for each measured quantitative
data value. As a result, a different researcher might come to different results when applying
the quantitative data values to the same case. As the sources used for measuring the quan-
titative data values contain company sensitive information, they can not be exposed in this
paper. This threat of reliability could have been mitigated by selecting an open-source case,
where permission would be granted to publish the measurements in a scientific paper.

CHAPTER 6. DISCUSSION 59

6.3 Opportunities

When addressing the threats to validity, the study can be an inspiration for future studies.
One future research avenue could be to address threats in construct validity, and further
evaluate the quality of the identified quantitative data values. This can be done by presenting
the quality characteristic models to experts conducting related work on ISO 25010. Based
on their classification, quantitative data values could be excluded, or possibly moved to more
fitting quality characteristics.

In this study, the sub-characteristics of the ISO 25010 standard have not been taken into
consideration. A possible research opportunity would be to link the identified quantitative
data values to the sub-characteristics. A possible result of this study could be that not
all quantitative data values could be linked to a sub-characteristic. When this is the case,
the study can evaluate whether the metric is not suitable to be included as a measurement
within ISO 25010, or whether the ISO 25010 standard needs to be extended with additional
sub-characteristics.

Furthermore, another research opportunity that aims to mitigate threats to external
validity could be to apply the found quantitative data values to multiple cases. By applying
the model to a series of cases, a deeper understanding on the generelisability of the results
is gained. If the model is proven to contain insufficient metrics for a certain type of software
products, this study could also identify missing quantitative data values for the evaluated
type of software product.

A final interesting research avenue would be to apply our research findings to a case study.
In this case study, prioritisation techniques, such as analytical hierarchy process, could be
used to assign weights to the quality characteristics and their quantitative data values [2].
When weights are assigned to both quality characteristics and their metrics, measurements
can be used to compute a quality score for the software product under discussion. Using
the measurements and weights, product managers can make data driven decisions on what
features should be built to maximise gains in software product quality.

Bibliography

[1] Adewole Adewumi, Sanjay Misra, and Nicholas Omoregbe. Evaluating open source
software quality models against iso 25010. In 2015 IEEE International Conference on
Computer and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing,
pages 872–877. IEEE, 2015.

[2] Kamal M Al-Subhi Al-Harbi. Application of the ahp in project management. Interna-
tional journal of project management, 19(1):19–27, 2001.

[3] Hiyam Al-Kilidar, Karl Cox, and Barbara Kitchenham. The use and usefulness of the
iso/iec 9126 quality standard. In 2005 International Symposium on Empirical Software
Engineering, 2005., pages 7–pp. IEEE, 2005.

[4] Vineta Arnicane, Juris Borzovs, and Anete Nesaule-Erina. Do we really know how to
measure software quality. 2020.

[5] Behshid Behkamal, Mohsen Kahani, and Mohammad Kazem Akbari. Customizing
iso 9126 quality model for evaluation of b2b applications. Information and software
technology, 51(3):599–609, 2009.

[6] Sebastian K Boell and Dubravka Cecez-Kecmanovic. On being ‘systematic’in literature
reviews. Formulating Research Methods for Information Systems: Volume 2, pages
48–78, 2015.

[7] Pere Botella, Xavier Burgués, Juan-Pablo Carvallo, Xavier Franch, Gemma Grau, Jordi
Marco, and Carme Quer. Iso/iec 9126 in practice: what do we need to know. In Software
Measurement European Forum, volume 2004, 2004.

[8] Lynne M Connelly. Inclusion and exclusion criteria. Medsurg nursing, 29(2), 2020.

[9] Rachida Djouab and Moncef Bari. An iso 9126 based quality model for the e-learning
systems. International journal of information and education technology, 6(5):370, 2016.

[10] Aline Dresch, Daniel Pacheco Lacerda, José Antônio Valle Antunes Jr, Aline Dresch,
Daniel Pacheco Lacerda, and José Antônio Valle Antunes. Design science research.
Springer, 2015.

60

BIBLIOGRAPHY 61

[11] R. Geoff Dromey. A model for software product quality. IEEE Transactions on software
engineering, 21(2):146–162, 1995.

[12] John Estdale and Elli Georgiadou. Applying the iso/iec 25010 quality models to soft-
ware product. In Systems, Software and Services Process Improvement: 25th European
Conference, EuroSPI 2018, Bilbao, Spain, September 5-7, 2018, Proceedings 25, pages
492–503. Springer, 2018.

[13] Syahrul Fahmy, Nurul Haslinda, Wan Roslina, and Ziti Fariha. Evaluating the quality
of software in e-book using the iso 9126 model. International Journal of Control and
Automation, 5(2):115–122, 2012.

[14] Ronan Fitzpatrick. Software quality: definitions and strategic issues. 1996.

[15] Joyce MS França and Michel S Soares. Soaqm: Quality model for soa applications based
on iso 25010. In ICEIS (2), pages 60–70, 2015.

[16] Anita Gibbs. Focus groups. Social research update, 19(8):1–8, 1997.

[17] Thelma Jean Goodrich. Strategies for dealing with the issue of subjectivity in evaluation.
Evaluation quarterly, 2(4):631–645, 1978.

[18] Oleksandr Gordieiev, Vyacheslav Kharchenko, Nataliia Fominykh, and Vladimir Sklyar.
Evolution of software quality models in context of the standard iso 25010. In Proceedings
of the Ninth International Conference on Dependability and Complex Systems DepCoS-
RELCOMEX. June 30–July 4, 2014, Brunów, Poland, pages 223–232. Springer, 2014.

[19] Mariem Haoues, Asma Sellami, Hanêne Ben-Abdallah, and Laila Cheikhi. A guideline
for software architecture selection based on iso 25010 quality related characteristics.
International Journal of System Assurance Engineering and Management, 8:886–909,
2017.

[20] Chris Hart. Doing a literature review: Releasing the research imagination. Sage, 2018.

[21] Tetiana Hovorushchenko and Oksana Pomorova. Evaluation of mutual influences of soft-
ware quality characteristics based iso 25010: 2011. In 2016 XIth International Scientific
and Technical Conference Computer Sciences and Information Technologies (CSIT),
pages 80–83. IEEE, 2016.

[22] Ali Idri, Karima Moumane, and Alain Abran. On the use of software quality standard
iso/iec9126 in mobile environments. In 2013 20th Asia-Pacific Software Engineering
Conference (APSEC), volume 1, pages 1–8. IEEE, 2013.

[23] ISO/IEC JTC1/SC7/WG6. Systems and software engineering – systems and software
quality requirements and evaluation (square) – system and software quality models.
Technical Report 25010, ISO/IEC, 2011.

BIBLIOGRAPHY 62

[24] Millati Izzatillah. Quality measurement of transportation service application go-jek
using iso 25010 quality model. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Kom-
puter, 10(1):233–242, 2019.

[25] Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring software product
quality: A survey of iso/iec 9126. IEEE software, 21(5):88–92, 2004.

[26] Ilham Kadi, Ali Idri, and Sofia Ouhbi. Quality evaluation of cardiac decision support
systems using iso 25010 standard. In 2016 IEEE/ACS 13th International Conference
of Computer Systems and Applications (AICCSA), pages 1–8. IEEE, 2016.

[27] Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: the elusive target
[special issues section]. IEEE software, 13(1):12–21, 1996.

[28] Leanne M Kmet, Linda S Cook, and Robert C Lee. Standard quality assessment criteria
for evaluating primary research papers from a variety of fields. 2004.

[29] Yair Levy and Timothy J Ellis. A systems approach to conduct an effective literature
review in support of information systems research. Informing Science, 9:181–212, 2006.

[30] Charity Majors, Liz Fong-Jones, and George Miranda. Observability Engineering. ”
O’Reilly Media, Inc.”, 2022.

[31] José P Miguel, David Mauricio, and Glen Rodŕıguez. A review of software quality
models for the evaluation of software products. arXiv preprint arXiv:1412.2977, 2014.

[32] Hidenori Nakai, Naohiko Tsuda, Kiyoshi Honda, Hironori Washizaki, and Yoshiaki
Fukazawa. Initial framework for software quality evaluation based on iso/iec 25022 and
iso/iec 25023. In 2016 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pages 410–411. IEEE, 2016.

[33] Alison Nightingale. A guide to systematic literature reviews. Surgery (Oxford),
27(9):381–384, 2009.

[34] Philipp Offermann, Olga Levina, Marten Schönherr, and Udo Bub. Outline of a design
science research process. In Proceedings of the 4th International Conference on Design
Science Research in Information Systems and Technology, pages 1–11, 2009.

[35] H Panduwiyasa, M Saputra, ZF Azzahra, and AR Aniko. Accounting and smart system:
functional evaluation of iso/iec 25010: 2011 quality model (a case study). In IOP
Conference Series: Materials Science and Engineering, volume 1092, page 012065. IOP
Publishing, 2021.

[36] Cecilia Maria Patino and Juliana Carvalho Ferreira. Inclusion and exclusion criteria in
research studies: definitions and why they matter. Jornal Brasileiro de Pneumologia,
44:84–84, 2018.

BIBLIOGRAPHY 63

[37] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A design
science research methodology for information systems research. Journal of management
information systems, 24(3):45–77, 2007.

[38] Emmanuel Peters and George Kwamina Aggrey. An iso 25010 based quality model for
erp systems. Adv. Sci. Technol. Eng. Syst. J, 5(2):578–583, 2020.

[39] Aditia Arga Pratama and Achmad Benny Mutiara. Software quality analysis for halodoc
application using iso 25010: 2011. Int. J. Adv. Comput. Sci. Appl, 12(8):383–392, 2021.

[40] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave macmillan,
2005.

[41] Junaid Rashid, Toqeer Mahmood, and Muhamad Wasif Nisar. A study on software
metrics and its impact on software quality. arXiv preprint arXiv:1905.12922, 2019.

[42] Anderson Ravanello, Jean-Marc Desharnais, Luis Eduardo Bautista Villalpando, Alain
April, and Abdelouahed Gherbi. Performance measurement for cloud computing ap-
plications using iso 25010 standard characteristics. In 2014 Joint Conference of the
International Workshop on Software Measurement and the International Conference on
Software Process and Product Measurement, pages 41–49. IEEE, 2014.

[43] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering, 14:131–164, 2009.

[44] Istiningdyah Saptarini, Siti Rochimah, and Umi Laili Yuhana. Security quality measure-
ment framework for academic information system (ais) based on iso/iec 25010 quality
model. IPTEK Journal of Proceedings Series, 3(2):128–135, 2017.

[45] Maximilian Speicher. What is usability? a characterization based on iso 9241-11 and
iso/iec 25010. arXiv preprint arXiv:1502.06792, 2015.

[46] Robert E Stake. Multiple case study analysis. Guilford press, 2013.

[47] Vijay Vaishnavi and William Kuechler. Design research in information systems. 2004.

[48] John R Venable, Jan Pries-Heje, and Richard L Baskerville. Choosing a design science
research methodology. 2017.

[49] Stefan Wagner. Software product quality control. 2013.

[50] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[51] Yu Xiao and Maria Watson. Guidance on conducting a systematic literature review.
Journal of planning education and research, 39(1):93–112, 2019.

Appendix A

ISO 25010 Sub-characteristics

Table A.1: ISO 25010 Software Product Quality Model
Sub-characteristics

Characteristic Sub-characteristic Definition

Functional Suitability
Appropriateness The degree to which the

software provides the ap-
propriate functions to meet
the needs of the user.

Accuracy The degree to which the
software provides the cor-
rect and exact results.

Interoperability The degree to which the
software can exchange in-
formation and operate with
other products.

Performance Efficiency
Time Behavior The degree to which the

software executes its func-
tions within an acceptable
timeframe.

Resource Utilization The degree to which the
software uses the appropri-
ate amount of resources.

Capacity The maximum limit of the
software’s operational capa-
bilities.

Continued on next page

64

APPENDIX A. ISO 25010 SUB-CHARACTERISTICS 65

Table A.1 – Continued from previous page
Characteristic Sub-characteristic Definition

Compatibility
Coexistence The degree to which the

software can coexist with
other independent software
in a common environment.

Compatibility The degree to which the
software can run on differ-
ent hardware, software, or
network environments.

Interoperability The degree to which the
software can exchange in-
formation and operate with
other products.

Usability
Appropriateness Recognizability

The degree to which users
can recognize whether a
product or system is appro-
priate for their needs.
The degree to which users
can recognize whether a
product or system is appro-
priate for their needs.

Learnability The degree to which the
software can be learned by
the user.

Reliability
Maturity

The degree to which a
system, product, or com-
ponent meets specified re-
quirements.
The degree to which a
system, product, or com-
ponent meets specified re-
quirements.

Fault Tolerance The degree to which a sys-
tem, product, or compo-
nent operates as intended
despite the presence of
hardware or software faults.

Continued on next page

APPENDIX A. ISO 25010 SUB-CHARACTERISTICS 66

Table A.1 – Continued from previous page
Characteristic Sub-characteristic Definition

Security
Confidentiality The degree to which a sys-

tem, product, or compo-
nent ensures that data are
accessible only to those au-
thorized to have access.

Integrity The degree to which a sys-
tem, product, or compo-
nent prevents unauthorized
access to, or modification
of, computer programs or
data.

Non-repudiation The degree to which a sys-
tem, product, or compo-
nent provides the means to
ensure that parties to a
communication or transac-
tion cannot deny the au-
thenticity of their signa-
tures or the validity of their
actions.

Maintainability
Modularity The degree to which a sys-

tem or computer program is
composed of discrete com-
ponents such that a change
to one component has min-
imal impact on other com-
ponents.

Reusability The degree to which a sys-
tem, product, or compo-
nent can be used in more
than one system, or in
building other systems.

Analyzability The degree to which it is
possible to assess the im-
pact on a system, prod-
uct, or component of an
intended change to one or
more of its parts.

Continued on next page

APPENDIX A. ISO 25010 SUB-CHARACTERISTICS 67

Table A.1 – Continued from previous page
Characteristic Sub-characteristic Definition

Portability
Adaptability The degree to which a

system or component can
effectively and efficiently
be adapted for different
or evolving hardware, soft-
ware, or other operational
environments.

Installability The degree to which a sys-
tem, product, or compo-
nent can be successfully in-
stalled and/or uninstalled
in a specified environment.

Replaceability The degree to which a sys-
tem, product, or compo-
nent can be replaced with
another specified system,
product, or component.

Appendix B

Focus group results

Table B.1: Focus group 1: quantitative data values

Quality Characteristic Metric
Functional Suitability Number of changes needed to fit to

original requirements
Market share
Net Promoter Score
Number of unsolvable issues sent to
customer support

Performance Efficiency Memory utilisation
CPU utilisation
Network utilisation
Latency per user
Latency per increasing user
Latency difference per location

Reliability Uptime / service level agreement up-
time
Mean time between failures
Amount of data lost on failure
Duration of 1% longest downtime

Usability Number of clicks to complete task
Product complies with accessibility
standards
Text to speech: how long to get to rel-
evant records

Portability Platform specific lines of code / lines of
code

Continued on next page

68

APPENDIX B. FOCUS GROUP RESULTS 69

Table B.1: Focus group 1 - quantitative data values (Continued)
Quality Characteristic Metric

Number of major platforms you can run
on without code modifications

Compatibility Product has standardised API docu-
mentation
Number of functions exposed by API /
Number of functions available for user
Systems are connected through stan-
dardised authentication
Number of API functions / number of
documented API functions

Security Number of persons for which data is
lost
Percentage of data encrypted
Security controls of common chosen
framework implemented

Maintainability Cycle time of new feature
Lead time of new feature
Cycle time of bugfix
Lead time of bugfix
Code coverage
Maturity of CI/CD

Table B.2: Focus group 2: quantitative data values

Quality Characteristic Metric
Functional Suitability Number of delivered functions / Num-

ber of required functions
Number of delivered functions / Num-
ber of functions that contribute to main
goal

Performance Efficiency Resource costs / Expected resource
costs
Used current / Expected used current
Cyclomatic Complexity

Reliability Uptime / service level agreement up-
time
Distribution downtime / Max down-
time

Continued on next page

APPENDIX B. FOCUS GROUP RESULTS 70

Table B.2: Focus group 2 - quantitative data values (Continued)
Quality Characteristic Metric

Uptime per functionality / service level
agreement uptime per functionality

Usability Conversion rate
Time of usage
Number of social media tags

Portability Number of major platforms you can run
on without code modifications
Number of features functional on plat-
form / number of features still working
for new platform
Number of cloud agnostic services used

Compatibility Number of connected systems / Goal of
number of connected systems
Number of data exchange formats used
accepted within industry
How actual is used technique

Security Product complies to GDPR
% that fits security requirements
Security breaches / Goal

Maintainability Percentage of intended maintainers
who can maintain
Number of config parameters required
to change
Time to end of life for toolstack

Table B.3: Focus group 3: quantitative data values

Quality Characteristic Metric
Functional Suitability Number of clicks before action is fin-

ished
Number of delivered functions / Num-
ber of required functions

Performance Efficiency CPU Utilisation
Network utilisation
Memory utilisation

Reliability Number of reliability functionalities
implemented / number of reliability
functionalities required

Usability Conversion rate
Continued on next page

APPENDIX B. FOCUS GROUP RESULTS 71

Table B.3: Focus group 3 - quantitative data values (Continued)
Quality Characteristic Metric

Time to complete a task
Number of clicks to complete task
Number of recurrent users

Portability Time to port to different platform
Compatibility Number of interfaces

Number of successful requests / num-
ber of requests

Security Number of users with access to produc-
tion / Number of users with access

Maintainability Cyclomatic complexity
Total Language Popularity
Number of documented functions /
number of functions

Table B.4: Focus group 4: quantitative data values

Quality Characteristic Metric
Functional Suitability Percentage of succeeding tests

Test coverage
Net Promoter Score
Percentage of pixels equal to UI design
Load Test / Target Load
Prod test

Performance Efficiency Mobile app battery usage
Time to interactive
Cost per retry
Number of retries
Percentage of dead code
CPU utilisation
Network utilisation
Memory utilisation

Reliability Uptime
Number of failed events / number of
successful events
Number of requests / service level
agreement number of requests

Usability Net Promoter Score
Product complies with accessibility
standards

Continued on next page

APPENDIX B. FOCUS GROUP RESULTS 72

Table B.4 – continued from previous page
Quality Characteristic Metric

Number of errors in frontend
Number of recurrent users

Portability Number of supported devices / Number
of potential users
Number of supported browser versions
Number of supported mobile platforms
Number of supported OS versions
Number of supported clouds
Number of supported real time versions
Lines of code

Compatibility Percentage of API endpoints compliant
to organisation standards
Number of data exchange formats used
accepted within industry
Number of connected systems
Number of protocols used for sharing
information

Security Open security issues per severity code
Open security issues for infrastructure
Number of people with admin privilege
Number of times break the glass proce-
dure activated
Number of actions performed with ele-
vated privileges

Maintainability Lead time of new feature
Time spent between OPS and DEV
Time to first code deployed to prod
Percentage of dead code

Table B.5: Focus group 5: quantitative data values

Quality Characteristic Metric
Functional Suitability Percentage of succeeding tests

Large language model agrees that im-
plementation fits goal
User acceptance test
Team uses sprint review
Implementation fits acceptance criteria

Performance Efficiency Time to interactive
Continued on next page

APPENDIX B. FOCUS GROUP RESULTS 73

Table B.5: Quality Characteristics and Metrics (Continued)
Quality Characteristic Metric

Number of connections between source
system and other systems
Stress test

Reliability Number of functions that always give
the same result on the same input /
number of functions
Logging per function
Number of backup options
Number of users
Number of differences between software
instantiations
Number of functions working under
stress test / number of functions
Accuracy of decimal values

Usability A/B testing
Number of clicks to complete task
Time to complete a task
Time of day
Number of users using the application
each day
Time of usage
Number of times user expresses positive
emotion (facial recognition)

Portability Number of skills needed to change en-
vironments
Number of functions covered by docu-
mentation / number of functions
Number of supported clouds
Number of code changes needed per
function to port
Number of actions needed to port to
different platform
Time to port to different platform

Compatibility Types of fields
Number of supported operating sys-
tems
Number of changes to data structure
Number of data exchange formats used
accepted within industry

Continued on next page

APPENDIX B. FOCUS GROUP RESULTS 74

Table B.5: Quality Characteristics and Metrics (Continued)
Quality Characteristic Metric

Number of data formats not accepted
within industry

Security Number of lines of defence
Number of security protocols used
Number of data breaches per year /
number of attacks
Number of points of failure

Maintainability Number of code changes per timeframe
Number of functions / number of
classes
Number of bad code smells
Number of developers with knowledge
of techstack

Table B.6: Focus group 6: quantitative data values

Quality Characteristic Metric
Functional Suitability Number of issues

Number of search terms in search func-
tionality
Click behaviour
Number of active users / Number of is-
sues sent to customer support
Uptime

Performance Efficiency Logging
Execution time per function
Execution time per function before
refactoring / Execution time per func-
tion after refactoring
Memory utilisation
CPU utilisation
Asking users if it fits performance needs
with a large sample

Reliability Latency per user
Uptime
Mean response time to incidents
Mean recovery time from incidents

Usability User analysis: fits software implemen-
tation

Continued on next page

APPENDIX B. FOCUS GROUP RESULTS 75

Table B.6: Quality Characteristics and Metrics (Continued)
Quality Characteristic Metric

Difference in task time between fastest
user and slowest user
Type of users
Time to finish task

Portability Number of actions needed to port to
different platform
Number of features functional on plat-
form / number of features still working
for new platform

Compatibility Number of connected systems
Number of packages / Number of pack-
ages that can be shared with different
techniques
Version of the software / number of use
cases

Security Software product is up to date
Number of illegal users
Product uses SSO for authentication
Number of users not in a security group
Number of security layers
Product has internet access
Number of security protocols

Maintainability Used programming paradigm
Number of developers with knowledge
of techstack
Number of domain knowledge holders
Years of experience of maintainers
Number of documented functions /
number of functions

	Preface
	Abstract
	List of Figures
	List of Tables
	Introduction
	Software Product Quality
	Evaluating Software Product Quality
	Research Aim and Research Questions

	Research Method
	Choosing a Design Science Methodology
	Applying DSRM
	Identify Problem & Motivate
	Define Objectives of Solution
	Design & Development
	Demonstration
	Evaluation
	Communication

	Literature Review
	Defining ISO 25010
	Functional Suitability
	Performance Efficiency
	Compatibility
	Usability
	Reliability
	Security
	Maintainability
	Portability

	Applying and Measuring ISO 25010
	Summary

	Results
	Focus Groups
	Focus Group 1 (FG1)
	Focus Group 2 (FG2)
	Focus Group 3 (FG3)
	Focus Group 4 (FG4)
	Focus Group 5 (FG5)
	Focus Group 6 (FG6)
	Creating a model

	Domain expert interviews
	Pilot interview
	Selected context
	Interview results

	Case Application
	Selected case
	Quantitative data values selection criteria
	Measured data values

	Conclusion
	Sub-question 1
	Sub-question 2
	Sub-question 3
	Main research question

	Discussion
	Scoping the research
	Threats to validity
	Construct validity
	Internal validity
	External validity
	Reliability

	Opportunities

	References
	ISO 25010 Sub-characteristics
	Focus group results

