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Abstract 
 

Ecological systems are complex. Therefore, scientists rely on statistical tools to infer patterns and causation 

into their data. This has traditionally been done by employing a frequentist method, which defines 

probability as the relative frequency of the occurrence of a repeated event. The probability of observing 

similar or more extreme data than the collected dataset is then estimated given a null hypothesis. However, 

as new technology has emerged, more complex data have become available and conventional approaches 

to statistical inference have had limited success in capturing the complex structure of these datasets and 

therefore also in solving complicated modern issues such as climate change. A literature review shows that 

ecological research employing a Bayesian method of inference is gaining momentum. Importantly, in 

Bayesian statistics probability is defined as a degree of belief in the likelihood of an event to occur by 

incorporating uncertainty. Then, the probability of a hypothesis being true is evaluated conditional on 

available data and prior knowledge on parameters of interest. Furthermore, Bayesian inference allows to 

include not only uncertainty but also complex structures by allowing models to be built on multiple levels. 

Through a case study, the present work highlights the flexibility a Bayesian data analysis can provide, 

leading to more information rich results compared to conventional approaches. Additionally, the case study 

also underlines the importance of including multiple analytical approaches in order to reduce bias when 

determining the best possible explanation for the collected data and observed phenomena.  

 

  



Layman’s Summary 
 

Ecology is a branch of biology, which includes the study of living organisms and how they interact with 

one another as well as their physical environment to form functional ecosystems. Therefore, it is widely 

accepted that ecological systems are complex. As a result, scientists rely on statistics to conclude patterns 

and causation from the data they collect. This has traditionally been done by employing a method called 

frequentist statistics. Frequentists define probability as the relative frequency of the occurrence of a repeated 

event. The probability of observing similar or more extreme data than the collected dataset is then estimated 

given a so-called null hypothesis. This null hypothesis could be described as a theory of no relationship 

between different variables. However, modern times have brought with them complicated issues, such as 

climate change, that involve large amounts of uncertainty but require urgent action. At the same time, new 

technologies have emerged, and more data have become available. In this setting, this conventional 

statistical approach has had limited success in either capturing the complex structure of these datasets or in 

solving these modern issues. In this study, I show how ecologists are starting to employ an alternative 

statistical approach called Bayesian statistics by reviewing the scientific literature. Then, I describe a case 

study where the frequentist method has encountered considerable limitations and show how adopting a 

Bayesian method instead can solve those issues and contribute to the acquisition of new knowledge. First, 

the literature review shows that ecological research has increasingly been shifting towards Bayesian 

statistics. Importantly, in Bayesian statistics, probability is defined as a degree of belief in the likelihood of 

an event to occur by incorporating uncertainty. This means that the probability of a hypothesis being true 

is evaluated based on available data together with background knowledge on variables of interest. 

Furthermore, Bayesian methods allow uncertainty, as well as large amounts of complex data to be included 

into its statistical models by allowing these models to be built on multiple levels. This makes Bayesian 

statistics much more flexible than frequentist statistics, leading to more information rich results. Yet, this 

also means that adopting this statistical method is time consuming for the researcher, given that it requires 

considerable rethinking of concepts, delving into new and more complex software, and using 

computationally expensive models. Nevertheless, the case study demonstrates that adopting a Bayesian 

approach may be worthwhile when a frequentist method cannot yield adequate results. But maybe even 

more importantly, the case study points out how adopting multiple statistical approaches might ultimately 

lead to the best and most objective explanation for the collected data.  

 

  



1. Introduction 
 

Motivated by the recognition that environmental change is a complex issue requiring urgent action 

(Clark, 2005; Hampton et al., 2013; Shukla et al., 2019), the field of ecology has seen a substantial shift in 

focus from small-scale and short-term to large-scale and long-term studies (Devictor & Bensaude-Vincent, 

2016; Farley et al., 2018; Reichman et al., 2011). This shift has been facilitated amongst others by the 

emergence of high-throughput technologies that have allowed for a cost-effective collection of large 

amounts of data at high resolution (Nathan et al., 2022; Reuter et al., 2015). Other efforts include the 

digitization of species records, citizen-science initiatives, publicly available databases and data repositories, 

as well as large-scale research networks (Andrew et al., 2017; Devictor & Bensaude-Vincent, 2016; Farley 

et al., 2018).  These advancements have led to unprecedented large amounts of ecological data being 

available at different spatial and temporal scales (Farley et al., 2018).  

Being characterized by high natural variability, the complexity of ecological systems has long been 

accepted, even before the emergence of these technologies. Therefore, scientists in this field rely on 

statistics to interpret and conclude patterns and causation from their data (P. A. Stephens et al., 2007). There 

are two main methods of statistical inference used in science: frequentist and Bayesian methods. Both of 

those will be described briefly in turn, but for important terms and definitions, please refer to Table 1.   

 

 

Table 1. Definitions of key terms used in this review. Information for this glossary was compiled from Ellison (2004), 

König & van de Schoot (2018), Stegmueller (2013), van de Schoot & Depaoli (2014), and Wagenmakers et al. (2008).  

α Level  

Often called significance level, it is used in frequentist hypothesis testing to 

delineate the probability of falsely rejecting a correct null hypothesis (i.e., 

committing a Type I error). The most commonly used significance level is 0.05. 

Background Knowledge 

Knowledge about population parameters available before having observed the 

collected data; it can be determined based on prior research, analyses of previous 

data, or expert opinions. This knowledge may be used to construct the prior 

distribution. 

Bayesian Statistics 

A statistical method that can be used to combine background knowledge of 

population parameters with current data to obtain estimates by means of the 

resulting posterior distribution; this method evaluates the probability of a 

hypothesis being true conditional on the available data, whereby probability is 

defined as a degree of belief in the likelihood of an event to occur by incorporating 

uncertainty. 

Bayes’ Theorem 

A formula describing how to update prior probabilities for model parameters or 

hypotheses based on observed data. Specifically, prior distributions are updated 

through a multiplication with the data likelihood, yielding the full posterior 

distribution. 

Confidence Interval 

Frequentist confidence intervals are based on repeated sampling theory. 

Consequently, a 95% confidence interval is interpreted as 95 out of 100 replications 

of exactly the same experiment capturing the fixed but unknown regression 

coefficient. This confidence interval is constructed with reference to an assumed 

Gaussian sampling distribution. 



Credible Interval 

The Bayesian version of the confidence interval can be constructed without 

reference to a hypothetical sampling distribution. It can be interpreted as the (e.g., 

95%) probability that the population parameter lies within the defined interval.  

Frequentist Statistics 

A class of statistics that estimates the probability of the observed data having 

occurred given a null hypothesis through point estimation; probability is defined as 

the relative frequency of the occurrence of a repeated event. 

Informative 

Used to describe a prior distribution where much background knowledge is 

available about model parameters. Due to large amounts of previous knowledge, 

the prior distribution is characterized by small variance values and hence high 

levels of precision. 

Non-informative, flat, or 

vague 

Used to describe a prior distribution where no prior knowledge is available about 

parameters of interest prior to observing the data. Flat prior distributions are 

characterized by very large variances. 

p-value 
In frequentist statistics, this is the probability of obtaining the observed, or more 

extreme results given that the null hypothesis is true. 

Parameter 
A fixed but unknown feature of the population that is estimated through a model 

either with frequentist or Bayesian methods. 

Posterior  
A probability distribution that is obtained once combining the prior and the 

likelihood in the Bayesian estimation process. 

Prior  

A probability distribution that can be used to capture the amount of (un)certainty 

in a population parameter. This distribution is then weighted by the sample data to 

obtain the posterior, which is used to make inference. 

Weakly informative 

Used to describe a prior distribution where limited prior knowledge is available 

about parameters of interest; the variance describing this prior distribution reflects 

the range of values the parameters may lie within.  

 

 

Ecologists have most heavily relied on the frequentist method of inference built on null hypothesis 

significance testing, confidence intervals and p-values (P. A. Stephens et al., 2007). Under the frequentist 

view, probability is defined as the relative frequency of the occurrence of a repeated event. This method 

allows to estimate the probability for the sample data to occur given a particular hypothesis, by considering 

parameters to be measures of true quantities (Ellison, 2004). In this sense, a test statistic is computed to 

assess the consistency of the data with the null hypothesis of no difference among parameters of interest 

(Anderson et al., 2000; Wagenmakers et al., 2008). A cut-off level is then set to determine whether the null 

hypothesis is accepted or rejected (Anderson et al., 2000).  

While the choice of using Bayesian or frequentist approaches has often been motivated by 

philosophical choice, some important criticism has emerged against the use of this statistical approach 

(Anderson et al., 2000; P. A. Stephens et al., 2007). The list of criticisms is comprehensive (Anderson et 

al., 2000), but one of the main issues that has been acknowledged about the reliance of ecologists on null 

hypothesis significance testing is related to poor interpretation stemming from poor understanding or 

unproper application (V. E. Johnson, 2013; P. A. Stephens et al., 2007). These problems have mainly been 

attributed to the combination of two different concepts into one: the Fisherian p-value and the Neyman-

Pearson α level, resulting in the p-value being falsely interpreted as a measure of evidence for the rejection 

of the null hypothesis as well as for statistical significance (Wagenmakers et al., 2008). Moreover, the 



significance level is often chosen without being adapted based on theory or prior power tests and may 

therefore be regarded as an arbitrary level of significance (Anderson et al., 2000; V. E. Johnson, 2013). 

Hence, the reported statistical significance ought not necessarily be interpreted as an indicator of the 

biological relevance of the obtained result (Martínez-Abraín, 2008). It needs to be noted at this point, that 

rather than representing criticism of the method itself, the issue outlined above criticises the misuse of the 

frequentist method, which should be characterized by its objectivity and inductive nature. However, the 

misunderstanding and misuse of this statistical method may introduce subjectivity into the analysis insofar, 

that it introduces assumptions into the model that are not derived from the data alone (such as setting an 

arbitrary level of significance which was not adjusted for statistical power) (Ellison, 2004; Kaplan & 

Depaoli, 2013; Kruschke, 2013). Failure to adapt the significance level may in turn introduce bias towards 

finding statistically significant results when there are none (Hedges et al., 1999; V. E. Johnson, 2013). 

Furthermore, given that the frequentist approach views probability as the relative frequency of the 

occurrence of events, the null hypothesis of no difference may always be rejected, as long as the collected 

sample is large enough. Consequently, effects may be interpreted as statistically significant and biologically 

relevant, even if this significance is only an artifact of the collected data (Anderson et al., 2000; Martínez-

Abraín, 2008). Similarly, no effect may be detected, just because sample sizes are too small (Hedges et al., 

1999; Z. Zhang et al., 2007). Yet, the  frequentist method has widely remained applied in many scientific 

disciplines, mainly because most students are trained in this approach only, and due to its relative ease of 

conduction thanks to the availability of easily accessible software packages (Clark, 2005; Kaplan & 

Depaoli, 2013; König & van de Schoot, 2018). 

Nevertheless, as ecological research has advanced into the 21st century and the usefulness of other 

methods for statistical inference have been recognized, these traditional approaches to data analysis have 

had limited success in capturing true complexity (Clark, 2005). The increased complexity as well as large 

degrees of variation in both quality and uncertainty associated with the data obtained from new technologies 

merely underline the need for ecologists to adapt their approach to statistical analysis in order to improve 

inference and speed up scientific advancement (Farley et al., 2018). This stems from two important 

limitations associated with the frequentist approach. The first limitation derives from the fact that null 

hypothesis significance testing assumes no relevant prior information based on similar experiments or 

studies. This has led to numerous studies independently testing the same or similar null hypothesis, even 

though it might have been falsified before (Ellison, 2004). As a result, even though the confidence of 

ecologists in their results increases with the number of studies falsifying similar null hypotheses, new 

knowledge may be accumulated rather slowly (König & van de Schoot, 2018). The second limitation is 

introduced when many – often interacting – effects need to be specified for models attempting to describe 



complex natural phenomena (e.g., climate change). This may lead to overfitting, which in turn might cause 

biased estimates and little generalizability beyond the analysed dataset (Clark, 2005; Stegmueller, 2013). 

One potential solution to these problems could be a paradigm shift towards the use of a Bayesian 

approach to statistical inference (P. A. Stephens et al., 2007). Bayesian inference differs from frequentist 

inference in several ways: (1) it estimates the probability of a research hypothesis being true conditional on 

the sample data; (2) probability is defined as a degree of belief in the likelihood of an event by incorporating 

uncertainty; (3) estimates are calculated based on prior knowledge together with the collected data; and (4) 

not only data but also model parameters are treated as random, thereby accommodating for the inclusion of 

various sources of uncertainty (Clark, 2005; Ellison, 2004).  

Being the cornerstone of the Bayesian approach, the use of weakly informative or informative 

priors in Bayesian analyses brings two important advantages with it. The first advantage is that Bayesian 

analyses are less dependent on sample size (Clark, 2003; van de Schoot & Depaoli, 2014; Z. Zhang et al., 

2007). A Bayesian approach with informative priors might for instance be preferable for small datasets, as 

it improves estimates by narrowing the ranges of both standard errors and credible intervals around the 

mean (Z. Zhang et al., 2007). Furthermore, this inclusion of prior knowledge, which might be taken from 

the results of previous studies (e.g., systematic reviews, meta-analyses or similar studies), from theoretical 

models or preliminary data analyses allows new research to build on the knowledge gained from previous 

research rather than trying to independently prove a similar hypothesis (Clark, 2005; van de Schoot & 

Depaoli, 2014). The second advantage of including weakly informative priors is that they improve model 

convergence (Doll & Jacquemin, 2019; Kim et al., 2013). Given the iterative nature of Bayesian algorithms, 

these models need to converge on a stationary posterior distribution for their parameters. While this does 

not mean that convergence cannot be an issue in more traditional methods of data analysis (e.g., Y. Zhang 

et al., 2019), in Bayesian methods it can be improved through the incorporation of prior knowledge which 

can limit the model parameter space and speed up computations (van de Schoot & Depaoli, 2014; Z. Zhang 

et al., 2007) 

Most importantly though, the real advantage of Bayesian statistics to tackle modern questions lies 

in what are often called hierarchical models (Clark, 2005). These models allow to account for complexity 

in the data by being built on multiple levels, thereby allowing scientists to include various variables without 

the danger of overfitting (Clark, 2005). As a result, these models also allow to include large and numerous 

datasets at different temporal and spatial scales while accounting for errors in variables, random effects and 

hidden variables (Clark, 2003). Therefore, these models may not only account for various sources of data, 

but they also may account for various sources of uncertainty. Some of the most commonly included sources 

of uncertainty include measurement and processing errors, uncertainties in the sampling design and model 

specification, or variability in the model parameters (Cressie et al., 2009). This distinguishing feature of 



Bayesian analyses leads to more information-rich and precise estimation of parameters (König & van de 

Schoot, 2018). This flexibility also means that models can be estimated under a Bayesian approach which 

would otherwise not be assessable. In turn this can lead to scientific advances which would otherwise not 

have been achievable with a frequentist approach (Adkison, 2009; Clark, 2005; König & van de Schoot, 

2018). 

 It appears that a Bayesian approach to inference has two main advantages: first, it would allow 

ecologists to overcome shortcomings of conventional data analysis approaches that lead to criticism; 

second, multi-level models should lend themselves well to utilize the full range and inherently complex 

structure of available data in order to gain a better insight into the urgent matters of modern times. However, 

this approach also brings some limitations and criticisms with it. Mainly, the Bayesian approach has been 

criticised for its subjectivity due to the incorporation of prior knowledge and believes into the analyses 

(Clark, 2005; Ellison, 2004). Undeniably, this may be problematic for reproducibility, particularly when 

the sources of or reasoning for this prior knowledge are not clearly stated (König & van de Schoot, 2018). 

Moreover, such complex models are typically computationally expensive, time consuming and often 

require some rethinking from the researcher about how scientific knowledge is acquired, updated and 

accumulated as well as exploring more complicated software (König & van de Schoot, 2018; McElreath, 

2020). 

Indeed, even though there is a growing number of researchers in this field using these methods 

(Wikle & Hooten, 2010), the proportion is still relatively low compared to the total number of publications 

(P. A. Stephens et al., 2007). Furthermore, due to the connotation of subjectivity, ecologists seem to be 

reluctant to incorporate weakly informative and informative priors into the analyses (Banner et al., 2020; 

Lemoine, 2019). This signifies, that even though they have been shifting towards a new method of 

inference, they have not been taking advantage of the full infrastructure that this method has to offer. To 

get an up-to-date overview over the state of application of Bayesian hierarchical models in the field of 

ecology and its advantages, this study is divided into two parts. First, by systematically reviewing the 

literature it attempts to answer the following questions: (1) How are ecologists implementing hierarchical 

Bayesian data analysis? And (2) are they using the full infrastructure that hierarchical Bayesian data 

analysis provides? Second, the advantages of a Bayesian approach to statistical inference are highlighted 

through a case study on the scale-dependence of the relationship between diversity and temporal stability. 

 

 

 

 



2. Literature Review 
 

The database Web of Science was used to search for studies within the field of ecology that have 

analysed their data under a Bayesian framework. However, given an immense surge in the interest of 

ecologists in the use of Bayesian analyses in recent years, this resulted in an unexpected number of 

publications. In addition, given the complexity of ecological problems in combination with the large 

number of different interfaces that have facilitated the implementation of Bayesian models (e.g. 

MCMCpack (A. D. Martin et al., 2011), rstanarm (Goodrich et al., 2020), and JAGS (Plummer, 2012)), a 

comparison of the used methods would have been challenging. Therefore, an alternative approach was 

utilized, which is described in more detail below.  

 

2.1. Methodology 
 

In order to facilitate the comparison of methodologies among studies, this review focused on those 

studies that relied on the R package brms (Bürkner, 2017) to conduct their statistical analyses. For this 

purpose, the Web of Science was searched with the following terms to find the citation for the brms R 

Package: ‘((TS=(brms)) AND AU=(Bürkner)) AND PY=(2017)’. This result was refined in multiple 

subsequent steps. First, the citations of the brms package were refined by restricting the document types to 

‘Articles’ in order to discard reviews and book chapters etc. Second, to restrict the resulting publications 

further to the field of ecology, the search was restricted to the Web of Science Category ‘Ecology’.  Finally, 

those results were refined by searching for the term ‘hierarch* OR multilevel*’ within all fields to restrict 

the results to only those publications which employed a hierarchical Bayesian approach, leading to the 

group of articles being reviewed in the present paper.  

The above-described search procedure has resulted in a manageable group of articles, which were 

scanned to determine whether they should be included in the review. If they were determined to be suitable 

for the needs of this review, their methods (and supplementary information if necessary) were scanned 

scrupulously to extract information on the reason the researchers opted for a Bayesian rather than a 

frequentist approach to data analysis as well as to extract which most common Bayesian features, such as 

the use of a prior distribution, a non-normal family or a Bayesian model selection approach were used in 

each article. These data were gathered and visualized in Microsoft Excel, version 2202. 

 

 



2.2. Results & Discussion 
 

The search for the citations of the R package brms (Bürkner, 2017) gave a total of 2053 returns, of 

which 1974 were articles. Of those 1974 articles for which researchers used the package brms, only 311 

articles pertained to the field of ecology, and only 35 articles mentioned hierarchical models. However, a 

scan of these resulting articles revealed that five of those articles could not be used for this review: two 

publications were not openly accessible (Bonnell & Vilette, 2021; Burn et al., 2022); one publication was 

a statistical report (Leach et al., 2022) and did therefore not satisfy the criteria set for this review; one 

publication did not use brms for their analysis (McCabe et al., 2021); and the methods of one publication 

were ambiguous, so that data could not be extracted (Jakovlić et al., 2021).  

 

2.1.1. Trends through time 
 

Even if it cannot be assumed that all publications referring to the brms R package are indeed 

empirical studies implementing this package, the more than 100-fold increase of citations between 2017 (n 

= 6) and 2021 (n = 855) is by itself remarkable (Fig. 1a). It may well be interpreted as an appreciation from 

the scientific society for such readily available packages that make complex statistical analyses more easily 

applicable. Likewise, this trend remains not only true for the overall citations of this R package, but also 

when we focus on only those studies within the field of ecology (Fig. 1b). This shows that ecologists very 

well follow the general trends in science of implementing a Bayesian approach in an effort to improve 

statistical inference and accelerate scientific advancement in order to accommodate more complex 

questions. However, it also needs to be acknowledged, that the number of studies employing a hierarchical 

Bayesian framework remains low with a maximum of thirteen studies in 2021 (Fig. 1c). Indeed, when 

focusing on overall numbers as well as on numbers in 2021 which is the year in which all three categories 

are characterized by the largest number of publications, it becomes apparent that the field of ecology may 

lag compared to other fields given that ecological studies make up only approximately 16% of all 

publications. Furthermore, of this already relatively small proportion of ecological studies, only less than 

10% have employed a hierarchical Bayesian approach.  

This small proportion of studies employing the brms package that opted for a multilevel approach 

is rather surprising given that this package was specifically developed to implement Bayesian multilevel 

models (Bürkner, 2017). Yet, the trend of increasing numbers of publications implementing or discussing 

the Bayesian approach to inference in general may already reflect the efforts of the entire scientific 

community to cope with the always larger amounts of complex data that are becoming available. 



Additionally, the fact that these trends remain the same for the field of ecology and the use of hierarchical 

models may also indicate that ecologists are starting to rely less on the conventional methods of statistical 

inference. Then, a more ready implementation of a hierarchical approach may only be a matter of time. 

 

 
Figure 1. Number of publications through time citing the brms R Package (Bürkner, 2017). Panel a) shows all 

Publications in all fields (n=1974). Panel b) shows all those publications that fall under the Web of Science category 

“Ecology” (n=311). Panel c) shows those publications in the field of ecology that use a hierarchical Bayesian approach 

(n=35). Note the different scales of the axes on the different panels. 

 

   

   

   

   

   

   

   

   

   

                        

 
 
 
 
 
  
 
  
 
 
 
  
 
 
  
 
 
 

 

  

  

  

  

   

   

   

   

                        

 
 
 
 
 
  
 
  
 
 
 
  
 
 
  
 
 
 

 

 

 

 

 

  

  

  

                    

 
 
 
 
 
  
 
  
 
 
 
  
 
 
  
 
 
 

    

  

  

  



2.1.2. Trends in the use of Bayesian data analysis features 

 

The choice between a frequentist and a Bayesian approach could long be attributed to a 

philosophical choice due to differences in how probability is viewed. Even though ecologists have long 

known of the Bayesian method of data analysis, they have criticised it for subjectivity through the 

incorporation of personal beliefs in the form of prior distributions (Ellison, 2004). Interestingly, a shift 

seems to have occurred, given that 90% of the articles reviewed here used weakly informative or 

informative prior distributions (Fig. 2). A fully Bayesian approach with informative priors has been 

advocated for studies with small sample sizes (e.g., van de Schoot & Depaoli, 2014; Z. Zhang et al., 2007). 

However, even though small sample sizes used to be a common problem in ecological studies (Hedges et 

al., 1999), this advantage of Bayesian analyses had seldomly been taken advantage of. Interestingly, of the 

articles reviewed in the present study, only one reported that the reason for using Bayesian analyses was to 

account for small sample sizes (Mumbanza et al., 2020). Rather, most articles opted for a Bayesian method 

– specifically a hierarchical Bayesian method –  of inference to accommodate high levels of complexity in 

the data stemming from large volumes of high-resolution data (e.g., de Angeli Dutra et al., 2021; 

Giatzouzaki et al., 2022; Hertel et al., 2021; LoScerbo et al., 2020; Roycroft et al., 2020). Interestingly, of 

all articles mentioning complexity of their data as the main reason for the implementation of Bayesian 

methods, only one study incorporated complexity stemming from  GPS data (Naidoo et al., 2018). Likewise, 

only one study justified the use of Bayesian methods for the incorporation of various sources of uncertainty 

into their analysis (Hoover et al., 2019). The most commonly mentioned source of complexity, referred to 

in as many as eight articles, stemmed from the incorporation of phylogenies into their analyses (e.g., Barrow 

et al., 2019; Craven et al., 2021; A. D. Martin et al., 2011; Nations et al., 2021).  This demonstrates the 

versatility of this approach and also underlines that while small sample sizes might have been problematic 

for statistical inference in the past, this is the case anymore due to the availability of large amounts of  data 

thanks to modern technology (Barneche et al., 2018; Hampton et al., 2013). 

Furthermore, even when only some a priori information is available for model parameters (e.g., a 

parameter estimate is constraint between a minimum and a maximum value, or a parameter value cannot 

be negative) this limited knowledge might be worthwhile to include into the model in the form of a weakly 

informative prior (König & van de Schoot, 2018). In Bayesian analyses such a weakly informative prior 

can improve model convergence by limiting the model parameter space (van de Schoot & Depaoli, 2014; 

Z. Zhang et al., 2007). Indeed, multiple of the here reviewed articles report that the inclusion of weakly 

informative priors improved model convergence without significantly affecting parameter estimates (e.g., 

Barneche et al., 2018; Mumbanza et al., 2020; Naidoo et al., 2018).   



However, the inclusion of prior distributions is not the only way to improve Bayesian model fit and 

parameter estimation. In brms, one can easily assign a distribution to the response variable by assigning a 

family function (Bürkner, 2017). Indeed, more than half of the reviewed studies even adopted a combination 

of (weakly) informative priors and non-normal model families to model the response variable in order to 

improve their inference (Fig. 2). Only in three articles, the adoption of a non-normal family was sufficient 

to ensure proper model convergence and a good fit of the model to the data even though vague default 

priors were used (Barrow et al., 2019; Davy et al., 2021; Snell Taylor et al., 2020).\ 

Finally, it was assessed how often a comparative model selection approach was incorporated into 

the statistical analysis. In reality, model selection is a statistical approach separate from either frequentist 

or Bayesian methods of inference (J. B. Johnson & Omland, 2004; P. A. Stephens et al., 2007), but is often 

used as a complementary analysis (J. B. Johnson & Omland, 2004). This is because model selection 

simultaneously confronts multiple competing hypotheses with the observed data, whereby the best-fit 

model and therefore the best hypothesis can be identified (J. B. Johnson & Omland, 2004; Ward, 2008). 

Because this method explicitly acknowledges uncertainty in model selection it has been recognized mainly 

for its benefit of bias reduction towards a single hypothesis (P. A. Stephens et al., 2007). Given that in a 

Bayesian approach uncertainty is associated not only with estimates and model parameters but also with a 

given hypothesis (Ellison, 2004), this approach might be particularly beneficial when included into a 

Bayesian workflow. Indeed, here it was found that 50% of the reviewed articles implemented a model 

selection approach in combination with Bayesian data analysis in order to determine the model or set of 

parameters that was most consistent with the collected data (Fig. 2; e.g., Amirkhiz et al., 2021; Bailey & 

Moore, 2020; Barneche et al., 2018; Davy et al., 2021). Many different tools – called information criteria – 

are available for the evaluation of competing models, and which is the best criterion often depends on the 

purpose of a given study (Ward, 2008). For Bayesian models the preferred selection criteria appear to be 

the widely applicable information criterion (WAIC; Watanabe & Opper, 2010) as well as the leave-one-out 

cross-validation information criterion (LOOIC; Vehtari et al., 2015). Both of these criteria are calculated to 

estimate the out-of-sample predictive accuracy using within-sample fits (Vehtari et al., 2017). Leave-one-

out cross-validation (LOO CV) predictive accuracy is estimated by re-fitting any given model to the same 

dataset by leaving out one datapoint at a time. K-fold CV is a similar but faster approach, by which the 

dataset is subdivided into a predefined number of so-called training sets. WAIC is again calculated in a 

similarly iterative way, hence of all available information criteria, these are the only ones that can truly be 

considered Bayesian (Vehtari et al., 2015). In fact, researchers adopting a Bayesian approach to inference 

appear to appreciate these fully Bayesian information criteria. Of those that implemented a model selection 

approach, 93% opted for one of these tools. Only in one study they opted for the Akaike Information 

Criterion (AIC; Nations et al., 2021).  



 

 

 
Figure 2. Three common features in Bayesian data analysis and the frequency at which they are being used in 

ecological publications that employ a hierarchical Bayesian approach using the brms package (Bürkner, 2017) (n=30). 

 

 

Even though only about 20% of the reviewed articles have opted for a combination of all three 

identified common features of Bayesian data analysis, including all features may well improve statistical 

inference and a researcher’s confidence into the obtained parameter and variable estimates (Krishnadas et 

al., 2021; J. S. Martin et al., 2020; Nations et al., 2021; Neilands et al., 2020; Vickruck et al., 2019; Wilms 

et al., 2021). In the following case study, I highlight how including all three of these features into a Bayesian 

workflow can be useful for hypothesis testing.  

 

3. Scale-dependence of the diversity-stability relationship: a case study 
 

3.1. Background Information 
 

Biodiversity is being threatened at multiple spatial scales, i.e., globally as well as locally due to a 

suite of anthropogenic drivers such as land-use intensification, pollution, overexploitation,  biological 

invasions, and climate change (Chase et al., 2019; Duraiappah et al., 2005; Newbold et al., 2015). In this 

context of global environmental and biodiversity change, the question of how biodiversity contributes to 

the maintenance of ecosystem functioning through time has become a fundamental challenge for ecologists 



(Gonzalez et al., 2020; Isbell et al., 2017). Indeed, the importance of this question has led to many scientific 

studies attempting to quantify the relationship between biodiversity and the temporal stability of ecosystem 

functioning (e.g. Hautier et al., 2020; Wang et al., 2021; Wilcox et al., 2017; Zhang et al., 2018), hereafter 

simply called stability. These studies have been based on a hierarchical partitioning framework for temporal 

stability developed by Wang & Loreau (2014, 2016), which builds on Whittaker's (1972) concept of alpha, 

beta and gamma diversity. According to this framework, gamma stability is the product of alpha stability 

and spatial asynchrony. Here, alpha and gamma stability are the temporal stability of biomass production 

at the local and larger spatial scale respectively. Spatial asynchrony represents asynchronous fluctuations 

in biomass production among the different communities across space and though time. The different scales 

of diversity and stability are then linked so that alpha diversity contributes to gamma stability through alpha 

stability and beta diversity contributes to gamma stability through spatial asynchrony (Wang & Loreau, 

2014, 2016). Yet, how area interacts with this relationship across hierarchies remains poorly known. 

In a recent (unpublished) study, which investigated the scale-dependence of the relationship 

between species richness and the temporal stability of biomass production in a temperate grassland 

experiment across both hierarchical and spatial scales, some important new insights where gained. One of 

the main results was that even at the small spatial scales considered in the study, area can have considerable 

influence on the conclusions that can be drawn about the strength of the effect of diversity on stability. This 

finding supports previous results obtained by Zhang et al. (2018), and together, these studies call attention 

to account for the effect of scale when management decisions are made. This is important, because while 

management decisions are most often taken at regional and landscape scales (Gonzalez et al., 2020), the 

knowledge on the relationship between biodiversity and the stability of ecosystem functioning is based on 

theory and estimates made at local scales (Caballero-Vázquez & Vega-Cendejas, 2012), leading to a 

mismatch between the scale of knowledge and the scale of management. 

Even though these results were remarkable, there were some important methodological limitations 

concerning the data analysis within the latest study (for the methodology, refer to Appendix A3), which in 

turn limit the confidence in the obtained results. Firstly, because experimental data was combined with 

landscape simulations, a large dataset with 12958 entries was obtained for this study. Furthermore, this 

practice of combining experimental data with simulation led to unbalanced data with unequal sample sizes 

among different areas. Since frequentist statistical inference was utilized without calculating effect sizes or 

adjusting the significance level, large sample sizes might have led to Type I errors of rejecting a correct 

null hypothesis (EFSA Scientific Committee, 2011). Secondly, the simulation in combination with the 

chosen metric of beta diversity introduced patterns into the data, whereby different planted diversity levels 

differed considerably in the ranges of both beta diversity and spatial asynchrony which could be obtained 

for each level. To account for that, linear mixed effects models were employed with planted species 



diversity and area as random effects, even though these levels are not random. And lastly, in order to avoid 

singularity or convergence issues, and to allow for different slopes at different areas, both diversity and area 

were included as both fixed and random effects and hence had to be kept as continuous predictors, even 

though both were intended as factors.  

This study indeed highlights, that as the quantity and complexity of the data increases, the 

frequentist approach becomes limiting. In an attempt to improve inference, a Bayesian approach was then 

employed, for which the statistical methods and results will be described below (note that the description 

of the methods used for the frequentist analysis can be found in Appendix A3, section 3). 

 

 

3.2. Statistical Analysis  
 

To determine the relationships between the different components of Wang & Loreau’s (2014; 2016) 

hierarchical partitioning framework, as well as the scale dependence of these relationships, a series of 

independent Bayesian analyses were performed. Generalized linear models were generated using the brms 

package in R (Bürkner, 2017), which relies on the Hamiltonian Monte Carlo (HMC) sampler Stan 

(Carpenter et al., 2017). Separate analyses were performed for every combination of explanatory and 

response variable (Table 1), leading to seven analyses, whereby they can be grouped into two distinct 

groups: 1) models which use alpha diversity as a covariate; and 2) models which use alpha diversity as a 

grouping variable. 

 

Table 1.  Various response variables and their associated explanatory variables associated with the models used in this study. Their 

pairing is based on the framework developed by Wang & Loreau (2014; 2016). Indirect explanatory variables are called such 

because they do not directly affect the associated response variable, but through another variable, i.e., beta diversity influences 

gamma stability indirectly through spatial asynchrony. 

 

The first group was comprised of the two analyses with alpha stability and gamma stability as 

response variables and alpha diversity and area as explanatory variables. For each analysis, 12 models were 

compared to select the best-fit model among competing hypotheses of significant interactions or 

hierarchical structures:  

Response Variable Explanatory Variable 

Alpha Stability Alpha Diversity 

Spatial Asynchrony Beta Diversity 

Gamma Stability 
Indirect: Alpha Diversity, Beta Diversity 

Direct: Alpha Stability, Spatial Asynchrony, Gamma Diversity 



1. a null model without interactions or random effects, where alpha diversity was used as a 

covariate and area was used as a factor 

2. a model without random effects but with an interaction between alpha diversity and area 

3. a hierarchical random intercept model without interctions, but with area as a grouping 

variable 

4. a hierarchical random slopes model with area as a grouping variable and random slopes for 

alpha diversity 

5-8. models 1-4 with a log-normal family in an attempt to improve model convergence as well as 

the fit of the model to the data; this family function was chosen based on previous knowledge 

of a lognormal distribution of the response variable stemming from an exploratory analysis 

as well as previous studies, which describe stability metrics as being log-normally distributed 

(Hautier et al., 2020; Wang et al., 2021; Wang & Loreau, 2014).   

9-12. models 5-8 including a weakly informative Half-Cauchy(0,2) prior on all population-level 

(fixed) parameters to determine whether the inclusion of such a prior could further improve 

convergence and model fit. This prior was chosen because the response variables were 

limited to non-negative, non-zero, low continuous values resulting mainly from the 

simulation procedure; 

The second group was comprised of the remaining five analyses, where the explanatory variables are 

used as covariates and area is used as a factor. Again, for each analysis 12 models were compared to select 

the best-fit model among competing hypotheses of significant interactions and/or different hierarchical 

structures: 

1. a hierarchical null model without interactions and alpha diversity as a grouping variable 

2. a hierarchical model with an interaction between the covariate and area, and alpha diversity 

as a grouping variable 

3. a hierarchical random slopes model without interactions, alpha diversity as a grouping 

variable and random slopes for area 

4. a hierarchical model with an interaction between the covariate and area, alpha diversity as a 

grouping variable and random slopes for area 

5-8. models 1-4 with a log-normal family  

9-12. models 5-8 including a weakly informative Half-Cauchy(0,2) prior on all population-level 

(fixed) parameters  

For all models, the intercept parameter was removed, so that posterior distributions were directly 

estimated for each group (Bürkner, 2017). The models were run with 4 chains for 2000 iterations (1000 as 



warm-up), and default Student-t priors for standard deviations of group-level (random) parameters. Where 

not specified, models were run with default priors for population-level parameters and a Gaussian 

distribution. To ensure there were no divergent transitions, the ‘adapt_delta’ parameter was increased to 

0.999 and the ‘max_treedepth’ parameter was increased to 15 where necessary. Model convergence was 

assessed through effective sample sizes (ESS) the Gelman-Rubin diagnostic of R-hat < 1.05, and through 

visual inspection of traceplots (see Appendix A2). Model validity and fit to observed data were assessed 

through visual inspection of posterior predictive checks (see Appendix A2). Posterior distributions of the 

mean estimates of interest were compared using the compare_levels function in the R package Tidybayes 

(Kay, 2021) 

A model selection approach was implemented to determine the model structure and combination of 

parameters that best explained each relationship. Within each analysis, models were compared using leave-

one-out cross-validation information criterion (LOOIC) minimization (Vehtari et al., 2017) calculated with 

the loo package in R (Vehtari et al., 2021). All statistical analyses were performed in R 4.1.3. (R Core 

Team, 2022). 

 

 

3.3. Results and Discussion 
 

To keep the comparison between frequentist and Bayesian results manageable and as simple as 

possible as well as to highlight the benefit of including model selection into a Bayesian workflow, here I 

will focus on only one of the models. The selected model, where gamma stability (i.e., temporal stability at 

the largest spatial scale) is dependent on alpha diversity (i.e., species richness of the composite 

communities) and area well describes the key conclusion from the discussed study. The key conclusion 

being referred to here is that area significantly influences the conclusions that can be drawn about the 

relationship between diversity and stability.  

From the selected linear mixed effects model (based on AIC) performed through a frequentist 

approach, it is suggested that even though gamma stability does not significantly increase with alpha 

diversity, area interacts significantly with alpha diversity to explain gamma stability (Table 2). The negative 

estimate associated with this interaction suggests that increasing area decreases the effect of planted species 

richness on gamma stability. Indeed, it can be seen that the slope of this relationship slightly flattens as area 

is increased (Fig. 3). 

 

 

 



 
Table 2. Results from the linear mixed effects model performed on log-transformed data for gamma stability as the dependent 

variable. P-values are calculated automatically for models created with the ‘lme()’ function.  Effects are significant at P < 0.05. 

 

 

 
Figure 3. Results on the relationship between alpha diversity, gamma diversity and area obtained from a 

frequentist random intercept and slope model on the log-transformed data. Fixed effects are plotted in black. 

Colours represent the slopes at different areas. Facets represent different areas, ranging from one single to 

eight aggregated communities. 

 

 

For the Bayesian counterpart, the LOOIC selected for a simple Bayesian model with alpha diversity 

as a covariate, area as a factor and an interaction between these two explanatory variables. The selected 

model fit with a log-normal family and a weakly informative Half-Cauchy prior showed excellent 

convergence (R-hat = 1) and ESS > 1000. 

Fixed Effect Estimate 
Standard 

Error 
DF t-Value p-Value 

95% CI 

Lower Upper 

Alpha Diversity 0.1081 0.0194 1 5.5604 0.1133 -0.1389 0.3551 

Area 0.0739 0.0139 12953 5.3089 0.0000 0.0466 0.1012 

Alpha Diversity x Area -0.0366 0.0077 12953 -4.7685 0.0000 -0.0517 -0.0216 



The result remains comparable to that of the frequentist analysis described above, with a significant 

interaction between alpha diversity and area. However, for the result from the Bayesian model we can see 

an even more pronounced decline in slope of the alpha diversity – gamma stability relationship as area is 

increased (Fig.4). Interestingly, through the Bayesian approach it could be discerned that area has a 

significantly negative effect on the alpha diversity – gamma stability relationship, but only at the largest 

two landscapes (Fig. 4), since the 95% CI for those interaction terms do not overlap with zero (see Appendix 

A2 Table 1). This result also highlights that as area is increased, the relationship changes due to an increase 

in the average estimate for gamma stability (Fig. 4, Fig. 5, Appendix A2 Table 1). Finally, pairwise contrasts 

show that at the smallest area – i.e., the single community of 1.2m2 – the alpha diversity – gamma stability 

relationship is significantly different from all other areas (Fig. 5). Similarly, the largest area – i.e., at a 

landscape of eight aggregated communities and a size of 9.6m2 – is significantly different from all other 

areas, except for the next largest area of seven communities. No difference was found in the diversity – 

stability relationship between areas of similar sizes (Fig. 5).  

 

 

 

Figure 4. Results on the relationship between alpha diversity, gamma diversity and area obtained from a 

simple Bayesian ANCOVA. 50%, 80% and 95% credible intervals are displayed in different colours. Facets 

represent different areas, ranging from one single to eight aggregated communities. 
 

 



 

Figure 5. Density plots of contrasts between mean gamma stability values for the different area. Points are 

medians and narrow bars are 95% credible intervals. If the distributions of the differences do not overlap 

zero at the 95% credible level, then it can be said there is a significant difference between the two values. 

 

 

On a first glance, it appears that the obtained results remain similar between a frequentist and a 

Bayesian approach. However, upon closer inspection, it becomes clear that there are some important 

differences. First, the mean estimates differ between analyses (Fig. 3, Fig. 4). One might attribute this to 

the fact that data were log-transformed for the frequentist analysis in order to meet the assumption of 

normality. However, a discrepancy remains when the result is visualized with the back-transformed data 

(see Appendix A2, Fig. 4). Therefore, one possible explanation that this underestimation of the frequentist 

analysis might be due to the fact that even though data were transformed to improve normality and variance 

functions were applied to adjust for heteroscedasticity, the models’ assumptions were still not fulfilled, thus 

introducing bias (see Appendix A2, Fig. 3).  

Moreover, because fixed effects needed to be kept as continuous variables to ensure model 

convergence and random effects cannot be compared in a frequentist analysis, one can only conclude that 

there is a significant interaction between area and alpha diversity, but estimates cannot be compared among 

areas. This is not a problem for the Bayesian analysis, where pairwise differences can be assessed and hence 



it can be determined for which areas the relationship between alpha diversity and gamma stability was 

significantly different. This would also not have been possible had a hierarchical model been selected with 

area as a grouping variable, which further underlines the strength of Bayesian data analysis (McElreath, 

2020). As a result, it could be said that the Bayesian analysis yielded similar results, but these results 

contained more information (König & van de Schoot, 2018) and their more intuitive interpretation provides 

more confidence to the researcher to make his/her claims.  

Finally, this case study also shows the benefits of implementing a model selection approach 

complementary to the Bayesian analysis. Due to the limitations encountered when utilizing a frequentist 

approach (please refer to section 5.1) one might have directly implemented a more complex, hierarchical 

Bayesian model. Instead, a simple model was selected as the best-fit model for the observed data. This 

again shows, how important it is not to discard multiple possible hypotheses that could explain the patterns 

in the collected data. It also highlights how a Bayesian approach is less dependent on sample sizes – large 

or small (Barneche et al., 2018; Naidoo et al., 2018; van de Schoot & Depaoli, 2014; Z. Zhang et al., 2007) 

– so that one can confidently infer the deducted results without fear of having falsely rejected a correct null 

hypothesis.   

 

 

4. Conclusion 
 

This study has shown that even though it may require rethinking of some widely accepted concepts about 

probability, and be more computationally expensive and time consuming than the traditionally adopted 

frequentist method (König & van de Schoot, 2018), Bayesian inference has certain advantages. These 

include more flexibility, the ability to accommodate more complex data structures and a more intuitive 

interpretation of the results (Clark, 2005; Cressie et al., 2009; Ellison, 2004; König & van de Schoot, 2018). 

The growing number of ecological studies not only employing a Bayesian approach in general but more 

specifically a hierarchical Bayesian approach indicates that ecologists are increasingly appreciating the 

flexibility this method of inference has to offer, also thanks to the emergence of easily accessible and easily 

applicable software. This is especially important given that frequentist methods appear to be often 

misunderstood and misused, and confidence intervals are wrongly interpreted in a Bayesian way (Ellison, 

2004; van de Schoot & Depaoli, 2014). However, statistics are only a tool that helps ecologist to infer 

patterns and causal relationships from their data. Therefore, no single approach is perfect or implies 

biological processes. Rigorous research design, the choice of reliable measures, appropriate analytic 

procedures and finally careful judgment of the obtained results are crucial to ensure the success of any 



chosen method of inference (Kruschke et al., 2012; P. A. Stephens et al., 2007). Furthermore, both the 

review and case study presented here suggest that a combination of different approaches might be 

favourable to a single method approach in order to limit bias.  In this sense, another important aspect about 

Bayesian inference is that p-values are forgone, and researchers are often more aware of the complexity of 

the ongoing computations and the need to carefully document sources of prior knowledge, leading to a 

higher degree of reproducibility. 
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7.2. Appendix A2: Diagnostic Plots and Additional Results 

 
Figure 1. Trace plots for the visual assessment of chain convergence. These show that the selected model is exploring 

the full variation for its variables. Note that all trace plots are plotted excluding the warm-up iterations. All trace and 

density plots were generated using plot() function from the R package brms (Bürkner, 2017). 



Figure 2. Posterior predictive checks show a satisfactory model fit. In a) the predictive distribution yrep is compared 

to the observed data y. The similarity of the curves signifies the model captures the data well. Panel b) consists of a 

Leave One Out (LOO) Probability Integral Transform (PIT) marginal posterior predictive check. The points do not 

deviate considerably from the dotted line, therefore indicating the model is well-calibrated. All plots were generated 

using the pp_check() function of the R package Bayesplot (Gabry & Mahr, 2020). 

 

 

 

 
Table 1. Statistical output for the selected Bayesian model. Estimates can be said to be significant when the 95% CI’s 

do not overlap with 0. 

 

Parameter Estimate SE 
95% CI 

R-hat Bulk ESS Tail ESS 
Lower Upper 

Alpha Diversity 0.03 0.01 0.02 0.04 1.00 1746 3014 

Area1 0.22 0.03 0.16 0.28 1.00 2113 3881 

Area2 0.30 0.02 0.27 0.33 1.00 11780 5686 

Area3 0.33 0.01 0.31 0.35 1.00 11337 5539 

Area4 0.33 0.01 0.31 0.35 1.00 11964 5614 

Area5 0.34 0.01 0.32 0.36 1.00 11211 5840 

Area6 0.36 0.01 0.34 0.39 1.00 11130 5563 

Area7 0.39 0.01 0.36 0.42 1.00 11425 5450 

Area8 0.42 0.01 0.39 0.44 1.00 11271 5728 

Alpha Diversity x Area2 -0.01 0.01 -0.02 0.01 1.00 2057 3441 

Alpha Diversity x Area3 -0.01 0.01 -0.02 0.00 1.00 1898 3290 

Alpha Diversity x Area4 -0.01 0.01 -0.02 0.00 1.00 1899 3329 

Alpha Diversity x Area5 -0.01 0.01 -0.02 0.00 1.00 1855 3323 

Alpha Diversity x Area6 -0.02 0.01 -0.03 0.00 1.00 1924 3412 

Alpha Diversity x Area7 -0.02 -0.01 -0.03 -0.01 1.00 2010 3295 

Alpha Diversity x Area8 -0.02 0.01 -0.04 -0.01 1.00 1938 3518 

    



 
Figure 3. Diagnostic Plots for the best-fit linear mixed effects model generated using the ‘lme’ function from the  R 

package ‘nlme’ (Pinheiro et al., 2017). In a) a QQ plot shows deviations from normality. In b) a heteroscedastic 

distribution of the residuals can be visualized, even after the most appropriate variance structure was selected for.  

 

 

 

Figure 4. Results on the relationship between alpha diversity, gamma diversity and area obtained from a frequentist 

random intercept and slope model on the back-transformed. Fixed effects are plotted in black. Colours represent the 

slopes at different areas. Facets represent different areas, ranging from one single to eight aggregated communities. 

    



7.3. Appendix A3: Full Methodology associated with the case study 
 

To investigate the scale dependence and test for the effect of both of alpha and beta diversity on 

gamma temporal stability, both variables need to be separated from each other as well as from 

environmental conditions. For alpha diversity, this is achieved by using biodiversity experiments which are 

purposefully designed to manipulate alpha diversity under homogeneous environmental conditions (Hector, 

2006). This means that spatial processes responsible for beta diversity in natural landscapes are not 

accounted for. Therefore, to be able to test also for the effect of beta diversity under similar levels of alpha 

diversity in these existing experiments, landscapes with varying levels of beta diversity need to be simulated 

(Pasari et al., 2013; Wang et al., 2021). 

 

1. The Utrecht University Biodiversity and Climate Variability Experiment  
 

Data from the Utrecht University Biodiversity and Climate Variability Experiment (UU BioCliVE) 

platform was utilized, where natural temperate grassland communities typically found in the Netherlands 

are replicated in experimental mesocosms (UU BioCliVE, n.d.). BioCliVE was established in 2017 at the 

Utrecht University Botanical Gardens (52°13’N, 5°29’E). The area surrounding the experiment is 

characterized by a mean annual temperature of 10.1 °C and a mean annual precipitation of 887 mm (1981-

2010; KNMI, 2021). 

 

1.1. Experimental Design 
 

BioCliVE was designed to study the combined impacts of climate change (in the form of changing 

precipitation patterns) and biodiversity loss on ecosystem dynamics and ecosystem functioning. For that 

purpose, a total of 352 mesocosms were created using 1.2 m x 1.0 m x 1.15 m (l x b x h) bulk containers 

that were each filled with 1000 L of soil. To ensure appropriate drainage, this soil was composed of the 

following layers from bottom to top: (1) a 10 cm thick drainage layer of gravel followed by (2) a 70 cm 

thick layer of river sand and (3) a 25 cm thick topsoil layer, which is a perfect (1:1) mixture of soil and 

sand. For the top layer, the soil from a meadow with Arrhenatherion elatioris association was excavated 

from a nearby nature reserve in the Rammelwaard (52°10’N, 6°11’E). It is important to note here, that a 

single mesocosm represents a subplot, while four of them collectively represent one plot (Fig. 2). These 

plots were sown to construct communities with a species richness gradient of one, four, eight and twelve 

species, which were selected from a local species pool associated with the aforementioned vegetation type 

(Table 1). Seeds were sown at a density of 1800 seeds per mesocosm; for mixtures, the different species 

were sown at equal proportions.  

 

 

 



Table 1. Target species sown in the BioCliVE platform. These species pertain to two functional groups. 

*replaced by Ranunculus repens (Family: Ranunculaceae) in 2020 due to negative growth  

 

A total of 88 plots was arranged in two blocks with a varying degree of plant species diversity: in each 

block there are 12 monoculture plots and 32 polyculture plots. Of the polyculture plots, 12 contain four 

species, 12 contain eight species and 8 contain twelve species. Therefore, each species composition can be 

said to be replicated 8 times, except for the twelve-species plots, which are replicated 64 times in total (Fig. 

2).  

 

 

Figure 1. Experimental Design of the UU BioCliVE platform showing the setup in two blocks, each containing 44 plots of varying 

diversity levels. 

 

Species Family Functional Group 

Arrhenaterum elatius Poaceae  

Holcus lanatus Poaceae  

Luzula campestris Juncaceae Grasses 

Anthoxanthum odoratum Poaceae 

Poa trivialis Poaceae  

Festuca rubra Poaceae  

Tragopogon pratensis Asteraceae  

Rumex acetosa Polygonaceae  

Veronica chamaedrys Plantaginaceae Forbs 

Cardamine pratensis* Brassicaceae 

Origanum vulgare Lamiaceae  

Knautia arvensis Caprifoliaceae  



1.2. Data Collection 
 

Data on aboveground plant biomass has been collected for four years between 2018 and 2021. To 

maintain the compositional identity of each plot as well as the intended diversity gradient, weeds were 

removed manually thrice a year (in March, June, and September). For this purpose, weeds were defined as 

any species that were not intended for a particular plot. Because it is impossible to track whether intended 

species establish from seeds coming from within or among different subplots with the same species, the 

design allows for a certain degree of dispersal and thus interconnection among those communities. 

Every year after the June weeding, when peak standing crop was reached, biomass of the sown 

species was collected. This was achieved by harvesting the inner 50 x 50 cm2 (2018 – 2020) and 25 x 50 

cm2 (2021) of each plot by clipping the vegetation at a height of 7 cm. The harvested biomass was then 

sorted to species level before it was oven dried at 70°C for 48 hours and weighed.  

 

2. Diversity and Stability Metrics in Simulated Landscapes 
 

To investigate the relationships between species diversity, spatial asynchrony, area and the temporal 

stability of productivity, landscapes of varying sizes and with varying levels of beta diversity were 

simulated. 

 

2.1. Landscape Simulations 

 

Following the approach used by other studies investigating the effect of beta diversity on ecosystem 

functioning and stability (Pasari et al., 2013; Wang et al., 2021), our simulations were performed by 

randomly aggregating plots with the same level of species richness. The size of these landscapes ranged 

from one to eight communities (Fig. 3) and therefore from 1.2 to 9.6 m2. The same levels of species richness 

were used to prevent the potential confounding effect of alpha diversity when testing for beta diversity 

(Wang et al., 2021). To reduce the size of the data, a subsample of 60 landscapes was taken for each area – 

beta diversity combination. A total of 12,958 landscapes were obtained with a continuous gradient of beta 

diversity by pooling subplots within each simulated landscape so that their species compositions were either 

the same, partially overlapping or completely different (Fig. 3; see Appendix 1 Fig. A1). Due to this method, 

different landscapes may share some plots, but most importantly no plots were resampled for any given 

landscape. All simulations were performed in R 4.1.1 (R Core Team, 2021). Owing to the replacement of 

C. pratensis by R. repens in 2020 which resulted in the unavailability of the required temporal data on 

biomass production, all data on either species were excluded from our analyses. 

 

 



 
Figure 2. Graphical representation of the simulation procedure. Note that different colors represent different species compositions. 

 

 

2.2. Calculating Diversity and Stability Metrics 
 

Diversity and stability metrics were calculated by applying the ‘var.partition’ function developed 

by Wang et al. (2019) to data collected between 2018 and 2021. All measurements were computed for every 

landscape at both, community (alpha) and larger spatial (gamma) scales using presence-absence-based 

metrics of diversity. All calculations were performed to obtain one single value for each of the required 

metrics for every landscape.  

Alpha diversity was calculated as the average number of species across each of the assembled 

communities through time. Similarly, gamma diversity was calculated as the average number of species for 

the entire landscape. Then, to represent the dissimilarity in species composition between the different 

communities within a landscape, beta diversity was calculated as the ratio of gamma diversity to alpha 

diversity (sensu Whittaker, 1972).  

Ecosystem stability was defined as the temporal invariability of aboveground biomass productivity, 

calculated as the inverse of the coefficient of variation (Wang & Loreau, 2014, 2016; Wang et al., 2021). 

Accordingly, alpha stability and gamma stability were quantified for every landscape using the following 

formulae respectively: 

 

 𝛼𝑆 =
∑ µ𝑖𝑖

∑ √𝑣𝑖𝑖𝑖
     (1) 

 

𝛾𝑆 =
∑ µ𝑖𝑖

√∑ 𝑣𝑖𝑗𝑖,𝑗

     (2) 

 

where µi denotes the temporal mean and vii the temporal variance of community biomass in subplot i, and 

vij denotes the covariance in community biomass between subplot i and j. Then, the beta component of 

    

 
 
  
 
  
  
 



stability, i.e., spatial asynchrony, could again be calculated as the ratio between gamma stability and alpha 

stability, yielding the following definition: 

 

 𝜔 =
∑ √𝑣𝑖𝑖𝑖

√∑ 𝑣𝑖𝑗𝑖,𝑗

     (3)    

  

This definition of spatial asynchrony is also referred to as covariance-based asynchrony because it 

combines the correlation among plots as well as the variance within plots (Loreau & De Mazancourt, 2008).  

It is important to note, that even though there are also other measures of beta diversity and asynchrony, 

these multiplicative measures were chosen due to their consistency with the theoretical framework that we 

are testing (Wang & Loreau, 2014, 2016).  

 

 

3. Statistical Analysis  
 

To determine the relationships between the different components of the framework that is being 

examined, as well as the scale dependence of these relationships, a series of linear mixed effects models 

were performed. These models were generated using the ‘lme’ function from the R package ‘nlme’ 

(Pinheiro et al., 2017) and fitted with restricted maximum likelihood. For any of the possible response 

variables, one or more models were created with the associated explanatory variable (Table 2), area and 

planted alpha diversity as fixed effects, and area and planted alpha diversity as random effects. To visualize 

the relationship of each fixed effect with the response variable for the final models, mean marginal effects 

were extracted using the ‘ggeffect’ function from the R package ‘ggeffects’ (Lüdecke, 2018).  
 

 

Table 2.  Various response variables and their associated explanatory variables used in the series models used in this study. Their 

pairing is based on the framework developed by Wang & Loreau (2014; 2016). Indirect explanatory variables are called such 

because they do not directly affect the associated response variable, but through another variable, i.e., beta diversity influences 

gamma stability indirectly through spatial asynchrony. 

 

 

All stability metrics were log-transformed before analyses to improve normality and to ensure the 

assumptions of the model were being met. To account for heteroscedasticity of the residuals, different 

variance structures were modelled. For each relationship, the best-fit model was determined following the 

protocol proposed by Zuur et al., (2009) and final model selection was based on Akaike Information 

Criterion (AIC) minimization.  

 

 

Response Variable Explanatory Variable 

Alpha Stability Alpha Diversity 

Spatial Asynchrony Beta Diversity 

Gamma Stability 
Indirect: Alpha Diversity, Beta Diversity 

Direct: Alpha Stability, Spatial Asynchrony, Gamma Diversity 
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