
Preference of blue noise in ray
tracing

Is blue noise visually preferable to white noise as ray

tracing error distribution?

Thesis for the Master’s degree of

Game and Media Technology

J. Vreugdenhil (6211046)

Supervised by P. Vangorp and A. Telea

Utrecht University
Netherlands
April 2024



Abstract

Blue noise is generally considered as preferable to other types of noise in graphics. However, there
is a lack of empirical evidence for this claim. With this research, we aim to test this claim and
provide additional understanding of the subject. We discuss literature on blue noise, sampling
theory, and human vision to explain possible reasons for the preference of blue noise. We have
performed an experiment to test whether rendered images with error distributed as blue noise were
found to be visually preferable to images with error distributed as white noise. We found that there
is a clear preference for blue noise over white noise when the amount of samples per pixel is equal.
We also found that a preferable noise type does not outweigh the visual improvement of rendering
an image with two samples instead of one.
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2 LITERATURE STUDY

1 Introduction

Blue noise has had a place in graphics for a long time, and its usage in ray tracing also dates back
to 1987 (Mitchell, 1987). Due to stronger hardware and dedicated ray tracing cores (NVIDIA,
2023), ray tracing is becoming more common for consumer computers. Ray tracing being feasible
in real-time nowadays makes it usable in video games. The real-time restriction does limit ray
tracing to a few samples per frame, so it is important to make each frame count.

Blue noise is used in ray tracing to improve the perceptual quality of renders. It is generally
viewed as more visually pleasant than other types of noise. However, there is a lack of empirical
research for this claim. There also does not seem to be a conclusive explanation why blue noise is
visually preferable to white noise. Blue noise is widely used in graphics and is the subject of much
research. It is therefore important to test the validity of the claim that blue noise is visually
preferable and to research possible reasons for this. Improving our understanding of the preference
for blue noise may also help with further developments for visual media.

In this research we tested whether blue noise is perceived as visually preferable to white noise. We
answered the research question: “Is a rendered image with the error distributed as blue noise
visually preferable over a rendered image with the same amount of error distributed as white
noise?” To answer this question, we conducted an experiment in which participants were asked to
rank rendered image on visual pleasantness.

This thesis starts with a literature study, in which some concepts relevant to this research are
explained and existing research on blue noise and perception based sampling is discussed. Then
the research methods and experimental setup are explained. This is followed by and analysis of the
results. Finally, the conclusion summarises the most important findings and discusses limitations
of this research and opportunities for future research.

2 Literature study

2.1 Important concepts

In this section we introduce some concepts that are crucial to understanding the literature that is
discussed later.

2.1.1 Ray Tracing

Ray tracing is a technique to draw, or ‘render’, virtual objects to a screen. Essentially it works by
tracing light paths in reverse.
So, instead of light rays bouncing off an object and into a camera, the paths start from the camera
and hit an object. Once it hits an object, the incoming light at that point has to be determined.
This can be done by a very simple approximation if one assumes the object only receives direct
light from a single light source. Then only the angle and distance to the light and whether there is
an object casting a shadow in the way are taken into account. If the object is specular, like a
mirror, one could bounce the ray again and take the shading information from the next hit. This is
relatively quick but not fully realistic.
In the real world, any surface scatters light into multiple directions. To simulate this, one would
send multiple rays from the object that was hit into other objects and let them bounce forever
until they hit a light. By keeping track of all objects that were hit, one can realistically recreate
how much light reaches the original object. Though this is practically unfeasible as the rays could
have millions of bounces around the virtual scene before hitting a light source, and splitting into
multiple rays at every bounce will make even the best computer run out of memory.
So, most ray tracing algorithms take a random selection of samples instead of simulating each light
ray. If enough random rays are simulated, it will start to approximate the real world. This way of
approximating is called Monte Carlo sampling. Monte Carlo sampling is a simulation technique
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that is not unique to ray tracing. It is used in statistics when problems are impossible to solve
analytically and taking random samples allows us to approximate a function.

2.1.2 Noise

When taking hundreds of samples, this approximation is fine and produces good looking results. In
real-time applications, however, only 4-8 samples per pixel are typically taken. This can cause a
large amount of visual noise, as pixels that are next to each other may have sampled the scene very
differently.
Say, for a 1-sample-per-pixel example, there would be two pixels next to each other whose rays hit
the same object. Both rays have a fifty percent chance to hit the light. One pixel by chance had its
ray bounce directly into the light and thus is highly illuminated. The pixel next to it could have its
ray bounced into a shadowy corner of the scene and thus be quite dark. Ideally you would have
wanted both pixels to be half illuminated. Even though both pixels had the same chance of hitting
the light, they received very different results. This is the noise that is introduced with Monte Carlo
ray tracing when working with a low amount of samples.

(a) white noise (b) blue noise

Figure 1: White noise and blue noise

2.1.3 White Noise

White noise is the name given to a signal where each value is random and fully independent of
each other. Random Number Generators generate white noise. An image of spatial white noise can
be seen in Figure 1a. The energy spectrum of white noise is shown in Figure 2a. You can see that
there is an equal energy for all frequencies.

2.1.4 Blue Noise

The term ‘blue noise’ was coined by Ulichney in his book on digital halftoning (Ulichney, 1987).
The term refers to an even, isotropic, yet unstructured distribution of points. This means the
points are spread over the area in a way that does not form large clusters or empty areas, but also
has no repeating structure. The isotropy requirement means the distribution has the same
properties in all directions. According to Ulichney, the points are perceptually free of any structure.
They call this a “grid defiance illusion”. An image of spatial blue noise can be seen in Figure 1b.
The power spectrum of blue noise (Figure 2b) looks like the power spectrum of white noise at high
frequencies, but with minimal low-frequency energy. It also has a peak at the principal frequency
of the pattern. This peak marks the transition from low energy frequencies to high energy
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frequencies (Ulichney, 1987) Blue noise became popular rapidly in computer graphics as its
absence of structure prevents aliasing (De Goes, Breeden, Ostromoukhov, & Desbrun, 2012)

(a) White noise (b) Blue noise

Figure 2: Energy spectra of white and blue noise

2.2 Benefits of blue noise

In graphics, incorporating blue noise is seen as a way to make images more pleasant to the eye.
There have been several different claims as to why using blue noise reduces unpleasant artefacts.
Broadly these are: Blue noise can reduce aliasing, the lack of structure is more pleasant to the eye,
and high frequency details are more difficult to see. These three aspects are discussed in sections
2.3 to 2.5.

2.3 Aliasing

Transforming a continuous signal into a discrete signal is called sampling. Examples of this are:

• Digital photography, where light in the environment is turned into pixels.

• Digital Music recording, where a sound signal is sampled and stored in an audio file.

• Image rendering, where digital light in a digital environment is turned into pixels

Figure 3: example of aliasing in sampling a sinewave

When the sampling rate (how many samples per second or samples per view angle) is too low,
errors can occur.
As long as the sampling rate is equal to twice the maximum frequency of the signal that is being
captured, no data will be lost. This sampling rate is called the Nyquist rate (Landau, 1967).
Conversely, the frequency that is half the sampling rate and thus will always be sampled correctly
is called the Nyquist frequency. If the sampling rate is lower than the Nyquist rate, data can be
lost and artefacts can be introduced. This is know as aliasing.
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Figure 4: “Moiré Pattern at Gardham Gap”, by Roger Gilbertson

A common example of aliasing can be seen in Figure 3. Here, the high frequency black sine wave is
sampled at a too low frequency, displayed by the black dots. Reconstructing the signal based on
these samples results in the orange function, which is very different from the original.
An example of this happening to a photograph can be seen in Figure 4 which displays an artefact
known as a ‘Moiré pattern’ on the barn door. The pattern on the door has a high frequency which
could not be accurately captured on a digital camera.
An other common occurence of aliasing are ‘jaggies’ at sharp edges. In Figure 5a you see a triangle
with a sharp edge. In Figure 5b you see the same image but sampled at a very low rate. Each pixel
(sample) is colored black if it is inside the black triangle and white if it is not. This causes a jagged
edge to appear. In Figure 5c, an anti-aliased version is shown. Here, pixels are displayed in a grey
values based on how much of the triangle is in the pixel, giving a slightly smoother edge. This can
be done by taking many more samples inside a pixel and counting how many are inside and outside
the triangle. This is called super-sampling and is a simple way to reduce aliasing effects.

(a) fullscale image (b) undersampled image (c) anti-aliased image

Figure 5: Anti-aliasing example

Blue noise in the retina

Yellott (1983) noticed that in human peripheral vision, no disturbing aliasing effects are present.
Even when observing frequencies that are above human perception limits. They then analysed the
distribution of photoreceptors in the retina of the eye of a rhesus monkey. These photoreceptors
were found to be distributed in a semi-noisy pattern: it is neither perfectly regular nor perfectly
random. A power spectrum of the noise showed that it contains almost no low frequencies, has a
spike on a high frequency and then has equally distributed higher frequencies. This distribution of
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points would later be classified as blue-noise point distributions.
This distribution avoids introducing noise for low spatial frequencies (which would be under the
Nyquist frequency, if the distribution were a regular grid) while higher spatial frequencies (which
would normally cause artefacts patterns due to aliasing) are scattered into broadband noise,
leaving no disruptive artefacts (Yellott, 1983).

Non-uniform sampling

Mitchell (1987) implements the photoreceptor distribution in ray tracing. The photoreceptors
follow a Poisson distribution (Ripley, 1977), which can be approximated by a dart-throwing
algorithm. Mitchell proposes an algorithm that can generate these distributions on the fly, called
the point-diffusion algorithm. Ray tracing samples are taken in a Poisson distribution over the
screen, not accounting for pixel positions. Then these nonuniform samples are reconstructed into
pixels using several filter passes. The research concludes that nonuniform sampling makes the
aliasing noise less conspicuous to the viewer.

Raytracing without bouncing lights and with only a single light source is a 2-dimensional sampling
problem. Distribution ray tracing adds motion blur, half-shadows from area-covering lights, glossy
surfaces, and other lighting effects. This comes at the cost of sampling more dimensions. For
example, motion blur can be simulated by sampling the scene at different times, which adds the
time dimension. With these extra parameters, distribution ray tracing comes with a
multidimensional sampling space.

Mitchell (1991) extends his previous work on nonuniform sampling to expand this to
multidimensional sampling. A common way to do supersampling in ray tracing is stratified
sampling. Here, each pixel is divided into subpixels. The two dimensions of the pixel, height and
width, are each divided into N parts, resulting in N ∗N subpixels. Within each subpixel, one
random sample is taken and then all subpixels are averaged to construct the pixel value. For
multidimensional sampling, each pixel is divided in more dimensions (D), for example time or
depth can also be included. This means that in distribution sampling you would need to take ND

samples per pixel. Mitchell states that this could easily result in tens of thousands of samples per
pixel. So for distribution sampling, only a selection of the ND positions should be taken to keep
computation times reasonable.

(a) (b)

Figure 6: Two sampling patterns

Choosing which samples to take is important, as choosing correlated samples can introduce
aliasing. In Figure 6, you can see two different two-dimensional sampling patterns. Both take an
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equal amount of samples and both cover the entirety of the two dimensions. However, in 6b you
can clearly see a linear correlation between the sampling locations. This can cause aliasing,
especially when dealing with diagonal features in an image. The uncorrelated sampling pattern 6a
is much better at preventing aliasing.

This concept extends to sampling in multiple dimensions. Correlation between each dimension can
happen. Even when only taking one sample per pixel, correlation between pixels should be
prevented. Mitchell (1991) proposes an algorithm to generate good multidimensional sampling
patterns that have a high spatial frequency. He sees that with this sampling pattern, the resulting
noise in the rendered image is pushed into higher frequencies. Expert observers stated that an
image with motion blur where the time value was distributed over the pixels by the new algorithm,
looked better than the image where the time value was randomly distributed.

Georgiev and Fajardo (2016) improved upon this approach with their own algorithm. They
generate multidimensional blue noise masks offline by starting off with white noise and swapping
pixels to optimise for blue noise. Sample masks are ‘images’ that tell, for each pixel, where the
other dimensions should be sampled. Because of these blue noise masks, neighbouring pixels
evaluate very different locations in the sampling domain, yielding high-frequency noise in the
rendered image (Georgiev & Fajardo, 2016), which was observed to be a desirable property
(Mitchell, 1991).

Inspired by this work, Heitz and Belcour (2019) found a different way to distribute rendering error
as blue noise. Starting off with a frame rendered as normal, the random seeds for the next frame
are permuted locally to improve the error distribution. This is done by first sorting the pixels on
luminance and then distributing them based on an example blue noise mask. This allows for a blue
noise distribution of errors in consecutive frames with negligible overhead.
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2.4 Lack of structure

Halftoning

Halftoning is the process of turning a greyscale image with many values into an image with either
black or white points. This is used in black-and-white printers. With only black dots, it is possible
to generate the illusion of grey tones by alternating black dots and white spaces.
For a grey tone that is exactly between black and white, a checkerboard pattern can be used. For
many grey values between black and white, a constant pattern can be constructed. In this way, a
greyscale image can be turned into a black-and white picture with different grey tones represented
by different dot patterns. An example of this ordered dither can be seen in Figure 7b. A
shortcoming of this ordered dither is that there is only a fixed number of grey levels for which a
well-distributed repeatable pattern can be created. Note that, unless highly zoomed in on these
images, they will most likely show up with aliasing artefacts due to the high frequency content.

(a) greyscale image (b) ordered dither (c) error diffusion (d) random dither

Figure 7: Examples of different dither algorithms, images dithered by Wikipedia user Gerbrant.

However, not all dot patterns are of equal quality. It is important that the pattern is directionless
or ‘isotropic’. If a pattern is anisotropic, it means that directional artefacts can be spotted, like
dots placed in such a way that they start to look like lines. When the underlying pattern of the
dots is too noticeable, it starts to clash with the pattern of the picture that it is meant to display.
This is when it is useful to break up the pattern with random noise. Adding this noise is called
dithering.

The Error Diffusion Algorithm

In Ulichney’s book (1987) on digital halftoning, he addresses these problems in the chapter
“Dithering with blue noise”. The same information can also be found in his later released paper
with the same title (Ulichney, 1988). In the book chapter, he experiments with adding noise to the
halftoning process with the use of the error diffusion algorithm.
This algorithm, also known as the Floyd-Steinberg algorithm (Floyd, 1975) does not use
predetermined patterns to perform the halftoning. Instead, it iterates over each greyscale pixel and
assigns it as either black or white, depending on which it is closer to. The ‘error’ that is then
generated by this is stored and distributed over pixels in its area, making the next pixels more
biased towards the other colour value. This minimizes the total error of the image. An example
can be seen in Figure 7c.

This algorithm is simple yet widely applicable, but some shortcomings are pointed out by Ulichney
(1988).
The algorithm creates correlation artefacts for many grey tones. Correlation is when the pixels
seem to follow a pattern, they have a certain ‘correlation’ with each other. This makes visible
patterns emerge that are not in the original image. Examples can be seen in Figures 8a and 8b.
Both of these images were solid grey images that were halftoned which produced diagonal line
patterns.
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It also creates artefacts due to the direction that the algorithm operates in, called directional
hysteresis. This often introduces wiggly line-like artefacts in either very light or very dark areas, as
can be seen in Figure 8c. Patterns introduced in an image that were not in the original greyscale
image can be very distracting.

(a) correlated artefact (b) correlated artefact (c) hysteresis artefact

Adding noise

To break up any artefacts, Ulichney (1988) introduces noise to the halftoning process. He
introduces the idea of white noise dithering. This is quite a simple algorithm. Each grey value is
compared to a random threshold and is assigned either as a black or white pixel, depending on
whether its value is above or below the threshold. The random values are supplied as a white noise
map, meaning uniformly distributed and uncorrelated noise. An example can be seen in Figure 7d.
This algorithm did not create any good images, but it did provide some valuable information:
Ulichney states that while white noise patterns do not suffer from the correlated periodicity of
ordered dither, it contains low-frequency patterns that give the result a very grainy appearance.
This makes the resulting image less pleasant to look at. In contrast, the ordered dither patterns,
while containing correlated artefacts, do have a power spectrum with mostly high frequency
patterns.

Blue noise

Ulichney (1988) proposes a point distribution that incorporates this high frequency power
spectrum but does not have the correlation artefacts of ordered dither. A pattern that is
somewhere between ordered and random. This is called blue noise. The paper then shows various
different ways of incorporating noise into the error diffusion algorithm, in order to obtain a blue
noise distribution in the resulting image. Ulichney concludes that a well-formed dither pattern
should not have its own structure but should be innocuous.

“Blue noise is visually pleasant because it does not clash with the structure of an image
by adding one of its own or degrade it by being too ‘noisy’ or uncorrelated (Ulichney,
1988, p.75).”

Pink noise

Elaborating on the idea of blue noise being ‘innocuous’, the opposite would be pink noise or 1/f
noise. So called because the power of the noise follows the curve of 1 over the frequency. So while
blue noise has higher power in higher frequencies, 1/f noise has higher power in lower frequencies.
In natural images, low frequencies are more prevalent than high frequencies (Field, 1987).
Studies also found that, in music, listeners found 1/f noise more ‘interesting’ than either 1/f0 or
1/f2 noise, also called white or brown noise, respectively (Voss & Clarke, 1978). So while 1/f noise
is ‘natural’ and draws attention, blue noise is not interesting and, importantly, not disruptive. It
has minimal structure and does not interfere with whatever it is added to.
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2.5 Human Visual System

Figure 9: “Contrast Sensitivity Function (CSF) of the Human Visual System.” by Jean-Philippe
Tarel

Contrast sensitivity function

Next to being structureless and innocuous, blue noise is also likely to be less visible than other
types of noise due to the way human vision works. Spatial frequency refers to the amount of
brightness changes in a part of the field of vision. The eye is more sensitive to certain spatial
frequencies than others. Very low or very high frequencies are perceived to have a lower contrast
while the middle range is perceived to have a higher contrast. This is called the contrast sensitivity
function (CSF) (Barten, 1989; Kelly, 1977; Lubin, 1995). A visual representation is shown in
Figure 21.
As previously discussed, blue noise consists of mostly high-frequency noise. This fact combined
with the knowledge that the human eye is less sensitive to high frequencies, could explain why blue
noise draws less attention than other types of noise and is therefore pleasant to use in computer
graphics.

Modeling the Human Visual System

The CSF is a core component of our understanding of the human visual system (HVS). Much
research has been done into how we form a neural image of the outside world. The mechanics are
simulated in HVS computational models. These models are often used in computer graphics for
image compression, quality assessment and image enhancement (Granrath, 1981).
Simulating the HVS is very useful for graphics, as almost any graphical application is meant for
human eyes. It allows for removing data that would not be perceived naturally, and focusing on
what is visually important.
Sullivan, Ray, and Miller (1991) introduced a human vision model to generate optimal halftoning
patterns which are minimally visible. This is mostly done by optimising for having high spatial
frequencies in the patterns.

Visual Difference Predictors

Human vision models are often used in Visual Difference Predictors (or Visual Discrimination
Models). These use the model of the eye to calculate how much difference a human would actually
perceive between two pictures. This can be used in, for example, image compression. The
compression method that causes minimal visual difference between the original picture and the
compressed picture is often the best.
An example of finding the difference between images in a way that ignores the human visual
system is the Mean Square Error (MSE) metric. In this calculation, each pixel is compared
between the two images and the difference between the pixels is squared and summed. This is an
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easy and fast way to calculate differences, but in terms of finding perceptual differences it is not
very useful. This disconnect between absolute pixel difference and perceptual difference in images
is important to the research of why blue noise is preferable, as incorporating blue noise in path
tracing does not often improve the MSE value of an image. It merely improves the subjective
quality (Georgiev & Fajardo, 2016).
Some early and influential visual difference predictors are the Daly VDP (Daly, 1992) and the
Sarnoff VDM (Lubin, 1995). These can express the difference between two images as a single value
that represents perceptual error.

Perception based adaptive sampling

Bolin and Meyer (1998) created an adaptive sampler that uses an image quality model that
emulates the human vision system. Based on where there are visible artefacts, additional samples
are assigned. They use a vision model that is heavily inspired by the Sarnoff model, but focuses on
speed and efficiency as speed is quite important in path tracing.
The paper also describes noise masking. Noise masking comes from the heightened sensitivity to
certain spatial frequencies. In a noisy image, in areas where there is a frequency present that the
eye has a strong sensitivity to, it masks the noise, making it less noticeable. As an example, in a
natural image, noise would be more visible on a clear sky than on a highly textured rock. This can
be used to concentrate more samples on areas where noise would be more visible.

Chizhov, Georgiev, Myszkowski, and Singh (2022) also use a perceptual error model to distribute
samples and spread out pixel error in a way that minimizes perceptual error. They bridge the gap
between halftoning literature and error reduction in path tracing. Using halftoning techniques such
as error diffusion and ordered dither, they aim to reduce perceptual error in path tracing. In
contrast to many perceptual error reduction techniques, this algorithm can also decrease the total
image error. Meaning it can improve the renderings not only subjectively, but also numerically.
They note that when optimizing for the human visual system, the algorithm naturally produces a
blue noise distribution of the error as a by-product. With a visual experiment they demonstrate
how a blue noise distribution of rendering error reduces the visibility of that error. By emulating
an increased viewing distance with a gaussian blur kernel, they demonstrate that blue noise
converges to a constant image much faster than white noise.

Pappas and Neuhoff (1999) found that the gaussian is a good approximation of the Point Spread
Function (PSF), which models the light scattering in the human eye (Mantiuk, Daly, Myszkowski,
& Seidel, 2005).
Chizhov et al. (2022) states that high-frequency noise becomes indiscernible at viewing distances
where actual image detail, which is mostly low or medium frequency is still visible to the human
eye. So at the viewing distance where it becomes impossible to notice the blue noise, the rest of
the content should still be visible.
For white noise, you would have to look from a much further distance in order to not see the noise
anymore. At that point, any high or medium frequency content from the image is also invisible.

Chromatic noise

While contrast in graphics often references to just the brightness value of colours, chromatic
contrast describes the contrast between different hues. This is processed by different mechanisms
in the human visual system than achromatic contrast and thus behaves differently.
In general, the eye is less sensitive to colour differences than brightness differences, requiring higher
chromatic contrast for the same amount of visibility as achromatic contrast. For low frequencies
though, there is no drop in sensitivity compared to medium frequencies. This is very different from
the achromatic CSF in which the sensitivity for low frequencies is less than for medium frequencies
(Bolin & Meyer, 1998).

Johnson and Fairchild (2005) performed an experiment on the visibility of different frequencies of
chromatic noise and luminance noise. Participants were asked to identify which images with
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overlaid noise they deemed to have the highest image quality. The least favourite images would be
the ones where the noise is most visible.
Five levels of spatial frequency were tested: 2, 4, 8, 16 and 32 cycles-per-degree. They concluded
that achromatic noise is more visible than chromatic noise overall. For chromatic noise, the lowest
spatial frequency (2 cycles-per-degree) was most visible. For achromatic noise, the most visible
noise was the second-to-lowest frequency: 4 cycles-per-degree.
To illustrate, if you were looking at a screen from 50 centimeters away, 4 cycles-per-degree would
be about 2.18 millimeters while 2 cycles-per-degree would be about 4.36 millimeters. The highest
frequency tested was 32 cycles-per-degree which would be equal to about 0.27 millimeters. The
theoretical maximum frequency humans can see is yet unclear, with claims ranging from 40 to 60
cycles-per-degree. A visual acuity of at least 30 cycles-per-degree is considered standard. This
corresponds to having 20/20 vision, or 6/6 vision in Europe (Holladay, 1997).

Temporal frequency

Much like the spatial contrast sensitivity function, there is also a temporal contrast sensitivity
function. It takes the form of a bandpass filter, peaking at 5hz and with a high-frequency cutoff at
30hz (Granrath, 1981). Interestingly, chromatic contrast in the temporal CSF differs in the same
way as in the spatial CSF. For chromatic contrast, the temporal function is a low-pass filter just
like for the spatial function.

There is a rendering implementation that uses spatiotemporal blue noise as a rendering mask
(Wolfe, Morrical, Akenine-Möller, & Ramamoorthi, 2022). This is a three-dimensional distribution
that follows the blue noise principles through all dimensions. This means that the samples at
different times for the same pixel are also decorrelated. This decreases the amount of necessary
samples because the samples are more evenly distributed over the sampling space. These masks
are blue in the temporal domain, meaning they should also have a higher temporal frequency than
temporal white noise. Combined higher spatial and temporal frequency might push this noise even
further out of the visible range when used in a 1-sample per frame setting.

3 Methods

3.1 Introduction

According to an influential early paper on optimal sampling patterns for distribution ray tracing,
an image rendered with one sample per pixel using a blue noise distribution is visually preferable
to an image with three samples per pixel with white noise (Mitchell, 1991). When studying the
effects of non-uniform sampling of the time dimension for an image with motion blur, the
researchers state that “The consensus was that three or four random time samples per pixel were
required to match the subjective quality of (the one sample-per-pixel non-uniformly sampled
image)”(Mitchell, 1991, p.161).
This is an observation from a small group of people in a specific experiment: Several expert
observers comparing one image against a set of images with different amount of samples per pixel.
Apart from this, there is a lack of information on the subjective preference of blue noise. There is
much research towards optimally generating blue noise and applying it in ray tracing samplers. It
has been proven that blue noise improves rendering convergence rates (Wolfe et al., 2022) and that
it helps reduce aliasing (Ulichney, 1988). However, blue noise itself is also often stated to be
visually pleasant, while there is no empirical research done toward that claim.

That is why we research whether blue noise is seen as visually preferable to white noise, when not
considering the other benefits of blue noise. We also test the previously mentioned claim that
one-sample blue noise is comparable to white noise with three or four times the amount of samples
taken.
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3.2 Research question(s)

The research question we want to answer is the following:

Is a rendered image with the error distributed as blue noise visually preferable over a rendered
image with the same amount of error distributed as white noise?

3.3 Variables

To answer the research question, we set up an experiment in which participants were asked to rank
different images on visual preference. The images to be ranked are computer renders of the same
scene but with different noise parameters.

Several variables are identified as relevant in this experiment. The independent variables are:

• Noise type: This is categorical, either blue noise or white noise.

• Sample amount: A numerical variable, either one or two samples per pixel.

• Scene: A categorical variable that determines which scene the image depicts.

The dependent variables are:

• Total Error: The total error of any stimulus image.

• Perceptual image quality: The ranking that participants give a stimulus image. Ranges from
1-4, with 1 being the highest quality and 4 being the lowest quality.

In the analysis of the data, the noise type and sample amount are grouped together to form the
four ‘noise types’: 1 spp white, 1 spp blue, 2 spp white, and 2 spp blue noise. All variables will be
explained further in this section.

3.4 Experiment

For the experiment we generated ten sets of stimulus images. Each of these sets depict a different
scene. The sets consist of four images each: two images with a white noise error distribution and
two images with a blue noise error distribution. The images with the same error distribution are
different in the amount of samples that were took per pixel to generate the images. We ended up
with these four image types: 1 spp (sample-per-pixel) white noise, 2 spp white noise, 1 spp blue
noise, and 2 spp blue noise.
These stimulus images are described in more detail in section 3.4.1

The images were included in an online survey which participants could complete independently.
They were first explained the experiment and which data would be collected. Then they were
asked for consent in participating in the research. If consent was given, they were presented with a
short questionnaire. The participants were asked about:

• Their age

• Whether they have normal or corrected to normal vision

• How much time they spend looking at screens.

• On what kind of screen the participant is completing the survey

The reasoning behind these questions is discussed in section 3.4.5.

After completing the questionnaire, participants were taken to the actual experiment. For each
image set, the four images were displayed side-by-side. The participant was asked to rank these
images on visual pleasantness by dragging them to the place on the ranking they think it belongs.
The ranking went from ‘most pleasant’ on the left side to ‘least pleasant’ on the right side. An
example of this can be seen in Figure 10.
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Figure 10: Example of a ranking task

The total experiment consisted of ten of these image sets. When completed, the participants were
taken to a final page confirming that the experiment was finished and thanking them for their time.

3.4.1 Stimulus images

Creating the stimulus images was a crucial part of the experiment. This required great attention
to detail because the small differences in the images were the subject of the research. Any noise or
artefact that was not intentionally created, could cause problems in the experiment.
We used images that were identical to each other except for noise type, to ensure a fair
comparison. The images also had to have clearly visible noise so that it would be easier for
participants to notice the differences. As there was no dataset of images that fulfils these specific
requirements, we had to generate the images ourselves.

The images were generated using a physically based rendering engine. This engine had to be able
to use different sampling types for the light calculations so that we could create both blue noise
and white noise. The engine also had to have the option to turn off any denoising or post
processing so that the noise was not reduced or changed. The last requirement for the engine was
that it should be able to run on the available hardware, which meant that using RTX cores was
not possible. With all these requirements, the best engine to use was PBRT (Physically Based
Rendering Toolkit).

PBRT, version 4, is an open-source rendering toolkit that is described in the book Physically
Based Rendering: From Theory to Implementation (Pharr, Jakob, & Humphreys, 2023). This book
explains the theory behind physical rendering and also provides all practical information needed to
design a rendering system. The source code for the rendering toolkit is available on github (Pharr,
2021). PBRT fulfils all requirements we had for choosing a renderer. The fact that it is open
source and that there is an entire book explaining how it works, also provided more certainty that
unforeseen problems would be fixable.

PBRT works with scene files that specify both the scene and the rendering parameters. One of the
parameters that can be specified in these files is which ‘sampler’ is used. The sampler determines
where light samples are taken, which determines the type of noise in the image. There are many
samplers to choose from but we are interested in the ‘Independent’ and the ‘Zsobol’ samplers.

The independent sampler is a simple, random sampler that does not target a specific sample
distribution. The authors state that it is the least effective and mostly only included for
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comparison purposes, which is what we used it for. The independent sampler does not distribute
noise over pixels, because it samples independent of other pixels. This uncorrelated sampling
where each pixel picks identically distributed samples, gives us images with white noise.

The zsobol sampler is more complicated. It is an implementation of a sampler that diffuses
sampling error by a hierarchical ordering of pixels, introduced in a paper by Ahmed and Wonka
(2020). This sampler is able to produce decorrelated samples without structured aliasing artefacts
and it is able to do this quick enough to generate new sampling patterns for each frame. By using
a Z-order curve, also known as Morton ordering (Morton, 1966), each pixel is assigned a unique
number. The screen space is hierarchically subdivided and pixel indices are scrambled to break up
the recurrent structure. These pixel indices are then used as indices for a low-discrepancy
sequence, namely a sobol sequence. A sobol sequence is a predefined mathematical sequence with
the property that for all values of N , its subsequence x1, ..., xN has a low discrepancy. By
combining a Z-order curve, scrambling, and a low-discrepancy sequence, this method provides a
good diffusion of sampling error over the image without structured aliasing artefacts. This gives us
images with a blue noise error distribution.

The pixel filter of the renderer determines how samples inside a pixel are filtered. The ‘ray’ that is
sent through each pixel, is not always sent through the middle of the pixel. Each ray is sent
through a different point in the pixel, determined by the sampler. The pixel filter determines how
these samples are combined together. A ‘box’ pixel filter is equivalent to having no filter, each
sample is weighed the same. A triangle filter makes samples in the middle of each pixel weigh more
towards the resulting image than samples towards the edges of pixels. This is a way to smooth out
the image and reduce aliasing.
For the image rendering, the pixel filter was already set to a triangle filter. Since this was set the
same in each scene and it has little impact on the resulting image at these low sample amounts, we
decided to use the triangle pixel filter. One of the ten scenes (‘Sportscar’) was taken from a
different source and only after the experiment had been conducted, we found that this scene did
not specify the pixel filter. This meant that the renderer would have chosen the default filter which
is the ‘gaussian filter’. This filter uses a gaussian bump to weigh the samples more smoothly than
the triangle filter. After noticing this inconsistency, we compared images of the sportscar render
with both triangle filter and the gaussian filter. We found that that the images had small
differences in highlights and edges between the two filters, but no difference at all in the noise
structure. This leads us to believe that the pixel filter has had little to no effect on our research.

Other settings were set in the scene files so that all images had the same parameters:

• The integrator implements the light transport algorithm that computes the radiance arriving
from objects in the scene. This can range from a very basic random walk algorithm, without
any explicit light sampling, to a volumetric path tracing algorithm. For this experiment, the
normal ‘path’ integrator would work well. We are not using volumetrics in the scene, and
bidirectional path tracing or photon mapping would only complicate the process without
adding anything to the research. The path integrator does implement NEE (Next Event
Estimation), which estimates direct light on surfaces to reduce variance. Without this, it
would be very hard to see anything on images with one sample per pixel. It also implements
MIS (Multiple Importance Sampling) which makes points on a surface more likely to sample
light sources that would contribute more light to that surface. This decreases chances of
‘wasted’ rays that contribute little light information. Both NEE and MIS are features you
find in any professional path tracer implementation.

• The maximum number of light bounces was set to ten. The number was chosen to be high
enough that increasing it makes a negligible difference to the output and to be low enough to
save computation time.

• The image size is set to 384x512 pixels. This size was chosen to make it possible to display
four images next to each other in full resolution on most screens.
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• All other settings were left to default. Camera settings like field of view and position were
left as they were in the original scene files.

A drawback of using PBRT is that it it can only render from pbrt files. There is no 3D editor to
view and change the scenes. There is also not a simple way to export scenes from 3D modeling
programmes like Blender to PBRT. There is a tool that does this for the third version of PBRT,
but we were using the fourth version for which this tool was still in development. This meant that
it would have been difficult to create our own scenes or copy existing test scenes for this
experiment. Luckily, there were some scenes that were made for PBRT available for download.

Of the ten scenes that were used, nine came from Benedikt Bitterli’s (2016) collection of resources
for rendering research. These scenes range from very small setups with one or two lights to
complicated scenes with a lot of indirect lighting. We picked the nine scenes so that a range of
scene complexities was displayed. We avoided picking scenes where advanced lighting effects like
water caustics, glass refraction, or hair rendering were the point of interest as those would likely
generate images with such high amounts of noise that participants could not recognize the intended
scene with the low amount of light samples we were aiming for. The tenth scene came from the
example scenes provided by the developers of PBRT in a seperate github repository (Pharr, 2020).
This is the ‘sportscar’ scene. We have edited this scene slightly. The camera position and field of
view were changed so that the car could be seen from the front to better fit the image dimensions.
We also removed the background because it was distracting in this new viewpoint.

All scenes used in the experiment are shown in Figure 11. These reference images are rendered at
512 samples per pixel.

Using these scenes, we generated four versions of each image: 1 and 2 samples per pixel with both
the independent sampler and the zsobol sampler. For brevity, these image types will be referred to
as:

• 1 spp white: 1 sample per pixel with the independent sampler.

• 2 spp white: 2 samples per pixel with the independent sampler.

• 1 spp blue: 1 sample per pixel with the zsobol sampler.

• 2 spp blue: 2 samples per pixel with the zsobol sampler.
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(a) ‘Little Lamp’ (b) ‘Victorian Style
House’

(c) ‘Contemporary
Bathroom’

(d) ‘The Grey and
White Room’

(e) ‘The Breakfast
Room’

(f) ‘Sportscar’ (g) ‘The Wooden
Staircase’

(h) ‘Utah Teapot’

(i) ‘Dragon’ (j) ‘Modern Hall’

Figure 11: Used scenes
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We analysed the images on the amount of rendering error each one has. It is important that the
total error of rendered images is not too different between the blue and white noise samplers. We
want to test whether the distribution of the error makes an image more visually pleasant and for
that we need the absolute error to be about equal to ensure a fair comparison. Due to the random
nature of rendering, the absolute error will always have slight deviations and therefore will never
be exactly equal. To test the absolute error we will use a simple calculation:
We take a high-sample reference image which will be seen as the ‘correct’ render. In our case, that
is a 1024-sample rendering using the ‘zsobol’ sampler. Even at this high level of samples there is
some noise left which could be fixed by rendering at higher sample counts. Due to hardware
limitations and time restrictions we did not do that. For the purposes of this test, the reference
images are good enough as we just want to compare the approximate rendering error of each
image. With the reference images in place, we can find the error for each image by calculating the
sum of the pixel-by-pixel difference between render and reference.

These error statistics are plotted in Figure 12. Here we see that for each scene the 1 spp blue and 1
spp white images are very close in total error amount. That means that it will be a fair
comparison. The two-sample images naturally have a lower error amount, as more samples make
the image closer to the correct image. It is worth noting that the two-sample zsobol images have a
smaller total error than the two-sample independent images. That is because the zsobol sampler
also decorrelates successive samples within the same pixel. Because the two samples are better
distributed over the pixel, there is overall less error. This is a separate benefit of blue noise but it
is not the subject of this research. Because of the error difference between the 2-sample noise
types, it is more fair to use the 1-sample images for conclusive comparison. Further analysis of the
images is discussed in the results section.

Examples of the different image versions are shown in Figure 13. Once we had these images, we
could start ranking them.

3.4.2 Task design

In the online survey, the participants were asked to rank the four different images on visual
preference. They could do this by dragging the images towards the place on the ranking they think
the image belonged. We chose for this drag and drop method because it makes tasks more fun and
improves the participants’ engagement. This makes for more accurate results and less chance that
participants get bored and leave the experiment (Cunningham & Wallraven, 2011). For this task,
it also seemed the most intuitive way for participants to do ranking.

We decided to make the task a ranking task between four options for a number of reasons.
First, ranking allows for many implicit comparisons to be made between all images. For this
research question we want to compare two different types of noise and two different types of

Figure 12: Total image Error
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(a) 1 spp white (b) 2 spp white (c) 1 spp blue (d) 2 spp blue

Figure 13: Types of images from the ‘Little Lamp’ scene

sample density. Both to test whether one-sample blue noise indeed outperformed white noise with
more samples, and to be able to provide a reference point to determine the scale of the difference
between blue and white noise, we added higher-sample images to the experiment.
With four image types, comparing images one-by-one would require many comparisons to be made.
One ranking of four images practically provides six comparisons due to transitivity. (If image A is
ranked lower than image B, and image B is ranked lower than image C, then image A must also be
ranked lower than image C). So, ranking makes it easier to compare four image types at once.

Second, it forces participants to make a distinction between images. If we asked the participants to
rate the images, for example on a score from one to five, there would be a large chance that many
images would get a low score because none of the images are ‘good’. If scoring images the same is
not an option, participants will be more motivated to find small differences.

Third, ranking is a puzzle-like task which makes the experiment more fun for participants, and
happy participants provide better data (Ferwerda, 2008).

3.4.3 Task Implementation

We created the survey in Qualtrics XM 1. This software is designed for creating surveys but it did
not have all the specific functionalities we needed. Luckily, this was possible with a combination of
Javascript and CSS.

The most important modification to be done was to scale the images correctly. Because this
research concerns the higher frequencies of noise in images, it is very important that those
frequencies are displayed correctly. This means that no blurring or interpolation must be applied
on the images
To make sure that the images were displayed correctly, the pixels of the original images have to
align perfectly with the actual displayed pixels on the screen. If they are not aligned, then there
will be aliasing. In browsers, images are always being resized to fit the screen size nicely. By
changing the CSS code in the survey, it was possible to force the images to keep their specific
resolution and it was possible to disable any blurring. We did this by defining the image as a
background-image of the element, because background images could be exempt from scaling. The
code for an image in the survey is shown in Listing 1.
However, this did not fully fix the problem because some devices, such as laptops, also perform
their own scaling that is separate from the browser’s scaling. The browser is generally not aware of
this scaling so this is not fixable by using CSS. Also, if anyone were to zoom in or out while filling
in the survey, the scaling would also be changed. To remedy this, we had to use JavaScript.
Qualtrics has the option to add JavaScript code to questions to enable special functionality. With

1https://www.qualtrics.com/
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JavaScript, we were able to find the scaling ratio from ‘browser pixel’ to ‘screen pixel’ and scale the
images accordingly whenever the survey got started. It also made sure the re-scale the images if a
user zoomed in or out. The code for scaling the images is displayed in Listing 2. This code is
called when the survey starts and whenever the window resizes.

<div c l a s s=”stimimage”
s t y l e=”

width : 384px ;
he ight : 512px ;
max−width : 384px ;
background−s i z e : auto 100%;
background−repeat : no−repeat ;
background−po s i t i o n : c en t e r ;
background−image : u r l (

[ image ur l ] ) ;
image−r ender ing : p i x e l a t ed ;
”>

</div>

Listing 1: HTML/CSS example of an image entry

By forcing the images to always be true to their resolution, the survey did become a bit less
accessible. The images would not get scaled, so on low-resolution screens that means that they
become very large compared to the screen. The images are also always shown side-by-side so the
survey would also not work well on vertical screens, like mobile phone screens. There was not a
good way to show the images at the correct size and the right layout on all devices without the
participant having to scroll, so the solution we decided is to inform participants that the survey
only works on computer and laptop screens. The resolution of each participant’s browser window is
also collected by the survey program so that we can recognize any entries that were completed on a
vertical screen.

var st imimages = document . getElementsByClassName ( ’ stimimage ’ ) ;
f o r ( l e t item o f st imimages ) {

item . s t y l e . width = (384/window . dev i c eP ixe lRat i o ) + ”px ” ;
item . s t y l e . he ight = (512/window . dev i c eP ixe lRat i o ) + ”px ” ;

}

Listing 2: JavaScript example

While Qualtrics does have drag and drop functionality, it only supports vertical dragging. For this
experiment we strongly preferred to align the images horizontally, so we could fit four images on a
screen neatly. This required some additional modifications to the CSS code. This code is very
specific to the implementation of Qualtrics and consists of a lot of small tweaks so the exact code
is not included in this thesis.

3.4.4 Pilot

Before the final survey was released, we conducted a pilot experiment to test whether this task
would work. This experiment consisted of the same images and was sent to ten people. The results
from this pilot suggested that there indeed was a visible difference between the different image
types, but that one-sample blue noise did not outperform two-sample white noise, as is shown in
Figure 14. Because of this, we did not include three-sample images into the task. If the one-sample
blue noise had been rated higher than the two-sample white noise, it would have been useful to
add images with more samples so we could establish an upper bound.
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Figure 14: Rank distribution results from the pilot

3.4.5 Questionnaire

Prior to starting the task, participants were asked a couple of questions to gain data about our
demographic target. The participants were asked about:

• Their age

• Whether they have normal or corrected to normal vision

• How much time they spend looking at screens.

• On what kind of screen they are seeing the survey.

The age of the participants is interesting to us for two reasons. The first reason is that we want to
try to get responses from more groups than just students. Due to this being a university thesis,
most responses will likely be from students or young people. By asking for the participant’s age,
we can get a rough idea of how diverse the reached audience was. The other reason to ask for age
is because it allows us to research whether age has any influence on the results of this experiment.
Age has been shown to have an effect on eyesight in general and, more specifically, on contrast
sensitivity (Blackwell & Blackwell, 1971).

It is also important to know whether participants have normal or corrected to normal vision. If a
person’s vision is not normal and not corrected to normal, their spatial acuity (corresponding to
the spatial frequency axis of the contrast sensitivity function) is lower than average.

The amount of time spent looking at screens is not likely to be an important factor, but it might
have an effect. Spending a lot of time looking at screens might train the eyes to see high-frequency
content better because screens often contain high-frequency content.

The kind of screen that the participant is looking at is important to estimate the size of the screen
and distance to the screen. While we have the resolution data of the screen, that gives little
information about the size of the screen. We do not want to ask participants to measure the size of
their screen as that will probably be too big of a hurdle to do the survey. From the type of screen
(laptop/pc monitor/tablet) we can find an average size of the screens and also estimate an average
distance that a person would have to the screens. From that it becomes a little easier to estimate
what size the pixels would be in the participant’s field of view. This is further discussed in section
4.2.
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3.4.6 Participants

We distributed the survey to participants through several channels:

• Friends and family.

• Student association BITON.

• The Utrecht University Visualisation and Graphics group.

• The Utrecht University Call for Participants Teams channel.

• Reddit group SampleSize2.

• Through SurveySwap3, a website where people can complete surveys in exchange for other
people filling in their survey.

Similar vision experiments have around 19 to 40 participants (Johnson and Fairchild, 2005;
Calabria and Fairchild, 2003; Hunt and Sera, 1978). Since this experiment is not in-person and
there is the option for participants to leave parts unanswered, we wanted to have a larger amount
of participants to ensure there was enough usable data. The goal was to reach at least 25
participants, but preferably around 50.

4 Results

The survey was completed by 56 participants. Figure 15 shows the demographic distribution. Most
responses were from younger people. Only one respondent did not have normal or corrected to
normal vision.

Figure 15: Demographic distributions

2https://reddit.com/r/SampleSize/
3https://surveyswap.io/
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4.1 Analysis of the stimulus images

In order to check the validity of our results it is important to analyse the noise in the used
stimulus images. We have to make sure that the renderer did correctly generate images with blue
and white noise. To do this we have generated frequency spectra of the images and compared them
to images that we know are blue and white noise.

Figure 16: Frequency spectra of blue and white noise

For the reference blue noise and white noise, we used two online noise generators (Peters, 2016;
Robson, 2021). To check these noise images, we analyse the frequencies. Shown in Figure 16 are
the frequency spectra of the blue and white noise reference images. The frequency axis here is not
scaled to represent actual frequency numbers, but corresponds to frequency bins numbered from 0
to 25, with 0 meaning the lowest frequencies possible in the image and 25 the highest frequencies
possible in the image (Nyquist frequency).
You can clearly see the expected spectrum of the blue noise: small amount of low-frequency details,
a ‘bump’ in the middle frequencies and then a slightly lower plateau on the higher frequencies. The
white noise reference image also behaves as expected: each frequency is present in equal amounts.

We then did the same for each of the scenes. The frequency spectra for the 1-sample per pixel blue
noise and white noise images were calculated and plotted together (Figure 17). This also includes a
new ‘lampempty’ scene which is the lamp scene with the lamp object removed. This is used to
gauge how well the renderer generates blue or white noise in a plain image. The image generated
in this scene should not have any variation in it. This means that any high frequency details in the
renders are noise. In Figure 17 you can see that in most scenes, the difference between the ‘zsobol’
and ‘independent’ sampler is quite small when compared to pure blue versus white noise. This is
because the actual details present in the scene also show up in the frequency spectrum. There are
some graphs which show a very clear difference between the ‘zsobol’ and ‘independent’ samplers
like the dining-room and lamp scenes. The staircase and living-room however show almost no
difference in frequency spectrum between the two samplers.

Not every scene has the same difference between the zsobol and independent renderers. In some
scenes the rendering error gets distributed as blue noise more effectively than in others. It is
interesting to see that this variation is also reflected in the participants’ ranking, as is discussed in
section 4.4.2.

We determine a metric to measure the ‘blueness’ of the noise in the rendered images, so we can
compare them more easily. To do this, we find the difference between the blue and white noise
spectra of each scene. Shown in Figure 18 are the frequencies of the blue noise image minus the
frequencies of the white noise image for the 1 sample-per-pixel renders (the blue line). We chose to
use this as comparison data because the noise levels are different in each scene and using the
difference between the blue and white noise removes that from the comparison. We are not
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Figure 17: Noise spectra of the scenes

25



4.2 Screen resolutions 4 RESULTS

interested in absolute noise levels of the rendered scene; we are interested in how the noise
frequencies are distributed for the blue noise compared to the white noise. The reference blue noise
minus reference white noise spectrum is plotted as the orange line and is the same in each plot.
This reference shows what the most ‘blue’ distribution that is possible in an image of this size
looks like.

We can now look which graphs look the most like the reference line. That tells us in which scenes
the difference between blue and white noise images is most equal to the difference between the
reference blue and white noise. To find the similarity, we calculate the distance between the graphs
using ‘cityblock distance’ or Manhattan distance which is just the sum of the vertical distances at
each point of the x-axis. The distance this gives is also noted in the plot. The lampempty plot has
the smallest distance which is to be expected as that scene has the least details and thus is mostly
noise. The staircase and living-room have the highest distance which corresponds to what we saw
in Figure 17: those are the scenes where there is little difference between the two renderers visible
in the frequency spectrum.

Figure 18: Noise spectrum differences

4.2 Screen resolutions

The screen size of participants was recorded in order to estimate the average size of a pixel on the
participant’s screen. As can be seen in Figure 15, there are three outliers with a very small
resolution scale (390x844 pixels or less). These aspect ratios also signify that these are portrait
mode screens, and they are common viewport sizes for mobile phones. Even though two of the
entries are labeled as tablet screens and one is labeled as a computer monitor, it seems very likely
that these surveys were completed on mobile phones.
It is important to note that the resolution that is recorded in the survey is not the actual
resolution that is displayed on the screen. It is the resolution that the web browser viewport thinks
it is. Modern mobile phones can have higher resolutions than computer screens, but the viewport
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resolution would still be low. This makes text and images automatically show up larger on mobile
phone screens when there is not a version of the website made specifically for mobile. If phones did
not report this ‘fake’ resolution to the web browser, websites would have the same proportions as
on a computer display but just scaled down to phone size, making it impossible to read anything.
Many laptops do the same thing with a more subtle difference, making everything for example 25%
larger to make up for screens that are usually smaller than desktop monitors.

Because of this, the images in the experiment could have been properly displayed (full resolution)
on a mobile phone screen, but they would have been very small.
An interesting thing to note is that the results from these three entries are not very different from
the other results (Figure 19). The distribution of ranks is comparable to the distribution of ranks
in all other entries. While completing the experiment on a mobile phone was discouraged because
it would be hard to navigate, it seems that some participants did manage. The data from these
entries are not outliers and therefore not necessary to remove. However, when determining the
average pixel size, these entries are definitely outliers and should be excluded.

Figure 19: Rank distribution for outlier resolutions

As for the other resolutions, these are all within the acceptable range. Again noting that these are
not necessarily the actual screen resolutions, the lowest one of 1280x720 pixels corresponds to
using a 150% zoom level on a 1920x1080 screen. The other frequently occurring ‘weird’ resolution
is 1536x864, which corresponds to using a 125% zoom level on a 1920x1080 screen. We have tested
and confirmed that the survey still displays correctly in these circumstances.
It is possible that a survey was completed on a 1280x720 resolution screen. It is a common screen
resolution for older monitors, but quite rare for modern monitors. In the case that a screen with
this resolution, the participant would only be able to see three images at a time and would have
had to scroll sideways to complete the ranking task. Doing so would make the task more
inconvenient but not impossible, so we can also accept this screen resolution.

The goal of collecting the resolution data was to use it in combination with worldwide averages for
screen sizes and user-to-screen distances to estimate the size of the stimulus images for
participants. Unfortunately, such statistics were not available and we had to make some
assumptions to perform this part of the research.

The first two assumptions are about screen sizes. A user on strawpoll.com has asked other users
about their favourite laptop screen and monitor sizes. For laptop screens, 15.6 inches got the most
votes with ∼ 34% of the votes (Krambs, 2024a). For monitors, 24 inches got the most votes with
∼ 32% of the votes (Krambs, 2024b). This data is self-reported and has a low sample size, but it
does give us a general idea of screen sizes.

For average screen distances there are no measurements available, but there are recommended
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distances. As stated on the website of the College of Optometrists (2024), the recommended
screen-to-eye distance is between 40 and 76 centimetres. For our estimate we pick the average: 58
centimetres.

We want to know whether the csf (contrast sensitivity function) can be used to explain why blue
noise is preferable to white noise. Does the distribution of error as blue noise push the noise into
such high frequencies that it is less visible to the human eye? To answer this question, we should
find how the csf translates to the frequency spectra we generated of the used images.

The csf is a function of contrast against cycles per degree. Cycles per degree is the amount of
cycles that are visible in one degree in the field of vision. The frequency spectra are arranged in
frequency bins with no direct connection to cycles per degree. We can use the screen resolution
measurements and the other estimates to find an average pixels-per-degree for the participants.
With that, we can find the maximum cycles-per-degree that the screens can show.

With standard screen aspect ratios (16:9), a 15.6 inch diameter screen is 345 millimetres wide. A
24 inch diameter screen is 531 millimetres wide. For each screen we calculate the visual angle that
a single pixel takes up:

visualangle = arctan(
screenwidth

distance
) ∗ 1

resolutionwidth

And inverting it gives us the amount of pixels per degree:

pixelsperdegree = 1/visualangle

The estimated average pixels per degree of all screens is 48 with a standard deviation of 6.5.

To anchor the frequency bins to a specific number of cycles per degree, we have generated images
with 2, 3, 4, 8, and 20 pixels per cycle. These images are one-directional sinusoidal gratings. When
applying a Fourier transform on these images and sorting them into the frequency bins, we find
where on the frequency spectrum those frequencies fall. Because we know the amount of pixels per
degree of each screen, we can now express those frequency bins in approximate cycles per degree:

pixels per cycle 2 3 4 8 20
cycles per degree 24 16 12 6 2.4

We can plot these points on the frequency spectrum of the lampempty scene to get an idea of how
these frequencies relate (Figure 20). The cycles per degree have a linear relationship with the
frequency bins which allows us to easily add cpd as a secondary horizontal axis. We can compare
this to the contrast sensitivity function (Figure 21), note that the latter is depicted in logarithmic
scale on both axes. In Figure 21 we see that the sensitivity is highest between a spatial frequency
of one to five cycles per degree (a sensitivity of around 300). At 10 cpd the sensitivity has dropped
to around 100. At 20 cpd the sensitivity is only 20. At 30 cpd, the contrast sensitivity is
somewhere between two and three.
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Figure 20: frequency spectrum with spatial frequency axis

Looking at Figure 20, we see that the 1-5 cpd area with the highest sensitivity is actually only
quite a small part of this plot. We also see that there is a lot less noise in that area for the zsobol
sampler than for the independent sampler. The lines intersect around 16 cpd which is definitely
still within visible range but the sensitivity is only one tenth of the maximum. The maximum
spatial frequency of the images is below 35 cycles per degree. This is still within visible range;
humans are able to detect spatial frequencies of up to about 60 cpd (National Research Council,
1985). However, the sensitivity at 35 cpd is already less than one hundredth of the maximum.

Figure 21: Photopic contrast sensitivity function of the human visual system for sinusoidal
gratings (source: National Research Council, 1985)

In Figure 22 we see the frequency spectra of the dining-room scene with the overlaid cpd anchors.
This example shows that most of the detail of a scene is in the frequency range of one to ten cycles
per degree.
In short, blue noise has less energy than white noise in the frequency range that the human eye is
most sensitive to. It has more energy in the higher frequencies which are less noticeable to the
human eye.
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Figure 22: frequency spectrum with spatial frequency axis for the dining-room scene

4.3 Ranking Data

The main data collected from the experiment is a ranking of each noise type per scene and
participant. In total, 56 participants completed the survey. This could give us a potential of 560
rankings, but not all participants ranked each scene. The initial order in which participants saw
the noise types was randomised to minimise bias. A downside is that the survey software classified
questions as unanswered in the case that a participant was satisfied with the initial ranking and
did not move any images around. The other reason why a ranking would be left unanswered would
be because a participant could not identify any differences between the images and decided to skip
the task. In total, 30 rankings were left unanswered, leaving us with 530 rankings.

The data is summarised by noise type in Table 1. This shows the number of times each noise type
was chosen as each rank. The same data is displayed in Figure 23 as a bar graph. In this data, you
can see that each noise type has a clear ‘peak’ at a specific rank. These peaks contain more than
half of all occurrences.

rank 4 rank 3 rank 2 rank 1
1 spp white 326 128 41 35
1 spp blue 137 278 76 39
2 spp white 36 85 298 111
2 spp blue 31 39 115 345

Table 1: Rank distribution per noise type

4.3.1 Limitations of rank data

The collected data are ranks. While rank data is similar to numerical data, they cannot be used in
the same way. Ranks are ordinal data, meaning they have a certain order. It is possible to
compare two ranks and say one is higher or lower than the other, and it is possible to sort them.
However, it is not possible to measure the distance between ranks (Cunningham & Wallraven,
2011, p.223). While for normal numbers it is correct to state that the difference between 1 and 2 is
equal to the difference between 2 and 3, it is not correct to say that the difference between rank 1
and rank 2 is equal to the difference between rank 2 and rank 3. Consider a ranking of images, like
in the experiment. We have no way of knowing whether a participant thought there was a huge
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Figure 23: Rank distribution per noise type

difference between images ranked third and fourth, or that they barely saw a difference. This
means that calculating the average of rank data is not statistically correct, and the resulting
average is invalid. This results in limitations to the types of statistical tests that can be performed
on the data. This is discussed in section 4.4.
While averaging is not a statistically sound way to draw conclusions, it can still help our
understanding of the data as long as we keep the limitations in mind. This is why some graphs
shown later in the this section do apply averaging over ranks.

4.3.2 Data Visualisation

Taking the mean of ranking data does not provide meaningful numbers, but it does give a better
idea of how the ranking results were distributed. If we look at a single participant and calculate
the average rank that they have given to a specific noise type in all scenes, that number gives us an
idea of what that participant thought of that specific noise type. In Figure 24a you can see the
distribution of the average rank that participants ranked a noise type.

A more statistically correct representation would be to show the median of the ranks per scene.
Finding the median of a data series does not involve calculations so it can be done for ordinal data.
This is not totally true when the median is in between two numbers, in which case the mean of
those numbers is calculated. The halfway point between two ordinal data points is a meaningful
indication though, as that indicates that both points are the middle of the data. An important
thing to note here is that the middle point does not mean that it is equally far away from both
points. For example, the median rank 1.5 is not exactly in the middle of 1 and 2 but can be
anywhere in between.
Taking the median of ranks per participant for each noise type and plotting that as a histogram
gives us Figure 24b. This shows that many participants attribute similar ranks to the noise types.
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(a) Mean ranks (b) Median ranks

Figure 24: Average ranks per participant

4.4 Statistical tests

In order to test whether the difference in the distribution of ranks between the noise types is
statistically significant, we can apply several statistical tests.
The data we are testing is ordinal data, which greatly limits the number of applicable statistical
tests. We have identified four tests which are applicable to this data: the Sign test and the
Mann-Whitney U test only test two categories against each other. The Kruskal-Wallis H-test and
Friedman test analyse all categories at the same time (Corder & Foreman, 2014). We are interested
in comparing two categories, as we can already predict that not all categories are from the same
distribution because 2 spp blue and 1 spp white have very different averages. The two-category
tests will be able to tell us more detailed information on categories that are closer together.

The sign test and Mann-Whitney U test are both tests that work for non-parametric data. The
sign test is used to test between pairs of dependent samples while the Mann-Whitney U test is
used to test between independent samples. Rankings for the different noise categories are
dependent samples because they are always ranked by the same participant. That is why the Sign
test is best suited for this data.
The Mann-Whitney U test is also not a very good fit for the data in this experiment. The basic
idea of the test is ordering all data points of both categories in one list and seeing if the points
from each category are well mixed or clustered at either end of the list. Because there are only four
ranks, this means that ordered list will consist mostly of tied ranks which cannot be internally
ordered. Though the Mann-Whitney U test does have a way of dealing with some tied ranks, it
seems that our data does not fit the intended use for this test.
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4.4.1 Sign test

The sign test is used to test for consistent differences between pairs of observations. It takes pairs
of data that can be smaller than, equal to, or larger than each other. It is a non-parametric test
which requires very few assumptions about the distributions of the testing data. Given a set of
comparisons, it can test whether the distribution of these comparisons is fitting for the
hypothesised distribution.

We apply this test to 1 spp white with 1 spp blue, 2 spp white with 2 spp blue, and 2 spp white
with 1 spp blue.

We show the calculation for the comparison of 1 sample-per-pixel white noise with 1
sample-per-pixel blue noise: In our data we found that, out of 530 comparisons, blue noise was
ranked better than white noise in 360 cases and white noise was ranked better than blue noise in
170 cases. We do a one-sided test, so we will test whether blue noise is scored better than white
noise more often than expected. The null hypothesis is that the distributions are equal, so a 50%
chance that either noise type comes out on top. In this scenario we would expect blue noise to
beat white noise in around 265 cases. The alternative hypothesis is that blue noise is more visually
preferable than white noise and thus have a higher chance chance of being ranked better.

Then we ask what is the probability of 360 out of 530 comparisons to be positive for blue noise if
the null hypothesis were true? This is the same probability as throwing up a coin 530 times and it
coming up as heads 360 times which can be calculated with the binomial test. In a sample of size n
where the expected chance of success is p, the probability of finding k successes is:(

n

k

)
pk(1− p)n−k

In order to find the p-value for this test, the binomial test considers the probability of seeing an
outcome that is equal or more extreme. This means we sum the probabilities from k to n. Our
p-value becomes:

n∑
i=k

(
n

i

)
pi(1− p)n−i

In the case of n = 530, k = 360 and p = 0.5, this gives us a p-value of 5.22556e−17 which is smaller
than the required p-value of 0.05 and thus we can reject the null hypothesis that 1 spp blue noise
only has a 50% chance of beating 1 spp white noise.

We can do the same calculation for 2 sample-per-pixel white and blue noise. In that case n is again
530 and p is 0.5. In this case there are 387 cases where blue noise scored higher than white noise,
so k = 387. Using the same equation, we find that p = 2.83561e−27 meaning we can reject the null
hypothesis that 2 spp blue noise and 2 spp white noise have an equal chance of getting ranked
higher than the other.

Since it looks like 2-sample white noise consistently ranks higher than 1-sample blue noise, we can
also test whether that is significant. 2-sample white noise ranks higher than 1-sample blue noise in
418 of the 530 cases. We can already guess that the probability of this is even lower because the
number of successes is even higher than the previous test. The p-value here is 8.28229e−43 so we
reject the null hypothesis that 2-sample white noise gets ranked equally to 1-sample blue noises.

We can conclude that the participants clearly show preferences between the noise types. We can
accept the hypotheses that:

• 2 sample-per pixel blue noise is ranked higher than 2 sample-per-pixel white noise, more
often than can be explained by chance

• 2 sample-per pixel white noise is ranked higher than 1 sample-per-pixel blue noise, more
often than can be explained by chance
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• 1 sample-per pixel blue noise is ranked higher than 1 sample-per-pixel white noise, more
often than can be explained by chance

4.4.2 Significance per scene

We can find the statistical significance of the ranking differences for each scene, also using the sign
test. Table 2 shows the p-values for all scenes for the hypothesis that 1 spp blue noise ranks higher
than 1 spp white noise. We see that the results are most significant for the lamp and house scenes
and are not significant for staircase and living-room. This is interesting because staircase and
living-room were also the two scenes where the noise difference between blue and white noise was
the smallest (discussed in section 4.1). This indicates a possible relation between difference in noise
and the difference between perceived pleasantness. See Figure 25 for a visual representation.

Scene p significant
Bathroom: 0.0033 Yes
Dining room: 0.0006 Yes
Dragon: 0.0007 Yes
House: 0.0002 Yes
Lamp: 1.9457e-10 Yes
Living room: 0.5551 No
Sportscar: 0.0111 Yes
Staircase: 0.3359 No
Staircase2: 0.0267 Yes
Teapot: 0.0380 Yes

Table 2: Significance of results for different scenes

Figure 25: Relation between distance measure and signifance
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5 Conclusion

5.1 Findings

The research question we set out to answer is the following:
Is a rendered image with the error distributed as blue noise visually preferable over a rendered
image with the same amount of error distributed as white noise?

We can conclude that, indeed, blue noise is visually preferable to white noise according to human
observers. We can also conclude that the visual preference of blue noise over white noise does not
outweigh the visual improvement of rendering an image with two samples per pixel instead of one.
With the decorrelated sampler implementation used in this thesis, the computation cost of using
blue noise instead of white noise is only a fraction of the cost of taking another sample (Ahmed &
Wonka, 2020). So if the goal is improving visual pleasantness, blue noise is a computationally
cheap method to achieve that. Added to that, usage of blue noise instead of white noise already
reduces the objective rendering error when taking as little as two samples (Figure 12).

We also find that the visual preference for blue noise versus white noise is not equal in all of the
scenes. In two cases, blue noise was not ranked significantly better than white noise, but it was
also not ranked worse. When looking at the frequency spectra of these scenes we see that there is
barely any difference between the blue noise and white noise images (Figure 18). This means that
the sampler was not able to produce a blue noise distribution of rendering error as effectively as for
other images. It is not directly clear why this is the case for these scenes. It could be connected to
the complexity of rendering the scene or the amount of high-frequency content in the scene.

The contrast sensitivity function of human vision is a very likely explanation for the preference for
blue noise. When image error is distributed as blue noise, it contains less low-frequency content
and more high-frequency content. Because the human eye is more sensitive to low-frequency
content, this results in the error being less visible overall. With the current average screen types
and distance from eye to screen, the high frequency noise that remains in blue noise is still well
within human perceptible range. In order for the blue noise to be out of human perceptible range,
displays would need to have a resolution sixteen times as much as the average resolution while
being the same size as current displays. However, because the important content of a render or any
natural image is mostly contained within the lowest frequencies which we are most sensitive to,
that content draws the attention more. The strong point of blue noise is thus that it contains
minimal power in the frequencies that draw the most attention and therefore blue noise does not
interfere much with the actual content of an image.

Two-sample white noise is found to be preferred over one-sample blue noise so it seems that
whichever image has the smallest amount of visible noise is deemed most visually pleasant.
Therefore it might not be fully correct to call blue noise more visually pleasant than white noise.
Rather, it is less visible which means it is less distracting from the important content of an image.
This property of being less obtrusive makes blue noise more visually pleasant than white noise
when used in image rendering.

5.2 Limitations and Future Work

The participants of this research are primarily young people. Ideally, this research would have had
a more diverse group of participants that reflects the demographics of society. This would make
generalisations made based on the data more reliable.

In order to make stronger statements about the visibility of blue noise in reference to the contrast
sensitivity function, it would have been useful to have more accurate information about
participants’ screen size, screen resolution, and distance to the screen. This is not possible in the
online format of this experiment, but it would be feasible if the experiment is carried out
in-person. Performing a similar experiment with varying levels of contrast, one would be able to
test whether the contrast sensitivity function accurately describes the visibility of blue noise.
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This experiment only tested two amounts of samples per pixel for both noise types. This let us to
find that 1-sample blue noise is better than 1-sample white noise but not better than 2-sample
white noise. It does tell us how many samples of white noise would be equal to one sample of blue
noise. An experiment which tests more amounts of samples per pixel for both noise types against
each other would allow researchers to find which levels of sample per pixel for both blue and white
noise produce perceptually equally good images. This could be used as a benchmark for developers
to understand how much perceptual visual improvement their rendering system would gain from
implementing blue noise. It would make it possible to weigh perceptual improvement against
computation costs in an quantitative way.

A contrast sensitivity function for temporal frequencies also exists. The human eye is most
sensitive to frequencies around 5Hz and are able to see up to 30Hz (Granrath, 1981). There is
research into temporal blue noise where the distribution is not only blue in screen-space but also
for successive frames (Wolfe et al., 2022). Future research could be conducted to see how this
might be used for video games or other media with a high amount of frames per second.
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