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Abstract

This thesis focuses on exploring the performance of automated pain
detection systems through the application of federated learning. The study
involves the use of two different databases (UNBC-McMaster Shoulder Pain
Expression Archive database and the BioVid Heat Pain database) and in-
vestigates various aspects of this approach. More specifically, it evaluates
performance disparities between individual database training and federated
learning methods, with the goal of determining the feasibility and benefits
of federated learning. This research also explores the use of federated learn-
ing within a single database, treating each patient as an individual ”client”
to evaluate the potential benefits in terms of data privacy, while maintain-
ing or even improving the accuracy of pain detection. Furthermore, this
project evaluates the result of enhancing the privacy using differential pri-
vacy. This study aims to provide valuable insights into the application of
federated learning in the context of pain detection systems.



1 Introduction

Pain is described by the International Association for the Study of Pain
(IASP), as “An unpleasant sensory and emotional experience associated with,
or resembling that associated with, actual or potential tissue damage”[I].
Pain is an inherent aspect of the human condition. It acts as an alarm sys-
tem, allowing people to be alert to possible damage or injury.

Pain, therefore, plays a crucial role in protecting the integrity of the
human body. Acute pain usually goes away on its own with healing. How-
ever, if the pain lasts longer than 3 months, it is called chronic or persistent
pain. Pain is a serious problem for many people. In fact, according to P.
Mantyselké et al. it is the main reason that leads people to seek medical
attention [2]. According to Cordell et al., 52.2% of emergency department
visits are due to pain, while only 34.1% are unrelated to pain [3].

According to Gregory et al. acute pain is one of the main significant
symptoms in hospitalised patients. Up to 35% of patients report severe pain
and approximately 50% of patients report pain [4]. In a study by Zoéga et
al. the prevalence of pain in hospitals has been even 83% [5]. However, the
subjective nature of pain perception makes its assessment and treatment a
complex challenge.

For differential diagnosis, appropriate therapy selection, progress mon-
itoring, and determining whether or not a treatment should be continued
or modified, a valid and reliable assessment of pain is required. Since un-
controlled pain not only causes suffering and lowers quality of life but also
jeopardizes the nervous system [6], endocrine system [7], and immune func-
tion [§], pain assessment and management are crucial not only to provide
comfort but also to prevent both immediate and long-term consequences
that are harmful to the person’s overall health [6]. Chronic pain syndrome,
which is frequently accompanied by anorexia, poor immunity, low focus, and
sleep difficulties, can develop as a result of untreated pain. Furthermore,
patients may experience issues and hazards as a result of improper therapy
[@.

Health care and human-computer interaction are two areas where be-
ing able to precisely detect and quantify pain has major significance. In the
medical field, a precise evaluation of pain is essential for diagnosis, planning
treatments, and keeping track of patients’ wellbeing. Effective pain manage-



ment enhances patient quality of life while also ensuring prompt adminis-
tration of necessary therapies, minimizing suffering and improving medical
outcomes|[6].

Automatic pain detection offers fascinating prospects to improve user ex-
periences and broaden accessibility of technology in the context of human-
computer interaction. With these developments, smartphones and comput-
ers might be able to detect discomfort during telemedicine consultations
and modify their user interfaces to accommodate patients’ pain-related con-
straints. These future-facing prospective uses hold the promise of more flex-
ible and sympathetic user interfaces for technology [10].

Although precise pain detection is obviously important, the subjectiv-
ity of pain perception, the impact of cultural and societal influences on how
pain is expressed, and the possibility of erroneous or deficient self-reports,
particularly in those with cognitive impairments or communication chal-
lenges, are some of these limitations [II]. These difficulties highlight the
urgent need for automated, unbiased pain assessment techniques.

The development of autonomous pain detection models has advanced
significantly in the fields of artificial intelligence (AI) and machine learning
in response to these difficulties. These models use a variety of data sources
to infer the presence and severity of pain, such as physiological signs, facial
expressions, vocal characteristics, and even neuronal activity [12]. However,
the availability of vast and varied training datasets is essential for the perfor-
mance of such models, which frequently prompts worries about data security
and privacy, particularly in healthcare settings [13].

This is where federated learning, comes into play. Federated learning
solves the privacy and security issues associated with conventional centralized
machine learning techniques by enabling several institutions or edge devices
to cooperatively train a global pain detection model while keeping sensitive
data localized. It presents a system that upholds privacy laws and protects
the privacy of patient data while improving the precision and effectiveness of
pain detection [13].

2 Research questions

In this thesis, the following research topic and related sub-questions
were formulated in the research proposal. The importance of these questions
will be demonstrated in the literature review part. The approach, results,



and discussion will be subsequently covered.

Research Question: To what extent is federated learning a suitable
approach to improve the performance of automated pain detection systems?

Federated learning is a machine learning technique that allows multiple par-
ties to collaboratively train a model without sharing their raw data. In the
context of pain detection systems, this approach is expected to be advanta-
geous because it can improve accuracy through collaborative training while
respecting the privacy of different sources. By comparing the results of con-
ventional centralized and local models with federated learning approaches,
the performance of federated learning will be identified.

Sub-question 1: When a single database is used, how does the model
trained using federated learning compare to centralized and local models?

Within a single database we simulate three scenarios: (1) centralized model
which consists of aggregating all data in a center and performing conventional
training (2) local model which assumes that individual models are trained
only with the small datasets of local users and (3) federated learning model
in which user’s data are not shared directly but the local neural network
weights are shared with the central server that trains a network to detect
pain in a decentralized manner.

Sub-question 2: How do the models trained using multiple databases
(UNBC and BioVid) in a federated learning setup compare to the centralized
models trained on these models separately?

Through a comparative analysis of individual database training and fed-
erated training, this thesis aims to provide information on the feasibility of
federated learning as an effective solution to improve automatic pain detec-
tion. This experiment help to clarify the practical applicability of federated
learning, and whether it really offers an improvement over individual train-
ing.

Sub-question 3: How does performance vary when using differential



privacy in the models compared to a less private model?

Through a comparative analysis of a federated model in which differential
privacy is applied and one that does not, this study aims to establish how
adding noise affects the final performance of the model. It is expected that
the performance will be lower but at the same time it is aimed to establish
whether it is worth the performance lost compared to the privacy gained.

3 Literature Review

3.1 Automatic Pain Detection

Pain is a complex phenomenon that affects the senses and the mind. It
has important effects on healthcare. The efficacy of diagnosis, treatment and
patient well-being depend on the rapid and accurate detection of pain[12].
For this reason, in recent years, great efforts have been devoted to this re-
search topic, achieving significant advances. Early studies use more tradi-
tional methods such as manual assessments and conventional physiological
markers.[I4]. However, over the years, more complex[I5][16] and multi-modal
methods[17] [18] have been developed. These new approaches include the
use of neural networks, among others[19]. This literature review provides an
overview of the evolution of technologies for autonomous pain detection.

In pain detection, traditional approaches used human observations and
self-reports from individuals. Although this way of assessing pain has signif-
icant value, it also has certain drawbacks|20]. With these methods, patients
either verbally reported their pain or used measures, such as the visual ana-
log scale or the numerical rating scale, to rate the intensity of their pain
[21][22][23]. Although these techniques are very informative, they also have
a high degree of subjectivity and can be affected by cognitive variables, cul-
tural variations and personal pain tolerances[24]. All of this makes these
methods less reliable since it is not possible to measure pain or pain level
objectively for a large number of patients.

On the other hand, in the clinical setting, inter-observer variability is
a major source of concern. How various medical experts interpret the pain
of the same patient can vary, which can impact treatment choice and patient
care by leading to differences in pain assessment[24]. These methods may
also overlook the complex and continuous nature of painful sensations. In
addition, recall bias and emotional states may influence self-reported pain



levels, further reducing their reliability. Pain can be expressed non-verbally
through body language, vocal intonation, and facial expressions. [25].

However, as these indicators can differ greatly from person to person,
understanding them accurately can be difficult[26]. In addition, it has also
been shown that depending on expectations or external cues, patients may
change the way they respond, which could bias clinical judgments and lead
to incorrect assessments of pain[24].

To overcome these problems, researchers began studying objective phys-
iological measures such as blood pressure27], electrodermal activity[28], and
heart rate[29]. In addition to these markers, nonverbal cues such as self-
reports, vocal intonation and facial expressions have been examined. Ini-
tially, when these measures were first used, studies tended to be based on
a single marker. However, over the years, researchers began to incorporate
more than one indicator and take a multi-modal approach. To examine multi-
modal data for pain recognition, researchers used various machine learning
algorithms, such as random forests, deep neural networks, and support vec-
tor machines (SVM)[30].

The following years have seen the integration of multi modal data for
pain detection, recognizing pain as a complex experience with both physio-
logical and emotional components. Besides traditional physiological markers,
researchers have broadened their approach to include other data modalities,
such as medical imaging or functional magnetic resonance imaging (fMRI),
among others[31]. Combining these imaging modalities with machine learn-
ing algorithms allows pain to be assessed more accurately and objectively[32].

The integration of natural language processing (NLP) is an essential
modality in pain detection systems. NLP techniques extract sentiment, con-
text, and linguistic features from patients’ descriptions of pain through tex-
tual descriptions and self-reports. NLP connects the subjective and objective
components of pain assessment. Physiological and imaging data are often in-
tegrated with these textual data to provide a comprehensive understanding
of pain[31].

The most recent studies use deep learning methods. Deep learning is a
subset of machine learning that involves the use of artificial neural networks,
in particular deep neural networks with multiple layers[33]. These techniques
perform well for tasks involving complex patterns and large data sets because



they automatically learn intricate features from raw data[I2].

These research projects has been greatly influenced by databases such
as UNBC-McMaster Shoulder Pain, or EmoPain which has provided a fun-
damental platform for method development. Egede et al.[34], presented
the EMOPAIN 2020 challenge incorporating a dataset that included both
handcrafted features and deep-learned models, such as facial landmarks,
HOG, and deep vectors from pre-trained models like VGG-16 and ResNet-50.
Pedersen’s[30] study used a deep learning approach using a 4-layer contrac-
tile autoencoder. Through this, they achieved high accuracy at the frame
level.

Convolutional neural networks (CNNs) is one of the most widely used
method within the deep learning approach. In fact, in the study by Gkikas
and Tsiknakis[I2] in which they reviewed many of the studies on automated
pain assessment carried out in the past ten years, more than 75% of all
studies have used this method. Whether using 1D, 2D or 3D filters, this
indicates that the convolution operation is now the fundamental element of
deep learning. It is important to mention that studies using deep learning
do not start until 2014. Even so, the authors report it, as the most widely
used method[12].

Many studies have used deep learning models with handcrafted features
to optimize pain assessment[34] [35]. These hybrid approaches, using features
such as facial landmarks, histograms of oriented gradients (HOG) and deep
features extracted from pre-trained models, have shown promise[36]. In addi-
tion, lines of research have also been pursued where the importance of specific
facial regions in the transmission of pain expressions is studied[37][38][39].
This has led to the development of models that focus on localized features.
For instance Huang et al.[37] initially detected facial regions, including the
left eye, right eye, nose, and mouth. A multi-stream CNN has been respon-
sible for feature extraction, with a separate sub-CNN for each region. The
features have been assigned learned weights to provide attention, considering
that each region contributes differently to pain expression.

Many experiments are conducted in controlled lab settings, however
some researchers like Semwal et al. [40] focused on pain assessment in uncon-
trolled environments. They developed a shallow CNN with 3 convolutional
layers, achieving high multi-class classification performance comparable to
deeper pre-trained models. Later, they conducted a second study with[41]
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a more complex deep framework, yielding results comparable to other mod-
els, such as GoogleNet and VGG. Lee and Wang[42] explored the intensive
care unit (ICU) setting, where it is common to have partially occluded faces.
They developed a 4-layer CNN combined with an extreme learning machine
(ELM) network for the final estimation.

Recurrent neural networks (RNNs) is the second most popular technique[12].
This method is perfect for sequential data analysis, which uses temporal data
like video sequences to analyze data in a way that greatly improves pain as-
sessment. RNNs are able to obtain temporal patterns in body movements,
vocal intonation, and facial expressions by sequentially processing frames of
video data. This allows to better determine how pain changes over time[43].

Apart from these deep learning techniques, other neural network ar-
chitectures have also been used in pain detection, thus expanding the range
of approaches. Within the family of recurrent neural networks (RNNs), it is
possible to find gated recurrent unit networks (GRU)[44][45] and long-term
memory networks (LSTM)[16][46], which have become best known for their
effective modeling of sequential data. These networks work well when an-
alyzing time series data, such as video sequences used in pain assessment,
where it is important to capture temporal dependencies. When making pre-
dictions, bidirectional LSTMs (biLSTMs)[47][48] incorporate an additional
level of complexity by considering both past and future context. Over time,
this reciprocal approach has proven useful in identifying subtle patterns in
pain expression. These alternative neural network architectures provide re-
searchers with flexible tools in their search for reliable and accurate pain
detection models, even if they are not always considered leading deep learn-
ing techniques.

Deep learning techniques have shown promising results, providing in-
creased accuracy and robustness in pain assessment|[12]. These models have
demonstrated the ability to capture complex patterns from diverse data
sources, improving the accuracy of pain detection. In addition, they may
be able to detect pain in real time[49][50], which could have a significant
positive impact on clinical judgment and patient care.

There are still problems to be solved, such as the need for large amounts
of labeled data to train deep learning models[51], which may be restrictive
in some medical applications. In addition, there are still problems with
the interpretability and transparency of the models, especially when dealing
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with situations where it is crucial to understand the reasoning behind pain
detection judgments.

3.2 Federated Learning

Federated learning has become an important development in machine
learning, especially when decentralization and data privacy are essential.
This literature review highlights the evolution and importance of federated
learning by summarizing its main advances and uses.

The origin of federated learning systems come from the concern for pre-
serving data privacy and security in machine learning. It has been developed
in response to the difficulties presented by the traditional model of centralized
data aggregation. Organizations were hesitant to share their data sets due
to legal restrictions, privacy concerns and data ownership issues, especially
when it came to sensitive data such as medical data. Early developments in
this field focused on decentralized methods that allowed multiple people to
work together to jointly create machine learning models without sharing raw
data[13].

The concept of federated learning has been first introduced by re-
searchers at Google[52], whose groundbreaking study laid the foundation
for the field. The paper offered a novel solution to the basic problem of data
privacy in machine learning. It proposed a decentralized training model that
eliminated the need to exchange raw data and allowed multiple parties to
work together to collaboratively build machine learning models. The key
has been to build a global model by aggregating local model updates from
each individual data source. Since then, this revolutionary concept has stim-
ulated plenty of research and real-world applications, enabling collaborative,
privacy-preserving machine learning across multiple domains while keeping
confidential data secure and under the control of data owners[13].

Federated learning has become an influential trend in the medical
field[53][54][55] due to its innovative approach to patient data privacy and
the dispersed nature of healthcare data. With this novel method, multiple
healthcare organizations, from hospitals to research centers, can collaborate
on machine learning initiatives without exchanging raw patient data. Fed-
erated learning enables the development of predictive models, such as those
for automatic pain recognition, in an industry where data security and pri-
vacy are paramount, while ensuring that private patient information remains
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secure within each institution[I3]. There are different types of federated
learning[13], each adapted to the distribution of data available. Some of the
most important ones are reviewed below.

Horizontal federated learning occurs when several entities or clients
share distinct data instances, but with comparable characteristics[56]. In the
context of automated pain recognition, each institution shares similar char-
acteristics related to pain assessment (facial expressions), but the patients
are different. This way, the actual patient data remains secure within each
participating healthcare entity but they can collaborate to improve the accu-
racy of automated pain recognition models for their patients[56][57]. In the
context of this project, due to the availability of several databases with simi-
lar characteristics but different patients this is the type of federated learning
that will be used. Figure 1 shows a diagram of the the method explained.

Server A | @ Sending encrypted gradients |

Secure aggregation ‘

3@ Sending back model updates ‘

Updating models

Database B, Database B, Database B,

Figure 1. Architecture for a horizontal federated learning system.[56]
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On the other hand, when entities have different characteristics, but
share common data instances, vertical federated learning is used. This type
of federated learning works well in situations where several organizations,
for example, different healthcare providers want to create a complete patient
model. In this case, the patients would be the same but the characteristics
being measured would be different. This enables collaborative medical re-
search, where multiple organizations can jointly analyze patient data without
compromising the privacy of specific feature data[56]. This type of federated
learning would fit this project if, for example, pain detection were performed
for the same group of patients, but across related features, such as physio-
logical indicators or textual patient records.

These various forms of federated learning prioritize data security and
privacy while providing adaptive responses to a wide range of decentralized
machine learning problems. Once the type of federated learning has been
decided based on the data, there are several methods or algorithms that can
be used to perform the actual learning. One of the most important ones is
Federated Averaging (FedAvg)[52][58].

Fundamentally, FedAvg uses a simple but highly effective method to
guarantee both model cooperation and data privacy. FedAvg’s fundamental
principle is to create a global model without exchanging sensitive raw data
by averaging model updates from participating clients. Each client, who is
frequently represented by organizations, healthcare facilities, or individual
devices, starts the process by initializing the global model. This model is
used as the foundation for federated training and is frequently selected ac-
cording to the type of machine learning task, like language modeling or image
classification. The training occurs locally on each client’s data without any
direct data exchange. Every client’s local model is updated during the train-
ing process using data from that particular dataset.

These updates are specific to the distinct data distribution and charac-
teristics of each client and represent the knowledge obtained from the local
data. The clients send updates to a central server about their model param-
eters after completing local training. Only the updates are being sent in this
exchange; raw data is not being sent. This measure guarantees that confi-
dential data stays on the client’s end and is not shared. The model updates
that are received from the different clients are combined at the central server.

The updates are averaged in this aggregation, which can be represented
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as a conventional arithmetic mean. The end product is a new global model
that combines the insights from every client that took part. The updated
model for the subsequent federated training cycle is the recently aggregated
global model. The updated global model protects the security and privacy of
individual data sources while reflecting the collective knowledge of all clients.
By performing these steps repeatedly over several rounds, the global model
is able to improve in accuracy and refinement with the combined efforts of
all clients. It is possible to established the number of rounds or base it on
convergence criteria[52].

This is the approach that will be used in this project because it is the
one most commonly used in other research projects. This implies that there
are more data and results available that will allow to develop the project in
a more efficient way and to compare the results obtained. Figure 2 shows a
diagram of how the above explained process works.

@ Send the global model to the selected parties
@ Update model with local data

@ Send local models to the server
@ Update the global model

Figure 2. Federated Averaging (FedAvg).[15]
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Other federated learning approaches include Federated transfer learn-
ing which uses pre-trained models to accelerate learning across dispersed
data sources. Federated Transfer Learning uses the fundamentals of feder-
ated learning to securely modify pre-trained models to fit particular local
data sources[59]. It is a method for securely and privately sharing knowledge
from a centrally trained model to decentralized entities for adaptation and
fine-tuning to their local data. This method is particularly useful in domains
where there is insufficient labeled training data[60][61].

Federated reinforcement learning combines reinforcement learning with
federated learning, allowing cooperative model training across decentralized
data sources while maintaining data security and privacy. In reinforcement
learning, an agent learns to make a series of decisions to maximize a cu-
mulative reward. Many entities or parties maintain their local datasets and
model parameters as part of the Federated Reinforcement Learning process.
Using its own data, each entity trains its local reinforcement learning agent
to simulate sequential decision-making in that particular environment. By
interacting with their local data, these agents pick up knowledge while ad-
hering to confidentiality and privacy regulations[62][63].

Federated Proximal (FedProx) is an optimization method that builds
on the fundamental ideas of Federated Averaging (FedAvg) by including
proximal terms. The objective of this algorithmic modification is to im-
prove the convergence, robustness, and performance of the model in feder-
ated learning environments. The main idea behind FedProx is to include
a regularization term, also known as the proximal term, in the optimiza-
tion objective. During training, this term is used to impose restrictions or
penalties on the model parameters. FedProx is especially helpful in situ-
ations where convergence speed or model accuracy are crucial because it
introduces these constraints, which promote quicker convergence and better
model performance[64].

3.3 Pain detection using federated learning

The following is a review of some of the projects that have used feder-
ated learning for automatic pain recognition and will serve as a reference for
this project.

Rudovic et al.[65] make a significant contribution using Personalized Fed-
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erated Deep Learning (PFDL) for pain estimation to the UNBC-McMaster
Shoulder Pain Database. This way each patient’s information remains pri-
vate but all clients feed the global model. In their study, they demonstrate
that PFDL performs comparably or even outperforms traditional centralized
and FL algorithms while simultaneously enhancing data privacy. In their
study, they use several models in order to make a comparison between them.
The base model is the basic centralized deep learning (BCDL) model, trained
on non-target subjects. Then, they use a centralized deep learning model on
target subjects (CDL) to evaluate the impact of centralized training specifi-
cally on target subjects.

Also, traditional federated deep learning (FDL) is used so that all par-
ties can learn in a collaborative manner. Locally trained models (LDL)
are adapted to each subject and, the results of a randomly initialized CNN
(RND) model provide a point of comparison without model training.

Similarly, N. Tobis[66] in his study also uses the UNBC-McMaster
database to detect pain automatically in a federated manner. In his study
he uses a CNN architecture to classify the dataset and uses ResNet-50 and
VGG16 architectures to find the best model architecture. The author con-
ducts several experiments. In one of them he tries to start the model with
random parameters, in another one he tries to use pre-trained parameters
and in another one he tries to release the data per session. That is, he does
not assume that all the information is available from the beginning but that
it is generated sequentially in regular therapy sessions. Like the previous
author, the model that achieves the best accuracy is federated penalisation.

These last two studies will be used as the basis for this project due to
their similarity in the tasks and results to be obtained.

3.4 Differential Privacy

Differential privacy (DP) provides a fundamental framework in the field
of data privacy, designed to allow the analysis of datasets while safeguarding
the privacy of individual contributions [67][68]. This concept has become in-
creasingly important considering growing concerns about data privacy, where
the need to use data to obtain information must be balanced with the indi-
vidual’s right to privacy.

The beginnings of DP date back to the pioneering work of Dwork et al.
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[67], who laid the foundations for a formal approach to privacy-preserving
data analysis. This approach has since evolved, becoming the cornerstone of
modern privacy-preserving techniques.

The foundation of distributed learning (DL), the -differential privacy
model, introduces a parameter to assess privacy loss, guaranteeing that an
algorithm’s result does not heavily rely on the data of a single individual.
Moreover, -differential privacy provides a subtle extension that permits a
very low likelihood of privacy infringement. The Laplace and Gaussian pro-
cesses, which modify query results on datasets to conceal specific data points
while preserving the overall utility of the data, are the foundation of the
mathematical architecture of DP [69][70][71].

3.4.1 Differential Privacy in a Federated Learning system

A major step forward in resolving privacy issues in decentralised ma-
chine learning models is the integration of differential privacy (DP) in a
federated learning (FL) system. The goal of this integration is to improve
privacy without sacrificing the ability to learn collaboratively across several
servers or devices.

Federated Learning with Differential Privacy (DP) is a privacy-preserving
approach that combines federated learning and the principles of differential
privacy. Within this framework, decentralized entities use their own data for
local training, which results in model updates that enhance performance.

To maintain the privacy and anonymity of individual contributions,
controlled noise is introduced during model updates through the applica-
tion of differential privacy mechanisms. The privacy of each data source is
preserved as these perturbed updates are then safely combined to produce
a global model. Federated Learning with Differential Privacy is especially
useful in situations where data privacy is a top priority, like healthcare or
financial data applications, because of its iterative process, which permits
collaborative model development while maintaining strong privacy guaran-
tees [72].

Through the use of federated learning (FL), conventional centralised
machine learning may be transferred to a distributed architecture, enabling
devices to cooperatively learn a common model while maintaining localised
training data. Because raw data is not sent to a central server, this method
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naturally resolves some privacy concerns. Nevertheless, FL alone cannot fully
protect against all privacy risks, such as inference attacks on modifications to
shared models. This calls for the use of strong privacy-preserving techniques,
of which differential privacy (DP) is a standout example [69].

The application of DP in FL intends to mitigate privacy risks by en-
suring that shared updates to the model do not reveal sensitive information
about the data of any of the participating devices. The application of DP in
FL intends to mitigate privacy risks by ensuring that shared updates to the
model do not reveal sensitive information about the data of any of the par-
ticipating devices. The challenge is to implement DP in a way that balances
privacy with model accuracy and learning efficiency [70].

This involves adapting DP mechanisms, such as Laplace or Gaussian,
to the federated context, by adding noise to model updates before they are
aggregated. In the context of this thesis, the Gaussian mechanism will be
the one used since it is the most commonly used [69][71].

There are special difficulties with integrating DP into FL, especially when
it comes to balancing privacy guarantees with model performance. When
privacy is protected by adding noise, the accuracy of the learnt model may
suffer, particularly in situations where the data is highly heterogeneous and
scattered [70].

Research in this field involves the development of optimisation tech-
niques to minimise this impact, such as adaptive noise [73] scaling and secure
aggregation protocols that improve privacy without significantly compromis-
ing model quality.

4 Data

A major challenge in the development of robust automatic facial ex-
pression detection systems is the limited amount of representative data[74].
Researchers and other specialists have worked to develop some databases
such as the UNBC-McMaster Shoulder Pain Expression Archive database,
the BioVid Heat Pain database and the EmoPain database. By doing this,
they aim to overcome data scarcity to improve the availability of relevant
data for model development. These three databases will be used in this
project. A description of each of them is given below.

19



4.1 UNBC-McMaster shoulder pain expression

The UNBC-McMaster Shoulder Pain Expression Dataset[74] is a pub-
licly available dataset designed for research in pain expression recognition.
It has been created to facilitate the development and evaluation of computer
vision and machine learning algorithms for automatic recognition of pain
expressions. This database has been developed by researchers at McMaster
University and the University of Northern British Columbia.

Figure 3. Examples of some of the sequences from the UNBC-McMaster Pain Shoulder

Archive. [T}

To create this database, they videotaped the faces of participants (suf-
fering from shoulder pain) as they performed a series of active and passive
range-of-motion tests on their affected and unaffected limbs on two separate
occasions. Each frame of this data has been encoded in AU by certified FACS
coders, they self-reported and observer measures have been also taken at the
sequence level. The investigators have made publicly available a portion of
the database, which includes: 1) 200 video sequences containing spontaneous
facial expressions, 2) 48,398 FACS coded frames, 3) associated pain frame-
by-frame scores and sequence-level self-report and observer measures, and 4)

66-point AAM landmarks[74].

A total of 129 participants (63 men, 66 women) with self-identified
shoulder pain problems were recruited from three physiotherapy clinics and
through advertisements on the McMaster University campus. This varied
group included students and community members with a variety of shoulder
pain diagnoses, such as arthritis, bursitis or tendinitis, and more than half of
them were taking pain relievers. However, there are FACS annotations for
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only 25 participants, therefore, for this project, only these 25 participants
will be used.

Participants were subjected to eight standardized range-of-motion tests,
which included abduction, flexion, and internal and external rotation of each
arm, both actively and passively. These tests were performed in a laboratory
setting, recorded by two Sony digital cameras that captured facial expres-
sions. Verbal pain descriptors and visual analog scales (VAS) were available
to help participants rate the pain experienced during each test. Independent
observers also rated pain intensity from the recorded videos, demonstrating
high inter-observer reliability and concurrent validity.

Each of the tests in this study involved video data extraction and
subsequent Facial Action Coding System (FACS) coding[75]. FACS cate-
gorizes facial expressions into 44 individual action units (AUs). This study
particularly focused on actions potentially related to pain, including brow-
lowering (AU4), cheek-raising (AUG6), eyelid tightening (AU7), nose wrinkling
(AU9), upper-lip raising (AU10), oblique lip raising (AU12), horizontal lip
stretch (AU20), lips parting (AU25), jaw dropping (AU26), mouth stretching
(AU27), and eye-closure (AU43).

These actions were coded with five intensity levels (A-E) by certified
FACS coders, and each action has been coded frame by frame, with a fourth
certified FACS coder reviewing the coding. The system uses an Active Ap-
pearance Model (AAM) approach[76][77], which employs AAM to track facial
features and extract visual information.

In the data distribution provided, there are 66 landmarks identified
by the AAM for each image. Active Appearance Models (AAMs) have been
proven to be a good method for aligning a predefined linear shape model that
also has a linear variation in appearance, with a previously unseen source im-
age containing the object of interest. In general, AAMs adjust their shape
and appearance components using a gradient-descent search, although other
optimization methods have been employed with similar results[78].

This dataset is relevant because it focuses on the specific domain of

shoulder pain, allowing researchers to explore pain-related facial expressions
in a controlled and standardized context.
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4.2 The BioVid Heat Pain

The BioVid Heat Pain is an available dataset designed for research
in pain expression recognition. It has been created to improve automatic
pain monitoring, improve treatment and address the inherent subjectivity in
the perception of pain. This database has been developed by researchers at
Otto-von-Guericke University and University of Ulm[79)].

Figure 4. Face samples from the BioVid Heat Pain database. [ST)]

The BioVid heat pain database has been created based on a study
with 90 participants in three age groups (18-35, 36-50 and 51-65 years), each
consisting of 15 men and 15 women. Pain was induced experimentally by
means of a thermode applied to the right arm. Experiments were recorded
with video cameras and physiological sensors, including synchronised AVT
Pike F145C cameras (1388 x 1038 pixels, 25 Hz) placed in front of and to the
sides of the participants. They captured depth information with a Microsoft
Kinect camera (640 x 480 pixels, approximately 30 Hz). The physiological
data included skin conductance level (SCL), electrocardiogram (ECG), elec-
tromyogram (EMG) of three pain-related muscles and electroencephalogram

(EEG).

Individual pain thresholds and pain tolerance levels of each participant
were determined prior to recording. Throughout the experiment, there were
four levels of pain, including the lowest and the highest. In the first part,
each pain level was stimulated 20 times in random order. In the second part,
the participants expressed pain and basic emotions, and they were shown
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pictures and videos to trigger spontaneous emotions. In the third part, they
repeated the pain stimulation of the first part, with EMG facial electrodes
attached[81].

Since this project is based on analyzing pain expressions, only data
from the first part will be used. Their facial expression analysis is based on
a set of landmarks, which are automatically extracted. For each image in
the video stream, the face is first found using the Haar-like feature detector
cascade of Lienhart et al.[82]. Within the face region the eye detector cas-
cades trained by Castrillén et al.[83] and the mouth corner detector cascades
of Panning et al.[84] are applied.

To identify false detection, the candidates are compared with an esti-
mate given by a generic face model that is placed inside the bounding box
of the face. Based on the points obtained for the centre of the eyes and the
corner of the mouth, the remaining reference points are found, as described
by Niese et al[85]. The upper and lower lip points are determined using a
colour-based lip segmentation approach. It is based on the normalised green
channel histogram for the mouth region of interest. The segmentation con-
tour is also used to redefine the points of the corners of the mouth, as the
results are more accurate than the detector in most cases.

Each of the eyebrow points is selected from a line segment perpendic-
ular to the eye axis by finding the maximum peak of the vertical gradient.
The eye axis is also used to compensate for head rotation in the head rota-
tion plane by rotating the detector input image of the next frame. For each
image frame a set of distance and gradient features are extracted. They are
selected to capture several pain-related facial actions that have been identi-
fied by several previous studies[86].

These actions include lowering the eyebrows, squeezing the eyelids,
closing the eyes, closing the eyelid, closing the eyes, lifting the cheeks and
upper lip, wrinkling the nose, and stretching and opening the mouth. In the
BioVid heat pain database, several pain levels have been considered, ranging
from no pain to pain levels up to 4. However, within this project, only two
different categories will be considered: pain and non-pain. This will simplify
the pain assessment process. Taking into account the categories included in
this database, all pain ranges PA1 to PA4 will be considered as ”pain” in a
binary decision.
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As with the previous database, this one allows progress in the field of
automatic pain detection and assignment to help those who cannot utter[81].

5 Methodology

The methodology section describes the overall approach adopted in
this study. After preparing the datasets in a pre-processing phase, several
experimental setups have been conducted to evaluate the results with these
different setups.

5.1 Preprocessing

This phase consists of pre-processing the data from the UNBC and
Biovid databases and ensuring a common, standardised framework for both.
This phase involves four steps: (1) data selection, in which the dataset has
been selected and refined; (2) feature extraction, during which OpenFace
has been used to extract the relevant facial features; (3) data relabelling,
standardising the labels across all datasets to maintain consistency; and (4)
data modifications, adjusting the image formats to be compatible with the
models. This step is necessary in order to conduct the various experiments
and obtain reliable and accurate results.

5.1.1 Data Selection

e UNBC Database: For the UNBC database, all 25 available subjects
and all images have been used. No sub-selection of images has been
done.

e Biovid Database: Originally, the Biovid database consisted of 87
subjects. However, as recommended in the database description, 20
participants who never showed an expression of pain have been ex-
cluded [87]. In addition 13 participants have withdrawn their consent
to use their images. Considering these two exclusions and that some
participants are in both groups, the final number of subjects is 60. This
database has four levels of pain in addition to the baseline level.

In the description of the database it is also stated that the first levels
of pain never produce a pain expression [88]. For this reason, the lower
pain levels have been eliminated as well. This leaves only the baseline
level and the two higher levels of pain. Finally, it can be seen that
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the pain expression is triggered around the fourth second of the video
[88]. So a selection of the images has been made to leave only those
corresponding to the second 4 to 5.5. This corresponds to frames be-
tween 88 to 138. This selection allows the labels to be more accurate,
since not all of the frames in the whole video show an expression of pain.

This sub-selection has been done in order to reduce the amount of data,
since it initially affected the performance of the model and to balance
the number of pain and non-pain images.

5.1.2 Feature Extraction

The OpenFace tool [89] has been used, in order to extract the faces from
the images and thus have only the relevant part of the images. OpenFace is
a facial behavior analysis toolkit. The use of this tool is due to its previous
use in other similar studies as well as OpenFace’s strong ability to isolate
and capture facial expressions with high accuracy [90][91][92].

e UNBC Database: For the UNBC database, all images have been
processed by OpenFace and an equivalent number of colour images
containing only the face have been obtained. Analysing the output, it
has been observed however that in some cases other elements of the
images such as hair or part of the hands were detected as an additional
face in the same image. Therefore, a manual inspection of all the images
has been made to eliminate the incorrect ones.

e Biovid Database: For the Biovid database, the process has been
similar, only in this case the input are videos (5.5 seconds long) instead
of images. Each video generated 138 images. In this case no errors have
been detected.

Figure 5 shows an example from the UNBC database of how the original
image has changed after extracting the face with OpenFace.
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(a) Raw image (b) Processed image

Figure 5. Feature Extraction with OpenFace

5.1.3 Data Relabeling

The original data sets used different methods for labeling pain, so a
standardized approach is necessary to ensure consistency throughout the
study. Therefore, a binary labeling system has been adopted: ”0” for no
pain and ”1” for pain.

¢ UNBC Database: For the UNBC Database, images have been cat-
egorized according to the presence of facial expressions indicative of
pain, utilizing the Prkachin and Solomon Pain Intensity Scale (PSPI)

[93).
PSPl = AUA + max(AU6, AUT) + max(AU9, AU10) + AU43

This method involves this specific equation for assessing pain expres-
sions, where images demonstrating any of the action units (AUs) as-
sociated with pain are classified as 'pain’. Conversely, images that do
not display these particular action units are labeled as 'no pain.” This
approach ensures a consistent methodology for labeling, based on the
visible manifestation of pain through facial expressions.

¢ Biovid Database: In the case of the Biovid database, the relabeling
process has been done based previous studies, which categorized the
baseline and levels 1 and 2 as “no pain” [8§]. Although, levels 1 and
2 have been later excluded from the analysis [88], levels 3 and 4 have
been labeled as “pain”. Therefore the baseline level has been relabeled
with '0” and the levels 3 and 4 with "1’. It should also be taken into
account the previous data selection where only the last second and a
half of the video has been used for analysis. That is why it is safe to
relabel the whole level 3 and 4 with a "1’.
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5.1.4 Data Modifications

Aligned with the requirements of the centralized model and various
federated learning scenarios, it has been necessary to convert the images to
grayscale. This process, has been essential to ensure compatibility with the
single-channel input expectation of the model, and also contributed to com-
putational efficiency by reducing the complexity of image processing. The
exception has been when using the convnext(tiny) model, which apart from
the grey-scale conversion also required resizing the images to 224x224 pixels.

Figure 6 shows an example from the UNBC database of how the processed
image looks like after it is converted to grayscale.

=

(a) Processed image (b) Grey-scaled image

Figure 6. Converting RGB image into grayscale

5.2 Experimental setup

The experimental setup of this study is based on a series of scenar-
ios designed to investigate pain detection based on facial expression, taking
advantage of advanced machine learning techniques. As a starting point, a
codebase developed by AshwinRJ [04], which has been made publicly avail-
able on GitHub [94], has been used. This code includes among other things
a centralized module and a federated learning module.

To ensure reliability and generalisability of results across diverse sub-
sets of data, all models including the centralized and federated learning con-
figurations have been executed with 5-fold cross-validation. This method-
ological approach allows for rigorous evaluation and benchmarking. In addi-
tion, the F'1 score has been chosen as the primary metric for all evaluations.
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This is because it effectively captures both precision and recall and because
it is a widely used metric in similar studies.

Following the same reasoning, according to previous studies, Stochastic
Gradient Descent (SGD) has been used as the optimiser [65][66]. Other
parameters, such as the learning rate (0.01) or the number of local epochs
(10 epochs) have also been chosen according to the literature and have been
left fixed in order to compare the performance of the models [95][96].

5.2.1 Centralized model

In this study, the centralized model serves as a benchmark to assess
the performance of the federated learning model. In the context of this
study, it would be the equivalent of both clients training their models indi-
vidually. This allows an assessment of whether the federated model has any
advantages. This model has been implemented using a convolutional neural
network (CNN) architecture from a publicly available code base[94]. The
choice of a CNN for the centralized model is in line with its proven effective-
ness in image classification tasks, providing a simple but powerful approach
for initial performance evaluation.

Figure 7 shows an illustrative diagram of what this model looks like.

In this case, two medical centres are using only their own data and training
their model individually.
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Figure 7. lllustration of Centralized Model

This architecture is built using PyTorch’s neural network module
(nn.Module). The network is initialised with two convolutional layers: convl
and conv2. To overcome overfitting, conv2 is followed by a dropout layer.
There are then two fully connected layers: fcl converts the convolved out-
put into a 50-unit vector and fc2 maps it to the specified class outputs. In
the forward method, data goes through ReLLU activations and maximizes the
grouping of similar features after each convolution, with a final log softmax
function applied after fc2 to produce a class probabilities distribution, ensur-
ing non-linear processing throughout the network.

5.2.2 Local model

To further explore the effectiveness of the centralized model, individ-
ual evaluations within the UNBC and Biovid datasets have been conducted.
In this case, each subset of data has been tested separately to get a deeper
insight into the performance of the model. Specifically, five subgroups with
five patients each have been created. The model has been trained on four
of them and tested on the remaining one. This experiment has been carried
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out in each of the five subgroups. This scenario allows to know what is the
performance at the individual level of each patient with the centralised model.

Figure 8 shows an illustrative diagram of what this model would look
like. In this case, two medical centres are using only their own data and
training their model individually. However, they are only using part of their
data for training and testing.
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Figure 8. Illustration of Local models

5.2.3 Federated learning model using a single database

For the federated learning scenario, the same source code and CNN ar-
chitecture given [94] has been used as a starting point[94]. The basis of this
setup has been kept the same and is therefore very similar to the centralized
model. This allows the comparison between the two scenarios to be more
accurate.

However, a significant modification has been introduced in the user
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group assignment mechanism compared to the source code. User groups
refer to the different clients that are part of the federated scenario. For
example, if there are two medical centres, each medical centre would be a
different user group. Within the context of a single medical centre, one or
more patients would be part of a user group. In this source code, the allo-
cation of user groups is random. This is because it is intended to be used in
generic databases such as CIFAR [97] or MNIST [98] where it is not relevant
whether certain images belonged to one specific user group.

In the case of this study, each patient’s data had to remain in the same
user group, either individually or by grouping several patients under one user
group. It could not happen that the images of the same patient were in more
than one user group. This strategy has been vital for two main reasons:
first, it preserved the authenticity and consistency of the learning process
by preventing the model from being trained with overlapping or redundant
data from the same patients in different user groups. Second, it respected
the principles of patient privacy and data security, which are fundamental
considerations in medical and health research.

To achieve this, an additional field has been added to the input data,
a patient id. This way, when creating user groups, it could be done on the
basis of these ids and thus avoid an id being in more than one user group.

This model has been trained using Federated Learning Averaging. As
mentioned in the literature, this technique has been chosen because it is the
most commonly used among other similar studies. For detailed information
on how this model works, see section 2.2.

Figure 9 shows an illustrative diagram of what this model would look
like. In this case, two medical centres are using only their own data and
training their model individually. They are also dividing the patients either in
groups or on an individual basis. In other words, we are simulating federated
learning setup within database.
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Figure 9. Illustration of Individual federated learning model

5.2.4 Federated learning model with two databases

This scenario has been conducted based on the existing federated learn-
ing approach used in the previous scenario. In this case, the aim is to use
both databases in such a way that both can benefit from each other without
compromising data privacy.

In this scenario, there are two distinct domains although both are pain
expression databases. One dataset captures participants experiencing shoul-
der pain, while the other refers to pain induced by electrical stimulation.
These datasets were recorded with different cameras, include different age
groups, etc.

The goal of this experiment is to understand whether using the informa-
tion from another, unfamiliar dataset can further improve the performance.
For this purpose, each database has been assigned to a different user group.
Therefore, using only two groups of users. This ensures that within the ex-
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ecution environment the raw data of each database is never mixed with the
raw data of the other database.

Figure 10 shows an illustrative diagram of what this model would look
like. In this case, two medical centres are sharing the aggregated ML model
while training their local model. Their training data is kept within each
organisation and only the output of the local model is shared.
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Figure 10. lllustration of individual federated learning model with two databases

This scenario required two main changes in the implementation. First
difference is in the data ingestion. In this case, the dataloader had to be
prepared to accept two databases and to keep the training data, test data
and user groups separate. On the other hand, each database required an
individualised test process, so the test process has been duplicated in such a
way that this phase has been completed first for one database and then for
the other, thus being able to return individualised learning results for each
of the databases.
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5.2.5 Federated learning model with differential privacy

As discussed in the literature review (Section 2.4), the federated learn-
ing setup may not be private enough. This is the reason why differential
privacy has been used within the context of federated learning.

This method consists of adding noise after training the local model but
before training the global model. The Gaussian mechanism is the one most
commonly used in other studies, which is why it has been decided to use it
to create this setup [69] [71].

The Gaussian mechanism is a key technique in differential privacy,
it adds noise to the weights of the model in a way that preserves privacy.
However, it should be noted that there is a trade-off between privacy and
performance. Adding more noise for stronger privacy protection reduces the
accuracy of the model.

Gradient clipping, privacy budget, and noise are important parameters
in differential privacy, ensuring that the privacy guarantees are maintained
while preserving the utility of the data or model.

Gradient clipping limits the magnitude of gradients during training
to control their sensitivity. The privacy budget represents the aggregate
privacy loss incurred over multiple iterations and measures the level of privacy
protection provided by each iteration. The noise level represents the scale
of Gaussian noise added to gradients to achieve differential privacy. The
formula for adding Gaussian noise to gradients is:

noisy _gradient = gradient + noise_level x random_noise

Where noisy_gradient is the resulting noisy gradient, gradient is the
original gradient of the model parameters, noise_level is the scale of the Gaus-
sian noise, and random_noise is a sample from a Gaussian distribution with
mean 0 and standard deviation 1. Adjusting the noise level allows for bal-
ancing privacy protection and model utility [99].

In federated learning, the local models are updated at each client and
the updates are aggregated by a central server to update the global model.
Let w,; represent the global model weights at iteration t. Each client i com-
putes the updated weights w} based on its local data. The central server
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aggregates these updates using Federated Averaging (FedAvg) as follows:

Wit1 = %Zwi

=1

where N is the number of participating clients [71].

To integrate differential privacy into the federated learning framework,
there are several steps to follow.

First, each client ¢ computes its local model update (gradient) Aw;
based on its local dataset. This involves performing standard gradient de-
scent or another optimization method on the client’s local data to obtain the
gradient update.

Then, the gradients need to be clipped. To bound the sensitivity of
the gradients and limit their magnitude, the local gradients are clipped to a
predefined norm C"

Aw; < Aw; - min (1, L)
[ Aw |
This step ensures that no single update can have an unbounded influ-
ence on the aggregated model. The parameter C' determines the maximum
allowed gradient norm. If the norm of Aw; exceeds C| it is scaled down to
C; otherwise, it remains unchanged.

Afterwards, the noise scale is calculated. For different values of a noise
scale, the Renyi Differential Privacy (RDP)[100] value is calculated to ensure
the desired level of privacy. The formula for RDP is given by:

1 “a B k(k—1)
RDP(a,q,0) = 1 log (Z <k>(1 — q)*kgke 20 )

k=0

Where:
- « is the order of RDP, controlling the trade-off between privacy and accu-
racy.
- ¢ is the subsampling rate, representing the probability of selecting a given
client’s data in each round.
- o is the noise scale, influencing the amount of Gaussian noise added to the
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gradients.

Then it is chosen the maximum ¢ within the specified range that sat-
isfies the condition RDP > ¢, where € is a predefined privacy parameter,
indicating the level of privacy desired.

After determining the appropriate noise scale o, each client adds Gaus-
sian noise to its clipped gradient before sending it to the server:

AwP? = Aw; + N(0,0%1)

Where:
- AwP? is the differentially private gradient.
- N(0,021) is the Gaussian noise with mean zero and variance o?.

This step ensures that the gradients shared by clients are differentially
private, preventing any single data point from having a significant impact on
the model.

Then, clients send their noisy gradients AwP”? to the central server.
In this communication step, the updates (not the raw data) are shared with
the server, preserving data locality and privacy.

Finally, the server aggregates the received noisy gradients to update
the global model:

N
1
AwPt = N Z AwP?
i=1

where N is the number of participating clients. This aggregation step
combines the noisy updates from all clients, averaging them to form the new
global model update [71][100].

Figure 11 shows an illustrative diagram of what this model looks like.
In this case, two medical centres are sharing the aggregated ML model while
training their local model. Their training data is kept within each organ-
isation and only the output of the local model is shared. However, after
updating the local model and before updating the global model Gaussian
noise is added to enhance the privacy of the patients.
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Figure 11. Illustration of federated learning model with differential privacy

6 Results

In this section, the findings of the research into the performance of the
different models are presented.

6.1 Centralized model

The Centralized model has been executed using an early stopping mech-
anism to determine the optimal number of epochs, preventing overfitting and
unnecessary computations. For the UNBC dataset, the early stopping cri-
terion has been met at 10 epochs, indicating that this is the point at which
the model’s performance on the validation set is maximized without further
generalization improvements.

Similarly, for the Biovid dataset, the best number of epochs before the

model ceased to show performance gains has been identified to be 6. This
approach not only optimized the training time but also ensured that each
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model is trained just to the point of maximal efficacy, as evidenced by the
validation data.

In addition to the CNN presented in the methodology (Section 5.2.1),
other architectures such as ResNet50 [I0I] and ConvNext(tiny) [102] have
been used to try to achieve the best performance in the centralized model.

For ResNet50, the default pretrained weights have been utilized [101].
ResNetb0, despite its deep structure designed for feature learning through
residual connections, underperformed. This suggests that the model may be
too complex for the specific features of the datasets used.

On the other hand, ConvNext(tiny) showed slightly lower results than
the base CNN, although comparable, indicating that, for the datasets in
question, a very complex architecture does not equate to a significant per-
formance improvement.

For ConvNext(tiny), the default pretrained weights have been utilized
[102]. Due to the relatively inferior results of these models and the long
execution time, it has been decided not to extend the tests to the Biovid
database. Collectively, these results reinforce the baseline CNN as the model
of choice for the rest of this study, balancing effectiveness and efficiency for
facial expression-based pain detection tasks.

Table 1 shows a summary of the results. This table include the results of
all the experiment with each of the architectures and for both databases. It
can be seen that the best result for the UNBC database is obtained at epoch
10 with a f1 score of 0,64. For the biovid database, the best result has been
obtained at epoch 6 with a f1 score of 0,59.

Database Model Best Epoch F1 Score

UNBC Baseline CNN 10 0,64
UNBC ResNet50 5 0,45
UNBC ConvNext _tiny 8 0,58
Biovid Baseline CNN 6 0,59

Table 1. Model Performance on Facial Expression-Based Pain Detection
In order to better understand the decision-making process of the model,

Gradient-weighted Class Activation Mapping (Grad-CAM) [103][104] has
been used. This provides a “heat map” overlaid on the input image. This
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heat map highlights regions that significantly influence the model’s predic-
tions, effectively visualising areas of interest within the image that lead to a
particular classification result.

Grad-CAM uses the gradients going into the final convolutional layer of
the model to capture the importance of each neuron in the prediction of the
target class. By applying a ReLLU function to the linear combination of these
gradients and activation maps, it is ensured that only positive influences on
the class prediction are visualised.

This approach not only improves the interpretability of the inner func-
tioning of the model, but also serves as an analysis tool to verify that the
model is focusing on the relevant features of the images. It is especially use-
ful for identifying cases where the model may be making decisions based on
spurious patterns or noise, rather than on meaningful content [103][104].

Across the experiments, Grad-CAM successfully generated distinct heatmaps
for a significant portion of the dataset, demonstrating the model’s attention
to key features, while some images showed less pronounced heatmaps, indi-
cating areas where the model’s confidence or focus is not as strong. These
visualisations help to understand and trust the model, as they provide a win-
dow into the neural networks’ prediction process.

Some examples of images obtained are shown in figure 12. Figure 12.a
shows a case where the heatmap has correctly focused on regions significant
to detect pain and has made a correct prediction. In figure 12.b, an example
is shown in which the attention has been drawn to a non-significant region
and therefore the prediction is incorrect.

Figure 13 shows the overall heatmap obtained with the centralized
model. This heatmap has been obtained by averaging all the heatmaps for
this patient. So it reflects where the model has been looking when making
decisions, whether the expression is pain or not.
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Figure 12. Sample heatmaps obtained from the centralized model

Overall Heatmap
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Figure 13. Overall heatmap of Centralized Model

In this heatmap it can be seen that the model has focused on important
regions of the face. When relabeling the database, the Prkachin and Solomon
Pain Intensity Scale (PSPI) [93] has been used to determine which images
show pain expressions. Specifically, it has been determined that the Action
Units showing a pain expression are AU4: brow-lowering, AUG: cheek-raising,
AUT: eyelid tightening, AU9: nose wrinkling, AU10: upper-lip raising and
AU43: eye-closure. All these Action Unitis can be seen marked in red or
orange on this heatmap. The only Action Unit that is less present among
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the relevant areas is AU9, which is marked in blue and green.

Although in this case it can be seen that there is a focus on these
important regions and has avoided some non-relevant regions, there is still
a lot of influence from the region under the face, which is just noise. This
suggests that the model, for this patient, has not learned to look only at the
important regions for detecting pain. These results also reinforce the need
to extract the face from the rest of the image. Since the model may focus on
areas outside the face, if the image has more noise, the regions outside the
face may be weighted more heavily than the face itself.

6.2 Local model

The local model has been executed using the same number of epochs
as when the entire database was available in order to be able to compare the
results better. These are 10 epochs in the case of the UNBC databse and 6
in the case of the Biovid database.

As expected the results have been worse than when using the whole
database. This is manly due to the significantly reduced volume of training
data. This result underlines the importance of the volume of training data
for optimal model performance.

As explained in Section 5.2.2, the data has been divided into 5 sub-
groups, and for each subgroup four users have been used for training and one
for testing. A cross-validation has been done with all users in each subgroup
so that all have been used as a train user and as a test user. Table 2 shows
the average results obtained for each subgroup.

Training Fold F1 Score
Subgroup 1 0,49 (0,015)
Subgroup 2 0,53 (0,09)
Subgroup 3 0,43 (0,069)
Subgroup 4 0,67 (0,093)
Subgroup 5 0,41 (0,052)

Average 0,50

Table 2. Individual results on UNBC Dataset (10 Epochs)

For the UNBC database, the fl1 score of the model with the whole
database is 0.64. Although in the case of subgroup 4, the results are better,
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the f1 score of the rest of the subgroups and the mean is lower. Upon further
analysis of the data for this subgroup, it has been founded that in the case
of two patients (106-nm106 and 108-th108), there are fewer images showing
pain expressions. With fewer images of pain expressions available for these
patients, the model may have overfitted the prevalent class, which explains
its higher accuracy in classifying expressions, making the average higher.

The same process has been done with the Biovid dataset. Table 3
shows the average results obtained for each subgroup.

Training Fold F1 Score

Subgroup 1 0,52 (0,035)
Subgroup 2 0,53 (0,078)
Subgroup 3 0,49 (0,048)
Subgroup 4 0,47 (0,047)
Subgroup 5 0,51 (0,072)
Average 0,50

Table 3. Individual results on Biovid Dataset (8 Epochs)

For the Biovid database, the fl score of the model with the whole
database is 0.59. In this case, no subgroup achieves better results than those
obtained when the model was trained on the entire database. This demon-
strates the importance of having access to a larger amount of data when
training models.

In the next section the federated approach is examined, where a similar
case is studied by dividing the patients into user groups. In this way, the
same privacy setup will be maintained but the user groups will be able to
benefit from each other.

6.3 Federated learning model using a single database

Several tests have been conducted with the federated learning model
within each database in order to see how medical entities could benefit from
federated learning within their own organisation. Some of the experiments
include separating each subject into a user group so that individual patient
data within each organisation would remain private.

Other tests have also been done by combining several users within the
same group, in an attempt to improve prediction accuracy. This way, al-
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though some patients’ data will be combined with each other, will be in a
limited way.

In addition, as in previous cases, the early stopping mechanism has
been used to determine the optimal number of epochs. In this case, depend-
ing on the number of users, it varies between 3 and 6 epochs. Using more
epochs does not lead to an improvement in learning.

Table 4 shows the best results obtained for each of the setups for the
UNBC database.

Number of users 3 epochs 5 epochs

4 0,56 0,60
) 0,58 0,57
20 0,55 0,55

Table 4. Model Performance on UNBC' database

The best result is obtained when users are divided into 4 groups and
after 5 epochs. The fl score in this case is 0,6. This result is a bit lower
than when using the centralised model (fl score 0,64), but the difference is
not very large. Considering the privacy gained by training the models in this
way, this approach may still be beneficial.

However, these data can also be compared with the local model dis-
cussed in section 6.2. In that case the data available for training were also
being limited. In this scenario the results are higher than with the local
model. So if within the same medical centre, the data cannot be freely
shared across the whole centre and has to be divided for example by doctors,
this approach is certainly better, allowing better results to be obtained by
limiting the data sharing.

Table 5 shows the best results obtained for each of the setups for the
Biovid database.

Number of users 3 epochs 4 epochs 5 epochs 6 epochs

4 0,54 0,54 0,53 0,55
6 0,57 0,5 0,56 0,55
48 0,53 0,55 0,52 0,52

Table 5. Model Performance on Biovid database
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The best result is obtained when users are divided into 6 groups and
after 3 epochs. The f1 score in this case is 0,57. This result is a slightly lower
than when using the centralised model (f1 score 0,59), but the difference is
not significant. In this case it is definitely worth the privacy gained compared
to the performance lost.

Moreover, if local models are once more taken into account, this is an-
other added advantage. Again, if data could not be shared freely within a
medical centre, individual patients would still benefit from this setup. Fur-
thermore, looking at the setup where each patient has been added to a single
user group, the accuracy has hardly decreased (f1 score 0.55) compared to
the centralised model (f1 score 0,59) or the federated model with 6 patients
per user (fl score 0,57). In this case the data for each patient has remained
separate from the rest offering a high level of privacy for each patient without
decreasing the predictive capacity of the model.

Once again, to make this data more explainable, a heatmap has been
obtained to identify the regions on which the model has focused to make de-
cisions. Figure 14.a shows a case where the heatmap has correctly focused on
the significant regions and has made a correct prediction. In figure 14.b, an
example is shown in which the attention has been drawn to a other regions
or ignored some key ones and therefore the prediction is incorrect.

True Label: 0, Predicted: O True Label: 1, Predicted: 0
0

20

40

60

80

100

o 20 40 60 80 100

(a) Heatmap focused on relevant regions (b) Heatmap not focused on relevant regions

Figure 14. Heatmap obtained from the centralized model

Figure 15 shows the overall heatmap obtained with the federated model.
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Figure 15. Overall heatmap of Federated Model
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In this case, in contrast to the centralized model, the focus is primarily
on relevant facial regions, disregarding the off-face area. This indicates a
more effective learning process. However, when examining the Action Units
used to identify pain expressions [93] (specifically, AU4: brow-lowering, AUG:
cheek-raising, AU7: eyelid tightening, AU9: nose wrinkling, AU10: upper-lip
raising, and AU43: eye-closure), they appear less pronounced here, especially
those related to the eye region (AU4, AU7, and AU43). On the other hand,
AU9 and AU10, which had less significance in the heatmap from the central-
ized model, have more weight in this case.

6.4 Federated learning model with two databases

The Federated learning model has been executed using an early stop-
ping mechanism to determine the optimal number of epochs. In this case it
has been observed that after 5 epochs, learning does not improve. In order
to compare the results with the centralised model, the CNN architecture de-
scribed in section 5.2.1 has been used, and the rest of the parameters have
also been maintained for the same reason.

Table 6 shows the results obtained. In this case, only two users have

been used, so that each database has been assigned to a single user group
without the data being mixed between them.
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UNBC Biovid
Fold 1 0,53 0,59
Fold 2 0,61 0,55
Fold 3 0,44 0,61
Fold 4 0,66 0,49
Fold 5 0,58 0,54
Average 0,56 0,56

Table 6. Model Performance on both databases

The results show an average f1 score of 0.56 for both databases. In the
case of UNBC, the results are worse compared to the centralised model (f1
score 0.64) but in the case of Biovid the difference in performance is not so
large (f1 score 0.59). These results are in line with expectations, since not
all data is available a drop in performance was expected.

However, looking again at the results of the local model, this process is
still beneficial. In a potential scenario where complete data from a medical
center is not accessible, but a portion wishes to contribute to a global model
for enhanced predictions, segments of data from various medical centers can
be combined to improve overall results.

6.5 Federated learning model with differential privacy

Within this scenario, the most complex issue is to find the best balance
between adding enough noise so that the data remains as private as possible
while making the model as accurate as possible.

In the literature there is no consensus on particular values for the gra-
dient clipping and the privacy budget [69][71]. The best values should be
found through experimentation but, by default, some experiments take as a
starting point a gradient clipping of '1” and privacy budget '1’. That is why
in this study this value has been used as a starting point and then other tests
have been carried out with different values. However, it should be noted that
with values in this range no significant differences have been obtained.

There have been two rounds of experiments. First, a fixed value of
noise has been added to the gradients to test their effect. The noise values
varied between 0.01 and 2. After adding a noise of 2, the accuracy drops
regardless of the other parameters. With lower noise and values of gradient
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clipping and the privacy budget between 0 and 1, the values are very similar.
However, it still achieves reasonably good values considering that extra noise
is being added. So for certain tasks it could be a trade off that could be
assumed.

Table 7 show the results obtained. This table show the different experiments
carried out with trying different parameters.

Noise Gradient Clipping F1 Biovid F1 UNBC

0.01 1 0,52 0,51
0.5 1 0,45 0,47
1 1 0,31 0,45
1 0,5 0,37 0,45
1 0,19 0,37

Table 7. Model Performance with Differential Privacy

Initially a very low noise level (0.01) has been used to determine how
it changes in this case. The results show that the accuracy drops slightly but
not significantly. Subsequently a much higher noise level (2) has been added.
In this case the accuracy dropped significantly. This is why the following
experiments took place with values in this range.

In a second round of experiments, the noise has been calculated dy-
namically based on the gradient clipping and the privacy budget [105]. The
noise values vary between 0,25 and 1.99 depending on the Gradient Clipping
and the Privacy Budget. Since the noise range is the same as when it was a
fixed value, the results obtained are also very similar.

Table 8 shows the results obtained.

Noise Gradient Clipping Privacy Budge F1 Biovid F1 UNBC

0,96 - 1.96 1 0,5 0,29 0,41
1,05 - 1.99 1 1 0,39 0,41
0,51 - 0,97 0,5 0,5 0,36 0,45
0,25 - 0,47 0,5 1 0,45 0,46

Table 8. Model Performance with Differential Privacy

The experiments have been conducted with varying values of gradient
clipping, ranging from 0.5 to 1, and privacy budget, ranging also from 0.5 to
1. As the results obtained are very similar to the previous experiments, no
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further experiments have been carried out.The results indicate that a higher
privacy budget corresponds to a lower addition of noise, which translates into
lower privacy guarantees.

Alternatively, a lower privacy budget leads to more noise being added,
which improves privacy protection. Gradient clipping limits the magnitude
of the gradients during training, primarily to mitigate the exploding gradient
problem. While gradient clipping itself does not directly dictate the amount
of noise added, it can indirectly influence noise levels by affecting sensitivity
calculations. From the results, it can be seen that higher gradient clipping
values result in more noise being added to the gradients.

These two rounds of experiments show relatively low F1 score values.
Only in the case where the noise is set to 0.01 the result does not drop
as much. So, as expected, there is indeed a trade off between performance
and privacy. Furthermore, as discussed in other sections the data is very
unbalanced so it is possible that the results are better than expected as the
model has a tendency to classify according to the dominant class.

6.6 Summary of the results

In this study, the goal has been to investigate the suitability of federated
learning to improve the performance of automated pain detection systems.
A summary of the results obtained is shown in Table 9.

UNBC Biovid
Centralised model 0,64 0,59
Local models 0,50 0,50
Federated (1DB) 0,60 0,57
Federated (2DB) 0,56 0,56
Federated (DP) 0,52 0,51

Table 9. Summary of the results obtained
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Table 9 shows that the best result is obtained by the centralized model
for both the UNBC and Biovid databases; however, the federated model with
one or two databases obtains better results than the local models, which
reinforces the idea that more data generally obtain better results. While the
model with differential privacy does not exhibit notably inferior performance,
this result shows the case with less noise added, as the noise or privacy budget

increases the results drop drastically. For more detailed data see Table 7 and
Table 8.

7 Discussion and Conclusion

The subsequent analysis delves into a detailed exploration of the re-
search questions and their corresponding findings according to the results
shown in Table 9.

1. When a single database is used, how does the model trained using fed-
erated learning compare to centralized and local models?

Intuitively, centralised learning is expected to outperform federated
learning approaches. Centralised learning works with a consolidated
dataset, allowing for more thorough model training and optimisation
compared to federated learning, which relies on decentralised data
sources with limited access to global information. However, the lit-
erature presents mixed results [65] on the comparative performance of
centralised and federated learning.

Some experiments show that federated learning outperforms centralised
approaches [66][106], while others show the opposite [107] [I08]. This
lack of consensus underlines the complexity of the comparison and the
influence of various factors on model performance.

The disparity in performance between centralised and federated learn-
ing can be due to several factors such as the characteristics of the
dataset and the model architectures used. In particular, it is shown in
the literature that smaller databases tend to favour centralised learning
[107].

In addition, the balance of the data distribution within the dataset
plays an important role, as more balanced datasets tend to give better

49



results with federated learning [T07][I09]. In this case the data is con-
siderably unbalanced to the benefit of the “no pain” label, so this may
have affected the results.

This research shows that centralized learning exhibited superior per-
formance for both the UNBC and BioVid databases compared to the
federated learning model (For UNBC, F1 score of 0,64 for centralized
model compared to F1 score of 0,64 for federated learning model. For
Biovid, F1 score of 0,59 for centralized model compared to F1 score of
0,57 for federated learning model).

The difference in performance has been more pronounced for the UNBC
database, which is considerably smaller compared to the BioVid dataset.
This discrepancy can be attributed to the limited size of the UNBC
dataset, which inherently restricts the effectiveness of federated learn-
ing. Furthermore, the unbalanced nature of the data may have ex-
acerbated the performance gap, as federated learning thrives on more
evenly distributed data.

Regarding the local models, compared to the centralized and the fed-
erated model with a single database, it can be seen that both the
centralized and the federated models obtain better results.

The local models achieved an F1-score of 0.5 for both databases. In
contrast, the centralized model obtained an F1-score of 0.64 for UNBC
and 0.59 for Biovid. Furthermore, the federated model with a single
database obtained an F1-score of 0.6 for UNBC and 0.57 for Biovid.

In both cases, it is demonstrated that having access to a larger number
of data helps to improve performance. For both local model (Section
5.2.2) and federated learning model (Section 5.2.3), the data remained
private at the individual level or within small groups of patients.

However, the federated learning framework, which divides the data into
user groups, allows for more personalized model training while preserv-
ing data privacy. As a result, federated learning outperforms local
approaches in this scenario, offering improved performance at the indi-
vidual level.
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The advantages of federated learning become particularly evident in
organizations where not all data can be freely shared across the entire
organization.

As demonstrated in Table 9, the performance of federated learning
models surpasses that of local models when data availability is limited
within a medical center. By dividing the data into smaller groups,
such as by doctors or patient groups, federated learning enables effec-
tive model training while respecting data privacy constraints.

This approach allows organizations to leverage their data more effi-
ciently, obtaining better results while minimizing the need for extensive
data sharing across the organization.

. How do the models trained using multiple databases (UNBC and BioVid)
in a federated learning setup compare to the centralized models trained
on these models separately?

In evaluating the performance of models trained using multiple databases
(UNBC and BioVid) within a federated learning framework against
centralized models trained separately on each database, some key ob-
servations can be made.

Firstly, the centralized model exhibits superior performance compared
to the federated model utilizing both databases. Specifically, the cen-
tralized model achieves an F1l-score of 0.64 for UNBC and 0.59 for
Biovid, surpassing the corresponding scores of the federated model with
two databases, which are 0.56 and 0.56, respectively.

The federated model with a single database obtains higher F1-scores
compared to the federated model with two databases. For instance, for
UNBC, the federated model with one database achieves an F1-score of
0.60, outperforming the federated model with two databases (F1-score
of 0.56). Similarly, for BioVid, the Fl-score of the federated model
with one database (0.57) surpasses that of the federated model with
two databases (0.56).
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Despite the advantage of centralized models in terms of overall perfor-
mance, it’s important to note that federated learning with two databases
still outperforms local models (F1-score of 0,5 for both databases). This
suggests that while centralized models may offer higher performance,
federated learning facilitates better utilization of data resources com-
pared to local models.

This becomes particularly relevant when considering the practical ap-
plication of such models in real-world scenarios. For example, in a
healthcare environment, where different departments or units within a
hospital may have varying degrees of willingness or ability to collabo-
rate, federated learning offers a flexible solution. Rather than requiring
centralization of data from all units, which can pose logistical or pri-
vacy issues, federated learning enables collaboration between specific
units, departments or medical centers while preserving data privacy.

This means that even if only some parts of a medical center decide
to collaborate with other parts of another medical center, federated
learning can still be applied effectively. This decentralized approach
not only improves the scalability and efficiency of model learning, but
also ensures compliance with data privacy regulations and addresses
potential data privacy concerns.

. How does performance vary when using differential privacy in the mod-
els compared to a less private model?

When incorporating differential privacy into models, a key consider-
ation is how performance varies compared to less private models. It
was anticipated that privacy-preserving techniques, by introducing ad-
ditional noise, might lead to lower performance [69][71]. Furthermore,
as discussed in Section 6.5, the results could have been influenced by
data imbalance and the model’s tendency to favor the dominant class.

When examining the performance variation associated with the incor-
poration of differential privacy (DP) into the models, the results from
the Table 9 shows the impact of privacy-preserving techniques. The
introduction of differential privacy with the least noise leads to a slight
decrease in performance compared to the non-private federated models.

Specifically, for the UNBC database, the Fl-score decreases to 0.52,

52



while for the Biovid database, it decreases to 0.51. As mentioned in
the results section this result shows the case with less noise added, as
the noise or privacy budget increases the results drop drastically.

Interestingly, the decrease in performance with very low noise levels is
not significantly pronounced. This suggests that, in scenarios where pri-
vacy is very important, adding minimal noise may be a viable strategy
to improve privacy without substantially compromising performance.

The decision to balance privacy with performance is context dependent
and should be studied on a case-by-case basis. Through iterative ex-
perimentation, models can be adapted to achieve the optimal balance
between privacy preservation and performance optimization.

In summary, this thesis has investigated the performance of centralized,
federated and local models in the context of medical data analysis. The re-
sults show that while centralized models show superior overall performance,
federated learning offers a flexible and efficient solution, especially in scenar-
ios where data sharing is restricted or privacy is paramount.

Furthermore, it has been observed that federated learning with mul-
tiple databases can outperform local models, highlighting the potential of
federated approaches to effectively leverage distributed data resources.

Furthermore, the exploration of differential privacy revealed that al-
though the incorporation of privacy-preserving techniques may result in a
slight decrease in performance, the impact is relatively small, especially with
minimal noise levels. This suggests that differential privacy can be a valuable
tool for improving data privacy without significantly compromising model
performance.

Overall, the study underscores the importance of considering various
factors, such as data distribution, model architecture, and privacy require-
ments, when designing and implementing machine learning models for health-
care applications. By carefully balancing performance and privacy consider-
ations, organizations can develop robust and effective models that meet both
technical and ethical standards.
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8 Limitations and Future work

In future work, it would be beneficial to explore alternative federated
learning techniques beyond the conventional federated averaging approach
such as federated transfer learning [60], federated reinforcement [62] or fed-
erated proximal [64] which offer promising avenues for improving model per-
formance and convergence in decentralized environments [I10]. Investigating
these techniques could provide insights into novel approaches for federated
learning across diverse application domains.

Although two databases have been used in this study, it would be in-
teresting to use more to see how this affects the results and make the models
more generalisable. Intuitively it can be said that the more databases there
are, the more likely it is that the model will be able to make better predic-
tions. So future work could do these same experiments using more databases.

Addressing the challenge of unbalanced data distribution within fed-
erated learning settings is important for improving model performance and
fairness. Future research efforts could focus on developing robust techniques
for managing unbalanced data, such as data re-sampling, class weighting,
or specialized loss functions. These techniques could mitigate the impact of
data imbalances on model training and ensure equitable representation of all
classes or categories.

Finally, further research should be done on other methods of enhancing
the privacy of the models. This could entail further exploration of differen-
tial privacy, investigating alternative privacy mechanisms beyond Gaussian
noise addition, and exploring innovative approaches like collaborative learn-
ing [IT1][112]. By exploring these alternative privacy techniques and compar-
ing their effectiveness in federated learning settings, research can contribute
to the development of more robust and privacy-preserving machine learning
solutions.
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