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Abstract

This work explores the interaction between pragmatic reasoning and concept learn-

ing. Specifically, it examines how reasoning about a speaker’s intentions influences

concept learning, as well as how learners’ beliefs about the meanings of novel words

interact when those words are known to have distinct meanings.

The study comprises an experiment where participants learn two concepts simul-

taneously, involving the elicitation of conversational implicatures. The experimental

results are then used to fit cognitive models.

The model for pragmatics being used is the Lexical Uncertainty Model, which is

based on the Rational Speech Act framework. This is a Bayesian model, where

hypotheses about concept meanings need to be clearly defined in order to evaluate

whether experimental observations (such as seeing trials’ feedback) support them.

This is where Languages of Thought prove useful, as they account for concepts be-

ing realized through compositions of symbols, thereby allowing hypotheses about

concept meanings to be represented as logical expressions.

The experimental results provide no clear indication that participants engage

in conversational implicatures, whereas the cognitive models including pragmatic

reasoning do not exhibit a significantly better fit with the experimental data.

Nevertheless, these results should be considered preliminary, as the participant pool

was very limited, and individuals capable of the required pragmatic reasoning for

this task are uncommon. Furthermore, there is still a vast margin of improvement

on the methodologies, given the complexity of the study.
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1 Introduction

When we encounter an expression in a language that we are learning, we need

to understand both the speaker’s intended message and the inherent meanings of

the words used. Ignorance on word meanings introduces complexity in inferring

the intended message, which may diverge from what is expressed by the literal

meaning of the sentences involved. Knowing the meaning of words is thus helpful in

deciphering the intended message. Conversely, understanding the intended message

aids in grasping the meaning of words (Frank et al., 2009). Consider for example the

sentence “please, hand me the umbrella”. If the meaning of “umbrella” is unknown

to the listener, understanding the intended message becomes challenging. However,

if the listener is aware that it is currently raining, the speaker is heading outside,

and they always use an umbrella in the rain, the listener can infer the intended

meaning of the message and use it to conclude what ”umbrella” means. Conversely,

a listener who knows the meaning of all the words used in the example sentence

but is unaware of the speaker’s intentions might infer that the speaker is heading

outside in the rain.

In this project, I investigate how reasoning on the intentions of the speaker (which

is encompassed in pragmatic reasoning) impacts the learning of new concepts, repre-

sented as unknown words. Furthermore, I explore how the beliefs that the learners

hold about the meanings of novel concepts being learnt interact with each other

when it is known that such concepts do not share the same meaning.

To achieve these goals, I ran an experiment with human participants, in which they

learn the meaning of two unknown concepts. Subsequently, I ran cognitive models

and investigated how they fit the experimental results. This means that I created

artificial agents grounded in pragmatics theory and the hypotheses under exami-

nation and had them perform the experiment. In this way, I could evaluate their

performance against human participants. In this scenario, cognitive models allow

for explicitly testing hypotheses and making well-informed predictions. Further-

more, I could investigate the performance of existing models in this particular task,
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gauging their ability to generalize to this particular case. The models which I used

are Bayesian models, which are probabilistic models employing Bayes’ theorem to

update the probability of hypotheses based on observed data, such as the feedback

to previous trials.

In the remainder of this document, background information on the relevant sub-

jects will be provided (see Chapter 2). This will include a concise overview of

cognitive modeling (Section 2.1), the Language of Thought (Section 2.2) and prag-

matics (Section 2.3). More specific background on the cognitive models relevant

for this work is then provided in Chapter 3. This includes a discussion on models

for concept learning (Section 3.1) and pragmatics (Section 3.2). Chapter 4.1 will

then describe in more details what the aim of the current task is and will give an

overview on the experiment (Section 4.1) and the cognitive models implemented for

this study (Section 4.2). Chapter 5 reports and comments on the results of the

experiment and the cognitive models. Eventually, a final discussion of the results,

potential improvements, and the limitations of the current approach is presented in

Chapter 6. This chapter also explores the implications of this study in the field of

Artificial Intelligence.

The implementations of the experiment, the cognitive models, the code for the

data analysis and the input files can be found at the following link: https://

github.com/lpavan98/Master-s-thesis-material.
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2 General Background

This chapter provides an overview of the key general background topics relevant to

the current study: cognitive modeling, discussed in Section 2.1; the Language of

Thought, covered in Section 2.2; and pragmatic reasoning, with a focus on Gricean

pragmatics, presented in Section 2.3.

2.1 Cognitive Modeling

This section briefly introduces cognitive modeling. For a more comprehensive dis-

cussion, please refer to (Sun, 2008).

Many fields benefit from the ability to predict human behavior. In economics,

understanding the choices made by decision-makers under specific conditions is of

great importance. In artificial intelligence, one could be interested in building agents

that can either mimic human behavior in specific tasks or predict human actions

to provide assistance when they deem that help is needed, such as in the case of

tutoring agents. In psychology, researchers may want to explore how people react

to various stimuli while driving, but running experiments with human participants

would be infeasible as it could result in them being harmed. While these examples

are by no means comprehensive, they show already the vital role of predicting hu-

man behavior, which is a central focus of cognitive modeling.

Cognitive modeling is in fact the field that aims at predicting human behavior or

emulating cognitive processes through the creation of mathematical and computa-

tional models. The emphasis on the emulation of cognitive processes underscores the

broader scope of cognitive modeling, which extends beyond practical applications

and prediction: it also serves theoretical purposes.

Cognitive modeling can in fact be used to compare different theories in cognitive

science. Researchers can for instance use cognitive models grounded in theoretical

frameworks (top-down) in order to contribute to the validation of theories and hy-

potheses. The models can be based on different theories and hypotheses, and the

3



researchers could be interested in which of the models better predict human per-

formance. In order to accomplish this, experiments involving human participants

are run, or the results of previously conducted experiments are accessed. The re-

searchers then look at how well the models fit the experimental results, hence having

a basis to argue which theories best explain them.

2.2 The Language of Thought

The language of thought hypothesis, proposing that thinking occurs in a mental

language (often called Mentalese), has roots in the medieval era, but became promi-

nent only centuries later, mainly thanks to the work of Fodor (Rescorla, 2023; Fodor,

1975).

The Language of Thought (LOT) accounts for concepts being realized through a

composition of symbols, which means that Mentalese is compositional. Let us con-

sider an example based on the one discussed by Piantadosi and Jacobs in “Four

problems solved by the probabilistic language of thought”, where we define the con-

cept nephew (2016, p. 54). In order to define this concept compositionally, we will

need to utilize other concepts and operations. A viable option is to use the opera-

tions parent and sibling, the existential quantifier, the logical conjunction and the

free variables x, y, z. We would then have:

NEPHEW (x, y) := ∃z.PARENT (z, x) ∧ SIBLING(y, z)

Each operation can thus be either reduced to others, as seen in the previous exam-

ple, or it can be a primitive. Primitives are innate operations, and assuming their

existence is necessary to account for the capability to compute any operation that

is not a primitive itself. Given a limited set of Mentalese symbols, along with op-

erations for combining simple expressions into more complex ones, it is possible to

repeatedly apply these operations, generating an infinite variety of mental sentences;

this aligns with the idea of the productive nature of thought (Rescorla, 2023).

The LOT also accounts for systematicity of thinking. To grasp the main idea as

to why this is the case, consider that, according to the LOT, operations are per-

formed over symbols, and the inference pattern that these operations perform can

be applied uniformly to any set of premises that possess the correct logical structure

(Rescorla, 2023).
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The fact that the LOT naturally accounts for the productivity and compositional-

ity of thinking is seen as an argument for the LOT hypothesis (Rescorla, 2023). The

LOT allows to model these phenomena while making use of symbols, which is an

argument for its suitability of usage in cognitive modeling. In particular, this makes

the LOT especially useful to build symbolic models. It is however important to no-

tice that the LOT is not solely confined to purely symbolic models: a probabilistic

LOT can be used to build models that exploit both the symbolic and the statisti-

cal approaches to cognitive modeling by integrating rule-based representations with

Bayesian probabilistic inference (Piantadosi and Jacobs, 2016).

2.3 Pragmatics

In this section, I will first give an overview of the field of pragmatics. Then, I will

introduce Gricean pragmatic reasoning (Section 2.3.1). Finally, in Section 2.3.2, I

will focus on conversational implicatures, and, specifically, on quantity implicatures

and manner implicatures.

Since I delve into a more detailed overview of Grice’s theoretical framework, I will

continue to utilize Gricean terminology throughout the remainder of this document.

However, please note that the ideas which I discuss and the work that I am under-

taking do not hinge on the particular formulation of Grice.

For a more in depth discussion on the topics presented in this section, please consult

(Korta and Perry, 2020), which is the main source for this segment.

Pragmatics is the field in linguistics that deals with how people communicate and

understand what goes beyond the literal meaning of linguistic expressions. This

field can be divided in two major categories: near-side and far-side pragmatics.

Near-side pragmatics focuses on facts about the utterances that are important

in establishing the content of linguistic expressions. Topics within this domain

encompass resolution of ambiguity and vagueness, as well as the reference of proper

names. For example, in order to understand to whom a proper name or pronoun is

referred, one has to think about the state of the world in which the communication

happens. In this way, one goes beyond the literal meaning of linguistic expressions,

which is a matter addressed in semantics.

Far-side pragmatics, conversely, deals with the communication that, despite not

being expressed at all in linguistic expressions, is conveyed by them. Suppose for

example that we are going out together and I tell you “it will be better to bring an
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umbrella”. By this you will not only understand the literal meaning of the sentence

which I uttered: you will also understand that it is raining, or that I find likely that

it will rain during the time interval which we will spend outside. The way in which

this implicated meaning is perceived is a matter addressed in far-side pragmatics,

whereas near-side pragmatics, in the specific case of the example above, would deal

with the information on who the “I” in the sentence is referred to.

Since far-side pragmatics is the branch of pragmatics that is relevant in my work, I

will expand on it. Furthermore, when using the words “pragmatics” or “pragmatic

reasoning” in the remainder of this paper, I will be referring to far-side pragmatics.

2.3.1 Introduction to Gricean Pragmatic Reasoning

One of the most important figures for the advancement of pragmatics is Herbert

Paul Grice. The influence of Grice’s work led in fact to the development of neo-

Gricean accounts, such as (Clark, 1996) and (Levinson, 2000), which still hold a

prominent position within the field. Grice distinguished between the literal meaning

of linguistic expressions and what is implied by them, and focused on communication

between cooperative agents. He proposed in fact the Cooperative Principle:

Make your conversational contribution such as is required, at the stage at

which it occurs, by the accepted purpose or direction of the talk exchange

in which you are engaged (Grice, 1975, p. 45).

Those who follow the Cooperative Principle are expected to follow rational maxims

in order to make the communication more efficient. Such maxims, which appear in

the same work where the Cooperative Principle is originally defined (Grice, 1975),

are (in their original form) the following:

1. Quantity:

� Make your contribution as informative as is required (for the current

purposes of the exchange).

� Do not make your contribution more informative than is required.

2. Quality:

� Supermaxim: try to make your contribution one that is true.

� Submaxims:

– Do not say what you believe to be false.
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– Do not say that for which you lack adequate evidence.

3. Relation:

� Be relevant.

4. Manner:

� Supermaxim: be perspicuous.

� Submaxims:

– Avoid obscurity of expression.

– Avoid ambiguity.

– Be brief (avoid unnecessary prolixity).

– Be orderly.

Understanding the notion of alternatives is of paramount importance in order to

comprehend Gricean pragmatic reasoning. Therefore, I will proceed to provide a

brief overview of this topic.

Alternatives

There are always more ways to convey the same meaning by using different linguistic

expressions, and please note that the word “always” is not excessively strong here,

given the productive nature of natural language. In the Gricean framework, it

is common to reason about alternative utterances, following the intuition that if a

speaker has various ways to communicate a message and they formulate the message

in a specific way, it might imply something about what they wanted to communicate.

Given the importance of alternatives in the field of linguistics, the emergence of

theories of alternatives is not surprising. Such theories are concerned with “where

alternatives come from, what constrains which alternatives are considered for a

particular sentence, and what operations can be performed on those alternatives”

(Gotzner and Romoli, 2022, p. 214).

2.3.2 Conversational Implicatures

When people converse as cooperative agents, they are expected to follow the con-

versational maxims, i.e., to be relevant, truthful in what they say and so on. When

the uttered sentence seems to violate a maxim, the listener or reader is required to
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make inferences in order to maintain the assumption that the interlocutor follows

the Cooperative Principle. Such inferences are called conversational implicatures.

In the remainder of this section, I delve into two types of implicatures. I first

explore quantity implicatures (Q-implicatures), which arise when speakers appar-

ently violate the maxim of quantity. Following that, I discuss manner implicatures

(M-implicatures), i.e., implicatures in which listeners engage when a speaker seems

to violate the maxim of manner.

Quantity Implicatures

Let us consider an example in which the speaker says “I read most of those books”.

A speaker that read all the books in question could have chosen to use the word

“most” as well of “all” without saying anything false. In fact, saying “most” to

mean all is not at odds with the semantic meaning of “most”.

Nevertheless, if the speaker read all the books and used the word “most” rather than

“all”, they would have picked a less informative alternative. If the speaker wanted

the listener to promptly understand the meaning of the utterance, i.e. if the speaker

follows the Cooperative Principle, it would make sense to pick the most informative

alternative instead, acting according to the maxim of Quantity. Thus, the pragmatic

listener hearing the example sentence with “most” would infer that the speaker did

not have the option to use the word “all”, as doing so would result in the content

of the sentence being false. That is to say, the listener would infer that the speaker

did not read all the books in question, thus making a Q-implicature. Specifically,

they would make a scalar implicature, i.e., a Q-implicature in which “we can use

lexical substitution to generate the relevant alternatives from the sentence uttered”

(Geurts, 2010, p. 49). Therefore, when a speaker uses the word “most”, it likely

means “most but not all”.

Manner Implicatures

While a lot of work on theories of alternatives for scalar implicatures has been car-

ried, that is not the case for all domains. For example, there are not so many

studies on the domain of M-implicatures, i.e., implicatures based on violations of

the Gricean maxim of manner.

Among the most studied type of M-implicatures there are instances where the literal

meaning is expressed in a convoluted manner when a simpler expression is feasible.
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An iconic example of this kind of implicatures originally presented by Horn in “To-

ward a new taxonomy for pragmatic inference: Q-based and R-based implicature”

(1984, p. 27) is the following:

Black Bart killed the sheriff.

Black Bart caused the sheriff to die.

Despite both sentences conveying the same literal meaning, they are often inter-

preted differently: on the one hand, when presented with the second sentence, peo-

ple tend to perceive that Black Bart caused the sheriff’s death in a non-stereotypical

way. On the other hand, the first sentence is more likely to be interpreted as Black

Bart killing the sheriff in a stereotypical fashion.

In the Gricean framework this can be explained in terms of the second sentence

causing an M-implicature: since the message was not expressed as briefly and sim-

ply as it could have been, the speaker did not want to convey the same meaning

that they could have conveyed by using the first example sentence.
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3 Relevant Cognitive Models for this

Work

Utilizing computational models in linguistics is a well established practice, exem-

plified by seminal works on the emergence of language. Computational models

can in fact foster explicitness in formulating explanations, show how explanations

work and help exploration guiding to the formulation of new theories (Kirby and

Hurford, 2002; Christiansen and Kirby, 2003). More recently, probabilistic models

have gained significant popularity in the field of linguistics, a trend exemplified by

the growing interest in and adoption of Bayesian models for pragmatics and word

learning, as evidenced by the influential works of Frank and Goodman (2012) and

Tenenbaum and Xu (2002).

In this chapter, I will discuss relevant models in these domains, beginning with

concept learning (Section 3.1), and then moving to pragmatics (Section 3.2).

3.1 Modeling Concept Learning

In the realm of cognitive modeling, concept learning stands out as a domain where

the advantage of the Language of Thought (LOT) providing without additional cost

compositionality and productivity is highly appealing, as conceptual systems surpass

collections of examples, thus necessitating a compositional approach (Piantadosi and

Jacobs, 2016; Piantadosi et al., 2016). Moreover, some concepts are defined by logical

rules. I will provide a few illustrative examples, drawn from the work of Piantadosi

et al., where this is discussed more in details (2016, p. 395). Two trivial examples of

domains where concepts are rigorously defined by logical rules are mathematics and

taxonomies. However, in natural language there are also plenty of examples: there

can be words used to express logical relations, such as, for instance, quantifiers or

conjunctions.

Modeling concept also benefits from the adoption of a probabilistic framework, as
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illustrated in the influential study by Tenenbaum and Xu titled “Word learning as

Bayesian inference” (2002). In this work, the authors report how Bayesian models

for the learning of single words could fit experimental data obtained by both children

and adult participants. The mathematical model at the basis of the computational

cognitive model is quite simple. Among its basic elements we have an unknown

concept C, a hypotheses space H with elements h ∈ H that are candidate possible

concepts for C and a set of observed examples X. Given the examples X, the

model systematically assesses each potential hypothesis h regarding candidate word

meanings. This evaluation is carried out through the application of Bayes’ theorem.

What is computed is thus the posterior probability for a hypothesis h (p(h|X)), as:

p(h|X) =
p(X|h) · p(h)

p(X)

In order to employ this Bayesian approach, the authors needed to delineate the hy-

potheses. While one could manually define the hypothesis space, such an approach

would introduce free parameters within the model. The authors thus opted for

a structured hypothesis space consisting in a taxonomy of nested categories, con-

structed through hierarchical clustering on similarity rankings provided by human

participants. Hypotheses could then be simply mapped to clusters.

The preceding discussion makes it trivial for the discerning reader to understand

how LOT is well suited to be used within a Bayesian framework. Hypotheses can in

fact be represented as LOT expressions. This will be further discussed in the next

section (3.1.1), where a specific model of importance for this project is talked about.

Models that amalgamate Bayesian induction with compositional representation sys-

tems, such as Languages of Thought (LOTs), can harness the strengths of both

approaches, enabling them to account for the fuzziness of human concepts and for

the human simplicity preference in categorization when learning concepts (Pianta-

dosi and Jacobs, 2016; Piantadosi et al., 2016).

3.1.1 Concept Learning Study by Piantadosi et al.

In “The logical primitives of thought: Empirical foundations for compositional cog-

nitive models”, Piantadosi et al. show how they modeled the learning of a concept

novel to participants through Bayesian cognitive modeling based on LOTs and pro-

pose that any set of primitives and rules for combination can be seen as a scientific

hypothesis (2016). Each LOT utilized in the study is in fact viewed as a hypothesis.
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The LOTs investigated include for instance a language allowing only expressions in

conjunctive normal form, one which they called SimpleBoolean, using and, or and

not, and FullBoolean, which extends SimpleBoolean by adding logical implication

and biconditional.

The study takes the human bias for representational simplicity as a foundational

principle. Since different LOTs assess simplicity in distinct manners, the simplicity

bias allows to make predictions about the expectations of each LOT. Simulations are

then run for each LOT, and the results thereof are compared with the results of an

experiment run with human participants. It can thus be observed how well the mod-

els fit the experimental data and see which LOT better predicts the experimental

results.

In the experiment, participants were provided with the task of discovering the

meaning of “wudsy”, a word in an alien language. In each trial, three items were

presented to participants. Such items were squares, circles or triangles of one of

three sizes and colors each. In each trial, participants had to select all items which

they thought were wudsy. The correct answer to the trial was unveiled after the

participants made their selection, and what was discovered about the extension of

wudsy remained on screen until the end of the task.

The choice of a sequential learning paradigm allowed for the definition of learning

curves and patterns of mistakes, which were correctly predicted by the models. In

fact, the models could also emulate participants by reaching a point in their learning

after which they were accurate for the rest of the task.

The probabilities of primitives and operations for each LOT were inferred from the

data. The LOT that could fit human data the best when no quantifier is used

in definying wudsy is FullBoolean. It is noteworthy that FullBoolean has two low

probability operations, as Piantadosi et al. inferred from the data: the logical

entailment and the biconditional. Thanks to these two operations, FullBoolean

performs better than SimpleBoolean, which employs the same operations apart for

these two. This speaks against excluding low probability operations from grammars.

3.2 Modeling Pragmatics

Efforts to model Gricean pragmatic reasoning have manifested in various approaches.

In this section, two of the most prominent frameworks in this realm are discussed:

the Rational Speech Act and game theoretic approaches. The reason why I focus on
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these approaches is that they can be extended to not only account for the extensively

researched Q-implicatures, but also for M-implicatures in the form discussed in

Section 2.3, even in one-shot trials without any learning required.

In the remainder of this section, I will start by giving a brief overview of the

game theoretic framework (Section 3.2.1). Then, I will discuss the Rational Speech

Act framework (Section 3.2.2) and, finally, the Lexical Uncertainty Model (Section

3.2.3).

3.2.1 Game Theoretic Framework

Game theory provides tools to mathematically model how rational agents take de-

cisions that seek to maximize their utility, based on the decisions that other agents

could take. Since pragmatic reasoners are rational agents, game theory can be ap-

plied in pragmatics to model the behavior of conversational agents. In such scenarios,

the agents involved in the game could be speakers and listeners, with the speakers

that need to choose among possible utterances to send and the listeners that reason

about how to interpret the received utterances. When modeling Gricean reason-

ing, it is necessary to assume that the agents, i.e., the interlocutors, are cooperative.

Therefore, they will both aim for the listener to arrive at the interpretation intended

by the speaker. The advantage of utilizing game theory in modeling pragmatic rea-

soining is that it provides a framework to represent, analyze, and find solutions for

communication problems (Benz and Stevens, 2018).

In the rest of this section, I will briefly introduce one such model that employs

game theory to capture Gricean pragmatic reasoning, the Iterated Quantal Response

model (Franke and Jäger, 2014). I will not delve into the field of game theory or

elaborate on its applications in other pragmatics models, as it is not pertinent to

the current work. For an introduction to game theory, you can refer to (Shoham

and Leyton-Brown, 2008) or to the more classical work in the field represented

by the book “Games and Decisions: Introduction and Critical Survey” (Luce and

Raiffa, 1957). For more information on the applications in pragmatics, see (Benz

and Stevens, 2018).

The Iterated Quantal Response Model

Equilibria in the linguistic exchange are found by The Iterated Quantal Response

(IQR) by modeling agents that iteratively reason about each other. This model does
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not predict that interlocutors always take the best action, as it is probabilistic. This

contributes in making the IQR model more plausible, as it better explains behavioral

data from psycholinguistic experiments (Franke and Jäger, 2014).

The reason why the IQR model holds significance for my work is that it can be

extended to account for M-implicatures of the type discussed in Section 2.3.1, with

Horn’s example in that section serving as an illustration. In order for agents to be

more likely to engage in M-implicatures than not, it must however be assumed that

if they do not have at their disposal any action leading to a high reward, they are

more likely to take actions with lower payoffs, thus engaging in exploratory behavior

(Franke and Jäger, 2014).

3.2.2 Rational Speech Act Framework

The Rational Speech Act (RSA) framework utilizes Bayesian update to model prag-

matic reasoning as a process of recursive social reasoning (Frank and Goodman,

2012). In the RSA, in fact, listeners take into account the speakers’ reasoning about

the choice of a particular message among alternatives. Similarly, speakers can base

their decisions on their assumptions about the reasoning of listeners. For a more

detailed explanation of recursive social reasoning, please refer to the next section,

which is exclusively devoted to this topic.

The RSA assumes that language production and interpretation are probabilistic

processes, allowing it to better account for the empirically observed variability in

these processes (Degen, 2023). Within the RSA frameworks, listeners consider the

probability of being in a certain state of the world, conditioned on the message

conveyed by the speaker. Conversely, speakers consider the probability of sending

one specific message among alternative messages, conditioned on the observed state

of the world. In this context, states of the world are different scenarios that may

be true. Speakers observe the state of the world and communicate it to listeners.

Suppose for example that there is an agent (the speaker) that has an apple in a

bag. Further suppose that another agent (the listener) considers it possible that the

speaker has an apple in the bag. However, the listener also considers the possibility

that the speaker forgot to bring apples. The listener thus considers two states of the

world to be possible, one where there is an apple in the bag and one were there is

none. The listener might also have different prior probabilities for these states. For

example, knowing that the speaker always forgets to bring apples, the listener might

consider much more likely that the state of the world is the one in which the speaker
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has no apples in the bag. Thanks to its Bayesian nature, the RSA framework allows

for the specification of such prior beliefs. When the speaker tells the listener that

there is an apple in the bag, the listener updates their beliefs of the world being in

each possible state.

Being able to account for the variability in language production and interpreta-

tion is not the only advantage of the RSA framework. In fact, the vanilla RSA

can be extended to account for various factors, including politeness, the speaker’s

uncertainty about the world state, or lexical uncertainty (the latter will be discussed

in Section 3.2.3) (Scontras and Tessler, 2017). All these reasons contribute to make

the RSA framework stand as the most influential probabilistic approach within the

field of pragmatics (Degen, 2023).

In the rest of this section, I will first dive into the nature of the social reasoning

involved in this framework. Subsequently, I will discuss the basic components of the

RSA framework, along with their respective mathematical formulations. Lastly, I

will show how the Gricean maxims of Quantity, Quality and Manner are encoded.

Please note that, although the RSA is a simple model, a deep understanding of its

intricacies might not be gained by reading my explanation only. Therefore, I suggest

to consult (Scontras et al., 2021) for a more comprehensive discussion and (Scontras

and Tessler, 2017) for an interactive implementation with which you can experiment

online.

Recursive Social Reasoning

The base case for the recursion in the social reasoning assumed by the RSA frame-

work is the literal listener, indicated as L0. The literal listener considers the speaker’s

utterance based on its semantics only. This means that only the literal meaning is

taken into account, hence the appellation “literal listener”. In fact, L0 does not

engage in pragmatic reasoning. In order to have a pragmatic listener, we need to

go one step further with the recursive reasoning and consider L1 as the listener. L1

reasons about a speaker that chooses the message to send based on the assumption

that the listener is not going to reason pragmatically. This baseline speaker is S1.

The next step in the recursion is to take S2 as speaker and L2 as listener, where S2

considers L1 as listener and L2 considers S2 as speaker.

In general, Ln grounds its reasoning on the assumption that the speaker is Sn,

whereas Sn bases its reasoning on the assumption that the listener is Ln−1. The

discerning reader may now be struck by the fact that if a listener Ln correctly
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assumes the pragmatic level of a speaker to be Sn, the speaker cannot be assuming

the correct level of the listener, in that Sn assumes the listener to be Ln−1. The

reverse is also true: if the speaker holds a correct assumption about the listener’s

pragmatic level, the listener cannot be correctly assuming the pragmatic level of the

speaker. This however does not constitute a problem. In fact, speakers and listeners

only make assumptions about the pragmatic level of their interlocutor, they do not

need to know it. It can for example also be the case that the speaker is S2 and the

listener is L0.

Recursive social reasoning can extend infinitely in theory. Therefore, there would

in principle be no issue in having, for example, L5 listeners. In order to model

human behavior, it is however neither necessary nor helpful to engage in such deep

recursion. Franke and Degen explored the pragmatic levels at which humans are

better modeled (2016). They showed that most participants in their study could

be better described as S1 speakers (with a minority as S2 speakers). Moreover,

participants could be modeled as both L0, L1, or L2 listeners, with L1 being the

most likely.

Basic components

As already explained in a discursive manner, listeners have interpretation rules to

compute the conditional probability of a state s given an utterance u, whereas speak-

ers have production rules to calculate the conditional probability of an utterance u

given a state s.

In this section, I will give an overview of the fundamental components of the RSA

framework: L0, L1 and S1, giving an overview of their (interpretation or production)

rules.

The interpretation rule PL0 of the literal listener L0 is

PL0(s | u) ∝ P (s) · JuK(s)

Here, P (s) represents the prior belief of L0 about s being the actual state of the

world, while JuK is a function that maps states to 0 if u is incompatible with such

states and to 1 otherwise. JuK(s) thus expresses whether the utterance u is true or

false in the state s. In this way, the truthfulness based on semantics is accounted

for.

As discussed previously, S1 considers the perspective of L0 when choosing the
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message to use. In practice, this means that the pragmatic speaker accesses the

interpretation rule of the literal listener, i.e., PL0 appears in the production rule of

S1, which is

PS1(u | s) ∝ exp(α · (logPL0(s | u)− C(u)))

The term logPL0(s | u)−C(u) is referred as U(u; s), the utility of S1 with respect to

utterance u and state s. The parameter α then controls how rationally the speaker

is in choosing utterances. This parameter is defined to be greater or equal than 0.

When it is set to 0, utterances are chosen at random. The greater α is, the more

optimal the agent’s choice is. As α approaches infinity, the speaker deterministically

chooses the most optimal utterance. C(u) instead encodes the cost of the utterance

u. A greater cost represents a more expensive utterance, which could for example be

the result of a longer message. For an explanation of the derivation of the exponential

and logarithmic functions in the formula, I recommend referring to the appendix of

(Scontras and Tessler, 2017). I will not discuss that here, since it goes beyond the

scope of what is necessary for understanding the functioning of the RSA.

The last basic element of the RSA is the pragmatic listener L1, whose interpreta-

tion rule is

PL1(s | u) ∝ PS1(u | s) · P (s)

L1 thus uses Bayes’ rule to infer the most likely state of the world given the received

message, and it achieves this by considering the reasoning of S1.

Encoding Gricean Maxims

We are modeling Gricean pragmatic reasoning, which is based on the Cooperative

Principle (see Section 2.3.1). Thus, agents within the RSA framework are coop-

erative. For this reason, S1 aims to maximize the probability that L0 reaches the

conclusion that the state of the world is the correct one, i.e., the one that the speaker

observed. This is captured by the term logPL0 in the utility function. This term

represents in fact the informativeness, and makes it possible to encode the Maxim of

Quantity. The maxim of Quality is then encoded thanks to the function JuK, which
allows S1 to only choose true messages. Knowing that the state of the world is s,

S1 would calculate JuK(s) for each possible utterance u ∈ U , where U is the set of

utterances which are considered. If JuK(s) = 0 for an utterance u, S1 does not use

that utterance, as doing so would result in PL0(s|u) being 0 and, in turn PS1(u|s)
being 0. Lastly, encoding the maxim of Manner would not be possible without C(u),
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which incentives the choice of cheaper messages. The cost is however not sufficient

to encode the maxim of Manner in the vanilla RSA, as discussed in Section 3.2.3.

3.2.3 Lexical Uncertainty Model

The Lexical Uncertainty Model (LUM) is an extension of the vanilla Rational Speech

Act developed by Bergen et al.(2016).

The main idea behind this model is to add lexica to vanilla RSA. Therefore, this

section will start with a discussion on the utilization of lexica in this model. Subse-

quently, the strengths and limitations inherent in the LUM will be outlined.

Adding Lexica to the RSA

The LUM allows the conversational agents to reason about the lexicon in use. Here,

the lexicon is defined as a function that assigns truth values to each utterance-

world pair. Specifically, L(u,w) returns 1 if the utterance u and the world w are

compatible, and 0 (or a value approaching 0) otherwise. Bergen et al. propose in

fact four approaches to define L(u,w) (2016, pp. 25, 26). I will not provide details

on all these approaches and why they were proposed, as that is not relevant for this

work. Therefore, I invite the reader to look at the original study for a more detailed

discussion. Let me however clarify what approach I am following: I define L(u,w) as
returning 1 if the utterance u and the world w are compatible, and 10−9 otherwise.

One of the approaches suggested by Bergen et al. consists in fact in defining L(u,w)
as equal or lower to 10−6 when u and w are not compatible.

Through the usage of lexica, a conversational agent can address its uncertainty

regarding the meanings of messages. Let us examine the example of scalar implica-

tures. Specifically, consider the running example discussed in Section 2.3.1, “I read

most of those books”. After being exposed to this sentence, the listener will not

be sure about the meaning of “most”. It could in fact be taken to signify what it

literally means (most or all), or the alternative interpretation most but not all. In

the LUM, this example is encoded by having the listener contemplate both lexicons

where “most” corresponds to one option and the other.

With the inclusion of the lexica in the LUM, the mathematical expressions for PL0 ,
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PS1 and PL1 become

PL0(s | u,L) ∝ P (s) · L(u, s),

PS1(u | s,L) ∝ exp(α · (logPL0(s | u,L)− C(u))),

PL1(s | u) ∝ P (s)
∑
L∈Λ

P (L) · PS1(u | s,L).

Here, Λ is the set of lexica, L ∈ Λ is a lexicon and the other elements are as defined

in vanilla RSA. The factor multiplying α in PS1 , also as in vanilla RSA, is referred

to as the utility of S1 and can be written as U1(u | s,L).
Given that the recursion level in the current study is not confined to the L1 listener,

I will here also present the production and interpretation rules for recursive social

reasoning for Sn and Ln:

PSn(u | s) ∝ exp(α · (logPLn−1(s | u)− C(u))),

PLn(s | u) ∝ P (s)PSn(u | s).

Please note that the formulations provided in this section are simplified expres-

sions, due to the assumption that it is common knowledge that the speaker is aware

of the relevant world state. The LUM also accounts for speakers that lack knowledge

of the relevant world state. However, this is not pertinent to my work. Therefore, I

will always keep this assumption in the current work.

Advantages and Limitations

Bergen et al. demonstrated that, for M-implicatures of the type discussed in Sec-

tion 2.3.1 (exemplified by Horn’s example in that section), the basic RSA interprets

two utterances conveying the same literal meaning uniformly across all levels of the

speaker-hearer recursion. Conversely,the LUM allows for modeling such implica-

tures (2016). Furthermore, the LUM allows for modeling non-convex disjunctive

implicatures. I will however not spend more words on this, as I will stick to what

is most relevant for the current study. If interested, please refer to the work of

Bergen et al. (2016). Something that is instead noteworthy in the context of the

specific application under scrutiny in this study is that the lexica in the LUM can

also be used to account for possible meanings of novel words, such as words in a

novel language.

Providing here a practical example the LUM’s work in modeling M-implicatures
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is unfeasible, as it would involve pages of calculations. Part of the reason for this

is that, in order for the LUM to account for M-implicatures, higher recursive levels

are needed, such as a listener being at least L2. L1 listeners would in fact be less

likely to engage in the M-implicature than to do it. This is an obvious limitation

of the LUM, since modeling human communication cannot require interlocutors to

engage in so deep social reasoning. In fact, humans do not seem to engage in deep

social reasoning, as discussed in Section 3.2.2.

For readers interested in experimenting with an online demonstration of the LUM,

please visit the eighth chapter of the webbook by Scontras and Tessler (2017). More-

over, in the Appendix you can find (most of) the code implementing the LUM in

the cognitive models that I built as part of this work, which serves as a practical

example of an implementation of the LUM.
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4 The Current Study

Examining the impact of pragmatic reasoning on concept learning is not a novel

idea and has already been investigated through a cognitive modeling approach. In

particular, Frank and Goodman have already delved into this area using cognitive

models within the RSA framework (Frank and Goodman, 2014). Their study deals

with Q-implicatures, a common focus in computational pragmatics. Additionally,

they account for concepts being learnt in a single round rather than gradually over

time. In fact, even if it has been attempted to extend the RSA framework to

accommodate multiple turns in conversation (Anderson, 2021), its vanilla version

only contemplates single conversation turns.

In my work, I am using conversational implicatures to investigate how pragmatic

reasoning and concept learning interact. This becomes particularly relevant when

learning two unknown concepts simultaneously, as discussed in Section 4.1. My

work also allows for concepts to be learnt gradually through a series of trials. This

approach lets me observe whether the beliefs on the meaning of one concept are

updated even when only information on the other concept is acquired, based on

the fact that the two concepts are known to have different extensions. Since I am

already modeling pragmatic reasoning through a Bayesian model, it makes sense

to model the learning similarly. This consideration is reinforced by the favorable

outcomes of Bayesian modeling in the context of concept learning (Tenenbaum and

Xu, 2002; Piantadosi et al., 2016).

In order to employ Bayesian modeling, hypotheses on the meaning of the concepts

to use as priors must be defined. As discussed in Section 3.1, it makes sense to

define such hypotheses in a structured way. I will thus employ the Language of

Thought. This enables the tracking of probabilities of hypotheses on the meaning

of the concepts throughout the task, as demonstrated in (Piantadosi et al., 2016).
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4.1 Experiment

The experiment is presented to participants as a concept learning experiment, tak-

ing the form of a cooperative communication task. The involvement of pragmatic

reasoning is not mentioned, in order not to bias the participants’ approach to the

task.

Making sure that participants view the experimental task as a conversational task

is of paramount importance. In fact, it is needed to elicit pragmatic reasoning. Par-

ticipants are misled into thinking that they will either send or receive messages from

other participants, taking the role of senders or receivers, respectively. As senders,

participants will be informed about the meaning of two words and they will be given

the task to help other participants learn such words. They will be presented with

three objects (one of which will be marked) and they will have to press the key

corresponding to the word which they would like to send to the participant who

they think will receive their message. Section 4.1.6 explains why the letter and not

the word is seen by participants on the receiving side. Conversely, receivers will be

shown a set of three items and a word and they will need to select one of the items

based on the word.

Importantly, when participants act as senders, no pragmatic reasoning will be in-

volved: the highlighted object will always be in the extension of exactly one concept.

This works as a precaution against biasing the participants towards engaging in prag-

matic reasoning. Such an approach has already been successfully employed in other

works in the field, such as in (Franke and Degen, 2016).

In the remainder of this section, I will explain the experiment and how conversa-

tional implicatures are elicited in it (Section 4.1.7).

4.1.1 Implementation

The experiment was run online, as was done in similar works in concept learning and

pragmatics (Piantadosi et al., 2016; Buccola et al., 2018; Frank and Goodman, 2014;

Franke and Degen, 2016; Bergen and Goodman, 2012). I implemented it as a web

page using JavaScript and HTML, so that it could run on participants’ browsers.

This allowed me to employ the JavaScript framework jsPsych, which is specifically

designed for the development of behavioral experiments (de Leeuw et al., 2023)1.

1A less complex approach would have been to use tools based on graphical user interfaces or
simple languages designed for experiment building, which do not even require downloading
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For the back-end, I used cognition.run, an environment for running experiments

online, designed specifically for hosting jsPsych experiments.

4.1.2 Participants

Participants were recruited from my personal social contacts and from students in

a class taught by my first supervisor, Prof. Dr. Jakub Dotlačil, resulting in a total

of 19 participants 2.

4.1.3 Materials

The items used in the experiment have the same features of those used in (Piantadosi

et al., 2016), which is the main reference for the concept learning part of my project.

The reason why I did so is that the fewer changes are carried in the experiment

design, the more likely it is that the result are similar, i.e., that LOT models for

learning are effective. The objects presented to participants thus have three main

features: shape, color and size. The possible shapes are triangle, circle and square;

the color of an item is red, green or blue; the item’s size is small, medium or big.

any additional software (the final version of the experiment implemented in JavaScript using
jsPsych comprises instead approximately 1000 lines of code). Therefore, I began using simpler
tools. The ones I considered first were PsyToolkit (Stoet, 2010, 2017), which I had already used
to build an experiment as part of a university project, lab.js (Henninger et al., 2019), which
can be paired with Qualtrics (which comes with the advantage of being a software deemed safe
by Utrecht University), and PCIbex Farm (Zehr and Schwarz, 2023), which was suggested by
my supervisor.
Due to the complexity of the experiment and the consequent need for a great flexibility in the
implementation process, I however had to abandon these early attempts. I therefore started
implementing a web page using JavaScript with the help of magpie (https://magpie-ea.
github.io/magpie-site/), an architecture for making online experiments which I had already
used during my Bachelor’s as part of a university project. The documentation of magpie was
however not always up to date and I encountered compatibility issues. Henceforth, I searched
for alternative tools until I eventually learnt about jsPsych. Recognizing its active community,
I invested time in learning how to use it and refining my JavaScript skills, which were quite
rudimentary at the time, in order to implement my experiment.

2Recruiting participants through Prolific, as initially planned, would have allowed for a larger
participant pool. However, using Prolific proved problematic, as shown by the data from the
first participants recruited through that platform. These participants made in fact numerous
errors in both the sender’s task and the control trials, suggesting that they were not fully
engaged in the task. This observation is further supported by their rapid completion times,
significantly shorter than those of the new participants (the experiment generally takes around
half an hour to complete). It thus seems that using Prolific to recruit participants for an
experiment of this length, where participants have the capability to rush through in order to
receive monetary compensation, is not ideal.
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Concepts used throughout the experiment describe sets of items. Such sets are

defined using the SimpleBoolean LOT (see Section 3.1.1) to combine items’ features.

The words for the concepts that are utilized are not shown. Instead, only the

letters p and q will be displayed, as described in Section 4.1.6.

4.1.4 Design

All participants act first as senders and then as receivers. The sender phase serves

the purpose of eliciting pragmatic reasoning (for the experimental group) and un-

derstanding the structure of the tasks.

In the remainder of this section, I will first delineate the distinction between the

control group and the experimental group. Following this, I will motivate the choice

of materials. Lastly, I will explain the randomization procedures involved in the

experiment.

Control Group and Experimental Group

The phases in which participants act as receivers are the critical phases. These

phases are the ones which differ among the control and experimental groups.

The experimental group is the one for which pragmatic reasoning is involved, whereas

the control group is structured in such a way that no pragmatic reasoning should

be employed. In the experimental group, on the one hand, two concepts are learnt

at the same time for each receiver block. On the other hand, in control groups,

concepts are learnt individually. This removes the conversational implicatures of

the form discussed in Section 4.1.7. It also avoids the potential update of beliefs

regarding the meaning of one concept, given what is learnt about the other concept.

For a more detailed description of the receiver blocks, see Section 4.1.5.

Choice of Materials

In each block, the concepts involved are different. The items shown to participants

throughout the experiment will always have the same features (color, shape, size).

Thus, after learning that in the extension of a concept there are objects with certain

features, it might be that participants will assume that having an item with the

same features in another phase of the experiment will be more unlikely, even if it

will be specified that different concepts in different phases of the experiment are

completely unrelated.
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To avoid this potential issue, it might be beneficial to use items with different fea-

tures. For example, instead of color, size and shape, the second time in which par-

ticipants are receivers the objects’ features might be numerosity, colors and shapes.

Introducing new features such as numerosity might however change the results in

unexpected ways. In fact, manipulating too many variables from the experiment

by Piantadosi et al. (2016) may not be advisable if I aim to obtain similar results

with the LOT models. Consequently, I am maintaining consistency with the original

study by using the same colors, shapes, and sizes.

Even modifying just the shapes is not without risks, as complex shapes might be

grouped by participants in unforeseen patterns. For example, pyramids and cones

might be perceived as similar and grouped together with a high likelihood. Con-

versely, simpler shapes like stars, lines, and dots might not be ideal for utilizing

existing features such as size. For this reason, I am also keeping the same colors,

shapes and sizes as in the original study.

Randomization

The order in which the three items in each trial appear is randomized, as well as the

the order of the listener phases. For the control group, which concept is first learnt

in each receiver block is also selected randomly.

Conversely, the structural formulation of concepts in each phase of the experiment

remains consistent. However, the specific features incorporated into these formula-

tions are not held constant among participants. For example, a concept a will always

be formulated as feature1∧ feature2, but this can translate into triangle∧ blue for

a participant and circle ∧ big for another participant. This is done to address the

concern posed by salience differences between features.

4.1.5 Procedure

This section outlines the sequence of events that participants experience during the

experiment, following the chronological order of the experiment itself. Therefore, I

will start describing the initial stages of the experiment. Subsequently, I will cover

the sender block and, finally, the receiver blocks.
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Starting the Experiment

Participants are first given a general description of the experiment, asked to give

their informed consent for the treating of their data, and asked to tick a box if they

are color-blind. Afterward, if they are using a mobile device, they see a message

telling them that they need to use a laptop or desktop computer, which ends the

experiment. If they are not using a mobile device, they are instead provided with

some general instructions.

Participants are told that the focus of the study is to learn words in an alien language,

that the study involves communication among participants and that they can either

be given the meaning of two words and asked to help other participants discover

the meaning of those words, or they can be unaware of the meaning of two words

and be asked to figure out their meanings with the help of another participant. It

is specified that the communication among participants is asynchronous and entire

blocks of messages are sent at once and that each alien word is associated to a key

on the keyboard (p or q).

The introductory part is at this point done and the experiment enters full-screen

mode.

Sender Block

Before the beginning of the task, participants are told what their task as senders

is (in short, they need to communicate either p or q to the other participant).

Furthermore, it is explained to them that the receiver who will see the word which

they send will see it associated with the same set of three objects.

In the actual task, participants are shown the keyboard keys p and q associated

to each of the two concepts, together with the meaning of the concepts, as shown in

Figure 4.1. Such concepts are displayed on the top of the screen and are the same

for all participants. In fact, the randomization in the meaning of the formulations

of the concepts only applies to the receiver tasks.

As shown in Figure 4.1, in the left part of the screen the current trial is displayed.

The trials consist in fact of three figures, out of which one is underlined, as it is the

one that senders need to make sure that the hypothetical receiver picks, by sending

the message which they deem to be the best to achieve that goal.

On the right part of the screen, participant see instead the record of the previous

trials, i.e., all trials completed up to that point, and the key which they pressed
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Figure 4.1: Screenshot of the sender task taken at the 21st trial

(one among p and q). Showing the record of previous trials in the sender’s task is

not useful during that task, but it will be once the participants reach the receivers’

tasks, as explained in the next section.

Receiver Blocks

After the first block, in which the participants act as senders, there are four blocks

in which they are receivers. Each of these four blocks is split in 2 parts for the

control group, as one concept is learnt on each sub-part of the block.

In this section, I will first summarize the information on the task that is given to

participants. Then, I will go into how the actual task works.

Before beginning each block as receivers, participants are informed that they are

going to learn two novel concepts, and each of those concepts will be associated with

one letter among p and q. The reason for that association, they are told, is that

another participant who acted as sender sent them a message (either p or q) for

each set of objects (at each trial). Participants are also told that the aim of senders

is to have receivers pick a certain object out of the three displayed ones, for each

set of objects. Furthermore, they are instructed that their task as receivers is not

only to learn the meaning of the two concepts, but also to select the object that the

other participant wanted them to return.
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Similarly to what happened in the sender block, the current trial is presented at

the left part of the screen, while the right part of the screen is used to display the

record of previous trials. However, as you can observe from Figure 4.2, there are

four main differences from the sender block. Firstly, trials come with a letter (either

Figure 4.2: Screenshot of a receiver task taken at the 2nd trial

p or q) in the receiver blocks. It is explained to participants that such letters are

the messages received by the senders. Secondly, the current trial does not contain

any underlined figure, as receivers need to pick a figure based on the message and

their belief about its meaning. Thirdly, after each trial the participants receive

some feedback, telling them whether their answer was correct or not, where correct

answers are the ones that the hypothetical senders want the receivers to pick. Lastly,

upon completion of each block, participants are asked for the meaning of the two

concepts. Responses are solicited in the form of free-text.

In the control group, the meaning of a concept is asked in the middle of the block,

after the section of the block utilizing that concept has concluded. The meaning of

the other concept is only asked for at the end of the block, once the second section

of the block, which utilizes that concept, has been completed.

Displaying the record of trials is of paramount importance to elicit conversational

implicatures. On the record, participants can in fact find trials where the three

objects are repeated, but the message received is different. They might thus think

that, if the sender changed the message with the same three objects, the object to

be picked is not the same as before (see Section 4.1.7).

The reason why it was necessary to see the record of previous trials during the sender

task should now be clear: participants are supposed to be more likely to reason in

the way that allows them to engage in conversational implicatures if they know that

the senders can also reason about previous trials.
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4.1.6 Messages Associated to the Concepts

The words for the concepts learnt in the experiment are not written anywhere.

Instead, they are always associated with the letters p and q. The aim of this approach

is to avoid the bouba/kiki effect (Köhler, 1967), which predicts that there is a non-

random association between speech sounds and object features, in particular shapes.

The reason why the words are not written is that if participants cannot read the

words which are presented to them, they cannot associate the sounds in the words

to the features of the experimental items.

Let me now briefly explain why I chose to pick specifically the letters p and q.

If participants act as a senders, they have to press the key corresponding to the

concept that they want to communicate, and that key is one between p and q, as

they are letters on different sides of the keyboard. The sender is told what the words

mean, i.e., the concepts they stand for. Therefore, there should be no bias generated

by the location of the keys on the keyboard.

If participants act as receivers, they see instead a letter between p and q next to each

trial. In this way, receivers are led to associate the concepts to the corresponding

letters. Participants are told that such letters are the messages received from other

participants who acted as senders. Since the receiver blocks come after the sender

block and in the sender block the messages to be sent are p and q, it should make

sense for participants acting as receivers why the messages are p and q. In fact, all

participants complete the sender block before completing the receiver block.

4.1.7 Elicitation of Conversational Implicatures

In alignment with the Gricean paradigm, speakers likely select the utterance that

maximizes the ease of understanding for the listener. In the case of the current

experiment, this translates in the sender choosing the message that -as far as the

speaker knows- has the highest probability of leading the receiver to select the in-

tended object.

Elicitation of M-implicatures

In agreement to the maxim of Manner, a speaker should be perspicuous and avoid

ambiguity (see Section 2.3). If the receiver expects the sender to choose the message

that facilitates them in the task at hand, we can anticipate the receiver to reason

pragmatically in situations similar to the one I will present in the following.
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Suppose that, out of the three objects shown to the receiver in a specific trial, one

-let us suppose without loss of generality, the green square- has a higher likelihood

to be the target object of the message chosen by the sender for both messages,

even though that object was not observed to be in the extension of either concept

by the receiver. Further suppose that the sender sends the message p, and the

receiver, returning an object, sees the feedback indicating that the target object was

the green square. Assume that the same three objects are then presented again to

the receiver. This time, however, the sender chooses the other message. Since the

object selected beforehand (the green square) also has a higher probability to be

the target object if the message is q, a receiver who is not using pragmatics at all

would choose to return the same object again. Conversely, if the receiver engages in

pragmatic reasoning, they might think that if the sender wanted the green square to

be returned again, they would have chosen the message p, as before. In the cognitive

models this translates in the fact that the probability of the green square being the

target object of the message corresponding to the p key will be greater than the

probability of the same item being the target of the message corresponding to the

q key, given the positive feedback of the preceding trial, and, possibly, given the

cost of changing the message. Remember that the sender is supposed to be trying

to facilitate the receiver. It would therefore not make sense for the sender to send

a different message to have the same item selected by receivers. Reasoning in this

way, a pragmatic receiver could select an object different from the green square. For

a representation of the objects discussed in this example, see Figure 4.3.

Figure 4.3: Example experimental stimuli with elicitation of a conversational impli-
cature

M-implicatures are thus elicited in such scenarios where there is a repetition of

the same three objects as in an earlier trial, but with a different associated message,

and where it is not the case that two objects are known to be in the extension of the

concept associated to the message that came with the trial in question. Please note

that, while in most cases such repetition occurs in consecutive trials, it does not

have to be the case. In fact, some such repetitions are not formed by trials located
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next to each other, but just appearing in the proximity of each other.

Elicitation of Q-implicatures

Q-implicatures are elicited in a similar way as M-implicatures, in the context of this

experiment: they are elicited when there is a repetition of the same three objects

as in an earlier trial, but with a different associated message, and where two of

the three objects are known to be in the extension of the concept associated to the

message that came with the trial in question.

For example, in Figure 4.3, it could be the case that, through feedback of previous

trials, the receiver knows that both the red circle and the square are in the extension

of the concept associated with the message q. In this case, the message q likely

indicates the square and the red circle, while the message p likely indicates the

square, but no other object among those displayed in the trial, as we suppose that the

circles in figure were never revealed to be in the extension of the concept associated

with p. This means that, if the target object were the square and sender were to use

the most informative message, they would send p. Since the sender sent q instead,

a pragmatic reasoner would infer that the target object is the red circle.

4.1.8 Types of Trials

The previous section describes trials created to elicit conversational implicatures,

which I will from now on call “pragmatic trials”. In the current section, I will first

discuss pragmatic trials in greater detail. Subsequently, I will dive into the structure

and usefulness of control trials.

Pragmatic Trials

Pragmatic trials always involve the repetition of a set of three objects, but with a

different message. There can also be, on top of trials involving exact repetitions of

the displayed items, trials that only repeat certain items. The aim of this approach

is to lead participants to more easily notice the presence of repetitions.

Regardless, pragmatic trials are presented in two variations, M-implicatures and

Q-implicatures, as discussed in the previous section.

Among all blocks, there is a total of 12 trials that utilize the elicitation of M-

implicatures to review the belief of a participant about the meaning of the target

concept.
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The set of trials involving Q-implicatures consists of 4 trials. Differently from

what happens in the trials involving M-implicatures, trials that encourage the elici-

tation of Q-implicatures are not meant to induce participants to review their belief

regarding the meaning of the target concept. Instead, these trials only test whether

participants employ pragmatic reasoning, without it being bonded with concept

learning.

Control Trials

In this section, I will begin by discussing control trials in the sender block. Following

that, I will delve into control trials in the receiver blocks, with particular attention

to control trials involving the repetition of all figures.

Given the straightforwardness of the sender task, in which there is only one pos-

sible answer for each set of three objects, the trials in that task can be used as

controls.

Controls in the receiver blocks take the form of trials in which an item that was

already observed to be in the extension of the concept associated with a message

returns with the same message. This is exemplified in Figure 4.4.

Figure 4.4: Example of a control trial

Trials in which the set of three displayed objects as well as the message are

repeated were also inserted in many cases. These control trials have the benefit of

discouraging participants from consistently choosing a different object each time in

which they see a repetition in the sets of objects, which is a strategy that participants

could learn by being exposed to pragmatic trials. Repeated trials are also useful to

make participants understand that the sender is rational. Furthermore, if such trials

precede trials in which the set of three objects is repeated but the message is not

(pragmatic trials), participants will see the repeated set of three objects three times.

In this way, it will be easier for them to realize that a repetition occurred.
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4.2 Cognitive Models Used in this Study

In this section, I first give an overview on my general approach to modeling concept

learning and pragmatics (Section 4.2.1). Subsequently, Section 4.2.2 outlines the

models used in this work. In Section 4.2.3, I explain how concept learning is modeled,

including the learning of both concepts at the same time. Finally, in Section 4.2.4 I

clarify the way in which the LUM is adapted to allow modeling responses to trials.

Please note that all cognitive models used in this work operate at Marr’s compu-

tational level, as they formalize the problems that participants solve (Marr, 1982).

4.2.1 Modeling Approach

This section briefly describes my general approach to modeling concept learning

and pragmatic reasoning, in this order. A more detailed discussion on the topics

presented here will follow in the remainder of the chapter.

Concept Learning

The strategy that I followed to model concept learning is based on LOTs and,

specifically, on the approach utilized by Piantadosi et al. in the study reported in

(2016).

In contrast to the study conducted by Piantadosi et al., my experiment was com-

pleted by a smaller number of participants. Therefore, I do not have enough data

to fit parameters based on experimental data.

A possible approach would have thus been to use a LOT from the abovementioned

study while keeping the probabilities that were found in that study for each logical

operation. However, I opted against this approach, as the probabilities of the logi-

cal operations found by Piantadosi et al. might be heavily impacted by the specific

experimental setup.

Therefore, I assume the probabilities of each logical operation to be equal. The

operations are thus equally salient: there is no preference for using an operation

instead of another, based on the type of operation only. For this reason, I do not

utilize FullBoolean, which has low probability operations (see Section 3.1.1). In fact,

even though FullBoolean is the best performing LOT when no quantifier is needed,

equalizing the probabilities of operations could have a great impact, given the pres-

ence of low probability operations. This is why I used as LOT SimpleBoolean, which
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contains all the operations in FullBoolean apart for the low probability ones and and

performed similarly in Piantadosi et al.’s study (Piantadosi et al., 2016).

The features of items are also assumed to be equally salient: picking an item

on the basis of its color, size or shape is considered equally likely, unless the prior

beliefs of the agent, derived from the results of previous trials, suggest otherwise.

Moreover, all subfeatures within a feature, such as for example different colors, are

assumed to be equally salient.

Pragmatics

The pragmatic reasoning part of my cognitive models is responsible for the update

of the beliefs relative to both concepts at the same time and for the choice of which

object is selected at each trial. For the latter task, I considered two possibilities:

the LUM and the IQR model. On the one hand, the LUM has the disadvantage

of poorly accounting for M-implicatures at lower recursive levels (which are more

likely reached by humans), as discussed in Section 3.2.3. The IQR model, on the

other hand, can account for M-implicatures only under strong assumptions on the

agents’ behavior (see Section 3.2.1).

Out of these two models, I decided to implement the LUM. The reason behind

this decision is that, in my experiment, M-implicatures are likely elicited only for

listeners who reason about a speaker that is at least S2, who, in turn, reasons about

the listener not being literal but L1 (see Section 3.2.2). The LUM is expected

to model L2 as more likely than not to engage in M-implicatures (Bergen et al.,

2016). Moreover, given the popularity of the RSA framework, implementing the

LUM provides an opportunity to test its efficacy with the M-implicatures used in

my experiment, where the probabilities of lexica are given by the probabilities of

hypotheses in the LOT, as described later in Section 4.2.3.

Regarding the recursion level in recursive social reasoning, I will limit it to L2

listeners. The reason for this is that humans typically do not engage in deeper

recursive reasoning (see Section 3.2.2), as the findings of Franke and Degen suggest

(2016).

4.2.2 All Models’ Variations

In this section I will give an overview on the three models used in this study: the

Baseline Model, which does not incorporate pragmatic reasoning, the Double Update
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Model, which extends the Baseline Model by updating both concepts at the same

time, and the L2 Model, which extends the Baseline Model by accounting for a

pragmatic reasoning at the L2 level, when responding to pragmatic trials.

Baseline Model

The Baseline Model does not take pragmatic reasoning into account and, after each

trial, only the beliefs regarding the hypotheses for the concept relative to that trial

are updated. This model serves as a reference point to evaluate the effectiveness of

other models and determine if they provide significant improvements. The Baseline

Model should perform best in the task for the control group. In fact, participants

in the control group are not supposed to engage in pragmatic reasoning.

Double Update Model

The Double Update Model builds on top of the Baseline Model, inheriting all features

present in the latter. The only difference lies in the update process of the agent’s

beliefs following the observation of feedback indicating the correct object choice for

a trial.

In the Double Update Model, both hypotheses regarding the concept related to

the current trial and the hypotheses regarding the alternative concept are updated.

However, the update magnitude for the alternative hypotheses is smaller compared

to that of the hypotheses for the concept at hand.

L2 Model

The L2 Model extends the Baseline Model, inheriting all its features. The distinction

is that, in this model, pragmatic trials are processed by an L2 listener instead of an

L1 listener.

Please note that not non-pragmatic trials are still not processed by an L2 listener.

There is in fact no compelling reason to assume that an individual who can engage

in pragmatic reasoning at the recursion level of L2 would always do so: it could

well be the case that those capable of reasoning as L2 listeners would reserve this

deeper recursive reasoning for situations where they believe that it is necessary. In

the context of this study, this would mean that only when the same objects from a

previous trial are presented again with a different message (as discussed in Section

4.1.7), a listener would be prompted to engage in L2 reasoning.
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4.2.3 Concept Learning and Incorporation of Feedback

This section starts with the modeling of concept learning, also addressing the simul-

taneous learning of both concepts.

The discussion will start with the definition of hypotheses for the meaning of con-

cepts and the creation of the space of hypotheses. Subsequently, the focus shifts to

lexica, which integrate a hypothesis for each concept and are essential for determin-

ing which object to select in each trial, i.e., how to respond to trials. Finally, the

update of beliefs on the meaning of the hypotheses following feedback is addressed.

Creating the Hypotheses

The initial step in modeling concept learning consists in determining the belief of the

agent for each hypothesis, i.e., for each possible meaning of each concept. Hypotheses

are formulated as propositional logic expressions, making use of the logical negation,

conjunction, and disjunction. The literals utilized in such expressions are the colors,

sizes, and shapes that define the experimental items. There are therefore nine

literals, as for each feature (size, color, shape) there are three subfeatures. The

color can in fact be either blue, green or red, the size can be either small, medium

or big, and the shape can be either triangle, square or circle.

There exists an infinite number of hypotheses generated from these literals and

operations. However, when creating the space of hypotheses, I confined the hypothe-

ses to those involving one or two literals, since no concept in the experiment utilizes

more than two literals. Participants could still express concepts using more than

two literals. This would for example be the case if they represented a negation as

a disjunction (e.g., “not blue” would become “green or red”). In practice, however,

no more than two literals are necessary.

I also excluded double negations, as participants, as shown by Piantadosi et al., do

not seem to employ them (2016). Furthermore, I omitted concepts signifying none

or all (e.g., “red and not red” or “red or not red”), as well as those where the logical

conjunction binds two subfeatures of the same feature (e.g., “triangle and square”),

and those where it binds two subfeatures of the same concept, even when one or

both are negated (e.g., “triangle and not square”), as these concepts are redundant

(e.g., “triangle and not square” can be simplified to just “triangle”).

After its creation, each hypothesis is associated with a probability value. To

achieve this, I first gave a cost to logical operations and literals. This allowed to
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assign a cost for each hypothesis. From the costs, I derived the probabilities of hy-

potheses: higher costs were associated with lower probabilities. These probabilities

were then normalized to complete the process.

Creating Lexica

Lexica are constructs necessary for the LUM (see Section 3.2.3). However, I also

use them in the Baseline Model, to help estabilish which object to pick at each trial.

For more details as to how that is done and why, see Section 4.2.4.

Lexica are created by using the hypotheses defined in the previous section. In

fact, each lexicon incorporates a hypothesis for each concept. Therefore, lexica

comprehend a hypothesis for the concept associated with the message p and one for

the concept associated with q (see Section 4.1.6 for a discussion on the messages

utilized). For example, according to a lexicon Li, the concept associated with p

could be ¬circle and the concept associated with q could be triangle ∧ blue.

The probability of a lexicon is the product of the probabilities of the two hypothe-

ses corresponding to p and q that are in that lexicon.

Updating Beliefs after Feedback

After each completed trial, feedback is provided (see Section 4.1.5). This feedback

allows the listeners to update their beliefs on the meaning of the concepts that they

are learning. In the models, the feedback thus prompts an update in the probabil-

ities of hypotheses related to the message presented in the trial. Specifically, the

probabilities of these hypotheses increase when they express a concept that includes

the feedback object within its extension and the probabilities of other hypotheses

related to the same message decrease instead.

The Double Update Model allows for the simultaneous update of hypotheses re-

garding the meanings of both concepts whenever feedback is provided, irrespective

of the message conveyed. In this model, both the beliefs held by the agent about

the meaning of the concept whose corresponding message was shown (i.e., the target

concept, which I will call t) and the other concept (o) are thus updated after each

trial. The beliefs about concept t will see a bigger update than those about o, for

which a smaller and inverse update will occur.

For example, if the listener receives the information that triangle is in the exten-

sion of concept a, the probability of the hypotheses in which a means triangle will

increase. Similarly, the probability of related hypotheses, like the ones in which
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a means triangle or blue, will increase. Conversely, the probability of hypotheses

where triangle or triangle or blue are in the extension of concept t will decrease.

In a standard Bayesian update, the probabilities of hypotheses relative to the

target concept that do not describe the feedback object would be multiplied by 0.

However, I opted against this approach, since singular observations should not lead

to the exclusion of hypotheses. The model should instead accommodate instances

where feedback is forgotten. Moreover, it should allow for participants to entertain

the possibility that the sender made mistakes or acted irrationally on certain occa-

sions.

I therefore decided that, after feedback is presented, the probabilities of hypotheses

for the target concept that describes the feedback object are multiplied by 0.9 (I will

from now on call this factor “likelihood modifier”), whereas the other hypotheses

for the same concept are multiplied by 0.13. If the model in question is the Double

Update Model, the probabilities of the hypotheses relative to the other concept are

also updated. If such hypotheses do not describe the feedback object, they could

be multiplied, for example, by a factor λ that could take values around 0.55. Con-

sequently, if they describe the feedback object, they would be multiplied by 1 − λ.

Probabilities are of course normalized afterward.

From now on, I will call λ the multiplicative factor introduced in the Double Update

Model.

After updating the hypotheses’ probabilities, the probability of each lexicon is cal-

culated again as the product of the probabilities of the two hypotheses corresponding

to p and q that are in that lexicon.

4.2.4 Adapting the LUM for Trial Response Determination

In this section, I will explain how I adapted the LUM to the specific case of this

study.

Firstly, I illustrate how the interpretation and production rules for L0, L1 and S1

are adapted to the setting of the current study and indicate how the responses to

trials are modeled in the Baseline Model. Subsequently, I give an overview as to

why including the costs for L1 and S1 is not relevant in this context. Lastly, I will

3An alternative to this approach is the one discussed by Anderson in “Tell Me Everything You
Know: A Conversation Update System for the Rational Speech Acts Framework” (2021). Such
an approach is however designed to deal with more complex situations and seems overly complex
for the simple scenario of my experiment.
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show the interpretation and production rules for L2 and S2, which are central to the

L2 Model.

Simplifying the Production and Interpretation Rules

In the RSA framework, both the probability of the speaker making an observation

and the probability of a particular object being the intended referent for the listener

are taken into account. In our scenario, this involves considering the probability

of an object being displayed and the probability of the speaker intending for the

listener to select that object. These probabilities are distinct from each other. Typ-

ically, RSA models assume that all objects have equal probability of being observed

by the speaker, unless they deal with M-implicatures where one message is assumed

to be more likely to occur than another. In our case, there is no reason to assume

that some objects are observed more likely than others. Likewise, there is no reason

to assume that the two messages (p and q) are not equiprobable. Neither there is

any reason to assign them a different cost. This leads to the possibility of simplify-

ing the production and interpretation rules of the LUM. To better understand the

simplifications, let us first look again at the formulas from Section 3.2.3:

PL0(s | u,L) ∝ P (s) · L(u, s),

PS1(u | s,L) ∝ exp(α · (logPL0(s | u,L)− C(u))),

PL1(s | u) ∝ P (s)
∑
L∈Λ

P (L) · PS1(u | s,L).

As discussed above, the probability of observing each object can be considered the

same in our scenario. Therefore, P (s) is a constant. Thus, it can be accounted

for through the coefficient of proportionality. The expressions for PL0 and PL1 can

therefore be simplified. Furthermore, the utterance cost, C(u), is the same for the

two utterances. Therefore, its value can be set to the same value for both of them.

To simplify the expressions, that value can be picked as 0. The resulting production

and interpretation rules are:

PL0(s | u,L) ∝ L(u, s),

PS1(u | s,L) ∝ exp(α · (logPL0(s | u,L)),

PL1(s | u) ∝
∑
L∈Λ

P (L) · PS1(u | s,L).
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Now, notice that exp(α · (logPL0(s | u,L)) = elogPL0
(s|u,L)α = PL0(s | u,L)α. Given

PL0(s | u,L) ∝ L(u, s) and the transitive nature of proportionality, it holds that

PS1(u | s,L) ∝ L(u, s)α. Similarly, we obtain PL1(s | u) ∝
∑

L∈Λ P (L) · L(u, s)α.
The resulting expressions are:

PL0(s | u,L) ∝ L(u, s),

PS1(u | s,L) ∝ L(u, s)α,

PL1(s | u) ∝
∑
L∈Λ

P (L) · L(u, s)α.

The coefficient of rationality α is a non-negative number. A greater α value

corresponds to a more rational speaker. If α is 0, utterances are chosen randomly

(see Section 3.2.2). The value of α is in fact usually set higher than 1. For example,

when deriving M-implicatures within the LUM, Bergen et al. set the value of α to

4 (2016). I will also not let α take values lower than 1.

In my work, L(u, s) takes as value either 1 or 10−9 (see Section 3.2.3). If L(u, s) is 1,
L(u, s)α = L(u, s), given that α ≥ 1. If L(u, s) is 10−9, L(u, s)α < L(u, s). However,
notice that I chose arbitrarily 10−9, as a value lower than 10−6 and approaching 0.

Both 10−9 and (10−9)α are values approaching 0 that I could use in my models, and

they are small enough in order for their difference not to be that relevant in the

results of calculations, permitting their interchangeable use. If this were not the

case, L(u, s) could be readily adjusted to a smaller value.

All of these considerations lead to the conclusion that α does not influence the

production and interpretation rules derived in this section. Consequently, these

rules can be further simplified as:

PL0(s | u,L) ∝ L(u, s),

PS1(u | s,L) ∝ L(u, s),

PL1(s | u) ∝
∑
L∈Λ

P (L) · L(u, s).

This leads to the conclusion that L1 picks objects only based on the probabilities

of the lexica supporting that choice. Given that the lexica are created using LOT-

based hypotheses as explained in the previous section, a model involving only L1 that

uses the production and interpretation rules described here only uses the LOT-based

hypotheses to choose which objects to pick, without other parameters being involved
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in the process. Therefore, the expressions derived here for L1 are used for the

implementation of the Baseline Model that only accounts for concept learning, and

not for pragmatics. Specifically, these formulas are used to calculate the probabilities

of selecting each of the objects presented in each trial, thereby determining the

response to the trials.

Reintroducing Costs

The cost does not necessarily need to be based on a property of the messages.

Instead, it can represent the cost of changing a message. This reflects the intuition

that a sender is more likely to send again the message that they previously sent,

unless there is a compelling reason to change.

Including the cost in the previous expressions results in the following:

PL0(s | u,L) ∝ L(u, s),

PS1(u | s,L) ∝ exp(α · (logPL0(s | u,L)− C(u))),

PL1(s | u) ∝
∑
L∈Λ

P (L) · PS1(u | s,L).

The production rule PS1(u | s,L) ∝ exp(α · logPL0(s | u,L) − α · C(u)) can be

rewritten as PS1(u | s,L) ∝ exp(α·logPL0
(s|u,L))

exp(α·C(u))
, which can be simplified as PS1(u |

s,L) ∝ PL0
(s|u,L)α

exp(α·C(u))
. Therefore, we obtain:

PL0(s | u,L) ∝ L(u, s),

PS1(u | s,L) ∝ L(u, s)α

exp(α · C(u))
,

PL1(s | u) ∝
∑
L∈Λ

P (L) · L(u, s)α

exp(α · C(u))
.

Costs cannot play a role yet, however. This is apparent when examining the

calculation of the coefficient of proportionality for PL1(s | u). Such calculations

are shown in the following Python code snippet. Here, the message in question is

indicated as message, the experimental stimulus considered is indicated by item,

and the variable nl is used to store the value of the unnormalized PL1(s | u).
for item in all_items:

nl = 0

# Iterate over all lexica

for i in range(len(lexica[message ])):
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# If the hypothesis for the current message is true for the current

item , then L(u,s) is 1.

if lexica[message ][i] in true_hypotheses:

nl += lexica[’probabilities ’][i] / (np.exp(cost) ** alpha)

# If the hypothesis for the current message is false for the current

item , then L(u,s) is close to 0.

else:

nl += 10 ** (-9) / (np.exp(cost) ** alpha)

nl_list.append(nl)

# k is the coefficient of proportionality.

# k * nl_list [0] + k * nl_list [1] + ... = 1. Therefore:

k = 1 / sum(nl_list)

If the costs did not matter, the calculations of nl would become:

if lexica[message ][i] in true_hypotheses:

nl += lexica[’probabilities ’][i]

else:

nl += 10 ** (-9)

Thus, if costs did not matter, the coefficient of proportionality k in the second code

snippet would differ from the one in the first code snippet by a constant factor: to

obtain k for the second code snippet, we should divide the coefficient of proportion-

ality from the first code snippet by (exp(cost))α.

In cases where costs matter, the non-normalized probability nl remains the same as

if costs did not matter, except that it is divided by (exp(cost))α. Since PL1(s | u)
is calculated by multiplying the respective nl by the proportionality constant k, it

follows that in scenarios where costs are included, nl, which incorporates the divi-

sor (exp(cost))α, is multiplied by k, which incorporates the multiplier (exp(cost))α,

leading to the same results that would be obtained if costs were not included. Thus,

altering the cost has no effect on PL1(s | u).
The code snippets used to illustrate this are part of the cognitive model’s imple-

mentation. In the model, I have allowed for costs different from zero being used.

In this way, it can be verified that, in the context of this experiment, the cost does

not play a role when the receiver is L1 (and even when it is L2, as discussed next).

Please note that this conclusion holds under the assumption that all observations

are equiprobable, i.e., that P (s) is constant.

Allowing for L2 listeners

As discussed earlier in this section, I will allow for L2 listeners in the L2 Model.

Thus, I will explain how the interpretation and production rules for L2 and S2 are

derived. Let us start from the general expressions for Sn and Ln, provided in Section
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3.2.3:

PSn(u | s) ∝ exp(α · (logPLn−1(s | u)− C(u))),

PLn(s | u) ∝ P (s)PSn(u | s).

These expressions serve as the foundation for deriving the rules for L2 and S2. In

fact, by substituting n with 2 in these expressions and by removing P (s), which is

going to become part of the normalization coefficient, as explained earlier in this

section, we obtain:

PS2(u | s) ∝ exp(α · (logPL1(s | u)− C(u))),

PL2(s | u) ∝ PS2(u | s).

Therefore, PL2(s | u) ∝ exp(α · (logPL1(s | u) − C(u))). Taking into account

the results obtained earlier in this section, the interpretation rule for L2 becomes

PL2(s | u) ∝ exp(α · (log(
∑

L∈Λ P (L) · L(u, s)))−C(u))), which can be also written

as follows:

PL2(s | u) ∝
α ·

∑
L∈Λ P (L) · L(u, s)
exp(C(u))

At this point, it is evident that, as before, the cost can be accounted for in the coef-

ficient of proportionality. Therefore, as the results of the cognitive models confirm,

the cost value does not matter even for the listener L2. The only parameter that

plays a role in the latter expression is in fact α.
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5 Results

In this chapter, I will present and analyze the results of the experiment, in Section

5.1, and the cognitive models, in Section 5.2. Subsequently, I will discuss these

results in Section 5.3.

5.1 Experimental Results

This section first establishes the criteria for data exclusion (see Section 5.1.1). Sub-

sequently, in Section 5.1.2, it addresses the results of the models used to analyze

response accuracy. Finally, in Section 5.1.3, it discusses the outcomes of concept

learning for participants.

Please, note that throughout the remainder of this section, the responses to the

trials corresponding to the first time a message was shown are not considered. In

fact, responses to such trials’ tend to be random, as participants start the receiver

tasks with no prior knowledge on the meaning of the concepts.

5.1.1 Data Exclusion

No participants were excluded for color blindness. Thus, data exclusion was solely

based on the accuracy of responses in the sender task and in the control trials from

the receiver tasks.

In the following, I will start by briefly discussing the results of the sender task.

Afterward, I will focus on the control trials from the receiver task, first showing

that they were indeed perceived as easier than the trials that are neither control

trials nor pragmatic trials, and then deciding on the utilization of control trials for

the exclusion of participants who exhibited lower performance on them.
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Sender Task

As mentioned in Section 4.1.8, the trials in the sender task could be used as control

trials, due to the task’s straightforwardness. Therefore, let us first examine the

accuracies of responses in this task.

The average accuracy for the sender task is around 95%, with the lowest accuracy

achieved by any participant being approximately 86%. Consequently, no partici-

pant’s results were excluded based on their performance in this task.

Demonstrating the Simplicity of Control Trials

Before excluding participants based on their performance on control trials, it is

important to ensure that such trials were perceived as easier by participants. For

this reason, I ran a generalized linear mixed-effects model (GLMM) that uses logistic

regression to predict binary outcomes to examin the difference in accuracy between

the control trials and the other non-pragmatic trials.

As the dependent variable, I used the correctness of responses. The predictor,

referred to as Trial Type, indicates whether the trials are control trials or trials

that are neither control trials nor pragmatic trials. The fixed effect is thus Trial

Type, whereas the random effects are run id (the participant ID), which allows to

take account of individual differences across participants, block number, accounting

for differences between blocks (for example, where trials in one block may be more

challenging than in another) and task, which accounts for potential differences in

task difficulty between the experimental group and the control group.

The reference level is the condition where Trial Type comprehends only control

trials.

The R code for the GLMM is the following:

normal_vs_controls <- glmer(

correct ~ Trial_type + (1 | run_id) + (1 | block_number) + (1 | task),

data = mm5noexclusion , family = binomial(link = "logit"))

The intercept has an estimate of 1.7628. This represents the baseline log-odds of

a correct response when Trial Type is at its reference level. Converting the log-odds

to probabilities, we obtain that the probability of a correct response in the control

trials is approximately 0.85.

The coefficient of Trial Type is -0.6409 with a p-value of 2.17e-05, indicating a sta-

tistically significant negative effect: the non-pragmatic, non-control trials have lower

odds of a correct response compared to the control trials. Specifically, the proba-
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bility to respond correctly in the non-pragmatic, non-control trials is approximately

0.75.

Regarding the random effects, for the run id, the variance is 0.186847, for the

block number it is 0.004669 and for the task it is 0.095100. This indicates that there

is low variability among blocks, and moderate variability among participants and

among groups, intended as experimental group and control group.

Data Exclusion Based on Control Trials

It has been shown that control trials are indeed easier to respond to correctly com-

pared to trials that are neither control trials nor pragmatic trials. It thus makes

sense to exclude participants based on their accuracy on control trials.

Let us thus look at table 5.1, which displays the accuracies of participants in such tri-

als. Participants with average accuracies below 0.70 seem to be outliers. Therefore,

From the control group, the data for the participant with Run ID 71 was excluded,

while from the experimental group, the data for participants with Run IDs 57 and

70 were excluded. This results in 7 participants remaining in the control group and

9 participants in the experimental group.

5.1.2 Models for Analyzing Response Accuracy

In this section, I will employ generalized linear mixed-effects models (GLMMs) to in-

vestigate differences in accuracy across the following comparisons: between the con-

trol group and the experimental group, between pragmatic trials and corresponding

trials in the control group, between pragmatic trials and other non-control trials in

the experimental group, and between M-implicature trials and Q-implicature trials.

All models used in this section are GLMMs that employ logistic regression to predict

binary outcomes (accuracy). Therefore, I will not specify the model type for each

specific instance throughout the rest of this section.

Please note that in the rest of this section, when I report the average accuracy

values, I will round them to two decimal places.

Control Group and Experimental Group

The average accuracy for the control group is 0.78, whereas the average accuracy

for the experimental group is 0.69.

To examine the difference in accuracy between these two groups, I utilized the
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Table 5.1: Accuracy in control trials by group

Group Average Accuracy

Control Group 0.89
Experimental Group 0.80

Run ID Accuracy (Control Group)

14 0.92
46 0.85
50 0.88
63 0.96
67 0.88
71 0.65
72 0.96
75 1.00

Run ID Accuracy (Experimental Group)

8 0.81
19 0.81
32 0.81
39 0.85
49 0.73
57 0.69
66 0.81
68 0.88
70 0.65
78 0.92
81 0.81

correctness of responses as dependent variable for the GLMM, with the group type

(control or experimental) as the predictor. From now on, I will call this predictor

Group

The fixed effect is Group, whereas the random effects are run id (the participant

ID), which allows to take account of individual differences across participants and

block number, accounting for differences between blocks (for example, where trials

in one block may be more challenging than in another). The reference level is the

control group.

The R code for the GLMM is the following:

exp_vs_control <- glmer(
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correct ~ Group + (1 | run_id) + (1 | block_number),

data = mm1 , family = binomial(link = "logit"))

The intercept has an estimate of 1.2521, representing the baseline log-odds of

a correct response in the control group. Converting the log-odds to probabilities,

we can determine that the probability of a correct response in the control group is

approximately 0.78.

The coefficient of the Group variable is -0.4335 with a p-value of 0.00277, indicat-

ing a statistically significant negative effect: the experimental group has lower odds

of a correct response compared to the control group. Specifically, the probability to

respond correctly in the experimental group is 0.69.

Regarding the random effects, for run id the variance is 0.01602, indicating some

variability among participants. Similarly, the variance for block number is 0.04219,

indicating moderate variability across block numbers.

In conclusion, Group has a significant impact on the correctness. Specifically, the

experimental group has lower odds of a correct response compared to the control

group.

Pragmatic Trials and Corresponding Trials in the Control Group

The average accuracy for pragmatic trials in the experimental group is 0.43, whereas

the average accuracy for corresponding trials in the control group is 0.41.

To examine the difference in accuracy between these types of trials, I utilized the

correctness of responses as dependent variable for the GLMM and the trial type as

the predictor. From now on, I will call this predictor Trial Type.

The fixed effect is Trial Type and the random effects are run id and block number.

The reference level is set to the trials in the control group that correspond to the

pragmatic trials in the experimental group.

The R code for the GLMM is the following:

pragmatics_vs_would_be_pragmatics <- glmer(

correct ~ Trial_type + (1 | run_id) + (1 | block_number),

data = mm2 , family = binomial(link = "logit"))

The intercept has an estimate of -0.37482, representing the baseline log-odds of

a correct response in the control group. Converting the log-odds to probabilities,

we can determine that the probability of a correct response in the control group is

approximately 0.41.

The coefficient of the Trial Type variable is 0.08421. This indicates that the trials

corresponding to pragmatic trials in the control group have lower odds of a correct
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response compared pragmatic trials from the experimental group. Specifically, the

probability to respond correctly in the experimental group is approximately 0.43.

However, the high p-value for the coefficient of Trial Type (0.746) suggests that this

result is not statistically significant.

Regarding the random effects, for run id the variance is 1.01e-08 and for block

number it is 1.46e-01. This indicates very low variability among blocks and, espe-

cially, among participants.

In conclusion, there is no proof that Trial Type impacts the accuracy of responses.

Pragmatic Trials and Other Non-Control Trials in the Experimental Group

The average accuracy for pragmatic trials is 0.43, whereas the average accuracy for

corresponding the other non-control trials in the experimental group is 0.71.

To examine the difference in accuracy between these types of trials, I utilized the

correctness of responses as dependent variable for the GLMM and the trial type as

the predictor. From now on, I will call this predictor Trial Type.

The fixed effect is Trial Type and the random effects are run id and block number.

The reference level is set to the pragmatic trials.

The R code for the GLMM is the following:

pragmatics_vs_normal_experimental <- glmer(

correct ~ Trial_type + (1 | run_id) + (1 | block_number),

data = mm3 , family = binomial(link = "logit"))

The intercept has an estimate of -0.2897, representing the baseline log-odds of a

correct response in the pragmatic trials. Converting the log-odds to probabilities,

we can determine that the probability of a correct response in pragmatic trials is

approximately 0.43.

The coefficient of the Trial Type variable is 1.1876, with a p-value of 1.77e-08,

indicating a statistically significant effect: pragmatic trials have lower odds of a

correct response compared to the the other non-control trials in the experimental

group. Specifically, the probability to respond to non-pragmatic, non-control trials

in the experimental group is approximately 0.71.

Regarding the random effects, for run id the variance is 0.06500 and for block

number it is 0.09925. This indicates moderate variability among blocks and partic-

ipants.

In conclusion, Trial Type has a significant impact on the correctness. Specifically,

the pragmatic trials have lower odds of a correct response compared to the other
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non-control trials in the experimental group.

M-implicatures and Q-implicatures

The average accuracy for pragmatic trials corresponding to M-implicatures is 0.38,

whereas the average accuracy for pragmatic trials corresponding to Q-implicatures

is 0.58.

To examine the difference in accuracy between these types of trials, I utilized the

correctness of responses as dependent variable for the GLMM and the trial type

(Trial Type) as the predictor.

The fixed effect is Trial Type and the random effect is block number. The reference

level is set to the Q-implicatures trials.

The R code for the GLMM is the following:

m_vs_q <- glmer(

correct ~ Trial_type + (1 | block_number),

data = mm4 , family = binomial(link = "logit"))

The intercept has an estimate of 0.09357, representing the baseline log-odds of a

correct response in the Q-implicatures trials. Converting the log-odds to probabili-

ties, we can determine that the probability of a correct response in Q-implicatures

trials is approximately 0.52.

The coefficient of Trial Type is -0.51983. This indicates that the M-implicatures

trials have lower odds of a correct response compared Q-implicatures trials. Specifi-

cally, the probability to respond correctly to M-implicatures trials is approximately

0.40. However, the high p-value for the coefficient of Trial Type (0.237) suggests

that this result is not statistically significant.

The random effect block number has variance 0.2722. This indicates moderate

variability among blocks.

In conclusion, there is no proof that Trial Type impacts the accuracy of responses.

5.1.3 Concept Learning Outcomes

This section first examines the accuracy in concept learning to show that concepts

were effectively learnt. Following this, it discusses the participant-reported learning

outcomes.
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Accuracy in Concept Learning

Table 5.2 presents the accuracies in the receiver task, broken down by control and

experimental groups. The table also includes overall accuracies for each group.

Please, note that these results were derived by analyzing only the trials that are

neither control trials nor pragmatic trials, to emphasize concept learning.

Table 5.2: Average and per block accuracies for control and experimental groups,
considering only non-pragmatic, non-control trials

Group Average Accuracy

Control 0.827
Experimental 0.711

Block Number Accuracy (Control Group) Accuracy (Experimental Group)

1 0.857 0.789
2 0.743 0.689
3 0.844 0.758
4 0.878 0.556

From these results, it is evident that the accuracies are higher than what would

be expected by chance, indicating that participants learnt the concepts. In fact,

if responses were random, the expected accuracy would be 1
3
, given that each trial

involves selecting one object from a set of three.

Participant-Reported Learnt Concepts

It is often challenging to express one’s thought processes and, in this context, to

describe what is being learnt. This point is also emphasized by Piantadosi et al.

(2016). Therefore, even though participants described what they believed the con-

cepts meant at the end of the listener tasks, it might be more accurate to evaluate

their responses to the trials to determine whether they understood the concepts.

Furthermore, the focus of this study is not on whether participants learnt the con-

cepts, but rather on the learning process itself and the extent to which they employed

pragmatic reasoning during that process.

Nevertheless, asking participants to describe the concepts at the end of the tasks

served the purpose of reinforcing the impression that the study was only focused on

concept learning. Furthermore, the results still provide valuable insights.
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First, in some incorrect responses, participants only provided simplified versions

of the correct concepts, suggesting that they nearly grasped the right meanings.

Second, it appears that participants tended to avoid using logical negations when

describing the concepts. Some employed quantifiers, and in many cases, object

priorities were established. For example, they would indicate that the target object

is the one with a specific feature, and if that’s not present, the object with another

specific feature becomes the target. Fuzzy inclusions were also observed, such as

describing a concept as preferably having a certain feature. Additionally, in many

cases participants used more than two literals to express the meaning of concepts.

Based on my estimations, around 1
8
of the concepts are incorrectly labeled due

to an error in the code of the experiment. This means that, while participants’

responses to what they think the concepts mean are stored successfully, the real

meaning of the concepts is not always determined successfully. This error results

in a slight underestimation of the participants’ accuracy in determining the right

concepts. It is still unclear why that error occurs. However, please note that the

learnt concepts are not used in data analysis and they do not play a role in the

cognitive models.

5.2 Cognitive Models’ Results

In this section, I will first explore the Baseline Model’s results in concept learning,

in Section 5.2.1. Subsequently, in Section 5.2.2, I will focus on the learning patterns

exhibited by the cognitive models, showing learning curves for all models.

5.2.1 Exploring the Model’s Result in Concept Learning

As a first step in analyzing the cognitive models’ results, let us examine whether

the Baseline Model provides correct responses to the experimental trials and what

meaning it assigns to the learnt concepts. This step is needed because, if the Baseline

Model does not produce correct responses, there might be flaws in the cognitive

models or in the experimental setup.

A simple example illustrating that the learning outcomes in the Baseline Model align

with expectations is also shown in Appendix 6.2. Now, let us explore whether the

more complex Baseline Model behaves as expected.
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Assessing Model Accuracy

Out of the 74 non-pragmatic trials in the experiment, the Baseline Model responds

incorrectly to 16 of them (pragmatic trials are expected to be incorrect in this model

and are therefore not considered). Table 5.3 focuses on these trials: for each trial

with an incorrect response, the table indicates the block from which it originates

and the difference between the probability of the model’s selected response and the

probability of the correct response. The Baseline Model does not provide correct

Table 5.3: Trials responded to incorrectly by the Baseline Model, with block of origin
and difference between the probability of the model selecting the most
probable response and its probability of selecting the correct response.

Block Difference

2 0.00013
2 0.07616
2 0.14004
2 0.02494
3 0.14360
3 0.00594
3 0.00165
3 0.00040
4 0.00684
4 5.79187e-06
4 1.42495e-05
4 0.11039
4 0.01887
4 0.02930
4 1.09625e-05
4 0.00237

responses in block 1 with probabilities lower than those of selecting other objects.

Blocks 2 and 3 each contain 4 trials where the model is more likely to give an incor-

rect response, whereas block 4 has 8 such trials.

It is worth noting that in many of these trials, the probability of the most likely re-

sponse provided by the model is often close to the probability of the model providing

the correct response. Nevertheless, this is not ideal, as it would be preferable for the

probability of the correct response to be significantly higher than the probabilities

of other responses.
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Concepts Learnt by the Baseline Model

Concepts to be learnt are randomized among features and subfeatures for each run

of the experiment and each block, as discussed in Section 4.1.4. When discussing in

this section the concepts to be learnt, I will nevertheless use a specific instantiation

of them, in order to make the discussion clearer.

The right concepts to be learnt and the concepts learnt by participants are reported

in table 5.4. In block 1, which is the block in which the model was most accurate,

Table 5.4: Comparison of learnt concepts with correct concepts. Learnt concepts
are indicated as “unclear” when more hypotheses for such concepts were
equiprobable.

Block Learnt Concept Correct Concept

1 (p) Triangle Triangle and not small
1 (q) Small or red Small or red

2 (p) Green Green
2 (q) Unclear Not (blue or big)

3 (p) Unclear Not small
3 (q) Unclear Red and not circle

4 (p) Not (small and blue) Circle and red
4 (q) Unclear Big or blue

one concept is learnt correctly, whereas the other, associated with the message p, is

partially learnt, reflecting a pattern often observed in human participants. In block

2, one concept is correctly learnt, but the other remains unclear. In block 3, both

concepts are unclear, while in block 4, one concept remains unclear and the other

is learnt incorrectly. The reduced accuracy in block 4 aligns with earlier results

discussed in this section.

5.2.2 Learning Patterns

This section explores the learning patterns of the cognitive models. It begins with

the Baseline Model, followed by the Double Update Model, and concludes with the

L2 Model.

For each model, learning curves are provided. Please, note that the learning curves

do not use the same scales. In fact, the probabilities of correct responses derived by

the models are generally less extreme than the participants’ average probabilities
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of correct responses to each trial. Moreover, there is variability across the different

models concerning the occurrence of trials with more extreme probabilities of correct

responses.

Baselilne Model

In the following, I will start by comparing the results of the Baseline Model with

those of the control group, then move on to compare them with those of the exper-

imental group.

Initially, a Spearman correlation analysis is conducted to examine the relationship

between participants’ average probability of responding correctly to each trial and

the Baseline Model’s corresponding probability of correct responses.

For the control group, the analysis revealed a weak correlation, with a Spearman

correlation coefficient of approximately 0.19. The associated p-value, approximately

0.07, suggests that this correlation is not statistically significant.

In contrast, for the experimental group, the Spearman correlation coefficient between

the Baseline Model’s results and the experimental data was approximately 0.37. The

associated p-value, 0.0003, indicates a statistically significant moderate correlation.

A more close look the results through the visual inspection of learning curves from

figures 5.1 and 5.2 makes however clear that the Baseline Model’s results align with

the experimental results only for the first experimental block.

Such visual inspection also indicates that the probabilities of the Baseline Model

providing a correct response are not as extreme as the participants’ probabilities of

doing so. In fact, the Baseline Model provides a wrong response only to 16 non-

pragmatic trials, half of which were in the fourth experimental block (see Section

5.2.1). However, the learning curves show that for most trials, the probability of

responding correctly is low, indicating that the responses of the model have similar

probabilities in most cases.

Double Update Model

I ran the Double Update Model with different values of λ (see Section 4.2.3 for a

description of λ). The λ values tested, along with the corresponding cumulative

absolute differences between the model predictions and the experimental results are

shown in table 5.5.

The only λ value for which the Double Update Model yields a lower cumulative

absolute difference compared to the Baseline Model (which corresponds to the Dou-
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Figure 5.1: Learning curve of the Baseline Model (in red) compared to experimental
results from the control group (in blue). Squares indicate pragmatic
trials. In each block, trials with the message p precede those with the
message q.

ble Update Model with λ = 0.5) is 0.525. The Spearman correlation coefficient

between the Double Update Model’s results (with λ = 0.525) and the experimental

data is approximately 0.37, matching the correlation observed with the Baseline

Model. The associated p-value of 0.0004 indicates a statistically significant moder-

ate correlation.

In order to provide a visual comparison between the cognitive model’s predictions

and the experimental results, the learning curve of the Double Update Model with

λ = 0.525 alongside the experimental data is displayed in figure 5.3.

L2 Model

I tested the Double Update Model with different values of the rationality coefficient

α (see Section 3.2.2 for a description of α). The α values tested, along with the

corresponding cumulative absolute differences between the model predictions and

the experimental results are shown in table 5.6.

Based on the cumulative absolute differences, none of the tested α values lead the

L2 Model to better fit the experimental data than the Baseline Model.

A visual examination of the learning curve of the L2 Model with α = 4 alongside the

experimental data shows that, in the L2 Model, the probabilities to correctly respond

to pragmatic trials become more extreme in value with respect to the Baseline Model,
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Figure 5.2: Learning curve of the Baseline Model (in red) compared to experimental
results (in blue). Squares indicate pragmatic trials.

usually increasing.

The learning curves for the α values tested look similar. I decided to show in figure

5.4 the one with α = 4 for the simple reason that that is the same α value used by

Bergen et al. in the example with M-implicatures in the LUM (2016).
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Table 5.5: Cumulative absolute differences for different λ values

λ Cumulative absolute differences

0.50 30.4993
0.525 30.2526
0.55 31.9047
0.575 31.9420
0.60 31.7799
0.625 31.8248
0.65 31.6369
0.70 30.8767
0.75 30.8905

Table 5.6: Cumulative absolute differences for different α values

α Cumulative absolute differences

1 30.9732
2 31.1120
3 31.2380
4 31.3491
5 31.4451

Figure 5.3: Learning curve of the Double Update Model with λ = 0.525 (in red)
compared to experimental results (in blue). Squares indicate pragmatic
trials.
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Figure 5.4: Learning curve of the L2 Model with α = 4 (in red) compared to exper-
imental results from the experimental group (in blue). Squares indicate
pragmatic trials.
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5.3 Discussion

In this section, I will first discuss the results regarding concept learning, in section

5.3.1. Subsequently, in Section 5.3.2 I will focus on the results relative to pragmatic

reasoning.

5.3.1 Concept Learning Results

This section begins with a discussion of the learning results achieved by participants,

followed by an examination of the learning outcomes of the cognitive models.

Participants’ Learning Results

The participants’ accuracies in the receiver tasks suggest that learning occurred

(see Section 5.4). The concepts learnt by participants sometimes exhibited a bias

towards simplicity (simplified versions of the concepts were sometimes reported as

the right concepts), a bias that is also implemented in the the cognitive models used

in this work. In fact, please notice that the mistake in the learnt concepts for block

1 in the Baseline Model is just a simplification of the correct concept, as shown in

Section 5.2.1.

Participants generally avoided using logical negations when explaining the con-

cepts and sometimes they used quantifiers. Thus, it might be beneficial to include

quantifiers in the cognitive models and account for varying saliency in operations.

Additionally, participants frequently employed more than two literals in their de-

scriptions, suggesting that this may be a useful feature to incorporate into the

cognitive models. Regarding participants’ establishment of object priorities and

the use of fuzzy inclusions (as discussed in Section 5.1.3), these tendencies could

be indicative of uncertainty about the concepts’ meanings. Thus, this might not

be a significant concern. Nevertheless, it will not be a concern at least until more

important adjustments are made.

Cognitive Models’ Learning Results

In all cognitive models employed in this work, the likelihood modifier was always set

to 0.9 (for a description of the likelihood modifier, see how feedback leads to updates

in beliefs in the cognitive models implemented as part of this work in Section 4.2.3).

This parameter is not the only one which was kept constant and was not learnt,
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as the same holds for the costs of literals and logical operations in the LOT that I

utilized, SimpleBoolean (see Section 4.2.1).

These constraints may have contributed to the cognitive models’ limited performance

in concept learning. A visual inspection of learning curves suggests that only for the

first block learning could have occurred. This could be indicative of the fact that the

implementation of the other blocks was less effective. In fact, only in the first block

the Baseline Model never produced incorrect responses with lower probabilities than

those of selecting other objects, in non-pragmatic trials (see Section 5.2.1).

5.3.2 Pragmatic Reasoning Results

This section discusses the outcomes related to pragmatic reasoning, starting with

the experimental results and then shifting to the results obtained from the cognitive

models.

Experimental Results

Pragmatic trials in the experimental group exhibited significantly lower odds of a

correct response compared to other non-control trials. This outcome aligns with ex-

pectations, as pragmatic reasoning presents added complexity and not many people

are supposed to engage in it in cases similar to this.

Another statistically significant finding is that the experimental group had lower

odds of providing correct responses compared to the control group. Thus, despite

having more information available to them (the record with previous trials for both

concepts was displayed, allowing for pragmatic reasoning), participants in the ex-

perimental group seem to struggle with effectively utilizing that information. This

could be due to several factors. Firstly, there is no evidence indicating that partici-

pants engage in conversational implicatures. In fact, there is no evidence suggesting

that whether trials are pragmatic trials or their corresponding control group trials

affects the response accuracy. Secondly, the additional information displayed on the

screen, combined with longer task durations, may lead to participants becoming less

inclined to use that information. This could be due to fatigue, forgetting, or simply

choosing not to review older information when that would require a long time.

Finally, there is no evidence suggesting that whether pragmatic trials are M-

implicatures or Q-implicatures impacts response accuracy. This is not unexpected,

given the limited number of participants and the small number of data points for
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these specific trials.

Cognitive Models’ Results

Switching from the Baseline Model to the Double Update Model yielded a better fit

with experimental results only for λ = 0.525, among the tested λ values (see Section

5.2.2). Furthermore, the improvement was not very significant.

Similarly, using the L2 Model instead of the Baseline Model did not lead to a better

fit with the experimental results for any of the tested α values. This finding is

unsurprising, as it was found no evidence that participants engaged in conversational

implicatures.
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6 Conclusion

This chapter begins with a brief overview of the results of the study, including

potential explanations for the outcomes, as well as a discussion of limitations and

suggested improvements, in Section 6.1. Subsequently, in Section 6.2, the relevance

of the current study in the field of Artificial Intelligence is discussed.

6.1 Outcomes, Limitations and Improvements

This section offers a brief overview of the results, discusses possible explanations for

the observed outcomes, and proposes improvements to address identified issues and

enhance the study.

The section opens with a discussion of the concept learning results, in Section

6.1.1. Subsequently, Section 6.1.2 focuses on the outcomes of learning two concepts

simultaneously. Finally, Section 6.1.3 examines the results concerning conversational

implicatures.

6.1.1 Concept Learning

Participants appear to learn the concepts’ meaning. Conversely, the cognitive mod-

els seem not to learn for any experimental block other than, possibly, the first. This

could be due to flaws in the design of the other blocks or to the lexica (the com-

binations of the hypotheses for the two concepts) having probabilities too close to

each other, resulting in similar probabilities for each response.

Possible improvements include re-evaluating the design of the experimental blocks

and confirm that a cognitive model focusing solely on concept learning can accu-

rately predict correct responses to non-pragmatic trials. This would help verify that

learning through hypotheses expressible as logical formulas in the utilized LOT is

a viable approach and that the concepts intended to be learnt in the tasks are the

simplest to learn in the corresponding LOT.
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Moreover, an improved concept learning model could be created. A viable option

would be to use λ calculus, adopting a methodology similar to that employed by

Piantadosi et al. (2016). This approach might help overcome the problem of storing

many hypotheses with similar probabilities. Furthermore, it would trivially allow

the inclusion of more than two literals per hypothesis, which might be an important

step for improving the cognitive model.

Lastly, it could be beneficial to include quantifiers in the LOT and let the model

learn the likelihood modifier (see Section 4.2.3), along with the costs associated to

the features in the experimental stimuli and the operations in the LOT. In order to

do this, a larger participant pool would be required.

6.1.2 Learning both Concept Simultaneously

If learners’ beliefs about concept meanings interacted and this interaction enhanced

learning, the experimental group, which learns two concepts at once, should have

outperformed the control group, which learns only one concept at a time. However,

the opposite occurred, suggesting that this interaction, if present, may hinder learn-

ing. A more plausible explanation, however, is that the additional information in

the experimental group, along with longer tasks, could lead to fatigue, forgetfulness,

or reluctance to review earlier trials because it takes a long time.

Regarding the results from the cognitive models, the Double Update Model only

marginally improves upon the Baseline Model at a specific λ value of 0.525, among

the tested λ values (see Section 5.2.2). This improvement is however marginal,

and in order to better investigate the model’s predictions, it would be best to first

implement the improvements outlined in the previous section.

Please, note that due to the the extensive computation time required to run the

cognitive models and the lack of access to high-performance computing resources,

only few λ values were tested.

An improvement in the data analysis would be to embed the cognitive models in a

Bayesian model to determine the best combination of parameters to fit the data.

Simplifying the tasks, such as using less complex concepts, would help mitigate the

issues mentioned in this section. Shortening the experiment by reducing the number

of trials per block or the total number of blocks could also serve that purpose.

Reducing the amount of blocks might however not be ideal. In fact, having more

receiver blocks can lead to a learning effect, which I think not to be harmful in

this experiment and is most relevant for the experimental group. In fact, initially
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participants might not recognize that the task involves conversational implicatures.

However, they might consider that an option as they progress with the tasks.

6.1.3 Engaging in Conversational Implicatures

Participants do not seem to engage in conversational implicatures. This could how-

ever be due to the limited number of participants and the rarity of pragmatic listeners

at the L2 level, who are needed to engage in the pragmatic implicatures present in

the current study. In fact, after applying data exclusion criteria, only 9 participants

remained in the experimental group, which is the one where pragmatic reasoining is

involved.

To make sure to have participants who reason as L2 listeners, it is thus crucial to

recruit a larger number of participants.

The results of the L2 Model should be compared to experimental results from

participants who reason as L2 listeners. Since participants in the current study

seemingly did not engage in conversational implicature, it is less likely that they

acted as L2 listeners. Therefore, a discussion about the L2 Model implemented as

part of this study would not be meaningful.

An improvement to the analysis of responses to pragmatic trials is the implemen-

tation of a label to indicate instances when participants did not engage in conver-

sational implicatures. This improvement, which is now part of the experimental

implementation, is discussed below.

In pragmatic trials, among the three objects displayed, one is the target and another

was the correct choice from when these same objects were shown in a previous trial

with a different message (see Section 4.1.7); let us call this the “false object”. If

participants are engaging in conversational implicatures, they would avoid choosing

the false object, as the implicature implies that the correct choice is any object

other than the false one. Therefore, by labeling the false objects in pragmatic tri-

als, it is possible to determine when participants did not engage in conversational

implicatures, assuming their selection of the false object was not due to distraction.
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6.2 Relevance of this Study in the Field of Artificial

Intelligence

As outlined in Section 2.1, cognitive models can be useful when building agents

that emulate human behavior in specific tasks or anticipate human actions to offer

assistance when necessary. In this section, I will briefly explore how this applies to

cognitive models on concept learning and pragmatics, such as those discussed in this

work.

Being able to model concept learning would allow artificial agents to achieve a

better level of human-like communication. In fact, they could learn new concepts

from the users in a way that resembles the one in which humans learn concepts

themselves. Similarly, integrating pragmatic reasoning into AI systems can enhance

their ability to communicate in a way that better resembles human communication,

since humans heavily rely on this kind of reasoning. This would allow for artifi-

cial agents to better understand users and generate natural language that is more

similar to that generated by humans, leading to significant improvements in virtual

assistants and chatbots, among other systems.

Research into regulating pragmatic reasoning in Large Language Models (LLMs) is

currently underway. For instance, Miehling et al., have discussed adaptations of the

Gricean maxims of conversation (see Section 2.3.1) for communication between hu-

mans and LLMs. Furthermore, they have proposed new maxims specifically tailored

for interactions with LLMs (2024).

As I have just outlined, both concept learning and pragmatics are important

aspects in human language, and being able to model them can result in AI systems

performing better. Since the learning of novel concepts and the communication

relying on pragmatic reasoning must not occur indipendendtly of each other, it

makes sense to try modeling them together and explore their interactions, as done in

this study, and integrate models that take into account such interactions in artificial

agents.
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Appendix

Implementing the Lexical Uncertainty Model

The following Python code is (most of) the implementation of the LUM in the

cognitive models that I built as part of this work. It includes detailed comments to

enhance readability. This code is utilized to determine the probability to pick each

object appearing in a trial. Such probabilities are stored in the variables p obj1,

p obj2 and p obj3.

1 nl_list = []

2 l_one_list = []

3 p_obj1 = p_obj2 = p_obj3 = 0

4

5 # Calculate the coefficient of proportionality

6 # Iterate over all items

7 for item in all_items:

8 # List all hypotheses for the message in question (called ’message ’) that

are true for the experimental stimulus ’item ’.

9 nl = 0

10 # Iterate over all lexica and apply the interpretation rule (the formula)

for L_1.

11 for i in range(len(lexica[message ])):

12 # If the hypothesis for the current message is true for the current

item , then L(u,s) is 1. Alpha is the rationality coefficient. Cost

is the cost of the message.

13 if lexica[message ][i] in true_hypotheses:

14 nl += lexica[’probabilities ’][i] / (np.exp(cost) ** alpha)

15 # If the hypothesis for the current message is true for the current

item , then L(u,s) is close to 0.

16 else:

17 nl += 10 ** (-9) / (np.exp(cost) ** alpha)

18

19 # unnormalized probabilities of picking the objects displayed in the trial

20 if item == trial [0]:

21 p_obj1 = nl

22 elif item == trial [1]:

23 p_obj2 = nl

24 elif item == trial [2]:

25 p_obj3 = nl

26 # If we are working with the L_2 listener , the unnormalized probabilities

for L_1 must be saved
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27 if L2:

28 l_one_list.append(nl)

29

30 # True hypotheses will be recreated for the next item at the next

iteration of the loop.

31 del true_hypotheses

32 nl_list.append(nl)

33

34 # k is the coefficient of proportionality.

35 # k * nl_list [0] + k * nl_list [1] + ... = 1. Therefore:

36 k = 1 / sum(nl_list)

37

38 # If the listener is L_1:

39 if not L2:

40 # Update the probability of selecting the items in the trial by using k

41 p_obj1 *= k

42 p_obj2 *= k

43 p_obj3 *= k

44 # The probabilities must sum up to 1

45 total_probability = p_obj1 + p_obj2 + p_obj3

46 if total_probability != 0:

47 p_obj1 /= total_probability

48 p_obj2 /= total_probability

49 p_obj3 /= total_probability

50 else:

51 p_obj1 = p_obj2 = p_obj3 = 1 / 3

52

53 # If the listener is L_2:

54 else:

55 # Keep track of the displayed items’ probabilities

56 p_obj1 = l_one_list.index(p_obj1)

57 p_obj2 = l_one_list.index(p_obj2)

58 p_obj3 = l_one_list.index(p_obj3)

59

60 # Transform unnormalized probabilities for L_1 to probabilities by using k.

61 l_one_list = list(map(lambda x: x * k, l_one_list))

62 totprob = sum(l_one_list)

63 l_one_list = [prob / totprob for prob in l_one_list]

64

65 nl = 0

66 del nl_list

67 nl_list = []

68 # Calculate L2’s normalization coefficient. This is very similar to what

was done earlier for L_1. You can see the recursion , as in the

interpretation rule for L_2 appear L_1

69 for listener_one in l_one_list:

70 nl += (listener_one ** alpha) / np.exp(alpha * cost)

71 nl_list.append(nl)

72 k = 1 / sum(nl_list)

73

74 p_obj1 = nl_list[p_obj1] * k

75 p_obj2 = nl_list[p_obj2] * k

76 p_obj3 = nl_list[p_obj3] * k
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77 total_probability = p_obj1 + p_obj2 + p_obj3

78 if total_probability != 0:

79 p_obj1 /= total_probability

80 p_obj2 /= total_probability

81 p_obj3 /= total_probability

82 else:

83 p_obj1 = p_obj2 = p_obj3 = 1 / 3

Example Showing Learning Outcomes in Baseline

Model Implementation

The following Python code snippet serves as an example of how concept learning

works in the cognitive models that I built for this study. The output that is produced

by the code snippet is reported underneath it.

To run the code, it is sufficient to substitute it to the code that is located right

under the declarations of functions in the cognitive models.py file that contains the

cognitive models for this work, which can be found at the link https://github.

com/lpavan98/Master-s-thesis-material.

1 # Create some simple hypotheses for the concept associated with the message p.

2 # Each literal has cost 1, as well as each operation (only the logical

conjunction is used as operation in this example).

3 p_hypotheses = {

4 "hypotheses": [’s1’, ’s2’, ’s2 and c2’, ’c1’, ’c2’, ’s1 and c2’, ’s2 and

c1’, ’s1 and c1’],

5 "costs": [-1,-1,-3,-1,-1,-3,-3,-3],

6 "probabilities": []

7 }

8 # Costs are converted to probabilities.

9 p_hypotheses[’probabilities ’] = cost_to_probability(p_hypotheses[’costs’])

10 # In the beginning , the hypotheses for the concept associated with the message

q have the same probabilities as those for the concept associated with p.

11 q_hypotheses = deepcopy(p_hypotheses)

12 lexica = create_lexica(p_hypotheses , q_hypotheses)

13

14 # Feedback allows here to observe that s1c1h1 (the object with size 1, color 1

and shape 1) is in the extension of the concept associated with p.

15 lexica = update_beliefs_based_on_feedback(message=’p’, feedback=’s1c1h1 ’,

cuncurrent_reasoning=False , likelihood_modifier_concurrent =0.5)

16 # s2c2h1 (the object with size 2, color 2 and shape 1) is in the extension of

the concept associated with q.

17 lexica = update_beliefs_based_on_feedback(message=’q’, feedback=’s2c2h1 ’,

cuncurrent_reasoning=False , likelihood_modifier_concurrent =0.5)

18

19 # Print the best 10 lexica. For each lexicon , the meaning of the concepts

associated with the two messages are displayed , along with the lexicon ’s

probability.
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20 sorted_lexica = sorted(zip(lexica["p"], lexica["q"], lexica["probabilities"]),

key=lambda x: x[2], reverse=True)

21 for i in range(min(10, len(sorted_lexica))):

22 p, q, prob = sorted_lexica[i]

23 print(f"Lexicon {i+1}: p={p}, q={q}, Probability ={prob}")

The output produced by the code provided above is the following:

Lexicon 1: p=s1, q=s2 , Probability =0.17322557580768658

Lexicon 2: p=s1, q=c2 , Probability =0.17322557580768658

Lexicon 3: p=c1, q=s2 , Probability =0.17322557580768658

Lexicon 4: p=c1, q=c2 , Probability =0.17322557580768658

Lexicon 5: p=s1, q=s2 and c2 , Probability =0.023443532365758586

Lexicon 6: p=c1, q=s2 and c2 , Probability =0.023443532365758586

Lexicon 7: p=s1 and c1, q=s2 , Probability =0.023443532365758586

Lexicon 8: p=s1 and c1, q=c2 , Probability =0.023443532365758586

Lexicon 9: p=s1, q=s1 , Probability =0.019247286200854058

Lexicon 10: p=s1, q=c1 , Probability =0.019247286200854058
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