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1 Introduction

1.1 Malnutrition in the world

With a growing world population and no increase in food security, one in three people experienced
food insecurity in 2021 [20]. Improving food security requires financing and policy changes on
many levels. In regions facing crises or conflict it can be hard to introduce policy changes on
government level but according to ‘2022 Global Hunger Index’ [1], initiatives on a more local level
or in local/decentralized government can still be successful in reducing malnutrition in that area.

In this project, the term malnutrition, always refers to undernutrition which is defined as a
deficiency in one ore more of the nutrients that the human body needs to survive and thrive.

The only way to avoid undernutrition is frequent intake of the right quantities of nutrients.
The most common nutrient deficiencies globally are protein-, iron-, vitamin A-, zinc-, and iodine
deficiency [18, 20].

Nutrient requirements are not equal for all people. Very similar individuals can have very dif-
ferent dietary requirements [22, 23]. Estimation of nutrient requirements for an individual is not a
trivial task. Diets are especially complex and varied for children and pregnant women and they are
particularly affected by undernutrition [11, 20].

The term full nutrition is used throughout this project to indicate that all nutrients are available
in the required quantities to achieve normal health for an individual. Full nutrition implies the
absence of malnutrition.

1.2 Subsistence

Small scale agriculture on the local level is still very important in rural areas. In many developing
countries a significant part of the population is involved in intensive subsistence farming [17]. In this
type of agriculture, smallholders produce food for their survival on land that is typically smaller than
2 ha [10]. The choice of crops to grow mainly depends on the nutritional needs of the household.
Market value of crops is less important but planting of cash crops from which harvest can be traded
can still be very usefull. Subsistence farms require a diverse crop selection to generate a nutritious
diet for the household. This in turn requires good planning, some knowledge of nutrition and efficient
land use.

1.3 Computational perspective

The aim of this research project is to use a computational point of view to look at crop choices and
land use in relation to nutrition for smallholder subsistence farmers. A model could calculate the
best layout of farm land by optimizing nutritional output of the farm by planting crops that match
the nutritional requirements of the household. Algorithms could provide assistance in the decision
making processes for subsistence farmers to help them in growing crops that benefit nutrition.

Mathematical optimization techniques have been used many times to evaluate decisions in the
agricultural process [8, 6]. Often the goal is to increase profit while maintaining healthy farm soil
or efficient water usage. Models are often made to resemble real farms which makes it easier to
implement results to then test if model predictions are accurate. A good example is the case study
of a farm in New York as described in a paper by Liang, Wai Hui and You [8]. Efficient crop planning,
the subject of this thesis, is essentially a land use allocation optimization problem. The objective
of increasing nutritional value of the farm yield is a single objective with many criteria. Many
vitamins and nutrients have to be taken into account. We are dealing with Multi-Criteria Decision
Making. A review paper from 2018 on Multi-Criteria optimization techniques for agricultural land
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use allocation [6] identifies three categories of Multi-Criteria Decision Analysis (MCDA) in the
literature [9, 24]: 1. Multi-objective Decision making (MODM ), which involves design problems
solved with continuous mathematical optimization methods where the solutions are not previously
known. There often are conflicting objectives which result in trade-offs. 2. Multi-Attribute Decision
making (MADM ), where a solution for an evaluation problem is chosen by a discrete method from
one of the candidate solutions. 3. Multi-Criteria Decision Aid (MCDA∗)1, containing uncertainty
or vague information. Handling the vagueness is generally solved with fuzzy programming [4]. Not
all problems fit in these categories and other approaches of distinguishing between models exist, but
categorizing them does help us explore the different kind of problems that one can encounter.

Algorithmic applications for farming are often used on large farms but they have also been
applied to subsistence-oriented agriculture [3, 12]. A notable example of this is the 2015 paper by
Niragira et al. [12], which uses a mixed integer linear programming model to optimize nutrition and
profit for farms of different scales in Burundi. The group of smallest farms has only 0.05 ha of farm
land per member of the household. These small farms were modeled with three scenarios: 1. In
the first scenario farm output value is maximized with land, labor and capital as limited resources
required to produce. 2. Then a subsistence constraint was added. The farm has to produce enough
food so that the household can live of the farm. 3. In the last version of the model, subsistence
was made seasonal, meaning that food needs to be available in all seasons. The model succeeds in
finding a feasible solution for nearly landless farms in the first two scenarios. The third scenario
leads to infeasibility due to low production in the dry season. If you need to buy food during the dry
season then you have to fund that somehow. Strategies to improve monetary income from the farm
mostly lead to infeasibility if applied to such a small scale. This implies that farmers with very little
land do not have the luxury to implement strategies that lead to more profitable agriculture. One
example of a failing strategy is specialization. Subsistence farming means that all types of nutrients
are produced. Doing this requires growing more than just one crop type. Achieving subsistence
contradicts specialization.

A more recent paper from Burundi by the same authors incorporates risk in their model [13].
They also use availability of storage as a relaxation to the frequency of food production. This solves
infeasibility due to lacking production in the dry season. The paper concludes that most farmers
can improve the state of nutrition in their household by growing fewer crops in a more optimal
combination.

1.4 Trade-offs

Sometimes when not enough resources are available, a farm’s production simply cannot support a
diet without any nutritional deficiency. It may be possible to improve on a state of malnutrition
by producing the most important nutrients in a balanced way. Solving malnutrition entirely is
not an option as this would require resources that aren’t available. Changing which nutrients are
prioritised may however improve overall health. This requires a change in attitude to a situation
where achieving full nutrition is not a hard constraint but a goal to work towards. Planting a crop
that may be high in protein reduces the area available to plant crops that are high in iron. These
trade-offs, efficiency frontiers, or Pareto frontiers can be explored by varying weights of objectives in
Multi-objective optimization [6]. Solutions created with different weights in the objective function
can clearly illustrate which objectives lead to trade-offs. This only works in convex solution spaces.
Kennedy et al. [7] showed that exploration of trade-offs helps in identifying where a small loss in one

1The star ”*” on MCDA∗ was added by the authors to avoid confusion between abbreviations for Multi-Criteria
Decision Analysis (MCDA) and Multi-Criteria Decision Aid (MCDA∗) which is a form of MCDA. The star is not a
reference to a footnote, hence this footnote to avoid confusion.
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of the objectives can lead to big wins on other fronts. An optimization function with static weights
would not find those solutions.

1.5 Goal

The subject of this research project was largely inspired by an initiative of Village of Peace [5] in
Afghanistan. Village of Peace, or VoP for short, is an NGO that attempts to help break the spiral
of poverty, violence and injustice in Afghanistan by investing in education, employment, medical
care and agriculture. VoP organizes a project that helps widows and orphans by housing them
in communities together. In these communities small scale agriculture is practiced to make the
community more sustainable and self sufficient. This also has an educational component since most
small scale farming in Afghanistan is done very traditionally without the benefits that modern
agricultural techniques provide.

In this thesis an algorithm is designed for the crop planting multiple-criteria decision problem
that subsistence farmers face. The algorithm should aid in the process of deciding which crops to
plant for intensive subsistence farming on a very small patch of land. With farming on such a small
scale, positioning of plants becomes very important and space availability can no longer be simplified
by using surface areas. Instead our algorithm must find solutions for a two-dimensional puzzle that
keeps changing over time.

An overview of the problem is given in section 2 where the objective and scope of the project
are formulated based on a case study from Afghanistan. We present a mixed integer linear program
in the model formulation in section 3. Some concepts at the core of this model are explained in
section 4. The output generated by the model is presented and analyzed in the results in section 5.
We then close on some conclusions, discussion and recommendations in section 6.
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2 Problem description

The concept of communities in Afghanistan is used as a case study and starting point to develop a
model to assist in decision making for crop selection in intensive subsistence agriculture on a very
small scale. This problem description is based on the case study of a community where 20m2 gardens
are used to support widows and the children in their care.

In this case study, a cropping plan must be constructed for the garden, adhering to the following
objectives, prioritized in descending order:

1. Produce a harvest that contains all nutrients to achieve a diet with full nutrition for a single
person.

• If achieving full nutrition is infeasible, minimize nutrient deficiencies.

2. Maximize profit by producing cash crops.

The case study is modeled as a two-dimensional fitting problem with the added dimension of
time.

2.1 Core Definitions

Let there be a garden G of width wG and length lG for which we make a cropping plan. A cropping
plan P contains the total quantity of plants Qtot

c of crop c that is planted in garden G over the
problem duration ttotal spanning from day tstart to day tend.

2.1.1 Quantities

The cash crop quantity Q¤
c
2, specifies the number of plants of crop c, that is grown for their market

value. These cash crops are not consumed and therefore do not contribute to nutrition intake. The
number of plants from which all harvest is eaten for their nutritional value, is given by Qnut

c . The
total quantity of plants of a crop c is given by Qtot

c .

2.1.2 Space & Location

Plants are fitted in the garden so that they do not overlap. Each plant of type c takes up a square
area of wc by lc. Plants are positioned in garden G grouped by their type c, in rectangular crop
areas, as is common practice in gardening. An area Ac, where crops of type c are planted, has a
width and length that are equal to a multiple of wc and lc respectively.

Let xmin
c , xmax

c , ymin
c , and ymax

c be the coordinates of the four borders of the crop area Ac in
which crop c is planted.

2.1.3 Seasons

Crops of type c are all planted on the same day tplantedc . All plants of type c need to grow for tgrowc

days after which they are harvested. Plants need to be put in the ground during periods of the year
that allow them to develop and produce harvest. These periods differ between crop types. We can
start planting crops of type c on day tearliestc but not before. They must be havested no later than
day tlatestc .

2Currencies have political connotations. To avoid that problem the symbol for unspecified currency ’¤’ is used to
denote that something is about monetary value.
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2.1.4 Harvest & Nutrition

The average mass that harvesting of a single plant of type c yields, is given by Mc and the nutritional
content of 100g of that harvest is given by Nc,n for any nutrient n. Counting the nutritional value of
all harvest from Qnut

c plants for each crop c, will lead to the total amount of nutrients produced N tot
n .

The nutritional minimum NAnnualMin
n is the amount of nutrients of type n required for subsistence.

Realism is increased if nutritional requirements are enforced for more granular periods so that
nutritional food is available year round. Yearly nutritional minimums NAnnualMin

n are therefore
spread out over Pnum periods where time granularity Pnum is 1, 2, 3, or 4. Nutrition acquired from
harvesting a crop in period p ∈ Pnum, only counts for nutritional targets of period p.

2.1.5 Value

The value of 100g of harvest of crop c is given by Vc. Any space that is not needed for nutritional
crops can be used for growing cash crops.

7



3 Model Formulation

Building on terminology defined in section 2 an integer linear programming model is introduced that
designs a cropping plan P for a small subsistence garden G.

A complete list of definitions for all variables, constants, constraints, and objective functions,
can also be found in appendix A.

3.1 Decision variables

Let integer decision variable tplantedc ∈ [tearliestc , tend − tgrowc ] denote the day on which all plants of
crop c are planted, where constant tearliestc ∈ [0, tend] defines the earliest day on which crop c can be
planted. Upper bounds are formed by two constants: final day of the problem tend and the number
of days of growing time tgrowc that plants of crop c need before they can be harvested.

Rectangular cropping areas for each crop c, are defined by their 4 borders. Border locations are
given by the 4 continuous decision variables xmin

c , xmax
c , ymin

c , and ymax
c that are bounded by the

dimensions of the garden given by constants wG and lG:

0 ≤ xmin
c ≤ xmax

c ≤ wG ∀c ∈ C (1)

0 ≤ ymin
c ≤ ymax

c ≤ lG ∀c ∈ C (2)

Based on the time of planting and available surface area defined by the aforementioned border
variables, we introduce auxiliary variables to aid in tracking for each crop c:

1. the quantity of plants in the garden,

2. the time period p in which they are harvested, and

3. the quantity of those plants from which all harvest is used to reach nutrition & subsistence
goals for each period p.

3.1.1 Used crops and crop quantity

We introduce the binary auxiliary variable U c to indicate if a crop c is used in a solution. The
integer variable Qtot

c ∈ [0, qmax
c ] denotes the number of plants that are in use, where the constant

qmax
c defines an upper limit for the number of plants of crop c that may be planted. The crop

quantity Qtot
c is non-zero if, and only if, U c is equal to 1. This is enforced by the constraints in

equations (3) and (4).

Qtot
c ≥ U c (3)

Qtot
c ≤ U c · qmax

c (4)

Qtot
c =

Mx
c−1∑
i=0

2ixc,iyc ∀c ∈ C (5)
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ymax
c − ymin

c + ϵ↔ · U c ≥ (lc + ϵ↔) · yc (6a)

xmax
c − xmin

c + ϵ↔ · U c = (wc + ϵ↔) ·
Mx

c−1∑
i=0

2i · xc,i (6b)

where Mx
c =

⌊
log2

(
wG/wc + 1

)⌋
+ 1

The crop quantity Qtot
c , is derived from surface areas. The product of the width and length of an

area, both measured by how many plants of crop c would fit, is computed with a piece-wise linear
approximation as shown in equation (29). For any bit i of the integer value for width of an area of
crop c, a binary variable xc,i is introduced. The product of width and length is then computed by
linearizing products of binary variables with the integer variable yc that represents the length of the
area. The products of variables xc,i and yc require linearization. Appendix A.6.1 demonstrates the
steps involved.

Width and length of the area for crop c, are linked to border variables xmin
c , xmax

c , ymin
c , and

ymax
c by equations (6a) and (6b). The width and length of a single plant of crop c is given by the
constants lc and wc. The constant ϵ↔ is used to introduce some padding between plants.

3.1.2 Quantity of crops per period

The integer variable Qnut
c,p is introduced to denote the amount of plants of crop c, that is planted for

nutrition, and that is harvested in a period p ∈ Pnum. Equation (7) constrains the amount of plants
that was planted to producte nutrition by the total amount of crops that is produced. The binary
variable Hc,p indicates if a crop is harvested in period p, based on the required growing time tgrowc ,
and the time of planting tplantedc . Equations (8) and (9) define the relationship between the three
auxiliary variables. A linearization of equation (9) is provided in appendix A.6.2.

Qnut
c ≤ Qtot

c ∀c ∈ C (7)

Qnut
c ≡

Pnum∑
p

Qnut
c,p (8)

Qnut
c,p ≡ Qnut

c ·Hc,p (9)

Equations (10) and (11) define the relationship between Hc,p and the time of planting of a crop.
These constraints ensure that crop c is planted at a point in time that results in them being harvested
during period p if Hc,p is equal to 1.

tplantedc + tgrowc ≥
(
ttotal

Pnum · p
)
·Hc,p + 1 (10)

tplantedc + tgrowc ≤
(
ttotal

Pnum · (p+ 1)

)
+

(
ttotal − ttotal

Pnum · (p+ 1)

)
· (1−Hc,p) + 1 (11)

3.1.3 Nutrition targets

The continuous variable Fp,n ∈ [0, 1] denotes the relative part of the nutritional goal that was not
produced for period p and nutrient n. If all nutritional targets are achieved then Fp,n is zero for any
p and n.
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3.1.4 Time & space overlapping indicators

Binary variable Λu,t
c1,c2 indicates when for two crops c1 and c2, the following two conditions hold:

1. Both crops exist in the garden simultaneously.

2. Both crops are used in the solution

When Λu,t
c1,c2 is equal to 1, spacial overlapping must not occur between crops c1 and c2. The crops

must however have overlap in their growing periods.
If two periods overlap then the end of the first period must be later than the start of second

period and vice versa. We introduce binary variables O1
c1,c2 and O2

c1,c2 to denote the occurance of
these two conditions:

1. O1
c1,c2 : Crop c1 is harvested after having planted crop c2

2. O2
c1,c2 : Crop c2 is harvested after having planted crop c1

If both conditions are true then there exists at least one day on which the garden contains plants of
both crop c1 and c2 simultaneously.

Overlap between two axis-aligned rectangular shapes in two-dimensional space can be avoided in
4 different ways, as there are two ways to avoid overlap between two ranges in a single dimension.
Consider the case of the single dimension:

The binary auxiliary variable δc1,c2,k is introduced to indicate for a crop c1 and c2, the occurance
of the 4 ways to avoid overlap, indexed by k. Here δc1,c2,k is 0, when overlap preventing situation
k is happening, or 1 when the situation does not occur. These variables will be used to activate
overlapping constraints in section 3.2.2.

We now proceed to define a two-step modeling appraoach.

3.2 Step 1: Nutrition

In the first variant of the model, the goal is to minimize malnutrition. An optimal output is either a
cropping plan that achieves full nutrition goals for each nutrient in each period, or a plan that gets
as close as possible if achieving full nutrtition is found to be infeasible.

3.2.1 Objective function

max

Pnum∑
p=0

|N |∑
n=0

Fp,n (12)

The first objective function, shown in equation (12) aims to reduce nutrient deficiency by max-
imizing over Fp,n which represents the relative succesfulness at achiving minimum targets for any
period p and nutrient n. Full nutrition is achieved if Fp,n reaches a value of 1, for each p and n.

3.2.2 Constraints

Crops & Nutrition

|C|∑
c=0

Nc,n ·Mc ·Qnut
c,p ≥ NAnnualMin

n

Pnum · Fp,n ∀n ∈ N ∀p ∈ {1, . . . ,Pnum} (13)

The constraint for reaching nutritional requirements NAnnualMin
n for a nutrient n ∈ N is given

by equation (13).
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Planting & Harvesting time limits can be set for each crop. The constants tearliestc and tlatestc

define the range of days for which a crop c is allowed to be in the garden. The following constraints
enforce these time limits for any crop c that is active in the solution:

tplantedc ≥ tearliestc · U c (14)

tlatestc · U c ≥ tplantedc + tgrowc ∀c ∈ C (15)

Fit cropping areas in space & time

xmax
c1 + ϵ←→ ≤ (xmin

c2 +wG · δc1,c2,0) (16)

xmax
c2 + ϵ←→ ≤ (xmin

c1 +wG · δc1,c2,1) (17)

ymax
c1 + ϵ←→ ≤ (ymin

c2 + lG · δc1,c2,2) (18)

ymax
c2 + ϵ←→ ≤ (ymin

c1 + lG · δc1,c2,3) (19)

3∑
k=0

δc1,c2,k ≤ 4− Λu,t
c1,c2 ∀{c1, c2|c1 ≺ c2} ∈ C (20)

Crops c1 and c2 must not overlap in space and time. The overlapping constraint in equation (20)
enforces this by counting for each the axis, the two ways in which two shapes could have overlap
using the conditional constraints in equations (16) to (19). If crops c1 and c2 do not exist in the
garden during overlapping time frames then Λu,t

c1,c2 will be equal to 0 which will relax the overlapping
constraint.

tplantedc1 + tgrowc1 ≥ tplantedc2 − ttotal · (1−O1
c1,c2) (21a)

tplantedc2 + tgrowc2 ≥ tplantedc2 − ttotal · (1−O2
c1,c2) (21b)

tplantedc1 + tgrowc1 ≤ tplantedc2 + ttotal ·O1
c1,c2 (21c)

tplantedc2 + tgrowc2 ≤ tplantedc1 + ttotal ·O2
c1,c2 ∀{c1, c2|c1 ≺ c2} ∈ C (21d)

Λu,t
c1,c2 ≤ U c1 · U c2 ·O1

c1,c2 ·O
2
c1,c2 ∀{c1, c2|c1 ≺ c2} ∈ C (22)

If two crops are in the garden at the same time then indicator variables O1
c1,c2 and O2

c1,c2 , need
to both be true, as is enforced by the conditional constraints in equations (21a) to (21d).

A more detailed description of the concepts that lead to space and time constraints is given in
section 4.1.1 and a set of constraints that linearizes equation (22) can be found in appendix A.5.3.

3.3 Step 2: Market Value

The model as formulated in section 3.2 produces a solution with minimal nutritional deficiency. In
the best case this means that there is no deficiency. This implies that a relaxation of the nutrition
constraint in equation (13) is not required to get a feasible solution. If full nutrition was not achieved
then the Fp,n of the previous solution are used to fix the minimum nutritional output to an achievable
level while optimizing for market value.
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3.3.1 Objective function

The second goal of our models is to optimize for market value. Market value maximization is achieved
by equation (23).

max

|C|∑
c=0

(
Qtot

c −Qnut
c

)
·Vc (23)

3.3.2 Constraints

The same constraints used in section 3.2 are used without change. One addition is made that changes
the functioning of the nutritional constraint in equation (13) by fixing auxiliary variable Fp,n:

Fp,n ≥ F previous
p,n ∀p∀n (24)

If full nutrition is achieved by the model in the first step (section 3.2), then the constraint in
equation (24) makes the nutrition constraint in equation (13) enforce full nutritional requirements.
If minization over Fp,n did not result in full nutrition then the current degree of malnutrition is
maintained during value maximization.
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4 Modeling Concepts & Linearizations

In this section we provide some background on modeling choices for the model defined in section 3.
The

4.1 Fitting in 3 dimensions

Cropping areas are not allowed to overlap in both time and space at the same time. In our model
we defined a variable Λu,t

c1,c2 to denote if two crops are both in use, and overlapping in time with each
other. Time is a single dimension. Fitting in space contains two dimensions. Together they form a
3-dimensional space where overlap is not allowed. Lets first look at one dimensional overlap.

4.1.1 Overlap in 1 dimension

Consider a situation where two ranges do not overlap. Theorem 1 shows that there are two config-
urations in which this happens:

Theorem 1 Let A = [a1, a2] and B = [b1, b2] denote two ranges that have no overlap, indicating
that A entirely precedes B or B entirely precedes A:

1. a2 < b1 or

2. b2 < a1

No overlap:
A ∩B ≡ ∅ ⇐⇒ (a2 < b1) ∨ (b2 < a1) (25)

If two ranges overlap, then neither of the cases in theorem 1 is encountered. Negating equa-
tion (25) yields:

A ∩B ̸= ∅ ⇐⇒ ¬ ( (a2 < b1) ∨ (b2 < a1) ) (26)

Theorem 2 (De Morgan’s theorem) The negation of a disjunction is the conjunction of the
negations: ¬(Y ∨ Z) ⇐⇒ (¬Y ) ∧ (¬Z)

The negation of disjunction in equation (26) can be transformed into a conjunction of negations
using De Morgan’s theorem 2. This yields equations without any strict inequalities:

Corollary 2.1 For ranges A = [a1, a2] and B = [b1, b2]:

A ∩B ̸= ∅ ⇐⇒ (a2 ≥ b1) ∧ (b2 ≥ a1)

The two parts of the conjunction in corollary 2.1 are used to form conditional constraints activated
by binary variables O1

c1,c2 and O2
c1,c2 . The conjunction of O1

c1,c2 and O2
c1,c2 is formed by the Λu,t

c1,c2
variable, indicating that two crops exist in overlapping time frames.
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4.1.2 Overlap in 2 dimensions

Overlap in two dimensions builds on the one-dimensional case.

Theorem 3 Let Q and R denote two rectangles. Rectangles Q and R do not overlap. This implies
that their ranges in the x-axis and y-axis do not overlap:

Q ∩R ≡ ∅ ⇐⇒ (Qx ∩Rx ≡ ∅) ∨ (Qy ∩Ry ≡ ∅) (27)

Overlap in two dimensions occurs if overlap is happening in both the x, and y dimensions.
Equation (27) from theorem 3 shows there only needs to be one axis without overlap to avoid
overlapping Q and R.

Corollary 3.1 Each rectangle consists of a range along the x-axis and y-axis:

• Qx = [qx1, qx2], Qy = [qy1, qy2]

• Rx = [rx1, rx2], Ry = [ry1, ry2]

Substituting equation (27) with equations from theorem 1 and filling in the above range variables
yields:

Q ∩R ≡ ∅ ⇐⇒ (qx2 < rx1) ∨ (rx2 < qx1) ∨ (qy2 < ry1) ∨ (ry2 < qy1) (28)

Using the overlapping rules for two ranges from section 4.1.1 once for each dimension, leads to a
disjunction of 4 inequalities in corollary 3.1. These 4 inequalities are used as conditional constraints
powered by the binary auxiliary variables δc1,c2,k where the sum over δc1,c2,k for 0 ≤ k < 4 has to
be less or equal to 3 to avoid overlapping. If the sum is less than 4, then one of the inequalities in
equation (28) is active, leading to avoidance of overlap in 2D space. This concept is applied by the
constraint in equation (20) in the previous section.

4.2 Crop quantity derived from surface area

Surface area of of a rectangle is computed with by the product of width and length. Both width
and length are variables so this product has to be linearized.

The following linearization was inspired by the approach used by D’Ambrosio, Lodi and Martello
[2]. In our case the linearization is not an approximation since the step size used is equal to the size
of a plant.

Crop quantity Qtot
c is equal to the product of width x and length y (both measured in multiples

of crop size wc) of a cropping area. A piece-wise linear approximation is introduced where each bit
of the integer width x, is represented by a binary variable xc,i. The width of a cropping area is equal

to
∑Mx

c
i=0 2

i · xc,i where Mx
c is equal to the number of bits required to express the number of plants

that would fit in the total width of the garden. The number of crops in the y-direction is measured
by an integral variable yc.

Qtot
c = plants-wide · plants-long =

Mx
c−1∑
i=0

2i · xc,i · yc =
Mx

c−1∑
i=0

2i · zc,i (29)
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Linearization of xc,i · yc in equation (29) is done by substitution with zc,i and adding constraints:

zc,i ≤ yubc · xc,i (29a)

zc,i ≥ ylbc · xc,i (29b)

zc,i ≤ y − ylbc · (1− xc,i) (29c)

zc,i ≥ y − yubc · (1− xc,i) (29d)

The use of this piece-wise linear technique requires the introduction of Mx
c binary variables. For

each crop c this comes down to
⌈
log2

(
wG/wc + 1

)⌉
binary variables for a garden of width wG and

plant width wc.
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5 Results

The model described in section 3 is capable of generating cropping plans for a full year. It optimizes
production for market value while maintaining nutritional requirements for each period.

5.1 Case study of a 20 square meter garden

The scenario of our case study is modeled by a garden of 4 meters wide and 5 meters long. Crop
repeats are set to 2, so planting for the same crop may be done at two moments in time at most.
The time granularity is set to 3. A time granularity of 3 enforces the nutrition constraint for three
periods seperately, that each span 1/3rd of the total time duration. This means that all harvested
crops in a period should together contain enough nutrients to match or exceed minimum nutrition
values that would be required for the duration of that period. The full list of parameters, including
information on nutrition, market value, and the used crops, is provided in appendix B.1.

Results of running the two step model of section 3, are visualized in figure 1. The crop plan is
plotted for each day on which it changes. A time-linear representation is shown in figure 2.

Figure 1: Cropping plan with 3 nutritional periods for a garden of 4m×5m. A map of the garden is
drawn for each day on which the cropping plan changes in the garden layout. A plant is shown as
circle if it’s harvest is used for nutrition and as a square if all produce is sold on markets. The day
number is displayed below each garden render, and the horizontal bars below that indicate in which
nutritional period p each day is. Each crop is color coded as, and abbreviated by: Eg: Eggplant,
Le: Lettuce, Ok: Okra, Po: Potatoes, Sw: Sweetpotatoes, To: Tomatoes, Zu: Zucchini, Re:
Redbellpepper

Figure 2: Timeline of planting and harvesting

From looking at our plots for space (figure 1) and time (figure 2) we can see that crops are
harvested in each period and that there was not a lot of time and space left over for planting cash
crops. The harvest of a total of 18 potato plants is used to create monetary value (the square plants
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in the bottom right of day 1 and 211 in figure 1). All other plants contribute to nutritional targets.
Table 1 list the choosen number of plants of each crop that are planted according to the output
cropping plan. This table also contains the market value (for unspecified currency unit ¤) that is
produced for each crop. The production of nutrients per period and the required nutrient production
per period to reach full nutrition, are displayed in table table 2.

Crop Quantity 1 Quantity 2 Quantity total Market value generated (¤)

Eggplant 0 0 0 0
Lettuce 0 0 0 0
Okra 108 9 217 0
Potatoes 143 130 173 26892
Sweetpotatoes 0 0 0 0
Tomatoes 0 0 0 0
Zucchini 0 0 0 0
Redbellpepper 72 80 152 0

Table 1: Crop quantities planted and market value generated

Nutrient Goal per period (g)
Produced p1 Produced p2 Produced p3

mass (g) goal mass (g) goal mass (g) goal

A 0.0852 6.7958
√

0.244
√

5.6089
√

B1 0.1338 0.7779
√

0.4143
√

0.6894
√

C 5.4750 138.60
√

203.94
√

292.06
√

Carbs 28591 572800
√

18437 64.5% 461759
√

E 1.825 0 0% 1.8202 99.7% 2.0224
√

Iron 2.190 2.1922
√

1.4913 68.1% 2.1925
√

Protein 5597 67180
√

4371.3 78.1% 54612
√

Zinc 0.9733 2.1214
√

1.2483
√

1.9442
√

Table 2: Nutritients produced in grams per period. Full nutrition is achieved if production matches
or exceeds the minimum requirement for all nutrients in all periods. Production values that do not
reach this target are colored red.

Full nutrition was not achieved with the output cropping plan since there is a nutritional pro-
duction deficit in two of the three periods (shown in red in table 2).

These results were generated in 40 minutes (20 minute time limits for each step) with Gurobi
Optimizer version 11.0.1 build v11.0.1rc0 [19], using default settings, running on an AMD Ryzen
5800x CPU locked to 4.7 GHz with 32 GB of ram. Step 1 (nutrition) may just be optimal with an
optimality gap of 6.87%. Step two reached an optimality gap of over a 1000% before the timelimit
was reached. Convergence in step 2 is very slow when full nutrition was not achieved in step 1.

Linear programming models are generated using Python-MIP [16] in Python 3.11.2 [15]. Re-
producibility is ensured by using virtual environments supplied by Pipenv [14]. More practical
information on parameter configuration and running the model can be found in appendix B. Raw
model output data is included under appendix C. All code and configuration files used to generate
these results, are available on Github [21].
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5.2 Sensitivity analysis

A model such as the one constructed during this thesis can be used to analyze properties of the
problem. If we find that the solution is very sensitive to specific variables, then this could provide
insight into the problem in the real world. We now consider some testing scenario’s to demonstrate
this process of discovery.

5.2.1 Impact of Garden Size & Time Granularity on full nutrition feasibility

The feasibility of achieving full nutrition is highly dependent on the size of the garden and on the
granularity of the nutrition constraint. Small gardens may not produce enough nutrients and a high
granularity of the constraint is expected to reduce efficiency due to a preference for more frequent
nutritional output over relatively bigger nutritional output at lower frequencies.

Gardens are tested in 4 variants, once for each value of timegranularity Pnum. When Pnum equals
1, the full year is a single period. All produced nutrition counts towards the yearly target. A Pnum

of 2, splits the year in two periods of 6 months. Nutrients in harvests from period 1 cannot help to
reach nutrition goals for period 2 or vice versa. The same principle extends to cases with a Pnum of
3 and 4.

Testing with 4 different timegranularities is repeated for growing garden sizes until all nutritional
targets can be met without compromise for all timegranularities. Results for testing step 1 of the
model (step 2 is skipped for value optimization is not relevant here) are presented in table 3:

18



Size [m2] Nutrient
Timegranularity (Pnum)
1 2 3 4

4×5

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,1,0 1,0,1,0
E 0 0,0 0,1,0 0,0,0,1
Iron 0 0,1 1,0,1 0,0,1,0
Protein 1 1,1 1,1,1 1,0,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

4×6

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,1,0 1,0,1,0
E 0 0,0 0,1,0 0,0,0,1
Iron 1 0,1 1,1,1 0,1,0,0
Protein 1 1,1 1,1,1 1,1,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

4×7

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,0,1 0,1,1,0
E 1 1,1 0,0,1 0,1,1,0
Iron 1 1,1 0,1,1 0,1,1,1
Protein 1 1,1 1,1,1 1,1,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

5×5

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,1,0 1,0,1,0
E 0 0,1 0,1,1 0,0,0,1
Iron 1 0,1 0,1,1 0,0,0,1
Protein 1 1,1 1,1,1 1,1,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

5×6

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,1,1 1,0,1,1
E 1 1,1 0,1,0 1,0,1,0
Iron 1 1,1 0,1,0 1,1,1,1
Protein 1 1,1 1,1,1 1,1,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

...
...

...
...

...
...

Size [m2] Nutrient
Timegranularity (Pnum)
1 2 3 4

5×7

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,1,1 1,1,1,1
E 1 1,1 0,0,0 1,0,1,0
Iron 1 1,1 1,1,1 1,1,1,1
Protein 1 1,1 1,1,1 1,1,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

6×6

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,1,1 1,1,1,1
E 1 1,1 1,1,0 1,0,1,0
Iron 1 1,1 1,1,0 1,1,1,1
Protein 1 1,1 1,1,1 1,1,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

6×7

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,1,1 1,1,1,1
E 1 1,1 1,1,1 0,1,1,0
Iron 1 1,1 1,1,1 0,1,1,1
Protein 1 1,1 1,1,1 1,1,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

7×7

A 1 1,1 1,1,1 1,1,1,1
B1 1 1,1 1,1,1 1,1,1,1
C 1 1,1 1,1,1 1,1,1,1
Carbs 1 1,1 1,1,1 1,1,1,1
E 1 1,1 1,1,1 1,1,1,1
Iron 1 1,1 1,1,1 1,1,1,1
Protein 1 1,1 1,1,1 1,1,1,1
Zinc 1 1,1 1,1,1 1,1,1,1

Table 3: Binary achievement of nutritional targets for each nutrient for each period, tested for
varying garden sizes and timegranularities. Results for each time granularity are given in 4 columns.
Within each colum are 1,2,3 and 4 colums of binary numbers indicating succes or failure to reach
the nutritional target for period 1,2,3 or 4, for a specific nutrient.

Higher timegranularities result in tighter nutritional constraints throughout the year. In a 6× 7
garden for example, full nutrition is achieved when testing with a timegranularity of 1, 2, or 3, but
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not with 4. With 4 periods per year, the cropping plan does not produce enough vitamin E in
periods 1 and 4 and and not enough Iron in period 1.

Feasibility of reaching full nutrition is quickly increased when gardens get larger. The inverse is
true for timegranularity. Achieving nutrition goals is more difficult with more nutritional periods.
Feasibility of reaching full nutrition quickly increases for timegranularities 1 and 2 when garden size
is increased. All gardens larger than 5× 6 achieve full nutrition. A much larger garden is required
to achieve this with 3 or 4 nutritional periods in a year. Full nutrition with 3 or 4 periods is finally
achieved by gardens with dimensions of 6× 7 and 7× 7 respectively.

It is worth noting that relative achievement of nutritional targets is modeled by continuous
variables. The number of fully achieved targets is therefore not a good metric for solution quality.
The binary representation of table 3 can display zeros for multiple nutrients even if full nutrition
is almost reached. Take for example the case study results where Vitamin E reached 99.7% of the
nutritional goal in period 2 (see: table 2) which would be represented by a binary variable with a
value of zero in table 3. Solutions that achieve targets fully for all but one nutrient and solutions
that fail to fully achieve a single nutritional target, may have identical objective values. The binary
representation of achieving targets is merely used to show in which configurations full nutrition can
be achieved.

Size [m2] Statistic
Timegranularity (Pnum)

1 2 3 4

4×5
Runtime (s) 601.31 601.32 601.38 601.53
Optimality gap (%) 4.31 4.13 6.11 8.39

4×6
Runtime (s) 601.31 601.35 601.5 601.5
Optimality gap (%) 0.78 0.84 4.37 5.81

4×7
Runtime (s) 1.73 1.98 601.41 601.53
Optimality gap (%) 0.00 0.00 3.70 3.98

5×5
Runtime (s) 601.37 601.4 601.62 601.51
Optimality gap (%) 0.14 0.70 4.18 5.41

5×6
Runtime (s) 1.82 1.93 601.59 601.46
Optimality gap (%) 0.00 0.00 2.39 3.41

5×7
Runtime (s) 1.81 2.03 601.46 601.93
Optimality gap (%) 0.00 0.00 0.84 3.57

6×6
Runtime (s) 1.73 1.98 601.63 601.75
Optimality gap (%) 0.00 0.00 0.43 3.08

6×7
Runtime (s) 1.79 1.89 5.25 601.58
Optimality gap (%) 0.00 0.00 0.00 1.22

7×7
Runtime (s) 1.84 1.94 3.56 22.2
Optimality gap (%) 0.00 0.00 0.00 0.00

Table 4: Runtime and optimality gap of each test for garden size and time granularity. Optimality
gaps larger than zero are written in red ink to emphasize that these testcases were not solved to an
optimal result before the time limit.

For each problem instance that is tested, the nutritional model is allowed to run no more than 10
minutes after which the best result is selected. The runtime and optimality gap of the solution that
is used are listed in table 4. Problems where full nutrition is feasible are often solved to optimality
in a few seconds. The solutions from the runs where a time limit is reached are sometimes optimal
as well, as their optimality gap is mostly quite small and always below 8.4%.
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5.2.2 Opportunity for use of cash crops

The case study of 20 square meters in section 5.1, showed that there are opportunities to plant
cash crops, even if nutritional goals are not fully achievable. This opportunity was there somewhat
artificially formed by shape constraints of cropping areas and by the fact that the same crop may
only be planted twice. Even with added opportunities, cases occur where not a single cash crop will
be present in the cropping plan. An example of this is also shown in figure 3.
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(a) Timegranularity of 1

(b) Timegranularity of 2

(c) Timegranularity of 3

(d) Timegranularity of 4

Figure 3: Value optimization scenarios in cropping plans for gardens of 5 by 6 meter with timegranularities of 1,2,3 and 4. Scenario’s a & b reached full nutrition
but this was not achieved for c or d. In scenario c, no improvement was found using step 2, meaning that no ways were found to add cash crops, without damaging
nutritional results.
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Two effects are found to influence the opportunity for usage of cash crops in generated cropping
plans:

1. Cash crops are rarely used when nutritional targets are not achieved for many nutrients at the
same time. Most crops contain small quantities of a lot of nutrients, making each plant of any
crop useful in reducing malnutrition. Plants are therefore not used as cash crops as soon as
they can contribute even the most insignificant amount to nutritional goals.

2. With higher timegranularities, opportunities for planting cash crops are created for each period
for which full nutrition is achieved. This results in multiple possibilities for cash crops where
no chance for planting cash crops would exist in the same scenario with a timegranularity of
1. This effect can be observed in figure 3d.

The runtime and optimality gap for each of the 4 tests are listed in table 5. Termination of the
first step in the model was again swift if full nutrition was easily achieved. If optimality was not
reached before the time limit then the gaps still became narrow within seconds. Value optimization
is not proven to be optimal for any of the 4 cases and optimality gaps are much higher.

Timegranularity (Pnum) Optimality gap 1 Runtime 1 Optimality gap 2 Runtime 2

1 0.00% 0s 191% 800s
2 0.00% 0s 182% 800s
3 2.39% 600s - 800s
4 3.41% 600s 805% 800s

Table 5: Optimality gaps and runtimes for 4 cropping plans for a garden of 5 by 6 meters.

5.3 Complexity

The computational complexity of the model is most impacted by the number of crops. Each added
crop generates 8 big-M constraints for each crop it could overlap with.

Crop quantity is derived from the surface area. Computing surface area requires a piecewise
linear construct to remove the non-convex bilinear terms. This adds

⌈
log2

(
wG/wc + 1

)⌉
binary and

integer variables and constraints for each possible cropping area. The number of cropping areas is
equal to the number of crops multiplied by the number of times a crop may be planted.
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6 Conclusion & Discussion

The aim of this research project was to model the crop planting multiple-criteria decision problem
after a subsistence farm with a very small patch of land and to develop an algorithm that could aid
in the decision process.

The resulting model uses a two step approach. In the first step nutrient shortages are minimized.
The second step then maximizes market value of the cropping plan while maintaining the nutritional
levels achieved by step 1.

We show that the mixed-integer linear programming model designed during this research project
is capable of generating cropping plans that are optimal in their nutritional output for scenarios
where full nutrition is possible. Even if optimality is not reached before a time limit, the algorithm
provides high quality solutions early on, as reflected by convergence to single digit optimality gaps in
the first seconds of commencing step 1 of the model. Step 2 often finds ways to improve financially
even in cases with small solution spaces caused by unmet nutritional targets.

This work has some limitations. The proposed model is capable of producing optimal solutions for
both the nutrition and value step. The computational complexity of the model limits the number
of crops, garden sizes, timegranularities and the number of nutrients that can be tracked. Slow
convergence of step 2 is a problem for larger test cases.

Simulation of gardens require many parameters. The better these parameters correspond to
the real world, the more accurate model predictions are expected to be. The user is therefore
encouraged to review these parameters carefully. In this work, data for testing of the model has
been collected from many sources with the goal of providing enough realism to be able to demonstrate
how the developed model could provide insight into a real world problem. The data collected is not
representative of any real-world situation. No conclusions should therefore be drawn about real-world
feasibility of subsistence, based on modeling results generated from our example data.

There are opportunities for research. Measures to improve balance between levels of nutrients and
between nutrition levels over time would further improve the practicality and usability of cropping
plans for cases where full nutrition is not feasible. This comes down to a more non-linear approach
to different severities of nutrition deficiency.

Income from market value optimization may be used to purchase food. This would allow for
more specialization and it could dampen the effect of nutritional deficiencies in the cropping plan.
Incorporating risk analysis in the decision making process may help in producing more robust solu-
tions where some efficiency may be sacrificed for a higher chance of successful harvests or a reduced
dependence on market stability.
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A Model Specification

All constraints, objective functions, variables and constants are listed here in a central place.

A.1 Constants

• Mx
c Minimum number of bits required to express the integer value of how many

times the width of a plant of crop c wc would fit in the width of the garden wG.

• My
c Minimum number of bits required to express the integer value of how many

times the size of a crop lc would fit in the length of the garden lG.

• lc Length of a single plant of crop c

• wc Width of a single plant of crop c

• Nc,n The mass of nutrient n contained in 100 grams of harvest yield for crop c

• ϵ↔ How much empty space must be used between two plants of the same crop.
(Currently hard-coded to 1cm)

• ϵ←→ How much empty space must be used between cropping areas. (Currently hard-
coded to 10cm)

• Vc Value of 1g of harvest from of crop c.

• C The collection containing all crops that are used.

• lG The length of the garden in meters

• wG The width of the garden in meters

• tgrowc The time in days it takes after planting before crop c can be harvested.

• tlatestc Latest day on which crop c must be harvested

• Mc The average mass of the yield that a single plant of crop c produces when it is
harvested.

• qmax
c Upper bound on the number of plants that may be planted for crop c.

• tearliestc Earliest day on on which planting of crop c may take place.

• tend The last day of the period that is modeled. (Hardcoded to 365)

• tstart The day of the total time to be modeled. (Hardcoded to 1)

• ttotal The total duration for which a croppin gplan is designed. This is set to a full
year, or 365 days.

• Pnum Granularity of the nutrition constraint. This value can be 1, 2, 3 or 4, indicating
in how many periods the year is split for which nutrition targets must be met.

25



A.2 Continuous Variables

A.2.1 Variables for crop counts

1. Qtot
c : Total number of plants for crop type c, used in cropping plan

2. Qnut
c : Total number of plants for crop type c, used in cropping plan

Where for both Qtot
c and Qnut

c :

• lb = qmin
c

• ub = qmax
c

A.2.2 Variables for minimum and maximum x and y position for 1 <= i <= |CropTypes|

These variables specify the borders of the areas where crops of each crop type reside.

1. xmin
c

2. xmax
c

• lb = 0

• ub = wG

3. ymin
c

4. ymax
c

• lb = 0

• ub = lG

A.3 Binary Variables

A.3.1 Variables for crop usage X

1. U c for c in the range of crop counts

A.3.2 AND variables

• Λu,t
c1,c2 : Crops overlap in time and space (based on endOneMTstartTwo, endTwoMTstartOne)

• Λu
c1,c2 : Crops are both being used

• Λt
c1,c2 : Crops have overlapping growing periods

• O1
c1,c2 : End time of crop c1 is later than start of c2

• O2
c1,c2 : End time of crop c2 is later than start of c1

A.3.3 Variables for crop type separation delta for 2D fitting of areas of crops

1. δc1,c2,k

• c1 in the range of crop counts

• c2 in the range of ub for each crop

• k ∈ [0, 1, 2, 3]
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A.3.4 Variables used for area computation of cropType

1. xc,i

2. zc,i

Where for each:

• c in the range of crop counts

• i,j in range of nr of bits required to express integer of max size of crop type c in direction (x
and y respectively) if c uses all garden space in that direction.

A.4 Integer Variables

A.4.1 Variables used for area computation of cropType

1. yc

A.4.2 Growing period

• tplantedc : day on which croptype c is planted

A.4.3 Variables for crop counts

1. Qtot
c : Total number of crops of each type crop type c, used in solution

• lb = qmin
c

• ub = qmax
c

2. Qnut
c : Number of crops from Qtot

c , that are reserved for nutrition. (So not used for value
optimization)

• lb = qmin
c

• ub = qmax
c

• where: Qnut
c ≤ Qtot

c

A.5 Constraints

For each crop type c:

Qnut
c ≤ Qtot

c ∀c ∈ C (7)

Qtot
c ≥ U c (3)

Qtot
c ≤ U c · qmax

c (4)

tplantedc ≥ tearliestc · U c (14)

tlatestc · U c ≥ tplantedc + tgrowc (15)
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A.5.1 Nutrition Constraints

|C|∑
c=0

Nc,n ·Mc ·Qnut
c,p ≥ NAnnualMin

n

Pnum · Fp,n ∀n ∈ N ∀p ∈ {1, . . . ,Pnum} (13)

Optionally if nutrition was not feasible, fix current nutri values for value optimisation:

Fp,n ≥ F previous
p,n ∀p∀n (24)

A.5.2 Fitting

Fitting crops within areas of cropTypes without overlap

A.5.3 Both crops in use space-time

1. Define two variables to mean that overlap in time is happening if they are both TRUE and
both FALSE if no overlap occurs:

tplantedc1 + tgrowc1 ≥ tplantedc2 − ttotal · (1−O1
c1,c2) (21a)

tplantedc2 + tgrowc2 ≥ tplantedc2 − ttotal · (1−O2
c1,c2) (21b)

tplantedc1 + tgrowc1 ≤ tplantedc2 + ttotal ·O1
c1,c2 (21c)

tplantedc2 + tgrowc2 ≤ tplantedc1 + ttotal ·O2
c1,c2 (21d)

2. Define binary variable Λu,t
c1,c2 to indicate if crops are both in garden at overlapping time,

meaning that spacial overlap should be checked.

Λu,t
c1,c2 ≤ U c1 · U c2 ·O1

c1,c2 ·O
2
c1,c2 ∀{c1, c2|c1 ≺ c2} ∈ C (22)

In practice this is linearized by the following constraints:

(a) Crops have overlapping time periods:

Λu,t
c1,c2 ≤ O1

c1,c2 (22a)

Λu,t
c1,c2 ≤ O2

c1,c2 (22b)

(b) Both crops in use in solution:

Λu,t
c1,c2 ≤ U c1 (22c)

Λu,t
c1,c2 ≤ U c2 (22d)

(c) Crops are used in cropping plan and exist in overlapping time periods if:

Λu,t
c1,c2 ≥ U c1 + U c2 +O1

c1,c2 +O2
c1,c2 − 3 (22e)
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A.5.4 Fit areas of crops in total area of garden

Overlapping constraints between areas of each crop type. No overlap is allowed in space if they are
also overlapping in time.

For each crop type c1 ∈ [1, . . . , qmax
c1 ] where and c2 ∈ [c1 + 1, . . . , qmax

c2 ]:

xmax
c1 + ϵ←→ ≤ (xmin

c2 +wG · δc1,c2,0) (16)

xmax
c2 + ϵ←→ ≤ (xmin

c1 +wG · δc1,c2,1) (17)

ymax
c1 + ϵ←→ ≤ (ymin

c2 + lG · δc1,c2,2) (18)

ymax
c2 + ϵ←→ ≤ (ymin

c1 + lG · δc1,c2,3) (19)

3∑
k=0

δc1,c2,k ≤ 4− Λu,t
c1,c2 (20)

A.6 Linearizations & auxiliary variable constraints

A.6.1 Counting crops by area

Inspired by piecewise linear approximation method in D’Ambrosio, Lodi and Martello [2]. In our
case the linearization is not an approximation since the step size used is equal to the size of a plant.

Crop quantity Qtot
c is derived from surface areas. The product of width x and length y (both

measured in multiples of crop size wc) is computed with a piece-wise linear approximation with
binary variable xc,i and integer variable yc:

Qtot
c = plants-wide · plants-long =

Mx
c−1∑
i=0

2i · xc,i · yc =
Mx

c−1∑
i=0

2i · zc,i (29)

Where Mx
c =

⌊
log2

(
wG/wc + 1

)⌋
+ 1

Linearization of xc,i · yc in equation (29) is done by substitution with binary variable zc,i and
adding constraints:

zc,i ≤ yubc · xc,i (29a)

zc,i ≥ ylbc · xc,i (29b)

zc,i ≤ y − ylbc · (1− xc,i) (29c)

zc,i ≥ y − yubc · (1− xc,i) (29d)

The value for yubc is given by dividing the garden size in the y direction by the size wc a single
plant of crop c.

The number of crops of type c fitting an area in two axis, computable from binary variables xc,i

and yc, is linked to border coordinates xmin
c , xmax

c , ymin
c , and ymax

c by equations (6a) to (6b):

ymax
c − ymin

c + ϵ↔ · U c ≥ (lc + ϵ↔) · yc (6a)

xmax
c − xmin

c + ϵ↔ · U c = (wc + ϵ↔) ·
Mx

c−1∑
i=0

2i · xc,i (6b)
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A.6.2 Crops harvested in periods

tplantedc + tgrowc ≥
(
ttotal

Pnum · p
)
·Hc,p + 1 (10)

tplantedc + tgrowc ≤
(
ttotal

Pnum · (p+ 1)

)
+

(
ttotal − ttotal

Pnum · (p+ 1)

)
· (1−Hc,p) + 1 (11)

Qnut
c,p ≤ Hc,p · qmax

c (9a)

Qnut
c,p ≤ Qnut

c (9b)

Qnut
c,p ≥ Qnut

c − qmax
c · (1−Hc,p) (9c)

Qnut
c ≡

Pnum∑
p

Qnut
c,p (8)

A.7 Objective functions

Objective function for step 1 (Nutrition optimization):

max

Pnum∑
p=0

|N |∑
n=0

Fp,n (12)

Objective function for step 1 (Value optimization):

max

|C|∑
c=0

(
Qtot

c −Qnut
c

)
·Vc (23)
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B Model Configuration Files

Input specifications for all testcases used in this thesis listed here. The written out config files are
also available (along with model implementation) on Github [21].

B.1 Configuration 1

The configuration of the scenario used in the two-step optimization for the case study in section 5.1.

B.1.1 Crops & Nutrition constants

1 [Mass Units]

2 kg = 1000

3 100g = 100

4 g = 1

5 mg = 0.001

6 µg = 0.000001

7

8 [Lettuce]

9 area = 0.225

10 marketvalue = 0.30

11 yield = 900 g

12 daystomaturity = 73

13 plantearlyest = 1

14 harvestlatest = 365

15 carbohydrates = 2.23 g

16 sugars = 0.94 g

17 dietaryfiber = 1.1 g

18 fat = 0.22 g

19 protein = 1.35 g

20 a = 166.0 µg
21 b1 = 0.057 mg

22 b2 = 0.062 mg

23 b5 = 0.15 mg

24 b6 = 0.082 mg

25 b9 = 73.0 µg
26 c = 3.7 mg

27 e = 0.18 mg

28 k = 102.3 µg
29 calcium = 35.0 mg

30 iron = 1.24 mg

31 magnesium = 13.0 mg

32 manganese = 0.179 mg

33 phosphorus = 33.0 mg

34 sodium = 5.0 mg

35 potassium = 238 mg

36 zinc = 0.2 mg

37

38 [RedBellPepper]

39 area = 0.225

40 marketvalue = 0.30

41 yield = 1600 g

42 daystomaturity = 70

43 plantearlyest = 1

44 harvestlatest = 365

45 carbohydrates = 4.64 g

46 sugars = 2.4 g

47 dietaryfiber = 1.8 g

48 fat = 0.13 g

49 protein = 0.9 g

50 a = 157 µg
51 b1 = 0.055 mg

52 b2 = 0.142 mg

53 b3 = 1.0 mg

54 b6 = 0.3 mg

55 b9 = 47 µg
56 c = 142.0 mg

57 e = 1.58 mg

58 calcium = 6.0 mg

59 iron = 0.35 mg

60 magnesium = 11.0 mg

61 manganese = 0.122 mg

62 phosphorus = 27.0 mg

63 potassium = 213.0 mg

64 sodium = 3.0 mg

65 zinc = 0.2 mg

66

67 [Okra]

68 area = 0.15

69 marketvalue = 0.20

70 yield = 1500 g

71 daystomaturity = 60

72 plantearlyest = 1
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73 harvestlatest = 365

74 carbohydrates = 7.46 g

75 sugars = 1.48 g

76 dietaryfiber = 3.3 g

77 fat = 0.19 g

78 protein = 1.9 g

79 a = 36 µg
80 b1 = 0.2 mg

81 b2 = 0.06 mg

82 b3 = 1.0 mg

83 b9 = 60 µg
84 c = 23.0 mg

85 e = 0 g

86 k = 31.3 µg
87 calcium = 82.0 mg

88 iron = 0.62 mg

89 magnesium = 57.0 mg

90 phosphorus = 61.0 mg

91 potassium = 299 mg

92 zinc = 0.58 mg

93

94 [Potatoes]

95 area = 0.12

96 marketvalue = 0.30

97 yield = 4980 g

98 daystomaturity = 80

99 plantearlyest = 1

100 harvestlatest = 365

101 carbohydrates = 81.0 g

102 sugars = 3.7 g

103 dietaryfiber = 10.5 g

104 fat = 0.4 g

105 protein = 9.5 g

106 a = 961 µg
107 b1 = 0.11 mg

108 b2 = 0.11 mg

109 b3 = 1.5 mg

110 b6 = 0.29 mg

111 b9 = 6 µg
112 c = 19.6 mg

113 e = 0 g

114 calcium = 5.0 mg

115 iron = 0.31 mg

116 magnesium = 22.0 mg

117 manganese = 0.14 mg

118 phosphorus = 44.0 mg

119 potassium = 379.0 mg

120 sodium = 4.0 mg

121 zinc = 0.3 mg

122

123 [Tomatoes]

124 area = 0.225

125 marketvalue = 0.05

126 yield = 1300 g

127 daystomaturity = 80

128 plantearlyest = 1

129 harvestlatest = 365

130 carbohydrates = 3.9 g

131 sugars = 2.6 g

132 dietaryfiber = 1.2 g

133 fat = 0.2 g

134 protein = 0.9 g

135 a = 42.0 µg
136 b1 = 0.03757 mg

137 b2 = 0.019 mg

138 b3 = 0.594 mg

139 b5 = 0.089 mg

140 b6 = 0.08 mg

141 b9 = 15.0 µg
142 c = 14.0 mg

143 e = 0.54 mg

144 k = 7.9 µg
145 calcium = 10.0 mg

146 iron = 0.27 mg

147 magnesium = 11.0 mg

148 manganese = 0.114 mg

149 phosphorus = 24.0 mg

150 sodium = 5.0 mg

151 potassium = 237 mg

152 zinc = 0.17 mg

153

154 [SweetPotatoes]

155 area = 0.12

156 marketvalue = 0.05

157 yield = 2250 g

158 daystomaturity = 105

159 plantearlyest = 1

160 harvestlatest = 365

161 carbohydrates = 2.7 g

162 sugars = 6.5 g

163 dietaryfiber = 3.3 g

164 fat = 0.15 g

165 protein = 2.0 g

166 a = 961 µg
167 b1 = 0.11 mg
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168 b2 = 0.11 mg

169 b3 = 1.5 mg

170 b6 = 0.29 mg

171 b9 = 6 µg
172 c = 19.6 mg

173 e = 0 g

174 calcium = 38 mg

175 iron = 0.69 mg

176 magnesium = 27 mg

177 manganese = 0.5 mg

178 phosphorus = 54 mg

179 potassium = 475 mg

180 sodium = 36 mg

181 zinc = 0.32 mg

182

183 [Zucchini]

184 area = 0.3

185 marketvalue = 0.10

186 yield = 800 g

187 daystomaturity = 48

188 plantearlyest = 1

189 harvestlatest = 365

190 carbohydrates = 2.69 g

191 sugars = 1.71 g

192 dietaryfiber = 1 g

193 fat = 0.36 g

194 protein = 1.14 g

195 a = 56 µg
196 b1 = 0.035 mg

197 b2 = 0.024 mg

198 b3 = 0.51 mg

199 b5 = 0.288 mg

200 b6 = 0.08 mg

201 b9 = 28 µg
202 c = 12.9 mg

203 e = 0 g

204 k = 4.2 µg
205 calcium = 18 mg

206 iron = 0.37 mg

207 magnesium = 19 mg

208 manganese = 0.173 mg

209 phosphorus = 37 mg

210 potassium = 264 mg

211 sodium = 3 mg

212 zinc = 0.33 mg

213

214 [Eggplant]

215 area = 0.75

216 marketvalue = 0.10

217 yield = 2200 g

218 daystomaturity = 80

219 plantearlyest = 1

220 harvestlatest = 365

221 carbohydrates = 5.88 g

222 sugars = 3.53 g

223 dietaryfiber = 3 g

224 fat = 0.18 g

225 protein = 0.98 g

226 a = 0 g

227 b1 = 0.039 mg

228 b2 = 0.037 mg

229 b3 = 0.649 mg

230 b5 = 0.281 mg

231 b6 = 0.084 mg

232 b9 = 0.022 µg
233 c = 2.2 mg

234 e = 0.3 mg

235 k = 3.5 µg
236 calcium = 9 mg

237 iron = 0.23 mg

238 magnesium = 14 mg

239 manganese = 0.232 mg

240 phosphorus = 24 mg

241 potassium = 229 mg

242 zinc = 0.16 mg

243

244 [Drawing]

245 enabledraw = True

246 colortype = hex

247 colours = 0000ff,ffa500,ffd700,ba55d3, ⌋

00ff7f,ff0000,adff2f,ff00ff,1e90ff, ⌋

fa8072,dda0dd,87ceeb,ff1493,7fffd4, ⌋

2e8b57,7f0000,808000,000080

↪→

↪→

↪→

B.1.2 Model Input Constants

1 [Solver Parameters]

2 solver = GRB

3 valueoptafternutri = True
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4 valueoptafternutrifailure = True

5 timeoutvalueafter = 1200

6 timeoutnutriafter = 1200

7

8 [Value Selection]

9 name = Default

10 crops =

Eggplant,Lettuce,Okra,Potatoes,SweetPotatoes,Tomatoes,Zucchini,RedBellPepper↪→

11 maxtimescropused = 2

12 timegranularity = 3

13 nutrients = Carbohydrates,Protein,Iron,A,B1,C,Zinc,E

14

15 [Daily nutrimin]

16 carbohydrates = 235 g

17 protein = 46 g

18 iron = 18 mg

19 a = 700 µg
20 b1 = 1.1 mg

21 c = 45 mg

22 e = 15 mg

23 zinc = 8 mg

24 fat = 15 g

25

26 [Resources]

27 resources = Area

28 gardenwidth = 4

29 gardenheight = 5

B.2 Configuration 2

B.2.1 Crops & Nutrition constants

All nutritional values and constants remain the same compared to the previous configuration. See
values listed under appendix B.1.1.

B.2.2 Model Input Constants

Constants for tests of nutritional step 1 are listed below. The values for gardenwidth, gardenheight
and timegranularity vary between test cases as described in section 5.2.1.

1 [Solver Parameters]

2 solver = GRB

3 valueoptafternutri = False

4 valueoptafternutrifailure = False

5 timeoutvalueafter = 0

6 timeoutnutriafter = 600

7

8 [Value Selection]

9 name = Default
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10 crops =

Eggplant,Lettuce,Okra,Potatoes,SweetPotatoes,Tomatoes,Zucchini,RedBellPepper↪→

11 maxtimescropused = 2

12 timegranularity = ?

13 nutrients = Carbohydrates,Protein,Iron,A,B1,C,Zinc,E

14

15 [Daily nutrimin]

16 carbohydrates = 235 g

17 protein = 46 g

18 iron = 18 mg

19 a = 700 µg
20 b1 = 1.1 mg

21 c = 45 mg

22 e = 15 mg

23 zinc = 8 mg

24 fat = 15 g

25

26 [Resources]

27 resources = Area

28 gardenwidth = ?

29 gardenheight = ?
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C Output

C.0.1 Case study

Raw model output on crop quantities, growing periods and the nutritional results for the test of the
case study section 5.1:

{

"name": "Value_maximization (with

minimised nutri-deficiency)",↪→

"resultConclusion": {

"Nutrition_maximization":

"FEASIBLE but Not achieved",↪→

"Value_maximization":

"undefined",↪→

"Value_maximization (with

minimised nutri-deficiency)":

"FEASIBLE"

↪→

↪→

},

"total_crops": 542,

"total_space": "84.51 m2",

"selected_crop_amounts": {

"Eggplant": 0.0,

"Lettuce": 0.0,

"Okra": 108.0,

"Potatoes": 143.0,

"RedBellPepper": 72.0,

"SweetPotatoes": 0.0,

"Tomatoes": 0.0,

"Zucchini": 0.0,

"Eggplant2": 0.0,

"Lettuce2": 0.0,

"Okra2": 9.0,

"Potatoes2": 130.0,

"RedBellPepper2": 80.0,

"SweetPotatoes2": 0.0,

"Tomatoes2": 0.0,

"Zucchini2": 0.0

},

"crop_crow_time_range": [

[

-1,

-1

],

[

-1,

-1

],

[

81.0,

141.0

],

[

1.0,

81.0

],

[

141.0,

211.0

],

[

-1,

-1

],

[

-1,

-1

],

[

-1,

-1

],

[

-1,

-1

],

[

-1,

-1

],

[

141.0,

201.0

],

[

211.0,

291.0

],

[
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291.0,

361.0

],

[

-1,

-1

],

[

-1,

-1

],

[

-1,

-1

]

],

"space_by_crop_type": {

"Eggplant": "0.0 m2",

"Lettuce": "0.0 m2",

"Okra": "16.2 m2",

"Potatoes": "17.16 m2",

"RedBellPepper": "16.2 m2",

"SweetPotatoes": "0.0 m2",

"Tomatoes": "0.0 m2",

"Zucchini": "0.0 m2",

"Eggplant2": "0.0 m2",

"Lettuce2": "0.0 m2",

"Okra2": "1.3499999999999999

m2",↪→

"Potatoes2": "15.6 m2",

"RedBellPepper2": "18.0 m2",

"SweetPotatoes2": "0.0 m2",

"Tomatoes2": "0.0 m2",

"Zucchini2": "0.0 m2"

},

"yield_by_crop_type": {

"Eggplant": "0.0 g",

"Lettuce": "0.0 g",

"Okra": "162000.0 g",

"Potatoes": "712140.0 g",

"RedBellPepper": "115200.0 g",

"SweetPotatoes": "0.0 g",

"Tomatoes": "0.0 g",

"Zucchini": "0.0 g",

"Eggplant2": "0.0 g",

"Lettuce2": "0.0 g",

"Okra2": "13500.0 g",

"Potatoes2": "647400.0 g",

"RedBellPepper2": "128000.0 g",

"SweetPotatoes2": "0.0 g",

"Tomatoes2": "0.0 g",

"Zucchini2": "0.0 g"

},

"value_by_crop_type": {

"Eggplant": 0.0,

"Lettuce": 0.0,

"Okra": 0.0,

"Potatoes": 1494.0,

"RedBellPepper": 0.0,

"SweetPotatoes": 0.0,

"Tomatoes": 0.0,

"Zucchini": 0.0,

"Eggplant2": 0.0,

"Lettuce2": 0.0,

"Okra2": 0.0,

"Potatoes2": 25398.0,

"RedBellPepper2": 0.0,

"SweetPotatoes2": 0.0,

"Tomatoes2": 0.0,

"Zucchini2": 0.0

},

"nutrition_required_per_period": {

"A": 0.08516666666666667,

"B1": 0.13383333333333333,

"C": 5.4750000000000005,

"Carbohydrates":

28591.666666666668,↪→

"E": 1.825,

"Iron": 2.1900000000000004,

"Protein": 5596.666666666667,

"Zinc": 0.9733333333333333

},

"nutrition_produced_per_period": {

"0": {

"A": 6.7958076,

"B1": 0.777876,

"C": 138.60336,

"Carbohydrates": 572799.6,

"E": 0.0,

"Iron": 2.192196,

"Protein": 67180.2,

"Zinc": 2.1214799999999996

},

"1": {

"A": 0.244044,
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"B1": 0.41436000000000006,

"C": 203.94899999999998,

"Carbohydrates":

18437.579999999998,↪→

"E": 1.82016,

"Iron": 1.4912999999999998,

"Protein": 4371.3,

"Zinc": 1.2483000000000002

},

"2": {

"A": 5.6088914,

"B1": 0.6894140000000001,

"C": 292.05704000000003,

"Carbohydrates":

461758.60000000003,↪→

"E": 2.0224,

"Iron": 2.192494,

"Protein": 54612.3,

"Zinc": 1.9442199999999998

}

},

"nutrition_deficit_per_period": {

"0": {

"A": -6.710640933333333,

"B1": -0.6440426666666667,

"C": -133.12836000000001,

"Carbohydrates":

-544207.9333333333,↪→

"E": 1.825,

"Iron":

-0.0021959999999996427,↪→

"Protein":

-61583.53333333333,↪→

"Zinc": -1.1481466666666664

},

"1": {

"A": -0.15887733333333334,

"B1": -0.2805266666666667,

"C": -198.474,

"Carbohydrates":

10154.08666666667,↪→

"E": 0.0048399999999999554,

"Iron": 0.6987000000000005,

"Protein":

1225.3666666666668,↪→

"Zinc": -0.2749666666666669

},

"2": {

"A": -5.523724733333333,

"B1": -0.5555806666666667,

"C": -286.58204,

"Carbohydrates":

-433166.93333333335,↪→

"E": -0.19740000000000024,

"Iron":

-0.002493999999999552,↪→

"Protein":

-49015.63333333334,↪→

"Zinc": -0.9708866666666666

}

}

}
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