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Abstract 

 

The primary aim of this research is to analyse the impact of drought stress on different turfgrass species, with the 

objective of identifying those that exhibit resilience under drought conditions. This contributes to the development 

of adaption strategies, an urgent need given rising frequency of drought events. Drought stress is experienced more 

frequently and severely by turfgrass species due to climate change in the last 10 years. This stress induces 

significant changes in vegetation health, which can be effectively analysed by hyperspectral remote sensing. This 

research focuses on evaluating the impact of drought stress on different turfgrass species and mixtures, considering 

two different mowing height, all intended for sports/events, park/recreation, and roadside applications. 

Hyperspectral reflectance data were collected using a Headwall Nano-Hyperspec camera of turfgrass subjected to 

drought conditions on four dates: 2nd and 26th of June and 18th and 30th of August. The study was conducted at the 

Nergena experimental field, located just North of Wageningen, Netherlands, where one group of grass plots were 

exposed to drought conditions and a control group of grass plots received irrigation. Reflectance data were used to 

calculate fifteen vegetation indices found in literature as successful in detecting drought stress in turf grass, 

focusing on five different sensitivities. These values were analysed, ranking the grasses on drought resistance and 

identifying similarities through Principal Component Analysis and hierarchical clustering. The study found 

significant differences between mowing height, with the plots mown on 6cm height performing better under 

drought conditions than the plots mown at 3cm height. Species with deeper root systems, such as Tall Fescue and 

Hard Fescue, exhibit the highest drought resistance, whereas species with open sods, Perennial Ryegrass tetraploid, 

showed the least drought resistance.  

The influence of these specific species on the drought resistance of mixtures is notable; mixtures containing Tall 

Fescue and Hard Fescue exhibit the highest drought resistance, where those including Perennial Ryegrass tetraploid 

are the least resistant. These results provide insight into which species, mixtures and mowing heights can best be 

implemented across different use specifications to adapt to the climate change. This addresses the knowledge gap 

regarding the drought resistance of different cool season turfgrass species, mixtures and mowing height in already 

established sods.  

 

Keywords: Drought resilience, hyperspectral remote sensing, turf grass species, vegetation indices, climate change 

adaption, clustering 
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1. Introduction 

  

The ongoing effects of climate change are leading to more frequent droughts, a phenomenon observed globally, 

including in Europe. A study by Klijn (2012) examining climate change projections for the Netherlands indicates 

an anticipated increase in both the frequency and severity of droughts. These extended drought periods in Europe 

have damaging effects, both socially and economically (Ionita et al., 2016). Sectors such as agriculture and forestry 

experience damaging long-term effects on vegetation health resulting from these drought events (Hari et al., 2020). 

This includes yield losses, forest mortality and declining reservoir levels. Given the wide-ranging impact of drought 

vegetation stress across various sectors, numerous studies have been conducted to detect drought stress and 

examining the effects on plants (Katuwal, Yang & Huang, 2023; Hong, Bremer & van der Merwe, 2019; Bayat, 

van der Tol & Verhoef, 2016)    

  

1.1 Evaluating Drought stress: Methods and Limitations 

 

Governments are actively engaged in making their cities resilient as the effects of climate change persist, with a 

particular focus on climate-proofing public spaces, including parks (Albers et al., 2015). The strategic placement 

of drought-resistant vegetation is one approach to achieving this resilience. Urban parks, as well as sports clubs 

such as football and golf clubs, are increasingly interested in incorporating drought-resistant grass varieties into 

their turfs (Reiter et al., 2017). Determining which grass varieties can cope with these drought conditions is of 

great interest and practical relevance.  

 

Various methodologies are employed to acquire knowledge about drought stress. One commonly used 

methodology in plant breeding is visual rating, which involves the assessment of vegetation quality and condition 

through visual inspection. Human evaluators examine the grass and assigning a score based on the quality, colour, 

texture and patterns of stress symptoms in the grass species (Haghverdi et al., 2021; Sherwood, 1983). However, 

this method relies on subjectivity and tends to be less dependable.    

Another method involves the use of ground measurements, assessing parameters such as soil moisture, leaf water 

potential, stomatal conductance, chlorophyll content or leaf temperature. Nonetheless, these methods are labour-

intensive and, being point measurements, do not offer a comprehensive analysis of entire research areas. 

 

1.2 Advancements in Drought Stress Detection: The Role of Remote Sensing 

 

Remote sensing techniques offer substantial advantages compared to these methods. The use of remote sensing 

with appropriate imaging technology offers fast, objective and consistent method of collecting data across larger 

research area. On an extensive scale, remote sensing techniques provide a more precise and effective method of 

detecting and monitoring drought stress than what can be obtained through ground measurements (Katuwal, Yang 

& Huang, 2023). Consequently, remote sensing is widely employed in various fields for vegetation stress detection, 

including precision agriculture (Hong, Bremer & van der Merwe, 2019), forest management (Le, Harper & Dell, 

2023) and biodiversity conservation (Munné-Bosch & Villadongos, 2023).  

 

One of most commonly used remote sensing techniques is hyperspectral (HS) remote sensing. This method 

involves the capture of reflected light at over more than 200 contiguous spectral bands within the visible to near 
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infrared regions (Hong, Bremer and van der Merwe, 2019). The variation in vegetation reflectance across different 

wavelengths can be linked to various factors related to vegetation aspects, including pigment content, plant 

structure, water levels and biochemicals (Figure 1). These fluctuations in reflectance can be quantified through 

vegetation indices (VIs). When environmental conditions, such as drought stress, affect these vegetation factors, it 

is possible to analyse these impacts by examining the variations in the vegetation index (VI) values 

(Badzmierowski, McCall & Evanylo, 2019; Kim et al., 2011; Marshall et al., 2016).   

  

  

Figure 1: Canopy reflectance spectra showing spectral regions with information on different plant traits 
Source: Gamon et al., 2019  

 

1.3 Enhancing Drought Resilience: Hyperspectral Sensing in Turfgrass Management 

 

In the domain of precision agriculture, there is a notable emphasis on assessing drought stress in turfgrass using 

remote sensing techniques. The increasing temperatures and precipitation variability driven by climate change have 

subjected an increasing area of turfgrass to drought stress conditions (Zarch, Sivakumar & Sharma, 2005). 

Consequently, the (early) detection of drought stress in grass species has gained significance. This has led to an 

increasing number of studies focusing on detecting and monitoring drought stress in cool season turfgrass species 

using different VIs or methods (Katuwal, Yang & Huang, 2023; Bayat, van der Tol & Verhoef, 2016; Hong, Bremer 

& van der Merwe, 2019). The majority of these studies sought to specify which spectral bands or remote sensing 

techniques are most suitable for detection of drought stress, largely focussing on single cool-season turfgrass 

species. There is still a relative scarcity of studies focussing on comparing the drought resilience of different cool 

season turfgrass species. Moreover, knowledge about the performance of different turfgrass species when grown 

in a mixture, as well as the performance of single species and mixtures in already established turfs, remains limited. 

This study aims to bridge this knowledge gap by providing valuable insights into the drought stress responses of 

cool season turfgrass species, mixtures and mowing heights in already established turfs.   
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2. Research Objectives  

  

The aim of this research is to identify drought-resistant turfgrass species, mixtures and mowing height, to 

eventually implement these in public parks and sport fields to enhance their resilience to climate-related challenges. 

The research will focus on identifying drought resistance in the researched grass species using HS remote sensing 

techniques. As a result, this research aims to fill the existing knowledge gap by providing insights on which grass 

species, mixtures and mowing heights are drought resilience in already established turfs, thereby enabling their 

implementation to enhance resilience to climate fluctuations. With this, the main question of this study is:  

 

“MQ: To what extent can drought resilience of different grass species, mixtures and mowing heights be 

detected using hyperspectral remote sensing?”  

To answer the main research question, this study addresses four sub-research questions:  

 

RQ1: Which vegetation indices preciously proved to be most effective in detecting drought stress in turfgrass 

species?  

 

RQ2: What is the impact of drought stress on vegetation index values calculated for the grass varieties and 

compositions throughout the experiment?  

 

RQ3: What is the impact of drought stress on the vegetation index values calculated for different mowing heights 

of the different grass varieties and compositions throughout the experiment?  

 

RQ4: To what extent can similarities in drought responses be found between and across the turfgrass species, 

mixtures and mowing heights?  

 

Thesis outline 

This research begins with a comprehensive literature review in Chapter 3, aimed at identifying the most effective 

spectral bands and VIs for HS remote sensing in detecting drought stress in cool season turfgrass. This review will 

lead to the selection of 15 VIs which will be used to analyse the drought responses for the grass species, mixtures 

and mowing heights. In Chapter 4, the methodology is outlined, detailing the research setup and the selection of 

the single varieties and mixtures. This chapter also delves into the plant traits of the used species that are crucial 

for drought resistance and describes the drought treatment for the non-irrigated groups, alongside the 

methodological workflow used in this study. Chapter 5 present the results, showing the spectral signatures, 

calculated VI values and drought resistance ranking of the species, mixtures and mowing heights. It further 

explores the outcomes of Principal Component Analysis (PCA) and hierarchical clustering to find patterns and 

relationships in the data. The discussion in chapter 6 analyses these results within the context of existing literature, 

evaluating the implications of these findings and their significance in the broader field of drought stress 

management in turfgrass. Finally, Chapter 7 concludes the thesis by summarizing the key findings and 

contributions of the study, emphasizing the implications for the selection and management of turfgrass under the 

challenges of climate change and drought stress resilience.   
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3. Literature chapter  

 

To address RQ1, a literature review was performed to identify a selection of usable VIs in detecting drought stress 

in the different turf grasses. Studies featuring these VIs are found by using keyworks like “hyperspectral indices 

drought stress turfgrass” and employing snowball sampling techniques. The results of these studies are summarized 

and form the basis of the selection of the VIs. The selection and equations of the indices are shown in Table 1.  

 

3.1 Detecting drought stress with hyperspectral remote sensing  

 

Drought effect on turf grass 

Low volumetric water content (VWC) causes drought stress in grass, a condition that arises when a region 

undergoes a drought. Drought is defined as an extreme weather phenomenon, caused by the lack of precipitation 

(Paulo and Pereira, 2006). This phenomenon leads to a deficit in VWC and is observed in both areas with large 

and small amounts of precipitation. Drought is not restricted to specific seasons and can occur with different 

intensities (Staniak & Kocon, 2015).    

  

Drought stress in grass, which limits growth, development and yield, can be categorized in two types. Moderate 

water stress reduces the growth and speed of cell division in leaves, occurring when the water content falls below 

tissue’s saturation in the plant (Staniak & Kocoń, 2015). Bayat & Verhoef (2016) refer to this as short-term drought 

stress. Severe water stress is experienced after a prolonged water shortage, negatively effecting plant metabolism, 

especially the photosynthesis process (Staniak & Kocoń,, 2015). A decline in photosynthesis results in reduced 

stomata conductance, RuBisCo activity (the process of assimilating CO2 into the biosphere) and availability of 

CO2 (Hura et al., 2007; Jones, 1980). Bayat & Verhoef (2016) refer to this as long-term drought stress. 

 

To which extent a plant can response and cope with drought is dependent on the plant’s resistance. Some plants 

exhibit greater capacity in managing specific conditions, maintaining higher yields. This resistance is based on 

three characteristics of the plant: properties that determine its capacity to handle the stress factor, the ability to 

repair, and adaptation or acclimatization (Staniak & Kocoń, 2015). Plant properties include traits such as the depth 

of the root system or the level of stomatal conductance. The ability to repair damage concerns how fast and to what 

extent a plant can recover from a damaging period and restore its health. Adaptation relies on evolution and on the 

development of traits that enable vegetation to more effectively cope with changing conditions; breeding and 

mutations serve as driving factors for this evolutionary process. Acclimatization involves structural and functional 

modifications of plant traits as a response to the changing environment with modifications not being inherited 

unlike in adaptation (Staniak & Kocoń, 2015).   

  

The processes of adaptation and acclimatization arise from strategies to avoid stress and cope with the effects of 

drought. These processes include traits that play a role in coping with drought, such as reducing transpiration and 

increasing efficient water uptake, conduction and storage (Blum, 2009). Considering the root system, most grasses 

have a root system situated in the upper soil (0-20cm), allowing them to extract a significant amount of water from 

a relatively small volume. However, grasses with a deeper root system, such as Festuca Arundinacea, reaching a 

depth of 2 meters, are considered more drought-resistant due to these characteristics (Carrow, 1996; Wilman, Gao 
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& Leitch, 1998). Another trait helping to cope with drought is the ability to reduce transpiration. Some grasses 

differ in their capacity to regulate stomata, thicken the cuticle (a protective layer covering the plant) or reduce the 

size or number of leaves (Staniak & Kocoń,, 2015; Chen & Zu, 2005; Cui et al., 2020).  

  

Detecting drought stress in turf grass in crucial for effective vegetation management. Traditionally, the 

identification relies on the parameters Leaf Relative Water Content and Turf Quality (Katuwal, Schwarts & 

Jespersen, 2020; Liang et al., 2009; Leinauer et al., 2014), both of which respond to declines in VWC  

(Katuwal, Yang & Huang, 2023; Hu, Wang & Huang, 2013). While prior studies have demonstrated the utility of 

Leaf Relative Water Content in detecting drought stress in grass (Katuwal, Yang & Huang, 2023; Hu, Wang & 

Huang, 2013;  Rahimi et al., 2010), the conventional method of measuring Leaf Relative Water Content is often 

destructive, involving the destruction of plant material. On the other hand, Turf Quality measurements are 

subjective, relying on the observer, impacting the precision and objectivity of the measurements. This is where 

remote sensing can play a crucial role.   

 

Hyperspectral Remote Sensing   

Remote sensing is defined as the extraction of information regarding objects, areas or phenomena based on their 

radiance, which can be acquired without the necessity to physically make contact (Camps-Valls et al., 2011). The 

origins of remote sensing trace back to 1903 when pigeons from the Bavarian Pigeon Corps were equipped with 

small, weighted cameras. These cameras, featuring a timer, took a picture every 30 seconds (Figure 2) (Colomina 

& Molina, 2014). Remote sensing has since evolved and become a key instrument for many monitoring 

applications, including the evaluation of drought stress in complex systems like landscapes and ecosystems 

(Avetisyan, Borisova & Velizarova, 2021).  

 

 

Figure 2: One of the pigeons of the Bavarian Pigeon Corps with the mounted camera, shooting areal photos 

Source: Remote Sensing tutorial Overview, n.d.  

  

In optical remote sensing, sensors capture information within the wavelengths range of 400 nm to 2500 nm, 

including the visual, Near Infrared and Short-Wave Infrared spectrums. These spectrums are integral components 

of the total electromagnetic spectrum, which forms the solar energy emitted by the sun (Figure 3).  The sensors 

measure the radiance, described by Shaw & Burke (2003) as the amount of light which is reflected by objects, 

areas, or phenomena. This can be achieved through passive sensor systems that collect electromagnetic (EM) 

radiance from the sun, or active sensors that transmit signals and measure their own reflectance (Bioucas-Dias et 

al., 2013).   
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Figure 3: Electromagnetic spectrum, which exists of several spectrums. From small to large, Ultra-Violet, visual spectrum, Near-Infrared, 

Short Wave Infrared, Mid-Wave Infrared and Long Wave Infrared 

Source: Pabich, 2002 

 

When the sun’s emitted energy encounters a surface, it undergoes three key interactions: reflection, absorption and 

transmission. Together, these interactions account for the total EM energy that reaches the earth. The way an object 

handles with this EM radiance depends on its characteristics, such as colour and reflectivity. Since colour and 

reflectivity effect the way this radiance is handled, the radiance and reflectance can be used to indicate the material 

compositions. Different materials react namely differently to the light in all different wavelengths because of its 

characteristics (Figure 4). As the reflectance spectrum remains constant regardless of illumination conditions, be it 

sunny or cloudy, it is a stable and reliable signature. The patterns within this signature can be utilized for the 

identification of materials and their properties (Cooke & Harris, 1970). This forms the foundation of optical remote 

sensing.  

  

Figure 4: The concept of hyperspectral remote sensing 

Source: Shaw & Burke, 2003  

 

There are two main types of optical remote sensing sensors: multispectral sensors capture information in three to 

ten bands across the EM spectrum and HS sensors that capture information in more than two hundred continuous 

narrow bands. HS sensors offer significant advantages due to their operation with higher spectral resolution. In 

multispectral remote sensing, spectral information is averaged over broad bandwidths, leading to the loss of critical 

details in specific narrow bands, including absorption features (Blackburn, 1998; Thenkabail, Smith & Pauw, 

2000). HS remote sensing has demonstrated its superiority over multispectral broadband-based remote sensing by 

providing crucial information for identifying both biophysical and biochemical parameters (Sahoo, Ray & 

Manjunath, 2015). Obtaining reflectance information at these specific narrow wavelengths offers for instance 

insights into chlorophyll or nitrogen levels, which, in turn, can be correlated with plant productivity, stress levels, 

or nutrient availability (Sahoo, Ray & Manjunath, 2015). This observation aligns with the findings of Katuwal, 

Yang and Huang (2023), who compared the efficacy of HS and multispectral VIs in detecting drought stress in 
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turfgrass. Their study reveals that HS VIs demonstrated a higher predictability for Leaf Relative Water Content 

and Turf Quality compared to indices derived from multispectral imaging.  

 

HS Remote sensing capturing information on vegetation  

Transition from the broad concept of remote sensing to the nuanced insights of HS remote sensing, the focus shifts 

towards implementing HS remote sensing for deeper understanding of plant health. HS remote sensing is applicable 

in a wide range of agricultural uses, since different vegetation types have their own unique spectral reflectance 

signature of various types of vegetation captured by large continuous narrow bands (Sahoo, Ray & Manjunath, 

2015). The amount of reflected and absorbed EM radiance in these bands can be linked to specific vegetation traits 

and functions (Moss & Loomis, 1952; Li, Zhang & Huang, 2014; Zhang et al., 2021). This information not only 

provides insights into the biochemical and physical properties of plants, but also enables studying various aspects 

of plant health and environmental interactions (Kureel et al., 2022; Blackburn, 2007; Bayat, Van der Tol & Verhoef, 

2016)  

  

Different plant traits influence the reflectance at specific wavelengths as shown in Figure 5. Reflectance in the 

visible region provides insight on the leaf pigments, such as chlorophyll (Hadoudane et al., 2002). Reflectance in 

the near-infrared region provides insights into the cell structure, linking to the scattering in the spongy mesophyll. 

The spongy mesophyll, rich of chloroplasts, is the internal tissue of a leaf. This is the site where the photosynthesis 

takes places, converting light energy into chemical energy. Finally, the reflectance of the shortwave infrared 

provides insights into the leaf water content (Champagne et al., 2003). Figure 5 also shows different absorption 

bands, which have an effect on the measured reflectance. In the visible region vegetation’s reflectance signature 

include 2 chlorophyll absorption bands, one in the blue region around 450 nm and one in the red region around 

670 nm and several water absorption bands caused by the atmospheric such as the water absorption bands at 

wavelength 1.45 μm and 1.94 μm. These water absorption bands can provide advantages as they can be used to 

collect more information through thick canopies and have a preferential sensitivity to thinner than to thicker tissues 

(Sims & Gamon, 2003).   

 

Figure 5: Spectral reflectance patterns in vegetation highlighting chlorophyll and atmospheric water absorption bands, and also attributes 

measured reflectance to plant traits including pigment concentration, cellular structure and leaf water content. 

Source: Jensen, 2009   
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Shifts in level of leaf pigment or cell structure affect the ability of plants to absorb specific wavelengths, which 

can be observed in changes of vegetation’s spectral reflectance. Based on these changes in measured reflectance 

vegetation stress can be observed, such as drought stress (Badzmierowski, McCall & Evanylo, 2019; Kim et al., 

2011; Marshall et al., 2016). Figure 6 illustrates this phenomenon, showing the reflectance of grass under different 

soil moisture levels and presenting the percentage changes observed across different wavelengths. As soil moisture 

decreases, the grass experiences drought stress, resulting in changing reflectance signature. This occurs since the 

drought stress symptoms gradually change over time (Kumar et al., 2021). In the visible range, lower soil moisture 

levels correlate with reduced absorption in the red, blue and green bands. It’s important to note that vegetation 

health can be affected by a variety of stress factors, both abiotic – such as temperature, CO2 levels, radiation, water 

and nutrients – and biotic, including weeds pests and diseases (Tittonel & Giller, 2013). This fluctuation can lead 

to either reversible or irreversible disturbances in vegetation functioning and structure, further influencing the 

observed changes in spectral reflectance.  

  

Figure 6: Change of reflectance spectra of grass in responses to drought & Percentage of change observed per wavelength 

Source: Bayat, van der Tol & Verhoef, 2016  

 

VIs exploit this information by capturing variations in measured reflectance. As reflectance at different 

wavelengths linked to distinct traits of the vegetation, combinations of  VIs are employed for a comprehensive 

analysis. The use of remote sensing has become increasingly important, as they enable the capture of detailed 

spectral information from plants without causing damage. The spectral reflectance serves as a tool for rapid, non-

destructive objective and consistent monitoring drought stress in vegetation (Mishra et al., 2019; Damm et al., 

2014). VIs can vary in their sensitivity to detect, as their calculation use the reflectance of different wavelengths 

(Bayat, van der Tol & Verhoef, 2016).  

 

3.2 Literature review: Vegetation indices  

 

The focus is on HS VIs within the range of 0 – 1000 nm, which corresponds to the reflectance range used in this 

study. VIs beyond this range are excluded from consideration. Within this literature review, twelve studies were 

examined, each conducted research on the detection of drought stress on turfgrass through the use of HS data (Table 

9 in Appendix A). Among these, ten studies conducted research on the relationship between drought stress and VIs, 

while two focused on the correlation with specific spectral bands. In these studies, drought stress was identified 

due to decreasing SWC. The majority of the articles conducted research on irrigated plots with a constant VWC 

level and non-irrigated plots undergoing drought or dry downs. Different parameters were measured to assess grass 

health, including Turf Quality (Badzmierowski, McCall & Evanylo, 2019; Caturegli et al., 2020; Jiang, Liu & 

Cline, 2009; Katuwal, Yang & Huang, 2023; McCall et al., 2017; Roberson et al., 2021; Jiang & Carrow, 2005; 
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Jiang & Carrow, 2007), Biomass (Badzmierowski, McCall & Evanylo, 2019), Tissue Nitrogen Accumulation 

(Badzmierowski, McCall & Evanylo, 2019), VWC (Badzmierowski, McCall & Evanylo, 2019; Caturegli et al., 

2020; Jiang, Liu & Cline, 2009; McCall et al., 2017; Roberson et al., 2021), Leaf Relative Water Content (Caturegli 

et al., 2020; Katuwal, Yang & Huang, 2023), soil moisture (Caturegli et al., 2020; Jiang, Liu & Cline, 2009), 

Chlorophyll pigments level (McCall et al., 2017), Leaf Firing (Jiang & Carrow, 2005; Jiang & Carrow 2007) and 

Wilt Percent (Roberson et al., 2021). Pearson correlations were calculated to assess relationships between the 

values of the VIs and these parameters. Studies that did not calculate correlations with these parameters 

investigated whether significant changes in VI values were observable during the drought treatment (Bayat, Van 

der Tol & Verhoef, 2016; Dao et al., 2021; Hermans et al., 2021).   

In total, 28 different VI’s were identified in these studies, including 5 different sensitivities (Figure 7). The indices 

NDVI, WBI, SRI, PRI and GRI were most frequently employed, appearing 8, 6, 4, 4 and 3 times, respectively. The 

results regarding the ability of these indices in detecting drought stress have been compiled, and the corresponding 

Table 9 is available in Appendix B. Their effectiveness was evaluated through a comparative analysis of results 

from the relevant studies, selecting only those VIs identified by these identified as most proficient in detecting 

drought stress. Based on these results, the indices were categorized as either suitable, possibly suitable or not 

suitable for detecting drought stress in grass. A further distinction was made between the detection of early or long-

term drought stress (Figure 7). For this research, the definition provided by Bayat & Verhoef (2016) was adopted. 

Their definition indicated that short-term drought could be detected after 11 days, while long-term drought stress 

could be identified after 36 days.   

 

Figure 7: Number of citations for different VIs in the relevant articles & Categorization of VIs based on suitability and type of sensitivity 

 

Subsequently, the VIs have been categorized based on their sensitivity to different plant characteristics. Within the  

28 VIs identified, the following sensitivities were observed: Anthocyanin, Anthocyanin & Chlorophyll, 

Carotenoids, Carotenoids & Chlorophyll, Chlorophyll, and Plant Water Concentration.  

 

Anthocyanin, Carotenoids and Chlorophyll are pigments that absorb radiance all at a different wavelength (Figure 

8) and transport the light energy to other parts of the photosynthetic process (Hallik et al., 2017). Anthocyanin 

represents red, purple, blue and black pigments, Carotenoids represents yellow, orange and red pigments, and 

Chlorophyll represents green pigments. Both Anthocyanin and Carotenoids play a protective role when drought 
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stress induces oxidative stress, leading to the overproduction of reactive oxygen species. These pigments counteract 

different forms reactive oxygen species to protect the plant’s photosystems, resulting in higher levels of 

Anthocyanin and Carotenoids when turfgrass experiences drought (Shariatipour et al., 2022; Hallik et al., 2017). 

This research identified a single VI sensitive to  Anthocyanin capable of detecting drought stress, which also 

exhibits sensitivity to Chlorophyll. VIs responsive to Carotenoids illustrate enhanced performance in detecting 

drought stress, with the majority effectively identifying drought stress, including those combined with Chlorophyll 

sensitivity. The VIs sensitive to Chlorophyll measure a decrease in level of the pigment when turfgrass experiences 

drought (Jazi, Etemadi & Aalipour, 2019). This decline is also linked to oxidative stress (Kato and Shimizu, 1985). 

This study found that most VIs were sensitive to Chlorophyll, with about half capable of detecting drought stress. 

Additionally, indices sensitive to plant water content, indicating the plant’s hydration level, were notably effective 

in identifying drought stress.  

  

Figure 8: Overview of the absorption spectra of isolated chlorophyll a (blue), chlorophyll b (green), β-carotene (orange) and Anthocyanin 

(red) 

Source: Barragán et al., 2018 

 

In total, this research identifies 15 VIs capable of detecting drought stress, shown in Table 1. This excludes the 

widely used NDVI and PRI indices. Instead, modified versions, namely PRI(norm) and WI/NDVI, are used in this 

study for their better performance in detecting drought stress. A comparison of the wavelengths used in these VIs 

with the findings of Jiang& Carrow (2005 & 2007), who conducted research on the relationship between 

wavelength bands and drought stress parameters Turf Quality and Leaf Firing, reveals notable similarities. 

Wavelengths around 710 are associated with vegetation stress, around 660 nm, between 673 – 693 nm and around 

900 nm are linked to TQ, while 667 – 687 nm is linked to LF. In the equations, the wavelengths 670 nm, 680 nm, 

690 nm, and 695 nm are used, corresponding to Turd Quality and Leaf Firing, and 900 nm is linked to water 

content.   

Table 1: Relevant VIs for this research 

VI  Full name  Equations  Sensitive to  Suitable for  
short-and long-

term drought 

stress  
GRI   Green to red ratio index  GRI = R550 / R670  Anthocyanin and 

Chlorophyll  
Short- and 

long-term   
PRI  
(norm)  

Normalized 

Photochemical 

Reflectance Index  

PRI (norm) = (R570 – R531) / (R570 + 

R531) / [((R800 - R670)/sqrt (R800 

+R670)) * R700/R670]   

Carotenoids  Long-term   

CARI  Carotenoids Index  CARI = (R720 – R521) / R521  Carotenoids   Short- and 

long-term   
PRI512  Photochemical 

Reflectance Index 512  
PRI512 = (R531 − R512)/(R531 + 

R512)   
Carotenoids   Long-term   

CarRE 

opt  
Opt. carotenoid red 

edge index  
CarRE opt = (ρ510–530⁻¹ − ρ680–

730⁻¹) × ρ760–780 * 

 

Carotenoids and 

chlorophyll  
Long-term   

CCRI  Carotenoid/Chlorophyll 

Ratio Index  
CCRI = ((R720–R521) / R521) / 

((R750 +R705)/R705)  
Carotenoids and 

Chlorophyll  
Short- and 

long-term   
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SIPI  Structure Independent 

Pigment Index  
SIPI = (R800 – R445) / (R800 + 

R680)  
Carotenoids and 

chlorophyll  
Short- term  

BRI2 Blue/Red Pigment 

Index 2 
BRI2 = R450 / R550 Chlorophyll  Short- and 

long-term   
ChlRE 

opt  
Opt. chlorophyll red 

edge index  
ChlRE opt = (R680 –730⁻¹ − R780–

800⁻¹) × R755–780 * 
Chlorophyll  Long-term   

CTR2   Carter Index 2  CTR2 = R695 / R760  Chlorophyll  Short- and 

long-term   
mSR705  Modified Simple Ratio   mSR705 = (R750 – R445) / (R705–

R445)  
Chlorophyll  Short- and 

long-term   
RGI  Red/green pigment 

Index  
RGI = R690 / R550  Chlorophyll  Short- and 

long-term   
WI/NDVI  Ratio WI normalized 

difference vegetation index  
WI/NDVI = (R900 / R970) / ((R800 

− R680) / (R800 + R680)  
Plant water 

concentration  
Short- and 

long-term   
NWI1  Normalized Water 

Index 1   
NWI1 = (R970 - R900)/(R970 + 

R900)  
Plant water 

concentration  
Short- and 

long-term   
WBI  Water Band Index  WBI = R900 / R970  Plant water 

concentration  
Short- and 

long-term   
* R520, R705, R770 are selected for CarRE opt and R705, R790 and R768 for ChlRE opt, as they fall at the central points of their ranges 
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4. Methodology  

 

This methodology chapter serves as the structure of the study, presenting the experimental setup, drought treatment 

and the collection of HS remote sensing data critical for analysing drought stress responses in turfgrass. By 

outlining the methodological workflow, this chapter aims to guide the readers through the processes employed to 

address the research questions.  

 

4.1 Experimental Design/Setup  

  

Just north of the Wageningen Campus, Wageningen University & Research (WUR) established Nergena, an 

experimental field designated for several years observation on grass fields featuring specific compositions and 

under subjected to different maintenance regimes. This field underwent sowing on the 1st of September 2021.   

  

The experimental fields cover a total area of 0.25 hectares and contains 48 plots measuring 4 by 4 meter and 192 

plots measuring 2 by 2 meters (Figure 9). These plots have been sown with both single varieties and mixtures of 

species commonly found on sport/event fields and park/recreation areas. The research setup includes two different 

maintenance regimes, strips of grass measuring 3cm (left) and 6cm (right). Furthermore, the research setup includes 

two distinct irrigation methods: the right half of the field receives irrigation depending on the soil moisture level, 

while the left half remains non-irrigated. Additionally, three separate test groups for comparative analysis are 

incorporated, ensuring that any observed effects are attributed solely to drought stress. The research set-up is shown 

in Figure 9.  

  

Figure 10 provides a comprehensive overview of the different grass species and mixtures sown in the research 

setup. A total of eight distinct species were sown, both in monocultures and in mixtures. Labels A to D were sown 

in larger plots measuring 4 x 4 meters, featuring mixtures primarily used in parks, sports and event fields. The 

remaining labels were planted in plots measuring 2 x 2 meters, featuring all the included species of the research in 

monocultures, labelled from E to M. Labels N to P feature mixtures used for sports/events, S to U for 

park/recreation and W for roadside applications.  
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Figure 9: Overview of Research Set-Up 

 

Figure 10: Overview of composition of species 

 

4.2 Drought treatment  

 

To accurately assess the effects of the drought treatment, it’s crucial to gather detailed weather data that 

influenced the grasses’ conditions. This approach enables attributing the observed stress in the experiment 

directly to drought conditions. The experiment involves data collection on four different dates, spanning from 2nd 

of June to 30th of August. During this period, temperatures exceeding 30 degrees were recorded on 10 days, with 

the KNMI officially declaring a heatwave from 9th to 16th of August (KNMI, 2023). The KNMI defines a 

heatwave as a sequence of at least 5 summer days (maximum temperature of 25.0 C° or higher) in De Bilt, of 

which at least three are tropical (maximum temperature of 30 C° or higher). Table 2 contains the measured 

temperatures on the research field.   

 

path bourder path bourder path bourder path

3 m 2m 3 m 4m 3 m 3 m 3 m 3 m 3 m

Repetition

84 P 88 G N 92 N 96 J 22 A L 24 B 180 E 184 F N 188 M 192 S 46 A L 48 C

83 O 87 L 91 H 95 M Sport Rietzwenk 179 O 183 J 187 N 191 H Sport Tetra

82 F 86 S 90 T 94 U 21 D 23 C 178 P 182 T 186 R 190 W 45 D 47 B

3 81 R 85 W 89 E 93 K
Park Tetra

177 U 181 K 185 G 189 L
Park Rietzwenk

10 D 12 A 132 F 136 L 140 H 144 G 34 A 36 C 228 S 232 P 236 R 240 M

Park Sport 131 P 135 N 139 M 143 R Sport Tetra 227 T 231 L 235 W 239 K

9 C 11 B 130 K 134 U 138 J 142 S 33 B 35 D 226 O 230 E 234 N 238 H

Tetra Rietzwenk 129 W 133 T 137 O 141 E Rietzwenk Park 225 F 229 J 233 G 237 U

68 E 72 K 76 M 80 O 18 B 20 D 164 H 168 S 172 W 176 M 42 D 44 A

67 U 71 H 75 L 79 P Rietzwenk Park 163 K 167 R 171 U 175 T Park Sport

66 N 70 S 74 G 78 R 17 A 19 C 162 F 166 O 170 G 174 E 41 B 43 C

2 65 T 69 F 73 J 77 W
Sport Tetra

161 N 165 L 169 P 173 J
Rietzwenk Tetra

48m.

6 C 8 A 116 N 120 T 124 K 128 L 30 C 32 B 212 F 216 P 220 R 224 L

Tetra Sport 115 F 119 P 123 G 127 J Tetra Rietzwenk 211 H 215 E 219 K 223 M

5 B 7 D 114 W 118 S 122 R 126 H 29 A 31 D 210 O 214 J 218 W 222 S

Rietzwenk Park 113 U 117 O 121 E 125 M Sport Park 209 T 213 G 217 N 221 U

52 U 56 M 60 J 64 H 14 B 16 A 148 G 152 W 156 S 160 O 38 B 40 C

51 S 55 N 59 L 63 W Rietzwenk Sport 147 P 151 J 155 M 159 L Rietzwenk Tetra

50 G 54 E 58 T 62 K 13 C 15 D 146 F 150 E 154 R 158 K 37 A 39 D 4 m

1 49 O 53 R 57 F 61 P
Tetra Park

145 T 149 U 153 H 157 N
Sport Park

2 C 4 D 100 G 104 T 108 N 112 K 26 A 28 C 196 N 200 U 204 O 208 E

Tetra Park 99 H 103 J 107 L 111 R Sport Tetra 195 R 199 M 203 L 207 S

1 A 3 B 98 E 102 O 106 S 110 W 25 D 27 B 194 K 198 G 202 P 206 T 2m

Sport Rietzwenk 97 F 101 M 105 P 109 U Park Rietzwenk 193 W 197 F 201 H 205 J

Mowing height 3 cm  6 cm 3 cm  6 cm

Irrigation Non-Irrigated Non-Irrigated Irrigated Irrigated

53 meter

Species composition Code Plot Lp di Lp te Fa Pp Frc Frt Frr Fo

Perennial Ryegrass (sport) A 4 x 4 50 50

Tall Fescue B 4 x 4 100

Perennial Ryegrass Tetraploid C 4 x 4 100

Red Fescue (park) D 4 x 4 20 20 30 30

Perennial Ryegrass diploid E 2 x 2 100

Perennial Ryegrass tetraploid F 2 x 2 100

Tall Fescue G 2 x 2 100

Kentucky Bluegrass H 2 x 2 100

Red Fescue commutate J 2 x 2 100

Red Fescue Trichophylla K 2 x 2 100

Red Fescue Rubra L 2 x 2 100

Hard Fesue M 2 x 2 100

Sport/events N 2 x 2 50 50

Sport/events O 2 x 2 50 50

Sport/events P 2 x 2 50 50

Sport/events R 2 x 2 50 50

Park/recreation S 2 x 2 35 50 15

Park/recreation T 2 x 2 20 25 25 10 10 10

Park/recreation U 2 x 2 20 20 20 20 20

Roadside W 2 x 2 20 10 20 50
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Table 2: Temperature Measurements weather station Veenkampen 

Source: Wageningen University & Research, 2022 

 

  Number of days temperature  Highest measured  
 measured  temperature  

Month  Average 

temp C°  
Above 

25 C°  
Above 

27.5 C°  
Above 

30 C°  
Temp  
C°   

Date  

June  22.8 7  4  1  30.6  22-6-2022  

Jule  25  9  5  2  36.6  19-7-2022  

Aug  26.4  15  11  7  33.6  25-8-2022  

 

Throughout the study, VWC measurements were taken on specific dates: June 16, 22, 23 and 28; July 18 and 19; 

and August 9, 18, 23, 24 and 30 (Figure 11a). These measurements, conducted on both irrigated and non-irrigated 

plots, revealed a decline in VWC within the non-irrigated plots between 23rd of June and 18th of July. Similarly, a 

decrease in VWC beneath grass surface was recorded at the Veenkampen weather station, sited 4 kilometres from 

the research site (Figure 11b). This decline is associated with a lack of precipitation and the increase in averaged 

and maximum temperature from the 1st of July (Figure 11 c and b). The combination of these observations 

conclusively attributes the noted stress to drought conditions, indicating that the turf began experiencing drought 

stress around the 14th of July, as indicated from data at both the research site and the Veenkampen weather station.  

 

Figure 11: (a) Measured VWC (%) on the research plots, (b) measured VWC (%) 65 cm under 5 grass types at weather station Veenkampen, 

(c) precipitation before and during experiment measured at weather station Veenkampen, and (d) temperature measured at weather station 

Veenkampen 
Source: Wageningen University & Research, 2022  
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4.3 Plant characteristics 

 

The study includes eight turfgrass species, researched in single variety and in mixtures. The following section 

delves into a comparative analysis of the plant characteristics that impact drought tolerance, aiming to provide 

knowledge on the differences in these plant traits and connect them later to the observed results. This will offer 

insights into how specific plant traits contribute to the drought resilience measured.  

 

Roots  

Root analysis is conducted based on different characteristics, including plant height, rooting depth, root mass, and 

root distribution. Brown et al. (2010) conducted research on these traits across turf grass species. This research 

results, illustrated in Figure 12, show plant height, root depth and root mass distribution of those 5 grasses. The 

average root depth and root mass are presented in Table 3. Analysing the findings, indicates that Perennial Ryegrass 

and Tall Fescue exhibit the deepest roots, followed by Hard Fescue and Red Fescue, respectively. In contrast, 

Hairgrass, closely linked to Kentucky Bluegrass, produces the shallowest roots of these 5 grasses.  Deeper roots 

enable the extraction of water from further beneath the surface, providing a substantial advantage during drought 

conditions and greatly influencing a species’ resilience (Sheffer, Dunn & Minner, 1987).  

 

Figure 12: Plant height, root depth and root mass distribution for Perennial Ryegrass, Tall Fescue, Red Fescue, Hard Fescue and Hairgrass 

Source: Brown et al., 2010 

 

These proportional differences among the included species are also evident in other studies. Scheffer et al. (1987) 

conducted research on determining root distribution and soil moisture depletion by Kentucky Bluegrass, perennial 

ryegrass, and tall fescue. The results show that for Kentucky Bluegrass 75% of its roots are concentrated within 

the top 12 cm, while for Perennial Ryegrass and Tall Fescue, this percentage is 50%. This finding confirms the idea 

that Kentucky bluegrass has a shallower root system than Perennial Ryegrass and Tall Fescue. Moreover, Lin 

(1985) offers an overview of potential root depth. This overview reveals that Tall Fescue, in particular, can 

potentially develop deep roots, with a potential root depth from 45 to 150 cm. In conclusion, Tall Fescue is 

characterized by the deepest root systems, with Hard Fescue coming in a close second, and Perennial Ryegrass 

ranking third.  
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Table 3: Plant characteristics of 5 grasses based on different studies 

  Average  
Rooting 

depth (cm) 
(Brown, 2010)  

Average  
Root 

mass  
(g)  
(Brown,  

2010)  

Root mass 

distribution 

0-12 cm  
(Scheffer, 1987)  

Potential 

root depth 

(cm)   
(Lin, 

1985)  

Leaf width (mm)   
(Hannaway et al., 

1999a;  
Hannaway et al., 

1999b;  
Oliveira Prendes, 

2008;  
Prendes & Palencia, 

2015;  
USDA NRSC, 2004)  

Maximum  
Evaporation  

rate  
(mm per 

day)  
(Huang, 2008)  

Perennial 

Ryegrass  

45,6  0,5  50%  20 - 45   

  

2 – 6 .  8,5 - 10  

Tall Fescue  50,7  0,5  50%  45 - 150   3 – 12 .  > 10  

Red Fescue  34,2  0,3  75%  20 - 45   0,3 – 1,2 .  8 – 8,5  

Hard Fescue  51,3  1,8  -    0,6 – 2,5 .  7 - 8,5  

Hairgrass¹ / 

Kentucky 

Bluegrass²  

20,9 ¹  0,2 ¹  -  20 – 45 ²   2 – 5 ² .  > 10 ²  

 

Leaf width and evaporation  

Two other characteristics associated with drought resistance are leaf width and evaporation. Research has indicated 

a significant relationship between these factors (Parkhurst & Loucks, 1972; Maylani, Yuniati & Wardhana, 2020), 

which is also reflected in the data on leaf width and evaporation rates for each grass type presented in Table 3. Leaf 

width is also linked to turf quality,  as notably fine leaves contribute to a closed turf, whereas wider leaves results 

in a more open turf (Bals, z.d.). Additionally, evaporation can be linked to water use efficiency. For instance, 

Perennial ryegrass thrives in waterlogged soils since it has high moisture tolerance and tends to grow better in cool, 

moist soils (Hannaway et al., 1999), while red fescue is considered more drought-resistant (Bals, n.d.).  

 

Varieties  

This research includes not only different turfgrass species but also different varieties of the same species. 

Specifically, there are two variations of Perennial  Ryegrass, Diploid and Tetraploid, and three variations of Red 

Fescue: Commutate (normal red fescue), Trichophylla (fine rhizomes) and Rubra (strong rhizomes). The 

distinctions between these variations are detailed in Table 4.  Most importantly, the data shows differences among 

the varieties in terms of closed and open sods.  

The specific characteristics between variations contribute to different performances. This is shown by the research 

of Demiroglu et al. (2010), who conducted research on the turf cover scores of the three red fescue variations over 

three years. The findings indicate that Rubra exhibit the highest average turf cover score, followed by Trichophylla 

and Commuta, respectively. However, when compared to other fescue species, more significant performance 

difference is seen. This pattern is consistent with findings from other studies, such as the research conducted by 

Ayan, Arslan & Acar (2020). Minor differences may be observed between varieties for thinning ratios, more 

substantial differences are evident comparing with other species like Festuca Arundinacea or Poa Trivalialis.   
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Table 4: Specific characteristics between variations Perennial Ryegrass & Red Fescue 

Source: Hannay et al., 1999 & Bals, n.d.  

 Perennial Ryegrass  Red Fescue  

Diploid (Lp di)  Tetraploid (Lp te)  Commutate (Frc)  Trichophylla (Frt)  Rubra (Frr)  

Faster growth rate  

More smaller 

tillers with thinner 

leaves, resulting in 

more closed sods  

Less winter-hardy 

and persistent  

Less but larger 

tillers with wider 

leaves, resulting in 

more open sods  

Extremely thin 

leaves, resulting in 

more closed sods  

Produces short 

underground 

sprouts, enabling it 

to find open spaces 

in sods  

Extremely thin 

leaves, resulting in 

more closed sods  

Produces long 

underground 

sprouts, enabling it 

to find open spaces 

in sods even better  

Wider leaves, 

resulting in more 

open sods  

 

Mixtures  

Turf serves a variety of purposes, each with its specific circumstances such as soil quality, sowing seasons, SWC, 

as well as variations in extent of use, maintenance, fertilization, and shading. The use of mixtures often presents 

greater possibilities for cultivating a healthy turf in such diverse conditions, as mixtures exhibit greater adaptability 

and are less prone to illnesses (Dunn, Ervin & Fresenburg, 2002). Hence, this research not only focuses on grass 

species but also emphasizes turf mixtures.   

To meet the needs of different applications, specific usage categories were identified, and different mixtures were 

created for each set of conditions. These categories include sports/events, park/recreation, and roadside. Sports 

turfs are specifically created for field sports such as football, hockey, and korfball. Recreation/park turfs are 

commonly found in camping sites or city parks, with ornamental value considered secondary. Table 5 provides 

detailed information on the required operational and maintenance specifications.   

Table 5: Different use specifications and maintenance for grass varieties 

Source: Plantum, 2016  

Grass varieties  Use specifications  Maintenance  

Sport / Events  Dense and level sod  

Hardy and resistant  

Endure intense use  

Spring: fast growth rate, require high share Perennial Ryegrass  

Late summer: With temperature high enough and moisture not being a 

problem for the slow establishment of Kentucky Bluegrass. This species 

is preferred for a dense and level sod.   

Park / 

recreation  

Primarily used in 

summer  

and recovers in 

autumn and  

winter         

Recover after long-

term covering, relying 

on underground shoots  

When turf is walked on and mowed (3-5 cm) a lot, the growth conditions 

are suitable for Perennial Ryegrass and Kentucky Bluegrass   

Drought conditions are also suitable for Kentucky Bluegrass  

Less walked or poor, dry soil is still suitable for Hard Fescue    

Less mowing is best for Red Fescue and Kentucky Bluegrass   

Roadside  Must settle quickly, stand 

firm, strong sod, fast 

regrowth open spaces  

Frequent mowing is not possible as the mixture requires a slow growth 

rate  

 

Several mixtures can be used for the same use specification, as their characteristics align with these needs. The 

selection for mixtures is beneficial because a greater diversity of species improves genetic diversity and facilitates 
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adaption to different microenvironments (Donald,1963; Steinke & Ervin, 2013). In terms of drought resistance, 

the genetic diversity also means that mixtures with different proportions of grasses exhibit different drought 

resistance. For instance, Non et al. (2010) found that turfgrass mixtures with a high proportion of Hard Fescue 

were more drought-resistant than those with a high proportion of Slender Creeping Red Fescue. The study of 

Reiter et al. (2017) also demonstrated that genetic diversity within turfgrass mixtures does not inherently enhance 

drought resistance, as there were no significant differences observed between monocultures and mixtures 

regarding retaining green cover rates. Moreover, this research identified the influence of specific species on 

mixtures performance, noting that Sheep Fescue and Slender Creeping Red Fescue negatively affect recovery. 

These findings challenge older ideas that diverse mixtures were necessary to preserve a healthy vegetative cover 

(Watschke & Schmidt, 1992). While genetic diversity in turf grass mixtures might offer benefits against diseases 

and other stresses, it is not necessarily the case for increasing drought tolerance. To improve drought resistance, 

the variety of species in a mixture is less crucial than selecting the most appropriate species. Specifically, species 

that feature deep roots, closed sods from thin leaves, and low evaporation rates are essential. These characteristics 

ensure that grasses maximize water uptake and minimize water loss, effectively increasing drought tolerance.  

 

4.4 UAV-based remote sensing and image analysis  

  

The aerial HS imagery was acquired using a Headwall Nano-Hyperspec camera mounted to a DJI M300 RTK 

drone. Aerial data was captured on four distinct dates: the 2nd and 16th of June, and the 18th and 30th of August 2022. 

This camera utilized a 14 mm lens and records radiance across 270 bands in the visible and near-infrared spectrum, 

spanning from 400 to 1000 nm. The data is collected at a spectral resolution of 2.2 nm and a spatial resolution of 

4 cm. The drone’s flight speed was configured at 3 m/s and the flight altitude was set to 50 meters (later refined by 

pixel size). A 40% overlap was employed during data collection, which took place within a time frame of 

approximately ±2 hours from solar noon.  

 

4.5 Methodological workflow  

  

To address the main research question, the research follows a methodological workflow outlined in Figure 13. This 

workflow describes clear stages associated with the research questions, which are further discussed.  

 

Selection of VIs capable of detecting drought stress 

In this research first a comprehensive literature review is conducted. Studies are identified using specific terms on 

Google Scholar, including “Hyperspectral indices drought stress turfgrass”. Only studies conducted on cool season 

turfgrass and using HS data are considered, leading to a selection of 12 relevant studies. The VIs found with a 

sensitivity to drought stress are evaluated through a comparative analysis of results from the relevant studies, 

selecting only those VIs identified by these identified as most proficient in detecting drought stress. Based on these 

results, the indices were categorized as either suitable, possibly suitable or not suitable for detecting drought stress 

in grass. These selected indices form the basis for constructing a dataset providing insight into the grasses health 

status during the experiment. The equations of the indices are shown in Table 1.  
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Figure 13: Research methodology workflow 

 

Extraction of plot-level spectral responses 

Data processing involves creating Polygon shapefiles for all 240 plots, each of which includes a 10 cm buffer to 

account for potential imperfections in the imagery and co-registration. These polygons contain information of the 

research overview in figure 9, linking the plots to the corresponding numbering and the codes of the species. The 

average measured reflectance for different spectral bands within each plot is calculated based on the four aerial 

images. This approach aligns with the practices observed in several studies (Wang et al., 2015; Bayat, van der Tol 

& Verhoef, 2016; Klein et al., 2008), as selecting average values offers a balanced representation of the data.  

 

In this research, not all plots were included due to an issue observed during the experiment. The northernmost non-

irrigated plots unintentionally received irrigation because of a slope in the experiment site (Figure 14). These plots 

are excluded from the calculations and the dataset. Therefore, species A, B, C, and D each three plots included for 

the 3cm height, while species A, B, C, D, G, H, L, and S, have two plots included for the 6cm mowing height. As 

a results, certain species are represented by three plots for comparison, while others represented by two.  

 

Compilation of dataset for analysis 

The selection of suitable VIs are calculated for the averaged HS reflectance per plot. This calculation involves 

applying the equation of each VI, which is calculated based on the reflectance values for the specific spectral bands 

required per plot. For instance, the Structure Independent Pigment Index is calculated using the following equation:  

SIPI = (R800 – R445) / (R800 + R680). The 15 VI values are calculated for the plots on the four collection dates, 

resulting in a dataset of 60 VI values columns for all the observation groups, totalling 215 plots. 
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Figure 14: Excluded plots from the research due to a slope causing water flow to non-irrigated area, also shown by greener plots 

 

Analysis of VI values across collection dates for drought stress 

The dataset is analysed with a wide range of methods. First the signature reflectance is analysed. This is done by 

plotting the signature reflectance of the irrigated and non-irrigated plots separately for the four different dates. The 

resulting graphs show the general development of the measured reflectance for the two groups. Additionally, the 

VI values for the grass species, mixtures and mowing heights are analysed. This is done by visualizing the 

development over time by graphs and by maps spatially over time. In both the differences between the observation 

groups can be analysed.  

Statistical t-tests are used to research whether the VI values indicate significant differences between irrigated and 

non-irrigated plots for each label linked to the mowing height. These t-test are performed on the VI values of all 

four collection dates. Based on these tests, it can be shown which VIs are able to detect drought stress and to what 

extent.  

 

To understand the extent to which drought affects the health status of the grasses, the percentage of change in the 

VI values is calculated. This is done by determining the difference between the calculated VI values on the four 

dates and the percentage of change relative to the value of the first date, 2nd of June, is calculated. A lower 

percentage of change indicates that the grass was less affected in its health status due to drought. Ranks from 1 to 

40 are assigned to the labels and mowing height per VI value as a normalisation method. The labels and mowing 

height are ranked relative to each other, with the observation group experiencing the least change ranked as 1 (most 

drought-resistant) and the one with the most change ranked as 40 (least drought-resistant). The final ranking is 

determined by the average score of these 15 rankings. The results of this ranking are shown in Table 7. This is done 

for the periods 2-6 to 18-8 and 2-6 to 30-8.  
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Cluster analysis 

Clustering have proven to be a valuable tool in data science. In fields were users and research work with large 

datasets of spectral data and images, clustering algorithms prove to be a valuable approach for efficiently reducing 

vast amount of multi-dimensional data (Ralambondrainy, 1995). These methods allow discovering cluster 

structures within a data set by creating clusters that link data characterized by the greatest similarity and 

distinguishing clusters by the greatest dissimilarity (Sinaga & Yang, 2020). In this research, the nonparametric 

hierarchical clustering approach is employed, which avoids makings assumptions about the underlying data 

distribution and aims to identify patterns or structure within the data (McLachlan & Basford, 1988). In this research, 

PCA analysis is combined with hierarchical clustering. PCA is used to recognize patterns by dimensional reduction 

and this statistical method provides with these advantages to be conducted with clustering methods as hierarchical 

clustering (Jafarzadegan, Safi-Esfahani and Beheshti, 2019; Kaufman & Rousseeuw, 1990).  

 

Principle Component Analysis (PCA) analysis and hierarchical clustering are employed in this research to identify 

similarities in drought stress responses among the observation groups. The dataset created provides information on 

drought stress responses. The combination of PCA with hierarchical clustering is used to analyse the extent to 

which similarities in drought responses can be found between and across the different mowing heights, grass 

varieties and compositions.  

The PCA analysis is conducted with the packages ‘FactoMineR’ and ‘factoextra’ in R and is done before the 

clustering. The PCA analysis improves the clustering results, since it helps with noise reduction (Ding & He, 2004) 

and transforms high dimensional data into lower dimensional data, helping to detect coherent patterns more easily 

(Jolliffe, 2002). Additional hierarchical clustering is used. Hierarchical clustering methods create clusters by 

organizing the data into levels that resemble a hierarchy (Reddy & Vinzamuri, 2013). This clustering is performed 

top bottom, with the package ‘hclust’ and in cut in eight clusters with the package ‘cutree’. 
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5.  Results 

 

Building on the methodologies outlined earlier, this chapter present the outcomes of the conducted analysis into 

drought stress responses of turfgrass. Through a systematic analysis of spectral signatures and calculated VI values 

across single varieties, mixtures, and mowing heights, this section provides crucial information into the drought 

resilience of the selected turfgrass species.  

 

5.1 Spectral signatures of grass undergoing drought stress 

 

To analyse the influence of drought on the measured reflectance, the signature reflection of the irrigated and non-

irrigated plots is analysed for the four collection dates. In the figure 16 below, the averaged signature reflectance’s 

for the irrigated plots on the four different collection dates are presented. The signature reflectance’s evolve over 

the summer, with the measured reflectance under the 700 nm remaining relatively consistent, while the measured 

reflectance above 700 nm diverges more significantly. Particularly noticeable are the more diverged patterns 

observed in the graphs for the dates 18-8 and 30-8.  

 

Figures 17 present the averaged signature reflectance’s for the non-irrigated plots on the four different collection 

dates. Distinct patterns emerge here as well. Reflectance’s measured under 700 nm flattens out due to less 

reflectance measured for green wavelengths from 500 to 600 nm and higher reflectance for red wavelengths from 

600 to 700 nm.  The measured reflectance above the 700 nm decreases for almost all observation groups. 

Additionally, the signatures exhibit more diverse results, indicating that certain species react differently to drought 

compared to others.  

 

5.2 VI values calculated throughout the experiment 

 

After obtaining the average reflectance values of each plot, the 15 VIs known for their ability in detecting drought 

stress are calculated for the species, mixtures and mowing heights. These VI values are analysed through the 

creation of spatial maps and graphs, enabling the analysis of their changes throughout the research period. 

 

VI values through spatial maps 

The figures 15 below show VI values calculated for the four collection dates. This shows clearly the differences in 

VI values calculated for the irrigated ad non-irrigated plots throughout the experiment. SIPI and CTR2 indexes 

were chosen due to their significant contribution to explaining variance in the subsequent PCA analysis (Appendix 

D). For the non-irrigated plots, these maps show a substantial decrease in SIPI and a substantial increase in CTR2. 

Conversely, the irrigated plots exhibit consistent values for both indexes during the experiment. This shows the 

impact of the drought treatment on the non-irrigated plots. Comparing the maps for the dates 16-6 with 18-8 reveals 

a substantial decrease in values for the non-irrigated plots, excluding the most northern plots where the research 

contains an error in slope that allows the water from the irrigated part to reach to these non-irrigated plots. This is 

the reason these plots were excluded from the analysis. Analysing the maps, we can see that the VI values for the 

6cm plots keep more consistent across the experiment. Furthermore, it can be observed that the VI values of the 
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same labels decrease more than others. This indicates that the different species, mixtures and mowing heights react 

differently to the drought. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: VI values calculated for the 4 collections  
dates shown per plot for the VIs SIPI and CTR2  
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Figure 16: Signature reflectance for the irrigated species, mixtures and mowing heights 

 

Figure 17: Signature reflectance for the non-irrigated species, mixtures and mowing heights 

 

Figure 18: Development of VI values throughout the experiment for irrigated and non-irrigated species, mixtures and mowing heights 
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VI values through graphical plots 

Figures 18 below depict the development from the indices GRI and PRI(norm), serving as examples (Figure 23  in 

Appendix E proves the development of all VIs). Analysing the average and standard deviation of the irrigated plots 

shows that the index values remain relatively consistent over time, with individual variations. This is expected 

since these plots were irrigated and not subjected to drought stress. Analysis of the average and standard deviation 

of the non-irrigated plots reveal significantly greater differences, especially between 16-6 and 18-8, indicating 

significant differences associated with experienced drought stress. The VWC (%) decreased during this period due 

to the high temperatures and lack of precipitation. This drought stress persisted from 18-8 to 30-8, resulting in 

further alterations in the index values. In conclusion, the graphs distinctly highlight the differences in the calculated 

VI values between the irrigated and non-irrigated grasses, demonstrating the impact of the drought treatment. The 

standard deviation shows the variance in response among the grass species. 

 

5.3 Statistical analysis  

 

Further analysis of the VI values involves conducting statistical tests. Statistical t-test have been used to research 

if the VI values for the irrigate plots differ significantly from the non-irrigated plots per species per mowing height. 

These t-test have been conducted for the VI values on all the four different collection dates. Subsequently, analyses 

were caried out to assess the variations among single varieties, mixtures and mowing heights.  

 

Difference irrigated and non-irrigated 

These results of the t-tests, presented in Table 6, highlight significant differences in five out of the fifteen VIs on 

the 2nd of June, indicating notable differences between the VI values of non-irrigated and irrigated plots. This is 

the case for the indexes SIPI, BRI2, WI.NDVI, NWII and WBI. The VIs SIPI and BRI2 show a significant 

difference with a P value < 0.05, while  WI.NDVI, NWII and WBI show significant differences with a P value 

<0.001. Additionally, WI.NDVI, NWII and WBI show significantly differences for all the four collection dates. 

Notably, these are also the only three indexes which are sensitive to plant water concentration. The significance 

level of the difference decreased for all five VIs from the 2nd of June to the 16th of June. Additionally, all the VIs 

measured significant differences with a p value <0.001 on the collection dates 18th of August and 30th of August.  

 

Table 6: Calculated differences between mean irrigated and non-irrigated VI values are depicted for each of the 15 VIs across four collection 

dates. T-tests were conducted to assess the significance of differences within the same observation groups. 
VI’s GRI PRI 

(norm) 
CARI PRI512 CarRE 

opt 
CCRI SIPI BRI2 ChlRE 

opt 
CTR2 mSR70

5 
RGI WI/NDVI NWI1 WBI 

Sensiti
ve to: 

Anthocya
nin and 

Chloroph
yll 

Caroteno
ids 

Caroteno
ids 

Caroteno
ids 

Caroteno
ids and 

Chloroph
yll 

Caroteno
ids and 

Chloroph
yll 

Caroteno
ids and 

Chloroph
yll 

Chlorop
hyll 

Chlorop
hyll 

Chlorop
hyll 

Chlorop
hyll 

Chlorop
hyll 

Plant 
water 

concentra
tion 

Plant 
water 

concentra
tion 

Plant 
water 

concentra
tion 

2-6-

2022 

0.004 0.000 0.111 0.005 0.247 0.015 0.007      

* 

-0.011     

* 

0.069 -0.006 0.049 -0.002 -0.023   

*** 

0.005  

*** 

-0.011  

*** 

16-6-

2022 

0.036 -0.002 0.115 0.006 0.236 0.009 0.009 -0.009 0.099 -0.012 0.093 -0.013 -0.028     

** 

0.003    

** 

-0.007  

** 

18-8-

2022 

-0.568 

*** 

0.043 

*** 

-0.590 

*** 

-0.059 

*** 

-0.986 

*** 

-0.062 

*** 

-0.068 

*** 

0.061 

*** 

-0.426 

*** 

0.082 

*** 

-0.417 

*** 

0.222 

*** 

0.156   

*** 

0.015  

*** 

-0.030  

*** 

30-8-

2022 

-0.795 

*** 

0.067 

*** 

-1.059 

*** 

-0.101 

*** 

-1.678 

*** 

-0.176 

*** 

-0.115 

*** 

0.131 

*** 

-0.550 

*** 

0.117 

*** 

-0.502 

*** 

0.309 

*** 

0.278   

*** 

0.016  

*** 

-0.033  

*** 

* p-value <0.05, ** p-value < 0.01, *** p-value <0.001 
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Difference between single variety, mixtures and mowing height 

The dataset on the calculated VIs across the collection dates provides data on the drought resilience of single 

varieties versus mixtures, as well as the impact of mowing height comparing 3cm to 6cm. Figures 19 show the 

averaged response for each category with a shaded semi-transparent line showing the deviation. The findings show 

outcomes for the VI PRI(norm), the graphs for the other VIs are presented by Figure 24 in Appendix F. An analyse 

of the different mowing heights indicates that the 6cm plots exhibit less variance in the calculated VI values and 

thus are less impacted by drought than the 3cm plots, a pattern observed in both single varieties and mixtures. 

When comparing the outcomes of single varieties to mixtures, the data reveals broadly comparable outcomes. 

However, single varieties tend to exhibit a slightly larger range of deviation, particularly in the plots with a 6cm 

mowing height.  

 

Figure 19: Average response with deviation for single variety and compositions and mowing height 

 

5.4 Drought resilience performance 

 

In order to analyse the drought resistance of all different grass species, mixtures and mowing heights, this 

study calculates the percentage of change in VI values across the collection dates. The tables in Appendix B 

display these percentage of changes. The results highlight differences between the non-irrigated observations, 

indicating varying responses of the observation groups, to drought stress. Substantial differences between 

irrigated and non-irrigated plots highlight the impact of drought stress, with non-irrigated plots showing 

substantial higher percentages of change. The table 7 below presents the ranking of the most drought-resistant 

species and mowing combinations, based on the averaged ranking score. All the explanations provided below 

refer to Table 7. 
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Mowing height 

The results reveal interesting differences between the two mowing heights. In general, plots mowed at the 

height of 6cm perform better under drought conditions than plots mowed at 3 cm. The 6cm of each label also 

perform better overall than the 3 cm plots. This trend is emphasized when comparing the rankings of 2-6/18-

8 with the rankings of 2-6/30-8. 6cm plots exhibit better performance than the 3cm plots for longer severe 

drought durations. An exception to this trend is observed in label J,  where Frc 3cm performs better than Frc 

6cm.  

 

Species 

Analysing the single variety that are most drought resistant shows that labels B6cm, M6cm, and G6cm are 

highest ranked. These labels include species Fa and Fo, making them the most drought-resilient species. 

Other high- ranked labels are E6cm, B3cm, K6cm and G3cm, indicating the drought resilience of the species 

Lp di and Frt mown at 6cm and mown at Fa 3cm height. The comparison of rankings across the two periods 

reveals minor differences, with only species only changing a few positions. Throughout both periods, Fa6cm 

consistently emerges as the most drought-resilient, closely followed by Fo6cm. The least drought-resilient 

labels are C3cm and H3cm, indicating that Lp te and Pp mown at 3cm height are most affected by drought. 

Other low-ranked labels are L3cm, K3cm and J6cm, indicating that the species Frr and Frt mown height at 

3cm and Frc mown at 6cm are also substantially impacted by drought. A comparison of rankings between 

the two periods shows that Frt 3cm experienced more pronounced effects from drought in the final two week 

of the study. 

 

Single varieties and mixtures 

A comparison of rankings between single varieties and mixtures reveals that Label R6cm, including 50% Fa 

and 50% Pp, is the only mixture ranked in the top 6, suggesting that mixtures are not as drought resilience as 

single varieties. Other mixtures ranked high include D6cm and A6cm, suggesting that Pp6cm and Lp di6cm, 

following closely behind Fa, excel in mixtures compositions. Moreover, Frc 6cm and Frt 6cm also show 

strong performance in mixtures. Notably, Fa performs well in both single variety and in mixtures, whereas 

Fo is primarily performing well in a single variety. 

 

Mixtures most affected by drought stress include labels O and A, including Lp te 3cm, Pp 3cm and Lp di 

3cm. Notably, the single variety Lp te 3cm and Pp 3cm are also highly influenced by drought. Other low-

ranked labels are D3cm and U3cm, containing Lp di 3cm, Pp 3cm, Frc 3cm, Frt 3cm and Frr 3cm. Pp 3cm 

performs poorly in mixtures, while Pp 6cm performs well in mixtures.  

 

 

Differences in drought resilience ranking: June 2 – August 18 vs. June 2 – August 30 

The grass experienced the drought two weeks shorter for the period 2-6 to 18-8 than the period from 2-6 to 

30-8. The first period, lasting 36 days, is considered long-term drought stress, matching the definition for 

such conditions. In contrast, short-term drought stress refers to duration of up to 11 days. This research 

includes two different assessments of long-term drought conditions. As mentioned earlier, there is minimal 
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variation between the scores of the two rankings. Most of the top 10 remains the same, with only three 

rankings changing. A more notable decrease in ranking is seen for labels M3cm and K3cm, indicating Fo3cm 

and Frr3cm were more influenced by drought compared to the other species. And a more notable increase is 

seen for labels J 3cm and L 6 cm, showing that Frc3cm and Frr6cm perform better under the longer drought 

conditions.  

Table 7: Ranking non-irrigated for the periods 2-6 to 18-8 and 2-6 to 30-8. Mixtures are color-coded: blue for sports/events, pink for 
park/recreation, and purple for roadside. Additionally, shading differentiates between the two mowing heights and distinguishes single 

varieties from mixtures and the observation groups are categorized into three resilience level groups of equal size 

Ranking 
2-6 / 30-

8 

Averaged 
score 

2-6 / 30-8 

Ranking 
2-6 / 18-

8 

Averaged 
score 

2-6 / 18-8 

Specie
s 

Species name Mowin
g 

height 

Single 
variety / 
mixtures 

Composition of species Resilienc
e level 

1 2 1 2 B Tall Fescue 6 cm S V 100% Fa +++ 

2 5 2 4 M Hard Fesue 6 cm S V 100% Fo +++ 

2 5 5 8 R Sport/events 6 cm M 50% Fa, 50% Pp +++ 

4 7 3 6 G Tall Fescue 6 cm S V 100% Fa +++ 

4 7 6 9 E Perennial Ryegrass diploid 6 cm S V 100% Lp di +++ 

4 7 3 6 B Tall Fescue 3 cm S V 100% Fa +++ 

7 8 10 13 D Red Fescue (park) 6 cm M 20% Lp di, 20% Pp, 30% Frc, 30% Frt +++ 

8 9 6 9 A  Perennial Ryegrass (sport) 6 cm M 50% Lp di, 50% Pp +++ 

9 10 9 12 K Red Fescue Trichophylla 6 cm S V 100% Frt +++ 

9 10 8 10 G Tall Fescue 3 cm S V 100% Fa +++ 

11 12 13 14 S Park/recreation 6 cm M 35% Lp di, 50% Pp, 15% Frt +++ 

12 13 13 14 C Perennial Ryegrass Tetraploid 6 cm S V 100% Lp te +++ 

13 16 13 14 T Park/recreation 3 cm M 20% Lp di, 25% Fa, 25% Pp, 10% Frc, 10% Frt, 10% Frr +++ 

13 16 16 16 P Sport/events 3 cm M 50% Lp di, 50% Fa +++ 

15 17 10 13 T Park/recreation 6 cm M 20% Lp di, 25% Fa, 25% Pp, 10% Frc, 10% Frt, 10% Frr ++ 

15 17 17 17 W Roadside 3 cm M 20% Frc, 10% Frt, 20% Frr, 50% Fo ++ 

17 18 19 19 P Sport/events 6 cm M 50% Lp di, 50% Fa ++ 

17 18 10 13 M Hard Fesue 3 cm S V 100% Fo ++ 

19 19 19 19 U Park/recreation 6 cm M 20% Lp di, 20% Pp, 20% Frc, 20% Frt, 20% Frr ++ 

20 20 18 18 W Roadside 6 cm M 20% Frc, 10% Frt, 20% Frr, 50% Fo ++ 

21 23 31 29 J Red Fescue commutate 3 cm S V 100% Frc ++ 

21 23 25 24 R Sport/events 3 cm M 50% Fa, 50% Pp ++ 

21 23 21 20 F Perennial Ryegrass tetraploid 6 cm S V 100% Lp te ++ 

24 24 25 24 N Sport/events 6 cm M 50% Lp di, 50% Pp ++ 

24 24 23 23 N Sport/events 3 cm M 50% Lp di, 50% Pp ++ 

26 25 35 33 L Red Fescue Rubra 6 cm S V 100% Frr ++ 

26 25 32 30 H Kentucky Bluegrass 6 cm S V 100% Pp ++ 

28 27 22 22 E Perennial Ryegrass diploid 3 cm S V 100% Lp di + 

28 27 28 28 S Park/recreation 3 cm M 35% Lp di, 50% Pp, 15% Frt + 

28 27 27 27 F Perennial Ryegrass tetraploid 3 cm S V 100% Lp te + 

31 28 28 28 J Red Fescue commutate 6 cm S V 100% Frc + 

31 28 23 23 K Red Fescue Trichophylla 3 cm S V 100% Frt + 

33 30 28 28 O Sport/events 6 cm M 50% Lp te, 50% Pp + 

34 31 32 30 L Red Fescue Rubra 3 cm S V 100% Frr + 

35 34 34 31 U Park/recreation 3 cm M 20% Lp di, 20% Pp, 20% Frc, 20% Frt, 20% Frr + 

36 35 35 33 D Red Fescue (park) 3 cm M 20% Lp di, 20% Pp, 30% Frc, 30% Frt + 

36 35 39 38 H Kentucky Bluegrass 3 cm S V 100% Pp + 

38 38 37 36 A  Perennial Ryegrass (sport) 3 cm M 50% Lp di, 50% Pp + 

39 39 38 37 C Perennial Ryegrass Tetraploid 3 cm S V 100% Lp te + 

39 39 39 38 O Sport/events 3 cm M 50% Lp te, 50% Pp + 
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5.5 PCA Analysis & Hierarchical clustering 

 

In this section the results from the PCA analysis and hierarchical clustering are shown on non-irrigated plots 

over the period from June 2nd to August 30th.  

 

PCA analysis 

A PCA analysis was conducted to reduce the dimensions of the dataset and find similarities within the data.  

Following the elbow method, two principal components where chosen, which collectively accounted for 

88.8% of the total variance. This significant level of explained variance suggests that these components 

effectively capture the underlying structure of the dataset. The variable contributions to these components 

were analysed, showing that the indices SIPI, PRI512, CCRI, CARI, PRI(norm), RGI, CTR2 and ChREopt 

most important in explaining the variance. These variables were the main factors distinguishing data from 

one another. The results of the scree plot and the contribution of the variables are included in Appendix C.  

 

Figures 20 show three biplots made, categorized on the drought resistance ranking (discussed in last section), 

Mixtures & Single variety and 3cm and 6cm mowing height. For explanation on coding, refer to Table 7.  

The analysis of these biplots indicates that the groups with higher resistance, such as B6cm and M6cm, 

appear on the right side of the X-axis, while the less resistant groups, O3cm and C3cm, appear on the left 

side. The biplots also effectively cluster the groups by mowing height, indicating that mowing height results 

in similar characteristics in means of drought stress response. Contrary to this pattern, labels F, J and N cluster 

opposite, with 3cm plots aligning closer to 6cm plots and other way around.  

 

The biplots also reveal that single varieties are more widely spread, indicating substantial differences in 

drought stress response among them. The labels B, G and M, representing the most drought resistant species 

Fa and Fo, cluster together for both 3cm and 6cm plots. Label C3cm, representing the least drought resistant 

Lp te, does not cluster with other single varieties. Among Red Fescue varieties, labels J, K and L show 

similarities in the 3cm plots. However, at 6cm, these labels are plotted further apart, with labels K and L 

being more similar to each other compared to J.  

 

When comparing single varieties to mixtures, the mixtures are clustered more closely together, with 

sport/events and park/recreation mixtures forming distinct groups. In the sports and events mixtures, labels 

R, P and N cluster together, with R being the most drought resistant. Labels A3cm and A6cm, along with 

O3cm, are outliers. For park/recreation mixtures, S and T exhibit many similarities, whereas U is less drought 

tolerant and plotted further from S and T. 
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Figure 20: Biplots categorized on Drought Resistance Ranking, Mixtures & Single Variety and two mowing heights 

 

Hierarchical clustering 

To get a better understanding how the observation groups can be clustered together, a hierarchical clustering 

has been conducted. The tree has been cut in 8 clusters (Figure 21). Looking at the hierarchy, the left clusters 

is the best performing cluster under drought conditions, including the drought resilience ranking from 1 to 

20. The right cluster is the least drought resilience cluster, including the rankings 21 to 40.  

 

Left side cluster – Best performing under drought conditions 

The grey cluster groups the species that are most resistant to drought, with B6cm standing out as the most 

drought-resistant among these. Interestingly, all the observation groups in this cluster are mown to a height 

of 6 cm, with R6cm being the only mixed variety. In the dark blue cluster, the most drought-resistant species 
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mown at 3cm are shown. B3cm and G3cm, both single varieties, are most drought resilient and grouped 

together. The light green cluster consists exclusively of 6cm plots that are all mixtures. The dark green cluster 

includes a mix of 6cm mixtures and single varieties, which is the second most resistant cluster. This cluster 

also contains the most resistant mixtures after R6cm. 

 

Right side cluster – Worst performing under drought conditions 

The pink cluster includes lower-ranked 6cm plots as well as the second-highest clustered 3cm plots, including 

both mixtures and single varieties. The red cluster, which is the largest, contains nine observation groups and 

includes the lowest-ranked 6cm plots. Within this cluster, L6cm is hierarchically the most distant from the 

other 6cm plots, leaving J6cm, H6cm and O6cm closely grouped as the least drought-resistant 6cm plots. 

The light orange cluster, marked by the worst performance in drought resilience, includes exclusively 3cm 

plots, with C3cm and O3cm scoring the lowest in the ranking and clustered together. And as last, the orange 

cluster ranks as second worst in terms of performance, also consisting solely of 3cm plots.  

 

Figure 21: Biplots categorized on Drought Resistance Ranking, Mixtures & Single Variety and two mowing heights 

  

Code

Mowing 

height Species name

Single 

variety /

mixtures

Ranking

score

Resilience 

level

Averaged 

ranking 

cluster

B 6 cm Tall Fescue S V 1 +++ 3

E 6 cm Perennial Ryegrass diploid S V 5 +++ 3

G 6 cm Tall Fescue S V 4 +++ 3

M 6 cm Hard Fesue S V 2 +++ 3

R 6 cm Sport/events M 2 +++ 3

B 3 cm Tall Fescue S V 6 +++ 13

G 3 cm Tall Fescue S V 9 +++ 13

P 3 cm Sport/events M 14 ++ 13

M 3 cm Hard Fesue S V 18 ++ 13

T 3 cm Park/recreation M 13 +++ 13

W 3 cm Roadside M 15 ++ 13

P 6 cm Sport/events M 17 ++ 18

T 6 cm Park/recreation M 15 ++ 18

U 6 cm Park/recreation M 19 ++ 18

W 6 cm Roadside M 20 ++ 18

K 6 cm Red Fescue Trichophylla S V 9 +++ 9

C 6 cm Perennial Ryegrass Tetraploid S V 12 +++ 9

S 6 cm Park/recreation M 9 +++ 9

A 6 cm Perennial Ryegrass (sport) M 8 +++ 9

D 6 cm Park/recreation M 7 +++ 9

N 6 cm Sport/events M 23 ++ 25

F 6 cm Perennial Ryegrass tetraploid S V 23 ++ 25

R 3 cm Sport/events M 22 ++ 25

E 3 cm Perennial Ryegrass diploid S V 27 + 25

S 3 cm Park/recreation M 29 + 25

L 6 cm Red Fescue Rubra S V 26 ++ 28

J 3 cm Red Fescue commutate S V 21 ++ 28

N 3 cm Sport/events M 23 ++ 28

J 6 cm Red Fescue commutate S V 29 + 28

L 3 cm Red Fescue Rubra S V 34 + 28

F 3 cm Perennial Ryegrass tetraploid S V 29 + 28

H 6 cm Kentucky Bluegrass S V 27 + 28

K 3 cm Red Fescue Trichophylla S V 32 + 28

O 6 cm Sport/events M 33 + 28

A 3 cm Perennial Ryegrass (sport) M 37 + 39

C 3 cm Perennial Ryegrass Tetraploid S V 39 + 39

O 3 cm Sport/events M 40 + 39

H 3 cm Kentucky Bluegrass S V 37 + 36

D 3 cm Park/recreation M 36 + 36

U 3 cm Park/recreation M 34 + 36
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6. Discussion 

 

This study examines the response of cool season turfgrass species, mixtures to drought conditions, aiming to 

identify drought-resistant varieties suitable for use in sports and events, parks and reaction areas, and roadside 

environments. This chapter includes a discussion section, where the observed patterns in the findings are 

analysed and connected with existing literature.  

 

6.1 Different grasses and mixtures, different responses to drought 

 

Reflectance patterns in vegetation offer valuable insights into plant health and stress levels, serving as an 

important tool for monitoring drought stress on turfgrass. The signature reflectance patterns, shown in 

Figures 16 and 17, exhibit distinct responses between the irrigated and non-irrigated plots. Specifically, 

irrigated plots maintain consistent reflectance value below 700 nm and exhibit consistent averaged measured 

reflectance around 0.4 across the different collection dates. In contrast, non-irrigated show an increase in the 

averaged reflectance around 700 nm and a decrease in the measured averaged reflectance above 700 nm. 

This leads to a more flattened out signature reflectance curve below 700 nm and a drop in average reflectance 

measured in the second part. These changes align with drought stress indicators as identified by Bayat, van 

der Tol & Verhoef (2016), suggesting that our findings confirm with existing literature on drought stress 

impacts. Another pattern seen is the wide range of reflectance measured across the different observation 

groups, attributable to the study’s diversity in grass species compositions and mowing heights. Previous 

studies showed that grass species and mowing heights significantly influence reflectance signatures 

(Caturegli et al, 2014; Lee et al., 2011), which explains the observed variance at the start of the experiment 

and the continuation as drought impacts the grasses.  

 

This study used these differences in measured reflectance across the collection dates to analyse responses to 

drought stress. The results of the t-test revealed that five of the fifteen explored VIs showed a significant 

difference on the 2nd of June. While the maps do not indicate clear differences, Figure 23 Appendix E suggest 

that for VIs BRI2, SIPI and WI/NDVI the irrigated plots appear closer to drought stress conditions than the 

non-irrigated plots on June 2nd. Conversely, WBI and NWI1 show the opposite trend. The significance 

observed on this date cannot be directly attributed to drought stress experienced by the grasses, as drought 

conditions did not begin until the 14th of July. Additionally, all graphs show a change in VI values for all 

plots between June 2nd and 16th while there was no drought stress experienced. The differences in the 

calculated VI values can be contributed to other processes, such as biomass accumulation and / or 

phenological changes, which influence these values (Masin, Zuin and Zanin, 2005; Meyer, Hoffman & 

Bonos, 2017).  

The analysis of graphs for the different mowing heights and compositions (Appendix F) indicate that mowing 

height substantially influences drought performance. Specifically, VI values for the 6cm plots show less 

variation compared to the 3cm plots over the course of the experiment. Additionally, no substantial 

differences are observed between mixtures and single varieties, suggesting that having a mixture or single 

variety does not enhance performance under drought conditions. This finding is also supported by the study 

of Reiter et al. (2017), which reported no observed differences between mixtures and single varieties in 
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retaining green cover rates. It appears that the advantage lies not in the diversity of grass species sown but in 

the choice of specific species. The variability in standard deviation across the varieties and mixtures can be 

attributed to the species sown. Essentially, some species outperform others under drought stress, as evidenced 

by the varied performance results.  

6.2 Linking drought-resistance to  plant characteristics 

 

The rankings in Table 7 clearly indicate that various species, mixtures and mowing heights each respond 

uniquely to drought stress, as previously discussed. Primarily, the rankings clearly demonstrate the impact of 

mowing height on drought tolerance. Grasses mowed at a height of 6 cm consistently outperform those 

mowed at 3 cm under drought conditions. These results align with previous research indicating that taller 

turfgrass exhibits increased drought resistance (Braun et al., 2022; Shaba, Abbas & Alshammary, 2014). The 

longer grass length can be linked to increased carbon fixation and root production. Additionally, taller grass 

supports the accumulation of proline, a compound that helps in maintaining cellular water balance during 

stress and nutrient storage, further improving the drought resistance (Shaba, Abbas & Alshammary, 2014). 

Secondly, the ranking reveals the drought resilience of specific species. The observed drought resistance for 

each species is linked to specific plant characteristics, such as root systems, leaf width and evaporation rates, 

as detailed in the literature review.  

The literature review indicates that different grass species exhibit different root systems traits, including root 

depth and root mass distribution. As shown in Figure 12, Perennial Ryegrass and Tall Fescue developed the 

deepest roots, succeeded by Hard Fescue and Red Fescue. Kentucky Bluegrass exhibited the shallowest roots. 

Table 3 further presents root depth, root mass, and distribution findings from additional studies, indicating 

Hard Fescue and Tall Fescue have the deepest average rooting depths (51,3 cm and 50,7, respectively), 

followed by Perennial Grass (46,6 cm), Red fescue (34,2 cm) and Kentucky Bluegrass (20,9 cm). These 

findings align with Scheffer (1987) and Lin (1985), who reported that Red Fescue’s root mass distribution is 

shallower compared to Perennial Ryegrass and Tall Fescue, with Tall Fescue rooting deeper than Perennial 

Ryegrass.  

When relating these root characteristics to drought resistance observed in this research, it’s evident that 

species with deeper roots exhibited advanced drought tolerance. Hard Fescue and Tall Fescue, with the 

deepest roots and substantial higher root mass, were the most-drought resistant. This aligns with existing 

studies, which found that Hard Fescue is one of the most drought resistant species (Butler et al., 1987). 

Perennial Ryegrass diploid, mown on 6cm height, also performed well under drought conditions, ranking 

just below Hard and Tall Fescue. When mowed at 3cm, its performance declines, indicating a less developed 

root system compared to the other species. Conversely, Red Fescue and Kentucky Bluegrass, with shallower 

roots, demonstrated lower drought resilience, with Kentucky Bluegrass being the least resistant due to its 

shallow rooting depth and root mass. Perrenial Ryegrass tetraploid, similar to Kentucky Bluegrass, 

demonstrates the lowest drought resilience. Since this research does not provide information on root depth 

differences among variations of species, the observed differences are attributed to other plant characteristics, 

not root depth. 
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Leaf width and evaporation rate are also key factors influencing the drought resistance of grass species. 

According to the results summarized in Table 3, Tall Fescue has the broadest leaves (3-12 m), with Perennial 

Ryegrass (2-6 mm) and Kentucky Bluegrass (2-5 mm) following. Whereas Hard Fescue (0,6-2.5 mm) and 

Red Fescue (0.3-1.2 mm) exhibit the narrowest leaves. The order of evaporation rates mirrors this, with Tall 

fescue and Kentucky bluegrass experiencing the highest rate (>10mm per day), Perennial Ryegrass (8,5-

10mm per day), Red fescue (8-8,5 mm per day) and Hard Fescue (7-8,5 mm per day) following. This 

correlation directly impacts resistance observed in this study. Hard Fescue, because of its narrower leaves 

and lower evaporation rate, stands out as highly drought-resistant, particularly in the 6cm plots which 

outperformed most Tall Fescue plots. The lower evaporation rate of Hard Fescue, relative to Tall Fescue, 

likely provides a subtle advantage, given their similar root depths. Tall Fescue, despite its high evaporation 

rate, remains among the most drought-resistant species, suggesting that a high rate of water loss does not 

necessarily disadvantage it greatly during drought conditions. Kentucky Bluegrass, characterized with a high 

evaporation rate, ranks as less drought resistant. This information contributes further insights alongside root 

system depth, which is the primary factor explaining drought resilience (Carrow, 1996; Wilman, Gao & 

Leitch, 1998).  

 

6.3 Contrast among varieties and specifications 

This study also explores the drought resilience of different species variations, including two variations of 

Perennial Ryegrass and three variations of Red Fescue. The drought resistance ranking analysis reveals a 

substantial difference between Lp di 6cm and Lp te 6cm. For the 3cm mowing height, both variations are 

more closely related, yet Lp di showing greater drought resistance than the Lp te variation. Furthermore, 

among Red Fescue variations, Commutata emerges as the most drought-resistant for 3cm plots, while 

Trichophylla excels at 6cm plots. These results also indicate differences in ideal mowing height for achieving 

most drought resistance sods.  

This difference observed between the Perennial Ryegrass variations can be linked to differences in plant traits 

(Table 4); Lp di exhibits smaller tillers and thinner leaves, resulting in denser sods, while tetraploids have 

fewer but larger tillers with broader leaves, resulting in more open sods. Tetraploids are also known to be 

less persistent (Hannay et al., 1999). Similarly, the differences between the Red Fescue variations are 

explained by the plant traits of Commutata and Trichophylla, which have narrower leaves, resulting in denser 

sods, unlike Rubra’s broader leaves that result in more spaced sods (Bals, n.d.). This variation in plant traits 

suggests that denser dos tend to offer greater drought resistance compared to more open sods.  

 

Lastly, this research focused on turfgrass usage specifications, including sports and events, park and 

recreation and roadside, each with unique characteristics and maintenance needs. Table 5 provides insight 

into the drought resistance competence of the mixtures used for specific use. Mixtures containing the species 

Lp te demonstrate the least drought resistance, indicating their unsuitability for inclusion in drought-resistant 

compositions. In contrast, Fa and Lp di 6cm show strong performance in mixtures, recommending its use.  

 

The analysis of preferred turfgrass mixtures used for specific applications, such as sports/events and 

park/recreation, highlights PP as preferred choice due to its dense and even sods. However, cultivating this 
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species has its difficulties leading to the exploration of compositions. Perennial Ryegrass (Lp), known for its 

rapid growth, is often used in combination with Kentucky bluegrass to enhance the sods performance 

(Plantum, 2016). Mixtures including Pp and Lp di show drought resistance, although requiring a mowing 

height of 6 cm. For lower mowing heights of 3cm, mixtures of Lp di and Fa are recommended. In 

park/recreation use, mixtures featuring Frt and Frr are preferred for their rapid recovery (Plantum, 2016). 

The analysis indicates that Frt-mixtures outperform the Frr-mixtures in terms of drought resistance.  

 

6.4 Clustering similar drought responses 

 

The PCA biplots and hierarchical clustering offer nuanced insight into the turfgrass drought response, helping 

to understand the responses beyond the rankings and enhance the understanding of the multidimensional 

dataset. The PCA biplots show in Figure 20 a distinct clustering based on mowing heights, confirming the 

found influence of mowing height on drought resilience, with 6cm plots generally outperforming 3cm plots. 

The wide scatter of single varieties in the biplots indicates substantial differences in drought stress response. 

This scattering is expected, given the 100% species composition, resulting in substantially larger differences 

in drought stress responses and a consequent increase in outliers. Among the varieties, substantial differences 

are observed between E and C & F, respectively Lp di and Lp te, attributable to the differences between 

closed and open sods. Varieties with open sods, like Lp te, perform worse than those with closed sods, like 

Lp di. For Red Fescue Varieties J, L and K, greater similarity is observed at the 3cm mowing height than at 

6cm. This variation is likely due to more pronounced differences between open and closed sods at the higher 

mowing height, explaining the observed difference between L, with an open sod, and K and J, which have 

closed sods. The difference between J and K can be attributed to K being the most drought-resistance of the 

variations. These similarities and differences are clearer through biplots, whereas the strength of the 

relationships is less evident in the rankings.  

 

This diversity in drought stress response highlights the critical role of species selection in turf management, 

especially regarding drought resistance. The clustering of mixtures in the biplot further suggests the strategic 

advantage of including drought-tolerant species, showing that the composition and proportion of species in 

mixtures are crucial. Specifically, mixtures for sports/events showed a substantial drought resilience, 

particularly when composed of the species Fa, Lp di 6cm and Pp, which were closely clustered in the analysis. 

It also highlights the similarities and differences between species variations, in single varieties as in mixtures. 

These results suggest a strategic selection of species for improving drought resilience of turfgrass mixtures.  

 

Hierarchical clustering provides additional insights to these findings, clustering the turfgrasses into under 

drought performance-based groups. This clustering confirmed the importance of choosing the right species 

and mowing height, as shown by the PCA, and also emphasized how different turfgrass species, mixtures 

and mowing heights differ in drought resistance. The clustering highlights based on hierarchy the 

relationships, offering confirmation and additional insights in previously established relationships. For 

instance, the clustering result shows the distinct drought resistance of the single variety Fo at both 3cm as 

6cm, the consistent drought resilience Fa across 3cm and 6cm including its presence in mixtures, the minimal 
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impact of Pp and the Red Fescue varieties on the drought resistance of mixtures, and the notable vulnerability 

of Lp Te, disregarding included of its inclusion in mixtures or as a single variety. Furthermore, it identifies 

clusters of single varieties, mixtures and mowing heights, offering guidance for selecting the most drought-

resistant turfgrass for different use specifications. Concluding, the clustering analysis indicates the 

multidimensional nature of drought stress response in turfgrass, emphasizing the species selection, mowing 

height and mixture composition. It confirms that while individual plant traits are foundational, different 

maintenance affects their drought resilience. These findings validate the pervious observations but also 

expand our understanding highlighting the added value of clusters.  

 

6.5 Limitations and further work 

 

This research offers valuable insights into the application of HS remote sensing for assessing drought 

resistance in grass species and mixtures. However, if faces several limitations worth noting. Firstly, the data 

collected only allow for the analysis of long-term drought stress, identifiable after 36 days, while short-term 

drought stress can be detected as early as 11 days according to Bayat, Van der Tol &Verhoef (2016). With 

drought conditions starting in early July and the subsequent data collection on August 18th, the focus is on 

grasses subjected to approximately 48 days of drought. This enables this research to study severe drought 

stress across the grasses, mixtures and mowing heights but limits the ability to research the early stages of 

drought stress. Further studies could align with this study and conduct the same methodology on early stages 

of drought, exploring the differences short-and long-term drought effects.  

 

Furthermore, the research employs the Headwall Nano-Hyperspec camera, capturing HS data within the 400 

to 1000 nm range. Although this range includes several crucial wavelengths for evaluating vegetation health, 

important wavelengths of the near-infrared (NIR) water absorption bands around 1440 and 1930 nm are not 

included (Bayat & Verhoef, 2016). Previous research indicates that the Short-wave infrared wavelengths (0.9 

to 1.7 μm) within the optical section of the EM spectrum is the most suitable for analysing water status in 

plant canopies. This suitability is due to the water band’s capacity the incoming radiation is absorbed by the 

water content in plants (Tucker, 1980; Jiang & Carrow, 2005). Therefore, subsequent research might benefit 

from including these wavelengths to compare and enrich the findings of this study. 

 

Additionally, applying different irrigation regimes within the same experimental field could provide insight 

into the specific water needs of different grass species, mixtures and mowing heights. This information could 

be applied to the maintenance of the grasses for the time they are planted and throughout their use. Previous 

studies have laid the groundwork for this approach. For example, Bastug & Buyuktas (2003) and Alshehhi 

et al. (2010) analysed the drought resilience of turfgrass under several irrigation levels, including 100%, 88%, 

75% and 50% standard irrigation. The standard irrigation can be attributed to specific applications, such as 

sports/events and park/recreation. By systematically varying irrigation levels and closely analysing the 

physiological responses of the grass, this approach could provide insights for efficient water management 

specifical to the needs of each turfgrass species, mixture and mowing height. 
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7 Conclusion 

 

This research utilized UAV hyperspectral imagery to identify drought stress and analyse drought resilience 

across different cool season turfgrass species, contributing to valuable insight into the precision agriculture 

field.  

  

A thorough literature review identified 28 VIs sensitive to drought stress across 12 relevant studies focused 

on cool season turfgrass. Of these, 15 VIs were choses based on their proven effectiveness. This research 

validated the selected VIs’ ability to detect and quantify drought stress effects among different grass species, 

mixtures, and mowing heights under drought conditions. The analysis of VI values across the collection dates 

reveals that: 1) higher mowing height typically improves drought resistance, 2) negligible differences in 

drought resistance  are observed between single varieties and mixtures, 3) similarities in drought response 

are primarily associated with root depth and sod structure, 4) mixtures with a higher percentage of drought 

resistance species exhibit generally the greatest drought resistance, and 5) the species Fa and Fo, at both 3cm 

and 6cm mowing heights, along with Lp di at 6cm, exhibit the highest drought resistance, while Lp te, at 

both mowing heights, showed the least resilience, regardless of whether in mixtures or single varieties.  

 

With these findings, this study bridges a knowledge gap by providing results on the drought resilience of 

turfgrass species, mixtures and mowing heights in already established turfs. This knowledge is of increasing 

importance as climate change leads to more frequent and severe droughts in the Netherlands and across 

Europe. The implementation of drought resistant grasses will help maintain its function for specific uses as 

sports/events and park/recreation during drought conditions.  
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9 Appendix A: Relevant articles on detecting drought stress in cool 

season turfgrass 

 
Table 8: Relevant articles on detecting drought stress response in turfgrass 
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10 August 2010 & 27 

October 2014

Greenhouse, 

Twente, Netherlands

Poa pratensis

Kentucky bluegrass

350 - 2500 nm

1.4 nm bandwidth

3

Caturegli, L., Matteoli, S., Gaetani, M., Grossi, N., 

Magni, S., Minelli, A., ... & Volterrani, M. (2020). 

Effects of water stress on spectral reflectance of 

bermudagrass. Scientific Reports, 10(1), 15055. 1 to 31 May 2018

Greenhouse, 

Pisa, Italy hybrid bermudagras

350 - 2500 nm

2 nm interval

3 nm spectral resolution

4

Dao, P. D., He, Y., & Proctor, C. (2021). Plant drought 

impact

 detection using ultra-high spatial resolution 

hyperspectral images and machine learning. 

International Journal of Applied Earth Observation 

and Geoinformation, 102, 102364. 17 June to 18 July 2019

Greenhouse, 

Ontario, Canada Bromus inermis 

400 - 1000 nm

1.8 nm interval

5

Haghverdi, A., Reiter, M., Singh, A., & Sapkota, A. 

(2021). Hybrid bermudagrass and tall fescue 

turfgrass irrigation in central California: II. 

Assessment of NDVI, CWSI, and canopy temperature 

dynamics. Agronomy, 11(9), 1733.

4 may to 11 Septermber 

2018 & 22 June to 26 

Augustus 2019

Field plots, 

Central California, 

United States

hybrid bermudagras 

& tall fescue

blue: 430 - 470 nm

red 530 - 570 nm

NIR 720 - 740 nm

6

Hermanns, F., Pohl, F., Rebmann, C., Schulz, G., 

Werban, U., & Lausch, A. (2021). Inferring grassland 

drought stress with unsupervised learning from 

airborne hyperspectral vnir imagery. Remote 

Sensing, 13(10), 1885. 7 may 2018 & 23 April 2019

Fieldplot, 

Saksen-Anhalt, Germany

mixed grassland, not 

specified

409-989nm

3.2 nm

7

Jiang, Y., Liu, H., & Cline, V. (2009). Correlations of 

leaf relative water content, canopy temperature, and 

spectral reflectance in perennial ryegrass under 

water deficit conditions. HortScience, 44(2), 459-462.

May to Augustus 2007 & 

June to Augustus 2008

Indiana, 

United States Perennial Ryegrass

880 and 650 nm 

collected with Crop Circle ACS-210

8

Katuwal, K. B., Yang, H., & Huang, B. (2023). 

Evaluation of phenotypic and photosynthetic indices 

to detect water stress in perennial grass species 

using hyperspectral, multispectral and chlorophyll 

fluorescence imaging. Grass Research, 3(1).

20 days (no month 

specified)

Controlled 

environmental growth 

chamber New Jersey, 

United States

Kentucky bluegrass 

(Poa pratensis L.)

400 - 1000 nm

1.9 nm interval

9

McCall, D. S., Zhang, X., Sullivan, D. G., Askew, S. D., 

& Ervin, E. H. (2017). Enhanced soil moisture 

assessment using narrowband reflectance vegetation 

indices in creeping bentgrass. Crop Science, 57(S1), S-

1 to 11 December 2015 & 1 

to 11 February 2016

Green house, Virginia, 

United States creeping bentgrass

320 - 1100 nm

1.4 nm interval

10

Roberson, T. L., Badzmierowski, M. J., Stewart, R. D., 

Ervin, E. H., Askew, S. D., & McCall, D. S. (2021). 

Improving soil moisture assessment of turfgrass 

systems utilizing field radiometry. Agronomy, 11(10), 

1960. June to September 2018

Greenhouse, 

Virginia, United States

creeping bentgrass & 

Hybrid bermudagrass

320 - 1100 nm

1.4 nm interval

11

Jiang, Y., & Carrow, R. N. (2005). Assessment of 

narrow-band 

canopy spectral reflectance and turfgrass 

performance under drought stress. HortScience, 

40(1), 242-245.

10 July to 25 July 2001, 20 

to 31 Augustus 2001 & 10 

to 21 September 2001

Field plots, 

Georgia, United States

Bermudagrasses, Seashore 

paspalums, zoysiagrass, st. 

augustinegrass & tall 

fescues

400 - 1100 nm

3 nm interval

12

Jiang, Y., & Carrow, R. N. (2007). Broadband spectral 

reflectance models of turfgrass species and cultivars 

to drought stress. Crop science, 47(4), 1611-1618.

10 to 25 july, 20-31 

Augustus, & 10-21 

September

Field plots, 

Georgia, United States

Bermudagrass, seashore 

paspalum, zoysiagrass, St. 

Augustinegrass and tall 

fescue

10-15 bandwith centrered around 

660, 710, 810, 

900, 950, 1200 and 1480 nm
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10 Appendix B: Identified VIs sensitive to drought stress 

Table 9: Identified VIS sensitive to drought stress found in the 12 relevant studies 

  

VI Full name Equations Sensitive to Results sumarry

Which 

papers

Suitable /

not suitable Suitable for

ARI

Anthocyanin Reflectance 

Index ARI = 1/R550 − 1/R700 Anthocyanin

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Not suitable Not suitable

GRI 

(RGRI)

Green to red ratio 

index R550/R670

Anthocyanin 

and 

Chlorophyll

1. can determine water stress

9. significant relationship with TQ (0.001 & 

0.01)), Chlorophyll (0.01 & 0.05), SWC (0.01 & 

0.05) - not with TWC (0x)

10. 2nd strongest relationship to VWC 0.56 

1, 10, 

9 Suitable

Early & 

longterm drought stress

PRI

Photochemical Reflectance 

Index

PRI = (R570 – R531) / 

(R570 + R531) Carotenoids

2. not able detect early drought

2. able to detecht long term drought

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages)

8. for drought stress cool-season turfgrass 

9. significant relationship with TQ (2x 0.01), 

Chlorophyll (2x 0.001), TWC (1 0.01) - not with 

SWC (0x)

8, 2, 

4, 9 Not suitable Not suitable

PRI 

(norm)

Normalized Photochemical 

Reflectance Index

PRI (norm) = PRI/[((R800 ´ R670)/

sqrt (R800 +R670)). R700/R670] Carotenoids
2. best longterm drought detecting

2. not able detect early drought 2 Suitable Longterm drought stress

CARI Carotenoids Index CARI = (R720–R521)/R521 Carotenoids 

4. Could detect early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Suitable

Early & 

longterm drought stress

PRI512

Photochemical Reflectance 

Index 512 (ρ531 − ρ512)/(ρ531 + ρ512) Carotenoids 

6. Best performing for carotenoid/chlorophyll 

ratio 

and light use efficiency (LUE)

6. Important for assessing severity of vegetation 

stress (pigment-related indices) 6 Suitable Longterm drought stress

CarRE 

opt

Opt. carotenoid red edge 

index

(ρ510–530⁻¹ − ρ680–730⁻¹) 

× ρ760–780

Carotenoids 

and chlorophyll

6. Best performing for Carotenoid content

6. Important for assessing severity of vegetation 

stress (pigment-related indices)

(6. strongest relationship with drought stress) 6 Suitable Longterm drought stress

CCRI

Carotenoid/

Chlorophyll Ratio

Index CCRI = CARI/CIrededge Carotenoids and Chlorophyll

4. Could detect early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Suitable

Early & 

longterm drought stress

PSRI

Plant Senescence Reflectance 

Index PSRI = (R680 –R500) / R750

Carotenoids 

and chlorophyll
8. for drought stress 

cool-season turfgrass 8 Not suitable Not suitable

SIPI

Structure Independent Pigment 

Index

SIPI = (R800 – R445) / 

(R800 + R680)

Carotenoids 

and chlorophyll 8. detect drought stress earliest 8 Suitable Early drought stress

BGPI

Blue/Green pigment Index 2 R450/R550 Chlorophyll
2. best early drought detection

2. able to detecht long term drought 2 Suitable

Early & 

longterm drought stress

ChlRE 

opt Opt. chlorophyll red edge index

(ρ680–730⁻¹ − ρ780–800⁻¹) 

× ρ755–780 Chlorophyll
6. Important for assessing severity of vegetation 

stress (pigment-related indices) 6 Suitable Longterm drought stress

CIred edge (RECl) Red edge chlorophyll index (R750/R710)−1 Chlorophyll

4. could not detect early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Not suitable Not suitable

CTR2 Carter Index 2 CTR2 = R695/R760 Chlorophyll

2. second best long term drought detecting

2. able for early dourght detection

6. important predictor for drought stress 2, 6 Suitable

Early & 

longterm drought stress

MCARI2 

Modified chlorophyll absorption 

ratio index 2 Chlorophyll 6. no important predictor drought stress 6 Not suitable Not suitable

MSAVI2

Modified soil-adjusted 

vegetation 

index 2 Chlorophyll 6. no important predictor drought stress 6 Not suitable Not suitable

mSR

705

Modified Simple

Ratio 

mSR705 =

(R750–R445)/

(R705–R445) Chlorophyll

4. Could detect early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Suitable

Early & 

longterm drought stress

RENDVI / 

NRred 

edge 

Red edge normalised difference 

vegetation index / Red edge 

normalized ratio 

(ρ750 − ρ705)/(ρ750 + ρ705) / 

((R750−R710)/(R750+R710)) Chlorophyll 6. no important predictor drought stress 6 Not suitable Not suitable

RGI Red/green pigment Index RGI = R690/R550 Chlorophyll
2. able for early dourght detection

2. able to detecht long term drought 2 Suitable

Early & 

longterm drought stress

SRI / RVI / SR

Simple Ratio Index 

/ Simple Ratio Vegetation index

SRI = R800 / R675

RVI =NIR/R

SR = R750/R710 Chlorophyll

1. can determine vegetation stress, not exact 

which type of stress

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages)

8. detect drought stress earliest

9. significant relation with TQ (0.001 & 0.01), 

Chlorophyll (2x 0.001), TWC (1x 0.01) - not with 

SWC (0x)

8, 1, 

4, 9

Maybe 

suitable

Early & 

longterm drought stress

MNLI

Modified Non-linear

Vegetation Index 

MNLI = 1.5* (R2 800–R680)/ 

(R2 800 + R680 + 1.5) Chlorophyll

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Not suitable Not suitable

NDRE

Normalized Difference 

Red Edge (ρ790 − ρ720)/(ρ790 + ρ720) Chlorophyll 
8. use as vegetation density but not 

drought stress 8 Not suitable Not suitable

NDVI

Normalized Difference 

Vegetation Index 

NDVI = (R800–R680)/ 

(R800 + R680) Chlorophyll 

1. can determine vegetation stress, not exact 

which type of stress

3. not able for solely water content research - 

because narrow bands overlap with chlorophyll

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages)

5. relationship with visual rating tall fesue, not 

for hybrid bermuda

7. leaf relative water content (RWC) highly 

correlated with NDVI

8. use as vegetation density but not drought 

stress

9. significant relation with TQ (0.01 & 0.05), 

chlorophyll (2x 0.05), SWC (1x 0.05), TWC (1x 

0.05) 

10. lowest relationship to VWC 0.47

8, 1, 

10, 4 ,

 7, 9,

 5, 3

Maybe 

suitable

Early & 

longterm drought stress

NDVI705 NDVI at 705 nm (R750 − R705)/(R750 + R705) Chlorophyll 

9. Significant relation with TQ (0.01 & 0.05), 

Chlorophyll (2x 0.01), TWC (1x 0.05) - not with 

SWC (0x) 9 Not suitable Not suitable

f'

First derivative 

@ 950.6 nm First derivative @ 950.6 nm

Plant water 

concentration
6. no important predictor drought stress

6. almost perfectly collinear with WBI (-0.98) 6 Not suitable Not suitable

NWI1

Normalized Water 

Index 1 

NWI1 = (R970 ´ R900)/

(R970 + R900)

Plant water 

concentration
2. able for early dourght detection

2. able to detecht long term drought 2 Suitable

Early & 

longterm drought stress

WI / (WBI) Water Band Index

WBI = R900/R970 Plant water 

concentration

1. Can determine water stress 

2. able for early dourght detection

2. able to detecht long term drought

3. able as vegetation water stress indicator - 

lower values of WI indicate higher water stress 

both in leaves and soil

6. Best performing predictor for RWC 

9. significant correlation to TQ (2x 0.01), 

Chlorophyll (2x 0.001), soil water content (2x 

0.001), tissue water content (0.01 & 0.05)

10. strongest relationship to VWC 0.62

2, 6, 1, 

10, 9, 3 Suitable

Early & 

longterm drought stress

WI/NDVI

Ratio WI normalized 

diference vegetation index

(R900/R970)/((R800−R680)/

(R800+R680)

Plant water 

concentration

3. able as vegetation water stress indicator - 

WI/NDVI at higher values

correspond higher water stress levels 3 Suitable

Early & 

longterm drought stress
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VI Full name Equations Sensitive to Results sumarry

Which 

papers

Suitable /

not suitable Suitable for

ARI

Anthocyanin Reflectance 

Index ARI = 1/R550 − 1/R700 Anthocyanin

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Not suitable Not suitable

GRI 

(RGRI)

Green to red ratio 

index R550/R670

Anthocyanin 

and 

Chlorophyll

1. can determine water stress

9. significant relationship with TQ (0.001 & 

0.01)), Chlorophyll (0.01 & 0.05), SWC (0.01 & 

0.05) - not with TWC (0x)

10. 2nd strongest relationship to VWC 0.56 

1, 10, 

9 Suitable

Early & 

longterm drought stress

PRI

Photochemical Reflectance 

Index

PRI = (R570 – R531) / 

(R570 + R531) Carotenoids

2. not able detect early drought

2. able to detecht long term drought

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages)

8. for drought stress cool-season turfgrass 

9. significant relationship with TQ (2x 0.01), 

Chlorophyll (2x 0.001), TWC (1 0.01) - not with 

SWC (0x)

8, 2, 

4, 9 Not suitable Not suitable

PRI 

(norm)

Normalized Photochemical 

Reflectance Index

PRI (norm) = PRI/[((R800 ´ R670)/

sqrt (R800 +R670)). R700/R670] Carotenoids
2. best longterm drought detecting

2. not able detect early drought 2 Suitable Longterm drought stress

CARI Carotenoids Index CARI = (R720–R521)/R521 Carotenoids 

4. Could detect early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Suitable

Early & 

longterm drought stress

PRI512

Photochemical Reflectance 

Index 512 (ρ531 − ρ512)/(ρ531 + ρ512) Carotenoids 

6. Best performing for carotenoid/chlorophyll 

ratio 

and light use efficiency (LUE)

6. Important for assessing severity of vegetation 

stress (pigment-related indices) 6 Suitable Longterm drought stress

CarRE 

opt

Opt. carotenoid red edge 

index

(ρ510–530⁻¹ − ρ680–730⁻¹) 

× ρ760–780

Carotenoids 

and chlorophyll

6. Best performing for Carotenoid content

6. Important for assessing severity of vegetation 

stress (pigment-related indices)

(6. strongest relationship with drought stress) 6 Suitable Longterm drought stress

CCRI

Carotenoid/

Chlorophyll Ratio

Index CCRI = CARI/CIrededge Carotenoids and Chlorophyll

4. Could detect early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Suitable

Early & 

longterm drought stress

PSRI

Plant Senescence Reflectance 

Index PSRI = (R680 –R500) / R750

Carotenoids 

and chlorophyll
8. for drought stress 

cool-season turfgrass 8 Not suitable Not suitable

SIPI

Structure Independent Pigment 

Index

SIPI = (R800 – R445) / 

(R800 + R680)

Carotenoids 

and chlorophyll 8. detect drought stress earliest 8 Suitable Early drought stress

BGPI

Blue/Green pigment Index 2 R450/R550 Chlorophyll
2. best early drought detection

2. able to detecht long term drought 2 Suitable

Early & 

longterm drought stress

ChlRE 

opt Opt. chlorophyll red edge index

(ρ680–730⁻¹ − ρ780–800⁻¹) 

× ρ755–780 Chlorophyll
6. Important for assessing severity of vegetation 

stress (pigment-related indices) 6 Suitable Longterm drought stress

CIred edge (RECl) Red edge chlorophyll index (R750/R710)−1 Chlorophyll

4. could not detect early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Not suitable Not suitable

CTR2 Carter Index 2 CTR2 = R695/R760 Chlorophyll

2. second best long term drought detecting

2. able for early dourght detection

6. important predictor for drought stress 2, 6 Suitable

Early & 

longterm drought stress

MCARI2 

Modified chlorophyll absorption 

ratio index 2 Chlorophyll 6. no important predictor drought stress 6 Not suitable Not suitable

MSAVI2

Modified soil-adjusted 

vegetation 

index 2 Chlorophyll 6. no important predictor drought stress 6 Not suitable Not suitable

mSR

705

Modified Simple

Ratio 

mSR705 =

(R750–R445)/

(R705–R445) Chlorophyll

4. Could detect early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Suitable

Early & 

longterm drought stress

RENDVI / 

NRred 

edge 

Red edge normalised difference 

vegetation index / Red edge 

normalized ratio 

(ρ750 − ρ705)/(ρ750 + ρ705) / 

((R750−R710)/(R750+R710)) Chlorophyll 6. no important predictor drought stress 6 Not suitable Not suitable

RGI Red/green pigment Index RGI = R690/R550 Chlorophyll
2. able for early dourght detection

2. able to detecht long term drought 2 Suitable

Early & 

longterm drought stress

SRI / RVI / SR

Simple Ratio Index 

/ Simple Ratio Vegetation index

SRI = R800 / R675

RVI =NIR/R

SR = R750/R710 Chlorophyll

1. can determine vegetation stress, not exact 

which type of stress

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages)

8. detect drought stress earliest

9. significant relation with TQ (0.001 & 0.01), 

Chlorophyll (2x 0.001), TWC (1x 0.01) - not with 

SWC (0x)

8, 1, 

4, 9

Maybe 

suitable

Early & 

longterm drought stress

MNLI

Modified Non-linear

Vegetation Index 

MNLI = 1.5* (R2 800–R680)/ 

(R2 800 + R680 + 1.5) Chlorophyll

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages) 4 Not suitable Not suitable

NDRE

Normalized Difference 

Red Edge (ρ790 − ρ720)/(ρ790 + ρ720) Chlorophyll 
8. use as vegetation density but not 

drought stress 8 Not suitable Not suitable

NDVI

Normalized Difference 

Vegetation Index 

NDVI = (R800–R680)/ 

(R800 + R680) Chlorophyll 

1. can determine vegetation stress, not exact 

which type of stress

3. not able for solely water content research - 

because narrow bands overlap with chlorophyll

4.  not detecting early drought stress

4. all VIs detected longterm drought stress - 

(dramatic change) (need research abilities VIs 

different stages)

5. relationship with visual rating tall fesue, not 

for hybrid bermuda

7. leaf relative water content (RWC) highly 

correlated with NDVI

8. use as vegetation density but not drought 

stress

9. significant relation with TQ (0.01 & 0.05), 

chlorophyll (2x 0.05), SWC (1x 0.05), TWC (1x 

0.05) 

10. lowest relationship to VWC 0.47

8, 1, 

10, 4 ,

 7, 9,

 5, 3

Maybe 

suitable

Early & 

longterm drought stress

NDVI705 NDVI at 705 nm (R750 − R705)/(R750 + R705) Chlorophyll 

9. Significant relation with TQ (0.01 & 0.05), 

Chlorophyll (2x 0.01), TWC (1x 0.05) - not with 

SWC (0x) 9 Not suitable Not suitable

f'

First derivative 

@ 950.6 nm First derivative @ 950.6 nm

Plant water 

concentration
6. no important predictor drought stress

6. almost perfectly collinear with WBI (-0.98) 6 Not suitable Not suitable

NWI1

Normalized Water 

Index 1 

NWI1 = (R970 ´ R900)/

(R970 + R900)

Plant water 

concentration
2. able for early dourght detection

2. able to detecht long term drought 2 Suitable

Early & 

longterm drought stress

WI / (WBI) Water Band Index

WBI = R900/R970 Plant water 

concentration

1. Can determine water stress 

2. able for early dourght detection

2. able to detecht long term drought

3. able as vegetation water stress indicator - 

lower values of WI indicate higher water stress 

both in leaves and soil

6. Best performing predictor for RWC 

9. significant correlation to TQ (2x 0.01), 

Chlorophyll (2x 0.001), soil water content (2x 

0.001), tissue water content (0.01 & 0.05)

10. strongest relationship to VWC 0.62

2, 6, 1, 

10, 9, 3 Suitable

Early & 

longterm drought stress

WI/NDVI

Ratio WI normalized 

diference vegetation index

(R900/R970)/((R800−R680)/

(R800+R680)

Plant water 

concentration

3. able as vegetation water stress indicator - 

WI/NDVI at higher values

correspond higher water stress levels 3 Suitable

Early & 

longterm drought stress
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11 Appendix C: Calculate percentage of change in VI values between 2nd 

of June and 30th of August 

 

Table 10: Percentage of change of the averages VI values per species per mowing height for the non-irrigated plots between 2-6 and 

30-8 

Species Mowing 

height 

Irrigation GRI PRI CARI PRI 

512 

CarRE 

opt 

CCRI SIPI BRI2 Chl RE 

opt 

CTR2 mSR705 RGI WI/NDVI NWII WBI 

A 3 cm Non-irrigated -58% 401% -43% -55% -51% -22% -25% 76% -57% 112% -36% 96% 42% -142% -11% 

A 6 cm Non-irrigated -39% 134% -17% -29% -20% -5% -11% 37% -27% 46% -17% 51% 12% -108% -9% 

B 3 cm Non-irrigated -33% 95% -25% -29% -28% -16% -9% 33% -22% 27% -11% 37% 7% -105% -7% 

B 6 cm Non-irrigated -30% 75% -13% -19% -14% -3% -6% 15% -18% 30% -13% 33% 3% -89% -7% 

C 3 cm Non-irrigated -57% 435% -46% -56% -53% -26% -26% 85% -56% 122% -35% 97% 46% -154% -12% 

C 6 cm Non-irrigated -45% 156% -20% -30% -24% -5% -11% 41% -31% 52% -20% 59% 9% -118% -10% 

D 3 cm Non-irrigated -55% 335% -40% -52% -48% -18% -21% 69% -54% 96% -35% 89% 32% -139% -11% 

D 6 cm Non-irrigated -40% 126% -18% -27% -24% -3% -10% 37% -32% 47% -20% 50% 8% -97% -8% 

E 3 cm Non-irrigated -50% 212% -33% -45% -38% -17% -18% 68% -42% 58% -23% 73% 26% -134% -9% 

E 6 cm Non-irrigated -39% 121% -16% -30% -17% -5% -11% 40% -24% 38% -14% 50% 13% -97% -7% 

F 6 cm Non-irrigated -54% 256% -27% -43% -32% -8% -16% 52% -40% 93% -27% 83% 20% -128% -11% 

F 3 cm Non-irrigated -48% 181% -30% -42% -34% -16% -15% 62% -33% 56% -18% 65% 16% -148% -10% 

G 3 cm Non-irrigated -34% 102% -28% -29% -34% -16% -11% 36% -30% 38% -17% 40% 9% -103% -8% 

G 6 cm Non-irrigated -34% 97% -21% -26% -25% -10% -9% 27% -25% 39% -16% 39% 7% -101% -8% 

H 3 cm Non-irrigated -53% 301% -51% -52% -60% -34% -22% 67% -51% 100% -31% 75% 29% -135% -11% 

H 6 cm Non-irrigated -45% 247% -34% -39% -43% -16% -16% 39% -44% 115% -31% 66% 27% -101% -9% 

J 6 cm Non-irrigated -50% 221% -29% -40% -37% -9% -13% 58% -42% 76% -28% 77% 14% -108% -9% 

J 3 cm Non-irrigated -52% 204% -34% -49% -42% -15% -16% 73% -44% 80% -27% 78% 19% -132% -8% 

K 3 cm Non-irrigated -45% 234% -36% -41% -46% -11% -16% 54% -53% 87% -36% 68% 17% -141% -10% 

K 6 cm Non-irrigated -34% 118% -17% -24% -26% 5% -9% 22% -41% 66% -29% 45% 8% -105% -8% 

L 3 cm Non-irrigated -51% 238% -36% -47% -45% -15% -17% 63% -48% 90% -31% 73% 20% -140% -11% 

L 6 cm Non-irrigated -50% 275% -30% -37% -40% -5% -14% 46% -49% 104% -34% 78% 18% -107% -9% 

M 3 cm Non-irrigated -31% 116% -34% -42% -42% -19% -14% 48% -39% 53% -22% 36% 15% -119% -8% 

M 6 cm Non-irrigated -19% 72% -19% -25% -26% -6% -8% 27% -30% 32% -18% 24% 4% -94% -8% 

N 6 cm Non-irrigated -51% 221% -26% -41% -30% -9% -16% 52% -37% 73% -24% 74% 21% -130% -10% 

N 3 cm Non-irrigated -48% 188% -34% -40% -40% -18% -16% 65% -39% 57% -22% 65% 17% -121% -9% 

O 3 cm Non-irrigated -60% 486% -48% -57% -56% -26% -26% 84% -59% 126% -38% 106% 40% -145% -13% 

O 6 cm Non-irrigated -54% 306% -31% -42% -38% -11% -16% 55% -44% 87% -29% 85% 19% -127% -12% 

P 3 cm Non-irrigated -43% 171% -24% -37% -27% -12% -14% 48% -31% 38% -17% 56% 15% -130% -10% 

P 6 cm Non-irrigated -47% 181% -22% -38% -25% -7% -14% 44% -32% 62% -21% 66% 18% -120% -9% 

R 3 cm Non-irrigated -45% 195% -36% -40% -43% -20% -14% 49% -39% 65% -24% 59% 14% -115% -9% 

R 6 cm Non-irrigated -34% 90% -19% -24% -25% -5% -8% 28% -27% 40% -17% 40% 5% -79% -7% 

S 3 cm Non-irrigated -48% 201% -36% -42% -42% -20% -17% 68% -40% 61% -23% 65% 18% -126% -10% 

S 6 cm Non-irrigated -43% 159% -19% -31% -23% -4% -12% 40% -31% 51% -20% 57% 12% -112% -9% 

T 3 cm Non-irrigated -42% 144% -29% -35% -33% -17% -13% 51% -31% 40% -16% 52% 11% -118% -9% 

T 6 cm Non-irrigated -47% 209% -22% -34% -27% -5% -12% 41% -36% 60% -24% 66% 14% -109% -9% 

U 3 cm Non-irrigated -53% 300% -40% -47% -48% -21% -19% 77% -51% 74% -31% 81% 24% -130% -11% 

U 6 cm Non-irrigated -50% 206% -22% -37% -28% -2% -13% 43% -39% 79% -26% 71% 15% -109% -9% 

W 3 cm Non-irrigated -35% 135% -29% -39% -36% -15% -12% 48% -37% 37% -21% 43% 10% -136% -10% 

W 6 cm Non-irrigated -45% 166% -26% -40% -35% -6% -13% 44% -42% 86% -28% 61% 14% -113% -9% 
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Table 11: Percentage of change of the averages VI values per species per mowing height for the irrigated plots between 2-6 and 30-8 

Species Mowing 

height 

Irrigation GRI PRI CARI PRI512 CarRE 

opt 

CCRI SIPI BRI2 ChlRE 

opt 

CTR2 mSR705 RGI WI/ 

NDVI 

NWII WBI 

A 3 cm Irrigated -8% 10% 8% 2% 10% 9% 1% 1% -3% -13% -3% 12% -8% -93% -8% 

A 6 cm Irrigated -16% 27% 0% -3% -1% 5% -2% 6% -10% 6% -8% 16% -4% -85% -7% 

B 3 cm Irrigated 4% -12% 7% 3% 8% 8% 2% -1% -2% -13% -2% 3% -8% -63% -6% 

B 6 cm Irrigated 1% -5% 3% 4% 3% 7% 1% -4% -7% -3% -6% 4% -6% -68% -6% 

C 3 cm Irrigated -23% 46% 3% -8% 4% 10% -2% 9% -12% 6% -9% 27% -5% -97% -9% 

C 6 cm Irrigated -30% 96% -4% -7% -6% 7% -3% 8% -20% 10% -15% 34% -5% -

126% 

-11% 

D 3 cm Irrigated -6% -1% 9% 1% 11% 10% 1% 1% -1% -8% -2% 10% -6% -68% -6% 

D 6 cm Irrigated -13% 24% 0% -2% -1% 6% -1% 2% -11% 7% -9% 15% -4% -75% -6% 

E 3 cm Irrigated -18% 30% 5% -3% 8% 9% -1% 7% -7% -4% -6% 22% -6% -

102% 

-9% 

E 6 cm Irrigated -22% 26% 1% -8% 2% 5% -3% 12% -6% 13% -5% 21% -2% -81% -7% 

F 6 cm Irrigated -23% 65% 1% -6% 0% 11% -3% 5% -20% 8% -15% 30% -5% -

107% 

-10% 

F 3 cm Irrigated -28% 57% -9% -13% -12% 1% -6% 18% -19% 27% -13% 31% -1% -

106% 

-10% 

G 3 cm Irrigated 6% -22% 11% 3% 13% 9% 2% 0% 2% -13% 1% 1% -7% -55% -5% 

G 6 cm Irrigated 0% -1% 2% 4% -1% 8% 0% -3% -11% 6% -10% 4% -5% -59% -6% 

H 3 cm Irrigated -8% 11% -2% -4% -9% 8% -1% 1% -20% 6% -15% 15% -5% -71% -7% 

H 6 cm Irrigated -6% 15% 0% 3% -7% 13% 0% -13% -21% 7% -18% 9% -5% -79% -7% 

J 6 cm Irrigated -16% 7% -5% -11% -8% 1% -2% 16% -13% 5% -8% 19% -4% -77% -7% 

J 3 cm Irrigated -11% -8% 1% -4% 1% 4% -1% 6% -3% 5% -3% 11% -3% -45% -4% 

K 3 cm Irrigated 6% -10% 7% 4% 5% 11% 2% -6% -9% -12% -7% 4% -9% -89% -7% 

K 6 cm Irrigated 2% 1% 6% 8% 2% 14% 1% -16% -14% -2% -13% 5% -7% -85% -7% 

L 3 cm Irrigated -11% 7% -3% -8% -6% 4% -1% 9% -13% 5% -9% 16% -5% -78% -7% 

L 6 cm Irrigated -22% 53% -4% -5% -9% 8% -3% 0% -23% 19% -18% 24% -5% -98% -10% 

M 3 cm Irrigated 19% -38% 11% 9% 10% 10% 3% -2% 1% -13% 1% -8% -9% -54% -4% 

M 6 cm Irrigated 21% -36% 9% 15% 10% 7% 3% -9% 4% -16% 1% -11% -11% -68% -6% 

N 6 cm Irrigated -7% 3% 10% 2% 13% 11% 1% 1% -2% -9% -3% 11% -7% -77% -7% 

N 3 cm Irrigated -14% 32% 0% -1% 1% 5% -1% 3% -10% -6% -7% 15% -6% -

105% 

-9% 

O 3 cm Irrigated -26% 72% -3% -10% -5% 10% -4% 10% -22% 15% -17% 34% -4% -99% -10% 

O 6 cm Irrigated -23% 49% -6% -9% -8% 3% -3% 11% -17% 13% -12% 24% -3% -

107% 

-9% 

P 3 cm Irrigated -6% -1% 11% 3% 17% 9% 2% 2% 4% -16% 1% 10% -9% -88% -8% 

P 6 cm Irrigated -19% 24% -1% -7% -1% 4% -2% 10% -8% 10% -6% 18% -3% -78% -7% 

R 3 cm Irrigated -3% -5% 4% -1% 1% 11% 0% -2% -11% 1% -9% 8% -5% -54% -5% 

R 6 cm Irrigated -5% 22% -3% 1% -8% 8% -1% -7% -21% 1% -16% 11% -5% -67% -6% 

S 3 cm Irrigated -8% 11% 10% 1% 11% 14% 0% 0% -7% -3% -6% 12% -7% -84% -7% 

S 6 cm Irrigated -19% 36% -3% -5% -6% 5% -2% 5% -15% 10% -11% 19% -4% -97% -9% 

T 3 cm Irrigated 0% -7% 12% 4% 18% 8% 3% -2% 8% -19% 4% 5% -9% -82% -7% 

T 6 cm Irrigated -13% 14% -1% -3% -2% 5% -1% 4% -10% 6% -8% 14% -4% -72% -6% 

U 3 cm Irrigated 2% -13% 14% 6% 19% 12% 2% -4% 5% -17% 2% 4% -9% -72% -6% 

U 6 cm Irrigated -23% 50% -2% -3% -5% 7% -2% 2% -16% 16% -13% 23% -3% -87% -8% 

W 3 cm Irrigated 8% -24% 8% 3% 7% 8% 2% -2% -2% -10% -2% 0% -8% -64% -5% 

W 6 cm Irrigated 8% -17% 4% 6% 4% 5% 1% -6% -4% -16% -3% -2% -8% -74% -6% 
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12 Appendix D: Percentage of variance explained & Variable 

contributions in PCA analysis 

 

Figure 22: Results of PCA analysis, illustrating the percentage of variance explained and contribution of the variables 
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13 Appendix E: Development of VI values by irrigation throughout the 

experiment 
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Figure 23: Development of VI values by irrigation throughout the experiment 
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14 Appendix F: VI values by irrigation, mowing height and mixture 

throughout the experiment 
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Figure 24: VI values by irrigation, mowing height and mixture throughout the experiment 

 


