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Abstract

In this thesis, we have explored the utilization of different algorithms for prognostic distribution for
the state of the health of batteries of eVTOLS. During the research we will be exploring different algo-
rithms, such as Convolutional Neural Network(CNN), Long Short Term Memory neural network(LSTM),
Bayesian Neural Network(BNN) and Mixture Density Network(MDN) implementation for the prediction
of the prognostic distributions for different representation of the health of the batteries in terms of
State of Health(SOH) and Remaining Useful life(RUL). Additionally, this study will delve into a novel
interpretation of the RUL concept tailored specifically to eVTOLS. The use of these algorithms could
have the potential of unlocking new ways for prediction of prognostic of the batteries of eVTOLS. In-
cluding more in depth evaluation of these algorithms compared to more generic metrics. In this thesis,
we present the results of these algorithms for the prognostic prediction of these distributions utilizing
multiple approaches.
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List of Abbreviations

PHM Prognostics and Health Management
eVTOLS Electric Vertical Take-off and Landing Aircraft
CNN Convolutional Neural Network
LSTM Long Short Term Memory
BNN Bayesain Neural Network
SOH State Of Health
SOC State Of Charge
RUL Remaining Useful Life
RUC Remaining Useful Capacity Tests
EOL End Of Life
MAE Mean Absolute Error
RMSE Root Mean Squared Error
CRPS Continuous Ranked Probability Score
CRPSw Continuous Ranked Probability Score Weighted
RS over Reliability Score Overestimation
RS under Reliability Score Underestimation
stddev Standard Deviation

Table 1: Table of Abbreviations
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1 Introduction

In response to future increase in urban mobility demands and traffic congestion, the adoption of electric
short-range aircrafts, such as electric Vertical Take-off and Landing (eVTOLS) aircrafts are increasingly
regarded as a promising solution. These eVTOLS are often designed for distances of 50-100km and an
average payload of 500-800kg [Pol+19]. The most used battery technology for eVTOLS is Lithium-Ion,
due to the the high energy density and low self-discharge as well as feasible costs[Mit+23]. Managing
batteries poses a significant challenge for eVTOLS operations. Specifically, ensuring continuous monitoring
of the battery’s state-of-health is decisive to ensure the safety and efficiency of eVTOL operations. There
are different studies for battery management for on-ground Electric vehicles using Lithium-Ion, and the
prognostic prediction of the State of Health(SOH) and Remaining Useful Life(RUL). Compared to on-ground
e-vehicles, eVTOLS have three flight phases, take-off, cruise and landing . The take-off and landing phases
are critical, due to the increased battery discharge compared to the cruise phase. The increased discharge
has a direct impact on the SOH of the Lithium-Ion batteries. The aim of this thesis is to compare various
methods for computing the regression problem in the field of prognostic health management, specifically the
computation of the prognostic distribution for the SOH and RUL of Lithium-Ion batteries used by eVTOLS.
The State of Health of a battery reflects its capacity to store and deliver energy compared to its original
design capacity in percentage. The RUL is defined as the number of uses(flights) left before the battery needs
to be replaced. When the RUL of a component reaches zero, it indicates that the component as reached the
end of its lifespan and requires replacement. For the batteries of eVTOLS it has been stated that the RUL
equals zero when the SOH reaches 85%. This thesis will utilize data from the Sony-Murata 18650 VTC-6
cell lithium-ion batteries of Vanaha eVTOL from Airbus. Currently, limited research has been conducted on
the computation of RUL and SOH prediction distributions, with most studies using the C-MAPPS dataset,
which contains data from simulations of turbofans published by NASA. This thesis aims to address this gap
in research by focusing on the problem of computing the prognostic distributions for the SOH and RUL of
eVTOLS batteries.

1.1 Problem description

To provide a solution for the research gap, we will provide a comparison of multiple methods for the com-
putation of predicted prognostic distributions. In prognostic health management (PHM), it is necessary to
prioritize the safety of individual components. For eVTOLS specifically, the safety of the vehicle needs to be
ensured. The prognostic distributions of SOH and RUL estimation give a more comprehensive understanding
of the health of the Lithium-Ion batteries in the eVTOLS. The goal of this thesis project is to compare cur-
rent algorithms for the Vahana eVTOLS dataset. At this moment in time, most research is conducted with
the C-MAPPS dataset. No research has been undertaken concerning prognostic distributions for eVTOLS.
The goal of this thesis can be formulated in the following questions.

How do various approaches for computing prognostic distributions compare with one another for eVTOLS?

To answer the research question the following subquestions will be answered:

• How to implement CNN for the prediction of prognositc distributions for eVTOLS?

• How can we deploy BNN for the prediction of prognostic distributions for eVTOLS?

• How can LSTM be implemented for the prediction of prognostics distributions for EVTOLs?
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• How can an MDN implementation be used for the prediction of prognostic distributions?

• How does the prediction of prognostic distribution for the RUL compare to the RUC tests?

1.2 Thesis Summary

In section 2 we will be discussing background studies. In section 3 we will be discussing the Vanaha dataset,
the different mission profiles and the description of capacity tests. section 4 we will be discussing retreived
features form the Vahana dataset and we will introducing the proposed framework for predicting prognostic
distributions and evaluation of these distributions.In section 5 the overall results are discussed for the SOH,
RUL and RUC. In section 6 we will be discussing the results for the prognostic predictions for the SOH in
more detail, followed by section 7 the results for the prognostic predictions of the RUL in more detail and
in section 8 we will be discussing the results for the prognostic distributions of the RUC in more detail.

2 Literature Review

Prognostic distribution prediction has become an important area of research in Prognostics and Health
Management (PHM) for RUL prediction. Although numerous studies have been conducted on RUL point
prediction, less attention has been given to predicting the distribution of RUL. In this thesis, we aim to
address this gap in the literature.

2.1 Convolutional Neural Network

Recent studies have explored the use of Convolutional Neural Networks (CNNs) for RUL point prediction.
For instance, Li et al. [LDS18] proposed a CNN model for predicting RUL of turbofans without prior exper-
tise and signal processing. Their study demonstrated that the implementation of a CNN model outperformed
other machine learning techniques, such as Neural Networks (NNs), Deep Neural Networks (DNNs), Recur-
rent Neural Networks (RNNs), and Long-Short Term Memory (LSTM), when evaluated on the C-MAPPS
dataset. To mitigate overfitting, Monte Carlo (MC) dropout was used during training. The CNN archi-
tecture was designed with five convolutional layers, which strike a balance between training time and Root
Mean Squared Error (RMSE) score. Increasing the number of layers further reduced the RMSE score, but
this was at the expense of linearly increasing the training time. The results showed that the CNN model
performed better than the other machine learning methods while maintaining reasonable training times. In
the article [PM22], the authors introduced new metrics to evaluate the accuracy, sharpness, and reliability of
prognostic distributions. Unlike general metrics such as Root Mean Squared Error (RMSE) and Mean Abso-
lute Error (MAE), these metrics are specifically designed for the evaluation of distributions. The Continuous
Ranked Probability Score (CRPS) was proposed as a metric for evaluating the accuracy and sharpness of the
predicted distributions. In addition, two metrics, namely α-Coverage and Reliability Score, were introduced
for the evaluation of the reliability of the predicted distributions. To demonstrate the effectiveness of these
metrics, the authors applied them to evaluate the distributions estimated by using a CNN model with MC
dropout, which was based on the architecture proposed by Li et al. in [LDS18]. The prognostic distributions
were created by predicting each test instance multiple times Mi > 1 with the neurons randomly dropped
during each prediction. The study demonstrated that it is possible to generate prognostic distributions using
MC dropout during prediction. This finding generates interest in other methods for using neural networks to
generate prognostic distributions. The proposed metrics provide a comprehensive evaluation of the accuracy,
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Metric D3 BP C2P2 H2
RMSE 13.84 17.76
MAE 9.69 13.22

Table 2: RMSE and MAE of D3 BP(BNN) and C2P2 H2(CNN) for the FD001 subset

sharpness, and reliability of these distributions, which can be used to assess the performance of prognostic
models in practical applications.

2.2 Bayesian Neural Network

In the article [Ben+21], a novel approach for predicting distributions using neural networks is proposed.
Specifically, the authors introduce Bayesian Neural Networks (BNNs) for predicting distributions in the C-
MAPPS dataset. Compared to traditional neural network models, BNNs are different in that they represent
the weights and output as probability distributions rather than single values. BNNs create a distribution
over the predictions as output, which allows for better estimation of the uncertainty associated with the
predictions. In the study, the performance of BNNs is compared to that of Convolutional Neural Networks
(CNNs) for predicting the RUL of turbofans in the C-MAPPS dataset. The results show that the proposed
BNN approach outperforms the CNN approach in terms of prediction accuracy and uncertainty estimation.
Table 2 provides a visual representation of the performance comparison between CNN and BNN in terms
of different evaluation metrics. The study highlights the potential of BNNs for predicting distributions
in various domains where neural network models are utilized. In [RDH22], the authors use a different
approach by implementing a Bayesian Neural Network (BNN) for the C-MAPPS dataset. They utilize
a time window-based solution, where the distributions generated by the BNN are used to create a lower
bound 95% confidence interval for each engine in the dataset. Unlike [Ben+21], where the predicted RUL
is determined by the prediction with the highest probability, in [RDH22], the authors use the distribution
to decide whether maintenance is required based on whether the BNN is over or under predicting the RUL.
The authors compare their method with other state-of-the-art methods and demonstrate that the BNN can
achieve comparable results. This approach has the advantage of providing a more nuanced view of the
predicted RUL by offering a confidence interval, which can help in making informed decisions regarding
maintenance scheduling.

2.3 Multi-Layer Perceptron

In the article [Kim21], the authors introduce several novel applications for Multi-Layer Perceptron (MLP)
models with MC dropout. Dropout is used as a regularization technique to prevent overfitting of the MLP
models. MLP models are one of the classic and fundamental neural network architectures used for solving
classification or regression problems. The proposed approach builds upon the traditional MLP models by
incorporating MC dropout, which generates multiple samples from the network with randomly dropped-out
neurons during inference. The study showcases the versatility of the MLP model with MC dropout in various
applications, including regression, time series forecasting, and classification tasks. The proposed approach
outperforms the traditional MLP models in terms of accuracy and robustness. The study provides evidence
that MLP models with MC dropout can be a useful tool in various domains where neural network models
are utilized. In [Orr+20], the authors compare the performance of support vector machines (SVM) and
Multi-Layer Perceptron (MLP) models for RUL prediction based on sensor readings from a real operating
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centrifugal pump in the SARLUX refinery in Italy. Although the paper does not provide detailed information
about the model configurations, it highlights the potential of using simple and easy-to-implement machine
learning algorithms for forecasting the health status of monitored machines.

2.4 Long Short Term Memory

The article [NM19] proposes a novel approach for predicting the probabilities of RUL falling within different
time windows using a Long Short-Term Memory (LSTM) neural network. This method is different from
the previously mentioned studies, which focus on predicting the entire distribution of RUL. The LSTM
network is trained to predict the probabilities of the RUL falling within different time windows, such as 10,
20, or 30-time units, for the turbofans in the C-MAPPS dataset. The proposed approach shows promising
results, achieving high accuracy in predicting the probabilities of RUL falling within different time windows.
This method has practical applications in real-world scenarios, where it is often more important to predict
the probability of failure within a certain time window than the exact RUL. For example, in maintenance
scheduling, it is more efficient to schedule maintenance based on the probability of failure within a certain time
window rather than waiting for the exact RUL. In [Rem+22], the authors use a combination of Convolutional
Neural Network (CNN) and Bidirectional Long Short-Term Memory (BDLSTM) approaches to predict the
RUL. Their approach involves using two CNN layers to extract feature maps, with each layer having ten
feature maps. The resulting feature maps are then reduced to a single feature map, which is fed into the
BDLSTM path. This path consists of two BDLSTM layers. The authors compare their method to other
methods for the C-MAPPS dataset and show that their hybrid approach outperforms other methods that
use Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and BDLSTM. The authors
use four subsets of the C-MAPPS dataset to demonstrate the effectiveness of their approach in predicting
RUL. Their study highlights the potential benefits of combining CNN and BDLSTM approaches for RUL
prediction, and their findings suggest that this hybrid approach can achieve better performance than other
state-of-the-art methods. The current research on RUL prediction has explored a variety of approaches,
ranging from basic machine learning algorithms that are easy to implement to more complex models that
combine multiple algorithms. The studies also suggest that the C-MAPPS dataset is the most commonly
used dataset for prognostic health management research. While most studies on RUL prediction focus
on point predictions, there are some studies that use probability distributions to provide more detailed
information about the RUL. These studies typically use Bayesian methods or other probabilistic models to
estimate the uncertainty associated with the RUL prediction, and they can provide additional insights into
the health of the monitored system. However, these approaches may also require more complex modeling
and computational resources.

2.5 Mixture Density Network

Mixture Density Networks (MDNs) are a type of neural network that output a set of distributions, which
results in a multimodal distribution. In [Nil+21] MDNs are used for the scheduling of automated radiation
therapy. Where BNNs result in a single mean and standard deviation, MDNs utilize a set of mean values and
standard deviations as well as the importance of each of the distributions. In [FHZ23] MDNs are used for
the estimation of the SOH of Lithium-Ion batteries with uncertainty measurements. In [Kim+23] the use of
an MDN is used for the prediction of the wear of tools under different machine conditions. In [Che+22] the
degradation of battery capacity is predicted using a MDN struture, where the RUL and SOH are predicted.
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3 Data Description - batteries for eVTOLS

In the context of this research focused on eVTOLS, the primary dataset utilized will be the Vahana dataset.
This dataset includes comprehensive information concerning the Lithium-Ion batteries employed within the
Vahana eVTOLS framework. Within this dataset, an array of distinct mission profiles is incorporated. These
mission profiles are essentially composed of a series of interconnected missions, with each profile maintaining
consistent specifications throughout. To elucidate the concept of a mission, it can be deconstructed into
a succession of distinct phases. Each mission initiates with two consecutive charging phases. The initial
phase is characterized as the Constant Current (CC) charging phase, during which the battery receives a
continuous current for recharging purposes. Subsequently, the second charging phase, referred to as the
Constant Voltage (CV) charging phase. In contrast to the CC charging phase, the CV charging phase
employs a stable voltage for battery recharging. Following these charging phases, a resting phase occurs,
followed by the flight phases. The flight phases are sequenced as follows: Take-Off, Cruise, and Landing.
After the completion of the landing phase, a concluding rest phase is initiated. After this overview, the
subsequent chapter will delve into a more intricate exploration of the dataset’s particulars.

3.1 Mission Profile

The Vahana dataset is comprised of a series of files, each containing data related to multiple flight instances.
Within these files, specific mission profiles can be specified, serving to define various variables throughout
a mission. Notably, three mission profiles, namely VAH01, VAH17, and VAH27, are established as baseline
mission profiles. These baseline mission profiles are outlined as follows: During the CC charging phase,
the battery undergoes charging at a rate of 1-C. This phase of CC charging continuous until the battery
voltage reaches 4.2V. Following this, the CV charging phase begins, maintaining a constant voltage of 4.2V
until the current drops below C/30. It’s important to note that the battery temperature experiences an
increase during the charging process. After charging, a cooling period ensues, concluding when the battery
temperature reaches 35 degrees Celsius. Following the resting period, the flight phase begins. Within the
baseline mission profile, the flight is characterized as follows: The take-off phase spans 75 seconds, during
which a discharge rate of 5-C is observed. Subsequently, a cruise phase follows, spanning 800 seconds and a
discharge of 1.48-C. The flight concludes with a landing phase, lasting 105 seconds and featuring a discharge
rate of 5-C.

Figure 1: Battery Voltage of first Capacity test of VAH01
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3.1.1 Contrasting Mission Profiles

As detailed in section 3.1, the datasets VAH01, VAH17, and VAH27 contain the baseline specifications.
However, for the remaining files, certain variables within the mission profile are modified. Table 31 provides
a comprehensive overview of these modifications within the mission profiles. As illustrated in the table,
distinct variations are introduced across each mission profile. These deviations include diverse aspects,
including cruise duration, CC current rate, flight power consumption, CV voltage, and ambient temperature.
In figure 1 the voltage of the battery cell for the first capacity test is visualised with the beginnings each of
the flight phases.

(a) First flight of VAH01, VAH12 and VAH22 (b) CC-rate differences

Figure 2: Contrasting Mission Profile examples

The diverse alterations introduced exhibit varying impacts on battery deterioration. Figure 2 graphically
represents the effects of changes in cruise time and CC-rate. Figure 2a showcases the initial flights of VAH01
(baseline), VAH12, and VAH22. A prominent observation is the comparison of cruise times; while VAH01
adheres to the baseline mission profile cruise duration of 800 seconds, VAH12 decreases its cruise duration
to 400 seconds, and VAH22 increases the cruise duration to 1000 seconds. Evidently, the prolonged cruise
duration directly correlates with a substantial decline in voltage. This decline becomes more pronounced
with increasing cruise duration, signifying a noteworthy correlation between the two variables. An additional
significant alteration relates to the CC-rate. Illustrated in Figure 2b, the graph clarifies differences in CC
charging durations. Where VAH06 has a CC rate of 0.5-C and VAH16 has a CC rate of 1.5-C. The increase
in CC rate shortens the duration of the CC charging duration and a decrease in CC rate extends the CC
charging duration.

3.2 Data Specifications

As we have seen before the data consist of multiple mission profiles with different alternations, where each
mission profile is stored in a separate file. The data consist of the following measurements: Time stamp;
Cell voltage; Cell current; The quantity of energy transferred during the charging process, expressed in watt-
hours(Wh); The quantity of energy transferred during charging, measured in milliampere-hours (mAh); The
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energy expended during discharge, denoted in watt-hours; The energy utilized during discharge, represented
in milliampere-hours (mAh); Surface temperature of the cell, measured in degrees Celsius (°C) Cycle number;
and Cycle segment.

3.3 Impedance Data

Previous research using the eVTOL battery dataset focused on the data mentioned in section 3.2. Since April
2023 the data files containing the impedance of the battery are released. The impedance can be explained
as: the overall resistance that a battery presents to a flow of AC. The Depth of Discharge (DOD) is the
percentage of the remaining charge compared to a fully charged battery. The 1 and 30 seconds refer to
a relax time where the battery is at a current of C/50. The following formula measures the impedance:
|voltagebefore−voltageafter|
|currentbefore−currentafter| The impedance data for each of the mission profiles are in the following order:

• I20%,1 : Impedance at 20% DOD after 1 second of low current

• I20%,30 : Impedance at 20% DOD after 30 seconds of low current

• I60%,1 : Impedance at 60% DOD after 1 second of low current

• I60%,30 : Impedance at 60% DOD after 30 seconds of low current

(a) 20% 1 second (b) 20% 30 seconds

(c) 60% 1 second (d) 60% 30 seconds

Figure 3: Impedance data
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The impedance of a battery will increase over time. The reason for the increase in impedance over time is
due to the chemical reactions inside the battery. The chemical reaction between electrolytes and electrodes
inside the battery has as a result the decrease of power the battery can deliver. This chemical reaction
slows down over time due to the deterioration of the electrodes. In figure 3 each of the measurements are
displayed. Here we can clearly see that the impedance increases over-time with linear characteristics.

3.4 Capacity Tests

Having outlined the sequence of mission phases, comprehended mission profiles, and defined data specifica-
tions, we now introduce the concept of capacity tests. These tests serve the purpose of assessing the battery’s
capacity and will be executed following every 50 missions. The capacity test procedure initiates with dis-
charging the battery at a C/5 rate. This discharge continues until the battery’s voltage reaches 2.5V and
its state of charge (SOC) reaches 0%. Subsequently, a period of rest is observed, during which the battery’s
temperature must drop below 30 ◦C. Following this cooling phase, the charging cycles are initiated.

Capacity test CC duration CV duration Rest period
1 3012s 2004s 870s
5 2695s 2453s 870s
9 2510s 3005s 870s
12 2418s 3262s 870s

Table 3: CC and CV duration for capacity tests of VAH01

Figure 4: CC and CV duration of VAH01
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Figure 4 portrays the CC and CV durations of all capacity tests conducted in VAH01. Within VAH01’s CC
charging phases, a consistent 3A current is used. Given the 1-C charging rate for the CC charging phase, we
determined C = 3A. The first capacity test has a CC duration of 3012 seconds, while the last capacity test
has a CC duration of 2246 seconds. Evidently, this denotes a reduction of 766 seconds in the CC duration.
Notably, the CC duration displays a diminishing trend with increased battery use, whereas the CV duration
demonstrates an opposite pattern. Commencing with a CV time of 2004 seconds in the first capacity test,
the CV duration increases to 3844 seconds in the final test, illustrating an increase of 1840 seconds. At the
end of the CV charging phase the state of charge is 100%. At this point the remaining total capacity of the
battery is measured. Following the charging phases, the initial rest interval takes place until the battery’s
temperature reaches 35◦C. Notably, across all capacity tests in VAH01, a uniform rest period of 870 seconds
is observed. After the rest period, the take-off flighing phase begins. As discussed in section 3.1, this phase
involves a discharge rate of 5-C. This discharge is clearly visible in Figure 1, where the start of the take-off
is indicated by an orange dotted line. After the take-off, the cruise phase follows, which uses less energy at a
rate of 1.48-C. During the landing phase, the energy consumption increases again to 5-C. The reason for the
higher energy consumption during take-off and landing, compared to the cruise phase, is that the eVTOL
needs more energy to change its altitude, which requires more power than maintaining a steady height.

3.4.1 Definitions of SOH, RUL and RUC

To assess the values for the prognostic predictions we will be using SOH, RUL and RUC. The SOH(State of
Health) can be defined as:

SOHm,cc =
Capacitym,cc

Capacitym,0
∗ 100% (1)

where m is the mission profile and cc is the capacity test for which the SOH will be determined. The
RUL(Remaining Useful Life) is the number of remaining flights until the Battery hits the EOL(End of Life).
The RUL can be defined as:

RULm,cc = Tm,EOL − Tm,c (2)

where m is the is the mission profile and cc is the current capacity test. Tm,EOL is the first flight where the
battery reaches the EOL. The RUC(Remaining Useful Capacity tests) is a representation of the RUL, where
the RUC is the remaining capacity tests before the EOL is hit. The RUC can be defined as:

RUCm,cc =
RULm,cc

51
(3)

Where m is the mission profile and cc the current capacity test.

3.5 Mission Selection

In our predictive analysis, we’ll utilize all the profiles available. However, upon data examination, certain
mission profiles pose some issues. In Figure 5, we can see the capacities measured for VAH06, VAH09, VAH26,
and VAH27. Normally, we would expect the battery capacities to decrease gradually over time. However, in
this figure, these mission profiles exhibit capacity tests where the capacity unexpectedly decreases compared
to the successive. Consider VAH06 as an example. In its 16th capacity test, the capacity has dropped to 1641
mAh, whereas the test before measured a capacity of 2553 mAh, and the successive is 2512 mAh. Likewise,
VAH09 displays capacity tests that deviate from the expected pattern.
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(a) VAH06 (b) VAH09

(c) VAH26 (d) VAH27

Figure 5: Capacities of VAH06, VAH09, VAH26 and VAH27

In the 12th capacity test, there is a decline in capacity to 2156 mAh, whereas the successive test records
a capacity of 2689 mAh. The second issue occurs in the 20th capacity test, where the capacity drops to 0
mAh. This occurs due to alternating data, where the charge delivered in every other interval is incorrectly
labeled as discharge. The same issue is observed in both VAH26 and VAH27. Where capacity reads lower
than the successive capacity test.

To rectify these inaccuracies in the mission profiles, we will apply the following resolution method:

capacityi = mean(Capacityi−1, Capacityi+1)

Here, i represents the capacity test of irregular behavior. The red dotted lines in figure 5 represents the
capacities after rectification.
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3.5.1 VAH07

Mission profile VAH07 consist of only 5 capacity tests. The last capacity test has a SOH of 91.56%, therefore
the EOL is not reached. This indicates that the data within VAH07 cannot be utilized for predicting the
RUL, as the RUL cannot be reliably determined. This means that mission profile VAH07 only will be usable
for the SOH prognostic predictions. As a result, the data from mission profile VAH07 can only be used to
predict the SOH. This limitation stems from the fact that RUL prediction requires a scenario where the
EOL is reached, which is not witnessed.

3.5.2 Missing data

For VAH11 and VAH26 the impedance data is missing or incomplete. For VAH11 the impedance data only
starts from cycle number: 868, this has the problem that for the first 17 capacity tests the impedance data is
missing. when it comes to VAH26 all the impedance data is missing, due to the absence of a file for VAH26.

4 Methodology for data-driven prognostics of SOH, RUL and
RUC

In this section we will be defining the methodology for the prediction of the prognostic distributions for the
SOH, RUL and RUC. First we will be discussing the features retrieved and engineered from the dataset
discussed in section 3. Next, we will introduce a framework for predicting prognostic distributions, imple-
menting various approaches. This framework consists of a multi-step process including: feature extraction,
feature importance, proposed algorithms, hypertuning, cross-validation process, preprocessing and evaluation
metrics.

4.1 Features

From the data described in section 3, we can derive a set of features. Specifically, the features outlined in
[Mit+23] demonstrate an understanding of the diverse types of features applicable to the non-impedance
data. These features encompass a comprehensive set aimed at characterizing the data. All features will be
conducted for each of the mission profiles m and each of the capacity tests cc. In addition to these features
we will be exploring the impedance data as a set of added features.

Charging Features

The first features we will discuss are the features related to the charging phases. As we mentioned before
the charging phases consist of a CC charging phase where the current has a constant rate and a CV charging
phase where the voltage will be in a constant. After the CC charging and CV charging phases a rest phase
take place. The features that are introduced are features containing the duration of the CC, CV and rest
phase. This will create a set of three features: deltam,cc

CC , deltam,cc
CV and deltam,cc

REST .

Discharging Features

Moving on to the features associated with the discharging of the flight phases, which contains take-off,
cruise, and landing. In Figure 6, the maximum and mean voltage, along with the discharge values during
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each of these discharge phases, are displayed. The figure demonstrates a noticeable decline in voltage as
time progresses, accompanied by an increase in discharge.

(a) max take-off (b) max cruise (c) max landing

(d) mean take-off (e) mean cruise (f) mean landing

Figure 6: discharge voltage(blue) and capacity(red) of VAH01

We can see these characteristics in relation to the deterioration of the batteries. The lowering of the voltage
over time can be explained with regard to the impedance of the batteries. The discharge capacity and its
variations mirror the load characteristics of the battery, exerting a direct influence on the battery’s aging
process. This introduces the following features for each of the flighting phases:

• V phase,m,c
max , V phase,m,c

min , V phase,m,c
mean and V phase,m,c

var

• Qdisphase,m,c
max , Qdisphase,m,c

min , Qdisphase,m,c
mean and Qdisphase,m,c

var

Temperature Features

As the battery ages, the average temperature of its cell surfaces tend to rise. This trend is illustrated in
Figure 7a, which displays the maximum temperature of the VAH01 battery during its discharge phases.
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(a) max temperature (b) temperature over time

Figure 7: Temperatures of VAH01 discharge phases

Figure 7a shows an increase in temperature for all discharge phases and figure 7b show that the take-off
and landing have the most pronouncing increase in temperature. The increase can be explained by the fact
that the take-off and landing have a larger discharge rate compared to the cruise phase. This introduces
three features: T phase,m,cc

max

Impedance features

As outlined in section 3.3, a recently released dataset contains impedance measurements from capacity tests
of the Vahana datasets. These measurements contain four distinct values, each showing a notable increase
in impedance. Since each measurement corresponds to a different point, we will utilize these measurements
as features. This introduces the following features: Im,cc

20%,1, I
m,cc
20%,30, I

m,cc
60%,1 and Im,cc

60%,30

4.2 Framework for prognostics of SOH, RUL and RUC using machine learning

For the Prognostic distribution prediction we developed a general frame work. The framework consists of a
multi-step process for prognostic distribution. The goal of this framework is to create a uniform frame for
implementing different types of prognostic distribution predictors. The first part of this frame work is the
extraction of the features, which we discussed previous in section 4.1. The feature extraction consist of a
two step method. First we will be retrieving the indexes of each of the moments:

• start of CC

• start of CV

• start of rest period

• start of take-off

• start of cruise

• start of landing
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After retrieving all the indexes the computation of the features can occur, as mentioned in 4.1. For each
of the indexes we can compute the features, importantly is the moment where the CV charging phase is
finalised. At this point for each of the capacity test the current maximum capacity will be measured. Finally
the flight phases will occur and the features of the take-off, cruise and landing will be extracted.

4.2.1 Feature importance

Before the predictions for the prognostic distribution can be executed, we need to determine the importance
of each of the features. In total the feature extraction computes 33 features, of which we will be using the
best 65% of features. For the feature importance we will be using the SHAP(SHapley Addictive exPlana-
tions) values. These values are assigned to each of the features, whereas these values represent the level
of contribution to the output of any machine learning algorithm. To compute the SHAP values we will
be utilizing a Random forest model for which we will be computing the Shap values. Since we have three
different prediction goals, we will be computing the importance for each of these values. In Appendix 10.2
the SHAP values for each of the goal values are shown. As mentioned in section 3.4 the CC and CV phases
decrease and increase respectfully. The SHAP values show the importance of features where over time a
clear increasement or decreasement is visible. Especially the features about the voltage during take-off are
of high importance. The impedance based features are especially of high importance for the prediction of
SOH.

4.2.2 Predicting the distribution of SOH, RUL, RUC - probabilistic prognostics

In the context of prognostic distribution predictions, we will examine two distinct algorithmic approaches.
The first method entails employing Monte Carlo dropout both during training and prediction phases. In
contrast, the second approach involves predicting the mean and standard deviation parameters to characterize
a normal distribution.

MC dropout

We will explore two distinct algorithms for implementing dropout in our study. The first algorithm employs
CNN with MC dropout applied to the hidden layers. The second algorithm utilizes LSTM networks with
MC dropout. Traditionally, dropout is employed to prevent overfitting and enhance generalization. In our
case, for estimating prognostic distributions, each input will undergo multiple sampling instances during
prediction, with dropout enabled during estimation.

Normal distribution

The second category of algorithms we will explore operates on the principle of estimating the mean and
standard deviation of each of the prognostic distribution. These methods utilize the negative likelihood
as the loss function, which inversely represents the likelihood function, used to maximize the probability
of observation undergoing the given models. In training, the goal is to minimize this negative likelihood
function. We will consider four distinct algorithms for this purpose. The first two algorithms involve
CNNs and LSTMs, where the output comprises the mean and standard deviation. The third algorithm is
a BNN, which differs from CNNs or LSTMs by incorporating distributions as weights in its layers, rather
than conventional values. The objective of a BNN is to integrate Bayesian principles into neural network
architecture, resulting in a model that not only predicts output but also accounts for prediction uncertainty.

18



Figure 8 illustrates the conceptual idea behind the algorithms that yield the mean and standard deviation
of the normal distributions.

Figure 8: NN normal distribution Scheme

In the depicted architecture, the input layer is configured with dimensions of 2x24, followed by a variable
number of hidden layers. These hidden layers may consist of CNNs, LSTMs, or BNNs, depending on the
chosen algorithm. Regardless of the specific algorithm, all models share a common output layer responsible
for generating the Mu (mean) and Sigma (standard deviation) values. In addition to the aforementioned
algorithms, we will also examine a MDN. While the previous algorithms produce outputs conforming to
a normal distribution, the MDN is designed to incorporate multiple normal distributions. The output of
the MDN comprises multiple means and standard deviations, each corresponding to distinct distributions.
Moreover, weights are assigned to each distribution to indicate its relative importance in the prediction
process.

4.2.3 Leave one out - Cross Validation

To validate the performance of each of the algorithms we will be utilizing the leave-one-out cross validation
method, where cross validation is used where each mission profile will serve as a validation set, and the
remaining of the mission profiles will be the training set. Consequently, we will have 21 distinct validation
sets for the SOH and 20 for the RUL and RUC respectively, across all algorithms. For each of these
validation sets, the evaluation process will consist of three main steps: hyperparameter tuning, training, and
evaluation. Initially, hyperparameter tuning will be conducted to optimize the parameters of the algorithms.
Subsequently, the algorithms will be trained on the training data, utilizing the optimized hyperparameters.
Finally, the trained models will be tested and evaluated on the respective validation sets to assess their
performance. This comprehensive evaluation process ensures that each algorithm is rigorously assessed
across multiple validation sets, providing a robust understanding of its effectiveness in predicting SOH,
RUL, and RUC.
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4.2.4 Preproccesing

For preprocessing the data before inputting it into each algorithm needs to be reshaped, we will merge
two capacity tests into a single input. Specifically, we will select the 24 most important features from each
capacity test and combine them into a single input. This transformation will result in a data format of
24 features by 2 capacity tests. thereafter, for each of these input instances, we will utilize the output
from the second capacity test as the target output for training and evaluation. For instance, if we were to
forecast the SOH of the initial preprocessed input from VAH01, it would comprise data from the first and
second capacity tests, with the intended prediction focusing on the SOH during the second capacity test.
This preprocessing step ensures that each algorithm receives consistent input data format and enables the
utilization of pertinent information from multiple capacity tests to enhance predictive accuracy.

4.2.5 Hyperparameter tuning

After preprocessing, the next step involves hyperparameter tuning, for which we’ll utilize the Keras Tuner
library. This library offers various methods for hyperparameter tuning, each with its own characteristics.
One such method is the GridSearch tuner, which extensively explores all possible combinations of hyper-
parameters. While effective, this approach becomes computationally expensive when dealing with large
search spaces. For instance, tuning a simple neural network with 1 to 5 layers and 50 possible neurons per
layer would result in more then a billion possible combinations. Another approach is the RandomSearch
tuner, which randomly samples the search space a certain number of times to find the best combination
of hyperparameters. If the number of samples used equals the maximum possible combinations, Random-
Search effectively functions as GridSearch. However, the method we’ll utilize for hyperparameter tuning is
Bayesian Optimization. This technique utilizes Bayesian probabilistic methods to efficiently search for the
optimal set of hyperparameters in as few iterations as possible. In this optimization process, there remains
a constraint on the number of trials that must be specified. As the Bayesian optimizer identifies a set of
hyperparameters close to the optimal configuration, it will approach the lower bound. This indicates that
the algorithm has start reaching a point where no further significant improvement can be achieved. Notably,
Bayesian Optimization requires setting certain parameters before initiation, namely the α and β values.
Determining suitable values for α and β typically involves a trial-and-error process. By leveraging Bayesian
Optimization, we aim to streamline the hyperparameter tuning process while ensuring optimal performance
of the algorithms.

α : The expected amount of noice in the observed performance of the Bayesian optimizer(default: 0.0001)

β : The factor that balances exploration and exploitation, whereas the higher the value the greater the
exploration(default: 2.6)

For hyperparameter tuning across the various algorithms, we will rely on the BayesianOptimizer due to its
ability to balance resource utilization with performance effectively. When configuring the BayesianOptimizer,
the choice of α and β values is crucial, with particular emphasis on the β value. This parameter determines the
degree of greediness manifested by the optimization process as it traverses the search space. As represented
by Grid Search, even a modestly complex scenario involving a fully connected neural network with 1 to
5 layers and 50 potential neurons per layer results in an expansive search space of more then a billion
options. This example underscores the exponential growth of the search space as algorithm complexity
increases. Therefore, it’s imperative to wisely select hyperparameters to balance computational resources
and performance effectively. Furthermore, each algorithm will necessitate exploration of a distinct set of
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hyperparameters, reflecting the unique characteristics and requirements of each model. By tailoring the
hyperparameter search to the specific needs of each algorithm, we aim to maximize performance while
mitigating computational overhead.

CNN

First we will be exploring the hyperperameters for the CNN using Mc dropout. Here we have the following
hyperparameters:

• Number of convolutional layers.

• Number of kernals for each layer.

• Size of these kernals for each layer.

• Type of activation function used for each layer.(tanh, relu)

• Number of units in the last dense layer.

• Type of activation function for dense layer.(tanh, relu)

In addition to hyperparameters, several other values must be determined for hyperparameter tuning,
including the α and β values discussed earlier, as well as the number of trials and epochs. By default, we will
use the default values for α and β. The number of trials and epochs during hyperparameter tuning plays
a crucial role in the optimization process. Increasing the number of trials provides a broader exploration
of the search space, aiding in better understanding the optimal hyperparameters. However, there exists a
point of diminishing returns, where additional trials may not significantly improve optimization outcomes.
Similarly, increasing the number of epochs during hyperparameter tuning enhances the model’s training
duration, potentially leading to improved performance. However, this also incurs escalating computational
costs until reaching a point of diminishing returns. For CNN models where the output comprises the Mean
and Standard Deviation, the hyperparameter tuning process largely remains consistent. However, differences
may arise in the final layer, particularly with the specialized independentnormal layer. Notably, although
the types of hyperparameters for CNNs with MC dropout and CNNs with normal distribution may appear
similar, it’s essential to recognize that their tuned parameters may differ due to the distinct nature of their
outputs.

LSTM

Next, we delve into the essential hyperparameters for the LSTM models. Similar to the CNN implementa-
tions, both the LSTM model employing MC dropout and the one utilizing a Normal distribution as output
follow a similar principle. However, it’s crucial to note that the hyperparameters for LSTM models differ
from those of CNNs. The following hyperparameters require tuning for the LSTM models:

• Number of LSTM layers.

• Number of LSTM units in each layer.

• Type of activation function for each layer: (tanh, relu, sigmoid)

• Number of units in the last dense layer.

• Type of activation function for the last layer: (tanh, relu, sigmoid)
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BNN

In the context of the BNN, specialized layers incorporate units utilizing prior and posterior distributions.
The hyperparameters for tuning include:

• Number of bayesian layers.

• Number of units for each layer

• Type of Activation function: (tanh, relu, sigmoid).

• Number of units in the last dense layer.

• Type of activation function for the last layer: (tanh, relu, sigmoid)

• kl-weights

• kl-use exact

As evident from the hyperparameter set, besides the typical parameters like the number of layers and units in
each layer, more intriguingly, the kl-weight and kl-use-exact parameters are also subject to hypertuning. The
kl-weight parameter serves as the scale for the kl divergence loss between the prior and posterior distributions.
On the other hand, the kl-use-exact value determines whether the kl divergence will be employed instead of
Monte Carlo approximation.

MDN

In contrast to the previously mentioned algorithms, the shape of the output is also determined during
hyperparameter tuning. therefore, for the MDN, the number of normal distributions that will be outputted
is subject to hypertuning. For the MDN, the following hyperparameters will be considered:

• Number of normal distributions in the output

• Number of hidden dense layers

• Number of units in each hidden dense layer

• Activation function in each of the dense layers.

4.2.6 Evaluation Metrics

To evaluate the algorithms we will be using a set of metric scores to evaluate the performance. We can define
the metrics in to sets. The first two metrics are the MAE and RMSE scores. These scores use the mean
value of the predicted prognostic distributions, comparing to the actual values. Both MAE and RMSE are
defined as followed:

The Mean Absolute Error (MAE) is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (4)

22



The Root Mean Squared Error (RMSE) is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

where n is the number of observations, yi is the actual value, and ŷi is the predicted mean value.

novel metrics

The second set of metrics that will be utilized are the novel metrics mentioned in section 2.1. These metrics
define aspects of the distribution that will be lost when using just the mean of the distribution for evaluation.
The first novel metric that will be used is the CRPS score which gives a score for the accuracy and sharpness
of the distributions. The CRPS can be defined as follows:

CRPS =
1

N

N∑
i=1

CRPSi (6)

CRPSi =

∫ ∞

−∞
(Fŷi

(x)− I{yi ≤ x})2dx (7)

with I(α)i =
{

1, yi ≤ x
0, yi > x

(8)

As seen in previous studies about PHM systems overestimating is more harmfull compared to underesti-
mating. Since overestimation can lead to severe problems and dangerous situations and failures. To address
this, the weighted version of the CRPS score is used, which penalizes the overestimation of predictions using
a user-defined parameter, 0 ≤ β ≤ 2. The weighted CRPS score is defined as follows:

CRPSW =
1

N

N∑
i=1

CRPSW
i (9)

CRPSW
i = (2− β)

∫ yi

−∞
(Fŷi(x)− I{yi ≤ x})2dx+ β

∫ ∞

yi

(Fŷi(x)− I{yi ≤ x})2dx (10)

While the CRPS score covers accuracy and sharpness, reliability can be measured using the α-Coverage
metric introduced in [PM22]. The α-Coverage is defined as follows:

α− Coverage =
1

N

N∑
i=1

I(α)i, (11)

with I(α)i =
{

1, yi ∈ [ŷ0.5−0.5α
i , ŷ0.5+0.5α

i ]
0, otherwise

(12)

Here, the level of uncertainty is deemed to be overestimated if α percentage of all the test instances are
within the interval, otherwise, it is considered to be underestimated [PM22]. The last metric introduced
is the RS-score, which is different from the α-coverage as it evaluates the uncertainty across all α values.
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The RS-score is computed by using the reliability curve, which is the difference between a certain α and the
width of the credible interval. The RS-score is then computed by measuring the area between the reliability
curve and the ideal curve. The ideal curve is defined as the curve where the coverage is equal to α. The
RS-score is defined as follows:

RSunder =

∫ 1

0

I{C(α) ≤ α}(α− C(α))dα (13)

RSover =

∫ 1

0

(1− I{C(α) ≤ α})(C(α)− α)dα (14)

RStotal = RSunder +RSover (15)

with I{C(α) ≤ α} =

{
1, C(α) ≤ α
0, Otherwise

(16)

Combining the generic scores such as the MAE and the RMSE and the different novel metrics we can
get a better and having more meaningfull understanding of performance of the predicted distributions.

5 Overall results

In this section, we will provide an overview of the results for SOH, RUL, and RUC , which will be presented in
separate sections (6, 7, and 8) in more detail. We will evaluate the overall performance of all the algorithms
using the MAE from the general metrics, which gives an initial representation of the performance of the
algorithms. Additionally, we will consider the CRPS, RS under and RS over for a better understanding
of the prognostic distributions. For SOH predictions, the LSTM with MC dropout emerged as the best-
performing algorithm based on MAE. However, when considering CRPS and RS under, the MDN exhibited
superior performance. Moving on to RUL predictions, the MDN showes strong performance in terms of
MAE. However, when examining CRPS and RS under, both the CNN with MC dropout and LSTM with
mean stddev output demonstrated competitive performance. Lastly, for RUC predictions, the LSTM with
mean stddev output performed the best based on CRPS. Overall, while certain algorithms performed better
in terms of MAE, considering additional metrics such as CRPS and RS under provided a more comprehensive
understanding of their predictive capabilities. It is essential to assess algorithm performance across various
metrics to make informed decisions about their suitability for specific applications.

Algorithms
MAE CRPS

SOH RUL RUC SOH RUL RUC

CNN
dropout 1.58 70.10 1.33 1.443 64.093 1.243
mean 2.37 79.36 1.60 2.760 62.402 1.284

LSTM
dropout 1.29 81.23 1.31 1.172 80.503 1.319
mean 1.86 69.11 1.42 2.381 62.108 1.180

MDN 1.39 66.66 1.44 1.088 62.881 1.377
BNN 4.56 161.72 2.08 3.130 114.403 1.586

Table 4: Overview of metrics for the SOH, RUL and RUC
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Algorithms
rs under rs over

SOH RUL RUC SOH RUL RUC

CNN
dropout 0.368 0.345 0.378 0.000 0.000 0.000
mean 0.043 0.049 0.153 0.005 0.000 0.000

LSTM
dropout 0.423 0.453 0.458 0.000 0.000 0.000
mean 0.057 0.171 0.257 0.006 0.000 0.000

MDN 0.280 0.382 0.378 0.000 0.000 0.000
BNN 0.001 0.045 0.036 0.035 0.002 0.034

Table 5: RS scores of for the SOH, RUL and RUC

In Table 4 and 5, an overview of the metrics is provided, with green cells indicating the best-performing
algorithm and yellow indicating the second best performing. Based on the MAE, the LSTM with MC
dropout emerges as the best-performing algorithm, as it performs best for both SOH and RUC predictions.
The MDN follows closely, performing second best for SOH and best for RUL predictions. Comparing MAE
and CRPS, the LSTM with mean stddev output emerges as the best-performing algorithm. As depicted
in Table 4, the LSTM based algorithms are the overall best-performing algorithms when considering both
MAE and CRPS. Additionally, considering the RS under score provides insight into the underestimation
tendencies of each algorithm. The LSTM with MC dropout exhibits the highest rs under value, indicating
a greater degree of underestimation across SOH, RUL, and RUC predictions. Understanding under and
overestimation tendencies is crucial for PHM systems. Notably, the BNN is the only algorithm showing a
higher overestimation than underestimation, highlighting its unique behavior.

6 Estimating the distribution of SOH (probabilistic prognostics)

In this section we introduce the results for the prognostic distribution prediction of the SOH in more detail.
For all algorithms we will be using the 24 most important features as we mentioned in section 4.2.1. These
importance’s are computed using the shap values. After the preprocessing using the shap valued importances
the hypertuning the algorithms will be done to determine optimized hyper parameters for each of the
algorithms. After hypertuning each algorithm using the hypertuned parameters will be fitted on the training
data. Finally we will predict the prognostic distributions and compute to sets of metrics for the evaluation
of the algorithms.

6.1 Hypertuning results SOH

In the hyperparameter tuning process for the SOH, each fold in our leave-one-out approach required indi-
vidual hyperparameter tuning. This meticulous approach ensures a fair and consistent evaluation of the
performance of each algorithm. In many computational-heavy machine learning problems necessitating hy-
perparameter tuning, it’s customary to conduct tuning on a small subset of the data. To maintain fairness
and consistency, we performed hyperparameter tuning for each fold in the leave-one-out approach. Given
that we utilize the leave-one-out approach for each algorithm, this implies that we conduct hyperparameter
tuning 20 times for SOH and 19 times for RUL and RUC. Consequently, the hyperparameter tuning will vary
for each fold, yielding a set of hyperparameters. We present a general configuration for each algorithm.‘It is
important to mention the hypertuning will result in an optimized set of hyperparameters that is optimized
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within the search space given a number of trials. When recomputing the hyperparameters a other set of
optimized hyperparameters can be selected, given random seeds. Since the goal of hypertuning is finding a
set of hyperparameters that work well given the training data. For each algorithm, we established a fixed
number of trials during hyperparameter tuning, specifically 150. Each of these trials will conduct 60 epochs.
These values will be the same for the SOH, RUL and RUC. This approach yields finely tuned parameters
while ensuring computational efficiency remains satisfactory. In Table 1 and Table 2, we illustrate an exam-
ple of one of the hyper-tuned CNNs. Notably, for the CNN with mean and standard deviation output, 14
out of the 21 hyper-tuned configurations converge to the same set of hyperparameters for the model.

Conv layers 3
Conv 1 filters 71
Conv 1 activation tanh
Conv 2 filters 101
Conv 2 activation relu
Conv 3 filters 101
Conv 3 activation relu

Table 6: CNN with dropout

Conv layers 3
Conv 1 filters 121
Conv 1 activation tanh
Conv 2 filters 11
Conv 2 activation relu
Conv 3 filters 11
Conv 3 activation tanh

Table 7: CNN with mean stddev

In the case of the CNN with MC dropout, the β value defaults to 2.6, which provides sufficient exploration
across the search space. However, for the CNN with mean and standard deviation output, the β value settles
at 18, indicating a necessity for increased exploration across the search space. Since the β value is not a
hypertunable value this value will need to be determined by trial and error.

LSTM

In the LSTM hyperparameter tuning process with dropout, the tuning varies significantly across each fold,
although all models ultimately converge to utilizing 3 LSTM layers. It’s worth noting that only the ReLU
and tanh activation functions are employed. Alternatively, in the LSTM with mean and standard deviation
output, the sigmoid activation function is tuned. Furthermore, the number of layers differs among 3, 4, and
6 for the LSTM with mean and standard deviation output.

LSTM layers 3
LSTM 1 units 176
LSTM 1 activation relu
LSTM 2 units 166
LSTM 2 activation tanh
LSTM 3 units 76
LSTM 3 activation tanh

Table 8: LSTM with dropout

LSTM layers 3
LSTM 1 units 18
LSTM 1 activation sigmoid
LSTM 2 units 142
LSTM 2 activation sigmoid
LSTM 3 units 14
LSTM 3 activation relu

Table 9: LSTM with mean stddev

For the LSTM we see a same behaviour as with the CNN for the β value. The LSTM with MC dropout
stayes on the default value of 2.6, whereas the value for the LSTM with mean stddev output is needed to
increase to 12 to explore enough over the search space.
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MDN and BNN

In the case of the MDN, the number of output distributions stands out as one of the most crucial hyper-
parameters. During hyperparameter tuning, the options typically include 2 or 5 distributions. For all but
one model, hyperparameter tuning results in 6 dense layers. On the other hand, for the BNN, all models
tune to the same set of hyperparameters. These results are shown in Table 11. For the BNN, the maximum
number of units for hyperparameter tuning was set to 64, as increasing the number of units in each Bayesian
layer significantly extends the tuning duration due to the computational complexity of the BNN compared
to other algorithms. Interestingly, the BNN consistently yields the same hyperparameters across all 21 folds,
indicating uniformity and robustness across different subsets of the data.

MDN output dimensions 2
Dense layers 6
Dense 1 units 128
Dense 1 activation relu
Dense 2 units 128
Dense 2 activation tanh
Dense 3 units 8
Dense 3 activation tanh
Dense 4 units 128
Dense 4 activation relu
Dense 5 units 8
Dense 5 activation tanh
Dense 6 units 8
Dense 6 activation relu

Table 10: MDN

BNN layers 2
BNN 1 units 6
BNN 1 activation relu
BNN 1 kl use exact True
BNN 1 kl weight 0.0001
BNN 2 units 24
BNN 2 activation relu
BNN 2 kl use exact False
BNN 2 kl weight 0.0001
dense neurons 198

Table 11: BNN

For both the MDN and BNN, the β value is determined to be 16. This value is chosen to ensure sufficient
exploration across the search space during the hyperparameter tuning process.

Overall configuration

For all algorithms, we will employ a ReLU activation function with a maximum value of 100. This choice is
based on the understanding that the SOH value cannot exceed 100, since the SOH can’t be above the 100%.

6.2 Results SOH

In this section, we present the comprehensive results for each of the algorithms. Table 12 displays the MAE
and RMSE, providing an overview of the performance of each algorithm. From the results, it is evident
that in terms of these generic metrics, the LSTM employing MC dropout performs the best, followed by the
MDN. Alternatively, the BNN exhibits the poorest performance for predicting SOH.
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Algorithms MAE RMSE

CNN
dropout 1.58 1.88
mean 2.37 2.90

LSTM
dropout 1.29 1.62
mean 1.86 2.18

MDN 1.39 1.63
BNN 4.56 5.45

Table 12: SOH Overall results

In Appendix 10.3, the general metrics for each of the VAH profiles are presented, along with the overall
general score. Initially, let’s focus on the baseline mission profiles (VAH01, VAH17, VAH27). Based on the
overall scores, the LSTM with MC dropout is the best performer. For VAH01, the LSTM with MC dropout
performs better compared to the other algorithms, achieving an MAE score of 1.1 and an RMSE score of
1.3, compared to the second best performer, the MDN, with scores of 2.29 and 2.45, respectively. however,
the BNN outperforms the CNN with mean and stddev output, scoring an MAE and RMSE of 3.48 and 4.22,
respectively, compared to 4.04 and 5.59 for the CNN. Moving to VAH17, the LSTM with MC dropout again
leads the pack with an MAE of 0.72 and an RMSE of 0.81, closely followed by the MDN with scores of
0.84 and 0.91, respectively. The CNN with mean and standard deviation output performs the poorest for
VAH17, with scores of 5.34 and 7.17, while the BNN follows with scores of 4.42 and 5.51. For the last baseline
profile, VAH27, we observe the MDN outperforming the LSTM with MC dropout, with scores of 0.62 and
0.71, respectively, compared to the LSTM’s scores of 0.86 and 0.91. In Figure 9, we illustrate four resulting
distributions for the LSTM with MC dropout. Figures 9a and 9b depict the 4th and 6th distributions for
VAH01. The 4th input has a mean predicted value of 91.92 and a true value of 91.85, while the 6th input
has a predicted mean of 89.43 and a true value of 89.42, indicating distributions that predict values close to
the true SOH with differences of 0.07 and 0.01, respectively.

VAH07 represents a distinct mission profile utilized solely during SOH prediction due to its unique
characteristic of not reaching the 85% capacity test limit. Upon examining the performance of various
algorithms for VAH07, it becomes evident that all algorithms, except for the CNN with MC dropout, exhibit
notably inferior performance compared to other profiles. Figures 9c and 9d illustrate the distributions of
the initial and final inputs for VAH07, respectively. The initial distribution of VAH07 displays a difference
of 4.29% between the predicted mean and the true value, while the final distribution exhibits a difference
of 5.63%. This variance can be attributed to VAH07 having the fewest capacity tests among all profiles.
Moreover, considering the significance of all features, it is apparent that VAH07’s overall inferior performance
may also be attributed to factors such as the duration of CC and CV time. Notably, Appendix 10.2
demonstrates that the feature related to CV duration holds high importance, with VAH07 distinguishing
itself from baseline missions by maintaining a CV voltage of 4.0V, as opposed to the standard 4.2V. To
validate these suspicions, we will examine VAH23, which is the only other mission profile featuring a variation
in the CV voltage. Interestingly, even the most effective algorithm, namely the LSTM with MC dropout,
achieves only modest scores of 2.91 and 3.26, respectively. Figure 10 illustrates the CC and CV values
for the initial five capacity tests for VAH07 alongside those for each baseline mission profile. Here, it
becomes evident that the CC and CV values of VAH07 are significantly lower compared to those of the
baseline missions. Additionally, the figure depicts the CC and CV values for VAH23, the only other mission
profile with variations in CV voltage, set at 4.1V in this instance. As demonstrated in Appendix 10.3, the
performance of all algorithms for VAH23 is notably poorer. Particularly, when considering the LSTM with
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(a) VAH01 4th input (b) VAH01 6th input

(c) VAH07 1st input (d) VAH07 4th input

Figure 9: LSTM with MC dropout distributions VAH01 and VAH07
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MC dropout, the MAE and RMSE are 2.91 and 3.26, respectively, rendering VAH23 the second poorest
performing mission profile, following VAH07. This observation underscores the significant impact of CV
voltage variations on the accuracy of SOH predictions.

Figure 10: CC and CV values VAH07

Novel metrics

The Generic metrics offer a broad overview of algorithm performance for SOH predictions, relying solely on
the mean values of each distribution. However, this approach overlooks the unique characteristics inherent
in each distribution. In Appendix 10.4, a comprehensive summary of all novel metrics is presented. As
elaborated in section 4.2.6, these novel metrics provide a more nuanced understanding of the intricacies
within prognostic predicted distributions.

Algorithms CRPS CRPS weighted rs over rs under

CNN
dropout 1.443 1.555 0.000 0.368
mean 2.780 2.760 0.005 0.043

LSTM
dropout 1.172 1.398 0.000 0.423
mean 2.381 2.248 0.006 0.057

MDN 1.088 1.203 0.000 0.280
BNN 3.130 2.916 0.035 0.001

Table 13: SOH novel metric results

In Table 13, we present a comprehensive overview of the novel metrics for SOH predictions. Notably,
the CRPS and CRPS weighted scores, alongside the rs over and rs under scores, offer valuable insights
into the characteristics of the predicted distributions. Understanding these over and underestimations is
crucial in PHM, especially in scenarios where overestimation can lead to significant consequences, such as
early component replacement in EVTOL batteries to avoid in-flight failures. Analyzing the CRPS scores,
which evaluate distribution accuracy and sharpness, we observe that the MDN outperforms the LSTM with
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MC dropout, scoring 1.088 and 1.172, respectively. This suggests that the MDN exhibits better sharpness
in its predictions compared to the LSTM with MC dropout. Considering the rs over and rs under scores,
which offer insights into over and underestimations, we note that the CNN, LSTM with MC dropout, and
MDN exhibit minimal to no overestimation, as indicated by their rs over score of 0.000. However, these
algorithms display varying degrees of underestimation. Conversely, the CNN, LSTM with mean stddev
output, and BNN demonstrate some overestimation. Particularly, the BNN shows an overall rs over score of
0.0356, indicating that predictions from the CNN, LSTM with MC dropout, and MDN are safer in critical
component operations. Despite the conventional metrics highlighting VAH07’s poorer performance due to
data variations, this behavior is also reflected in the novel metrics, where the MDN still outperforms VAH07
with a CRPS score of 8.178. Overall, based on the novel metrics, both the LSTM with MC dropout and
MDN exhibit commendable performance with decent CRPS scores and no overestimation

7 Estimating the distribution of RUL (probabilistic prognostics)

In the following section, we will delve into the results concerning the prognostic predicted distributions of
the RUL. Similar to the preceding section, we will utilize the 24 most crucial features identified through
computed SHAP values, as outlined in section 4.2.1 for RUL predictions. Subsequently, we will discuss the
outcomes of hyperparameter tuning for each algorithm, followed by the evaluation results employing both
general metrics and novel metrics. It’s important to note that for RUL predictions, VAH07 cannot be utilized
due to its failure to reach the EOL threshold of 85%.

7.1 Hypertuning results RUL

For hyperparameter tuning, a similar approach as with the SOH predictions will be employed. For each
algorithm we will be utilizing 150 trials and 60 epochs in each trial. Firstly, we will examine the hypertuned
parameters of the CNNs, followed by the LSTMs, and finally, the MDN and BNN. In Table 14, the hypertuned
parameters for the CNNs are presented. Notably, there are 3 convolutional layers, contrasting with Table
7, which represents 4 convolutional layers. For both the CNN with MC dropout and CNN with mean
stddev output, the default parameter α is utilized. The default value of β is 2.6 for the CNN with Monte
Carlo dropout, while for the CNN with mean stddev output, it requires a significantly increased value of
18. As discussed in section 4.2.5, β indicates the factor determining the exploratory nature of the Bayesian
Optimization tuner within the search space.

Conv layers 3
Conv 1 filters 211
Conv 1 activation tanh
Conv 2 filters 91
Conv 2 activation tanh
Conv 3 filters 171
Conv 3 activation relu

Table 14: CNN with dropout

Conv layers 3
Conv 1 filters 21
Conv 1 activation tanh
Conv 2 filters 111
Conv 2 activation relu
Conv 3 filters 21
Conv 3 activation tanh
Conv 4 filters 191
Conv 4 activation tanh

Table 15: CNN with mean stddev
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LSTM

Following the analysis of CNNs, let’s delve into the hyperparameters for both LSTM algorithms. For the
LSTM with MC dropout, the hypertuning process concludes with 3 layers, while for the LSTM with mean
stddev output, it settles on 6 LSTM layers. For both algorithms, default values are employed for the α and β
parameters in the case of LSTM with MC dropout. However, for the LSTM with mean stddev output, the β
value is utilized. Notably, the hypertuning process determines a β value of 12, indicating that similar to the
CNN with mean stddev output, there is a need for increased exploration to optimize the hyperparameters.

LSTM layers 3
LSTM 1 units 256
LSTM 1 activation relu
LSTM 2 units 196
LSTM 2 activation tanh
LSTM 3 units 196
LSTM 3 activation tanh

Table 16: LSTM with dropout

LSTM layers 6
LSTM 1 units 202
LSTM 1 activation tanh
LSTM 2 units 178
LSTM 2 activation relu
LSTM 3 units 238
LSTM 3 activation relu
LSTM 4 units 214
LSTM 4 activation tanh
LSTM 5 units 98
LSTM 5 activation relu
LSTM 6 units 190
LSTM 6 activation relu

Table 17: LSTM with mean stddev

MDN and BNN

Unlike the previous algorithms which converged to a majority choice of hyperparameters, the MDN exhibits
a 50% split, resulting in either a 3-layer or 4-layer MDN, as shown in Table 18. On the other hand, all folds
for the BNN converge to a 2-layered architecture, with 6 and 24 units respectively, culminating in a dense
layer comprising 198 units. Similar to the CNN and LSTM with mean and stddev output, both the MDN
and BNN, which output multiple and a single normal distribution respectively, necessitate an increased β
value of 16 to ensure adequate exploration of the search space.
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MDN output dimensions 3 3
Dense layers 3 4
Dense 1 units 92 60
Dense 1 activation tanh tanh
Dense 2 units 82 106
Dense 2 activation relu relu
Dense 3 units 104 124
Dense 3 activation relu relu
Dense 4 units *** 12
Dense 4 activation *** relu

Table 18: MDN

BNN layers 2
BNN 1 units 6
BNN 1 activation relu
BNN 1 kl use exact True
BNN 1 kl weight 0.0001
BNN 2 units 24
BNN 2 activation relu
BNN 2 kl use exact False
BNN 2 kl weight 0.0001
dense neurons 198

Table 19: BNN

7.2 Results RUL

In this section, we discuss the results obtained for each algorithm concerning the RUL predictions. Similar to
the SOH predictions, we compare the outcomes of generic metrics with novel metrics. Table 20 presents the
generic results for probabilistic distribution predictions, revealing that for both MAE and RMSE scores, the
MDN achieves the best performance, with a MAE of 66.66 flights and an RMSE of 76.25 flights, respectively.

Algorithms MAE RMSE

CNN
dropout 70.10 81.25
mean 79.36 92.39

LSTM
dropout 81.23 91.17
mean 69.11 79.74

MDN 66.66 76.25
BNN 161.72 188.62

Table 20: RUL Overall results
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(a) VAH01 1st input (b) VAH02 1st input

(c) VAH09 1st input (d) VAH22 1st input

(e) VAH22 2nd input (f) VAH30 1st input

Figure 11: MDN for VAH01, VAH02, VAH09, VAH22 and VAH30

In Appendix 10.5, the generic metrics are provided for each algorithm across various mission profiles.
Firstly, focusing on the baseline mission profiles, we observe that for VAH01, the CNN with mean stddev
output achieves the best performance with a MAE of 69.74. Conversely, for VAH17, the LSTM with mean
stddev output emerges as the top-performing algorithm, followed closely by the MDN. Similarly, for VAH27,
the LSTM with mean stddev output outperforms other algorithms, with the LSTM with MC dropout as the
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runner-up. Unlike in the SOH predictions where VAH07 consistently underperformed due to variations in
CV voltage, in the RUL predictions, different mission profiles exhibit varying levels of performance dispar-
ities. As discussed in section 4.2.1, the maximum temperature during landing emerges as a crucial factor.
Notably, VAH09 (20◦C), VAH25 (20◦C), and VAH30 (35◦C) perform relatively poorly compared to other
mission profiles. Variations in ambient temperature, typically set at 25 degrees, significantly impact the
maximum temperature during landing. For the MDN, which achieves the best overall performance with a
MAE of 66.66, the MAE for VAH09, VAH25, and VAH30 are notably higher at 127.15, 110.22, and 117.14,
respectively. alternatively, for the second-best performing algorithm, LSTM with mean stddev output, the
MAE scores for these three mission profiles are 137.36, 141.19, and 105.27, resulting in an average MAE of
69.11. In Figure 12, the plotted maximum temperatures for each phase are shown for the first 10 capacity
tests. It is evident that the temperature trends for the baseline mission profiles remain relatively close to-
gether, whereas VAH30, with a temperature increase of 10◦ Celsius, exhibits significantly higher maximum
temperatures for each phase during flight. Similarly, VAH09 and VAH25 display lower maximum tempera-
tures compared to the baseline missions. This discrepancy in temperatures compared to the baseline mission
profiles highlights the effectiveness of maximum temperature as a representation of battery age. An intrigu-
ing observation is the low MAE of VAH22, particularly for the LSTM with Monte Carlo dropout, which
achieves MAE scores of 8.83 and 7.21 compared to the averages of 66.66 and 81.23 for these algorithms,
respectively. However, it is notable that the performance of RUL predictions is less Explicable compared
to SOH predictions. In Figure 11, four first input distributions are displayed for VAH01, VAH02, VAH09,
VAH22, and VAH30. VAH01 and VAH02 exhibit close predictions to the true value, with the true value
falling within the distribution range. Conversely, VAH09 and VAH30, which generally perform worse overall,
display notable discrepancies. Specifically, VAH09, with a lower ambient temperature of 20◦C, demonstrates
significant overestimation in the first input distribution. Similarly, for VAH30, where the first input is un-
derestimated. In contrast, VAH22, known for its accurate overall predictions, displays a prognostic predicted
mean that slightly overestimates the true value.

Figure 12: Max Temp for each flight phase
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Novel metrics

Algorithms CRPS CRPS weighted rs over rs under

CNN
dropout 64.093 59.434 0.000 0.345
mean 62.402 53.761 0.000 0.049

LSTM
dropout 80.503 87.999 0.000 0.453
mean 62.108 51.670 0.000 0.171

MDN 62.881 57.323 0.000 0.382
BNN 114.403 107.408 0.002 0.045

Table 21: RUL novel metric results

As observed in the results for SOH, the generic metrics offer a general understanding of the distributions but
fail to capture their characteristics fully. For RUL, the CRPS scores of CNN and LSTM with mean stddev
output are both close, with scores of 62.402 and 62.108, respectively. Despite performing well in other generic
metrics, the MDN slightly underperforms in CRPS with a score of 62.881. It’s important to note that RUL
measurements are taken every 51 missions, and the difference in CRPS scores between these algorithms is
only 0.773 flights, indicating overall good performance. In terms of overall CRPS scores, the LSTM with MC
dropout performs the worst, followed by the BNN. As with SOH predictions, knowing whether an algorithm
will over or under predict is crucial. In Appendix 10.6, the Novel metrics are displayed. Both CNN and
LSTM with MC dropout exhibit an overall underestimation of 0.5 rs under with no overestimation. The
mean stddev output variants display similar trends, with underestimations of 0.452 and 0.470, respectively.
The MDN shows an underestimation of 0.382, indicating it is not the smallest in underestimating overall.
Conversely, the BNN displays even lower underestimation at 0.045. However, despite this, its higher CRPS
score suggests lower accuracy compared to other algorithms. The increase in underestimation can potentially
lead to earlier replacements when using the MDN. However, this would need to be balanced against the
importance of early replacements for accident prevention.

8 Estimating the distribution of the RUC (probabilistic prognos-
tics)

The RUC (Remaining Usefull Capacity tests) represents a reinterpretation of the RUL. While RUL denotes
the number of remaining flights before reaching EOL, RUC signifies the remaining number of capacity tests
before reaching EOL. In the first part, we will explore the hyperparameter tuning process for each algorithm.
Subsequently, we will analyze the results using both generic and novel metrics. Similar to the RUL results,
VAH07 will be excluded from the analysis since this mission profile does not reach the EOL threshold of 85

8.1 Hypertuning results RUC

For the hypertuning of the RUC, we will adopt the same approach as with the SOH and RUL predictions.
Firstly, we will address the CNNs, followed by the LSTMs, and finally, the MDN and BNN. As observed in
the SOH and RUL predictions, the β values remain consistent for both types of predictions. Therefore, for
the RUC predictions, the β values will also remain the same as those used for SOH and RUL predictions.
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Conv layers 3
Conv 1 filters 121
Conv 1 activation relu
Conv 2 filters 121
Conv 2 activation relu
Conv 3 filters 131
Conv 3 activation tanh

Table 22: CNN with dropout

Conv layers 4
Conv 1 filters 71
Conv 1 activation tanh
Conv 2 filters 171
Conv 2 activation relu
Conv 3 filters 101
Conv 3 activation tanh
Conv 4 filters 181
Conv 4 activation tanh

Table 23: CNN with mean stddev

For the CNN with Monte Carlo dropout, we observe a triple-layer architecture consisting of 121, 121,
and 131 units respectively, with ReLU, ReLU, and tanh activation functions, as illustrated in Table 22. On
the other hand, for the CNN with mean and stddev output, a four-layer architecture is utilized with 71, 171,
101, and 181 units respectively, along with tanh, ReLU, tanh, and tanh activation functions, as displayed in
Table 23.

LSTM

LSTM layers 3
LSTM 1 units 146
LSTM 1 activation relu
LSTM 2 units 176
LSTM 2 activation relu
LSTM 3 units 126
LSTM 3 activation tanh

Table 24: LSTM with dropout

LSTM layers 2
LSTM 1 units 242
LSTM 1 activation tanh
LSTM 2 units 46
LSTM 2 activation relu

Table 25: LSTM with mean stddev

For the LSTM with MC dropout the configuration of three layers with 146, 176 and 126 is tuned with ReLU,
ReLU and tanh used in order as we can see in table24. For this algorithm the β value is settled on the
default value of 2.6. For the LSTM with mean stddev output the hypertuning is settled on a smaller model
of only 2 LSTM layers. The first layer is having 242 units and is using the tanh activation function, while
the second layer contains 46 units and uses the ReLU function.
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MDN and BNN

MDN output dimensions 3 5
Dense layers 4 3
Dense 1 units 60 68
Dense 1 activation tanh tanh
Dense 2 units 106 58
Dense 2 activation relu tanh
Dense 3 units 124 16
Dense 3 activation relu relu
Dense 4 units 12 ***
Dense 4 activation relu ***

Table 26: MDN

BNN layers 2
BNN 1 units 12
BNN 1 activation tanh
BNN 1 kl use exact True
BNN 1 kl weight 0.00001
BNN 2 units 24
BNN 2 activation sigmoid
BNN 2 kl use exact False
BNN 2 kl weight 0.0001
dense neurons 246

Table 27: BNN:

For the MDN there are two majority configuration during the hypertune which are shown in 26. First config-
uration of hyperparameters is with three output distributions and 4 dense layers. The second configuration
contains five output distributions and containing 3 dense layers. The first layer is used for 9/19 folds where
are the second configuration is used for 10/19 folds. For the MDN the β value that is used was settled on 16,
this gave better exploration over the search space for optimization. For the BNN the hypertuning is settled
to a single configuration of two BNN layers, which is shown in table 27 the first layer contains 12 units with
tanh and the second layer contains 24 units with sigmoid as activation function.

8.2 results RUC

In this section, we will discuss the results for the prognostic predicted distributions of the RUC. Firstly,
we will examine the overall scores using the generic metrics, as shown in Table 28. Based on the MAE
and RMSE, the LSTM with MC dropout emerges as the best-performing algorithm with scores of 1.31 and
1.52 respectively. The CNN with MC dropout closely follows as a close second with a MAE score of 1.33,
representing a minor difference of only 0.02. In contrast, the BNN performs the worst overall with MAE
and RMSE scores of 2.08 and 2.48 respectively.

Algorithms MAE RMSE

CNN
dropout 1.33 1.53
mean 1.60 1.94

LSTM
dropout 1.31 1.52
mean 1.42 1.60

MDN 1.44 1.64
BNN 2.08 2.48

Table 28: RUC Overall results

In Appendix 10.7, an overview of each mission profile for the generic metrics is provided. Notably,
VAH09 consistently emerges as one of the worst-performing mission profiles across various algorithms. This
may potentially correlate with the feature importance of temperature, as the maximum temperature during
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take-off, cruise, and landing holds significant importance. For instance, VAH09 yields a MAE of 2.81 and
RMSE of 3.40 for the LSTM with MC dropout, making it the worst-performing mission profile for this
algorithm. A closer examination reveals VAH25 and VAH30 as the second and third worst-performing
profiles, respectively. These profiles exhibit alterations in ambient temperature, as illustrated in Figure 12.
For the second-best algorithm, CNN with MC dropout, VAH09, VAH25, and VAH30 yield MAE scores of
2.70, 2.25, and 2.67, respectively. The differences in maximum temperature compared to baseline mission
profiles are evident. Analyzing the feature importance of the RUC, besides maximum temperatures, voltage
values during take-off, as well as CC and CV timings, also hold significance. Since differences in CV voltage
can significantly impact voltage values during each flight phase, mission profiles like VAH07, which deviates
from standard CV voltage, are disregarded from RUC predictions. Similar effects of CV and CC values on
SOH predictions were observed in section 6. For example, VAH23, with a CV voltage of 4.1V compared to
the standard 4.2V, exhibits a MAE of 1.85 and RMSE of 2.22 for LSTM with MC dropout, slightly higher
than the overall scores. VAH24, with an alteration in C-rate of 0.5C, ranks as the fourth worst-performing
mission profile with a MAE of 1.89 and RMSE of 1.94.

Figure 13: CC and CV values VAH06 and VAH24

In Figure 13, a comparison between VAH24 and the baseline mission profiles is described, highlighting
significant differences, especially in the CC value. The duration of the CC charging phase increases notably
for VAH24 due to its CC-rate of 0.5C, which substantially delays the CC-charging phase. For instance, in
VAH01 (a baseline mission profile), the first capacity test has a CC duration of 3012, whereas in VAH24,
the first capacity test has a CC duration of 6893, representing an increase of 2.28 times. Interestingly, the
plotted values also include the CC and CV duration’s of VAH06, which closely align with those of VAH24.
This observation is noteworthy because VAH06 also has a C-rate of 0.5C, indicating the influence of this
alteration on the charging profile.

Novel metrics

In this section, we present the novel metrics for the RUC predictions. Table 29 provides an overview of the
overall novel metrics. It is observed that the LSTM with mean stddev output performs the best in terms
of CRPS, achieving a score of 1.180. Following closely are the CNN and LSTM with MC dropout, ranking
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second and third in CRPS scores. These algorithms, utilizing MC dropout, achieve CRPS scores of 1.243
and 1.284 respectively.

Algorithms CRPS CRPS weighted rs over rs under

CNN
dropout 1.243 1.175 0.000 0.378
mean 1.284 1.314 0.000 0.153

LSTM
dropout 1.319 1.298 0.000 0.458
mean 1.180 1.193 0.000 0.257

MDN 1.377 1.271 0.000 0.378
BNN 1.586 1.653 0.034 0.002

Table 29: RUC novel metric results

For the CRPS weighted score, the ranking of algorithms differs compared to the CRPS, where the LSTM
with MC dropout, previously the best-performing, is outperformed by the CNN with MC dropout. The
difference between these two algorithms is 0.018. This difference suggests that the CNN with MC dropout
tends to have a higher underestimation compared to the LSTM with mean stddev output. This observation
is supported by the RS under, which is higher for the CNN with MC dropout (0.378) compared to the LSTM
with mean stddev output (0.257). In contrast, the worst-performing algorithm is the BNN, with a CRPS
of 1.586 and an RS under of 0.002. Notably, the BNN is the only algorithm with an rs over score of 0.034,
indicating some level of overestimation.

8.3 RUC as Conversion of the RUL

In this research, we have introduced the concept of RUC, which serves as a representation of RUL. In this
section, we will recalculate the RUL from the RUC data to evaluate the effectiveness of translating labels
between these two representations. Recalculating the RUL from the RUC data involves deriving estimates
of the remaining lifespan of the batteries based on the available capacity test data. This process allows us to
assess whether the RUC data accurately reflects the remaining useful life of the batteries and whether it can
be effectively translated into RUL estimates. By comparing the recalculated RUL values with the original
RUL data, we can determine the accuracy and reliability of the RUC representation. If the recalculated RUL
values closely align with the original RUL data, it would indicate that the RUC representation effectively
captures the RUL of the batteries. This analysis will provide valuable insights into the utility of RUC
data and its potential to serve as a viable alternative or complementary representation to traditional RUL
estimates.

Algorithms
MAE CRPS

RUL RUC (RUC x51) RUL RUC (RUC x51)

CNN
dropout 70.10 1.33 67.83 64.093 1.243 63.393
mean 79.36 1.60 81.60 62.402 1.284 65.484

LSTM
dropout 81.23 1.31 66.81 80.503 1.319 67.269
mean 69.11 1.42 72.42 62.108 1.180 60.180

MDN 66.66 1.44 73.44 62.881 1.377 70.227
BNN 161.72 2.08 106.08 114.403 1.586 80.886

Table 30: Results RUC and RUL
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In Table 30, the results of both RUL and RUC are presented, along with the recalculated RUL derived
from the RUC data. The recalculated RUL values are obtained by multiplying the RUC values by 51, as
each RUC measurement is taken every 51 missions. Upon examination, it is observed that for the best
performing algorithm in terms of RUL MAE, the MDN with a MAE of 66.66, the recalculated RUL from
the RUC is 73.44. This suggests that the RUC representation may not fully capture the remaining useful life
of the batteries accurately, as the recalculated RUL values differ from the original RUL data. Interestingly,
the only algorithms that seem to benefit from the recalculated RUL from RUC are the CNN and LSTM
with MC dropout, along with the BNN. This implies that for these algorithms, the RUC data may provide
useful information that can be effectively translated into RUL estimates. Overall, these findings highlight
the importance of carefully evaluating the translation between RUC and RUL representations and suggest
that further investigation is needed to fully understand the effectiveness of using RUC data for predicting
remaining useful life.

9 Conclusion

In the foreseeable future, eVTOL aircraft hold significant potential for addressing growing urban mobility
needs and alleviating traffic congestion in densely populated areas. Leveraging Lithium-ion batteries for
their notable energy density and cost-effectiveness, eVTOLs are poised to play a pivotal role in urban
transportation. However, effective battery management systems are critical to ensuring the reliability and
safety of eVTOL operations, particularly to mitigate potential failures during flight. In this thesis we have
explored the utilization of different algorithms for prognostic distribution for the state of health of batteries
of the Vahana Evtols. The importance of understanding under and overestimation of the prediction within
PHM systems is of high importance, for scheduling maintenance of the batteries. The dataset that is utilized
is a combination of the Vahana dataset with added the impedance data that is presented on 21 April 2023. the
dataset consists of timestamps with different values of the Vahana battery, such as cell voltage(V), amount
of energy supplied(mAh) and amount of voltage discharged(mAh). We have explored the use of different
algorithms for the prognostic distribution of these batteries, such as the use of CNN and LSTM using MC
dropout. Following we also utilized a CNN and LSTM using a output of a normal distribution by the mean
and stddev values. In addition a BNN which utilizes prior and posterior distributions as weights and outputs
a normal distribution and a MDN which outputs multiple distributions are tested. Three different values
are tested for each of the algorithms, first we used the SOH(State Of Health) which is the remaining max
capacity the battery can still hold in percentage, following by the RUL(Remaining Usefull Life) which is the
remaining amount of flights the battery can still be used before hitting the EOL of 85%. The last value for
which distributions was predicted is the RUC(Remaining Useful Capacity tests), which is a representation
of the RUL in terms of remaining capacity tests left for each of the mission profiles before hitting the EOL.
For the validation of algorithms we have utilized two sets of metrics: generic metrics(MAE and RMSE) and
novel metrics(CRPS, RS over, RS under).

• For the SOH the best performing algorithm is the LSTM with MC dropout, with the MDN slightly
outperforming the LSTM with MC dropout for the novel metrics.

• For the RUL the MDN is best performing for the generic metrics and the LSTM with mean stddev
output is best performing with the novel metrics.

• For the RUC the LSTM with MC dropout is best performing for the generic metrics and for the novel
metrics LSTM with mean stddev output is best performing
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Future work

Building on the observations and results garnered in this study, the use of LSTM based algorithms could
be futher explored for prediction of prognostic distributions. Following the characteristics of LSTM based
models, which work well on a wide range of sequential based data. An other observation that has been seen
in this study is the well performing implementations of MDNs which allows for mixtured distributions, by
combining multiple probability distributions. In future study the exploration of utilizing implementations
using combined techniques could have the potential of unlocking new ways for prediction of prognostic
distributions. Combining the benefits of LSTM layers, which have major advantages on sequential data and
the well performing MDNs on the Vahana dataset.
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10 Appendix A

10.1 Appendix A-1: Overview of mission profile specifications

File Cruise
Duration

power
usage
Take-off
(Watt)

power
usage
Cruise
(Watt)

power
usage
Landing
(Watt)

CC rate CV Ambient
temp

missions

VAH01 800 54W 16W 54W 1-C 4.2V 25◦C 847
VAH02 1000 s 54W 16W 54W 1-C 4.2V 25◦C 625
VAH05 800s 48.6W 14.4W 48.6W 1-C 4.2V 25◦C 1615
VAH06 800s 54W 16W 54W 0.5-C 4.2V 25◦C 9290
VAH07 800s 54W 16W 54W 1-C 4.0V 25◦C 339
VAH09 800s 54W 16W 54W 1-C 4.2V 20 ◦C 8527
VAH10 800s 54W 16W 54W 1-C 4.2V 30 ◦C 1431
VAH11 800s 43.2W 12.8W 43.2W 1-C 4.2V 25◦C 2249
VAH12 400 s 54W 16W 54W 1-C 4.2V 25◦C 2349
VAH13 600 s 54W 16W 54W 1-C 4.2V 25◦C 1042
VAH 15 1000s 54W 16W 54W 1-C 4.2V 25◦C 554
VAH16 800s 54W 16W 54W 1.5-C 4.2V 25◦C 559
VAH17 800s 54W 16W 54W 1-C 4.2V 25◦C 1002
VAH20 800s 54W 16W 54W 1.5-C 4.2V 25◦C 611
VAH22 1000 s 54W 16W 54W 1-C 4.2V 25◦C 579
VAH23 800s 54W 16W 54W 1-C 4.1V 25◦C 697
VAH24 800s 54W 16W 54W 0.5-C 4.2V 25◦C 801
VAH25 800s 54W 16W 54W 1-C 4.2V 20 ◦C 554
‘ VAH26 600 s 54W 16W 54W 1-C 4.2V 25◦C 1164
VAH27 800s 54W 16W 54W 1-C 4.2V 25◦C 587
VAH28 800s 48.6W 14.4W 48.6W 1-C 4.2V 25◦C 1182
VAH30 800s 54W 16W 54W 1-C 4.2V 35 ◦C 919

Table 31: Alternations in VAH mission profiles
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10.2 Appendix A-2: feature importance based on the shap values

(a) Shap values for the SOH (b) Shap values for the RUL (c) Shap values for the RUC

Figure 14: Feature importance obtained with Shap values.
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10.3 Appendix A-3: SOH results generic metrics

Figure 15: SOH results MAE RMSE CNN

Figure 16: SOH results MAE RMSE LSTM

Figure 17: SOH results MAE RMSE CNN mean stddev

Figure 18: SOH results MAE RMSE LSTM mean stddev

Figure 19: SOH results MAE RMSE MDN

Figure 20: SOH results MAE RMSE BNN
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10.4 Appendix A-4: SOH results Novel metrics

Figure 21: SOH results novel metrics CNN

Figure 22: SOH results novel metrics LSTM

Figure 23: SOH results novel metrics CNN mean stddev

Figure 24: SOH results novel metrics LSTM mean stddev
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Figure 25: SOH results novel metrics MDN

Figure 26: SOH results novel metrics BNN
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10.5 Appendix A-5: RUL results generic metrics

Figure 27: RUL results MAE RMSE CNN

Figure 28: RUL results MAE RMSE LSTM

Figure 29: RUL results MAE RMSE CNN mean stddev

Figure 30: RUL results MAE RMSE LSTM mean stddev

Figure 31: RUL results MAE RMSE MDN

Figure 32: RUL results MAE RMSE BNN
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10.6 Appendix A-6: RUL results Novel metrics

Figure 33: RUL results novel metrics CNN

Figure 34: RUL results novel metrics LSTM

Figure 35: RUL results novel metrics CNN mean stddev

Figure 36: RUL results novel metrics LSTM mean stddev
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Figure 37: RUL results novel metrics MDN

Figure 38: RUL results novel metrics BNN
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10.7 Appendix A-7: RUC results generic metrics

Figure 39: RUC results MAE RMSE CNN

Figure 40: RUC results MAE RMSE LSTM

Figure 41: RUC results MAE RMSE CNN mean stddev

Figure 42: RUC results MAE RMSE LSTM mean stddev

Figure 43: RUC results MAE RMSE MDN

Figure 44: RUC results MAE RMSE BNN
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10.8 Appendix A-8: RUC results Novel metrics

Figure 45: RUC results novel metrics CNN

Figure 46: RUC results novel metrics LSTM

Figure 47: RUC results novel metrics CNN mean stddev
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Figure 48: RUC results novel metrics LSTM mean stddev

Figure 49: RUC results novel metrics MDN

Figure 50: RUC results novel metrics BNN
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