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Abstract

Utilizing both static and time series data can enhance the performance of

machine learning models. However, existing methods of concatenating

data lead to high dimensionality and learning of noise. In this thesis,

we investigate the addition of an attention mechanism to learn the

correlation between static and time series data to mitigate this problem

and increase model accuracy. In a multiple case study consisting of 2

real-life medical cases, 1 public dataset, and 1 synthetic dataset, we find

similar or better results when using an architecture with an attention

mechanism, compared to similar hybrid or meta architectures without

it, particularly in sequence forecasting tasks. Additionally, we inspect

whether the attention weights align with key events and can reveal

structural dependencies within the data. While the attention weights

reflected the structural dependencies in our synthetic Fibonacci sequence

forecasting experiment, they did not align with key events in our real-life

cystic fibrosis improvement classification experiment. We conclude that

adding an attention mechanism can improve or maintain performance in

forecasting problems. We provide suggestions for additional research into

evaluating the explainability of attention mechanisms.
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1. Introduction

In today’s data-driven age, machine learning models can provide a great

advantage in decision-making across various domains. Machine learning is

a field in computer science in which algorithms and techniques are explored

to create models which automate solutions for complex problems that are

challenging to address using conventional programming methods [1]. For

instance, a machine learning model can be trained to detect early signs

of diabetic retinopathy by analyzing retinal images. The model can learn

to identify patterns and abnormalities that might indicate the presence

of the disease, assisting doctors in making more accurate diagnoses [2].

Predictive machine learning is a subset of machine learning which focuses

on making reliable predictions about future events or outcomes. An example

is forecasting future demand for a particular product. Machine learning

models can analyze historical sales data and market trends to forecast the

expected demand for the product [1]. This information can be used to

optimize production and inventory management ensuring companies can

meet customer demands.

Recent advancements in machine learning have been significantly

influenced by deep learning, a subset of machine learning that employs

neural networks with multiple layers to analyze various forms of data

[3]. However, it requires a substantial amount of data and functions as

"black boxes" – a model which makes predictions without an interpretable

mechanism for explaining the process behind those predictions [4], making

it less transparent [5].

That being said, as data availability remains a determining factor in the

success of any machine learning model [1, 6], a lack of data poses a challenge

to the utilization of machine learning models. The challenge originates from

the idea that having a larger dataset captures a more accurate representation

of the problem domain which, in turn, stems from the law of large numbers,

a theorem in probability and statistics which states that the average result

6



from repeating an experiment multiple times will better approximate the

true or expected underlying result [7]. Hence, if there is not enough data,

the model is likely to overfit, that is to describe features that arise from noise

or variance in the data, rather than the underlying distribution from which

the data was drawn [8], leading to loss of accuracy on unseen data [9].

Solutions to this problem do exist, such as early stopping [10], penalty

methods [11], using simpler models, and of course, including more data.

Including more of the same data is often not possible, but including diverse

data sources and data types such as temporal data, sensor readings, or

images, have the potential to improve predictive performance.

Most machine learning models are engineered to work with one specific

type of data, namely static data for static models, and time series models

for temporal data, but real-world situations often include both [12]. The

co-occurrence of these features range from electronic health records [13] and

financial markets to environmental monitoring and traffic analyses [14, 15].

Static features include features which do not change over a given period such

as a person’s date of birth, blood type and genetics whilst temporal features

include features which track the change of processes through time-stamped

observations, also referred to as time steps, such as the daily price of a stock,

the outside temperature and a diabetic’s sugar levels [12].

Typically, data integration methods for predictive models involve

combining static and temporal data by first transforming the temporal data

into statistical features. For instance, in the study by Huddar et al. [16], they

extracted statistical measures such as the mean, standard deviation, range,

and skewness from temporal numerical measurements. In another approach

described by Wang et al. [17], temporal features were converted into static

features that describe the frequency components of the data using the Fourier

transform. These transformations reduce the amount of data to be processed

and effectively eliminate the time component, allowing them to be treated

as additional static variables. However, by design, any simplification of

data leads to a loss of information, as the model fails to completely grasp the

inherent relationship between time and the temporal data, which is especially
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Introduction

important when considering time-specific predictions.

Similarly, static data can be added to time series models by concatenating

the static features to the temporal data. A popular deep learning approach

to time series models are Recurrent Neural Networks (RNNs) [18], which

specialize in processing sequential data. Common ways of adding static

data to RNN models are to either feed the static data to the initial hidden

state or simply concatenate the static data at every timestep [19]. Whilst this

does preserve the time component, it does have added complexity and could

make the model more susceptible to learning noise [20].

A popular method to increase performance as well as combine different

types of models is ensemble methods, which involve training several separate

models and combining their predictions by training a new model [12]. This

approach has been shown in a number of studies [12, 21] to produce superior

results in comparison to standalone models. However, combining the final

predictions of the models does not take into account that the static and

temporal data are usually correlated, and more complicated models that

for example concatenate the data before model training are susceptible to

learning noise [20].

Hybrid models, a variant of ensemble models where the output of one

model is the input of the next, can learn the correlation to a certain extent.

Hybrid models have shown improved performance to ensemble models in

certain cases [12], but are also susceptible to learning noise, and provide no

interpretibility, as is the case with ensemble methods.

In recent years attention mechanisms have gained a lot of popularity and

have been studied extensively in previous literature [22]. The concept of

an attention mechanism is comparable to the human visual system, where

humans focus on a small part of their total vision even though they are able

to see much more. Similarly, attention mechanisms allow learning models to

dynamically focus on specific features of the input, instead of allocating the

same weights [23] to all features. Besides improvements in performance and

computational efficiency, attention mechanisms have the ability to visualize

which features are important in the prediction process, making the model
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more transparent [22].

Furthermore, attention mechanisms have found application in the

integration of various disciplines, such as image caption generation [24],

visual question answering [25], and emotion recognition [26]. It has been

used in the medical domain for tasks such as utilizing X-ray images and

clinical reports for chest X-ray diagnosis [27], pancreas identification from

medical images [28] and medical report generation [29]. Moreover, attention

has made substantial contributions to natural language processing tasks

including machine translation [30] and speech recognition [31]. It has also

played a pivotal role in computer vision influencing image classification [32],

image generation [33] and facial recognition [34].

Although hybrid and ensemble models can provide a way of combining

different data while leveraging model strengths, the benefits of the attention

mechanism are 2-fold. They provide context in the form of weights which

improves model accuracy. These weights could also provide some form of

interpretability by indicating which time steps are important.

This results in the following research question:

Main research question: Does an attention-based architecture which

utilizes both static and time series data yield improved results to ensemble

and hybrid architectures?

To answer the main research question we will investigate the following

sub-research questions:

• Does integrating an attention mechanism into a model architecture

result in higher accuracy and F1 scores, or lower mean squared error

(MSE), compared to similar ensemble and hybrid architectures?

This leads to the following research objectives:

• To systematically compare the performance of models with and without

attention mechanisms in terms of accuracy, F1 scores, and mean

squared error (MSE), using standardized datasets to ensure consistency

and reliability in the comparison.
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• To analyze the results to determine if the addition of attention

mechanisms consistently improves model outcomes over ensemble

and hybrid models.

• Analyze whether key events within the data and structural patterns

can be observed in the attention weights.

This has the potential to influence the design decisions of future machine

learning systems, emphasizing model accuracy and efficiency. Furthermore,

as attention mechanisms highlight the importance of specific features

and timesteps, our study contributes to creating more transparent and

interpretable models.
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2. Background

Learning is to improve automatically with experience, according to T.

Mitchell in his 1997 ‘Machine Learning’ textbook [35]. With machine

learning, computers learn complex patterns from past experiences by using

techniques from statistics and mathematics. These patterns can be used to

make predictions for unseen data. Prediction, in the context of machine

learning, is estimating the unknown value of a system given the values of

other measured features [36]. Prediction mainly falls into the category of

machine learning known as supervised learning which is when a model

learns by analysing ‘labelled’ data, where labelled refers to an input being

tagged with a specific output. The model establishes a statistical relationship

between the input and the output features [37].

Supervised learning can be broadly divided into two types, namely

classification and regression [37]. Classification is used when the output

variable is a category or a discrete value. For instance, determining whether

an email is spam or not, or classifying images of cats and dogs [37].

Regression is used when the output variable is a continuous and numerical

value, such as predicting a person’s age or a stock’s price [35]. Time series

models, which will be discussed later in this section, are typically based on

regression.

This section of the thesis describes the components and methodologies

used in the experimental architecture, namely neural networks, recurrent

neural networks, different types of ensemble modelling, hybrid models and

attention mechanisms.

2.1 Deep learning models

Deep learning’s core assumption is that data arises from composed features,

potentially at different hierarchy levels. Other machine learning approaches

make strong, task-specific assumptions such that the output at an unseen
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data point should be approximately the same as the output at the nearest

training point. By avoiding this, deep learning can generalize to a wider

variety of problem structures [3]. Deep learning also has the advantage over

traditional models that it can capture complex relationships and does not

require careful feature selection [3].

2.1.1 Neural networks

An artificial neural network (ANN), usually called neural network (NN),

is a computational model that is inspired by the structure and functional

aspects of biological neural networks. Neural networks provide a robust

approach to approximating real-valued, discrete-valued, and vector-valued

target functions. A neural network consists of an interconnected group of

artificial neurons divided into an input layer, a hidden layer, and an output

layer. Each connection in the network is represented by a weight [1, 3].

The input layer receives raw data and passes it to subsequent layers.

Hidden layers perform intricate computations by learning hierarchical

features from the data. These layers progressively abstract and detect

complex patterns. The number of hidden layers enables the neural network

to capture and learn representations of increasing complexity. The output

layer generates the final prediction by processing the information from the

hidden layer through an activation function. An activation function is a non-

linear mathematical function applied to introduce non-linearity, allowing

the network to learn complex patterns. This layer-by-layer progression of

transformations allows neural networks to model intricate relationships and

make accurate predictions across various tasks [3, 19, 38].

The increased complexity may lead to overfitting on small datasets, and

the choice of architecture, activation functions and regularization techniques

significantly affect their performance [19]. Overfitting occurs when a model

fits not only the underlying pattern of the data but also the random noise

within the data set [1]. Deep neural networks, which involve training

networks with numerous hidden layers, have significant performance

advantages over plain neural networks and can prevent overfitting by
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2.1 Deep learning models

adding dropout layers after every layer [39]. Dropout layers are a form

of regularization and remove a certain percentage of the neurons from a layer

before its output is passed to the following layer.

2.1.2 Recurrent Neural networks

Recurrent Neural Networks (RNNs) are designed for sequence data, with

connections that loop back on themselves to maintain a "memory" of previous

inputs. This memory allows information from previous time steps to

influence the current output which in turn enable RNNs to capture temporal

dependencies in sequential data such as natural language processing and

time series analysis [40].

The architecture consists of a sequence of cells, each processing one

element of the input sequence and updating the hidden state based on both

the current input and the accumulated information from previous inputs.

This accumulated information is maintained in the hidden state, which is

updated at each step using a consistent set of weights that apply throughout

the sequence [3, 18]. However, it often suffers from the "vanishing gradient"

problem [41], which hinders its ability to capture long-term dependencies.

This issue led to the development of Long Short-Term Memory (LSTM)

[42] architectures, which allow RNNs to retain information across longer

sequences more effectively.

LSTMs achieve this through an architecture that includes three types of

gates: input, forget, and output gates. These gates collectively decide which

information should be remembered or forgotten as data flows through the

sequence of the network, enabling the LSTM to maintain a longer memory

[1]. This capability makes LSTMs highly effective for tasks that require

the understanding of long-term dependencies in the data, such as complex

language modelling, speech recognition, and time series forecasting
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2.2 Ensemble & hybrid methods

In the following section, we consider existing methods of integration of static

and time series data.

2.2.1 Ensemble models

"Ensemble methods are learning algorithms that construct a set of multiple

individual classifiers (called base learners) and combine them to classify new

data points by taking a weighted or unweighted vote of their predictions."

[43]

Ensemble and hybrid models are two major approaches toward more

accurate and reliable machine learning models [44, 45]. Ensemble models

combine multiple models and thereby improve generalization by lowering

the variance. Variance is defined as the variability of a model’s predictions

for a given data point [3]. High variance typically indicates that the model

is sensitive to fluctuations in the training data, which can lead to overfitting.

By combining multiple models in an ensemble, the individual variances of

the models can be averaged out. This combination leverages the strengths

of different models, each having a different perspective on the data because

of different learning methods. Ensemble methods can be grouped into

three categories, namely bagging [46], boosting [47] and stacking [48].

Hybrid models also leverage the strength of multiple models but differ from

ensembles in how they integrate different types of models to create a single

unified model [14].

Bagging (short for bootstrap aggregation) combines multiple models of

the same type, each trained on a different subset of data. The predictions of

these models are aggregated to produce a final prediction. By combining

models, bagging effectively averages the prediction, reducing the variance

and improving generalization [46, 49]

While bagging is a parallel ensemble technique, boosting methods involve

training a series of weak, typically the same type of models, sequentially. In

boosting, each subsequent model is designed to correct the errors made by the
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2.2 Ensemble & hybrid methods

previous models, gradually improving the overall prediction performance

[49]. Boosting is known for its high accuracy and ability to handle complex

relationships in data. However, it can be prone to overfitting, especially

on small datasets, due to its capacity to fit the noise in the training data

[47]. Boosting is usually associated with Decision Trees but Drucker et al.

[50] has already shown in 1993 that boosting applied to an ensemble of 3

neural networks can yield "dramatic" performance improvements compared

to standalone models.

Stacking is when multiple base models are trained and their output is

combined in a new model, known as a meta-classifier which is tasked with

learning how to best combine the predictions from the base models and

then make a final prediction [48]. Stacking involves training multiple base

models, each tailored to utilize specific types of data, such as static data with

static models and time series data with time series models. The outputs of

these base models, in the case of deep learning models, are often not their

final predictions but rather the raw output before being placed through an

activation function. These outputs are combined and fed into a new model,

known as a meta-classifier. The meta-classifier’s task is to learn how to best

combine these diverse outputs to make a final prediction. This approach not

only allows the use of a variety of model types —including static and time

series-based models— but also the models to be trained in parallel.

Ensemble methods, specifically stacking, allow a way of combining

multiple models, thereby leveraging their different strengths, data suitability

and reducing variance. In our experiments, we will create a stacked ensemble

model which we refer to as a meta-classifier. This model will serve as a

baseline model to which we compare our novel architecture, which will be

discussed in Section 3.2.

2.2.2 Hybrid models

Hybrid models are similar to stacked ensembles in that they integrate

different models [14], but differ in how data is integrated. Where stacked

ensembles are trained independently and their output combined, hybrid
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models are dependently linked such that the output of one model becomes

the input of the next. This method allows the hybrid architecture to effectively

learn the correlation between the learned representations of the static data

and the raw time series data by training on both. See Figure 3.3 for a graphic

regarding the model.

Models in a hybrid architecture leverage the data they were designed

for, similar to stacking. However, as is the case with ensemble methods,

appending the two datasets or outputs to one another can largely increase

the dimensionality of the data on which the model must train, making it more

susceptible to learning noise, which could impact performance [20]. Hybrid

models do not strictly require a final meta-classifier, but cannot be trained in

parallel. A common hybrid approach when working with static and temporal

data is to train a neural network on the static data and concatenate its raw

output, that is the output from its final hidden layer before the activation

function, to the temporal data which is fed to the RNN, which then predicts

the next sequence [51].

2.2.3 Concatenation

Initial time series models were tailored solely for time-series inputs, thereby

missing out on the potential insights available within the static data, that

could hold informative value [52]. Existing methods for integrating static

inputs are to concatenate them at each time step (static repeat), at the first

time step (static first) or last step (static last) of the time series data. One could

argue that appending static features at every timestep (static repeat) equips

the model with sufficient information to learn correlations between static

features and each timestep. However, this method can lead to redundant

computations since static features do not vary over time, potentially causing

the model to learn noise present in the static data, which might degrade

performance [20]. Lin et al. [13] propose an alternative by concatenating static

data only at the last timestep (static last), a method that has shown improved

outcomes compared to the static repeat approach. This is corroborated by

findings that indicate both static last and static first reduce noise learning
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2.3 Attention mechanism

issues inherent in the static repeat method [53].

However, regardless of where the static and time series data are

concatenated, it increases the dimensionality of the data that the subsequent

model components must train on, which leaves the model susceptible to

noise in comparison to a static or time series-only model. In the next section,

attention mechanisms will be discussed, and how they can be introduced to

leverage the strength of different models whilst keeping dimensionality low.

2.3 Attention mechanism

Attention in machine learning is a mechanism that allows a model to focus

on different parts of its input when producing an output. The concept of

attention is best explained by comparing it to the human body’s visual

processing system which selectively focuses on important parts of an image

while disregarding other non-essential details [24]. The attention mechanism

was popularised in neural machine translation by Badanau et al. [30] to

improve the performance of RNNs suffering from the vanishing gradient

problem caused by very long sequences of data.

The attention mechanism helps the model to selectively focus on different

parts of the input, giving more weight to the most relevant parts for a given

task. This is achieved by comparing input elements against each other.

Initially, a similarity score is computed for each input, typically by calculating

the dot product. These raw scores undergo normalization using a softmax

layer [3], resulting in weights between 0 and 1 that sum up to 1. These

normalized weights are then used to create a weighted combination of the

inputs, which form the context vector. Importantly, the entire process is

differentiable which allows the model to adjust the attention weights as

well as the model parameters during training through backpropagation [3],

allowing the model to learn which parts of the input are pivotal for specific

tasks as well as capturing non-adjacent relationships [30]. The mathematics

of the attention mechanism are explained in Appendix 8.1. In addition,

attention mechanisms can provide a level of interpretability to models, as the

attention weights which show which part of the input the model is focusing
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on to produce the output, can be visualized. This is especially useful in fields

of computer vision [24, 54]. Attention also enables models to handle long

sequences of data effectively, leading to better performance in tasks such as

machine translation [30], image caption generation [24], speech recognition

[31], visual question answering [25] and recommendation systems [55].

Various types of attention mechanisms exist and can be integrated into

models in different ways. Usually, when working with RNNs, they are added

as additional neural networks connected to the RNN [23]. In the well-known

attention bidirectional RNN model for machine translation proposed by [30],

the attention mechanism calculates the similarity between the hidden states

of the encoder (RNN model) and the decoder (second RNN model), and the

decoder then decides which part of the source sentence to pay attention to.

Attention has also been used in models which use different data types. In

image captioning, in which the training data consists of image and textual

data, Xu et al. [24] used an attention mechanism to allow an RNN model to

focus on particular parts of the image when generating the next word in the

caption. This resulted in state-of-the-art performance.

In the field of visual question-answering, models have been designed in

which attention allows the model to align the words in a question with the

sub-components of an information source such as a text [56] or an image

[57]. The attention allows the model to focus on the relevant part of the data

when producing an answer for a particular question, resulting in state-of-

the-art performance and better model interpretability. In sentiment analysis,

Zhu et al. [58] used cross-modal attention to dynamically determine the

weight of the features of textual and image data when determining the

sentiment polarity of each image-text pair. Zhang et al. [59] proposed an

ensemble-based model utilizing a double attention mechanism for time series

classification with heterogeneous features. Their model yielded competitive

results whilst the attention mechanisms identified important features and

improved interpretibility. In their paper, each feature is put through a low-

level attention mechanism that learns which part of the feature is important.

Then after each type of feature is trained on a suitable model, the high-level,
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inter-feature attention between all features is learned, highlighting those that

are of importance. In these multi-modal models, the attention mechanism

allows the model to utilize one data source to aid the other, enhancing the

overall predictive performance by selectively focusing on what is important.

2.4 Summary

To conclude, hybrid and ensemble methods effectively integrate static and

time series models, capitalizing on different data types. This integration

enables the models to learn correlations between the different types of

data, enhancing the modelling of the problem and yielding more precise

outcomes than those achieved by either static or time series models alone.

Nonetheless, as discussed in Section 2.2.3, these methods may encounter

challenges related to noise, stemming from the increased dimensionality

caused by data concatenation.

In the following section, we introduce our novel architecture which uses

an attention mechanism to combine the static and time series data. By

introducing this architecture, we

1. leverage the strength of a static and a time-series model.

2. are able to use the attention mechanism to let the static data provide

context to the time series data to let the model focus on which features

are important, leading to an increase in performance.

3. can gain insight into which features are important in the prediction

process by evaluating the attention weights.

4. are not concatenating static data, which means the dimensions of the

data do not increase, which makes the model less susceptible to noise.
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3. Method

As stated in the research question in Section 1, the purpose of this research is

to evaluate whether an attention-based architecture which integrates static

and temporal data can outperform ensemble and hybrid methodologies in

terms of accuracy. We further inspect whether the attention weights align

with key events within the data and whether we can observe structural

dependencies. This section describes the type of experiments conducted, the

architectures used in the experiments, the experimental setup, the validity of

the experiments and how data analysis will be performed.

3.1 Classification and Forecasting

We evaluate both classification and forecasting problems. Models trained

on classification problems output a single value, whereas models trained

on forecasting problems output a sequence of values. The core of these

architectural designs are the same but differ in how they produce an output.

Figures 3.1, 3.2 and 3.3 show the model diagrams and the training is

explained in sections 3.2 and 3.3.

For our model building, we use Tensorflow, a popular open-source

deep learning library developed and maintained by the Google Brain Team

[60]. Tensorflow has an ecosystem of tools and libraries to develop and

deploy machine learning models. Its computational graph-based framework

allows for efficient training of neural networks across a variety of platforms,

making it a go-to solution for many machine learning developers. The

RNN component in Tensorflow can output either the hidden layer of every

timestep (shape (dRNN , t)) or the hidden layer of the final timestep (dRNN , 1),

where dRNN is the number of hidden units per layer specified in the RNN

and t is the number of timesteps. The NN component can produce an output

of shape (dNN, r) where dNN is the number of hidden units in the NN layer,

and r is the 2nd dimension of the input to the layer, which is preserved in
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its output. This means that if the input to the NN layer has shape (dRNN, t),

the output will have shape (dNN, t), and if the input has shape (dRNN , 1), the

output will have shape (dNN, 1).

For classification, the final output shape must be (c, 1), where c is

the number of output classes. Each output represents the independent

probability of belonging to each class, which is achieved using a sigmoid

activation function, suitable for binary classification scenarios. For

forecasting, the shape must be (1, t). To achieve this, the classification design

has a 2nd RNN (decoder) which outputs shape (dRNN , 1), which is fed into a

shallow NN outputting a shape of (d, 1). For forecasting, the decoder RNN

outputs a shape of (d, t) which is fed into a shallow NN outputting a shape

of (1, t).

3.2 Attention based architecture

The model (Figure 3.1) developed for this study was designed to enhance

performance and solve the dimensionality problem of the standard methods

at the end of Section 2. It is an integrated deep-learning model that processes

static and temporal data to be used for either forecasting or classification. It

uses an attention mechanism to calculate a set of weights which are based on

the similarity of the static and time series data.

The training of the attention model is similar to that of standard deep

learning models [1], and is described as follows:

1. Initialization: The weights of the NN, RNN, attention mechanism,

decoder RNN and shallow NN are randomly initialized.

2. Forward pass during training:

• The static data is processed through the NN once and the hidden

states (Q) are calculated. The output shape is (dNN, 1)

• Similarly, the time series data is processed through the RNN once

and its hidden states are calculated. The output shape is (dRNN , t).

• The attention weights are calculated by taking the softmax of

21



Method

the dot product of the hidden states from the NN (Q) and every

hidden state corresponding to every timestep in the RNN (K).

Every weight represents the importance of a timestep in the

context of the static data.

• The attention weight multiplied by the hidden states of the RNN

(V) form the context vector. See Appendix 8.1 for a detailed

explanation of the mathematics behind the attention mechanism.

• The context vector is fed into the decoder RNN which outputs

either a single hidden layer, for classification problems, or a

sequence of hidden layers, for forecasting. This output is fed

to the shallow neural network, which makes the final prediction.

3. Compute Loss: For regression tasks, the loss is computed by calculating

the Mean Squared Error (MSE) between the prediction and the actual

target variable. For classification tasks, binary cross-entropy is used to

calculate the loss.

4. Backpropogation: The gradients of the loss with respect to each weight

in the model are calculated. The weights are updated in the direction

which minimizes the loss. This includes the weights of the NN, the

RNN, the attention mechanism, the decoder RNN and the shallow NN.

The initial size of these updates is constrained by using a learning rate

which is adjusted during training using an Adam optimizer [61].

5. Validation: After each pass (forward step, compute loss and

backpropagation) the model is used to make predictions on a validation

dataset. This is a portion of the original dataset which is not used to

update the model but to monitor how well it is performing on unseen

data during training. When the validation loss starts increasing whilst

the training loss continues decreasing, it means the model is overfitting

and training can be halted.

To summarize, after initialization, the models are trained by feeding the

data through it, calculating the loss and updating the weights. The process of

calculating the loss and updating the weights refines the weights to reduce
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Figure 3.1: The attention architecture

the loss. This means that over multiple iterations, the attention mechanism

will have been adjusted to focus on the most relevant time steps, as guided

by the training data and the loss function.

The training is repeated until the mean squared validation error increases

or in the case of classification problems, the validation accuracy no longer

increases, or if the maximum number of forward passes (epochs) is reached.

3.3 Approach

To evaluate this attention architecture, we compare it to several architectures

listed below. As stated in Section 2, every architecture has a unique strength

and a different method of learning the correlation between data types. All of

them, however, face a challenge concerning large dimensionality and have

no interpretability.

With our introduction of an attention architecture, we present a new

way of learning relationships between different data types. By comparing

it to established methods, we evaluate whether the attention mechanism

is indeed able to learn the correlation between data types, whether it can

achieve similar performance as well as offer insight as to which features are

important during the prediction process.

Below we present the three models/architectures to be used in our

experiments:

1. An Ensemble consisting of a static (NN) and a time series model

(RNN). Also referred to as meta classifier In the ensemble approach

each model independently trains on the specific type of data. The raw

23



Method

output of the NN is concatenated to the RNN’s first hidden state which

in turn is fed into the decoder RNN. The output of the decoder is fed

into a shallow NN, which is used to make the final prediction. (Figure

3.2)
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Figure 3.2: Meta classifier model

2. Hybrid model consisting of a static (NN) and a time series model

(RNN). In the hybrid approach, the static model is trained and its raw

output is concatenated to the 1st time step of the raw time series data

which is then fed into the RNN model. The output of the RNN is

fed into the decoder RNN, and its output is fed into the shallow NN.

(Figure 3.3)

Timeseries
data

RNN

Static data
NN

Final Shallow NNConcatenation Decoder RNN Prediction

Figure 3.3: Hybrid model

3. Novel attention architecture consisting of a static (NN) and time

series model (RNN). In this architecture (described Section 3.2) the

static and time series models are trained independently. The raw

outputs of both models are combined in an attention mechanism. The

output of the attention mechanism is fed into the decoder RNN which

subsequently flows into a shallow NN, which is used to make the final

prediction. (Figure 3.1)
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3.3.1 Nuances in the concatenation block

In the meta and hybrid architectures, the static and time series data can

be concatenated in different manners. We consider 3 different methods

of concatenation, namely no sequence (simple), first step and every

step concatenation. Previous works have shown that first or last-step

concatenation performs better than every-step concatenation, however, it is

unclear whether this also holds for smaller datasets.

3.3.1.1 Meta classifier

No Sequence: This method only occurs in the meta-classifier model. It

has a single RNN component which outputs the hidden layer of the final

timestep, shape (d, 1), which is appended to the output of the NN to have

shape (2d, 1) before being fed into the final shallow NN (Figure 3.4). This

architecture is simpler than the other architectures due to the absence of the

decoder and therefore has fewer parameters to train. It is less likely to overfit

in classification tasks but more prone to underfitting in forecasting problems.
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Final Shallow NN Prediction

Figure 3.4: Meta classifier no-sequence model

1st step concatenation: In this method, the decoder RNN from Figure 3.2

outputs the hidden state at every timestep. Its output is of shape (d, t) where

t is the number of timesteps and d is the dimension of each hidden state. The

raw output from the NN, which has shape (d, 1) is concatenated to the first

timestep (Figure 3.5), whilst the remaining timesteps are padded with −1

to ensure the shape of the matrix is (2d, t) before being fed to the decoder

RNN component, which outputs the hidden state of the final timestep, shape
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(d, 1), for classification tasks and (d, t) for forecasting tasks, before going into

the final shallow NN, similar to the ’No sequences’ model.

 

Figure 3.5: 1st step concatenation block Meta classifier architecture

Every step concatenation: This architecture is very similar to

’1st step concatenation’, except the output from the NN is concatenated

to every timestep of the RNN output (Figure 3.6). All shapes are the same

as the previous architecture, except that this architecture does not require

padding.

 

Figure 3.6: Every step concatenation block Meta classifier architecture

3.3.1.2 Hybrid architectures

In the hybrid architecture (Figure 3.3) the output of the NN (shape: (d, 1)) is

concatenated to the time series data (shape: (Xt, t), where Xt is the number

of time series features), which is then fed into the RNN. Here we again apply

1st step (Figure 3.5) and every step (Figure 3.6) concatenation (resulting

shape: (Xt + d, t)). The output from the RNN is (d, t), which is fed into the
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decoder RNN. The decoder, similar to the meta every step and meta 1st step

concatenation architectures, outputs the hidden layer of the final timestep,

shape (d, 1), for classification tasks and (d, t) for forecasting tasks, before

going into the final shallow NN.

3.4 Experimental settings

Hyperparameters : The same hyperparameter search was conducted for

each experiment. For each architecture, we varied the initial learning rate

from 10−3 to 10−6 whilst keeping the number of units fixed at 128 and the

number of NN layers at 7. Next, we varied the number of layers in the NN

from 2 to 7 whilst keeping the number of units fixed at 128 and using the

learning rate which resulted in the highest performance. Next, we varied the

number of hidden units on which to train from 16 to 128 in increments of 2n.

To save time, the batch size, type of optimizer, weight initializers, number of

RNN layers, and dropout ratio after each layer in the neural network were

kept constant across each architecture, as shown in Table 3.1.

Hyperparameter Values
Number of layers in NN 2, 3, 4, 5, 6, 7
Number of units from layer 1 to n for NN 16, 32, 64, 128
Number of units RNN Equal to hidden units of NN
Activation function in NN and RNN ReLu
Number of units final shallow NN Classification = 2, else 1
Number of layers final shallow NN 1
Weight initializers RandomUniform(−0.2, 0.2)
Activation function in final shallow NN Classification = sigmoid, else ReLu
Initial learning rate 10−3, 10−4 , 10−5, 10−6

Optimizer Adam Optimizer
Max epochs 900
Early stopping True, after 100 epochs
Class weights Classification = True, else False
Percentage Dropout 20% of units dropped after every NN layer
Percentage of majority class to exclude 0%
Batch size 1
Loss function Classification = binary_crossentropy, else MSE

Table 3.1: Hyperparameter search settings

We used a single-layer Bi-directional LSTM for our RNN with the number
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of units equal to the number of units in the NN. For the decoder RNN, we

use a single-layer LSTM with the number of units equal to the number of

units in the NN.

Model Training and Evaluation:

Similar to Section 3.2, the above models/architectures are trained, validated

and tested on a training, validation and test set. After each training epoch,

the model is tested on the validation set to ensure it is not overfitting. Once

the model has reached the maximum number of training epochs (900) or the

validation accuracy is no longer increasing for 50 epochs, training is halted,

the weights for the model at the epoch resulting in the highest accuracy are

returned, and the model is tested on the test dataset. If the ‘Early stopping’

parameter were set to false, the architecture would continue to train for

the entire 900 epochs, resulting in overfitting; the architecture yields a high

training accuracy but a low test accuracy. The training time has also increased

significantly.

When dealing with classification tasks, model accuracy does not always

best reflect the architecture performance, especially if the data is unbalanced,

that is having more cases belonging to one class than the other, as the

model can achieve a high accuracy by simply predicting the majority class.

Therefore we report also the precision, recall and F1 scores, which are

described below.

Precision measures the accuracy of the positive predictions made by

a model. It is calculated as the ratio of true positives (TP) to the sum of

true positives and false positives (FP), where a true positive is an outcome

correctly identified as positive, and a false positive is an outcome incorrectly

identified as positive.

Precision =
TP

TP + FP
(3.1)

Recall measures the ability of a model to identify all relevant cases within

a dataset. It is calculated as the ratio of true positives to the sum of true
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positives and false negatives (FN), where a false negative is an outcome

incorrectly identified as negative.

Recall =
TP

TP + FN
(3.2)

The F1 score is a harmonic mean of precision and recall, providing a

metric that balances both the precision and the recall of a model. It is

particularly useful for evaluating performance on a dataset with an imbalance

in class distribution. The F1 score reaches its best value at 1 and its worst at

0.

F1 = 2 · Precision · Recall
Precision + Recall

(3.3)

The evaluation metrics used include accuracy through F1 score for

classification problems, Mean Squared Error (MSE) for forecasting problems

and training time (number of epochs).

3.4.1 Attention weights

The attention mechanism within our architecture generates a set of

weights that identify which timesteps are considered most important when

forecasting a sequence or making a classification prediction. Visualizing these

attention weights can also reveal aspects of the dataset’s structure. In our

experiments, we will plot a known critical event, such as patient medication

usage, over attention weights, to determine if they align. If alignment is

observed, it suggests that the attention mechanism has successfully learned

this important feature of the dataset

3.5 Validity

To ensure validity and reliability we discuss and conform to the criteria

described by Yin in his work "Case Study Research Design and Methods"

[62] to judge the quality of our research design. The criteria are construct
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validity, internal validity, external validity and reliability.

To ensure the construct validity, the architecture is compared to existing

architectures. The goal of our research is to determine whether our attention

architecture can provide accurate next value predictions for a time series. To

measure the accuracy, the architecture’s ability to generalize is compared to

that of existing architectures employing methods of data integration. It is

known that more data typically allows for more accurate models. However,

if the attention architecture performs poorly, it could be that the architecture

is unable to learn the correlation between the static and temporal data. This

can be a result of either the architecture not being suitable, or the lack of data

not allowing the model to learn sufficient relationships.

To ensure the internal validity, the experiment is validated using a test

dataset (Section 3.4). The mean and standard deviation of each performance

metric are computed for every architecture, on which a data analysis (Section

3.6) is performed.

To ensure external validity, the proposed experiment is performed on

three different datasets in three different domains. The datasets contain static

and time series data. The results will vary per domain, but overall the same

conclusions should be reached.

To ensure the reliability of our research, our code for each model in

every architecture will be documented and made available. Due to privacy

regulations, the data cannot be publicly shared, however, the dataset will be

frozen on the UMCU server. The Sepsis dataset is publicly available [63] and

the Fibonacci dataset will be shared on GitHub.

3.6 Data analysis

As mentioned, the performance of each architecture is evaluated by

calculating the MSE, accuracy and F1 score. To ensure validity the

experiment is repeated 15 times, and the mean and standard deviation

of each performance metric is recorded. To determine if the differences in

performance between architectures are statistically significant, we perform a

30



3.6 Data analysis

Kruskal-Wallis test at the group level. This is followed by an epsilon-squared

calculation to assess the effect size. For post hoc analyses, depending on the

data distribution, we either use an independent samples t-test (for Gaussian

data) with Cohen’s d to measure effect size, or a non-parametric Dunn’s test

with a Bonferroni correction to adjust for multiple comparisons, accompanied

by Cliff’s delta to quantify the effect size.
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In this section, we consider the four datasets used in the experiments. For

each dataset we provide its context, describe the variables used, how the

preprocessing was done and how the experiments are set up. Supplementary

information about the datasets can be found in Appendix sections 8.3 and

8.5.1.

4.1 Cystic fibrosis

4.1.1 Background

Cystic fibrosis, an inherited disorder that limits a person’s lifespan, is

caused by an autosomal recessive gene mutation [64]. This genetic anomaly

affects a gene known as the cystic fibrosis transmembrane conductance

regulator (CFTR), which plays a critical role in ion transport and the cleaning

mechanism of the airways, referred to as mucociliary clearance. When

the CFTR gene isn’t functioning correctly, it can result in various organ

malfunctions. One significant consequence is a persistent airway infection,

leading to ongoing lung damage. This ultimately results in respiratory failure,

which is often the cause of premature death in cystic fibrosis patients.

Over the years various medications have been introduced to improve

the quality of life of patients. Double modulators have yielded limited

success, showing only temporary improvements in a patient’s pulmonary

function [65]. However, since 2020, a triple modulator has been approved

for use in the EU and has shown significant results. This triple modulator

therapy enhances the function of the CFTR protein more comprehensively

than previous treatments by correcting the protein defect at multiple stages

of protein processing and function. As a result, patients have experienced

marked improvements in pulmonary/lung function, nutritional status, a

reduction in sweat concentration and pulmonary exacerbations [66, 67].
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These enhancements have not only prolonged life expectancy but also

significantly improved the quality of life for many individuals with cystic

fibrosis.

The dataset used for our experiment consists of patients receiving

treatment for cystic fibrosis (CF) from the Wilhelmina Children’s Hospital

(WKZ) which is part of the larger academic hospital, University Medical

Center Utrecht (UMCU). This medical centre has more than 11.000 employees

and is the largest public health institute in the Netherlands. Their CF

department is the largest in the country and has a research program aimed at

developing personalized medicine for patients1. An advantage of collecting

data from a large hospital is that it generally has more patients and thus more

data than smaller clinics. Patients in this dataset have differing ages, medical

histories and medical conditions, but have all been taking the triple CFTR

modulator medication known as Elexacaftor–Tezacaftor–Ivacaftor (Kaftrio)

since January 2022. Patients visit the hospital once every 3 - 6 months, where

several measurements are taken.

The data consists of static and temporal features of about 300 patients.

This may seem like a small amount but considering that cystic fibrosis is a

very rare disease affecting 162 428 people worldwide, this is a considerable

number of patients [68]. The static features do not change over time such

as sex, date of birth and type of cystic fibrosis mutation. The temporal

(time series) data is described as varying, with some patients having more

than 50 measurements and others less than 5. The variables are measured

periodically, namely lung function and type of medication used.

4.1.2 Goal of experiment

The dataset is used for two experiments, namely forecasting and classification.

For each experiment, the dataset is tailored in a slightly different way. For

the forecasting experiment, the goal is to use the measurements a patient

has before Kaftrio use to predict what their percentage predicted Forced

1https://www.hetwkz.nl/nl/ziekte/cystic-fibrosis
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Expiratory Volumne in 1 second (ppFEV1) over time will be after Kaftrio use.

The classification experiment is similar to the forecasting experiment in

that it uses patient measurements before they start taking Kaftrio. However,

its goal is to predict whether a patient’s ppFEV1 will improve, framing it as

a binary classification problem. This is a less complicated problem to solve

than forecasting the exact ppFEV1 value over time, as the model essentially

only has to determine whether or not the ppFEV1 will be higher or lower.

The remainder of the section is structured as follows: The variables of

the dataset are presented, followed by an explanation regarding the variable

preprocessing, patient extraction criteria and a subsection describing the

experiments. A snapshot of the dataset as well as further variable description

and alignment are presented in Appendix 8.3.

4.1.3 Variables

Description of data

A description of the specific columns and how they were extracted can be

found in Table 4.1. The columns, measurements, were recorded at different

points in time, and extracted from different tables, as described in Table

4.3. The final static and time series datasets come from the same source, the

difference being that a single row in the static dataset represents a patient in

terms of their measurements before their first CFTR modulator use. Every

patient in the static dataset only occurs once. A single row in the time series

dataset represents a ‘snapshot’ of a patient in terms of their measurements

from their first CFTR use to their last ppFEV1 measurement. A patient can

occur multiple times in the time series dataset, each new row representing

a patient measurement at a different point in time. Together, all patients’

measurements form a sequence. Tables 8.4 and 8.5 in Appendix 8.3 show

synthesized extracts of the static and time series data used in the experiments

before scaling has been applied. Figure 4.1 shows the correlations between

the variables.
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Variable name Extraction description Transformation
description

Variable description Dataset

Continuous
Height Extracted using regex

expressions.
Min-Max
Normalized

Patient’s height in cm. Static

Weight Extracted using regex
expressions.

Min-Max
Normalized

Patient’s weight in kg. Static,
Timeseries

Sweat-
concentration

Filtered lab results on
“Chloride-ZW”

Min-Max
Normalized

Last sweat-concentration
measurement before
CFTR use.

Static

ppFEV1 Calculated Min-Max
Normalized

percent predicted Forced
Expiratory Volume in
1 second. Ratio of CF
patient FEV1 to standard
FEV1 based on age, sex,
height, and ethnicity.

Static,
Timeseries

Date Calculated elapsed
time between
measurements

Date on which
measurement was taken.

Timeseries

Binary
Diabetes Filtered for keyword

’diabetes’
Indicates if the patient
had diabetes before
CFTR use.

Static

Sex Static
CFTR usage Modulators were

converted to
binary columns

Indicates CFTR
modulator use

Timeseries

Anti-biotics
usage
(Nebulized)

Filtered for keywords
‘Amikacine’, ‘Aztreonam’,
‘Ceftazidim’, ‘Colistine’,
‘Meropenem’,
‘Tobramycine’

Indicates if the patient
had been using anti-
biotics in the past 30
days

Static,
Timeseries

Anti-biotic
usage (Oral)

‘Azitromycine’,
‘cotrimoxacol’,
‘flucloxacilline’,
‘levofloxacine’,
‘amoxicilline’,
‘ciprofloxaciline’

Static,
Timeseries

Discrete
Year of birth Min-Max

Normalized
Static

Number of
admissions

Aggregated hospital
visits where keyword
’spoed’ is present or
column spoed = 1

Number of emergency
hospital visits before
CFTR use.

Static

has F508del Whether the patient
has the F508del gene
mutation

F508 encoded as 1 Indication of patient gene
mutation

Static

Table 4.1: Column extraction and transformation descriptions for static and
time series datasets
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Figure 4.1: Correlation coefficient matrix for the CF data
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4.1.4 Preprocessing

The data processing aims to convert the data into a format that is suitable

for model building. It involves extracting data from different tables,

integrating and aligning the data appropriately, addressing missing values,

removing outliers, scaling the data and padding/truncating sequences where

necessary.

Data Extraction Criteria

Table 4.3 describes the different columns used and from which tables they

were extracted. Furthermore, patients were only included in the dataset if

they met the following criteria:

1. Patients have used a CFTR modulator and are therefore present in the

Apotheek table.

2. Patients have a sex and year of birth value and are therefore present in

the Demo table.

3. Patients have a FEV1 (lung function) measurement at least before their

first CFTR use date and are therefore present in the Longfunctie table

4. Patients have a height and weight measurement at least before their

first CFTR use date and are therefore present in the Metingen table

5. Patients have a sweat concentration value at least before their first

CFTR use date and are therefore present in the Lab table.

To calculate the ppFEV1 of a patient, their height, age, sex, FEV1 and

ethnicity is needed as described in Equation 8.2. This implies that a patient is

excluded if any of these measurements were missing or in the case of height,

could not be imputed.

Missing values As described above, if a patient does not have all of these

variables before the 1st CFTR modulator use date, then the row is excluded.

This is true for the static and time series data. Certain missing values were

deduced from the data, such as gene mutation, height and weight. For gene

mutation, after consulting a domain expert, it was assumed that a patient
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has F508del as a second gene allele if this value is missing in the dataset.

F508del is the most common gene mutation in cystic fibrosis patients [66].

Of the other 27 mutations present in the dataset, we included only the 4

most occurring mutations, namely G542X, R1162X, 1717-1G>A and R553X.

In the gene mutation table 80% of the patients had F508del. R1162X, the 2nd

most occurring mutation, was present in less than 3% of the patients. These

mutations were represented as binary columns to indicate their presence.

In cases where the height or weight measurements were missing, the

average of the patient’s preceding and succeeding height and weight

measurements were used, given that the missing measurement’s date still

falls within 180 days of the preceding and succeeding value. A window of

180 days was decided as in general a patient’s height and weight do not

change significantly during this time.

Outliers Outliers skew the distribution of the data [69] and can cause the

model to overfit. In certain evaluation metrics, such as Mean Squared Error

and Sum of Squares error, outliers can significantly decrease model accuracy

and were therefore removed from the dataset. They were identified using

the using the interquartile range (IQR) [70]. IQR is the range between the

first and third quartiles IQR = Q3 − Q1. The lower limit is defined as

Q1 − 1.5IQR, and the upper limit as Q3 + 1.5IQR. The region between the

upper and lower limit contains 99.3% of the data. In each column, a value

that falls below the lower limit or above the upper limit is considered an

outlier and the entire row is removed from the dataset.

Input and output sequences The time series data included in the dataset

ranges from the patient’s first CFTR usage until their last lung function

measurement. The time series data is split into 2 sequences, namely pre-

and post-Kaftrio. The pre-Kaftrio sequence includes all measurements

from the first CFTR usage up until the last lung function measurement

before the patient started using Kaftrio. The post-Kaftrio sequence only

includes the ppFEV1 measurements of a patient since the patient started

using Kaftrio up until their last ppFEV1 measurement. The pre-Kaftrio
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sequence is also referred to as the input sequence and the post-Kaftrio as the

output sequence. The forecasting experiment is tasked with predicting the

post-Kaftrio sequence.

The classification experiment does not require the output sequences.

Instead, it predicts whether or not a patient’s ppFEV1 will improve after

taking Kaftrio. A patient is labelled as improving if their average ppFEV1

value after taking Kaftrio is higher than their last ppFEV1 value before

Kaftrio. This average is calculated by summing together a patient’s output

sequence and dividing by the length of the sequence.

Padding and Truncating Patients in the dataset visit the hospital at different

times and at different frequencies. At each hospital visit, measurements are

taken. Each patient’s measurements are treated as a sequence which is fed

into the RNN component. The forecasting experiment design requires all

sequences to have the same length. Input sequences shorter than 5, the mean

length of the output sequences, were padded with −1 at the start of the

sequence until they were length 5. A masking layer was added to ignore

weight updates for these padding values. Output sequences were padded by

repeating the last value in the sequence until it was length 5. Input sequences

longer than 5 were truncated to only include the last 5 measurements in

the sequence and output sequences were truncated to include the first 5

measurements.

The input sequences in the classification experiment are set to length 20.

Since the classification experiment does not require the output sequences, the

input sequences can be any length, however longer input sequences do lead

to longer training times, therefore sequences were truncated to the last 20

measurements. Figures 4.2 and 4.3 show the sequence lengths of all patients.

Integrating and alignment An important part of data processing is

ensuring the dates of the variables are aligned. For the static data, the

most recent values of the variables immediately before a patient’s initial

usage of CFTR modulators are used.

All timeseries data have dates between the patient’s first CFTR use and
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Figure 4.2: Pre-Kaftrio sequence lengths. The mean is indicated by the red
line.

Figure 4.3: Post-Kaftrio sequence lengths. The mean is indicated by the red
line.

their last lung function measurement date. However, different types of

measurements, ex. height and lung function, are often not taken on the same

date, meaning that the dates are not aligned. Certain columns do not indicate

a measurement but rather a change in usage or diagnosis. For example, the

CFTR modulator usage in the Apotheek table shows only the start and stop

dates of the modulator, and the Medication table indicates when a patient
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4.1 Cystic fibrosis

was using anti-biotics, but these dates do not align with lung function dates.

Since ppFEV1 is the target variable, the dates of when a FEV1

measurement takes place represent the timestamps which are fed into the

model. This means that all other measurements are aligned with these dates.

When measuring FEV1, physicians take multiple readings on a single day

and view the highest FEV1 of a patient as their actual measurement. The

same is done for the dataset; if multiple FEV1 measurements occur on a

given day, the highest is kept, and the rest are discarded.

Scaling To ensure that features are on a uniform scale, preventing variables

with larger magnitudes from dominating the learning process in machine

learning models, variables are scaled to be within the range 0 and 1 [1]. This

is done by subtracting the minimum of the column from each data point and

then dividing it by the range, maximum - minimum. This ensures that all

features initially contribute equally to the learning process. All discrete and

continuous variables, as can be seen in Table 4.1, were scaled.

Dataset size Table 4.2 show the size of the training test and validation sets

used in the CF experiment.

Dataset Forecasting Classification Improvement No-Improvement
Training set 164 153 122 (80%) 31 (20%)
Test set 33 34 25 (74%) 9 (26%)
Validation set 19 37 29 (78%) 8 (22%)
Total 216 224 176 (79%) 48 (21%)

Table 4.2: CF Dataset Sizes

4.1.5 Experiments

Regarding the CF dataset, we consider both forecasting and classification

problems. For forecasting, the goal is to predict post-Kaftrio ppFEV1

measurements over time using the static and time series pre-Kaftrio

measurements of a patient. This approach bears a practical benefit, as we

can forecast how a patient’s ppFEV1 will be impacted by the use of Kaftrio,

based on their medical history. As mentioned in Section 3.1, in forecasting
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Table name Description Columns needed
apotheek Patient CFTR usage. CFTR type, Start

date, Stop date
metingen Diverse measurements Height, weight
diagnose Diagnoses data Diabetes
demo Demographic data Gender, Year of birth
Medicatie Patient medication usage Anti-biotics usage
opnames Recorded patient hospital visits Number of

Emergency hospital
visits

lab Results of diverse medical tests Sweat-concentration
longfunctie Patients lung function

measurements
FEV1, ppFEV1

gene
mutation

Diverse patient properties and
measurements

mutation allele2

Table 4.3: Raw data table description

problems the decoder RNN component outputs a vector for every timestep

of the sequence, resulting in a shape of (d, t). This output is fed to a shallow

NN with a single hidden unit, tasked with reducing the dimensionality to

(1, t) in order to predict the final sequence of predictions.

For classification, the goal is to predict whether or not the average post-

Kaftrio ppFEV1 measurement is higher or lower than the last pre-Kaftrio

ppFEV1 value. If this average is higher, it is labelled as an improvement, else

it is not. This is a binary classification problem, in which the decoder RNN

component outputs a single vector of shape (d, 1) which is fed into a shallow

NN, having a number of hidden units equal to the number of target classes,

which in this case is 2. For both the forecasting and classification problem we

will test the difference in performance between the attention, hybrid_1_step,

hybrid_every_step, meta_1_step, meta_every_step architectures, explained

in Section 3.3.
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4.2 Sepsis

4.2.1 Background & Problem statement

The sepsis dataset [63] is a publicly available event log containing 1050 cases

of patients who were admitted to a Dutch hospital over 1.5 years because

of a sepsis condition. Sepsis is a life-threatening condition that arises when

the body’s response to an infection causes injury to its tissues and organs,

potentially leading to organ failure and death if not promptly and effectively

treated [71]. The original purpose of the dataset was to train a process model

of the patient trajectories using process mining techniques. Each case consists

of a sequence of activities the patient underwent before being released from

the hospital. The authors also investigated the trajectory of patients that

return to the emergency room (ER) [72]. We train our models to predict

whether or not a patient will return to ER.

4.2.2 Variables

Table 4.4 shows the different variables in the dataset. The majority of the

dataset contains binary variables, with age and activity being the only

exceptions. After converting the activity column to static variables, this

column housed the ’Return ER’ target variable. Figure 4.4 shows the class

distribution of the number of patients returning to the ER.
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Column Names Datatype Dataset Reason excluded from training
case_id Binary Static Random
InfectionSuspected Binary Static high linear correlation
DiagnosticBlood Binary Static high linear correlation
DisfuncOrg Binary Static
SIRSCritTachypnea Binary Static
SIRSCritHeartRate Binary Static
Infusion Binary Static high linear correlation
DiagnosticArtAstrup Binary Static
Age Discrete Static
DiagnosticIC Binary Static high linear correlation
SIRSCriteria2OrMore Binary Static high linear correlation
DiagnosticXthorax Binary Static high linear correlation
SIRSCritTemperature Binary Static
DiagnosticUrinaryCulture Binary Static high linear correlation
SIRSCritLeucos Binary Static
DiagnosticLacticAcid Binary Static high linear correlation
Hypoxie Binary Static
DiagnosticUrinarySediment Binary Static
DiagnosticECG Binary Static
IV Liquid Binary Static
IV Antibiotics Binary Static
Admission IC Binary Static
ReleaseType Categorical Static
timestamp Datetime Timeseries
Leucocytes Continuous Timeseries
CRP Continuous Timeseries missing values
LacticAcid Continuous Timeseries missing values
Return ER Binary Target

Table 4.4: Column Names, Datatypes, Dataset Classification, and Training
Exclusions of Sepsis data

Figure 4.4: Target variable ER Sepsis
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4.2.3 Preprocessing

For the purposes of our research, we convert the sequence of activities to

static variables and treat the measurement variables as time series variables.

Table 4.5 shows the sepsis dataset size before and after cases with missing

values or cases with less than two Leucocytes time series variables (timesteps)

were removed because as the change in Leucocytes cannot be measured with

less than 2 measurements. It also shows the size of the training, test and

validation sets.

Dataset Size Not Return ER Return ER
Original dataset 1050
After removing missing age and case_id 994
After removing cases with no Leucocytes 956
After removing sequences shorter than 2 626 387 (62%) 239 (38%)
Training set 415 (66%) 253 (61%) 162 (31%)
Test set 126 (20%) 82 (65%) 44 (35%)
Validation set 85 (13.5%) 52 (61%) 33 (39%)

Table 4.5: Dataset Sizes

For processing features, categorical features were converted to binary

features. Age was normalized and the timestamp was converted to the

number of seconds since admission.

To reduce the training time, we decided to include the most informative

features. To achieve this we computed a correlation matrix using the Pearsons

correlation coefficient. If two features are identical or highly similar, one

of them can be removed as it adds little to no extra information [73]. By

removing it, model complexity is reduced, as the model does not have to

compute weights for it. In our experiments, if features had a higher absolute

correlation of 0.7 with any other variable, it was excluded from the model

training. Figure 4.5 shows the correlation coefficients between the different

features.
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Figure 4.5: Correlation coefficient matrix for the sepsis data
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4.3 Fibonacci dataset

Figure 4.6: Sequence lengths Sepsis

It was decided to include all data of all cases which had a sequence larger

than 1, as this allows to include the most cases. In the experiments, sequences

were padded to have at least 5 timesteps. Figure 4.6 shows a number of cases

with sequence lengths in the dataset.

4.2.4 Experiments

Since the Sepsis experiment is concerned with predicting whether or not

a patient will return to the ER or not, it is a classification problem. As

stated in Section 3.1, for classification problems the decoder RNN component

outputs a single vector of shape (d, 1) which is fed into a shallow NN, having

a number of hidden units equal to the number of target classes, which

in this case is 2. We will test the difference in performance between the

attention, hybrid_1_step, hybrid_every_step, meta_1_step, meta_every_step

architectures, explained in Section 3.3.

4.3 Fibonacci dataset

The previous cases showed that while we can apply the models to the data,

the effectiveness of the attention mechanism is still unclear. In the case of

the Sepsis data, we found that the effectiveness of deep learning models in

general is limited. To specifically test the additional mechanism, we now
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generate a dataset where there is a relationship between subsequent values

in a sequence, making it a suitable problem for recurrent neural networks, as

well as a relationship between the sequence and the static data, allowing to

investigate the attention mechanism in a better context.

A dataset comprising of a variant of the Fibonacci sequence 2 was created,

including static and time series data. The original Fibonacci sequence is

a sequence of integers (elements) where each integer is the sum of the

preceding two values. The variant we have created includes characteristics

which describe the relationship between the input and output sequence,

such as whether the sequence is in reverse, has been multiplied by a

scalar, contains noise and the number of elements left out between the two

sequences. A sample of the dataset can be seen in Appendix 8.5.1.

The objective of the dataset is to use the input Fibonacci sequence

(Xsequence) as well as characteristics of the sequence (Xstatic) to predict the

next 10 elements in the sequence (Ysequence).

The static data in this problem is critical to accurately predict the

next sequence, which makes it a suitable problem for testing whether the

architectures we are using can indeed learn the correlation between the static

and time series data.

4.3.1 Background and validity

This dataset was generated using a python script 3. The process of data

generation is described below. It does not reflect any real-world scenario and

was used as a way to evaluate the attention mechanism in a better context

and validate whether our models generalize to different domains and larger

datasets.

1. Create static dataset: For each row, all the variables listed in Table 4.6

which fall within the static dataset must be initialized. The static

variables are initialized in the following way:

2https://en.wikipedia.org/wiki/Fibonacci_sequence
3https://github.com/hen3kr8/Fibonacci-variant-generator
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4.3 Fibonacci dataset

• Fib 1: Selects a uniform random sample from the range 1 and 49.

• Fib 2: Selects a uniform random sample from the range 1 and 49.

• GapXY: Selects a uniform random sample from the range 0 and 9.

• Noise present: Samples either 0 or 1 from non-uniform

distribution with P0 = 0.9 and P1 = 0.1. Sequences in which noise

is present will have Gaussian noise added to the sequence with

mean = noise mean and standard deviation = to noise standard

deviation

• Noisemean: if noise is present, then the noise mean is 1.

• Noisestd: if noise is present, then the noise standard deviation is a

uniform random sample within the range 0 and 4.

• Reversed: Selects a uniform random sample from the range 1 and

0.

• Multiplier: Selects a uniform random sample from the range 1

and 4.

2. Create the timeseries sequences.

• Fib 1 and Fib 2 form the first 2 elements of the fibonacci sequence.

The next 18 (double the sequence length of 10) + GapXY number of

elements are generated by following the formula Fn = Fn−1 + Fn−2.

This gives a sequence of 20 + GapXY elements.

• All elements of the sequence are multiplied by the multiplier

variable.

• If reverse = 1, the sequence is placed in reverse order, meaning the

sequence is decreasing starting from the largest element.

• the sequence is split into Xsequence, the first 10 elements in the

sequence, and Ysequence, which starts from the 10th + GapXY

element and ends at the 20th + GapXY element.

• If present, the noise is added to the sequences. For each

element in the sequence, a noise value is sampled from the
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Gaussian(Noisemean, Noisestd) distribution, which is added to the

element.

4.3.2 Variables

Since the dataset was generated and recorded, it does not contain any missing

values. It does contain noise which is indicated by the ‘Noise present’

variable.

Variable name Description Datatype Range Dataset
Fib_1 1st element in sequence Discrete [1, 49] Static
Fib_2 2nd element in sequence Discrete [1, 49] Static
Gap_XY Number of elements between the last element of

Xsequence and 1st element of Ysequence

Discrete [0, 9] Static

Noise present Whether the sequence is noisy. 10% of the
sequences contain noise

Binary [0, 1] Static

Noise mean Noise is sampled from a normal distribution with
mean = 1 and varying standard deviation.

Discrete [0, 1] Static

Noise std Standard deviation used to sample the noise. Discrete [0, 4] Static
Reversed Whether the sequence is in decreasing or not. If

reversed, Fib_1, Fib_2 are the last elements in
Ysequence. Else first elements in Xsequence. 50% of
sequences are reversed.

Binary [0, 1] Static

Multiplier Scalar with which sequence has been multiplied. Discrete [0, 4] Static
Xsequence Elements of Fibonacci sequence used as input. All

sequences length 10.
Timeseries

Ysequence Elements of the Fibonacci sequence to predict. All
sequences length 10.

Target

Table 4.6: Variables used in Fibonacci dataset
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4.3.3 Preprocessing

As the dataset was generated, it required little preprocessing. It contained no

missing values and all sequences were of length 10, eliminating the need for

padding. Discrete variables were scaled using a Min-Max scaler as well as

the elements of the X- and Ysequences A correlation matrix was not calculated

as the features are uncorrelated by design, with the exception of the noise

variables. Seeing as the number of features are small, they will all be included

in the model training process.

Dataset Size
Original dataset 1000
Training set 664 (66%)
Test set 200 (20%)
Validation set 136 (13.5%)

Table 4.7: Fibonacci Dataset Sizes

4.3.4 Experiments

The Fibonacci experiment is a forecasting problem tasked with predicting a

sequence of elements. As mentioned in Section 3.1, in forecasting problems

the decoder component outputs a vector for every timestep of the sequence,

resulting in a shape of (d, t). This output is fed to a shallow NN with a single

hidden unit, tasked with reducing the dimensionality to (1, t) in order to

predict the final sequence of elements.
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5. Results

In this section, we present results from each of the Sepsis, Fibonacci, CF

forecasting and CF improvement classification experiments. The chosen

hyperparameters used for each of the 6 architectures of the final experiments

are shown, of which performance plots of the specific hyperparameter search

can be found in the relevant Appendix section. Each experiment for each

architecture was run 15 times.

For classification experiments, Sepsis and CF improvement, the mean

and standard deviation of metrics test accuracy, F1 score, Precision, Recall

and number of training epochs recorded during the experiment run are

shown. For classification, a higher F1 score is preferred. For forecasting

experiments, the Test MSE and the number of training Epochs recorded

during the experiment are shown. Regarding MSE, a lower value indicates a

higher accuracy.

Primary analysis involved a non-parametric Kruskal-Wallis test for

statistical significance between architectures, followed by a post hoc Dunn’s

test or parametric Welch’s t-test. Each experiment concludes with the

presentation of the attention weights found by the attention architecture.

This is discussed in the following section.

5.1 Sepsis

In the Sepsis experiment the architectures were tasked with predicting

whether or not a patient would be readmitted to the emergency room. It is

a binary classification problem and performance between architectures is

compared using F1 score, where a higher value indicates better performance.

Table 5.1 shows the chosen hyperparameters based on the hyperparameter

search. Figures 8.2, 8.3 and 8.4 in Appendix 8.4.1 show the results of each

hyperparameter search. Table 5.3 presents the results of Welch’s t-test with

Bonferroni correction for comparing the F1 scores between each architecture,
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5.1 Sepsis

indicating statistically significant differences where p < .001, suggesting the

rejection of the null hypothesis that two distributions are equal. Table 5.4

shows the effect sizes measured by Cohen’s d between architectures, with

effect sizes of 0.2, 0.5, and 0.8 indicating small, medium, and large differences,

respectively [74]. The distributions of the F1 score of the architectures are

visualized in Figures 5.1 and 8.5.

Model Number of layers Number of units per layer Initial learning rate
attention 5 32 10−4

hybrid_1 7 128 10−5

hybrid_every 6 128 10−5

meta_no_seq 6 16 10−3

meta_every 2 128 10−5

meta_1 6 128 10−5

Table 5.1: Hyperparameters used for final experiment Sepsis ER

5.1.1 Results

We noted that the architectures were very susceptible to falling into the

local optima of only predicting the majority class. Therefore we deemed F1

score a more valuable metric, as it better reflects the architecture’s ability to

differentiate the two target variables. The meta_1_step architecture achieved

the highest F1 score, and the hybrid_1 achieved the highest test accuracy.

The attention architecture achieved the lowest F1 score.

Model Test Accuracy
(SD)

F1 (SD) Precision
(SD)

Recall (SD) Epochs
(SD)

attention 59.4 (4.8) 56.6 (3) 59.9 (6.2) 59.3 (4.8) 170 (23)
hybrid_1 63.1 (1.9) 61.13 (3.4) 62.3 (3.4) 63.1 (1.9) 153 (4)
hybrid_every 58.7 (3.6) 58.96 (3.6) 64.6 (2.9) 58.7 (3.6) 153 (3)
meta_no_seq 59.8 (4.8) 60.33 (4.5) 63.2 (3.7) 59.8 (4.8) 186 (20)
meta_every 59.3 (2.0) 60.19 (1.9) 63.8 (1.9) 59.3 (2.0) 155 (6)
meta_1 62.4 (2.6) 62.6 (2.7) 64.0 (2.3) 62.4 (2.6) 154 (6)

Table 5.2: Percentage Mean and standard deviation of Sepsis Return ER
Results

5.1.2 Statistical significance

A Kruskal-Wallis test indicated that there was a significant difference in the

median F1 scores across the 6 architectures (H(5) = 20.605, N = 15, p < .001).
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This effect was small (E2
R = 0.087). Post-hoc comparisons using a parametric

Welch’s t-test with a Bonferroni correction for multiple tests and Cohen’s d

for effect size indicated that the mean F1 score of the attention architecture

was significantly different to the hybrid_1 (p = .001, d = 1.42), meta_every

(p = .001, d = 1.43) and meta_1 (p < .001, d = 1.71) architectures. The effect

sizes were large, indicating inferior performance by the attention architecture.

Effect sizes measured by Cohen’s d of 0.2, 0.5, and 0.8 indicate small, medium,

and large differences, respectively [74].

attention hybrid_1 hybrid_every meta_no_seq meta_every
hybrid_1 .001
hybrid_every .058 .102
meta_no_seq .013 .588 .369
meta_every .001 .369 .258 .919
meta_1 <.001 .509 .025 .272 .091

Table 5.3: Results from Welch’s parametric t-test for independent samples
with Bonferroni correction (αadj = 0.003) on the F1 scores.

attention hybrid_1 hybrid_every meta_no_seq meta_every
hybrid_1 1.423
hybrid_every 0.723 -0.617
meta_no_seq 0.981 -0.200 0.334
meta_every 1.433 -0.335 0.424 -0.038
meta_1 1.710 0.244 0.864 0.41 0.644

Table 5.4: Results from Cohen’s d measure for effect size based on the F1
scores. Absolute values 0.2, 0.5, and 0.8 indicate small, medium, and large
differences, respectively [74].

5.1.3 Attention weights

Figures 5.2 and 5.3 show the attention weights of the model which had the

highest F1 score during the experiments run after the hyperparameter search.

Figure 5.2 shows the attention weights per timestep for all 126 test samples,

whilst Figure 5.3 shows the average weights across all timesteps. Note that

only the last 4 timesteps were used in the modelling process The weights

are calculated by multiplying the learned representations from the RNN and

NN models and applying a softmax activation function to the result (For

more details, see Appendix 8.1). We can see from the figures that timestep 3,

the last timestep, has the largest weight, followed by timesteps 2, 0 and 1.
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Figure 5.1: Boxplot for F1 score for Sepsis ER classification (Red line indicates
mean).

Figure 5.2: Attention weights for each test sample per timestep for the sepsis
data
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Figure 5.3: Average attention weights per timestep for the sepsis data
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5.2 Fibonacci

In the Fibonacci experiment the architectures are tasked with forecasting

the next 10 elements in the sequence. Its performance is evaluated by mean

squared error, where a lower error indicates a better performance. Table 5.5

shows the selected hyperparameters based on the hyperparameter search.

Figures 8.6, 8.7 and 8.8 in Appendix 8.5.2 show the plots of each individual

hyperparameter search. The mean and standard deviation of the forecasting

performance metrics, test MSE and number of training epochs of the final

experiment, are shown in Table 5.6. The distributions of the test MSE of the

architectures are visualized in Figures 5.4 and 8.9.

Model Number of NN layers Number of NN units Initial learning rate
attention 2 64 10−4

hybrid_1_step 2 64 10−4

hybrid_every_step 2 32 10−4

meta_no_seq 2 128 10−4

meta_every_step 3 64 10−4

meta_1st_step 2 128 10−4

Table 5.5: Hyperparameters used for final experiment Fibonacci dataset

5.2.1 Results

Table 5.6 shows that the meta_1 architecture achieved the lowest test MSE,

which means it had the lowest error among the models. Unsurprisingly the

meta_no_seq architecture achieved the highest MSE by factor 100, making it

the least accurate. It also took the largest number of epochs to train.

Model Test MSE Epochs
attention 3.69 × 10−5 (1.35 × 10−5) 224 (44)
hybrid_1 3.18 × 10−5 (9.46 × 10−6) 213 (52)
hybrid_every 9.21 × 10−5 (1.05 × 10−4) 216 (60)
meta_no_seq 1.59 × 10−3 (1.59 × 10−5) 294 (80)
meta_every 4.68 × 10−5 (1.70 × 10−5) 222 (75)
meta_1 3.12 × 10−5 (1.03 × 10−5) 207 (36)

Table 5.6: Mean and standard deviation of Fibonacci results.
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5.2.2 Statistical significance

A Kruskal-Wallis test indicated that there was a significant difference in the

median test MSE across the 6 architectures (H(5) = 46.079, N = 15, p < .001).

This effect was small (E2
R = 0.201). Post-hoc comparisons using Dunn’s test

with a Bonferroni correction for multiple tests indicated that the mean test

MSE was significantly different only for the meta_no_seq architecture.

attention hybrid_1 hybrid_every meta_no_seq meta_every
hybrid_1 .367
hybrid_every .297 .052
meta_no_seq <.001 <.001 <.001
meta_every .184 .025 .774 <.001
meta_1 .345 .965 .047 <.001 .023

Table 5.7: p values according to Dunn’s test (αadj = 0.003)

Figure 5.4: Boxplot for test MSE values for Fibonacci experiments, excluding
meta_no_seq architecture (Red line indicates mean).

5.2.3 Attention weights

Figures 5.5 and 5.6 show the attention weights of the model which had

the lowest MSE score during the experiments run after the hyperparameter

search. Figure 5.5 shows the attention weights for each element for all 200

Fibonacci test sequences. Figure 5.6 shows the average attention weights for
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each element of these test sequences. The highest weights were at elements

9, 8 and 7.

Figure 5.5: Attention weights for each test sample per timestep for the
Fibonacci data

Figure 5.6: Average attention weights per timestep for the Fibonacci data
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5.3 Cystic fibrosis forecasting

In the CF forecasting experiment the architectures are tasked with forecasting

the next 5 ppFEV1 values of patients after they have taken Kaftrio. Its

performance is evaluated by mean squared error, where a lower error

indicates better performance. Table 5.8 shows the selected hyperparameters

based on the hyperparameter search. Figures 8.10, 8.11 and 8.12 in Appendix

8.6.1 show the plots of each individual hyperparameter search. The mean

and standard deviation of the forecasting metrics, test MSE and number

of training epochs, of the final experiment are shown in Table 5.9. The

distributions of the test MSE of the architectures are visualized in Figures 5.7

and 8.13.

Model Number of layers Number of units per layer Initial learning rate
attention 6 32 10−6

hybrid_1 2 32 10−4

hybrid_every 2 16 10−4

meta_no_seq 2 128 10−4

meta_every 2 16 10−5

meta_1 2 32 10−4

Table 5.8: Hyperparameters used in the cystic fibrosis forecasting experiment

5.3.1 Results

Table 5.9 shows that the attention mechanism achieved the lowest MSE

score, followed by the meta_every_step model. Both architectures had a

high number of epochs in comparison to the other architectures, due to

the smaller learning rate. Surprisingly, the meta_no_seq model achieved

similar performance to the other architectures, despite not having a 2nd RNN

component.

5.3.2 Statistical significance

A Kruskal-Wallis test indicated that there was a significant difference in

the median MSE scores across the 6 architectures (H(5) = 63.281, N = 15,

p < .001). This effect was small (E2
R = 0.278). Post-hoc comparisons using a

non-parametric Dunn’s test with a Bonferroni correction for multiple tests
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Model Test MSE Epochs
attention 2.05 × 10−2 (1.17 × 10−3) 870 (61)
hybrid_1 2.61 × 10−2 (1.26 × 10−3) 574 (153)
hybrid_every 2.28 × 10−2 (1.19 × 10−3) 527 (196)
meta_no_seq 2.39 × 10−2 (1.01 × 10−3) 334 (114)
meta_every 2.13 × 10−2 (9.43 × 10−4) 853 (110)
meta_1 2.36 × 10−2 (1.30 × 10−3) 386 (101)

Table 5.9: Mean and standard deviation of CF forecasting results.

and Cliff’s delta (δ) for effect size indicated that the mean MSE score of the

attention architecture was significantly different to the hybrid_1 (p < .001,

δ = 1.0), hybrid_every (p = .001, δ = 0.84), meta_1 (p < .001, δ = 0.947)

meta_no_seq (p < .001, δ = 0.84) architectures. Effect sizes 0.15, 0.33 and

0.47 show small, medium and large differences [75], indicating that these

effect sizes were large, and the attention architecture outperformed the other

architectures.

attention hybrid_1 hybrid_every meta_no_seq meta_every
hybrid_1 <.001
hybrid_every .001 <.001
meta_no_seq <.001 .022 .110
meta_every .229 <.001 .056 <.001
meta_1 .001 <.001 .371 .480 .005

Table 5.10: p values from Dunn’s test (αadj = 0.003)

Cliff’s delta showed that the effect size measures between the attention

and other architectures were large. Figures 5.7 and 8.13 emphasize the lower

mean and median MSE of the attention architecture in comparison to other

architectures.

attention hybrid_1 hybrid_every meta_no_seq meta_every
hybrid_1 1.0
hybrid_every 0.840 -0.956
meta_no_seq 0.947 -0.893 0.556
meta_every 0.627 -1.0 -0.680 -0.876
meta_1 0.840 -0.822 0.298 -0.262 0.796

Table 5.11: Effect size measures from Cliff’s δ, which measures how often
the values in one distribution are larger than values in a second distribution.
Absolute effect sizes 0.15, 0.33 and 0.47 show small, medium and large
differences [75].
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attention hybrid_1 hybrid_every meta_no_seq meta_every meta_1
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Figure 5.7: Boxplot for test MSE values for CF forecasting experiments (Red
line indicates mean).

5.3.3 Attention weights

Figures 5.8 and 5.9 show the attention weights of the model which had the

lowest MSE score in the experiments run after the hyperparameter search.

Figure 5.8 shows the attention weights for each element for all 33 CF

forecasting test sequences. Figure 5.9 shows the average attention weights

for each element of these test sequences. The highest weight was at timestep

0.
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5.3 Cystic fibrosis forecasting

Figure 5.8: Attention weights for each test sample per timestep for CF
forecasting data

Figure 5.9: Average attention weights per timestep for the CF forecasting.
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5.4 Cystic fibrosis improvement classification

In the CF improvement classification experiment, the architectures were

tasked with predicting whether a patient’s average ppFEV1 value after

Kaftrio would be higher or lower than their last ppFEV1 value. It is a

binary classification problem and performance between architectures is

compared using F1 score, where a higher value indicates better performance.

Table 5.12 shows the selected hyperparameters based on the hyperparameter

search. Figures 8.14, 8.15 and 8.16 in Appendix 8.7.1 show the plots of each

individual hyperparameter search. The mean and standard deviation of the

classification metrics of the final experiment are shown in Table 5.13. The

distributions of the F1 score of the architectures are visualized in Figures 5.10

and 8.17.

Model Number of layers Number of units per layer Initial learning rate
attention 3 32 10−3

hybrid_1 2 16 10−3

hybrid_every 6 64 10−4

meta_no_seq 6 32 10−3

meta_every 7 128 10−4

meta_1 4 32 10−4

Table 5.12: Hyperparameters used in the cystic fibrosis improvement
experiment.

5.4.1 Results

Test Accuracy F1 Precision Recall Epochs
attention 62.5 (9.0) 61.5 (5.9) 64.7 (7.1) 62.2 (9.1) 182 (16)
hybrid_1 67.6 (6.5) 67.8 (5.9) 69.6 (6.9) 67.6 (6.3) 172 (17)
hybrid_every 62.8 (6.4) 64.4 (5.8) 69.6 (3.8) 62.9 (6.3) 174 (31)
meta_no_seq 72.1 (6.7) 72.2 (6.2) 72.7 (6.3) 72.0 (6.4) 172 (19)
meta_every 62.8 (9.3) 64.4 (9.4) 69.4 (7.1) 62.7 (9.7) 167 (21)
meta_1 55.7 (8.8) 58.3 (8.6) 66.0 (5.6) 56.1 (9.2) 176 (23)

Table 5.13: Mean and standard deviation of CF improvement classification
results

5.4.2 Statistical significance

A Kruskal-Wallis test indicated that there was a significant difference in

the median MSE scores across the 6 architectures (H(5) = 27.539, N = 15,
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5.4 Cystic fibrosis improvement classification

p < .001). This effect was small (E2
R = 0.118).

Post hoc comparisons using a non-parametric Dunn’s test with a

Bonferroni correction for multiple tests and Cliff’s delta (δ) for effect size

indicated that the mean F1 score of the attention architecture was significantly

different to the meta_no_seq (p < .003, δ = 0.8) architectures. Effect sizes

0.15, 0.33 and 0.47 show small, medium and large differences [75], indicating

that these effect sizes were large, and the attention architecture outperformed

the other architectures.

attention hybrid_1 hybrid_every meta_no_seq meta_every
hybrid_1 .016
hybrid_every .240 .221
meta_no_seq .001 .144 .007
meta_every .122 .393 .711 .020
meta_1 .439 .002 .051 <.001 .020

Table 5.14: Results from Dunn’s test (αadj = 0.003)

attention hybrid_1 hybrid_every meta_no_seq meta_every
hybrid_1 0.551
hybrid_every 0.320 -0.320
meta_no_seq 0.800 0.396 0.631
meta_every 0.356 -0.182 0.098 -0.542
meta_1 -0.289 -0.653 -0.484 -0.796 -0.498

Table 5.15: Effect sizes according to Cliffs Delta.

5.4.3 Attention weights

Figures 5.12 and 5.11 show the attention weights of the model with the

highest F1 score in the experiments run after the hyperparameter search.

Figure 5.12 shows the attention weights for each timestep for all 34 test

samples. The change in patient CFTR usage is plotted at the timestep it was

started or stopped. Figure 5.11 shows the average attention weights for each

element of these test samples. To the naked eye, there is no clear relationship

between the CFTR usage and the attention weights. Overall, the weights

seem to be decreasing in magnitude as the timesteps increase.

65



Results

Figure 5.10: Boxplot for F1 score for CF improvement classification (Red line
indicates mean).

Figure 5.11: Average attention weights per timestep for the CF improvement
classification.
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5.4 Cystic fibrosis improvement classification

Figure 5.12: Attention weights per timestep for all samples with CFTR usage
indicated. O = Orkambi start, -O = Orkambi stop. S = Symkevi start, -S =
Symkevi stop. K = Kalydeco start, -K = Kalydeco stop.
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6. Discussion

In this section of our work, we discuss the results from the specific

experiments, the limitations of our work which impacted experiments,

a general discussion in which we compare the different forecasting

experiments to one another, as well as the classification experiments. The

section concludes by discussing the advantages of the added attention

mechanism to the architecture.

6.1 Experiment specific discussion

6.1.1 Sepsis

Evaluating Table 5.2, the test accuracy from the Sepsis experiment is better

than random (59 - 63%). Architectures were susceptible to falling into the

local optima of predicting the majority class, which achieves a 65% accuracy.

This can be seen in the learning rate hyperparameter search (Figure 8.2)

where the architectures trained using very large (10−3) or very small (10−6)

initial learning rates all achieved a high test accuracy (65%) but a low F1

score (51%). The same can be said of the number of units hyperparameter

search (Figure 8.4), where the architectures were more likely to fall into the

majority class local optima if there were fewer hidden units per layer. This

supported our usage of the F1 score rather than test accuracy to evaluate the

architecture’s ability to differentiate between the two classes.

The attention architecture achieved the lowest F1 score and was

statistically significantly different to all other architectures with the exception

of the hybrid_every and meta_no_seq model architectures (Table 5.3).

The effect size measures between the attention architecture and all other

architectures were large and positive (Table 5.4), indicating that the

architectures that were significantly different outperformed the attention

architecture by a considerable amount, and those that were not, likely would
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6.1 Experiment specific discussion

have been significantly different had more samples been included.

The static data, which included variables such as whether a patient was

admitted to the ICU, had a critical heart rate, or had a dysfunctional organ,

was likely more informative than the time series data. This is based on the

premise that the combination of these static variables likely provide greater

insight into the likelihood of a patient returning to the ER compared to

time series variables such as a patient’s Leucocyte count. However, this

assumption would benefit from further empirical validation to confirm the

predictive superiority of static data over time series data in this context.

The attention mechanism effectively uses the cosine similarity to reduce

the static data to a set of weights used for time series data, thereby placing

much more emphasis on the time series data. This likely served as a

disadvantage to the attention architecture, when the differential power

lay in the static data. All other architectures having access to the learned

representations of the static data in the decoder and final shallow NN

achieved a higher F1 score, suggesting that that was the superior architecture

setup at least for this dataset.

Although we cannot conclude that predicting the majority class is the

global optimum of this problem as not all possible model hyperparameter

configurations were explored, it is likely the case, seeing as no test accuracy

higher than the majority class was achieved. Our experiment falls in line

with the findings of [72], who, although they implemented a process model

rather than deep learning models, could not find any hard rules to predict

when a patient would return to the ER after 28 days.

Attention weights

As mentioned in Section 5.1.3, the last timestep, timestep 3, has the largest

weight, followed by timesteps 2, 0, and 1. One obvious reason for this is

that timesteps 2 and 3 are present in all samples, whilst timesteps 0 and 1

might be padding. This indicates the model has deemed the real timesteps

of higher relevance than the padded data.

The time series value which was used in the modelling process was the

69



Discussion

leucocyte variable. There was however no significant difference between the

final leucocyte values of the different classes, meaning the large attention

weight cannot be attributed to that. Given that the static data was more

informative than the time series data, it is likely that the attention weights,

which inform as to which time series element should be emphasized, are not

very relevant.

6.1.2 Fibonacci dataset

The performance of all architectures on the test MSE was comparable,

except for the meta_no_seq architecture, which deviated notably due to

its distinctive design. Unlike the other architectures, meta_no_seq lacks a

decoder RNN — a key component that significantly enhances a model’s

ability to predict sequences. This absence accounts for its poor performance,

highlighting the decoder RNN’s critical role in adding complexity and

effectiveness to sequence-to-sequence prediction tasks, as established in

the literature [76].

The test for significance suggests that there is a significant difference

between at least one of the MSE distributions of the architectures, but the

effect size suggests that this difference is small. Comparing the different

architectures to one another using Dunn’s test (Table 5.7) shows that there

is no statistical difference between the MSE of the architectures, with the

exception of meta_no_seq. This means the attention architecture achieved

similar performance to the hybrid and meta architectures.

Attention weights

Referring to Figures 5.5 and 5.6, we observe that the final 3 elements have

a higher weight than the rest. This is logical, as the first element of the

Ysequence can be determined by adding, or subtracting, elements 8 and 9 in

the Xsequence. This suggests that the attention mechanism has learned this

inherent property of the dataset.
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6.1 Experiment specific discussion

6.1.3 Cystic fibrosis forecasting

In this forecasting experiment the attention architecture scored the lowest

MSE, and was significantly different with a large effect size in comparison to

all other architectures. The meta_every architecture achieved the 2nd lowest

MSE, and both architectures had a small learning rate, which is why it took

more epochs to train. Smaller learning rates are less likely to overshoot the

optima than larger learning rates, as well as more thoroughly exploring the

search space.

The dataset for the CF forecasting experiment contains valuable static

variables such as age, the number of pulmonary exacerbations (PEx), and

sweat chloride concentration (SwCl) at baseline, which are associated with a

patient’s average ppFEV1 or ppFEV1 decline during Lumacaftor/Ivacaftor

CFTR use [65]. The time series data contains the patient’s CFTR usage over

time and their initial ppFEV1 value, both of which influence a patient’s

ppFEV1 value over time. The attention mechanism effectively learns the

relationship between static and time-series data, allowing it to predict

the post-Kaftrio ppFEV1 over time with fewer errors compared to other

architectures.

Attention weights

Figures 5.8 and 5.9 show that the 1st pre-Kaftrio measurement timestep had

the highest weight. The 1st timestep is the 5th last timestep before a patient

starts taking Kaftrio. The information in this timestep indicates which CFTRs

a patient is currently using, their weight, whether they are using nebulized or

oral anti-biotics and their ppFEV1 value. This information varies per patient.

A possible explanation for the high weight at this timestep is that the

model only needs the 1st data point in the input sequence to forecast the

output sequence. Since the pre-Kaftrio measurements only include the last 5

measurements, the patient’s entire CFTR history is not fully captured.

While it might seem logical for the model to emphasize the final timestep

before Kaftrio use, reflecting an imminent CFTR change, the attention
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mechanism instead downplays its importance. This might be explained by

the relatively stable nature of a patient’s weight, suggesting that subsequent

timesteps after the first may offer redundant information to the model.

6.1.4 Cystic fibrosis improvement classification

In the CF classification experiment, the meta_no_seq architecture achieved

the highest F1 score and was significantly different to the attention and

meta_1 architectures with a large effect. The meta_no_seq has only a single

RNN component, which should make it less prone to overfitting and could

explain its superior performance of 72%. This is however still less than

predicting the majority class, which comprised 79% of the dataset.

The meta_no_seq’s F1 score closely aligns with its test accuracy,

suggesting balanced prediction capabilities across both classes without

bias toward the majority class. Despite this, the relatively high variance

in the results implies that incorporating more data could enhance prediction

accuracy. The simplistic design of the meta_no_seq, having fewer model

components and hence parameters than other tested architectures, raises

the possibility that even simpler, possibly non-deep learning models might

deliver superior performance. If the model were to surpass the baseline

accuracy of predicting the majority class, its practical application should be

considered.

Attention weights

The attention weights in Figures 5.12 and 5.11 seem to be decreasing over

time. The weights per timestep vary in magnitude from 0.02 to 0.2. The

exact weights per patient differ, but on average it seems the first 10 timesteps

are more important than the last 10. The input time series data contains 20

timesteps compared to the 5 in the forecasting experiment (Figures 5.8 and

5.9) but the last 5 timesteps do not bear a resemblance to the weights in the

forecasting experiment.

Since the input time series data contains more timesteps, it captures more

of the patient’s medical history, and importantly their historic CFTR usage.
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Since the CFTR usage is more likely to change in the last 20 timesteps before

a patient starts using the Kaftrio medicine compared to the last 5 timesteps,

we expect the model to have a better chance of learning the importance of the

CFTR change, and hence expect high attention weights at timesteps where

a CFTR change occurred. At timestep 19, many patients stop the use of the

Symkevi or Orkambi CFTR since they will start using Kaftrio at the following

timestep. While we expected the attention weight here to be high, we see no

clear relationship between CFTR usage and the attention weights, based on

Figure 5.12. The attention weights seem to be the lowest at the final timestep,

counter to our expectations. We notice that the weights do contain certain

peaks (yellow in Figure 5.12), but they do not align with the CFTR change.

The architecture is trained on multiple variables (CFTR use, anti-biotic

use, weight, and ppFEV1). The attention mechanism has likely determined

that a combination of these variables rather than a specific timestep is of

importance. This suggests that ppFEV1 does not solely depend on the CFTR

change but perhaps on an interplay of multiple variables. This aligns with the

multifactorial nature of ppFEV1 and reflects the complexity of the underlying

health dynamics.

6.2 Limitations

This section outlines key limitations that influenced the scope and

effectiveness of our work. These limitations range from the non-exhaustive

search of hyperparameters to the constraints imposed by the batch size

and sequence length in our models. Additionally, issues such as class

imbalance in datasets may have affected the performance and outcomes

of our experiments.

Hyperparameters The hyperparameter searches were not exhaustive. This

limited the optimization of crucial parameters. These parameters include

the number of units per layer, the dropout ratios, the count of RNN layers,

and the selection of activation functions. By exploring a broader range

and combination of these parameters in future studies, there is potential to
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significantly enhance model performance and accuracy

Batch size Currently, our attention mechanism implementation does not

support a batch size greater than 1. To make a fair comparison, all

experiments were run using batch size 1. If the implementation were adjusted

to support this, training time would decrease significantly, making it much

more plausible to optimize the other parameters.

Sequence lengths The Fibonacci experiment suggested that including

more extensive and longer sequences could potentially lower the MSE and

improve model performance. In the cystic fibrosis forecasting experiment, the

introduction of the Kaftrio medication in 20221, resulted in a limited number

of post-treatment data points, with a significant difference in sequence

lengths before and after treatment (See Figures 4.2 and 4.3). According

to the architecture designs of the forecasting experiments, the input and

output sequences must have the same length, as the decoder RNN is fed

a concatenation of the output of the 1st RNN and NN component. The

input and output sequences shorter than 5 were padded. Input sequences

were padded with the value -1 and a masking layer ensured the architectures

ignored these values. However, since the Tensorflow library does not support

masking in the output layers, the output sequences were padded by repeating

the final value in the sequence until the sequence was length 5. We realize

this method of padding could impact the results and can introduce bias to

the model to repeat predictions in the final stages of the forecast. A solution

to this shortcoming is proposed as future work in Section 7.1.1.

Class imbalance A major problem of the sepsis experiment was that the

models kept falling into local optima. The class imbalance of the data (65%

vs 35%) likely attributed to this problem, and arguably the lack of data. Since

samples in the sepsis data were only included if sequences were longer

than 1, many samples were excluded. Including more samples of patients

returning to the ER could improve performance. But as [72] also found, the

1https://www.umcutrecht.nl/nl/over-ons/nieuws/details/medicijn-kaftrio
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data does not seem to be suited for predicting return to the ER, at least not

using process mining or deep learning models.

The cystic fibrosis improvement classification dataset presented was even

more imbalanced (79% vs 21%). Unlike the issues with local optima observed

in the Sepsis datasets, the cystic fibrosis results displayed high variance.

This variance stemmed from the small and imbalanced sizes of the test and

validation sets. Increasing the size of these datasets is likely to enhance the

model’s accuracy, as a larger and more balanced dataset could provide a

more representative sample of the population. This expansion would likely

reduce the variance and improve the reliability of the results.

Note that the class imbalance impacted only the classification experiments.

The Fibonacci and CF forecasting experiments did not have this limitation

by design. This combination of experiments allowed for a more balanced

overall view of the performance of the attention mechanism.

6.3 General discussion

Forecasting: CF vs Fibonacci

The mean test MSE across architectures in the Fibonacci experiment was

much lower than in the CF forecasting experiment. Even the worst-

performing meta_no_seq architecture in the Fibonacci experiment with

its single RNN component achieved a lower test MSE (1.59 × 10−3) than

the best-performing attention architecture in the CF forecasting experiment

(2.05 × 10−2).

There are several reasons for the difference in performance:

1. The Fibonacci experiment had access to much more data (1000 data

points vs 214). The sequences were also longer (10 vs 5).

2. It is a less complex problem, with data generated according to a known

function, as opposed to the measured CF data which has many more

variables at play, not all of which can be measured and is inherently

less understood.
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3. As with all real data, the measured CF data has challenges such as

varying measurement frequencies, missing values, noise, and outliers.

Although these aspects impact model performance, it more accurately

mirrors the inconsistencies of the real world, and highlights the

difference between real and generated data.

Classification: CF improvement vs Sepsis Return to ER

In the classification experiments, both datasets were imbalanced. The CF

improvement dataset contained 79% positive and 21% negative cases, which

made it more imbalanced than the Sepsis dataset’s 62% negative and 38%

positive cases. Yet the architectures in the CF improvement experiment were

less susceptible to falling into local optima than in the Sepsis experiment

based on the higher F1 scores in all architectures, with the exception of

meta_1. The same holds for the test accuracy.

One reason for this difference in accuracy can be attributed to the

relationship between the time series data and the target variable in each

experiment. The relationship between previous ppFEV1 and CFTR usage

to post-Kaftrio ppFEV1 is clear and supported by literature [66] (else

the hospital would not distribute it). Whereas in the Sepsis experiment

this evidence of whether or not a patient’s Leucocytes influences their re-

admittance to the ER is lacking.

Another difference lies in the variance of the results (Table 5.2 and

5.13). The CF improvement results have a higher standard deviation per

architecture than the Sepsis results. This is very likely a cause of the small

dataset used in the CF improvement experiment and suggests that including

more data could improve accuracy.

1st step vs every step concatenation

In each of the experiments we also trained hybrid_1_step, hybrid_every_step,

meta_1_step and meta_every_step architectures. In all of the experiments,

we see that there is no significant difference in the performance between

the meta_1_step and meta_every_step architectures. Regarding the hybrid
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architecture, only in the CF forecasting experiment does hybrid_every_step

significantly outperform the hybrid_1_step architecture.

This differs from [13, 20, 53] who found that concatenating the static

data to the 1st step achieves better performance than concatenating it to

every time step, but is likely due to the difference in the size of the data

sets used. The mentioned works used sample sizes 3700, 8000 and 60,000

respectively compared to our 626, 1000, 214 and 224. This could suggest that

concatenating the data to the first or every timestep has less influence on the

model if the data set is small.

6.4 Advantage of an attention mechanism

We have seen that the attention architecture achieves a similar or even lower

error regarding forecasting problems. We now explore possible reasons for

this, as well as additional benefits of the attention mechanism.

The data dimensionality of the output of the attention mechanism is

smaller than the output of the concatenation used in the meta and hybrid

architectures. The output of the attention mechanism has shape (d, t), since

it reduces the learned static representations to a set of attention weights to be

multiplied with the time series representations. The meta-architecture (Figure

3.2) concatenates these learned representations (Figure 3.6), resulting in an

output shape of (2d, t). In the hybrid architecture (Figure 3.3) concatenation is

performed between the learned static representations and the raw time series

data, resulting in an output shape of ((Xt + d, t)). The attention mechanism

uses a smaller dimensionality, which leads to fewer model parameters to

be learned in the RNN component, and the overall architecture (See a

comparison of the learnable weights per architecture in Appendix 8.2). This

reduction of dimensionality and model parameters decreases the likelihood

of overfitting, without information loss. The meta_no_seq architecture is

the exception to this as it has fewer parameters due to only a single RNN

component. It does however have a higher dimensionality and achieves a

higher error in comparison to attention architecture in sequence forecasting
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experiments.

The attention mechanism provides a set of attention weights, which

provides context for the model on which timesteps it should focus.

This targeted focus allows the model to prioritize relevant data over less

important information, thereby enhancing performance. Specifically, it helps

in achieving lower error during training, allowing the model to predict more

accurate sequences. In theory, the attention architecture should also converge

faster, however, in none of the experiments did the attention architecture

have even the lowest number of training epochs, even in experiments where

it had a simpler hyperparameter setup (fewer layers, units per layer and

larger learning rate) than the other architectures.

The attention weights can be visualised to provide potential insights

about the structural dependencies of the data. In each experiment

we have plotted the attention weights, which tell us which timesteps

the architecture emphasizes when forecasting a sequence or making a

classification prediction. We have plotted key events such as the CFTR

change of CF patients to the attention weights, but saw no correlation. We

did see in the Fibonacci experiment that the attention weights regard the final

2 timesteps as the most important, which suggests that the architecture has

learned that it should utilize these two timesteps when predicting the output

sequence. This reflects the underlying structure of the Fibonacci data, where

adding the final 2 timesteps determines the following sequence element.
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In this work, we examined whether integrating an attention mechanism into

a model architecture that utilizes both static and time-series data results

in improved accuracy and mean squared error. We compared this to

similar ensemble and hybrid architectures without attention mechanisms

across classification and forecasting tasks. Our experiments included

two forecasting and two classification tasks. Regarding the forecasting

experiments, the attention architecture achieved similar performance in

the Fibonacci experiment and outperformed the architectures in the CF

forecasting experiment. Conversely, in the sepsis and CF improvement

classification tasks, meta and hybrid architectures proved to be superior.

Our findings suggest that the attention mechanism contributes to reduced

mean squared error in forecasting problems compared to those without such

mechanisms. That the attention architecture achieves better results than non-

attention architectures with regards to forecasting falls in line with the work

of [30] who found that adding an attention mechanism significantly increases

performance in language translation. Therefore, we can conclude that, at

least for forecasting problems, the attention architecture tends to achieve

performance comparable to or better than hybrid and meta-forecasting

methods when utilizing both static and time series data.

We have visualised the attention weights and found that for the CF

classification experiment, they did not align with the known key events such

as a change in CFTR. However, in the Fibonacci experiment these weights

align with structural patterns of the dataset. Our findings suggest that the

effectiveness of attention mechanisms in capturing structural patterns and

key events depends on the complexity and context of the dataset. This does

pave an interesting path to further research on whether attention mechanisms

can be used to validate assumptions across diverse datasets.
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7.1 Future Work

7.1.1 Varying sequences and the decoder RNN

The architectures presented in Section 3.3 consist of a NN, 2 RNNs and a

shallow NN. The 2nd RNN takes as input the combined output of the NN

and 1st RNN, combined either by attention or concatenation and outputs the

output sequence. This requires the input and output sequences to be of the

same length, which limits the flexibility of the architectures since the input

sequence must be truncated/padded to the output length using the current

Tensorflow and framework. Padding the output can introduce bias to the

architecture, and should be minimized.

A good alternative to the current approach would be to add a decoder

RNN model, a popular method in sequence-to-sequence modelling [76].

The decoder RNN would inherit the learned weights of the preceding

components instead of their output predictions. Usually, the weights of

an RNN are randomly initialized, but in this case, the initial weights are

set equal to the weight of the preceding RNN. The decoder RNN then

predicts the output sequence, starting with only the last timestep value

in the input sequence. By decoupling the RNNs, the input sequence may

have a different length than the output sequence. In the context of the Cystic

fibrosis forecasting experiment, this modification would enable the inclusion

of longer input sequences, capturing more of the patient’s CFTR usage, and

allowing the model to learn more correlations between CFTR change and

ppFEV1 over time.

7.1.2 More data

Kaftrio treatment was approved for medical use in the EU in August 20201.

The WKZ hospital started dispensing Kaftrio to its patients in January 2022 as

that was when the medication cost was included in the basic health insurance

package. The available post-Kaftrio measurements used in the CF dataset

1https://www.ema.europa.eu/en/medicines/human/EPAR/kaftrio
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were recorded from January 2022 to October 2023. It is therefore expected

that the number of measurements is limited, as a patient typically visits the

hospital once a quarter. The average number of post-Kaftrio measurements

per patient was 5 (Figure 4.3). As the hospital continues treatment of Cystic

Fibrosis, they will continue to record more measurements, resulting in longer

output sequences for use in forecasting models. This additional data could

provide deeper insights into the long-term impact of the CFTR modulator

usage on lung function.

Other more data-rich domains can also be considered, such as weather

data. Globally, weather data has been systematically collected for centuries,

providing a wealth of historical data. It has a mix of static features, such

as geographical location and elevation as well as time series features,

temperature, humidity, and rainfall. This combination of static and time

series data makes weather data well-suited to the architectures discussed in

this work.

7.1.3 Focusing on the static data

In the Sepsis classification experiment, the static part of the dataset contained

variables that were more informative than the Leucocytes the time series

variable. Whilst the attention mechanism combined the learned static and

time series representations to provide context to the time series data, it may

be more beneficial for the Sepsis experiment to swap these roles around, and

provide context for the static data, since this likely bears more informative

power to the target variable.
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8. Appendix A

8.1 Attention mechanism

Here follows the mathematics for calculating the attention weights, α, which
are multiplied by the time series data before being fed into a final shallow
neural network. The idea behind the attention mechanism is to map a
query and a set of key-value pairs to an output [77], where the output
is a weighted sum of values. This type of attention is known as scaled
dot-product attention, as the dot product is used to measure the similarity
between the query and the key to ultimately calculate the weights [77, 78].

Q : the final hidden layer from a neural network trained on static data
K, V : the final hidden state from recurrent neural network trained on time series data
wQ, wK, wV : learnable weights updated during training for Q, K and V
n : the number of timesteps
d : the number of units in the hidden layer
∗ : element wise multiplication between matrices

Q = (1, d) =
(
nn1 nn2 · · · nnd

)
K = V = (n, d) =


t1rnn1 t1rnn2 · · · t1rnnd
t2rnn1 t2rnn2 · · · t2rnnd

...
... . . . ...

tnrnn1 tnrnn2 · · · tnrnnd


attention weights = so f tmax

(
QKT
√

d

)
attention output = so f tmax

(
QKT
√

d

)
∗ V
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8.2 Number of weights in the meta, hybrid and attention architectures

so f tmax(QKT) = (1, d)(n, d)T = (1, n)

= so f tmax
(
∑d

i=1 nni t1rnni ∑d
i=1 nni t2rnni ... ∑d

i=1 nni tnrnni
)

=
(
α1 α2 · · · αn

)

Repeat(so f tmax(QKT), d) = (d, n)

Repeat(so f tmax(QKT), d)T ∗ V = (n, d) ∗ (n, d) = (n, d)
Sum over d : = (1, n)

=
(
α1 ∑d

i=1 t1rnni α2 ∑d
i=1 t2rnni ... αn ∑d

i=1 tnrnni
)

8.2 Number of weights in the meta, hybrid and
attention architectures

The meta, hybrid and attention architectures are similar but differ in how
the static and time series data is concatenated and fed into the decoder
RNN. In this section, we briefly discuss the different dimensionalities of the
architectures before being fed into the decoder RNN. Whilst the meta_no_seq
architecture has the least amount of learnable parameters, the attention
architecture has the least amount regarding architectures that include a
decoder RNN, which is more advantageous for forecasting. For large t, the
number of parameters in the attention architecture is initially larger than the
meta and hybrid, but as the number of hidden units increases, the number
of weights in the meta and hybrid architecture increases more rapidly (See
Figure 8.1).

Xs : The number of static features in the input data. The batch size is 1.
Xt : The number of time series features in the input data.
t : The number of timesteps per input sample.
l : The number of layers in the NN.
d : The number of hidden units per layer.
Fn : The number of hidden units in the shallow NN (1 layer).

Below we present how the number of weights for each component of each
architecture was calculated. The neural network components are standard
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Attention architecture Input Output Number of weights
NN (Xs, 1) (d, 1) d [Xs + d(l − 1) + l]
*RNN (Xt, t) (d, t) d(Xt + d + 1)
*Attention mechanism (d, t), (d, 1) (d, t) d(2t + 1)
*Decoder RNN (d, t) (d, 1) d(Xt + d + 1)
Shallow NN (d, 1) (Fn, 1) Fn(d + 1)
Total number of weights *unique components 2d2 + 2dXt + 3d + 2dt

Table 8.1: Input, output shapes and number of weights per component for the
attention architecture

Meta architecture Input Output Number of weights
NN (Xs, 1) (d, 1) d [Xs + d(l − 1) + l]
*RNN (Xt, t) (d, t) d(Xt + d + 1)
*Decoder RNN (2d, t) (d, 1) d(3d + 1)
Shallow NN (d, 1) (Fn, 1) Fn(d + 1)
Total number of weights *unique components 4d2 + 2d + dXt

Table 8.2: Input, output shapes and number of weights per component for the
meta-architecture. Meta_no_seq only consists of the RNN component and has
d(Xt + d + 1) weights

Hybrid architecture Input Output Number of weights
NN (Xs, 1) (d, 1) d [Xs + d(l − 1) + l]
*RNN (Xt + d, t) (d, t) d(Xt + 2d + 1)
*Decoder RNN (d, t) (d, 1) 2d2 + d
Shallow NN (d, 1) (Fn, 1) Fn(d + 1)
Total number of weights *unique components 4d2 + 2d + dXt

Table 8.3: Input, output shapes and number of weights per component for the
hybrid architecture

across all architectures, given that the number of layers is the same. Each
term below is the sum of the weights between the input layers and the 1st
hidden layer (1st parenthesis), the weights in the recurrent layer (RNN) or
between the 1st and l layers (NN) (2nd parenthesis), and the bias.

NN : (Xs × d) + [(d × d)× (l − 1)] + (d × l) = d [Xs + d(l − 1) + l]
RNNatt = RNNmeta : (Xt × d) + (d × d) + d = d(Xt + d + 1)
RNNhyb : [(Xt + d)× d] + (d × d) + d = d(Xt + 2d + 1)

Att_mechanism : (d × t) + (d × t) + (d × 1) = d(2t + 1)
Decoder_RNNmeta : (2d × d) + (d × d) + d = d(3d + 1)
Decoder_RNNatt = RNNatt

Decoder_RNNhyb : (d × d) + (d × d) + d = 2d2 + d

Shallow_NN : (d × Fn) + Fn = Fn(d + 1)
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Figure 8.1: Number of weights per architecture as the number of hidden units
increases. The NN components have been excluded as they have the same
amount of weights across architectures
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8.3 CF data: Further variable description and
alignment

This section follows from Section 4.1 and serves as a supplementary text.

Below we show a synthesized sample of the static and time series data
used in the experiment:

PATNUM Weight Height Chloride-
ZW

nebulized_-
IV

oral_IV diabetes number_-
admis-
sions

Gender Birth year ppFEV1 has_-
F508del

1 52 159 81 0 1 1 3 M 1996 59,4 1

Table 8.4: A sample of the static dataset used before scaling. This sample has
been synthesized as to not show any private patient data.

PATNUM DATUM FEV1 ppFEV1 Kaftrio Kalydeco Symkevi Orkambi diabetes nebulized_IV oral_IV Weight
11 2018-05-03 4,685 94,3 0 0 0 0 1 0 0 80
11 2018-06-29 4,703 95,9 0 1 0 0 1 0 0 81

Table 8.5: A sample of two successive measurements of a patient, before
scaling is applied. This sample has been synthesized so as to not show any
private patient data.

The preprocessing of the time series data differs from the static data in
that each variable changes throughout a patient’s CFTR modulator usage.
This section describes how each variable’s measurement date was aligned
with the lungfunction (FEV1) measurement dates. Static variables are not
described as they are date-independent.

For each table, a unique approach was selected to align its dates with the
lungfunction measurement dates.

ppFEV1

The target variable, “percent predicted Forced Expiratory Volume in 1 second”
is not recorded in the dataset but can be calculated as follows:

ppFEV1 =

(
Actual FEV1

Predicted FEV1

)
× 100 (8.1)

The patient’s actual FEV1 is recorded, and their Predicted FEV1, that is the
FEV1 predicted for a healthy person of the same age, height, sex and ethnicity
as the patient, can be calculated using reference equations [79] as specified
by the Global Lung Function Initiative.

Predicted FEV1 = exp (α + (β × log(height)) + (γ × log(age)) + δ + ϵ)
(8.2)

Where the constants are dependent on the ethnicity, age, height and gender
of a patient.
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Apotheek table - CFTR usage

The apotheek table contains the CFTR modulator type, and the stop and start
dates of patients. The CFTR modulator types present in the data are Kafrtio,
Kalydeco, Symkevi, and Orkambi. To indicate exactly when a patient is
using which modulator, this column is converted into 4 binary variables.
This dataset is joined to the lung function measurement dataset on patient
number and date. As the dates are rarely the same, the tables are aligned
by joining each row in the apotheek dataset to the closest lung function date
where the CFTR modulator date is less than the lung function date.

Diagnose - diabetes

Diabetes is a chronic metabolic disorder characterized by high blood sugar
levels due to the body’s inability to produce enough insulin or effectively
use the insulin it produces. Cystic Fibrosis-related diabetes (CFRD) occurs in
about 30% of patients and is associated with decreased lung function and an
overall increase in mortality from lung disease [80]. Its presence in the static
dataset indicates whether a patient has been diagnosed with diabetes before
their first usage of CFTR modulators.

Medication - Nebulised and Oral antibiotics

These binary columns indicate the dates on which a patient was using
antibiotics. Since antibiotic use is temporary, unlike diabetes, it is only
marked with a 1 on the dates that a patient uses it. The dates of antibiotic use
do not align with the lung function date. They are joined to the closest lung
function date where the antibiotic usage date is less than the lung function
date and still falls within a 30-day window. A window of 30 days was
decided after consulting with a domain expert as the effect of the anti-biotics
may significantly influence the patient’s condition for up to 30 days.

Metingen - Height and Weight

Height and weight measurements were integrated with the lung function
data to create a comprehensive dataset. In cases where the height or weight
measurements were missing, the average of the patient’s preceding and
succeeding height and weight measurements was used, given that the
missing measurement’s date still falls within 180 days of the preceding
and succeeding value. A window of 180 days was decided as in general
a patient’s height and weight do not change significantly during this time.
Since height seldom changed between a patient’s measurements, it was not
included in the time series dataset.

8.4 Sepsis ER Experiment

8.4.1 Results from hyperparameter search

8.4.2 Results Sepsis ER classification per architecture
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Figure 8.2: Test and F1 score per model per learning rate.

Figure 8.3: Test and F1 score per model per layer
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Figure 8.4: Test and F1 score per model per number of hidden units

Figure 8.5: Density plots for F1 score for Sepsis ER classification.
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8.5 Fibonacci experiment

8.5.1 Fibonacci datasample
Tables 8.6, 8.7, 8.8 show the static and time series data of the Fibonacci
sequence variant used in training our models.

id Fib_1 Fib_2 gap_XY noise_present noise_mean noise_std reversed multiplier
0 24 18 0 0 0 0 0 1
1 31 39 3 0 0 0 1 4
2 19 21 6 0 0 0 1 2
3 17 15 5 0 0 0 0 4
4 3 43 6 1 1 4 1 1
5 37 9 1 0 0 0 0 1

Table 8.6: Static data in the variant Fibonacci sequence

id Fib_1 Fib_2 Fib_3 Fib_4 Fib_5 Fib_6 Fib_7 Fib_8 Fib_9 Fib_10
0 24 18 42 60 102 162 264 426 690 1116
1 4120220 2546436 1573784 972652 601132 371520 229612 141908 87704 54204
2 4913034 3036422 1876612 1159810 716802 443008 273794 169214 104580 64634
3 68 60 128 188 316 504 820 1324 2144 3468
4 3365181 2079798 1285379 794413 490967 303445 187534 115912 71634 44273
5 37 9 46 55 101 156 257 413 670 1083

Table 8.7: Timeseries input (Xsequences) in the variant Fibonacci sequence

id Fib_1 Fib_2 Fib_3 Fib_4 Fib_5 Fib_6 Fib_7 Fib_8 Fib_9 Fib_10
0 1806 2922 4728 7650 12378 20028 32406 52434 84840 137274
1 7908 4888 3020 1868 1152 716 436 280 156 124
2 2226 1376 850 526 324 202 122 80 42 38
3 62236 100700 162936 263636 426572 690208 1116780 1806988 2923768 4730756
4 1528 951 581 355 228 134 90 48 43 8
5 2836 4589 7425 12014 19439 31453 50892 82345 133237 215582

Table 8.8: Timeseries output (Ysequences) in the variant Fibonacci sequence

8.5.2 Results from hyperparameter search

8.5.3 Results Fibonacci sequence forecasting per architecture
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Figure 8.6: Test MSE per initial learning rate

Figure 8.7: Test MSE per number of layers
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Figure 8.8: Test MSE per number of units

Figure 8.9: Density plots for test MSE values for Fibonacci experiments,
excluding meta_no_seq architecture.
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8.6 Cystic fibrosis forecast experiment

8.6 Cystic fibrosis forecast experiment

8.6.1 Results from hyperparameter search

Figure 8.10: Test MSE per initial learning rate

8.6.2 Results CF forecasting per architecture
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Figure 8.11: Test MSE per number of layers

Figure 8.12: Test MSE per number of units
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Figure 8.13: Density plots for test MSE values for CF forecasting experiments.
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8.7 Cystic Fibrosis Improvement classification

8.7.1 Results from hyperparameter search

Figure 8.14: Test Accuracy and F1 score per initial learning rate

8.7.2 Results CF improvement classification per architecture
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Figure 8.15: Test Accuracy and F1 score per number of layers

Figure 8.16: Test Accuracy and F1 score per number of units
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Figure 8.17: Density plots for F1 score for CF improvement classification.
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