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Abstract

Portfolio optimization of cryptocurrencies with Evolutionary Algorithms

is a fairly new topic in financial literature. New and upcoming studies are

addressing portfolio optimization problems through a wide array of evo-

lutionary and other novel algorithmic approaches. This study compares

the Gene-Pool Optimal Mixing Evolutionary Algorithm (GOMEA) with the

Genetic Algorithm and the Particle Swarm Optimization through an evalu-

ation of each algorithm’s capabilities for portfolio risk management. Specif-

ically, we use the Conditional Value at Risk (CVaR) as our risk metric for

optimization and construct an efficient frontier for the portfolios generated

to examine the performance of the algorithms. Making use of both simu-

lated and historical data, our analysis focuses on these algorithms’ capacity

to manage the intricate risk/reward trade-off inherent in cryptocurrencies.

We construct a theoretical framework that supports the assumption behind

the preference of GOMEA and conduct an empirical analysis to test whether

our assumptions hold under the two distinctive datasets. Our results sug-

gest that GOMEA presents an overall better performance in portfolio risk

management through its optimization approach of the cryptocurrency port-

folios. These results underscore the potential benefits of employing ad-

vanced evolutionary algorithms that exploit the inherent interdependencies

found in cryptocurrencies.

Keywords: Evolutionary Algorithm, Conditional Value at Risk, Portfolio Op-

timization, Gene-Pool Optimal Mixing Evolutionary Algorithm, Cryptocurrency
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1. Introduction

1.1 Background

Innovation has been a constant throughout human history; our species has

continuously expanded its reach through new creations and discoveries.

That curiosity to explore and boldness to create is what defines us. In the

realm of financial markets, various products have shaken the status quo.

For instance, the establishment of early stock markets, such as the Am-

sterdam Stock Exchange in 1602, significantly impacted economies across

Europe, opening the doors to a new economic era. Similarly, the introduc-

tion of derivative assets revolutionized modern financial markets, offering

opportunities and challenges. This innovation trend continued with the

emergence of cryptocurrencies, marking the beginning of a new age – an

age of discovery and speculation, but mainly, an age of opportunity. The

most notable cryptocurrency, Bitcoin, was introduced in a white paper by

the enigmatic Satoshi Nakamoto [1], whose identity remains a mystery. As

of 2023, digital assets such as cryptocurrencies have become commonplace

in the portfolios of financial managers and investors despite their inher-

ent risk and volatility. We are still constructing our understanding of these

assets as we uncover their characteristics, behaviors, and patterns. How-

ever, two clear intrinsic aspects are their high volatility and risk compared

to traditional financial instruments. This realization has led several stud-

ies to attempt to mitigate these inherent characteristics. This paper focuses

on an innovative approach to portfolio risk management through the opti-

mization of a cryptocurrency portfolio by applying the Gene-Pool Optimal

Mixing Evolutionary Algorithm (GOMEA). We aim to optimize the weights

of a portfolio comprising five cryptocurrencies.
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Introduction

1.1.1 Evolution of portfolio optimization

The financial strategy behind portfolio optimization consists of the prac-

tice of balancing the maximization of returns while minimizing risk, sub-

ject to specific investment goals and constraints. Portfolio managers and

investors have devised different approaches to exploit this trade-off over

time. Portfolio optimization has undergone some significant evolution over

time. The first optimization approach to be academically recorded was pro-

vided by Markowitz, in which he presented the mean-variance model [2].

Such a model sought to identify the portfolio that provided the maximum

expected return (the mean return) for a predetermined level of risk (vari-

ance). Though considered limited by today’s standard models, this method

was revolutionary at its time, given the innovative approach taken through

a new scientific approach in portfolio management through its quantifica-

tion of the concept of diversification and formalization of it as a mathe-

matical model. Before Markowitz’s approach, investment strategies mostly

conformed to qualitative analysis, rule-of-thumb practices, and loosely for-

malized methods. From that point onwards, the industry underwent a

paradigm shift with the surge of innovative optimization techniques. Build-

ing on the foundational mean-variance model, Samuelson introduced vari-

ance with skewness, enriching the model by incorporating the skewness of

the return distribution [3]. The progression continued with Konno’s intro-

duction of the mean absolute deviation method, which employed mean ab-

solute deviation as a measure of risk instead of variance to quantify risk [4].

Seven years later, the Minimax approach emerged, which is an approach

focused on minimizing the maximum possible loss [5]. Transferring the

point of focus to the potential losses that could be caused by extreme market

volatility.

The mentioned traditional approaches, while innovative on their own

merits, still carried with them a relevant oversight as they relied heavily

on the assumption that the returns followed a normal distribution. This,

as it is known, is not the case, particularly during times of extreme mar-

ket events. Most of the classical approaches mentioned are based on assets
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1.1 Background

and cardinality constraints. Nonetheless, two particular statistical measures

were developed to address these oversights. Jorian presented the Value

at risk (VaR), which is a value that estimates the maximum expected loss

over a given time window at a specific confidence level [6]. This measure,

while helpful, still fails to capture the tail risk as VaR fails to capture the size

of the loss beyond the identified threshold value. This limitation was ad-

dressed through the introduction of the Conditional Value at Risk (CVaR),

also known as Expected Shortfall (ES), which is an extended version of the

VaR [7]. The CVaR estimates the expected average loss beyond the VaR

threshold, offering a more tangible measure of potential extreme losses in

worst-case scenarios. Both the VaR and the CVaR have intrinsic character-

istics that allow them to be applied to non-normal and asymmetric distri-

butions of returns, which are distributions that are closer to those that the

returns tend to follow.

The classical portfolio optimization approaches were enhanced and trans-

formed by the disruption of advanced algorithms in the fields of machine

learning, probabilistic theory, and quantum computing, among many oth-

ers. Within the realm of machine learning, we have seen the development of

innovative financial portfolio management tools that leverage deep graph

convolutional reinforcement learning to take advantage of financial inter-

relations [8], Neural network models [9], Reinforcement Learning [10, 11],

and evolutionary algorithms [12, 13]. Regarding the probability theory field,

we can find some studies made through Bayesian approaches. Such ap-

proaches use semi-definite relaxation in portfolio selection [14], minimax

as a risk measure [15], and portfolio selection under cardinality constraints

[16]. Finally, we also find studies in the field of quantum computing that

use quantum combinatorial optimization [17] and a Variational Quantum

Eigensolver [18].

1.1.2 Emergence of Cryptocurrencies as an asset class

As of 2023, nobody can argue about the disruptive relevance that cryptocur-

rency and digital assets have had in the current financial systems. Crypto as-
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Introduction

sets have evolved from being suspicious and frowned upon financial instru-

ments to becoming valid alternatives for investment and diversification. In

particular, given their seemingly disconnected relation to other mainstream

assets [19], they represent a viable alternative asset for portfolio managers to

consider in their portfolio construction process for short-term horizons [20].

Furthermore, as this asset class becomes more prominent, we are start-

ing to see the intention to take regulatory oversight from regulatory enti-

ties like the SEC in the United States and the ECB, through their MICAR

regulation, which signals a potential adoption of these new instruments in

regular financial systems. Nonetheless, the endogenous characteristics of

crypto-assets are still being studied and analyzed. While there is no clear

consensus on how we should treat crypto-assets, most investors and portfo-

lio managers consider them to be speculative assets due to their volatile

nature [21]. The mentioned volatility highlights the limitations of tradi-

tional portfolio optimization methods, which were primarily designed for

more conventional financial instruments. Consequently, this discrepancy

highlights the need for dynamic and adaptable approaches, such as evo-

lutionary algorithms, which are equipped to handle the complexities and

unpredictability inherent in crypto-asset portfolios.

1.2 Evolutionary Algorithms in Portfolio Optimiza-

tion

For contextual purposes, we first need to understand that within the realm

of artificial intelligence, we have a particular branch called evolutionary

computing, which is a field based on biological evolution. Inside this field

of evolutionary computing, we can find the evolutionary algorithms. Evo-

lutionary algorithms (EAs) are often described as bio-inspired heuristic op-

timization procedures that mimic behaviors and mechanisms we find in na-

ture. While there is some level of disagreement on what exactly should

be considered an evolutionary algorithm, the broad consensus is that it is

a computational representation of a process found in nature, not necessar-
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1.2 Evolutionary Algorithms in Portfolio Optimization

ily an optimization one [22]. Our study will focus on evolutionary opti-

mization algorithms, given their stochastic optimization techniques that al-

low us to navigate the search space through their population-based search

strategies [12]. In particular, we will use the Gene-pool Optimal Mixing

Evolutionary Algorithm (GOMEA), which is a model-based Evolutionary

Algorithm.

GOMEA’s distinctive characteristic is that in each generation, it identifies

and learns the linkage patterns among the variables through a probabilis-

tic model. Through the process of gene-pool optimal mixing, the GOMEA

algorithm selectively combines the best set of solutions available in the so-

lution pool by focusing on combining sub-solutions without breaking ben-

eficial linkages. This approach allows the algorithm to capture and identify

crucial relationships between the variables [23].

The GOMEA algorithm is well suited for addressing optimization prob-

lems, which is why we consider it an optimal candidate for addressing the

CVaR portfolio optimization problem. Particularly given that GOMEA is

known for handling complex landscapes [23], including characteristics such

as non-linearity and non-convexity, two attributes potentially inherent in

the CVaR problem structure of a portfolio of cryptocurrencies. Addition-

ally, given that we will be working with a portfolio of crypto-assets, exploit-

ing the underlying relationships between these assets is critical, given their

known interdependency. GOMEA’s ability to identify and leverage these

relationships when iterating over their partial solutions makes it a good ve-

hicle for addressing this optimization problem.

It is relevant to note that GOMEA is one of the many evolutionary al-

gorithms that can be used for this particular optimization problem. Some

examples of the use of evolutionary algorithms in the CVaR optimization

problem are found in Setiwan’s work in which he deploys genetic algo-

rithms, grasshopper optimization, firefly optimization, moth flame opti-

mization, particle swarm optimization, grey wolf optimization, and drag-

onfly optimization [24]. We can also find some evolutionary approaches in

the work of Clement et al., in which they analyze a cryptocurrency portfolio
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using a Particle Swarm Optimization Copula-based approach [12].

1.3 Main contributions of this study

This paper aims to evaluate the effectiveness of the Black-Box GOMEA, as

presented in Bouter and Bosman’s study [25], in optimizing cryptocurrency

portfolio weights by comparing its performance with various known evo-

lutionary algorithms used in portfolio optimization. Our research seeks to

ascertain whether GOMEA outperforms these algorithms in the context of

portfolio risk management through cryptocurrency portfolio optimization.

This study is significant as it contributes to the growing literature about

evolutionary algorithm deployment in financial optimization problems. While

the optimization task has been one of the main focuses of evolutionary algo-

rithms, there is a lack of studies that focus on the use of cryptocurrencies as

financial elements of a portfolio, given their volatile and risky nature. The

GOMEA, along with the methodology implemented in this paper, provides

a potential vehicle for the investigation of novel approaches to portfolio risk

management of cryptocurrencies.

The paper is structured as follows: Chapter 2 investigates the unique

characteristics of cryptocurrencies as financial assets. Chapter 3 analyzes

portfolio optimization techniques, including a tailored approach for cryp-

tocurrency scenarios. Chapter 4 explores Evolutionary Algorithms (EAs),

particularly the GOMEA’s customization for the CVaR optimization prob-

lem. Chapter 5 details our study’s methodology, Chapter 6 presents our

findings, Chapter 7 introduces the discussion, and Chapter 8 presents our

conclusion.

8



2. Cryptocurrencies

2.1 Decrypting Cryptocurrencies

For this study, we will use cryptocurrencies as our portfolios’ financial as-

sets. In a systematic analysis of cryptocurrencies as an asset, Corbet defines

them as peer-to-peer electronic cash systems that allow direct transit of on-

line payments between parties without the need for a financial institution

as an intermediary [19]. This implies that no third party acts as a regulator

or mandatory element of any transaction. Cryptocurrencies are primarily

anonymous as there is no need for the parties to provide any identification

aside from the address of their corresponding wallets, making them an at-

tractive tool for maintaining privacy [26].

The underlying technology behind cryptocurrencies is known as Dis-

tributed Ledger Technology (DLT), defined as a decentralized database man-

aged by the nodes that make up its network. This technology operates on

principles of decentralized storage networks and architectures that promote

transparency, incentivizing nodes (members of the network) to share stor-

age space through the use of native tokens and transforming cloud storage

into algorithmic markets [27]. Among various types of Distributed Ledger

Technologies (DLTs), including Directed Acyclic Graph (DAG), Hashgraphs,

Tangle, and Holochain, blockchain is the most commonly adopted type in

cryptocurrencies and the one employed by the assets examined in this study.

Blockchain is a type of DLT in which data is structured into blocks that are

cryptographically linked and distributed across a network of independent

nodes. Whenever an individual makes a transaction with a particular cryp-

tocurrency, it is recorded in that asset’s blockchain. The blockchain network

is composed of a chain of different blocks of records that keep track of all

the transactions that have ever taken place within the network.
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As with any complex societal and economic system in which multiple

stakeholders possess decision-making roles and authority, clear governance

is essential to ensure the enforcement of the system’s objectives. Cryp-

tocurrencies and their underlying blockchain technologies are no exception.

In a study in which they introduce a blockchain governance framework,

Slinger et al. explain that blockchain governance often mirrors strategies

observed in traditional Open-Source Software (OSS) projects, sharing as-

pects such as the development and release processes, involvement of exter-

nal parties, political debates over data (de)centralization, reliance on con-

tributions from users and developers, motivational factors (incentives), and

a layered approach to governance. Moreover, they explain that blockchain

governance acts as the means to provide guidance, management, and col-

laboration among stakeholders within a blockchain environment [28].

To maintain the integrity, security, and decentralized nature of the net-

work, cryptocurrencies use consensus mechanisms as a core governance

tool. These mechanisms dictate how transactions are verified and how new

blocks are created and added to the blockchain. Depending on the type of

consensus mechanisms used, validators can be considered as miners (for

Proof of Work) or stakers (in Proof of Stake systems). The most common

consensus mechanisms are:

Proof of work (PoW) consensus mechanism requires miners to find the

solution to complex mathematical puzzles. Once the puzzle is solved, the

miner can validate a transaction and add a new block to the network. This

is rewarded with a token of the network (in the case of the Bitcoin network,

a miner would receive a Bitcoin token for solving the puzzle).

Proof of Stake (PoS) is a consensus mechanism in which validators are

selected for new block creations based on the number of coins they hold in

the network. This means that the higher the number of coins they have, the

higher the likelihood that they will be selected as validators. An important

point to mention is that selected validators need to commit some coins as

collateral for the validation process (this action is known as staking).

Proof of Authority (PoA) It is a more centralized approach to consensus
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2.1 Decrypting Cryptocurrencies

mechanism. The validation process is entirely managed by selected valida-

tors who are pre-selected by the network founders. The selected validators

are expected to act responsibly and always to benefit the network’s health.

One of the most debated questions in financial literature is how cryp-

tocurrencies derive value [29]. From a technical perspective, a cryptocur-

rency is considered as valuable as the combination of cryptographic algo-

rithms, consensus rules, and network protocols (the security of the algo-

rithms that keep track of the transactions) [30]. There are several ways to

obtain cryptocurrencies. First, you can contribute to the network of a cryp-

tocurrency project and get paid in their token/coin. This is called being a

miner or validator. Another common way is to buy cryptocurrencies from

online exchanges. You can also use peer-to-peer (P2P) platforms to trade

cryptocurrencies directly with other people. Also, if you have a digital wal-

let that works with the cryptocurrency you’re interested in, you can send

or receive it. Finally, you can buy cryptocurrencies early in their launch

through something called Initial Coin Offerings (ICOs) or at later stages in

their project life through token sales. Each of these alternatives caters to the

level of expertise and exposure that the investor has to the cryptocurrency

world.

In an interesting study on the statistical characteristics of the top seven

cryptocurrencies (according to market capitalization), Chan et al. found

some particular insights [31]. They found that while none of the returns

of the cryptocurrencies followed a normal distribution, there was no single

distribution able to capture the behavior of all returns for all the cryptocur-

rencies. Nonetheless, in some encouraging findings, they were able to fit

the returns of Bitcoin and Litecoin to the generalized hyperbolic distribu-

tion (GHD). This distribution’s primary attribute is its flexibility in model-

ing heavy tails and skewness, which are predominantly seen in cryptocur-

rencies.
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2.2 Cryptocurrencies vs Traditional Financial As-

sets

Cryptocurrencies behave differently than traditional financial assets. Cor-

bet et al. found that cryptocurrencies are very connected to each other but

isolated from other traditional financial assets [19]. Moreover, aside from

the mentioned detachment, they present evidence that cryptocurrencies are

unaffected by market shocks from traditional assets. Such a finding is re-

inforced by the findings of Baur et al., who recognize in their study that

cryptocurrencies such as bitcoin present no correlation with traditional as-

sets during periods of financial turmoil [20]. This dissociation from the tra-

ditional financial landscape offers an alluring opportunity for investors in-

terested in hedging or diversifying their investments[32, 33, 34].

Cryptocurrencies are considered speculative assets rather than conven-

tional vehicles of traditional investment. Certain studies found that crypto-

assets’ characteristics make them prone to being used as vehicles for spec-

ulation. Characteristics such as their high growth potential, highly liquid

market, volatile return, unregulated nature, and short-term sight invite in-

vestors to see this asset as a pump-and-dump scheme opportunity [35].

Baek’s study suggests that Bitcoin can be considered a speculative asset that

is guided by the exchange between buyers and sellers and not by fundamen-

tal economic factors [36].

We also see a distinctive reaction to market shocks in the case of cryp-

tocurrencies. In terms of liquidity, cryptocurrency markets seem to be heav-

ily influenced by uninformed investors during positive market movements

and by informed investors after negative shocks. As Baur et al. conclude in

their study, the behavior of uninformed noise traders seems to be driven by

a ’fear of missing out’ (FOMO) [37]. They explain that both reactions, to ei-

ther positive or negative shocks, suggest a distinct investor psychology, one

different from that observed with traditional assets. The main driver ap-

pears to be of a speculative nature rather than analysis and price discovery

of the asset’s fundamental value. We also observe different behavior in cryp-
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tocurrencies regarding co-explosivity among its asset class. Co-explosivity

is defined as a moment when different assets experience sudden, simultane-

ous, and violent increases or decreases in price, driven more by speculative

than fundamental factors. In a study about the price explosivity of seven of

the largest cryptocurrencies, Bouri et al. found evidence that the cryptocur-

rencies studied present co-explosivity behavior, which means that regard-

less of the size of the cryptocurrency, explosivity in one cryptocurrency can

lead to explosivity in other cryptocurrencies [38]. During global crises and

sector-specific bubbles, it’s not unusual for traditional assets to experience

simultaneous co-explosivity behavior. However, this phenomenon occurs

more frequently in cryptocurrency markets and with greater intensity and

speed.

2.3 The Risk and Volatility Characteristics of Cryp-

tocurrencies

The challenge of accurately capturing volatility in cryptocurrencies is no-

tably different from that in traditional financial markets. Traditional volatil-

ity models are built around the behaviors of conventional financial assets,

which explains why they often fall short in addressing the unique volatil-

ity seen in cryptocurrencies. Unlike traditional assets, cryptocurrencies ex-

hibit distinctive features such as extreme volatility, non-stationarity, volatil-

ity clustering, and frequent structural breaks in their volatility patterns [39,

40]. These assets are also heavily influenced by factors like investor sen-

timent, speculative trading, and regulatory changes [41, 42]. Traditional

models, which do not account for these specific characteristics, struggle to

model cryptocurrency volatility accurately. However, some adaptations of

GARCH models, known for their flexibility, have been able to capture the

volatility of assets such as Bitcoin [43, 44, 45]. In a study of seven of the

most common cryptocurrencies in which they use twelve different types of

univariate GARCH models, Chu found that Integrated Generalized Autore-

gressive Conditional Heteroskedasticity (IGARCH) and Glosten-Jagannathan-

Runkle Generalized Autoregressive Conditional Heteroskedasticity (GJR-
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GARCH) provide the best fit for modeling volatility in the studied cryp-

tocurrencies [46]. In particular, the IGARCH seems to be a good fit, consid-

ering it is known for having a conditional volatility process that is labeled

as highly persistent with an infinite memory, which allows the model to

capture persistence in volatility and long-term dependencies [47, 48]. The

formulation for the IGARCH and GJR GARCH are as follows:

An IGARCH (1, 1) model can be written as

at = σtϵt, σ2
t = α0 + β1σ2

t−1 + (1− β1) a2
t−1. (2.1)

to which at is the asset return at time t, σt is the conditional standard

deviation of at, and ϵt is the innovation (white noise) term at time t. We also

define σ2
t as the conditional variance at time t, α0 as the constant term, β1

as the autoregressive parameter for past variance, and (1− β1)a2
t−1 as the

expression that adjusts the influence of the past squared shocks based on

the autoregressive volatility component.

An GJR-GARCH (1, 1) model can be written as

at = σtϵt, σ2
t = α0 + α1a2

t−1 + γ1a2
t−1 It−1 + β1σ2

t−1. (2.2)

where ϵt is a white noise process, α1 is the coefficient for the squared

residual from the previous time period a2
t−1. γ1 is the asymmetric impact

coefficient, It−1 is the shock indicator variable that equals 1 if at−1 was neg-

ative and 0 if at−1 was positive, and σ2
t−1 is the conditional variance from

the previous period. Additionally, α0 > 0, α1 ≥ 0, γ1 ≥ 0, and β1 ≥ 0.

In a different study regarding the volatility of 292 cryptocurrencies using

TGARCH and EGARCH models, Panagiotidis et al. found the existence of

an inverse leverage effect in the great majority of the cryptocurrencies an-

alyzed [39]. An inverse leverage effect means that past returns, when pos-
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itive, tend to have a greater influence on the volatility of cryptocurrencies

than negative past returns. This implies that as a cryptocurrency’s volatil-

ity increases, its price also tends to increase. We refer to this as an ’inverse

effect’ because, in traditional financial assets, an increase in volatility is typ-

ically observed when prices fall. Baur et al. further explains this positive

asymmetric behavior in volatility, suggesting that it is likely caused by un-

informed investors’ herding and FOMO [37]. They also suggest that the

response to negative shocks can potentially be explained by informed in-

vestors deliberately going against predominant market trends in an oppor-

tunistic attempt to profit from the uninformed investors’ herding behavior.

A formulation of the EGARCH model can be seen in equation 2.4 and for

the TGARCH we can find formulate it as follows:

σ2
t = ω + α · (ε−t−1)

2 + γ · (ε+t−1)
2 + β · σ2

t−1 (2.3)

In which ω is the constant term, α is the Coefficient for past squared

negative shocks (ε−t−1)
2, γ is the coefficient for past squared positive shocks

(ε+t−1)
2, β is the Autoregressive parameter for past variance, ε−t−1 and ε+t−1

are the negative and positive components of the lagged error term respec-

tively, σ2
t is the conditional variance at time t, rt is the return at time t, µ is

the mean return of the series, and zt is the innovation term at time t.

2.4 Asset selection for this study

For the purposes of this study, we select the following cryptocurrencies:

Bitcoin, Ethereum, Litecoin, Ripple, and Monero. This decision is based on

multiple criteria that these assets collectively fulfill, primarily their market

dynamics, technological diversity, liquidity, and data availability.

Both Bitcoin and Ethereum have the largest market capitalizations among

all cryptocurrencies, making them pivotal elements of our portfolio due to

their significant relevance. These assets are not only the most traded, ensur-

15



Cryptocurrencies

ing high liquidity, but also provide extensive data records, which are crucial

for analysis. Litecoin introduces a different market dynamic with its Scrypt

hashing mechanism, which leads to a distinct volatility profile and market

response to disruptive events. This unique profile will test the adaptabil-

ity and efficiency of our evolutionary algorithms under varied technolog-

ical constraints. Ripple, with its integration into traditional banking sys-

tems, works as a anchoring point between decentralized cryptocurrencies

and conventional financial systems providing a unique challenge to our op-

timization algorithms as it provides a mild link towards conventional fi-

nancial systems [49]. Monero’s strong focus on transaction privacy results

in particular price behaviours, as investors operate with limited transac-

tional information [50]. This opacity adds an additional layer of complexity

to our optimization algorithms, which must adapt to effectively interpret

price movements that reflect these constrained investor behaviours.

Together, these cryptocurrencies not only offer diverse consensus mech-

anisms but also ensure that the portfolio covers a wide spectrum of tech-

nological, economic and volatility behaviours. This strategic selection is

designed to challenge our optimization algorithms with a realistic array of

asset profiles in the portfolio optimization process. In our next chapter, we

will examine in detail what portfolio optimization means and the challenges

that portfolio managers encounter when faced with the daunting task of

portfolio risk management.
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3.1 Deep dive into Portfolios

3.1.1 Definitions

We begin this chapter by defining what a portfolio is. Gunjan defines a port-

folio as a collection of assets and/or investments [51]. A portfolio can com-

prise different types of assets such as equities, bonds, cash equivalent, real

estate properties, commodities, digital assets, or alternative investments

(collectible items, private equity, art pieces, etc). The portfolio assets must

follow a particular asset allocation and selection strategy that reflects the in-

vestors’ preference for a predetermined objective. An investor can choose to

follow strategies such as active, passive, value-oriented, risk-averse, aggres-

sive, tax-efficient, etc. The portfolio manager should also consider the time

horizons that best align with their strategy to fully capitalize on the portfo-

lios at hand. There are additional considerations to have, such as liquidity

needs, market conditions, cost management, and performance monitoring,

among many others. The task of managing a portfolio is complex, particu-

larly given the various considerations to have when constructing a portfolio,

which is why there have been so many principles and approaches presented

over the years.

Next, we define portfolio risk management. We define it as the system-

atic process of identifying, analyzing, and managing the various financial

risks to which a portfolio is exposed across different periods of time with

the objective of safeguarding and optimizing the returns generated by the

portfolio. Portfolio risk management aims to model and anticipate poten-

tial losses and implement strategies that mitigate these risks while align-

ing with the investor’s return objectives and risk preferences [52]. Ideal

portfolio risk management approaches tend to focus on diversification [53],
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strategic asset allocation tailored to the investor’s risk appetite, dynamic re-

sponsiveness [54], and the use of quantitative measures that allow investors

to exploit the risk/return tradeoff [55]. These strategies to control or miti-

gate risk are considered the overarching framework that portfolio managers

typically adhere to. Once a strategic foundation is established, the portfolio

manager can refine the details to meet the specific goals behind the strategy.

A critical element within this framework is portfolio optimization, which

involves the continuous adjustment of asset allocation to align with risk tol-

erance and market conditions, thereby ensuring that the portfolio maintains

an optimal balance between risk and return.

We move on to define what we understand as portfolio optimization.

The definition of portfolio optimization has evolved over time. Markowitz

was the first person to introduce the mean-variance model for optimization,

which was defined as selecting proportions of portfolio assets through max-

imizing expected returns for a specific level of risk or vice-versa [2]. Sharpe

refined the definition by incorporating risk into the equation using a beta to

measure an asset’s volatility in his Capital Asset Pricing Model (CAPM) [56].

This model provided some guidance for investors on formally pricing an

asset’s market risk. Merton extended the definition by adding the time ele-

ment [57]. He used multiple-period investments and continuous-time opti-

mization in his Intertemporal Capital Asset Pricing model (ICAPM). Black

went further and created a model that integrated investor views and ex-

pectations into the optimization process using a Bayesian framework for

updating expected returns [58]. Lo introduced the idea of a dynamic inter-

action between market and investor behavior through his Adaptive Market

Hypothesis [59]. He believed that the interaction between these two ele-

ments was a two-way street with influence circling between them. Rachev

et al. presented stochastic models incorporating fat-tail distributions and

asymmetric risk measures in a book that questioned traditional assump-

tions known up to that point within the mean-variance framework [60].

This last work paved the way for incorporating more sophisticated statis-

tical and mathematical models in the portfolio optimization process. In

the past decade, we have seen the use of machine learning models [9, 61]

18



3.1 Deep dive into Portfolios

and quantitative risk management tools [62, 63], among many other ap-

proaches making use of different elements from other disciplines other than

computer science or math [64, 65]. All these different approaches propose

different methods for the optimization process, but they all share a com-

mon understanding of what the goal is. Ultimately, portfolio optimization

is about selecting the best mix of assets that provide the highest possible

return while controlling for risk and other necessary constraints defined by

the portfolio manager.

3.1.2 The Portfolio Manager’s Challenge

While the challenges of the portfolio manager are various, we focus on the

most relevant to our study. Those are related to capturing asset volatility

and asset allocation.

3.1.2.1 Volatility

We start by defining the volatility of an asset as a measure that captures the

variability of a given asset’s prices over a specific period. Each asset has

its own volatility characteristics depending on various factors related to the

nature of the asset or the market in which it is traded. The volatility of assets

can be calculated through different methods. Among the most commonly

found methods for capturing the volatility of an asset are:

Historical Volatility: is estimated through the calculation of the standard

deviation of the returns of an asset within a specific time period.

HV =

√√√√ 1
N − 1

N

∑
i=1

(Ri − R̄)2 (3.1)

where N is the number of observations, Ri is the return at time i, and R̄ is

the average return.

Exponential moving average: is often used for assets with rapidly changing
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volatility.

EMAt = λ× EMAt−1 + (1− λ)× R2
t (3.2)

where λ is the smoothing parameter (usually between 0.9 and 0.99 ), Rt is

the return at time t and EMAt − 1 is the Exponential Moving average of the

previous period.

GARCH models: Defined as Generalized autoregressive conditional het-

eroskedasticity (GARCH) [66], these are models mainly employed to model

and forecast volatility based on past variances and covariances from a par-

ticular time series [63]. The most significant assumption for this model is

that past behavior can tell us something about future behavior. For a given

time series (Xt), we can have a GARCH (p, q) process that models it in

which p and q are the non-negative integers that indicate the order of the

model. The parameter p tells us the number of past lagged conditional vari-

ance terms σ2 in consideration for the model. This means that it dictates how

many past squared returns X2
t−i are taken into consideration. The higher the

value of p, the further we look back into the past squared returns in order to

predict current volatility. The parameter q tells us how many past variances

σ2
t−j are included in our model. The higher the value of q, the higher the

number of past volatility terms that we use to forecast the current volatil-

ity. There are two main conditions that a process must satisfy in order to be

considered a GARCH process: strict stationarity and strict positive valued

process. Strict stationarity refers to the statistical property of maintaining

the mean and variance unchanged over time. A strict positive valued pro-

cess requires the volatility σt to remain strictly positive to resemble real-life

scenarios. An example of a GARCH(1,1) is:

σ2
t = α0 + α1X2

t−1 + β1σ2
t−1 (3.3)

In which, σ2
t is the conditional variance at time t, α0 is the Constant term
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which must be positive to ensure σ2
t > 0, α1 is the coefficient for the last

period’s squared return, X2
t−1 is the last period’s squared return, β1 is the

coefficient for the last period’s conditional variance. Lastly, σ2
t−1 is the con-

ditional variance of the last period.

All sorts of factors can influence the volatility of an asset. The main

known ones are related to macroeconomic factors [67], Geopolitical risks [68],

investor sentiment [69], and regulatory and policy changes [70]. While in-

fluential factors vary depending on the asset class, the mentioned ones have

some degree of effect on most of the different asset classes. The assessment

and understanding of volatility posits a demanding challenge to portfolio

managers as it introduces an uncertainty factor in the price dynamics that

guides the portfolio construction process. In particular, the portfolio man-

ager needs to consider all the potentially influential factors that can impact

the volatility of a specific asset of interest and the repercussions that this

might have on an established portfolio.

The Exponential Generalized Autoregressive Conditional Heteroskedas-

ticity (EGARCH) variation of the GARCH was introduced by Daniel Nel-

son in 1991 [71]. This variation is considered to be more flexible in cap-

turing traditional and inverse leverage effects of the assets it models. An

EGARCH(1,1) formulation in detail would look like:

log(σ2
t ) = α0 + α1 log(σ2

t−1) + β1|Zt−1|+ γ1Zt−1 (3.4)

Most of the terms are defined similarly to the GARCH model seen in

equation 2.3. The term γjZt−j captures the leverage effect. The sign and

value of the γ parameter determine the direction and strength of the lever-

age effect. A negative γ implies a traditional leverage effect, while a positive

γ implies an inverse leverage effect.
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3.1.2.2 Asset Allocation

The selection of assets that constitute a portfolio represents one of the most

crucial decisions for a portfolio manager, as these assets must align with the

investor’s investment strategies, risk tolerance, financial models, and over-

all return expectations. According to Babaei et al., effective asset allocation

involves identifying the efficient frontier, a cornerstone concept of Modern

Portfolio Theory introduced by Markowitz in 1952 [72]. The efficient fron-

tier consists of portfolios that optimize the expected return at each level of

risk. Markowitz explains that a portfolio belongs to the efficient frontier if

it delivers the maximum expected return for a given level of risk, thereby

establishing an optimal balance between risk and return [2]. The efficient

frontier also serves as a visual tool to identify the best-performing results

of a given strategy; in our case, it highlights the outcomes of different opti-

mization algorithms, as evidenced in various studies [10, 73, 74].

3.2 Portfolios Optimization Models

3.2.1 Portfolios Optimization Problems

For a given portfolio of assets, we can use a mathematical formulation to de-

termine an optimal allocation that meets specific objectives and constraints.

Such mathematical formulation is centered around an objective function,

which quantifies the goal of the optimization process. Among the most

known and relevant portfolio optimization problems we can find:

Mean-variance optimization

The mean-variance model is one of the first and simplest models to ex-

ist. The principle behind the mean-variance theory is that we are looking

to minimize the variance of a given expected return. The model quantifies

the risk level through the covariance between the pairing of the portfolio

assets. The only constraints imposed on the model are related to budget

non-negativity and risk tolerance. While simple, this model does distance

itself from actual trading conditions and particularly from the many con-
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straints that portfolios have in real financial markets. The model initially

proposed by Markowitz [2] is expressed as:

min
w

w⊤Σw

subject to w⊤¯ = µp,
n

∑
i=1

wi = 1.

(3.5)

In which w is the vector of portfolio weights, Σ is the covariance matrix

of asset returns, w⊤Σw is the variance of the portfolio’s return, µ is the vec-

tor of expected returns for each asset, w⊤¯ = µp is the constraint that the

portfolio’s expected return equals a target return µp, and ∑n
i=1 wi = 1 is the

constraint that all portfolio weights sum to 1.

Risk-Parity

The concept of risk parity is commonly defined as an approach for as-

set allocation in which the portfolio created has assets that provide an equal

risk contribution [75]. Some studies even go further and relax the risk-parity

condition in order to enable more room for maneuvering diversification ap-

proaches [76, 77]. The common mathematical formulation for this approach

is:

Minimize

(
n

∑
i=1

(
wi

∂σp

∂wi
− 1

n

)2
)

(3.6)

where n is the total number of assets, ση is the portfolio standard deviation,

and wi is the weight of the i-th asset.

CAPM-based optimization

Chen defines the capital asset pricing model (CAPM) as the formaliza-

tion of the mean-variance optimization of a risky portfolio when interacting

with a risk-free investment [78]. In his study, he uses bonds as a risk-free

measure. Ultimately, the CAPM presents a tradeoff between market risk
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and expected return under the assumption of an efficient market. It is math-

ematically formalized as:

E (Ri) = R f + βi
(
E (Rm)− R f

)
(3.7)

Where βi =
Cov(Ri,Rm)

Var(Rm)
Here, E (Ri) is the expected return on asset i, R f

is the risk-free rate, βi is the beta of asset i, E (Rm) is the expected market

return, Cov (Ri, Rm) is the covariance between the return of asset i and the

market return, and Var (Rm) is the variance of the market return.

Value at Risk (VaR)

It provides a single-point estimate of the worst-case scenario (the loss).

It addresses the question: what is the chance that my losses won’t exceed

a certain amount of X? If that chance equals my confidence level (alpha),

then X is my value at risk (VAR). The VaR fails to satisfy the sub-additivity

axiom, which, according to Clement et al. [12], is an expected requirement

for any proper risk measure. The sub-additivity axiom states the risk of

two portfolios combined should always be less or equal to the sum of their

risks (individually). This axiom basically hints that diversification should

not increase risk. Another shortcoming of VaR is that it fails to address tail

risk events [10]. The VaR is often formulated as:

VaRα = µp − zασp (3.8)

where µp is the mean return of the portfolio, σp is the standard deviation of

the portfolio returns, and zα is the z-score corresponding to the confidence

level α.

Conditional Value at Risk (CVaR)

Rockefellar et al. introduced the Conditional Value at Risk (CVaR) as a

measure of risk that provided a better comprehensive risk assessment, par-

24



3.2 Portfolios Optimization Models

ticularly at the end of the loss distribution (something that the VaR fails

to do) [7]. The CVaR (or Expected Shortfall) captures the tail risk by av-

eraging the extreme losses, allowing the investor to determine on average

how much he/she could lose after a given alpha. This is particularly useful

for turbulent economic times and/or assets with considerable tail risk [10].

They formulated the CVaR in the following way:

CVaRα =
1

1− α

∫ 1

α
VaRγ dγ (3.9)

where VaRγ is the VaR at confidence level γ and α is the specified confi-

dence level for CVaR.

3.2.2 Bridging Scenarios with Reality: Copulas

The use of copulas allows us to create a wide range of plausible market sce-

narios, particularly ones in which we see extreme events (the tails of the dis-

tribution). The scenarios created by the copulas provide an advantageous

starting point for our optimization algorithms, given that the data that they

simulate will model the underlying dependencies between the assets of the

portfolio. These dependencies are different than those exploited through the

GOMEA, which focuses on exploiting the dependencies within its evolving

solutions. In a sense, copulas work as a potential bridge between simulated

scenarios and actual market dynamics.

A copula is a mathematical function that isolates the dependence struc-

ture from the marginal distributions (individual behavior of each variable)

in the relationship between two or more variables. Copulas can capture lin-

ear and nonlinear dependencies, meaning we can understand dependence

from a more profound perspective, other than correlation [63]. Traditional

correlation measures tend to focus on central tendencies, such as the mean.

In contrast, copulas use quantile-based dependence, which enables the de-

piction of the dependence of extreme outcomes. Such characteristics benefit

volatile assets such as cryptocurrencies, which are known for having ex-
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treme price movements. From a mathematical standpoint, a d-dimensional

copula is defined by McNeil as a distribution function on [0, 1]d with stan-

dard uniform marginal distributions [63]. In addition to the definition, they

provide three mandatory properties needed for a distribution function to

hold:

• Boundary Conditions with 0: This property suggests that if a copula

takes as an input a value of 0 then the output should also be 0. This is

expressed mathematically as C (u1, . . . , ud) = 0 if ui = 0 for any i .

• Uniform Marginals: This property states that when observing a vari-

able within a copula in isolation, we should see a predictable and uni-

form pattern. This is expressed mathematically as C (1, . . . , 1, ui, 1, . . . , 1) =

ui for all i ∈ {1, . . . , d}, ui ∈ [0, 1].

• Non-negative Volume: This property explains that a copula should

respect the basic non-negativity rules of probability in order to be

considered a valid distribution function. This means that all regions

within the domain of a copula should be non-negative.

There are various families of copulas, each with their own merits and

suitability for different types of problems. For this study, we consider three

particular families of copulas as potential candidates: Elliptical copulas,

Archimedean copulas, and Vine Copulas.

Elliptical Copulas

This family of copulas comes from elliptical distributions and comprises

the multivariate t-distributions and the multivariate normal Gaussian. The

Gaussian (normal) copula is mainly preferred for its capacity to model linear

correlation structures, but it is also known to lack the capacity for capturing

tail dependence. On the other hand, the t-copula does capture tail depen-

dence, making it an interesting alternative for assessing returns. Paolella

et al. uses the t-copula in their study about portfolio optimization with T-

GARCH univariate margins [79]. They mention that given the simplicity of

the copula and the lack of robust literature to support the use of other more

complex copulas, they opted for a straightforward approach.
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Archimedean Copulas

This family of copulas has as its core component the use of a univariate

function as a generator function, simplifying the multivariate dependence

structure definition process. Typical examples are the Gumbel, Clayton, and

Frank copulas. Gumbel copulas tend to show strong upper tail dependence,

Clayton copulas are more inclined towards showing strong lower tail de-

pendence, and Frank copulas do not exhibit any tail dependence at all. We

can find portfolio optimization and allocation studies that use this family

of copulas, given they tend to perform well in simple and low-dimensional

dependencies [80, 81].

Vine Copulas

This family of copulas is built using hierarchical structures of trees, in

which each branch represents different levels of dependencies between vari-

ables. Vine copulas construct the dependency structure using simpler bi-

variate copulas (making them highly flexible to customize pairwise relation-

ships between assets). Such capacities allow them to handle high-dimensional

data and permit them to explore more complex relationship dynamics among

the assets. There are three main subclasses of vine copulas: C-vine, R-vine,

and D-vine. Canonical Vine (C-vine) has a structured approach in which one

variable (considered a central node) is placed at the center of the depen-

dency structure. Regular Vine (R-vine) is the most flexible one, as no strict hi-

erarchical structures are imposed during the dependency modeling process.

Drawable vine (D-vine) follows a sequential format in which the dependen-

cies are structures along a path of variables. In their study of Particle Swarm

Optimization for a cryptocurrency portfolio, Clement and Mbong explain

that they use the C-vine copula specification given that it allows modeling

the dependence around a preferred variable [12]. Given the known influen-

tial prevalence of bitcoin with other cryptocurrencies, we can see the benefit

of such a configuration.

The decision on which copula family is best for portfolio optimization

depends on our goals and approaches. We need to weigh our needs and the

specific problem structure in order to make a selection, given that there is
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no clear framework for the selection [82]. However, given the nature of our

assets of study, cryptocurrencies, we opted to make use of the Vine family

of Copulas. The advantage of using the Vine family, particularly through

the pyvinecopulib Python library, lies in its Vinecop function, which au-

tomatically fits the best structure from its three main subclasses based on

our data. This decision to rely on the Vinecop automated selection is driven

by the absence of conclusive evidence of a marked hierarchical structure

among our cryptocurrencies. This is corroborated by a study conducted by

Kokoszczyński et al., who used data spanning from September 2015 to May

2018, where they used a Minimum Spanning Tree analysis—a method in

network analysis that identifies crucial connections within a network—to

understand the hierarchical structure of the cryptocurrency market [83].

Their findings exhibit that Bitcoin acts as a ’superhub’ within the network,

suggesting it has a massively influential role among other cryptocurrencies.

Nonetheless, they also pointed out that this influence waned in the later

periods of the study, persisting but to a lesser degree.

3.3 Systematic Overview

Optimizing a portfolio with traditional assets like stocks and bonds is al-

ready complex. However, integrating cryptocurrencies adds a further layer

of complexity. This is especially true given the volatile and dynamic nature

of crypto-assets, which often makes conventional financial principles and

heuristics less effective or even irrelevant. One major challenge is that tra-

ditional models are based on certain assumptions that don’t hold up well

with cryptocurrencies. For instance, these models often assume that returns

follow a normal distribution and struggle with accurately capturing the

high volatility of crypto assets, even with advanced tools like ARCH and

GARCH models. Additionally, dynamic correlations are unique to these

assets, and specific risks, such as cybersecurity and fraud, are more pro-

nounced when using cryptocurrencies. A potential approach for cryptocur-

rency portfolio optimization is metaheuristics. Metaheuristics are consid-

ered algorithms devised to solve different types of problems by exploring
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the search space for potential solutions in an effective yet non-deterministic

manner. They are mainly employed for problems in which the search space

is vast and there is a likely presence of multiple local optima. What makes

them particularly useful in problems such as optimization problems are

their adaptability, scalability, hybridization capabilities, stochastic nature,

and convergence properties, among others. The nature of metaheuristics al-

lows them to tackle problems that traditional methods tend to struggle with,

such as high dimensionality, non-linearity, deceptive convergence, and dy-

namic dependence structures. This paper uses a particular type of meta-

heuristics given their innovative approach: Evolutionary algorithms.

In our next chapter, we will examine some studies that employ well-

known evolutionary algorithms for cryptocurrency portfolio optimization

alongside an alternative machine learning approach. We will explore these

methodologies to contrast them with our proposed algorithm, the Gene-

Pool Optimal Mixing Algorithm (GOMEA), analyzing the theoretical differ-

ences between these approaches. Ultimately, we aim to set the stage for the

experimentation process, where we will test whether GOMEA outperforms

the other algorithms.
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4.1 EAs and Alternative Approaches in Portfolio

Optimization

4.1.1 On evolutionary algorithms and their advantages

As Hurbans explains, the living organisms we see today are the product of

a chaotic, non-linear evolutionary process in which the best traits of the or-

ganisms result from the most adequate fit to their environment, leading to

their survival [84]. Evolutionary Algorithms are considered a class of meta-

heuristics that leverage the principles of Darwinian theory (natural selec-

tion) to evolve a set of solutions for a specific problem, iteratively enhancing

their fitness across successive generations [85]. Our study focuses on single-

objective constrained evolutionary algorithms, which optimize a specific

objective function while incorporating relevant real-world constraints. This

method aims to develop a model-free strategy, with the aim of avoiding un-

realistic assumptions often found in traditional models. Evolutionary algo-

rithms have an advantage over traditional methods given that they employ

stochastic (through recombination and mutation processes) and dynamic

(part of the adaptation process) methods during the exploration process of

the search space, which are more adept to the financial environments [51].

EAs are also known for working well on non-linear and complex op-

timization problems. They can transfer the information gained from one

task to solve another, focus on more promising solutions in the search space

based on probabilistic models, and transform the representation of solutions

or the search space (by mapping to a different dimensional space, trans-

forming the features, or warping the landscape, among other transforma-

tion methods) [86]. Some studies also point out how EAs are well-suited for
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handling high-dimensional problems. In their study, Bhattacharya et al. ex-

plain that EAs are not only capable of handling high-dimensional problems

given their adaptability and flexibility but also that if we design the proper

test functions and evaluation sets, we can evaluate and refine the EAs to

be even more efficient in these convoluted problems [87]. Another relevant

area in which EAs excel is in problems with multiple local optima. Singh

explains that EAs have the capacity to find multiple solutions within each

iteration [88]. This is ignited by its population-based approach that opens

up the possibility of exploration of different regions of the search space. In

particular, they explain that specific EAs tend to deploy niche techniques

(such as dividing the population into sub-populations), which allows for

segmentation of the search space and prevents falling prey to sub-optimal

local optima solutions.

4.1.2 Relevant EAs in Portfolio Optimization

Genetic Algorithms

A well-known approach to the portfolio optimization problem is the

use of genetic algorithms (GAs). GAs were first introduced by Holland

in 1975 as a heuristic optimization technique designed to mimic the Dar-

winian principle that only the fittest individuals survive [89]. Essentially,

a GA follows the process observed in biological evolution, which includes

the phases of initialization, crossover, mutation, and selection. Studies in

portfolio optimization [90] utilizing this approach include research on the

Indonesian stock market [91, 24], analyses of European Exchange-Traded

Funds [92], and investigations into stocks from different geographic regions [93].

A representation of the steps taken in genetic algorithms can be:
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Algorithm 1: Genetic Algorithm Procedure

1 Function GeneticAlgorithm():

2 Generate an initial population

3 Evaluate fitness of individuals in the population

4 repeat

5 Select parents from the population

6 Recombine (mate) parents to produce children using

crossover and mutation operators

7 Evaluate fitness of the children

8 Replace some or all of the population with the children

9 until a satisfactory solution has been found

While there is a wide array of studies that make use of the GA with

different risk measures, there are very few that employ this algorithm for

CVaR portfolio optimization. Setiwan et al. is one the few who take the

CVaR as their risk measure [91]. In their study, they employ the following

formulation for the CVaR as their objective function:

min α +
1

t(1− β)

t

∑
k=1

uk

subject to
m

∑
j=1

xjcj ≤ b,

xTyk ≥ −α− uk,

xj ∈ Z, ∀j = 1, . . . , m.

(4.1)

In which α is the threshold VaR value, 1− β is the proportion of worst-

case scenarios considered, and β is the confidence level. Additionally, we

define uk = [−xTyk − α] in which xT is the transposed weight vector, yk is

a simulated return vector, also considered to be a specific scenario k part of

the total number of scenarios t. The objective function is subject to three

constraints. The first is a budget constraint ∑m
j=1 xjcj ≤ b, which prevents
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the allocation of assets from exceeding the available resources. The second

is a loss constraint xTyk ≥ −α− uk, which bounds the potential loss per sce-

nario. Lastly, the integrality constraint xj ∈ Z, ∀j = 1, . . . , m which states

that all the decision variables xj must be integers. Furthermore, the frame-

work of the study is based on a specific constraint: the minimum transaction

lot, which is defined as the smallest quantity of an asset that can be traded

in a financial market. Although this imposed constraint is relevant, consid-

ering that financial markets often operate with predetermined lot sizes, the

authors acknowledge the need for additional constraints commonly found

in similar frameworks, such as cardinality or leverage constraints. Never-

theless, the authors conclude that genetic algorithms significantly impact

the portfolio optimization process. They highlight that the selection of pa-

rameters, including the number of generations, confidence level, and mu-

tation/crossover properties, greatly influences the algorithm’s performance

in terms of the Sharpe ratio scores.

Particle Swarm Optimization

A different approach towards portfolio optimization can be found through

another evolutionary stochastic optimization algorithm named Particle Swarm

Optimization (PSO). Firstly introduced by Kennedy in 1995 [94], the algo-

rithm is based on the social behaviors of animals, such as flocks of birds or

schools of fish. In particular, the algorithm seeks to focus on how individual

members of these large groups of animals modify their behavior based on

the result of their actions and those around them. This allows for a balanced

exploration and exploitation of areas of the solution space. A pseudocode

for the PSO algorithms can be:
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Algorithm 2: Particle Swarm Optimization Procedure

1 Function ParticleSwarmOptimization():

2 Initialize:

3 Set number of particles in the swarm and maximum number

of iterations

4 for each particle do

5 Set initial position randomly within the problem space

6 Set initial velocity randomly

7 Record initial position as the particle’s personal best

8 Determine the global best position among all particles

9 PSO Loop:

10 for each iteration do

11 for each particle do

12 Update velocity based on current velocity, personal

best, and global best

13 Update position by applying the new velocity

14 if new position is better than personal best then

15 Update personal best to the new position

16 if new position is better than global best then

17 Update global best to the new position

18 Repeat PSO Loop until the maximum number of

iterations is reached

19 Output:

20 Return the global best position as the solution

In a study that employs the use of a Copula Particle Swarm Optimiza-

tion (CPSO) portfolio strategy, Clement et al. address the CVaR optimiza-

tion problem [12]. The particular formulation of the CVaR that they opti-

mize is the following:
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arg min
ω

{
ξ + [(1− α)n]−1

n

∑
i=1

max { fi(ω, r)− ξ, 0}
}

subject to
∑n

i=1 ωi = 1,

∑n
i=1 E [ci]ωi ≥ 0,

ωi ≥ 0, i = 1, . . . , n.

(4.2)

In which ω = (ω1, . . . , ωn) is the weights vector for the assets, ξ is the

Value at Risk (VaR) value, α is the confidence level, and n is the number

of total assets. The term ∑n
i=1 is the summation of all assets. The function

fi(ω, r) is the loss function for a portfolio characterized by a weights vector

ω and a return vector r, which is composed of n assets. Their study com-

pares the performance of the CPSO with three different strategies: Copula

Differential Evolution (CDE), Global minimum variance (GVM), and min-

imum tail dependent (MTD). The results suggest that CPSO is an auspi-

cious alternative for managing risk during volatile periods. The study also

suggests that through the use of stablecoins in the portfolio, the CPSO ef-

fectively hedges market volatility during periods of market turmoil. While

the study shows some promising results, some design decisions could be

called into question. Decisions such as selecting the GARCH models for

the volatility modeling [43] or selecting a specific family of copulas (Vine

Copulas in this case) can all be examined.

4.1.3 Alternative approach through Machine Learning

Deep Reinforced Learning

An alternative approach to the CVaR portfolio optimization problem re-

gards the use of Deep Reinforcement Learning (DRL). An example of such

an approach is seen in the work of Cui, who uses a copula-based approach

in a scenario-based study that employs a DRL algorithm to optimize a cryp-
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tocurrency portfolio [10]. They explain that DRL has two significant ad-

vantages over other novel techniques, such as Deep Learning (DL) or ma-

chine learning approaches, namely that their DRL model works under re-

alistic model assumptions and that the model allows for a continuous asset

relocation process. The DRL overcomes certain limitations seen in other

approaches that are heavily dependent on price trend prediction models,

which tend to carry hefty, unpractical assumptions. The DRL model is based

on the Proximal Policy Optimization (PPO) algorithm created by OpenAI as

their base Reinforcement Learning algorithm [95]. The pseudocode for the

PPO algorithm is the following:

Algorithm 3: Proximal Policy Optimization (PPO) Algorithm

1 Function ProximalPolicyOptimization(θ, N, T, I, K, M):

2 for iteration = 1, 2, . . . , I do

3 for actor = 1, 2, . . . , N do

4 Run policy πθold in the environment for T timesteps

5 Compute advantage estimates Â1, . . . , ÂT

6 Optimize surrogate L with respect to θ for K epochs and

minibatch size M ≤ NT

7 θold ← θ

In which θ represents the initial policy parameters, which are the weights

and biases of the neural network representing the policy, N is the number of

actors (or agents) used to collect data, T is the number of timesteps each ac-

tor collects data for in each iteration I, K is the number of epochs for which

the surrogate objective L is optimized in each iteration, and M is the mini-

batch size used in the optimization, which must be less than or equal to

N × T.

An important aspect relevant to the framework of Cui’s paper is the se-

lection of the CVaR formulation. The objective function selected by Cui

seems to follow the same CVaR structure as Clement and Mbong [12] but

differs by taking a more probabilistic approach. In their formulation, they

make use of the parameter pi, which is the probability of scenario i. Through

this parameter, the authors assign a specific likelihood to each scenario, al-
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lowing the calculation of a weighted average and avoiding the need for a

parameter such as n seen in equation 4.1. In that equation, n is used to

calculate an average of the scenarios by summing over the scenarios and

dividing by n. The mathematical formulation for Cui’s CVaR format which

they optimize is:

min

[
α + (1− β)−1

N

∑
i=1

pizi

]
s.t.

zi = ( f (x, yi)− α)+ , i = 1, . . . , N

zi ≥ f (x, yi)− α, i = 1, . . . , N

zi ≥ 0, i = 1, . . . , N
N

∑
i=1

piRi ≥ R∗

α ∈ R

x ∈ Rn

(4.3)

In which α is the Value-at-Risk (VaR) value, β is the confidence level, N

is the total number of scenarios, pi is the probability of the i-the scenario

and zi is variable defined in terms of the loss function f (x, yi) and α. Within

the loss function, x is the weights vector (the decision vector), and yi is the

i-th scenario created from a copula rather than using probability density

function p(ξ). The term ( f (x, yi)− α)+ represents the loss beyond the VaR

threshold, which cannot be negative according to the constraints.

Ultimately, the result of this study shows that the portfolios constructed

with the DRL and the CVaR framework succeed in capturing tail risk and

outperform other portfolios constructed under different risk measures in

terms of offering higher returns and lower risks.
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4.2 GOMEA in Portfolio Optimization

4.2.1 Original formulation and CVaR adaptation

The main algorithm of interest for the purpose of this study is the Gene-

pool Optimal Mixing Evolutionary Algorithm (GOMEA). Introduced by

Thierens and Bosman, it is defined as an evolutionary algorithm that per-

forms a memetic variation of solutions by exploiting linkage information

between the elements of the genotype [96]. Optimal mixing can be defined

as the capacity of an algorithm to combine partial solutions from parent

solutions, specifically their beneficial traits or those traits that approximate

them to better scores in the fitness function, to produce improved offspring

solutions in each iteration of new generations. The overarching general al-

gorithms can be described as:

Algorithm 4: GOMEA General Outline

1 Function RUNGOMEA(n):

2 ρ← initializePopulation(n)

3 while -shouldTerminate() do

4 F ← buildLinkageModel(P)

5 for Pi ∈P do

6 Oi ← GOM(Pi, F,P)

7 P ← O = {O1, . . . , On}

The GOMEA algorithm has the following key components:

Population Initialization

The GOMEA’s main formulation employs the Interleaved Multi-start

Scheme (IMS) to initialize and manage its populations [25]. This approach

entails operating multiple populations of varying sizes simultaneously yet

alternatively. Consequently, these populations are at different stages of evo-

lution at any given time, effectively leveraging the strengths of both small

and large populations. This interleaved management of populations con-

tributes to a diverse solution space exploration, helping the algorithm avoid
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premature convergence and getting trapped in local optima. The initial

creation of these populations incorporates randomness, ensuring a wide-

ranging search across potential solutions.

Build-up of the linkage models: Family of Subset Structures (FOS)

Once the algorithm has initialized the population and selected the par-

ent solutions, typically based on their fitness, it proceeds to build the linkage

models. The models capture the dependencies structures found within the

optimization problems. Identifying the complex linkages is an imperative

step in the process of building optimal solutions, given that if ignored, the

algorithm will miss the potential of constructing better solutions. This link-

age learning process is achieved by identifying substructures (genes) that

tend to co-occur in high-quality solutions. The identified linkages are then

systematically incorporated into the Family of subsets (FOS) structure for

use in the subsequent steps. The FOS describes the linkage models by cre-

ating a set of subsets of genes that the GOM variation operator will use.

A Family of Subsets can be represented as FOSF =
{
F0,F1, . . . ,Fk−q

}
, in

which each Fi is known as a linkage set and is made of a number of indices

that represent the location of specific genes. It is important to mention that

the genes within a linkage set are considered to be jointly dependent, estab-

lishing a closed dependency among the variables of such a set. We will take

into consideration three linkage model structures as potential candidates:

Marginal Product (MP) linkage models:

It is a type of linkage model that allows us to group all the variables from

the problem into different linkage sets without creating any overlap. This

model can only be used in real-valued optimization and can take two forms:

The univariate model and the Full linkage model. The univariate model is

selected under the assumption that each variable in the problem is indepen-

dent of each other. This is represented through FUni = {{0}, {1}, . . . , {ℓ−
1}}. The full linkage model runs under the assumption that all variables are

interdependent, suggesting that a change to one variable will affect all the

other variables. Such assumption implies that the entire set of indices is con-

sidered, directly modeling scenarios based on existent dependencies across
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all variable pairs. This is represented as FFull = {{0, 1, . . . , ℓ− 1}}.

Linkage Tree (LT) model:

This type of linkage model allows for more complex and nuanced depen-

dencies among the variables, incorporating various levels of dependencies.

The model is considered to be a hierarchical model as it shows how vari-

ables of a problem are related to each other across different dependency lev-

els. The construction of a LT is guided through the Unweighted Pair Group

Method with the Arithmetic mean (UPGMA) clustering method. This method

continuously merges the most similar linkage sets (starting with the single-

variable linkage sets) until one linkage set remains (composed of all the vari-

ables from the problem).

Conditional models:

This type of model allows us to introduce variation into a small subset of

variables while keeping the remaining variables unchanged from their orig-

inal ‘parent’ setup. The intuition behind this approach is to analyze how

minor adjustments in the variables impact the overall function of the algo-

rithm. These models are particularly advantageous in optimization prob-

lems in which the variables have intricate and complex interdependencies.

By focusing on implementing changes in a few variables at a time, the Con-

ditional models allow us to better understand the dependency structures by

gradually exploring them.

Variation Operators: GOM

The Gene-pool Optimal Mixing (GOM) is the engine behind the GOMEA

algorithm as it is its variation operator. The GOM, guided by the FOS struc-

ture and through an iterative process, mixes the genes from different parent

solutions into an offspring solution. The offspring solutions are evaluated in

terms of their fitness and compared to the best available solution. If the off-

spring solutions demonstrate better fitness than the best solution, the genes

in the subset of the best solution are replaced by those from the offspring,

and their fitness is updated accordingly. On the other hand, if the offspring

do not offer a better fitness than the best solution, then genes within the
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offspring subset are reverted to those in the best solution. At the end of a

complete run of the GOM algorithm, the offspring is either (1) the same as

the best solution or (2) a new, better solution. The algorithm can then be

represented through pseudocode in the following manner:

Algorithm 5: GOM pseudocode

1 Function OMEA::GOM(x):

2 b← o← x

3 fitness[b]← fitness[o]← fitness[x]

4 for i ∈ {0, 1, . . . , |F | − 1} do

5 p← RANDOM ({P0,P1, . . . ,Pn−1})
6 oFi ← pFi

7 if oFi ̸= bFi then

8 EVALUATEFITNESS (o)

9 if fitness[o] > fitness[b] then

10 bFi ← oFi

11 fitness[b]← fitness[o]

12 else

13 oFi ← bFi

14 fitness[o]← fitness[b]

15 return o

Survivor Selection

The process conducted in the GOM operator is replicated across the

population of solutions throughout multiple generations of the algorithm.

While the algorithm initially does not necessarily find the most optimal so-

lutions, it will gradually increase the quality of the solutions.

4.2.2 Problem structure

For this study, we will make use of the GOMEA algorithm as developed

in the work of Bouter and Bosman [25]. In their study, they introduce

a GOMEA library in Python that is based on the original formulation of

the GOMEA algorithm. This library offers both Grey Box Optimization
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(GBO) and Black Box Optimization (BBO), each available in discrete and

real-valued versions, with the option to customize each version. The GBO

is recommended for scenarios in which the problem structure is known and

can be broken down into subfunctions with exploitable interactions, facili-

tating partial evaluations of variable subsets to guide the optimization pro-

cess. On the other hand, the BBO takes an unbiased approach towards a

presented problem, making it an attractive, flexible version for high com-

plex problems in which solutions are analysed based solely on their output

or performance. For the purposes of this study we tested both the GBO and

the BBO in their respective real valued versions, given that our variables,

namely the weights of each asset of our portfolio, are real numbers. How-

ever, during our initial tests, it became apparent that our problem structure

could not be decomposed into subfunctions, leading us to select the real-

valued BBO version of GOMEA for its ability to handle single-objective op-

timization effectively.

The objective function that we will seek to minimize is the CVaR for-

mulation found in the work of Cui, which is known to be compatible with

optimization algorithms [10]. Additionally, we will make a specific selec-

tion from the sub-packages from the consval branch of the Gomea pack-

age. First, we will use the base class type BBOFitnessFunctionRealValued,

which we will customize accordingly to the CVaR portfolio optimization

problem. Additionally, we will override the following methods based on

the number of assets in our portfolio:

• objective_function(self, objective_index, variables)

• constraint_function(self, variables)

We make the following design choices for the sub-packages for our cus-

tom BBO GOMEA algorithm,further detail on the reasoning behind the se-

lection will be provided in the methodology section:
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Subpackage Selection for this study

Grey-BOX or Black-Box BBO

Optimization real valued

Fitness BBOFitnessFunctionRealValued

Linkage Full

Table 4.1: Design selection for the GOMEA algorithm

4.2.3 Solution Space

The solution space for our portfolio optimization problem that we will ex-

plore has some particular characteristics. We expect multiple local optima

to exist due to the presence of a non-normal distribution followed by the

cryptocurrency returns, making it a non-convex, high-dimensional, and dy-

namic space. As mentioned, the search space is likely to contain many local

optima and suboptimal regions.
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5.1 Experimental Design

We adopt the methodology presented by Cui et al. [10], which involves con-

structing a CVaR (Conditional Value at Risk) efficient portfolio of cryptocur-

rency assets through two main components: the computation of CVaR and a

portfolio optimization algorithm. In our study, the optimization algorithm

that we use is the Black-Box Gene-pool Optimal Mixing Evolutionary Al-

gorithm (GOMEA) from Bouter and Bosman’s study [25], and compare it

to a Genetic Algorithm constructed from pseudocode and a Particle Swarm

optimization constructed using the pyswarm python package. Additionally,

to assess the performance in terms of the risk/return trade-off, we construct

efficient frontiers for each algorithm and compare them. After constructing

and testing the model with simulated data, we will make use of historical

data to backtest our algorithm. This step is critical to determine whether the

patterns and behaviors observed in the simulated data are consistent with

those in historical data.

For our asset selection, we chose the cryptocurrencies with some of the

highest overall market cap in the last six years. We use the information

available in Yahoo Finance to retrieve the historical returns for the following

cryptocurrencies: Bitcoin, Ethereum, Litecoin, Ripple, and Monero. We use

the daily returns of the mentioned asset to keep track of the performance of

the crypto-assets by calculating the percentage change in the closing price

from one day to the next. Additionally, to make sure that we are making

a balanced comparison of the returns of the assets, we transform our data

to logarithmic returns by taking the natural logarithm of the ratio of each

day’s closing price over the previous day’s closing price. The returns col-

lected range from the periods of January 2018 to November 2023, providing

a window of approximately 5 years of returns. An important point to con-
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sider is that we sought to include periods of high volatility, such as those

seen in the collapse of Bitcoin in 2018 and the later surge in 2021. Within

our selected time window, we can also find the COVID-19 pandemic, poste-

rior international conflicts such as the Russio-Ukranian war, Brexit, and the

elections in the United States of 2020. This sample is representative of var-

ious types of distress periods, which could have a more substantial impact

on the volatility of the prices.

To construct the scenarios, we use Vine copulas that allow the simula-

tion of volatile scenarios (closer to how cryptocurrency markets actually be-

have), which will be employed as vector yi the loss function f (x, yi). We

use the pyvinecopula package in Python for a process in which we initially

transform the array of log returns into pseudo observations. This trans-

formation is applied to generate a set of values between 0 and 1, which

represent the original data in terms of their cumulative distribution, effec-

tively making them uniform marginals. The guiding principle behind this

is that for copula models, any multivariate distribution can be dissected

into its marginal distributions and a copula that delineates the dependency

structure among the variables. Therefore, by converting our log returns into

uniform marginals, we enable the copula model to extract the dependency

structure of our variables accurately. This allows for the proper simulation

of further scenarios that preserve the identified dependency structures, pro-

viding a robust framework for analyzing potential market movements. In

the next step of our copula modeling, we select the potential copula families

that the algorithm should consider for fitting. We opt to select as candidates

the Gaussian, Clayton, and Student T. Once these two steps are defined, we

make use of the Vinecop function, which will automatically fit the best pos-

sible structure from the options we provided to our data. For our study,

we make use of our constructed model to simulate 25000 scenarios, which

account for approximately 68 years of financial data. This is reflected in the

code:

u = pv.to_pseudo_obs(log_returns_array)

controls2 = pv.FitControlsVinecop(family_set=

[pv.BicopFamily.gaussian, pv.BicopFamily.clayton,
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pv.BicopFamily.student])

cop2 = pv.Vinecop(u, controls=controls2)

simulated_data = cop2.simulate(n=25000)

Once we have created the simulated scenarios, we can use the GOMEA

algorithm. This approach allows the GOMEA algorithm to explore a more

refined search space, potentially leading to a more focused and effective

search for optimal solutions. We will use the CVaR as our objective function

for our GOMEA algorithm. In particular, we will make use of Cui et al.

formulation of the CVaR and optimize it:

min

[
α + (1− β)−1

N

∑
i=1

pi( f (x, yi)− α)+
]

s.t.

zi = ( f (x, yi)− α)+ , i = 1, . . . , N

zi ≥ f (x, yi)− α, i = 1, . . . , N

zi ≥ 0, i = 1, . . . , N
N

∑
i=1

piRi ≥ R∗

α ∈ R

x ∈ Rn

(5.1)

In terms of the data that we will use as input for equation 5.1, we make

use of the following:

1. For α, the Value-at-Risk (VaR), we will use a single value for the VaR

that will be estimated based on the sorted scenario returns, the confi-

dence level, and the corresponding percentile index.

2. For the parameter β, the confidence level, we will use a value of 0.95

as the value for our confidence level.

3. The parameter N, the total number of scenarios, will be set to 25,000

to provide statistical stability given our probabilistic approach.
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4. Parameter pi, the probability of the i-th scenario, will take on the value

of 1/25000 for each scenario in order to provide each scenario a realis-

tic chance of consideration.

5. Within the loss function f (x, yi), we will initially select for the weight

vector x an initial vector of random weights (a list of lists in Python

terms): [ [w11,w12,w13,w14,w15,w16], [w21,w22,w23,w24,w25,w26],

... ]. For the parameter yi, the vector of scenario returns, will be will

use the scenarios generated from the copulas, and it will be a list of

tuples (in Python terms) in which each tuple encapsulates a specific

scenario [ [s11,s12,s13,s14,s15,s16], [s21,s22,s23,s24,s25,s26], ... ].

For the GOMEA algorithm make use of the consval branch from the

gomea python library presented by Bouter and Bosman [25]. As explained in

their paper, we customize the objective function for the Black Box GOMEA

and add the corresponding constraint to prevent the solutions from being

negative or not adding to one. By adding this constraints, we ensure that no

shortselling is allowed and that the total capital is invested in the portfolio.

The objective function that we employ in our code, along with its respective

constraint function, is the following:

def objective_function(self, objective_index, variables):

normalized_weights = bicom_normalize_weights_obj_funct(variables,

min_target=0.01,max_target=0.99)

var = estimate_var(normalized_weights, self.scenarios,

self.confidence_level)

portfolio_return = np.dot(self.scenarios, normalized_weights)

probabilities = np.full(self.scenarios.shape[0], 1 /

self.scenarios.shape[0])

excess_loss = np.maximum(portfolio_return - var, 0)

cvar_component = np.sum(excess_loss * probabilities)

denominator = (1 - self.beta) * self.scenarios.shape[0]

z_i = cvar_component / denominator

cvar = var + z_i

return cvar

def constraint_function(self, variables):

if np.all([(0.0001 <= x <= 1) for x in variables]):
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sum_variables = np.sum(variables)

if 0.99 <= sum_variables <= 1:

return 0

return 1

As part of our parameter selection, we decided to set the value for the

parameter value_to_reach close to zero. For the linkage model, we opted

for the Full Linkage Model due to its theoretical compatibility with our

study and the assumption that there is interdependence among our assets.

We established the lower and upper initial ranges between 0 and 1 to give

the initial solutions a constrained random starting point to prevent any bias.

Additionally, we decided to exclude the use of the IMS subfunction when

establishing the parameters for the RealValuedGOMEA class. This decision

was made during the hyperparameter tuning phase, during which we no-

ticed that the algorithm performed poorly in terms of convergence and opti-

mization whenever the IMS was paired with the constrained version of the

GOMEA. This issue was consistent across various settings of the parameters

max_number_of_populations, base_population_size or max_number_of_-

seconds. We suspect that while the consval branch of the library func-

tions adequately with a fixed population, there may be incompatible ele-

ments when applying the IMS subfunction within the constrained use of

the GOMEA library, especially since this branch is still under development.

Given that we excluded the IMS subfunction, then by default, the max_-

number_of_populations, is set to 1. Additionally, and following the in-

structions presented in Bouter and Bosman’s paper, we set the max_number_-

of_generations and max_number_of_evaluations to -1 to establish no limit

to them, allowing the algorithm to explore the solution space freely [25].

Ultimately, our parameter selection was:

scenarios = simulated_data

confidence_level = 95

probabilities = np.full(scenarios.shape[0], 1 / scenarios.shape[0])

beta = 0.95

value_to_reach = 1e-6

frv = BBOforCVaROptimization(scenarios, probabilities, beta, confidence_level,

value_to_reach)
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lm = gomea.linkage.Full

rvgom = gomea.RealValuedGOMEA(fitness=frv,

linkage_model=lm,

lower_init_range=0,

upper_init_range=1,

max_number_of_populations=1,

max_number_of_generations=-1,

base_population_size=250,

max_number_of_evaluations=-1,

max_number_of_seconds=900)

Regarding the data collection employed for constructing our efficient

frontier, we conducted 270 runs to gather data on portfolio performances,

using the Conditional Value at Risk (CVaR) as our objective function for

single-objective optimization with the GOMEA. Once we obtained the opti-

mized weights per run, we compute the corresponding expected returns by

multiplying the optimized weights with the simulated/historical returns.

These returns(y-axis) were then plotted against their respective CVaR values

(x-axis), which were derived from the GOMEA optimization. It is important

to emphasize that calculating the expected returns was a simple computa-

tion, separate from the optimization techniques used to determine CVaR

values. We then select the top 10 portfolios from these data points, repre-

senting the efficient frontier for our chosen optimization algorithm. Our ap-

proach allows us to construct our efficient frontier systematically, selecting

portfolios with the highest expected returns. Depending on the outcomes

from our optimization algorithms, we arranged the CVaR values in ascend-

ing order to address minimum expected gains and in descending order to

handle potential losses.

The financial metrics presented in the result section for both the simu-

lated and historical data are constructed using the mean value of the 270

runs mentioned. For the performance graphs, we use 30 separate runs for

the convergence graph and 20 runs for the construction of the hyperparam-

eter tuning performance graphs. Specifically, the base population graph is

constructed in increments of 25, and the time termination criteria graph in

steps of 30 seconds.
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5.2 Data

As data samples for our cryptocurrency, we use the asset’s historic prices

covering January 2018 to November 2023. We transform our normal re-

turns into logarithmic returns as this is standard practice when analyzing

the returns of volatile assets with wide varying returns. The first thing we

examine is descriptive statistics. As seen in Table 5.1, we can draw some

interesting insights regarding our assets. The first concerns risk. We see the

XRP (Ripple) is the riskiest asset in the portfolio, as its standard deviation

suggests. Ripple is also the asset that shows the most extreme price move-

ments, as shown by its wide range of gains and losses (-0.5505 and 0.5486).

In terms of the quartiles, we see that both Litecoin (LTC) and Monero (XMR)

have a wider interquartile range in comparison to Bitcoin (BTC), which in-

vites us to consider that there is a greater spread of daily returns around the

median leading to a higher level of volatility and risk. In terms of expected

returns, we notice that only Ethereum(ETH) and Bitcoin(BTC) exhibit posi-

tive expected returns with some low ceilings in their maximum returns. We

have also noticed that Bitcoin appears to be the best asset to invest in as

it holds the highest expected return under the lowest standard deviation,

making it the most balanced asset in the portfolio.

(a) Count, Mean, Std, and Sharpe Ratio

Ticker Count Mean Std Sharpe Ratio

BTC-USD 2158 0.0005 0.0370 0.0128
ETH-USD 2158 0.0004 0.0477 0.0094
LTC-USD 2158 −0.0005 0.0507 −0.0108
XMR-USD 2158 −0.0004 0.0499 −0.0111
XRP-USD 2158 −0.0006 0.0572 −0.0072

(b) Interquartile Ranges with Min and Max

Ticker Min 25% 50% 75% Max

BTC-USD −0.4647 −0.0142 0.0007 0.0161 0.1718
ETH-USD −0.5507 −0.0199 0.0005 0.0235 0.2307
LTC-USD −0.4491 −0.0237 0.0001 0.0242 0.2906
XMR-USD −0.5342 −0.0210 0.0019 0.0243 0.3450
XRP-USD −0.5505 −0.0218 −0.0010 0.0196 0.5486

Table 5.1: Descriptive Statistics of Log Returns for selected Cryptocurrencies
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If we examine the historical returns of our assets as depicted in Fig-

ure 5.1, we can observe that certain periods of high volatility are shared

by all the assets, namely right after 2020 (which can be attributed as the

start of the Covid-19 Pandemic) and in the early stages of 2021. From Figure

5.1, we can also notice that each asset has different volatility clusters across

different times, suggesting that they have different market dynamics.

In terms of the correlation between assets, we construct a Pearson corre-

lation matrix in Figure 5.2 and find that most of the assets are highly corre-

lated with each other. Only Ripple seems to have some low positive corre-

lation with the other assets in the portfolio. This finding is not surprising

as it is commonly known that cryptoassets tend to be highly influenced by

each other movements.

Figure 5.1: Volatility Clustering of the selected Cryptocurrencies
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Figure 5.2: Correlation heatmap of the selected Cryptocurrencies

Cryptocurrencies returns tend to have varying distributions, most of

them noticeably far from the normal distribution, as seen in Figure 5.3. In

order to assess the correlation between the assets in our portfolio, we in-

corporate this fact of non-normal distributed returns into consideration and

employ a non-parametric method through the Kendall Tau correlation ma-

trix, which is suitable for non-normal distributions and provides a measure

of the strength and direction of the pairwise association of our assets. Some

key characteristics that we want to exploit from the nature of the Kendall

Tau matrix are its low sensitivity to outliers, the focus it has on the ordi-

nal association and the accounting it has for the ranks of data rather than

the raw value themselves. In Table 5.2, we find the Kendall Tau correlation

matrix, which provides some peculiar insights. The most noticeable one

is that all cryptocurrencies exhibit a positive correlation, suggesting simi-

lar price movements. The strongest pairwise correlation appears to be be-

tween Bitcoin (BTC) and Ethereum (ETH), suggesting a strong rank move-
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ment association. The weakest pairwise association is found between Mon-

ero (XMR) and Ripple (XRP). Additionally, contrary to what the Pearson

Correlation matrix in Figure 5.2 shows, Monero (XMR), not Ripple (XRP),

exhibits the lowest pairwise correlation with other assets. We also observe

that, despite the strong positive correlation among the assets, which limits

straightforward diversification opportunities, nuanced dependence struc-

tures exist within these assets. These structures suggest the potential for

more sophisticated diversification and risk management strategies. This in-

sight reinforces our decision to employ Vine copulas and the GOMEA al-

gorithm, which is designed to uncover and exploit complex dependence

patterns for portfolio optimization.

Figure 5.3: Histogram of Logarithmic Returns for selected cryptocurrencies
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Ticker BTC-USD ETH-USD LTC-USD XMR-USD XRP-USD

BTC-USD 1.000 0.647 0.599 0.526 0.527
ETH-USD 0.647 1.000 0.633 0.510 0.585
LTC-USD 0.599 0.633 1.000 0.502 0.561
XMR-USD 0.526 0.510 0.502 1.000 0.452
XRP-USD 0.527 0.585 0.561 0.452 1.000

Table 5.2: Kendall Tau Correlation Matrix for selected Cryptocurrency Returns

5.3 Hardware and computational cost

For our study, we ran our algorithms using an HP OMEN Laptop 15-ek1xxx,

configured with hardware specifications suitable for data analysis. The hard-

ware specifications are the following:

• GPU: NVIDIA GeForce RTX 3060 Laptop GPU, equipped with a DCH

driver, featuring 3840 CUDA cores, and supporting DirectX Runtime

version 12.

• CPU: Intel(R) Core(TM) i7-10870H CPU operating at a base frequency

of 2.20GHz and capable of reaching up to 2.21 GHz under turbo boost.

• RAM: 15.8 GB available

• Disk Storage: 661 GB

• Refresh Rate: The display offers a 144Hz refresh rate

Additionally, we estimated the computational cost of each algorithm

over 30 runs across our two datasets: the simulated and historical returns.

In order to determine the computational cost of running our algorithms, we

determined the runtime (in seconds), the memory usage (in Megabytes) and

the CPU usage (in %) through the use of the functions virtual_memory and

cpu_percent respectively from the psutil python library.

The result obtained are the following
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Algorithm Dataset Runtime (s) Memory Usage (MB) CPU Usage (%)

GOMEA Simulated 900 14249.02 7.02
Historical 138.98 10493.40 6.68

GA Simulated 86.75 11443.09 1.98
Historical 53.43 11821.18 7.58

PSO Simulated 29.68 11508.98 2.27
Historical 15.23 11756.48 1.28

Table 5.3: Comparison the algorithms’ of Computational Costs

From Table 5.3, we observe the computational costs of the algorithms.

For the simulated data, we notice that the PSO is the fastest algorithm among

the three, while the GA is the one with the lowest memory and CPU us-

age. However, the GOMEA algorithm observations must be put into con-

text as we set the termination criteria in 900 seconds; thus, the runtime met-

ric should be interpreted with caution. In terms of memory usage, while

GOMEA employs the most, it is not far from the other two algorithms. Ad-

ditionally, although GOMEA shows a higher CPU usage percentage, it is

still quite low when put into context with other optimization algorithms.

Regarding the insights that we can take from the historical data, PSO

remains the fastest algorithm, but we notice a significant improvement in

GOMEA’s runtime, suggesting that the algorithm performs better with real-

world data. In terms of memory usage, GOMEA also shows improvement

in the historical data as it records the lowest memory usage at 10493.40 MB,

while GA increases its usage. Moving to the CPU usage, we observe a slight

improvement in GOMEA’s performance and an increase in GA’s CPU usage

while PSO maintains its performance.
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6.1 Simulated Data

6.1.1 Algorithm performance

As a start to our result section, we examine the performance of the GOMEA

algorithm. We focus on two particular aspects: convergence and hyperpa-

rameter tuning. We examine the performance of our GOMEA algorithm in

terms of the convergence towards an optimized CVaR minimized value. In

regards to the hyperparameter tuning, we focus on the two main hyper-

parameters that exhibited the highest influence on the algorithm’s perfor-

mance: base_population_size and max_number_of_seconds. Other rele-

vant parameters did not affect the algorithm’s performance to the degree

seen by the two hyperparameters selected. We proceed to examine them.

6.1.1.1 Convergence of the GOMEA algorithm

In Figure 6.1 the mean objective value for each generation is plotted. In or-

der to provide some visualization of the variability of the data, we plotted

the standard deviation bands, indicating one standard deviation from the

mean in both directions. Such representation provides insight into the vari-

ability of the data points. The graph was constructed based on 30 different

runs with the base parameter setup. In terms of the resulting graph, we ob-

serve how, as the number of generations increases, the algorithm progresses

toward a lower objective value. However, the mentioned progression is not

entirely smooth downwards and is faced with certain plateaus, as seen from

the 100th generation onwards. Additionally, these plateaus appear to be-

come more frequent and prolonged in subsequent generations. Further ex-

amination of the standard deviation bands suggests that the data’s behavior

maintains a degree of consistency despite the inherent variability. We con-
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ducted a one-way ANOVA test in order to determine whether the difference

between the group means of the generations is statistically significant. The

ANOVA test pointed to a statistically significant difference in the objective

values across generations, with an F-statistic of 43.600 and a p-value less

than 0.001.

Figure 6.1: Convergence plot of the GOMEA for Simulated Data

6.1.1.2 Hyperparameter tunning

Throughout the experimental trials with the Gene-pool Optimal Mixing Evo-

lutionary Algorithm (GOMEA), various parameters underwent testing with

different values across more than 700 runs with increasing interval steps.

Parameters included initial upper and lower ranges, a predetermined max-

imum number of generations, evaluation limits, the Interleaved Multi-start

Scheme (IMS) subgeneration factor, and specific (value_to_reach) bench-

marks. We discovered that for portfolio optimization, the GOMEA algo-

rithm’s performance does not improve with the application of the IMS sub-

generation factor, regardless of the base population size being large (10,000)

or small (10). We found that consistently, when implementing the IMS sub-

generation factor, the algorithm stalled between 6 to 50 generations, show-

ing no improvement in the objective value. Additionally, this approach re-
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sulted in homogenous solutions, with resource allocation concentrated on

a single asset. As testing advanced, it became clear that the base popula-

tion size and the time termination criterion (max_number_of_seconds) sig-

nificantly influence the exploration of the solution space and the distribu-

tion of asset allocations. In Figure 6.2, we observe the impact of varying the

parameter base_population_size on the objective value through a graph

constructed from 20 runs. The values for base_population_size range from

50 to 501, increasing in steps of 25. Initially, the objective value decreases as

the base population size increases from 50 to 100. However, there is a sharp

increase in the objective value around a base population of 100. The mini-

mum CVaR obtained by the GOMEA algorithm occurs at a base population

of 250. Beyond this point, the fitness value rises markedly, with a minor

decrease between populations 350 and 400, a trend that continues even as

the base population size reaches 500. This graph illustrates the initial 500

values for the parameter, but the observed pattern persists for larger popu-

lation sizes.

Figure 6.2: Base_population_size - Hyperparameter performance plot for
GOMEA

A more challenging hyperparameter to experiment with was the termi-

nation parameter max_number_of_seconds as seen in Figure 6.3. This pa-

rameter required balancing an adequate time for the algorithm to explore

the solution space against the risk of premature convergence or remaining
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trapped in local optima. We primarily experimented with values at the 300,

600, 900, 1200, 1500, 1800 and 2100-seconds marks in time steps of 30 sec-

onds . Notably, the 900-second threshold exhibited a pattern of consistently

decreasing lower fitness values. For higher time marks the algorithms did

not improved the objective value. It is critical to note, despite occasional

signs of the algorithm entrapment in local optima, in most instances it navi-

gated the solution space effectively, avoiding such traps in the search space.

Figure 6.3: Time Termination criteria (seconds) - Hyperparameter performance
plot for GOMEA

6.1.2 Results from the simulated data

6.1.2.1 Financial Metrics

The data in Table 6.1, presents the mean weight distribution of each asset

per algorithm based on 270 runs. We observe that the three algorithms are

inclined to generate diversified portfolios favoring a particular pair of as-

sets, as is seen for GOMEA, which slightly favors Ethereum and Litecoin;

GA, which favors Monero and Ripple; and PSO, which has a predominant

stake in Ethereum and Litecoin, as well. The table also reflects how we

have two core assets that seem to prevail in their weight allocation for all

the algorithms, namely Ethereum and Litecoin. In terms of risk appetite,

59



Results

both GOMEA and PSO seem to take a rather conservative stance on highly

volatile assets such as Monero and Ripple, while the GA has a higher risk

appetite given the allocation of almost 60% of its capital into Monero and

Ripple.

Algorithm BTC ETH LTC XRP XMR
Gomea 0.2057 0.2112 0.2340 0.1814 0.1677
Genetic Algorithm 0.0896 0.1530 0.1640 0.2958 0.2977
PSO 0.2091 0.2736 0.2890 0.0971 0.1312

Table 6.1: Portfolio mean weight distribution per algorithm - Simulated data

In Table 6.2, we observe the mean portfolio financial metrics obtained

from the mentioned 270 runs. Notably, the CVaR values are positive, indi-

cating an optimistic outcome of our optimization process where the worst-

case scenarios are seen as minimum expected gains rather than potential

losses. This interpretation of CVaR, while uncommon, has been observed

in various studies on optimization algorithms that employ copulas for the

simulation of returns [10, 12]. Under this less traditional interpretation of

the CVaR, the Genetic Algorithm (GA) exhibits the highest minimum po-

tential gain in terms of Conditional Value at Risk (CVaR), suggesting the

lowest exposure to tail risk. This is particularly interesting given its focus on

highly volatile assets such as Monero and Ripple. Conversely, the GOMEA

algorithm demonstrates the lowest minimum potential gain (lowest CVaR

value) while achieving a slightly higher expected return than the other algo-

rithms. Given GOMEA’s low diversification and high concentration ratios,

this could be considered the riskiest strategy among the three. Both GA and

PSO are characterized by more diversified portfolios, with GA showing a

particularly diverse allocation, yet they appear to have lower risk exposure

due to their higher CVaR values. It is also noteworthy that the expected re-

turns are peculiarly similar despite different weight allocations to each asset

and varied risk preference profiles among the algorithms.

Another interesting metric to look at is the Sharpe Ratio, which tells us

the returns per unit of risk taken. A portfolio with a Sharpe Ratio above 1

is considered good, and below 0 is considered too risky for the expected re-
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turn. In Table 6.2, despite their different strategies, we observe that the three

algorithms obtain high returns by efficiently managing intrinsic volatility,

given their high Sharpe Ratio values. There is a caveat that needs to be

considered when looking at the Sharpe Ratio in cryptocurrencies, as it is a

traditional financial metric that was developed to compare the returns in

perspective of the risk-free asset. Given the extremely volatile nature of

the cryptocurrencies, regardless of whether they are stablecoins or alt-coins,

and the mismeasured high returns seen in the cryptocurrency prices, it is

likely to be a financial metric that should not be taken at face value and

interpreted with caution.

Metrics GOMEA GA PSOP
CVaR 0.0626 0.0840 0.0753
Expected Return 0.5000 0.4995 0.4995
Diversification Ratio 1.8557 3.7991 2.8466
Concentration Ratio 0.6837 0.2637 0.3628
Sharpe Ratio 1.9402 1.9611 1.9125

Table 6.2: Comparison of Main Financial Metrics - Simulated Data

As the final financial metric, we observe each asset’s Marginal Risk con-

tribution (MRC) to its corresponding portfolio. The MRC measures each

asset’s incremental risk to the portfolio, conditional on its weight and cor-

relation with the other assets. It is a non-linear relationship, which is why

the sum of the MRCs does not add up to 1. Analyzing the data presented in

Table 6.3, we observe that no distinctive asset across the three portfolios has

a major risk contribution, leading to a balanced distribution of risk across

the algorithms’ strategies. In terms of the highest risk contributor, we no-

tice that Ethereum(ETH) stands out slightly as such. This is not surprising

given its role as a core asset in terms of the weight it has in the portfolio,

as seen in Table 6.1. We also recognize that Ripple (XRP) has the lowest

MRC for all three algorithms. This is consistent with the weight distribu-

tion seen in GOMEA and PSOP weight distribution, but not so much with

the GA weight assignment of 0.1640 (3rd largest weight assignment in that

portfolio). Overall, we recognize that the three algorithms seem to employ

a balanced strategy that does not generate any major disparities in risk con-
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tribution.

Cryptoasset GOMEA GA PSOP
BTC 0.2629 0.2503 0.2635
ETH 0.2672 0.2595 0.2709
LTC 0.2643 0.2560 0.2681
XRP 0.2375 0.2486 0.2265
XMR 0.2455 0.2553 0.2426

Table 6.3: Marginal Risk Contribution per Asset and Algorithm - Simulated
Data

6.1.2.2 Efficient frontier

We then proceed to construct the corresponding efficient frontier for each

algorithm and then compare them. The efficient frontier is a set of 10 se-

lected portfolios that provide the highest expected return for a specific level

of risk (CVaR). We select the highest-performing portfolios that will allow

us to construct an efficient frontier.

First, we examine the efficient frontier of the genetic algorithm and the

Particle Swarm Optimization. From Figure 6.4, we observe that the GA con-

stitutes a rather narrow frontier in terms of its search space with its x-axis

(representative of the CVaR risk measure) ranging from 0.08378 to 0.08418

and its y-axis (representative of the expected return) ranging from 0.50168 to

0.50193. We observe that the expected return achieves the lowest expected

return in its first portfolio with an expected return of 0.50168 for a CVaR

level of 0.08377. The highest point in the efficient frontier for the GA is

reached through the third portfolio, in which it has an expected return of

0.50194 for a CVaR value of 0.08388, and then it seems to plateau for the

remaining 7 portfolios around the expected return value of 0.50186.

The PSO seems to encompass a broader yet still limited area of the so-

lution space, with its expected return ranging from 0.49964 to 0.50055 and

its CVaR ranging from 0.06819 to 0.07065. The Efficient Frontier of the PSO

seems to exhibit a similar shape as that of the GA, in the sense that it has

its most efficient portfolio in the third portfolio, with an expected return of

0.50055 and a CVaR of 0.07065. The remaining seven portfolios show some

variability between them rather than a flatter plateau, as seen for the GA.
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When we compare the three algorithms, we will examine the weight distri-

bution of the portfolios that confirm the efficient frontier.

Figure 6.4: Efficient Frontiers for Genetic Algorithm and Particle Swarm Opti-
mization - Simulated Data

In Figure 6.5, we examine the efficient frontier constructed for the GOMEA

algorithm. The 10 selected portfolios reveal some intriguing characteristics

distinct from those observed with the GA and PSO algorithms. Notably,

the efficient frontier for GOMEA covers a broader range in terms of CVaR

values and extends higher in the expected returns axis, with the portfolios’

expected returns ranging from 0.49611 to 0.50305 and CVaR from 0.05081 to
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0.07612. A closer look into the portfolios of the frontier shows an ascending

pattern in expected returns up to portfolio 6 (expected return of 0.50263 and

CVaR of 0.07612), followed by a slight decline in portfolio 7, and then an in-

crease in both CVaR and expected returns for the last three portfolios. This

pattern suggests fundamental differences in the algorithms’ internal mech-

anisms, with portfolio 10 presenting the best performance in terms of the

risk-reward trade-off with an expected return of 0.50263 (the second largest)

and a CVaR value of 0.07612.

Figure 6.5: GOMEA Efficient Frontier - Simulated Data

To finalize our analysis of the simulated data, we take a look at Fig-

ure 6.6, which captures the efficient frontiers of the three algorithms to-

gether. In this figure, we can appreciate the different proportions of each

frontier and the scalable differences that we find between the GOMEA al-

gorithm and the other narrower frontiers of the PSO and the GA. While the

shapes seem to share some resemblance, the dimensions are widely con-

trasting.
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Figure 6.6: Efficient Frontiers Comparison - Simulated Data

In order to obtain a better understanding of the composition of the port-

folios that construct the efficient frontiers, we examine the weight distribu-

tions of the 30 portfolios found in the 3 efficient frontiers. In Figure 6.8, we

visualize the proportional weight distribution of each asset for each algo-

rithm. We notice how the Genetic Algorithm has a balanced distribution of

the assets across the different portfolios of its frontier, maintaining a diversi-

fied approach. We do see, however, a consistent preference for assets such as

Bitcoin (BTC), Ethereum (ETH), and Monero (XMR) and a prevalent low po-

sition for Litecoin. On the other hand, the PSO shows a different approach

to asset selection. We see portfolios in which there is a high allocation to-

ward single assets, as seen in Portfolio 1 with a prevalent stake in Ethereum

(ETH) or Portfolio 4 with a dominant preference for Monero (XMR). Such an

approach to focus on single assets that might yield higher expected returns

seems to expand the efficient frontier in terms of the CVaR values for each

portfolio but does not necessarily provide a significantly wider range of val-

ues in the expected return axis. Lastly, we observe the weight distribution

of the portfolios for the GOMEA, which takes the approach initially seen in

the PSO and amplifies it, which is the preference for strong capital allocation
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towards a single or pair of assets, and pushes these boundaries further. In

some portfolios, we seem to find almost an entire allocation of the capital in

pairs of assets, such as is the case in portfolio 1, which is dominated by Bit-

coin and Litecoin, respectively, or portfolio 8, which displays this strategy

with assets, such as Litecoin and Ripple. Such strategy is detailed further in

Figure 6.7, where we observe the weight distribution’s granular detail.

Figure 6.7: GOMEA Efficient Frontier Portfolio’s Weight distribution detailed -
Simulated Data
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Figure 6.8: Weight Distribution of the Portfolios in the Efficient Frontier for
GA, PSO, and GOMEA - Simulated Data

6.2 Out of sample test - Historical Data

As part of the backtesting process, we applied our three algorithms to his-

torical data, which was used to generate the simulated data through Copu-

las. This approach allowed us to present the algorithms with out-of-sample

data and observe whether the asset allocation strategies observed in the sim-

ulated data remain consistent.

6.2.1 Financial Metrics

We start analyzing the results of our algorithms on historical data by ob-

serving the mean values obtained from the new 270 runs of each algorithm

across different parameters.

In terms of the mean weight value obtained for the weights of the as-

sets across the three different algorithms, we observe some changes in the

strategies in Table 6.4. GOMEA and GA seem to have shifted their strategy

towards focusing on Bitcoin (BTC), with GA allocating almost 64% of its
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capital to this cryptocurrency and GOMEA making BTC the main asset in

its portfolio. On the other hand, PSO maintains its focus on Ethereum and

Litecoin, while shifting the weight previously assigned to Bitcoin towards

more volatile cryptocurrencies like Ripple and Monero. Similar to what we

found with the simulated data, GOMEA and PSO maintain the same strat-

egy and exhibit a rather diversified approach focusing on asset pairs. The

allocation towards Monero (XMR) is particularly interesting; it maintains

almost the same capital allocation from all the algorithms except GA, which

reduces its stake from 29% to 14%. PSO also departs in its allocation of sta-

blecoins (BTC,ETH and LTC) and provides a more prominent role to the

alt-coins by investing more in Ripple (XRP). Nonetheless, GOMEA main-

tains some similarities in its allocation strategy but with a clear shift from

Ethereum towards Bitcoin.

Algorithm BTC ETH LTC XRP XMR
Gomea 0.24196 0.16337 0.23854 0.19558 0.16056
Genetic Algorithm 0.64387 0.05422 0.07079 0.08733 0.14379
PSO 0.07898 0.26029 0.30398 0.16715 0.18960

Table 6.4: Portfolio mean weight distribution per algorithm - Historical data

We examine then the main financial metrics in Table 6.5. The first thing

that jumps to our attention is that the CVaR metric of the three algorithms

has shifted toward negative values, a behavior expected for historical re-

turns, given that we are now dealing with portfolio losses. We observe that

the Genetic Algorithm maintains its role as the algorithm with the lowest

risk exposure given with a CVaR value of -0.059165. PSO now becomes the

algorithm with the highest risk exposure with a CVaR value of -0.071919 and

GOMEA ranks in the middle with a CVaR value of -0.069259. The mean ex-

pected return of the GA and PSO diminishes significantly from 0.4995 in the

simulated data to 0.000167 and -0.000193 in the historical data. The diversi-

fication and concentration ratios also change. We observe a more diversified

approach from GOMEA and PSO and a more concentrated approach from

GA, which tells us that the strategy has shifted mainly for the GA. Moving

on to the last metric, we find the most relevant changes. The Sharpe Ratio

becomes negative for both the GOMEA and PSO, signaling some interest-
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ing dynamics in the risk-return relationship that the strategies carry. The

Sharpe ratio is considerably reduced for the GA but remains positive. Over-

all, we see a consistent performance for the GOMEA algorithm, but we can

notice some indication of an average approach towards a more diversified

approach.

Metrics GOMEA GA PSOP
CVaR -0.069259 -0.059165 -0.071919
Expected Return 0.060180 0.000167 -0.000193
Diversification Ratio 2.854477 2.208908 3.355676
Concentration Ratio 0.500901 0.461796 0.307673
Sharpe Ratio -0.002731 0.004353 -0.004355

Table 6.5: Comparison of Main Financial Metrics - Historical Data

The final metric that we examine is presented in Table 6.6. This table sug-

gests that each cryptocurrency contributes less risk to the portfolio than was

initially anticipated based on simulated data. These results are not surpris-

ing, considering the increase in diversification seen in Table 6.5, which leads

us to extrapolate that diversification has been enforced to such a degree that

the individual risk per asset has been significantly minimized. The most im-

portant takeaway from this table is the understanding that real-world mar-

ket conditions may reduce the individual risk contributions of assets more

effectively than what is observed in simulated data. Additionally, the low

scores in Table 6.6 provide insight into the robustness of the optimization

algorithms deployed.

Cryptoasset GOMEA GA PSOP
BTC 0.033401 0.035808 0.032165
ETH 0.043643 0.042370 0.044142
LTC 0.046833 0.044144 0.047312
XRP 0.043198 0.041048 0.042135
XMR 0.045955 0.044309 0.046866

Table 6.6: Marginal Risk Contribution per Asset and Algorithm - Historical
Data
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6.2.2 Construction of the efficient frontier

Figure 6.9 displays the efficient frontiers for each of the three algorithms

constructed from historical returns. We observe some similarities with the

frontier obtained from simulated data, as shown in Figure 6.6. Firstly, we

notice that the efficient frontier exhibits a closer scale or range, suggesting

a particular convergence in their dimensions. The GA features a narrow,

efficient frontier, mirroring its representation in the simulated data. Con-

sistent with the simulated data, the efficient frontier of the GA also demon-

strates a higher expected return and a higher CVaR score than that of the

PSO. Nonetheless, the PSO presents a broader dimension than observed in

the simulated data, to the extent of closely approaching the first four port-

folios of the GOMEA algorithm. The efficient frontier of GOMEA remains

the largest and broadest among the three, albeit with fewer portfolios that

outperform those of the other two algorithms

Figure 6.9: Efficient Frontiers Comparison - Historical Data
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6.2.3 Weight distribution of the efficient frontier

The efficient frontier presented in Figure 6.9 is constructed by the portfo-

lios presented in Figure 6.10. From Figure 6.10 we notice that the weight

distribution patterns remain the same for PSO and GOMEA in comparison

to what we found in Figure 6.8. For both algorithms, we see a prevailing

tendency to select a single or a pair of predominant assets for which most

of the capital is allocated. The GA is the only algorithm that seems to have

undergone a completely different weight allocation strategy. Even though

the parameters were kept the same, in terms of mutation rate and elitism,

the GA algorithm allocated most of its capital into Bitcoin as its main asset

to maintain an overarching distributed allocation of capital between the re-

maining 4 assets, shifting away from the clear diversified strategy seen in

Figure 6.8. If we examine the GOMEA weight distribution in detail, as Fig-

ure 6.11 shows, we notice three prevalent cryptocurrencies across the three

portfolios: Bitcoin, Litecoin, and Ethereum. Monero has the lowest alloca-

tion across the portfolios except for portfolio 4 in which it has an allocation

of almost 21%.

Figure 6.10: Weight Distribution of the Portfolios in the Efficient Frontier for
GA, PSO, and GOMEA - Historical Data
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In contrast to what we saw in the simulated data, Bitcoin seems to have

gained a more relevant role in the construction of efficient frontier portfo-

lios across all three algorithms. Ethereum maintains its influential presence

in all portfolios, akin to the simulated scenario. Litecoin sees an increased

prominence in the GOMEA algorithm and sustains its allocation for GA and

PSO. Ripple gains traction within the GOMEA frontier but experiences a re-

duced share in GA, with funds reallocated towards Bitcoin. Lastly, Monero

holds a minor yet consistent position across all algorithm portfolios, with

PSO assigning a notable allocation to this asset in certain portfolios.

Figure 6.11: Efficient Frontiers Comparison - Historical Data
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7. Discussion

In this section, we will discuss what we consider the most relevant findings

from the results section and provide an answer to our research question.

7.1 On the Algorithm performance

7.1.1 On the algorithm convergence

As seen in our result section, we notice that our GOMEA algorithms con-

verge towards a good solution as the generations advance. Of particular

interest for our discussion is to analyze two particular behaviors that we

observe in Figure 6.1. The first is a rapid decrease in the objective function

value within the first 120 generations and the second is a plateauing behav-

ior that becomes more pronounced as the generations go by. We first need

to consider our algorithm’s parameter selection as it is influential to the in-

terpretation. We run our GOMEA algorithm with no IMS scheme, a base

population size of 250 and a full linkage model. This selection implies that

we are assuming all variables are treated as interdependent, as indicated by

the full linkage model, and that there is a more homogenous exploration

process due to the lack of IMS. Additionally, a diverse genetic material is

available to be used as individual solutions in the population, with a base

population of 250.

An interpretation of why we observe a quick optimization in the first

120 generations can be attributed to the significant role played by the ini-

tial setup of the base parameters. Given the available 250 solutions, the

GOMEA algorithm efficiently navigates the solution space, capitalizing on

the interdependencies between variables to generate improved solutions. A

key factor during the initial generations is the vast and varied genetic pool

from which the GOM operator selects the beneficial traits of the variables
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found in the solution pool [23]. This genetic diversity enables the GOMEA

algorithm to broadly explore different regions of the solution space, ben-

efiting from the many potential initial combinations at its disposal. Con-

sequently, the algorithm can rapidly identify and integrate advantageous

variable combinations, facilitating swift initial optimization behavior.

The plateaus observed beyond the first 120 generations suggest that the

algorithm progressively struggles to find new and better solutions, lead-

ing to the exhaustion of the available genetic variation. Given our current

parameter setup, the absence of IMS intervention in generating variation

might hinder the Gene-pool Optimal Mixing (GOM) operator’s ability to

create superior offspring in subsequent generations. Furthermore, as the

generations advance, it is likely that we are dealing with a trend in which

only the fitter individuals are selected and combined due to the homoge-

neous approach to exploration. Additionally, the decision to employ the full

linkage model implies that any change to a variable needs to be considered

in light of its effect on all other variables, given their assumed interdepen-

dencies. This comprehensive approach to treating the entire genome as a

single, interconnected block (due to the interdependencies) may cause the

GOM operator to overlook improvements in isolated variables. Ultimately,

the operator focuses on its collective impact on the genome, limiting the

search space exploration.

7.1.2 On the performance with the hyperparameters tunning

The design decision to forego the Interleaved Multi-start Scheme (IMS) in

our GOMEA implementation significantly impacts the functionality of the

base_population_size parameter. As explained by Bouter and Bosman [25],

in their paper on the GOMEA library, base_population_size becomes the

sole determinant of the algorithm’s initial search space size when IMS is in-

active. This makes it a critical factor in how widely and diversely GOMEA

explores the search space. Moreover, Bouter and Bosman highlight that the

use of IMS mitigates the complex and often laborious process of fine-tuning

the population size factor, which has a massive impact on the performance
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of the algorithm. Dushatskiy et al. detail this by labeling it as problem-

dependent and highly complex, especially for evolutionary algorithms such

as GOMEA, whose linkage model requires enough solutions in its popu-

lation to effectively learn the linkages between data points in an accurate

enough manner that allows the algorithm to function properly [97].

This impact is evident in Figure 6.2, where the sensitivity of the objective

function to various base population sizes is portrayed. The graph demon-

strates that a base_population_size of 250 is the most efficient for mini-

mizing the objective function, with both higher and lower values for the

parameter yielding less favorable results. Ultimately, we are dealing with

a trade-off in which we want to make use of a value that does not take too

many computational resources, as is the case with high values for the base

population, which, in our case, performs worse than the selected value, and

a value that gives us the best performance for our problem structure. The

selected value of 250 proves to be the optimal choice that balances our prob-

lem’s structure and computational efficiency considerations

7.2 Interpretation of the results

7.2.1 Uncovering the insights from the financial metrics

When examining Table 6.5 for the financial metrics of the historical returns,

we get an opportunity to discover how the use of historical data tests our

algorithms. We first notice an increase in exposure to extreme adverse mar-

ket conditions (tail risk), which is revealed by the negative CVaR values.

Within the same table, we examine the expected returns and notice that our

results are very different than those generated from the simulated set. How-

ever, these results are closer to what we expect from volatile assets such as

cryptocurrencies.

In terms of what the Sharpe ratio tells us, we see an interesting dynamic

taking place. While we see an increase in the Diversification Ratio and a re-

duction in the Concentration Ratio for both the GOMEA and the PSO, their

Sharpe Ratio takes a noticeable decrease, which seems counterintuitive to
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the common financial practices that state that higher diversification tends

to mitigate risk [98]. Nonetheless, in the context of cryptocurrencies, diver-

sification may not always lead to reduced risk due to the high volatility and

correlation dynamics within the cryptocurrencies [99]. For the mentioned

type of assets, it is likely that diversification may not mitigate the inherent

risk as effectively as it might in more traditional asset classes.

Upon further examination of Table 6.5 we acknowledge particular dy-

namics across the three optimization algorithms. The GA seems to provide

an efficient risk management strategy with minimal returns, which, accom-

panied by its low-risk exposure to tail risk (low CVaR value), points to-

wards a risk-averse optimization strategy. The PSO displays the opposite.

The negative expected return paired with a negative Sharpe Ratio suggests

that the strategy employed by this algorithm generates a portfolio that is

not only expected to lose value but also does so by taking an unnecessary

risk position on it. Such interpretation is reinforced by the fact that the PSO

has the greatest exposure to tail risk, as its low CVaR value suggests. It is

particularly interesting to look at GOMEA’s case, in which we see the high-

est positive expected return across the three algorithms but with a negative

Sharpe ratio. This dynamic suggests that the portfolio’s risk levels are dis-

proportionally high given its risk-adjusted returns, i.e., the returns do not

compensate for the amount of risk that is being taken. It is worth mention-

ing that we also need to consider the possibility that the Sharpe Ratio is

not a proper measurement of the risk/return tradeoff for cryptocurrencies,

given its theoretical construction based on traditional assets’ dynamics and

behaviors. This is a potential avenue of investigation for further studies.

7.2.2 Interpretation from the efficient frontiers portfolios

We begin by analyzing the shape of our efficient frontiers, with a particular

focus on GOMEA’s performance. The spread of an efficient frontier across

the CVaR values (x-axis) indicates a broad range of portfolio choices, pro-

viding investors with diverse options that can align with their risk profiles.

GOMEA’s ability to offer a wide set of choices in terms of CVaR levels sug-
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gests that the algorithm can successfully accommodate different risk levels

while maintaining efficient portfolios in terms of returns. Conversely, a nar-

rower spread across the x-axis, as seen by the GA and the PSO, implies a

greater concentration at certain risk levels, ultimately limiting the availabil-

ity of options to investors in terms of risk profiles. The extent of the spread

on the y-axis (expected returns) is also worth analyzing. An algorithm that

stretches vertically is capable of achieving varying performance potentials

across different risk profiles, whereas a limited stretch indicates constrained

potential returns. GOMEA’s efficient frontier exhibits such extensiveness in

the y-axis that, paired with the wideness of its efficient frontier, speaks of

the algorithms’ capacity to encompass various risk/return spectra.

An ascending efficient frontier, characterized by initial portfolios that

exhibit low risk and low returns, with subsequent portfolios that progres-

sively increase their values along both axes, highlights the capabilities of

an algorithm to decrease risk while increasing expected returns effectively.

Such a shape suggests a positive risk/return trade-off where less risky port-

folios yield higher expected returns. We observe such shape in GOMEA’s

efficient frontier, which tells us that it is not only a well-performing portfo-

lio risk management tool but also aligns with traditional investment goals.

In the context of simulated data, in which CVaR is treated as a measure of

minimum expected gains, portfolios positioned further to the right on the

efficient frontier show higher minimum gains in their worst-case scenar-

ios. This progression suggests that as portfolios move towards more opti-

mistic scenarios (further right), they tend to generate higher overall returns.

GOMEA’s efficient frontier exhibits such behavior, which pinpoints the al-

gorithm’s ability to leverage optimistic forecasts and translate them into

higher financial returns. This behavior also stresses GOMEA’s adaptabil-

ity to various market conditions, maintaining efficient allocation strategies

through effective risk/return management.

The fact that we observe similar shapes in both the simulated (where

CVaR is interpreted as minimum expected gain) and historical data (where

CVaR represents potential losses), suggests that GOMEA is a robust algo-

rithm for this optimization problem. Moreover, such robustness can be in-
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terpreted as indicative of an algorithm that can adapt its strategies to differ-

ent applications of risk, proving its utility across a spectrum of investment

scenarios and financial optimization problems.

Delving into the composition of the portfolios that constitute the effi-

cient frontiers of the three algorithms, as seen in Figures 6.8 and 6.10, we

note that both GOMEA and PSO maintain their asset allocation strategies,

while the GA introduces a change. When presented with historical data, the

GA opts for a higher allocation of capital towards BTC. The GA’s strategy

could be seen as a logical consequence of its intrinsic preference for stabil-

ity and an optimized risk/return balance, as evidenced by BTC’s superior

historical performance with the highest expected return, lowest volatility,

and most favorable Sharpe Ratio among the assets in the portfolio as seen

in Table 5.1. The GOMEA algorithm retains its allocation strategy when pre-

sented with historical data due to its inherent linkage learning mechanism,

which preserves and exploits beneficial genetic structures. This leads to a

gradual improvement of solutions rather than abrupt strategic shifts, ensur-

ing consistency in asset allocation regardless of the underlying dataset. The

stability of the PSO algorithm is influenced by mechanisms that ensure the

boundedness of errors, suggestive of a social learning dynamic where the

collective behavior of the swarm tempers any individual particle’s tendency

to change the overall solution direction of the swarm drastically [100]. In a

sense, the PSO algorithm’s strategy is to evolve in a measured and stable

manner, regardless of the data presented.

7.3 Addressing the research question

Up to this point, we have constructed the frameworks and conducted the

corresponding analysis on our data in order to answer our research ques-

tion: Is GOMEA a better algorithm than GA and PSO for portfolio risk

management through cryptocurrency portfolio optimization? We answer

this question from theoretical, empirical, and interpretational perspectives.

We believe that GOMEA has a theoretical advantage over the other two

EAs. This advantage arises from its linkage learning ability, which allows
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it to identify and exploit the underlying intricate relationships between the

crypto assets, which ultimately allows it to optimize the lower tail of the

portfolio loss distribution represented through the CVaR metric. The dy-

namic nature of linkage learning enables GOMEA to granularly decipher

and exploit characteristics existent in cryptocurrencies, such as inverse lever-

age [39] or positive asymmetric behaviours [37]. Moreover, the GOM opera-

tor has an advantage over other EAs mechanisms that employ crossover and

mutation. Algorithms like GA tend to disrupt promising genetic structures

as part of their random process of splitting and recombining chromosomes.

The GOM operator prioritizes enhancing beneficial genetic material during

the mixing process, preventing any disruption of effective found structures.

So, from a theoretical perspective, we expect the GOMEA algorithm to per-

form better as a portfolio risk management algorithm.

The evidence found in our result section shows that the GA generates

better CVaR and Sharpe Ratio values for both the historical and simulated

data. Nonetheless, GOMEA does produce strong values for both metrics

across the different datasets, even outperforming the PSO in both datasets.

Regarding the efficient frontiers, GOMEA consistently exhibits wider and

taller efficient frontiers than those generated by GA and PSO. This indi-

cates that it can accommodate different risk profiles and, in most cases, offer

higher expected returns for the same levels of risk.

This leads us to our interpretation. Although GOMEA did not perform

as well as GA in minimizing CVaR in both datasets, it outperformed both

GA and PSO regarding overall portfolio risk management. This is evi-

denced by the fact that GOMEA not only has robust portfolio optimization

performance but also exhibits certain traits expected from an effective port-

folio risk management tool. These particular traits are GOMEA’s capacity

to achieve higher returns across different risk levels, incorporate a variety

of risk profiles, effectively decrease risk while ensuring higher expected re-

turns, maintain consistency in results, and adapt strategies across different

interpretations of risk. Particularly, such adaptability suggests a strong ca-

pacity for adaptability to different risk applications.
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Therefore, we conclude that GOMEA offers a greater alignment with the

core principles of what can be considered a more effective portfolio risk

management tool. It exhibits potent capabilities in risk mitigation through

the targeted optimization of the CVaR metric and surpasses the other algo-

rithms in balancing the risk/return trade-off. For these reasons, we believe

that GOMEA is a superior algorithm in portfolio risk management through

cryptocurrency portfolio optimization of the CVaR metric.

7.4 Limitations of our study

Our study has certain limitations that require further exploration. The first

limitation concerns asset selection. While the justification for the cryptocur-

rencies chosen for our portfolio is provided in Chapter 2, it is crucial to test

whether the results concerning GOMEA’s performance, compared to the

other two algorithms, remain consistent across portfolios formed from dif-

ferent assets across different time windows than those selected within our

study. This is a potential area for future research as it could provide addi-

tional insights into the performance of GOMEA.

Another limitation relates to the impact of market anomalies, often re-

ferred to as "black swans" in financial terminology, on our algorithm’s per-

formance. Although we simulate extreme market conditions using copulas

to generate synthetic data, it is important to acknowledge that while cop-

ulas are useful, they do not provide a comprehensive solution to address

all possible anomalies. In this sense, extensive real-world data is always

the best source. Moreover, our study incorporates external economic fac-

tors such as regulatory hearings, the COVID-19 pandemic, Brexit, and the

onset of the Russo-Ukrainian War into our historical dataset. However, we

suggest that future research should also examine the influence of additional

external factors, such as new regulatory measures on cryptocurrencies.

One additional limitation of our study that could affect the generalizabil-

ity of our findings is the selection and tuning of parameters. Although em-

ploying copulas for model evaluation and historical data for out-of-sample

backtesting provides valuable insights into the GOMEA algorithm’s perfor-
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mance under unexpected market conditions, it is crucial to acknowledge

potential unexplored parameter configurations that might enhance the out-

comes. Specifically, the utilization of the IMS function and a different link-

age model could enable GOMEA to discover more effective exploration

and exploitation mechanisms, thereby improving its performance. More-

over, while CVaR is a commonly used metric for evaluating portfolio perfor-

mance, exploring additional portfolio optimization problems, as discussed

in section 3.2, could further clarify GOMEA’s broader applicability.

Although our analysis is based on static data, providing a theoretical

foundation and initial insights into GOMEA’s performance, we recognize

the importance of incorporating operational dynamics into our analysis.

These dynamics include transaction costs, short selling, liquidity constraints,

portfolio rebalancing frequency, and other relevant elements of actual trad-

ing environments. These elements are crucial for testing GOMEA’s poten-

tial as an algorithmic trading alternative. Exploring these factors in future

research would enhance its relevance for real-world portfolio risk manage-

ment, further narrowing the gap between theoretical research and practical

application of GOMEA in the dynamic cryptocurrency markets.
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8. Conclusion

We initiated this study to determine whether the GOMEA algorithm outper-

forms other evolutionary algorithms, specifically the Genetic Algorithm and

Particle Swarm Optimization, in portfolio risk management through cryp-

tocurrency portfolio optimization. The theoretical framework constructed

in our study suggests that GOMEA is better suited for this task through its

variation operator and linkage learning capability, given its capacity to ex-

ploit certain inherent characteristics of cryptocurrencies, such as their high

volatility and complex interdependence structures. Our empirical findings

support our assumption, showing that the GOMEA algorithm not only per-

forms strongly in the optimization process and during the construction of

the efficient frontier but also exhibits additional beneficial traits that align

closely with what is expected from effective portfolio risk management tools.

However, it is important to acknowledge that our study has certain limi-

tations that should be addressed in future studies in order to enhance the

robustness of our findings and promote the integration of GOMEA into

mainstream financial practices and literature. Ultimately, our study estab-

lishes a foundation for the broader application of the GOMEA algorithm in

financial practices, particularly in portfolio optimization and portfolio risk

management as it demonstrates how GOMEA’s capabilities can effectively

address key challenges faced by portfolio managers.

This study contributes significantly to the evolving literature on cryp-

tocurrency portfolio optimization using evolutionary algorithms. It under-

scores the need for enhanced algorithmic tools capable of navigating the

complex dynamics of cryptocurrency markets.
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