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Abstract

The dynamics of infections and their prevalence in populations are key elements for effective
public health policies. In this study we investigated the change in prevalence and the force
of infection over time within the Dutch population for Toxoplasma gondii, a widespread
zoonotic foodborne parasite. We offer an innovative approach to modeling infection dy-
namics in disease surveillance, by applying Bayesian statistics and compartmental disease
modeling. Using serological data from three independent studies conducted at 10-year in-
tervals, a binary mixture model was implemented, characterizing the distribution of the
measurements to estimate the prevalence without reliance on predetermined cut-off values
for the classification of infected and non-infected subpopulations. Potential external co-
variates such as education level, pet ownership (specifically cats), and the consumption of
food associated with higher risk of infection were explored to ascertain any changes in risk
factors over time. A discrete-time and age-dependent SI(S) compartmental disease model
was implemented to estimate the force of infection across years and ages.

This Master thesis project is conducted as part of an internship at the National Institute
for Public Health and Environment (RIVM).

Keywords: ELISA; serology; epidemiology; mixture models; Bayesian statistics; HDI;
ROPE; compartmental model; SIS.
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1 Introduction

Toxoplasma gondii is a single-celled zoonotic foodborne parasite that can infect a wide
variety of warm-blooded animals as intermediate hosts, including humans. When infecting
a host, the parasite is believed to persist in the body indefinitely as latent tissue cysts [1–3],
although the truth of this assumption has recently been questioned [4–6]. These cysts are
frequently found in the brain, heart, and skeletal muscle. Infection is often asymptomatic,
particularly in individuals with a healthy immune system. If symptoms do emerge, they are
usually non-specific and may present themselves as flu-like, manifesting as swollen lymph
nodes, muscle pain, and fatigue [7]. However, for certain groups infection poses a greater risk.
If primary infection occurs during pregnancy, it may result in miscarriage or stillbirth or lead
to congenital toxoplasmosis, which can cause major birth defects in the infant, such as ocular
disease or neurological disorders [8–10]. For individuals with compromised immunity, such
as those with HIV/AIDS or organ transplant recipients, a reawakened dormant infection
can lead to a severe condition called toxoplasmic encephalitis, which can be fatal [8, 11].

Primary sources of infection include the consumption of tissue cysts in undercooked or raw
meat from infected animals and the ingestion of oocysts through contaminated soil, food or
water [12]. Vertical transmission, where the infection is passed from an infected mother to
her fetus, is another significant source of infection, which was estimated at 1.3/1000 live born
children in the Netherlands in 2017 [13]. Felids are the only known definite host, shedding
oocysts in the environment that can survive in the environment for more than one year [14].
Some studies have found that cat ownership slightly increases the risk of infection [15, 16],
while others have shown that direct contact with domestic cats is not likely to be a risk factor
for infection, but rather contact with the environment contaminated by their faeces [17,18].
It appears that the consumption of meat of infected animals is one of the most important
sources of infection in Europe compared with other possible transmission routes. [16, 19]

The prevalence of T. gondii infection varies significantly by region, and is considered the
second most important foodborne parasite for Europe and its regions, and ranked highest
in Western Europe [20]. Studying this pathogen is crucial because of its potential to cause
severe disease and has high presence in the environment.

The detection of infection relies primarily on serological assays [21]; upon infection with a
pathogen, elevated antibodies against the parasite are detected in the blood. The level of this
response varies among individuals. In 1995/1996, 2006/2007, and 2016/2017, the serological
response for T. gondii was measured with specific enzyme-linked immunosorbent assays
(ELISAs) in a random sample of the Dutch population in a nationwide survey conducted by
the National Institute for Public Health and Environment. This data was analyzed in three
earlier studies [13, 15, 22]. To estimate the prevalence of the entire population, individuals
were classified as either infected or non-infected, based on a cut-off value derived from control
measurements. Age-specific prevalence was estimated using logistic regression. With this
approach, it was found that seroprevalence decreased between 1995/1996 from 40.5% to 26%
in 2006/2007, and increased to 29.9% in 2016/2017.

In this thesis, the focus lies on understanding the change of the seroprevalence of T. gondii
through 1995-2017. A Bayesian statistical framework is used to derive a distribution on the
immune response measurements from the surveys among the Dutch population, so that the
prevalence can be estimated without the use of a cut-off value. This improves the accuracy
of the estimation, since serological response values of the sub-populations may overlap due
to natural variation between individuals. We follow a similar approach used by Opsteegh et
al. (2010) in [23] and Opsteegh et al. (2011) in [6], where the prevalence of T. gondii was
estimated through a binary mixture of normal distributions on the serological response data
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produced by ELISA for sheep and wild boar respectively. Research suggests that a mixture
model outperforms an approach where a cut-off is used [5, 24,25].

Differences in the contribution of risk factors between the three studies used in the analysis
might explain differences in prevalence, by indicating behavior- or environmental changes
through the years. These covariates are examined by supplying characteristics of the pop-
ulation as covariates in the Bayesian model. The Highest Density Interval (HDI) combined
with the Region Of Practical Equivalence (ROPE) is used to provide insights into the rel-
evance of these factors to the probability of infection. This differs from earlier, frequentist
analyses [13,15,22] on the data, where their importance was determined using odds ratios.

The age- and time dependent dynamics of the infections was defined through a compartmen-
tal epidemiological model, characterizing the dynamics of the infections through a system
of differential equations, similar to Opsteegh et al. (2011) in [6] and Dámek et al. (2023)
in [5]. Our approach differs in the assumption that the population is in a steady state; in
the context of this thesis, this assumption is not applicable since the age specific prevalence
changed through the years. The age-dependent force of infection was studied only for the
third survey by Van den Berg et. al (2023) in [13]. We fitted the age- and time depen-
dent force of infection defined by the compartmental model directly through the estimated
age-specific prevalence distribution from the binary mixture model, using the theory of age-
structured population dynamics, such as constructed by Ianelli (1995) in [26] and Hetcote
(2000) in [27]. This differs from the approach used in [6], where the mixture model was used
to calculate the optimal cut-off value from the distributions which was then used to score
each individual animal as positive or negative, and where transmission rates were estimated
using least-squares fit. Different than in [5], where only constant force of infection was con-
sidered, a piecewise constant force of infection was assumed, which gives more flexibility and
insight in the risk over time and over age.

The compartmental model also gives insight in the likeliness of the widely accepted assump-
tion of lifelong persistence of the infection. This is done by comparing the model where only
transitions from susceptible to infected are considered, to a model where infected individuals
can become seronegative again.

The main objective of this thesis is to both describe and shed light on the infection spread
patterns and risks associated with infection, as well as to enhance the accuracy and reliability
of the prevalence estimates, thus contribute valuable insights to the field of mathematical
epidemiology.
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2 Material/Methodology

2.1 Study Population
In the Netherlands, the Peiling Immunisatie Effect Nederland Ter Evaluatie van het Ri-
jksvaccinatieprogramma (PIENTER) project is established to assess the immunity of the
population to infectious diseases. Through this project, the National Institute for Public
Health and Environment (RIVM) conducts nationwide surveys under the direction of the
Ministry of Health, Welfare and Sport every 10 years to estimate immunity levels and the
spread of diseases such as measles, rubella, mumps, and polio. The focus is on monitoring
the level of protection of the population against vaccine-preventable diseases and evaluating
the effectiveness of vaccination programs. This is done with serological testing, identifying
and measuring the levels of specific antibodies in blood samples collected from the partic-
ipants in a cross-sectional study. In addition, a detailed questionnaire is administered on
personal and demographic characteristics, history of illness, education, and activities that
may increase the risk of exposure to infectious diseases, such as diet, profession and contact
with animals. These studies play an important role in monitoring vaccination programs,
preventing outbreaks and controlling disease spread in the Netherlands. At this time, three
independent surveys have been completed within the project; the first study, PIENTER 1,
was conducted in 1995 and 1996, PIENTER 2 in 2006 and 2007, and PIENTER 3 in 2016
and 2017. The participants who responded were between 0 and 79 years old in the first
and second study, and between 0 and 89 years old for the third study, and were distributed
across the Netherlands.

For the first study, PIENTER 1, a total of 7521 sera were tested for IgG antibodies against
Toxoplasma gondii. The national seroprevalence was previously estimated by Kortbeek et
al. [15] as 40.5% (95 % CI 37.5 - 43.4). The PIENTER 2 study included 5541 samples and
a decrease was found of the overall seroprevalence to 26.0% (95% CI 24.0 - 28.0) by Hofhuis
et al. [22]. In both the first and the second study, the maximum age was limited to 79. The
third study contained 6414 sera, and analysis by Van den Berg et. al [13] estimated the
seroprevalence at 30.9% (95% CI 29.4 - 32.4).

2.2 Serological Measurements
Enzyme-linked immunosorbent assay (ELISA) is a technique used to detect and quantify
specific proteins or antibodies in a sample. It involves the use of an enzyme-linked antibody
or antigen and a substrate that produces a measurable signal in response to the catalytic
activity of the enzyme. The optical density (OD) of the reaction product is measured
using a spectrophotometer. This is measured at a specific wavelength that corresponds to
the absorption maximum of the reaction product. The intensity of the color produced is
proportional to the amount of enzyme bound to the target protein or antibody, which in
turn is proportional to the concentration in the sample.

Each plate contains multiple control serums that are kept identical across plates; negative
and positive controls (NC and PC respectively), and a sample that determines the cut-off
(QC) value for that plate. These controls are used to interpret the results and correct for
background noise. The blank wells contain a substrate with no target protein/antibody
present and are used to measure the background signal produced by non-specific binding
and correct for other sources of noise. The positive controls are wells containing a serum
that contains a known amount of the target protein/antibody and are used to verify that
the assay is working correctly. For negative controls, three different serums that are known
to contain no antibodies, were used. The configuration of the plates used in this study is
shown in Figure 1. Each plate configuration was tested in duplicate.
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Figure 1: ELIZA plate configuration, where X denotes blanks, QC denotes
the cut-off serum, the NC’s denote the negative cut-off serums and PC denotes
the positive control serum; each are performed in duplo.

(a) PIENTER 1 (1995/1996) (b) PIENTER 2 (2006/2007) (c) PIENTER 3 (2016/2017)
Figure 2: Histograms of log-transformed optical density (OD) values for
each of the PIENTER studies, corrected with the blank measurements and
weighed by cut-off measurements. The negative and positive classifications
are indicated by red and blue respectively.

In earlier analyses of the data [13, 15, 22] For each sample, the average value of the blank
measurements on the corresponding plate was subtracted to correct for background noise.
The seroprevalence was then estimated by categorizing individuals on the basis of the mean
of the cut-off (QC) measurements of the corresponding plates; if a ratio of ≥ 1 was observed,
the sample was considered positive. The adjusted measurements and their characterization
are shown in Figure 2.

2.3 Bayesian Inference
Bayesian inference systematically reallocates credibility across potential outcomes, based
on the principles of conditional probability [28]. The model is specified by defining the
joined distribution P (Y, θ) over observed variables Y and unobserved variables θ. Initial
knowledge, supplied as prior distributions P (θ), of population parameters are combined with
observed data Y to produce informed predictions about the true value of the parameters in
question. These parameters are fixed unknown features of the model, where the uncertainty
about the true value is embodied by the variation of the prior distributions. All unknown
parameters can incorporate uncertainty, defined through a probability distribution. Priors
should be established independently, before observing the data, based on systematic reviews,
meta-analysis and previous studies on similar data. Updated estimates, represented by the
posterior distribution, are then produced by weighing the priors with the likelihood function
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of the observed data, through Bayes’ rule

Posterior

P (θ|Y ) =

Likelihood

P (Y |θ)
Prior

P (θ)

P (Y )
, (1)

where Y represents the data and θ the unknown model parameters.

Bayesian ”significance” testing indices may be grouped into three main types: Bayes factors,
posterior indices, and Region of Practical Equivalence (ROPE)-based indices [29]. Bayes
factors compare the relative evidence of one model over another (“given the observed data,
is the null hypothesis of an absence of an effect more, or less likely?”). Posterior indices an-
alyze the posterior distribution’s objective characteristics, such as the proportion of strictly
positive values. ROPE-based indices redefine the null hypothesis to include a range of values
that are considered too small to be of any practical relevance.

2.3.1 HDI + ROPE Decision rule
The Region of Practical Equivalence (ROPE) and Highest Density Interval (HDI) are tech-
niques used in the context of hierarchical Bayesian models to assess the impact of hyper-
parameters on the model’s predictions. The ROPE defines a range of values for a hyper-
parameter that are practically equivalent in their effect on the model. This is done by
examining how changes in the hyperparameter influence the posterior distribution of the
model parameters; if this distribution mostly falls within the ROPE, this implies the hy-
perparameter has minimal impact on the model’s predictions. The HDI represents a range
containing a specified proportion of the posterior probability density such that all points
within the interval have a higher probability density than points outside the interval. It
summarizes the range of most credible values of the measurements [30], which can be used
to estimate the uncertainty of model parameter estimates, indicated by the width of the
parameter distributions under different hyperparameter values.

The decision rule involving the HDI and the ROPE is straightforward. When assessing a
parameter’s null value, if the entire HDI lies within the ROPE, the null value is accepted
as it indicates that the most credible values of the parameter are practically equivalent to
the null. Conversely, if the entire HDI lies outside the ROPE, the null value is rejected,
implying that none of the credible values are practically equivalent to the null. In cases
where the HDI partially overlaps with the ROPE, a definitive decision cannot be made, as
some credible values are equivalent to the null while others are not.

The choice of the range of the HDI as the Credible Interval and the limits for the ROPE
highly influences the decision. The general choice for confidence intervals in the frequentist
context of significance testing is the 95% interval. However, the percentage of 89% for the
computation of the HDI’s as suggested by McElrath (2016) [31] (”Because it is a prime”) is
more stable and is considered to be a better choice [32]. A range for the ROPE set at −0.1
to 0.1 is used by Krusche (2018) [30], which is, according to Cohen (1988) [33], a negligible
effect size. For correlations, we follow conventions by using a value of 0.05, half the value of
a negligible effect size [32].

2.3.2 Probability of direction
The probability of direction (pd) is an index of effect existence with a range between 50-
100%, representing the probability that an effect is strictly positive or negative. It is defined
as the proportion of the posterior distribution that is of the same sign as the median, given
the data and the model [34]. High pd-values suggest the existence of an effect, but low values
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do not give information on the certainty that no effect is present. The value does not require
any additional information from the data or the model, so that it is an objective property
of the posterior distribution. It is strongly related to the frequentist p-value, and is likewise
not able to quantify evidence in favor of the null hypothesis [29].

2.4 Mixture Model
The population can be characterized by a mixture of two distinct components; positive and
negative, also called susceptible and infected. By describing the data with a binary mixture
of distributions, the prevalence of Toxoplasma gondii in the population can be directly
estimated without a sharp cut-off on the values of the serological measurements, allowing for
more flexibility in defining the components. This estimation takes the uncertainty associated
with the data into account, providing more reliable results compared to a fixed cut-off value,
by using the natural variation between individuals and noise introduced by the measuring
technique. Moreover, the measurements of these distinct sub-populations may not be clearly
divided but instead have overlapping distributions. Furthermore, binary mixture models
enable the identification of covariates that might influence the presence of antibodies. By
including additional variables such as age or gender in the model, we can explore how these
factors affect the likelihood of belonging to the positive or negative group.

Denoting the distributions for the negative and the positive sub-populations by f−(x;µ−, σ−)
and f+(x;µ+, σ+) respectively, the distribution describing the data can be obtained by
conditioning on the possible outcomes. The expression for the binary mixture model then
becomes the weighted sum of the two sub-populations, as

f(x) = f−(x;µ−, σ−)p(neg) + f+(x;µ+, σ+)p(pos).

The coefficient of the positive component, p(pos), is exactly the prevalence. This probability
density function is fitted to the data by estimating µ±, σ± and p(pos).

The frequency distribution of the titres is usually log-normally distributed [35, 36]. From
Figure 2, it can be clearly seen that for each of the studies, two clear components are present,
each with a different mean and standard deviation, where the higher mean is associated with
the seropositive population. Therefore, a binormal distribution is suitable for describing the
log-normally transformed titre values.

The mixture model is not designed for the classification of individual samples. However,
the probability of being seropositive can be calculated through the estimates, resulting in
a more accurate classification. The probability that an individual with logOD value x is
infected is given by [25]

P(pos|x) = P(x|pos)P(pos)
P(x)

=
f(x;µ+, σ+)p(pos)

f(x)

We can now, for example, define individual measurements x with P(pos|x) > 0.5 as positive,
from which we can derive a cut-off value c on the values from the data.

2.4.1 Addition of Covariates
Through the questionnaire, insight can be gained in the factors that may influence the risk of
infection. These factors may include demographic classifications such as religion or education
level, or behavioral and life-style characteristics such as pet ownership, time spent gardening
or the consumption of raw meat. The influence of factor λ on the infection risk is examined
through the conditional probability of the seroprevalence p(pos|λ). The distributions of the
negative and positive populations are independent of λ, since these characteristics do not
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Table 1: Covariates

Name Question
education What is the highest level of education or training that you have

completed?b

gardening Have you worked with your bare hands in the soil in the garden/on
land in the past 12 months?

agriculture Have you kept farm animals in the past 5 years?
petcat Have you kept a cat as a pet for the past 5 years?
contcat Did you have contact with cats in the past 12 months?
rawmeata Have you consumed raw meat products in the past 12 months?
rawbeefa Have you consumed raw beef in the past 12 months?
rawporkmeata Have you consumed raw pork meat in the past 12 months?
unwashedvegeta Do you consume unwashed raw vegetables?

a Unavailable for PIENTER 1;
b The educational levels are defined as follows: ’low’ (primary school, lower vocational, or lower
general secondary education), ’medium’ (intermediate vocational, intermediate general secondary,
and higher general secondary education), and ’high’ (higher vocational secondary education or
university-level education). For children under the age of 17, the level of their mother is taken.

typically influence the antibody response of individuals. Furthermore, age does not have a
notable influence on the antibody response, and thus on the values of µ and σ. Therefore
λ may also represent age (or age groups) to obtain the age-specific seroprevalence of the
population. The conditional probability is estimated through the distribution of the data
through

f(x|λ) = f−(x;µ−, σ−)p(neg|λ) + f+(x;µ+, σ+)p(pos|λ). (2)

To identify key factors associated with increased risk of infection, we made a selection of
variables that are often assumed of influence in the risk of infection from the questionnaires.
The questionnaires used across the different PIENTER studies were not uniform. The
selected variables are explained in Table 1.

In this thesis, to analyse the effect of the covariates on the prevalence, we used a three-
step process. First, statistical significance is assessed through the Highest Density Interval
(HDI), determining if an effect is present. Then practical significance is verified through
the Region of Practical Equivalence (ROPE), assessing the relevance of these effects in a
practical context, as explained in Section 2.3.1. Lastly, the probability of direction (pd)
quantifies the certainty that the effect is in the observed direction as explained in Section
2.3.2.

2.5 Compartmental Epidemiological Model
Compartmental epidemiological models are used to understand the spread and dynamics of
infectious diseases within populations, allowing us to track the progression of the disease
and assess its impact on various subgroups. The concept of compartmental models can
be traced back to the early 20th century when researchers like Kermack and McKendrick
[37] developed the first mathematical models to describe the spread of diseases such as
measles and smallpox. The fundamental idea behind compartmental models is to divide the
population into distinct groups or compartments based on their disease status. The most
commonly used compartments are susceptible (S), infected (I), and recovered (R). These
compartments are connected by a set of equations that describe the flow of individuals
between them. The parameters characterize the rates of at which individuals move between
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the compartments, such as the transmission rate, or force of infection, which governs the rate
at which susceptible individuals become infected, and the recovery rate, which determines
how quickly infected individuals recover. Other factors, such as birth and death rates, can
also be included in the model to account for population changes. The force of infection could
depend only on age, on time, or on both age and time. In the first case, where the effect
will be constant through time, a difference in prevalence between the different studies will
present as a shift on the age-axis. A time-dependence will cause a shift in the y-axis (the
prevalence axis).

In the case of Toxoplasma gondii, it is assumed that the parasite establishes a lifelong pres-
ence within its hosts after infection [2, 3, 5]. Individuals cannot recover in the conventional
sense, and therefore the compartment consisting of the recovered individuals is not included
in the models. The S compartment in this case indicates the compartment of seronegative
individuals, and the I compartment encompasses the seropositive individuals. However, re-
cent research suggests that the assumption that infection is lifelong might not be entirely
correct [4,6], suggesting that a flow of individuals from the infected to the susceptible com-
partment could be nonzero. To investigate this assumption, both the SI and the SIS model
will be considered. To simplify the analysis, we disregard several factors: the impact of the
disease on mortality, the influence of infection on fertility and we assume that newborns are
not born infected. Furthermore, we assume that the rate at which individuals recover and
become susceptible again, denoted by β, is independent of age and time.

S I

S I

α

α

β

Figure 3: Infection models: SI and SIS.

2.5.1 SIS with age dependence
The age-structured SIS model for a closed population (there is no migration or movement
of individuals out of the population), where individuals are assumed to become seronegative
again, is described by the system of equations

dS(a)
da = −(µ(a) + α(a))S(a) + βI(a), S(0) = N(0),

dI(t)
da = α(a)S(a)− (µ(a) + β)I(a), I(0) = 0,

(3)

where α is the force of infection, β is the recovery rate, µ the age dependent death rate and
the total population at age a is N(a) = S(a) + I(a). By adding the differential equations
we find that

dN(a)

da = −µ(a)N(a).

Therefore the solution to the system (3) is found by solving

dI(a)
da = α(a)N(a)− (µ(a) + α(a) + β)I(a), I(0) = 0.
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The infected proportion of the population i(a) is given by I(a) = N(a)i(a), so that by the
basic derivative rules,

di(a)
da =

I ′(a)N(a)− µ(a)N(a)I(a)

N2(a)
=

I ′(a)− µ(a)I(a)

N(a)
,

and the death rate drops out. This does not come as a surprise, since there are no interactions
between the individuals and therefore the death rate does not influence the rate of change
within the infected population. As a result, the system is reduced to the single equation

di(a)
da = α(a)− (α(a) + β)i(a), i(0) = 0. (4)

We will denote ϕ(a) = α(a) + β, and Γ(a) =
∫ a

0
ϕ(s) ds. Note that

d
da

[
eΓ(a)

]
= ϕ(a)eΓ(a). (5)

By multiplying both sides of the equation (4) by eΓ(a), and then using the chain rule and
(5), it is obtained that

α(a)eΓ(a) =
di(a)

da eΓ(a) + i(a)
[
ϕ(a)eΓ(a)

]
=

d
da

[
i(a)eΓ(a)

]
.

(6)

Since α(a) = ϕ(a)− β, the left hand side of (6) can be rewritten with (5) to obtain

d
da

[
i(a)eΓ(a)

]
=

d

da

[
eΓ(a)

]
− βeΓ(a).

Integrating both sides with respect to a gives

i(a)eΓ(a) = eΓ(a) − β

∫ a

0

eΓ(s) ds+ C.

From the initial condition i(0) = 0 follows that C = −1, so that the solution is given by

i(a) = 1− e−Γ(a)

(
1 + β

∫ a

0

eΓ(s) ds
)
. (7)

2.5.2 Piecewise constant infection rate dependent on age
We partition the age range into intervals Ai = [ai−1, ai), i ∈ {1, . . . ,m}, where a0 = 0 and
am = amax. Assuming that α(a) is constant on these intervals, α(a) = αk for a ∈ Ak, then
α(a) is of the form

α(a) =
∑
i

αi1{a ∈ Ai},

where 1{F} denotes the indicator function of the event F . By integration, we find

Γ(a) = βa+

∫ a

0

∑
i

αi1{s ∈ Ai} ds = βa+
∑
i

αi|Ai ∩ [0, a]|
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The solution to (7) is then given by

i(a) = 1− e−(βa+
∑

i αi|Ai∩[0,a]|)
(
1 + β

∫ a

0

eβs+
∑

i αi|Ai∩[0,s]| ds
)

= 1− e−(βa+
∑

i αi|Ai∩[0,a]|)

1 + β
∑
j

|Aj ∩ [0, a]|e
∑

i≤j(αi+β)|Ai∩[0,a]|

 .

If we take age intervals of unit length, then then the proportion of the population that is
infected is given by

i(a) = 1− exp
{
−βa−

a∑
k=1

αk

}(
1 + β

a∑
k=1

exp
{
βk +

k∑
i=1

αj

})
. (8)

2.5.3 SIS with time- and age dependence
We examine again the closed population from Section 2.5.1, and expand the model by adding
time dependence to the dynamics.

The age-structured, time dependent SIS model is then formulated by the following system
of equations:(

∂

∂a
+

∂

∂t

)
S(t, a) = −(µ(a) + α(t, a))S(t, a) + βI(t, a), S(t, 0) = B(t), S(0, a) = S0(a),(

∂

∂a
+

∂

∂t

)
I(t, a) = α(t, a)S(t, a)− (µ(a) + β)I(t, a), I(t, 0) = 0, I(0, a) = I0(a),

(9)
where α is again the force of infection, β denotes the recovery rate which is independent of
age and time, µ(a) denotes the age dependent death rate and the entire population at time
t and age a is N(t, a) = S(t, a) + I(t, a) where B(t) = N(t, 0) denotes the birth rate at time
t.

By adding the PDE’s, we know that the population N(t, a) satisfies the conservation law
for populations, also known as the von Foerster Equation [38],

∂N

∂t
+

∂N

∂a
= −µN, N(0, a) = N0(a) = S0(a) + I0(a).

Similar to the approach from section 2.5.1, we define new variables S(t, a) = N(t, a)s(t, a),
I(t, a) = N(t, a)i(t, a), so that s, i denote the susceptible and infected proportions of the
population respectively. Then(

∂

∂a
+

∂

∂t

)
i(t, a) =

It + Ia − µI

N
,

where St, Sa denote the partial derivatives of S to t and a respectively, and again the
death rate conveniently drops out. Since s(t, a) + i(t, a) = 1, we now only have to solve the
transport equation (

∂

∂a
+

∂

∂t

)
i(t, a) = α(t, a)− (β + α(t, a))i(t, a) (10)

By integrating along the characteristic lines, the partial differential equation is reduced to an
ordinary one. This method is called the method of characteristics. Since for every increase
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a

t t < a t = a

t > a
c1

c2

Figure 4: Characteristic lines t(a) = a+ c.

in time we have an equal increase in age, this relation defines the characteristics as dt
da = 1,

which are straight lines t = a+ c [39], illustrated in Figure 4. We will allow t to be positive
as well as negative, so that the area that is considered includes the times of birth of each
individual participating in the study. On these lines we have that

d
dai(t(a), a) =

∂i

∂t

dt

da
+

∂i

∂a
= it + ia,

= α(t(a), a)− (β + α(t(a), a))i(t(a), a). (11)

Following the approach in section 2.5.1, we will denote ϕ(t(a), a) = α(t(a), a) + β and
Γ(t(a), a) =

∫ a

0
ϕ(t(s), s) ds and use the corresponding version of (5) given by

d
da

[
eΓ(t(a),a)

]
= ϕ(t(a), a)eΓ(t(a),a) = (α(t(a), a) + β)eΓ(t(a),a). (12)

By multiplying both sides of the equation (11) by eΓ(t(a),a), and then using the chain rule
and the first equality of equation (12), it is obtained that

α(t(a), a)eΓ(t(a),a) =
di(t(a), a)

da eΓ(t(a),a) + i(t, a)
[
ϕ(t(a), a)eΓ(t(a),a)

]
=

d
da

[
i(t(a), a)eΓ(t(a),a)

]
.

(13)

Rewriting the left hand side of (13) with the second equality from Equation (12) results in

d
da

[
i(t(a), a)eΓ(t(a),a)

]
=

d

da

[
eΓ(t(a),a)

]
− βeΓ(t(a),a).

Integrating both sides with respect to a gives

i(t(a), a)eΓ(t(a),a) = eΓ(t(a),a) − β

∫ a

0

eΓ(t(s),s) ds+ C.

From the initial condition i(t(0), 0) = 0 follows that C = −1, so that the solution is given
by

i(t(a), a) = 1− e−Γ(t(a),a)

(
1 + β

∫ a

0

eΓ(t(s),s) ds
)
. (14)
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Figure 5: An example of the distribution of the prevalence for constant
infection and recovery rates α = 0.06, β = 0.005

2.5.4 Constant infection and recovering rates
In the most simple case, we assume that the force of infection α(a) = α is constant and
does not depend on age or time. This might be appropriate for diseases where the likelihood
of infection is relatively uniform across the population. From (14), evaluating the integrals
results in

i(t, a) =
α

α+ β

(
1− e−(α+β)a

)
.

An example of the distribution of the proportion of the population that is infected against
age is shown in Figure 5.

2.5.5 Piecewise constant infection rate dependent on age and time
To capture the distinct effects of age and time on the infection rate and simplify the analysis,
we assume that the effects of age and of time are independent. We assume that the age
component of the force of infection is constant through time, and the time component is
constant through age. We again partition the age range into intervals Ai = [ai−1, ai), i ∈
{1, . . . ,m} where a0 = 0 and am = amax and the time range into intervals Tj = [tj−1, tj), j ∈
{1, . . . , n} where t0 denotes the point in time that is taken into account in the analysis,
−amax, and tn = tP3, the time at which P3 was conducted. Now we let α(t, a) = α1(a)α2(t),
with α1(a) and α2(t) constant on each of the intervals Ai and Ti respectively, so that

α1(a) =
∑
i

α1i1{a ∈ Ai}, α2(t) =
∑
j

α2j1{t ∈ Tj}.

Since t(a) = a+ c, it follows that α(t(a), a) is given by

α(t(a), a) = α1(a)α2(a+ c)

=
∑
i,j

α1iα2j1{a ∈ Ai ∩ (Tj − c)}.

By integration, Γ(a+ c, a) is calculated as∫ a

0

α1(z)α2(z + c) + β dz = βa+

∫ a

0

∑
i,j

α1iα2j1{z ∈ Ai ∩ (Tj − c)} dz

= βa+
∑
i,j

α1iα2j |Ai ∩ (Tj − c) ∩ [0, a]|

= βa+ αT
1 A(c, a)α2, (15)
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where
Ai,j(c, a) = |Ai ∩ (Tj − c) ∩ [0, a]|.

Then it follows from (14) that

i(t, a) = 1− exp{−(αT
1 A(t− a, a)α2 + βa)}

(
1 + β

∫ a

0

exp{αT
1 A(t− a, z)α2 + βz} dz

)
,

with∫ a

0

exp{αT
1 A(c, z)α2 + βz} dz =

∑
i,j

Ai,j(c, a) exp

 ∑
k≤i,l≤j

(α1kα2l + β)Ak,l(c, a)

 .

If we let the intervals Ai, Tj be of unit length (one year), then for k ∈ {Ai∩ (Tj−c)}, k > 0,
we have α(k) = α1(k)α2(k + c) for given c, and so

∑
i,j

α1iα2j |Ai ∩ (Tj − c) ∩ [0, a]| =
a∑

k=1

α1(k)α2(c+ k).

Therefore, for a > 0 we get

i(t(a), a) = 1− exp
{
−

a∑
k=1

α1(k)α2(t(k))

}(
1 +

a∑
k=1

exp


k∑

j=1

α1(j)α2(t(j))


)
. (16)

2.6 Implementation
The models were implemented in the modelling language Stan [40], using the RStan interface
[41] in R [42]. It operates with compiled C++; a parser translates a model expressed in the
Stan language to C++ code, which is then compiled to an executable program. Stan uses the
Hamiltonian Monte Carlo (HMC) method as sampling technique. This is a variation of the
Metropolis algorithm, where a random walk through the parameter space is used to generate
samples from a posterior distribution, that favors parameter values that have relatively high
posterior probability. The proposal distribution in the HMC algorithm changes depending on
the current position, by calculating the gradient of the posterior distribution. This improves
sampling efficiency and reduces correlation between successive samples. [43] This is done
through the potential function, which is the negative logarithm of the posterior density.

Each model parameter must have established convergence. There were several diagnostics
used to determine the quality of the fit that is generated by Stan. These diagnostics are
necessary but not sufficient. Stan utilizes the potential scale reduction statistic known as
”R-hat” to assess convergence in Markov chains. The R-hat diagnostic is an estimation of
the ratio between the overall variance and within-chain variance. Each chain is divided into
two halves, ensuring agreement between the initial and latter halves. The variances are
computed within each individual chain and collectively across all chains for comparison. As
the Markov chains approach identical distributions, the R-hat statistic tends toward a value
of 1, indicating convergence. If it is not approximately 1, then the Markov chains have not
mixed well, and at least one of the chains is producing biased samples. The effective sample
size n_eff is a measure of how informative the samples are. This size is usually less than the
total number of sampling iterations due to correlation among the samples, but was made
sure to be sufficiently large (n_eff / N > 0.001). This correlation introduces redundancy,
decreasing the precision of posterior estimates. The variance of Monte Carlo estimates is
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conceptually equivalent to the variance expected from n_eff independent samples. Further-
more, the traces of each of the chains were examined to ensure good mixing and agreement
among the chains. For each of the models, four chains were used. The number of iterations
differed, with a minimum of 1000 iterations.
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3 Results

3.1 Distribution of the Optical Density values
For each of the PIENTER studies, the mixture model was fitted to the log-transformed
OD values for different transformations of the data to obtain the optimal prevalence esti-
mations, depending on the availability; for PIENTER 1 and 3, the available data consisted
of the optical density measurements from individuals (OD) and the corresponding cut-off
(QC) measurements, both of which were corrected by the blank measurements on the cor-
responding plates by subtraction. For PIENTER 2, all of the original measurements from
each plate were available.

Each of the models was fitted using 1000 iterations. An uninformed Beta(1, 1) distribution
was used as prior for the prevalence p. Normal distributions with a broad spread were used
as weakly informative priors for the optical density means and variances for both the positive
and negative populations.

3.1.1 PIENTER 1
Both the corrected OD and OD/QC values were analyzed by fitting the mixture of two
normal distributions. The priors for the means were chosen as µ− ∼ N(−2, 2), µ+ ∼ N(0, 1)
in the first case, and µ− ∼ N(−1, 1), µ+ ∼ N(0.5, 1) in the second case, and σ± ∼ N(0, 1).
The resulting distributions are shown Figure 6, the point estimates and 95% confidence
interval of the parameters are given in Table 2. The lower range of the data in Figure 6a
does not look Gaussian, since some of the measurement values in the data were extremely
small or even negative, causing rounding errors when transforming to the log-scale. This
could happen when the value is very close or lower than their corresponding blank control,
and is likely due to measurement errors. Therefore, a better performance was achieved
by estimation of the distributions for the OD/QC ratio; the scaling leads to less rounding
errors, while the point estimations of the prevalence are similar. Both prevalence estimates
are higher than the estimates found by Kortbeek et al. [15].

Table 2: Point estimates and 95% CI of means and prevalence for the dif-
ferent data corrections for PIENTER 1

data µ− µ+ p
OD - Blank -1.94 (-1.96,-1.92) -0.30 (-0.30,-0.29) 0.45 (0.44,0.47)

(OD - Blank) / (QC - Blank) -1.16 (-1.18,-1.13) 0.46 (0.45,0.47) 0.44 (0.43,0.45)

3.1.2 PIENTER 2
For the second study, PIENTER 2, the original plate data from the ELISA measurements,
including the values for each of the control samples, was available. A histogram of the
log-transformed OD values for the controls is depicted in Figure 7a. In the ideal situation,
samples containing a serum do not have a lower value than the blank controls, so that the
blank wells have the lowest value, and the sample used for determining the cut-off (QC)
lies between the negative and the positive control values. However, we also see a lot of
noise. The negative control values overlap with those of the cut-off samples, which would
classify those measurements as positive. Unfortunately, these problems also arise in the
measurement values of the participants in the study. A notable part of the measurements
fall below the blanks as can be seen in Figure 7b, so that extracting blanks causes negative
values. Low and negative values again cause issues when transformed to the log-scale.
Without correction of the measurements with the blank values, the negative population is
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(a) Log-transformed (OD - Blank) values (b) Log-transformed (OD - Blank)/(QC - Blank) ra-
tio values

Figure 6: Comparison of the distributions of the log-transformed OD values
for PIENTER 1

(a) Log-transformed OD values of the plate-control
samples for PIENTER 2.

(b) Histogram of log-transformed OD measurements
with control means

Figure 7: Histograms of the log-transformed OD values of the control sam-
ples, compared to the OD values from the population samples for PIENTER
2.

skewed. The distributions resulting from the different data transformations described are
shown in Figure 8a. Point estimates and 95% confidence interval of prevalence and mean of
the values of the positive and negative component of the distributions are shown in Table
3. The choice of these transformations highly influences the estimations of the prevalence.
The estimation when using the ratio of the data corrected with blanks to the QC values is
similar to the prevalence found by Hofhuis et al. [22], where the exact same transformation
was used to determine the classification. However, the large overlap of the distributions
makes the prevalence estimations unreliable and the model extremely sensitive to the choice
of the priors for convergence.

To avoid the issue of having negative values and to reduce skewness of the distribution
for the negative population, we propose an alternative transformation on the data. Given
that the data has been filtered to eliminate empty cells, it is reasonable to assume that all
samples should produce positive measurement values. By adding a constant value to the
OD measurements, we reduce skewness in the lower half of the data. This adjustment was
determined empirically by examining the fit of the resulting distributions. The minimum
value that eliminates negative OD values is 0.015, the fit does not improve by adding a
higher value. The impact of this adjustment on the distributions are illustrated in Figures
8b and 8c.
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Table 3: Point estimates and 95% CI of means and prevalence for the dif-
ferent data corrections for PIENTER 2

data µ− µ+ p
OD -1.22 (-1.23,-1.22) -0.60 (-0.62,-0.58) 0.48 (0.46,0.50)

OD - Blank -1.62 (-1.65,-1.59) -0.51 (-0.52,-0.49) 0.27 (0.25,0.29)
OD / QC -0.54 (-0.54,-0.53) 0.07 (0.05,0.09) 0.45 (0.42,0.47)

( OD - Blank ) / (QC - Blank) -0.82 (-0.84,-0.79) 0.28 (0.27,0.29) 0.24 (0.22,0.26)
OD + 0.015 -1.51 (-1.52,-1.50) -0.57 (-0.58,-0.55) 0.36 (0.35,0.38)

(a) Comparison of distributions of log-transformed measurements for multiple data transformations using
the control samples

(b) Log-transformed OD values, shifted by 0.015 (c) Log-transformed OD values, shifted by 0.020

Figure 8: Comparison of distributions of the log-transformed OD values for
PIENTER 2, with a transformation using the control samples or a shift on
the measurements.

3.1.3 PIENTER 3
In the PIENTER 3 study, we had access to both OD values corrected for blanks and their
ratios relative to QC values. The values of the blank measurements were not known. The
distributions are shown in Figure 9. The estimations using the ratios performed better than
those using only OD values, similar as for P1. The point estimates are given in Table 4.
Both prevalence estimates are similar, but are lower than those estimated by Van den Berg
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et al. [13].

Table 4: Point estimates and 95% CI of means and prevalence for the dif-
ferent data corrections for PIENTER 3

data µ− µ+ p
OD - Blank -0.81 (-0.81,-0.80) -0.06 (-0.07,-0.05) 0.27 (0.26,0.28)

(OD - Blank) / (QC - Blank) -0.43 (-0.44,-0.42) 0.47 (0.46,0.48) 0.25 (0.24,0.27)

(a) Log-transformed OD values (b) Log-transformed OD/QC ratio values

Figure 9: Comparison of distributions of the log-transformed OD values for
PIENTER 3

3.2 Prevalence within age categories
To study how the prevalence of the population changes through the ages, age categories
are incorporated as a covariate in Equation (2) in the distributions on the log-transformed
optical densities. The choice of the partition of the age range influences the uncertainty and
accuracy of the estimations. Smaller ranges give higher uncertainty, while larger ranges give
less information about the shape. For the interested reader, an illustration of these effects
can be found in Appendix A, through a comparison of the distributions for different sizes of
the intervals in Figure 18.

The estimated seroprevalence for each of the studies compared to the seroprevalences calcu-
lated with the cut-off method is shown in Figure 10, where for the age categories a width of
7 years is chosen1. The 95% and 50% quantile intervals are shown as ribbons. The line rep-
resents the prevalence as calculated from the cut-off method. A running average of width
2 is used for slight smoothing. The first study gives very similar results when estimated
through the Bayesian method compared to the cut-off method; only for young individuals
the estimations are significantly smaller. The estimations for the second study are higher
than indicated by the cut-off method, while for the third study the estimations indicate a
lower seroprevalence under the age of 42, but increased seroprevalence in higher age range.

3.3 Covariates
For each of the separate studies, the effect from the selection of factors given in Table 1
was analyzed in both the entire population and within age categories, by including those
as covariates in the mixture model (2). The comparative analysis was done using the High-

1In the early 20th century, philosopher Rudolf Steiner developed a theory of human development based
on 7-year cycles, corresponding to profound life changes. This is a coincidence.
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Figure 10: Estimation of seroprevalence, represented by the ribbons in-
dicating 95% and 50% credible intervals, compared to the cut-off method,
represented by lines, smoothed using a running average of width 2.

est Density Interval (HDI) and the Region of Practical Equivalence (ROPE) decision rule
described in Section 2.3.1.

The distributions estimated on the entire population are fitted using 1000 iterations. The
models where the prevalence is estimated on the age categories, resulting in smaller samples,
is fitted using 2000 iterations. Dividing the population into different categories for each
covariate decreases the sample size and thus increases the uncertainty. Therefore relatively
large intervals of 10 year intervals are used.

3.3.1 PIENTER 1
The results from the ROPE + HDI analysis on the entire population are given in Table 5.
When comparing the prevalence in the entire population, only education is identified as a
risk factor; low education status is associated with higher risk of infection. For gardening
and having a cat as pet, the method was indecisive; the pd-value is 1, indicating the exis-
tence of an effect, but it is too small to be of practical significance. Keeping farm animals
(agriculture) was not associated with higher risk of infection when the entire population was
considered.

We take a closer look at the effect of different risk factors on various age categories, as
depicted in Figure 11. The interested reader can find the tables with the full analysis in
Appendix B.1. The study finds that high edicational level is a risk factor for seropositivity in
the age ranges of 20-30 and 60+. Agriculture was only identified as a risk factor in the 20-30
year old population, while no difference was found in children aged 0-10. Again, the method
was indecisive for gardening; large pd-values indicate the existence of an effect between the
ages of 40-60, however the HDI intervals are large. Having a cat as a pet was identified as
risk factor from the age of 50 to 70 years old. In earlier analysis [15] factors were identified
using odds ratios obtained through logistic regression. Our findings are in agreement on
cat ownership and education level as a factor associated with seropositivity, but a definite
relation with gardening and professional animal contact could not be identified through our
method.
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Table 5: PIENTER 1 HDI + ROPE analysis on the entire population. Here
p_diff denotes the mean value of the distribution covar_1 - covar_2, the
lower and upper columns give the lower and upper bounds of the 89% HDI,
pd denotes the probability of direction.

covar covar_1 covar_2 p_diff lower upper pd result
education Low High 0.16 0.14 0.19 1.00 Low higher
education Middle High -0.02 -0.05 0.02 0.76 No difference
education Middle Low -0.18 -0.21 -0.15 1.00 Low higher
gardening No Yes -0.04 -0.06 -0.02 1.00 Undecided
agriculture No Yes 0.01 -0.01 0.05 0.79 No difference
petcat No Yes 0.04 0.02 0.06 1.00 Undecided

Figure 11: PIENTER 1 prevalence estimations by age groups and covariate:
stratified analysis of education level, gardening, agriculture and cat ownership,
where the 89% and 50% QI are represented by ribbons.

3.3.2 PIENTER 2
The results on the entire population from HDI+ROPE analysis are found in Table 6. Again,
only having a low education level is a identified factor on population level, and gardening,
keeping farm animals (agriculture), having a cat as pet (petcat) and eating raw, unwashed
vegetables (unwashedveget) were not identified as risk factors.

We take a closer look at the effect of the different risk factors on various age categories, as
illustrated in Figure 12. The interested reader can find the tables with the full analysis in
Appendix B.2. Although the effect of having low education level is visible in the graph, the
uncertainty is too high to indicate when dividing into age categories of 10 years. Gardening is
clearly not a risk factor, as the graph shows almost identical lines and the 89% HDI contains
0 in almost all cases, with low pd-values. For agriculture, there is too much uncertainty
and so no statements could be made. This is unlikely to be associated with prevalence,
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Table 6: PIENTER 2 HDI + ROPE analysis on the entire population. Here
p_diff denotes the mean value of the distribution covar_1 - covar_2, the
lower and upper columns give the lower and upper bounds of the 89% HDI,
pd denotes the probability of direction.

covar covar_1 covar_2 p_diff lower upper pd result
education Low High 0.11 0.09 0.14 1.00 Low higher
education Middle High -0.02 -0.04 0.01 0.82 No difference
education Middle Low -0.13 -0.15 -0.10 1.00 Low higher
gardening no yes -0.03 -0.05 -0.01 0.99 No difference

agriculture no yes 0.01 -0.03 0.04 0.59 No difference
petcat no yes 0.01 -0.01 0.03 0.69 No difference

contcat no yes 0.04 0.02 0.06 1.00 Undecided
vegetarian no yes 0.10 0.03 0.17 0.98 Undecided

rawmeat no yes 0.06 0.04 0.09 1.00 Undecided
rawporkmeat no yes -0.07 -0.10 -0.04 1.00 Undecided

rawbeef no yes -0.03 -0.05 -0.01 0.99 Undecided
unwashedveget no yes 0.01 -0.01 0.03 0.75 No difference

consistent with earlier analysis [22]. In the graph for having a cat as pet, the prevalence for
having a cat as pet seems to be higher from around 40 years, but the effect is identified by
the HDI + ROPE strategy from age 70. Also having contact with cats (reported by over
half of the population) is a risk from a similar age, and the graph looks nearly identical to
that of having a pet cat. Here the pd-value is already close to 1 from the age of 40, meaning
that there is high proportion of the distribution for ”yes” that is higher than that of ”no”.
Having a pet cat and having contact with cats were also identified as risk factors in earlier
analysis [22]. Eating raw meat seems to be related to higher prevalence from the age of 50
but this is identified as risk factor with HDI + ROPE only for the age category of 60-70
years. Raw pork is identified as a risk factor from the age of 50 but raw beef seems to be less
of a risk, and is identified as risk from 70 years. Unwashed vegetables seem to be associated
with higher seroprevalence from older age, which is also indicated by high pd-value, but
there is too much uncertainty for identification as a factor.

3.3.3 PIENTER 3
The results on the entire population from HDI + ROPE analysis are given in Table 7. Again,
having a low education level is associated with higher prevalence. Having a cat as pet and
eating unwashed vegetables seems negatively associated with higher prevalence. Gardening,
having contact with cats, eating raw meat or pork are not associated with difference in
prevalence.

A closer look at the effect for different age categories the findings is shown in Figure 13. The
interested reader can find the tables with the full analysis in Appendix B.3. It seems that
low education level has higher prevalence from the age of 20, however the HDI + ROPE
decision rule could not give absolute conclusions. Also, for none of the other covariates a
clear difference could be identified. For agriculture, too much uncertainty makes the intervals
too large. Eating raw pork meat between the ages of 50 and 70 and eating raw beef or raw
meat in general between the ages of 60 and 70 seem to be associated with higher prevalence;
the pd-value is close to 1 but the HDI intervals are large.



Figure 12: PIENTER 2 prevalence estimations by age groups and covariate:
stratified analysis of education level, gardening, agriculture, cat ownership,
contact with cats, eating raw meat, pork, beef and unwashed vegetables,
where the 89% and 50% QI are represented by ribbons.



Figure 13: PIENTER 3 prevalence estimations by age groups and covariate:
stratified analysis of education level, gardening, agriculture, cat ownership,
contact with cats, eating raw meat, pork, beef and unwashed vegetables,
where the 89% and 50% QI are represented by ribbons.
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Table 7: PIENTER 3 ROPE+HDI analysis on the entire population. Here
p_diff denotes the mean value of the distribution covar_1 - covar_2, the
lower and upper columns give the lower and upper bounds of the 89% HDI,
pd denotes the probability of direction.

covar covar_1 covar_2 p_diff lower upper pd result
education Low High 0.17 0.14 0.19 1.00 Low higher
education Middle High -0.03 -0.06 -0.01 0.99 Undecided
education Middle Low -0.21 -0.23 -0.18 1.00 Low higher
gardening no yes -0.02 -0.04 -0.00 0.95 No difference

agriculture no yes 0.04 0.00 0.07 0.94 Undecided
petcat no yes 0.08 0.06 0.10 1.00 No higher

contcat no yes 0.00 -0.04 0.05 0.53 No difference
rawmeat yes no -0.02 -0.04 0.00 0.93 No difference

rawporkmeat yes no 0.02 -0.01 0.04 0.84 No difference
rawbeef yes no -0.04 -0.06 -0.02 1.00 Undecided

unwashedveget yes no -0.09 -0.11 -0.07 1.00 no higher

3.4 Force of infection
We now extend the model with the compartmental disease dynamical systems from Section
2.5. We first analyse the age-dependent force of infection α(a) for each PIENTER study
independently, disregarding temporal dynamics in Section 3.4.1. The case where the rate
β at which individuals become susceptible is zero is compared to the situation where β is
non-zero. We then expand the model to include time dependency in the force of infection
α(a, t) in Section 3.4.2. For each of the models, fitting was done using 1000 warm-up and
1000 sampling iterations.

3.4.1 Age-dependent force of infection
We take age intervals of unit length, so that the proportion of the population that is infected
is characterized through Equation (8). In the scenario where the rate β is greater than 0,
the value is expected to be relatively small. Therefore a normal prior N(0, 0.005) is selected
for β, centering the estimate around 0. To minimize over-fitting for α, subsequent values
are assumed to lie within a small neighborhood of each other. The method is inspired by
the idea of a random walk. We assume that the values have the relation αi+1 = εiαi for
1 ≤ i < amax, where εi ∼ N(1, γ), with γ having inverse gamma prior with shape parameter
1 and scale parameter 0.005, so that the distribution of ϵ will be centered around 1. Since
individuals are born susceptible, the rate α1 at which individuals become infected between
birth and age one is assumed to be small and so a normal prior N(0, 0.3) centered around
0 is chosen.

The resulting estimations of the age-dependent force of infection are shown in Figures 14a
- 14f, with mean values indicated by dots, the 95% Quantile Intervals (QI) by bars, and
the ribbons represent 50% and 95% QI, smoothed with a 20-year moving average. The
specific findings for P3, as shown in Figure 14c mirror those reported by Van den Berg et
al. [13]. For each study, the shape is consistent between the β = 0 and β ̸= 0 scenarios,
but the estimations are marginally higher and uncertainty is slightly increased in the case
when β ̸= 0, as can be seen from Figures 14g - 14i, picturing the 50% quantile intervals
comparisons. Furthermore, the distributions of γ are similar across scenarios, as can be
seen from Figures 14j - 14l The estimated values for β, as shown in Figures 14m - 14o, are
minimal and tend to cluster around 0.

In the force of infection estimations of P1 and P2, there is a noticeable peak that shifts



(a) P1: α(a), where β = 0 (b) P2: α(a), where β = 0 (c) P3: α(a), where β = 0

(d) P1: α(a), where β ̸= 0 (e) P2: α(a), where β ̸= 0 (f) P3: α(a), where β ̸= 0

(g) P1: 50% QI for α(a) (h) P2: 50% QI for α(a) (i) P3: 50% QI for α(a)

(j) P1: distributions of γ (k) P2: distributions of γ (l) P3: distributions of γ

(m) P1: distribution of β (n) P2: distribution of β (o) P3: distribution of β

Figure 14: Estimated values and distributions of the parameters for the
age-dependent compartmental disease model, fitted for each PIENTER study
independently, for both the case when β = 0 and β > 0. In (a)-(f), dots
indicate the mean values, the bars represent the 95% QI and ribbons show
50% and 95% QI, smoothed with a 20-year running average. In (g)-(i), the
smoothed 50% QI are depicted for both the case where β = 0 (red) and β > 0
(blue).
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(a) Values of α for β = 0. (b) Values of α, shifted so that individual ages
align for β = 0.

Figure 15: Comparison of the estimated distributions of the age-dependent
infection force α(a) for β = 0, fitted to each of the PIENTER studies inde-
pendently.

towards older age groups in successive studies. This pattern seems to continue through P3,
although truncated at the peak. Further examination, as illustrated in Figure 15a, shows
the values of the force of infection for each of the PIENTER studies. This illustrates that
in P2, the estimated force of infection is significantly reduced in younger age groups relative
to P1. This trend does not continue in P3. Notably, P3 exhibits an increase in the force
of infection from the age of approximately 45. Figure 15b aligns the age categories across
the studies through time. Contrary to the decrease noted in P2 when compared to P1, P3
demonstrates an elevation in infection force post-70 years. This suggests a maintained low
prevalence in the population for an extended duration, followed by an increase in older age.
The shift in the peaks across the three studies may reflect changes in transmission dynamics
over time.

3.4.2 Age- and time-dependent force of infection
We take age- and time intervals of unit length, so that the proportion of the population that
is infected is given by Equation (16). From analysis on the age-scale, it may be conclude
that β does not affect the estimations of the force of infection considerably. For practical
considerations, to ensure convergence of the model, β = 0 is assumed.

Similar to the approach in Section 3.4.1, to minimize potential overfitting of α, both the
time- and the age component of α are informed through the relations

α1(a+ 1) = ε1(a)α1(a), 1 ≤ a < amax

α2(t+ 1) = ε2(t)α1(t), t1 ≤ t < tmax,

where t0 = −amax representing the initial timepoint, and tmax = 20 corresponding to the
timing of the P3 study. The parameters ε1(a), ε2(t) are modeled as εi ∼ N(1, γ), where γi
is informed by an inverse gamma prior with shape parameter 1 and scale parameter 0.005,
positioning the ϵi values close to 1. For the initial value for the age component α1(1) again
a normal prior N(0, 0.3) is chosen, while the initial value for the time component α2(t1) is
fixed at 1 to ensure identifyability.

The resulting estimations are shown in Figure 16, where for Figures 16a - 16d, mean es-
timates are represented by dots, the 95% Quantile Intervals (QI) by bars and the ribbons
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represent the 50% and 95% QI, smoothed with a 10-year moving average for clarity. Esti-
mates of the age- and time components of the force of infection are shown in Figures 16a
and 16b respectively. Surprisingly, the shape of the age-component differs from the age-
dependent infection force estimated in Section 3.4.1. High uncertainty in the lower age-range
suggests that the assumption that individuals are born susceptible is potentially incorrect,
meaning that the boundary conditions in the model (Equation (9)) need to be revised. The
time component α2(t) shows a decreasing trend as time approaches the P3 study. The peak
in the infection force seen in Section 3.4.1 that is absent in the age component α1(a) could
be determined by the time-component, but due to high uncertainty in the age-component,
no definitive conclusions can be made. Concentrating on the period between P1 and P3, as
illustrated in Figure 16c, the time component of the force of infection α1(t) appears rela-
tively stable, with only a subtle decrease towards the P3 study, although this decrease occurs
mainly in the variability. This suggests a limited impact from temporal factors within this
interval. This could suggest that any interventions or changes in population behavior have
had a stable or sustained impact on the infection dynamics over the time span considered.
The prevalence estimations are illustrated in Figure 16d, Those estimations are different
from the estimations that are generated through the simpler model without infection dy-
namics, that were illustrated in Figure 10 in Section 3.2. A shift along the age axis is found
rather than a change in overall prevalence levels. The estimations for the age specific ran-
dom walk variance, γa, shown in Figure 16e are slightly higher than those found for the age
specific variance found in Section 3.4.1, which could suggest more substantial fluctuations
in infection rates with age. This could however also be influenced by the high uncertainty
of α1(a) in the lower age-range. The values for γt are even lower, hinting at less variability
over time and possibly a stronger age effect than time effect in the dynamics of the infection
force.



(a) Age-component, α1(a) (b) Time component, α2(t), with P1-P3 marked
through lines

(c) α(t) for t between P1 and P3 (d) Estimation of prevalence p

(e) Random walk variance γa (f) Random walk variance γt

Figure 16: Estimations of parameters of the age- and time dependent com-
partmental model. In (a)-(d), the dots represent mean estimates, the bars
represent 95% QI, the ribbons represent 95% and 50% QI, smoothed with a
10-year moving average.
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4 Discussion

4.1 Distribution of the data
In this analysis, it is assumed that the optical densities (OD) of the antibody titres are
distributed as a mixture of two symmetric log-normal distributions. However, Jacobson [36]
suggests that the distribution of the negative population often has a long right tail, which
is strengthened by our findings in Section 3.1. Moreover, to obtain the OD values for each
individual, both of their measurements are first corrected with the average value of the
blank control measurements of the corresponding plate, and then the result is averaged. It
is reasonable to assume that control measurements are log-normal as well. However, the
sum of log-normal distributions is not log-normal itself, and does not follow a known prob-
ability distribution. In fact, even a shifted log-normal distribution does not follow a normal
distribution on the log-scale, as demonstrated in Figure 17. This means that each of the
transformation to calculate the OD values influences the log-normality of the distributions
and possibly adds skewness. Previous studies [44, 45] have shown that a log-skew-normal
distribution effectively approximates the sum of log-normal distributions, indicating that
instead of a symmetric log-normal distribution, a skewed log-normal distribution may be
more suitable for modeling the OD values.

In Section 3.1.2 we showed that the data that was available for P2 was affected by a lot of
noise, and that the choice of value transformations highly influenced the resulting prevalence
estimation. There are two types of errors that can be identified. Firstly, there was a high
level of variability in the range of range of values, including differences in control measure-
ments across the different plates, indicating a high plate-to-plate variation. Secondly, each
type of control sample was tested twice on each plate, and blank wells containing no anti-
bodies should produce the lowest values on the plate. Differences between repeated control
measurements on the same plate discloses information on the on-plate variation and back-
ground noise. The model can be extended to reduce noise by adding distributions on these
errors. wOn-plate variations are estimated through variation in repeated control measure-
ments on the same plate, while plate-to-plate variations are estimated through the values of
the control samples across different plates. These distributions could help account for the
variability and noise in the data, allowing for more accurate results.

In our approach in estimating the age-specific seroprevalence, the age intervals have a pre-
determined, fixed width. The width was empirically established by comparing uncertainty

Figure 17: Density of a log-normal random variable (blue), compared to a
shifted log-normal (ppurple) and a sum of log-normal random variables (red),
resulting in skewed densities.
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and level of detail in the resulting estimations. This strategy can be improved by extending
the model to including the choice of the partition of the age range as a parameter. This
could also be useful to improve the understanding of behavioral- and life-style changes that
influence the risk of infection when examining the effect of covariates, and to assess the
effectiveness of prevention methods and/or public awareness campaigns.

The analysis did not account for the representativeness of the sample population in relation
to the full population in the Netherlands. This has been addressed in earlier analysis [13,
15, 22] by weighting the seroprevalence within municipalities for age, gender, ethnicity and
urbanisation degree. The absence of such correction could have a small contribution to the
difference in the prevalence estimations that we found in Section 3.2 from previous results.

4.2 Covariates
In the analysis of the effect of the covariates on the prevalence, the HDI + ROPE method
combined with the pd-value was often not able to discern if an effect was present or absent.
The ROPE metrics are sensitive to the sample size in the case where no effect is observed,
and is therefore better suited for providing evidence for the absence of an effect [29]. On
the other hand, the pd-value quantifies the amount of evidence that is observed for the
presence of a true effect, in which case it is sensitive to the sample size. It is not able
to reflect the amount of evidence of the absence of an effect; a high values suggest the
existence of an effect, but low values do not give information on the certainty that no effect
is present. Combining both indices should therefore result in an effective method to analyse
risk factors. However, for both the ROPE and the pd-values, variability increases as noise
increases, possibly indicating that small fluctuations in observed effects can significantly
alter these measures [29]. Furthermore, the ROPE faces practical challenges in application
due to the subjective nature of defining the non-significant effect range. This range, although
arbitrary, imposes strict boundaries that may not accurately reflect the continuous nature
of the data; a slight shift across the threshold changes the interpretation of results from
negligible to significant. Additionally, ROPE indices are sensitive to changes in the scale
of predictors; for example, another base for the logarithm would result in different ranges.
To avoid these challenges, Bayes Factors offer an interesting alternative. Bayes Factors
are able to provide clear evidence both for and against the presence of an effect. Their
straightforward interpretation as odds favoring one hypothesis over another makes them
effective for communication. It is the Bayesian equivalent to the approach used in the
identification of risk factors in earlier analysis of the PIENTER studies [13,15,22]. However,
Bayes Factors also face criticism for their sensitivity to the choice of priors, which can
significantly influence their outcomes.

4.3 Disease dynamics
In Sections 2.5.1 and 2.5.3 we found the analytical solution to the differential equations,
where α was assumed to be piecewise continuous, giving very few restrictions on the shape
of α. Other types of functions for the force of infection are difficult to implement when using
the Stan interface if the use of analytical solutions is desired. For example, if we study the
simple case where α is a linear function, α(a) = k ·a+c, then to calculate the age dependent
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prevalence (7) we solve∫ a
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However, RStan does not support the use of imaginary arguments to the error function.
When considering even more complex functions, an analytical solution does not always
exist, or will become increasingly more difficult to calculate. A numerical solver could be
implemented to investigate other suitable functions for α.

The age-dependent forces of infection observed in each of the independent PIENTER studies,
discussed in Section 3.4.1, display a consistent shape with a peak that appears to shift
rightward in each subsequent study. Adding a time component to this force might be
expected to show a similar pattern. However, the age component of the force of infection in
the model that combines the studies, analyzed in Section 3.4.2, is fundamentally different.
This suggests that the assumption of a multiplicative relationship between age and time
components of the infection force α(t, a) = α1(a)α2(t) may be incorrect. Additionally, the
estimated prevalence p from this complex model deviates from that of the simpler model in
Section 3.2 that only uses serological data to determine the distributions, indicating that
enforcing this specific relationship on the infection force does not accurately reflect real-world
conditions. Alternative relationships should be explored.

The age- and time dependent model was also highly sensitive to the choice of priors and
initial values. Specification of initial values had a significant impact on the ability to obtain
convergence of the outcomes, suggesting a complex and poorly fitting distribution landscape.
The use of one-year age categories dramatically increases the number of variables that need
to be estimated compared to the number of data points in the data set. The resulting
high uncertainty further complicates model stability. Despite attempts, we were unable to
achieve model convergence with age categories of larger width in the age- and time dependent
model; for uniformity, we chose to use the same partitioning of the age range in both sections
discussed. Convergence issues also persisted in scenarios where β > 0 in the complex model,
though findings from Section 3.4.1 suggest that β > 0 is unlikely. Future research should
consider using broader age categories to address these issues.

The estimated force of infection displayed unusual high values for newborns, as can be seen
in Figures 14a - 14f and 16a. This suggests that the assumption that newborns are only
born in the susceptible compartment, and thus have no detectable antibodies, is not suitable.
Newborns may receive temporary protection through antibodies received from the mother
during her pregnancy [46]. These newborns may be considered as an extra compartment
with passive immunity, referred to as maternal immunity (M). The dynamics of the MSIS
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model is then given by (adjusted from [47], eq 5.1)(
∂

∂a
+

∂

∂t

)
M(t, a) = −(δ + µ(a))M(t, a),(

∂
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)
S(t, a) = δM(t, a)− (µ(a) + α(a, t))S(t, a) + βI(t, a),(

∂

∂a
+

∂

∂t

)
I(t, a) = α(a, t)S(t, a)− (µ(a) + β)I(t, a),

where again N = M + S + I is the total population. A numerical solver should be imple-
mented to fit the dynamics to the data. Since the maternal immunity will fade after some
time, this approach is better suited than using an initial value I(t, 0) > 0.
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5 Conclusion

We have studied the use of Bayesian statistical modelling in the prevalence estimation of the
human population over age and over time for Toxoplasma gondii. We have made a mixture of
two normal distributions to describe the distribution of the log-transformed optical density
measurements from ELIZA. Furthermore, we described a dynamical system that estimates
the force of infection over time and over age. There are still some challenges to overcome
to improve the model, such as reduction of noise and improvements of the model and the
identification in risk factors, but overall a Bayesian statistical approach performs very well in
these type of situations. In fact, the observed distributions and noise in the data underline
the Bayesian approach as a more effective tool than cut-off methods.

We have observed that the seroprevalence decreased from 44% (95% CI 43 - 45) in 1995/1996
to 36% (95% CI 35 - 38) in 2006/2007, and decreased further to 25% (95% CI 24 - 27) in
2016/2017, which is in contradiction to earlier results [13,15,22] where a decrease and then
a slight increase was observed.

Risk factors were clearly identified in the first two studies as having low education level,
having a cat as pet, eating raw pork meat and having contact with cats (both not reported
in P1), but these effects did not seem to continue into the third study, indicating that policies
or behavioral changes that reduce risk of infection through these behaviors were successful.
This belief is strengthened by the findings for the time component of the force of infection,
that is slightly declining towards P3.

Finally, we found that it is likely that infection is lifelong, and there is no real evidence to
support the existence of a non-zero rate from the infected population to the susceptible
compartment. This is inconsistent with findings in earlier studies [5, 6] that compared
compartmental disease models for animal populations, but is consistent with current belief
that infection is lifelong.
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A Comparison of age categories

(a) PIENTER 1

(b) PIENTER 2

(c) PIENTER 3

Figure 18: For each PIENTER, the first figure (left) shows the prevalence
estimated using 10 year intervals, the second (middle) using 7 year intervals
where the estimates are smoothed with a running average of width 2 and the
third (right) using 2 year intervals, smoothed with a running average of width
10. The 95% and 50% quantile intervals are shown as dark grey and light
grey areas respectively and the black lines represent the prevalence from the
cut-off method.

Increasing the width of the age-categories decreases the uncertainty of the estimates, since the
sample size increases. Smaller width yields a more detailed image of the shape, at the expense
of the certainty. Ideally, a width is chosen such that a detailed analysis can be made, while a
minimum amount of certainty is lost. Smaller widths are more sensitive to outliers in the data,
so that smoothing may be applied to reduce noise.
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B Covariate analysis results

In each table, p_diff, p_lower and p_upper denote the median, lower bound and upper bound
respectively of the 89% HDI, pd is the probability of direction of the distribution of covar1 -
covar2. The result of the HDI with the ROPE interval [−0.05, 0.05] decision rule is given in the
result column.

B.1 Covariate analysis tables PIENTER 1

Table 8: HDI + Rope analysis for P1: “What is the highest level of education
or training that you have completed?”.

education1 education2 age_cat p_diff lower upper pd result
Low High 0 - 10 -0.02 -0.05 0.02 0.81 Undecided
Middle High 0 - 10 0.00 -0.04 0.05 0.55 Undecided
Middle Low 0 - 10 0.02 -0.02 0.07 0.79 Undecided
Low High 10 - 20 0.03 -0.02 0.07 0.86 Undecided
Middle High 10 - 20 0.02 -0.04 0.08 0.71 Undecided
Middle Low 10 - 20 -0.01 -0.07 0.04 0.61 Undecided
Low High 20 - 30 0.12 0.05 0.18 1.00 Low higher
Middle High 20 - 30 0.08 0.01 0.17 0.95 Undecided
Middle Low 20 - 30 -0.03 -0.11 0.04 0.75 Undecided
Low High 30 - 40 0.03 -0.03 0.10 0.78 Undecided
Middle High 30 - 40 0.01 -0.09 0.09 0.55 Undecided
Middle Low 30 - 40 -0.03 -0.10 0.06 0.69 Undecided
Low High 40 - 50 0.02 -0.05 0.08 0.68 Undecided
Middle High 40 - 50 -0.06 -0.18 0.06 0.79 Undecided
Middle Low 40 - 50 -0.08 -0.20 0.03 0.87 Undecided
Low High 50 - 60 0.09 0.02 0.16 0.98 Undecided
Middle High 50 - 60 0.11 -0.01 0.23 0.91 Undecided
Middle Low 50 - 60 0.02 -0.09 0.13 0.61 Undecided
Low High 60 - 70 0.14 0.06 0.22 1.00 Low higher
Middle High 60 - 70 0.09 -0.04 0.22 0.87 Undecided
Middle Low 60 - 70 -0.05 -0.15 0.06 0.75 Undecided
Low High 70 - 80 0.20 0.09 0.30 1.00 Low higher
Middle High 70 - 80 0.09 -0.08 0.23 0.81 Undecided
Middle Low 70 - 80 -0.11 -0.24 0.01 0.94 Undecided

Table 9: HDI + Rope analysis for P1: “Have you kept farm animals in the
past 5 years?”.

agriculture1 agriculture2 age_cat p_diff lower upper pd result
No Yes 0 - 10 -0.00 -0.05 0.04 0.56 No difference
No Yes 10 - 20 -0.06 -0.12 -0.00 0.95 Undecided
No Yes 20 - 30 -0.17 -0.27 -0.06 1.00 Yes higher
No Yes 30 - 40 -0.06 -0.15 0.03 0.85 Undecided
No Yes 40 - 50 0.06 -0.03 0.14 0.87 Undecided
No Yes 50 - 60 -0.04 -0.13 0.03 0.81 Undecided
No Yes 60 - 70 -0.11 -0.19 -0.02 0.95 Undecided
No Yes 70 - 80 -0.07 -0.15 0.04 0.84 Undecided
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Table 10: HDI + Rope analysis for P1: “Have you worked with your bare
hands in the soil in the garden/on land in the past 12 months?”.

gardening1 gardening2 age_cat p_diff lower upper pd result
No Yes 0 - 10 -0.00 -0.03 0.03 0.53 No difference
No Yes 10 - 20 -0.02 -0.06 0.02 0.75 Undecided
No Yes 20 - 30 0.01 -0.05 0.06 0.61 Undecided
No Yes 30 - 40 0.07 -0.01 0.14 0.92 Undecided
No Yes 40 - 50 0.10 0.03 0.17 0.99 Undecided
No Yes 50 - 60 -0.07 -0.13 -0.01 0.97 Undecided
No Yes 60 - 70 -0.05 -0.11 0.01 0.93 Undecided
No Yes 70 - 80 0.00 -0.05 0.05 0.53 Undecided

Table 11: HDI + Rope analysis for P1: “Have you kept a cat as a pet for
the past 5 years?”

petcat1 petcat2 age_cat p_diff lower upper pd result
No Yes 0 - 10 0.02 -0.01 0.05 0.88 Undecided
No Yes 10 - 20 -0.00 -0.04 0.04 0.53 No difference
No Yes 20 - 30 -0.03 -0.08 0.03 0.79 Undecided
No Yes 30 - 40 -0.05 -0.12 0.00 0.93 Undecided
No Yes 40 - 50 -0.09 -0.15 -0.03 0.99 Undecided
No Yes 50 - 60 -0.12 -0.17 -0.06 1.00 Yes higher
No Yes 60 - 70 -0.11 -0.17 -0.05 1.00 Yes higher
No Yes 70 - 80 -0.01 -0.09 0.08 0.57 Undecided

B.2 Covariate analysis tables PIENTER 2

Table 12: HDI + Rope analysis for P2: “What is the highest level of edu-
cation or training that you have completed?”

education1 education2 age_cat p_diff lower upper pd result
Low High 0 - 10 0.03 -0.02 0.07 0.83 Undecided
Middle High 0 - 10 -0.02 -0.06 0.02 0.77 Undecided
Middle Low 0 - 10 -0.04 -0.09 -0.01 0.97 Undecided
Low High 10 - 20 0.01 -0.04 0.07 0.66 Undecided
Middle High 10 - 20 0.03 -0.04 0.10 0.76 Undecided
Middle Low 10 - 20 0.01 -0.04 0.06 0.68 Undecided
Low High 20 - 30 0.03 -0.04 0.09 0.79 Undecided
Middle High 20 - 30 0.03 -0.02 0.08 0.84 Undecided
Middle Low 20 - 30 -0.00 -0.06 0.06 0.51 Undecided
Low High 30 - 40 0.11 0.04 0.18 1.00 Undecided
Middle High 30 - 40 0.02 -0.04 0.08 0.69 Undecided
Middle Low 30 - 40 -0.09 -0.16 -0.03 0.99 Undecided
Low High 40 - 50 0.06 -0.02 0.13 0.89 Undecided
Middle High 40 - 50 0.05 -0.03 0.12 0.84 Undecided
Middle Low 40 - 50 -0.01 -0.09 0.06 0.56 Undecided
Low High 50 - 60 0.01 -0.06 0.09 0.61 Undecided
Middle High 50 - 60 -0.10 -0.19 -0.01 0.97 Undecided
Middle Low 50 - 60 -0.11 -0.19 -0.03 0.99 Undecided
Low High 60 - 70 0.10 0.02 0.18 0.97 Undecided
Middle High 60 - 70 0.08 -0.01 0.17 0.90 Undecided
Middle Low 60 - 70 -0.02 -0.09 0.06 0.67 Undecided
Low High 70 - 80 0.03 -0.06 0.13 0.72 Undecided
Middle High 70 - 80 0.07 -0.05 0.18 0.84 Undecided
Middle Low 70 - 80 0.04 -0.04 0.12 0.76 Undecided
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Table 13: HDI + Rope analysis for P2: “Have you worked with your bare
hands in the soil in the garden/on land in the past 12 months?”

gardening1 gardening2 age_cat p_diff lower upper pd result
No Yes 0 - 10 0.02 -0.01 0.06 0.85 Undecided
No Yes 10 - 20 -0.03 -0.08 0.00 0.90 Undecided
No Yes 20 - 30 0.00 -0.05 0.04 0.50 No difference
No Yes 30 - 40 -0.03 -0.09 0.04 0.74 Undecided
No Yes 40 - 50 0.01 -0.07 0.08 0.58 Undecided
No Yes 50 - 60 -0.04 -0.10 0.03 0.81 Undecided
No Yes 60 - 70 0.03 -0.03 0.09 0.80 Undecided
No Yes 70 - 80 -0.02 -0.08 0.04 0.68 Undecided

Table 14: HDI + Rope analysis for P2: “Have you kept farm animals in the
past 5 years?”

agriculture1 agriculture2 age_cat p_diff lower upper pd result
No Yes 0 - 10 -0.01 -0.07 0.05 0.57 Undecided
No Yes 10 - 20 -0.06 -0.14 0.01 0.92 Undecided
No Yes 20 - 30 -0.06 -0.13 0.02 0.90 Undecided
No Yes 30 - 40 0.02 -0.06 0.12 0.67 Undecided
No Yes 40 - 50 -0.02 -0.12 0.09 0.63 Undecided
No Yes 50 - 60 -0.01 -0.12 0.10 0.54 Undecided
No Yes 60 - 70 -0.09 -0.19 0.02 0.90 Undecided
No Yes 70 - 80 0.01 -0.13 0.15 0.54 Undecided

Table 15: PIENTER 2

Table 16: HDI + Rope analysis for P2: “Have you kept a cat as a pet for
the past 5 years?”

petcat1 petcat2 age_cat p_diff lower upper pd result
No Yes 0 - 10 0.01 -0.03 0.05 0.67 Undecided
No Yes 10 - 20 -0.02 -0.07 0.03 0.76 Undecided
No Yes 20 - 30 -0.02 -0.07 0.03 0.77 Undecided
No Yes 30 - 40 -0.03 -0.09 0.03 0.77 Undecided
No Yes 40 - 50 -0.10 -0.17 -0.04 0.99 Undecided
No Yes 50 - 60 -0.05 -0.12 0.02 0.86 Undecided
No Yes 60 - 70 -0.07 -0.14 0.01 0.91 Undecided
No Yes 70 - 80 -0.20 -0.28 -0.12 1.00 Yes higher

Table 17: HDI + Rope analysis for P2: “Did you have contact with cats in
the past 12 months?”

contcat1 contcat2 age_cat p_diff lower upper pd result
No Yes 0 - 10 -0.00 -0.03 0.03 0.57 No difference
No Yes 10 - 20 0.03 -0.01 0.08 0.87 Undecided
No Yes 20 - 30 0.02 -0.03 0.07 0.78 Undecided
No Yes 30 - 40 0.03 -0.03 0.09 0.80 Undecided
No Yes 40 - 50 -0.10 -0.16 -0.04 0.99 Undecided
No Yes 50 - 60 -0.08 -0.14 -0.02 0.98 Undecided
No Yes 60 - 70 -0.08 -0.14 -0.02 0.99 Undecided
No Yes 70 - 80 -0.15 -0.22 -0.09 1.00 Yes higher
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Table 18: HDI + Rope analysis for P2: “Have you consumed raw meat
products in the past 12 months?”

rawmeat1 rawmeat2 age_cat p_diff lower upper pd result
No Yes 0 - 10 0.12 0.02 0.23 0.98 Undecided
No Yes 10 - 20 -0.01 -0.07 0.05 0.59 Undecided
No Yes 20 - 30 0.01 -0.04 0.07 0.62 Undecided
No Yes 30 - 40 0.01 -0.06 0.07 0.59 Undecided
No Yes 40 - 50 -0.06 -0.12 0.02 0.90 Undecided
No Yes 50 - 60 -0.08 -0.15 -0.02 0.98 Undecided
No Yes 60 - 70 -0.12 -0.18 -0.06 1.00 Yes higher
No Yes 70 - 80 -0.05 -0.12 0.02 0.86 Undecided

Table 19: HDI + Rope analysis for P2: “Have you consumed raw pork meat
in the past 12 months?”

rawporkmeat1 rawporkmeat2 age_cat p_diff lower upper pd result
no yes 0 - 10 0.02 -0.07 0.09 0.64 Undecided
no yes 10 - 20 -0.01 -0.08 0.05 0.59 Undecided
no yes 20 - 30 -0.02 -0.07 0.03 0.74 Undecided
no yes 30 - 40 0.03 -0.03 0.09 0.79 Undecided
no yes 40 - 50 -0.09 -0.16 -0.02 0.98 Undecided
no yes 50 - 60 -0.12 -0.19 -0.05 1.00 Yes higher
no yes 60 - 70 -0.15 -0.22 -0.08 1.00 Yes higher
no yes 70 - 80 -0.06 -0.15 0.05 0.81 Undecided

Table 20: PIENTER 2 HDI + ROPE for eating raw porkmeat per 10 years

Table 21: HDI + Rope analysis for P2: “Have you consumed raw beef in
the past 12 months?”

rawbeef1 rawbeef2 age_cat p_diff lower upper pd result
No Yes 0 - 10 0.01 -0.03 0.05 0.67 Undecided
No Yes 10 - 20 -0.02 -0.07 0.03 0.76 Undecided
No Yes 20 - 30 -0.02 -0.07 0.03 0.77 Undecided
No Yes 30 - 40 -0.03 -0.09 0.03 0.77 Undecided
No Yes 40 - 50 -0.10 -0.17 -0.04 0.99 Undecided
No Yes 50 - 60 -0.05 -0.12 0.02 0.86 Undecided
No Yes 60 - 70 -0.07 -0.14 0.01 0.91 Undecided
No Yes 70 - 80 -0.20 -0.28 -0.12 1.00 Yes higher

Table 22: HDI + Rope analysis for P2: “Do you consume unwashed raw
vegetables?”

unwashedveget1 unwashedveget2 age_cat p_diff lower upper pd result
No Yes 0 - 10 -0.03 -0.07 0.01 0.87 Undecided
No Yes 10 - 20 -0.04 -0.09 0.01 0.90 Undecided
No Yes 20 - 30 -0.02 -0.06 0.02 0.74 Undecided
No Yes 30 - 40 0.02 -0.04 0.07 0.69 Undecided
No Yes 40 - 50 -0.03 -0.10 0.03 0.79 Undecided
No Yes 50 - 60 -0.04 -0.10 0.03 0.81 Undecided
No Yes 60 - 70 -0.06 -0.13 0.01 0.90 Undecided
No Yes 70 - 80 -0.13 -0.21 -0.05 0.99 Undecided
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B.3 Covariate analysis tables PIENTER 3

Table 23: HDI + Rope analysis for P3: “What is the highest level of edu-
cation or training that you have completed?”

education1 education2 age_cat p_diff lower upper pd result
Low High 0 - 10 0.05 0.01 0.09 0.99 Undecided
Middle High 0 - 10 0.04 0.01 0.07 0.99 Undecided
Middle Low 0 - 10 -0.01 -0.06 0.03 0.61 Undecided
Low High 10 - 20 -0.00 -0.04 0.04 0.52 No difference
Middle High 10 - 20 0.01 -0.04 0.05 0.59 No difference
Middle Low 10 - 20 0.01 -0.03 0.04 0.62 No difference
Low High 20 - 30 0.05 -0.01 0.11 0.92 Undecided
Middle High 20 - 30 0.02 -0.02 0.05 0.79 No difference
Middle Low 20 - 30 -0.03 -0.09 0.03 0.82 Undecided
Low High 30 - 40 0.07 0.00 0.13 0.96 Undecided
Middle High 30 - 40 0.02 -0.02 0.06 0.77 Undecided
Middle Low 30 - 40 -0.05 -0.11 0.02 0.87 Undecided
Low High 40 - 50 0.05 -0.02 0.12 0.90 Undecided
Middle High 40 - 50 -0.04 -0.09 0.02 0.85 Undecided
Middle Low 40 - 50 -0.09 -0.15 -0.02 0.99 Undecided
Low High 50 - 60 0.10 0.03 0.17 0.98 Undecided
Middle High 50 - 60 -0.00 -0.07 0.08 0.53 Undecided
Middle Low 50 - 60 -0.10 -0.17 -0.03 0.99 Undecided
Low High 60 - 70 0.08 0.01 0.15 0.97 Undecided
Middle High 60 - 70 -0.05 -0.13 0.03 0.83 Undecided
Middle Low 60 - 70 -0.13 -0.20 -0.06 1.00 Low higher
Low High 70 - 80 0.06 -0.02 0.14 0.87 Undecided
Middle High 70 - 80 -0.03 -0.13 0.08 0.68 Undecided
Middle Low 70 - 80 -0.09 -0.18 0.00 0.94 Undecided
Low High 80 - 90 0.10 -0.07 0.27 0.84 Undecided
Middle High 80 - 90 -0.00 -0.24 0.21 0.50 Undecided
Middle Low 80 - 90 -0.10 -0.28 0.08 0.83 Undecided

Table 24: HDI + Rope analysis for P3: “Have you worked with your bare
hands in the soil in the garden/on land in the past 12 months?”

gardening1 gardening2 age_cat p_diff lower upper pd result
No Yes 0 - 10 -0.01 -0.07 0.04 0.59 Undecided
No Yes 10 - 20 -0.01 -0.04 0.02 0.77 No difference
No Yes 20 - 30 -0.01 -0.05 0.04 0.60 No difference
No Yes 30 - 40 -0.00 -0.06 0.05 0.55 Undecided
No Yes 40 - 50 0.00 -0.06 0.07 0.54 Undecided
No Yes 50 - 60 0.02 -0.04 0.08 0.72 Undecided
No Yes 60 - 70 0.00 -0.06 0.07 0.53 Undecided
No Yes 70 - 80 -0.04 -0.18 0.09 0.70 Undecided
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Table 25: HDI + Rope analysis for P3: “Have you kept farm animals in the
past 5 years?”

agriculture1 agriculture2 age_cat p_diff lower upper pd result
No Yes 0 - 10 0.01 -0.03 0.04 0.71 No difference
No Yes 10 - 20 -0.02 -0.08 0.04 0.69 Undecided
No Yes 20 - 30 -0.05 -0.12 0.01 0.92 Undecided
No Yes 30 - 40 -0.00 -0.09 0.08 0.54 Undecided
No Yes 40 - 50 0.02 -0.07 0.10 0.61 Undecided
No Yes 50 - 60 -0.01 -0.13 0.11 0.53 Undecided
No Yes 60 - 70 0.04 -0.08 0.17 0.70 Undecided
No Yes 70 - 80 -0.06 -0.20 0.10 0.71 Undecided
No Yes 80 - 90 -0.01 -0.23 0.24 0.53 Undecided

Table 26: HDI + Rope analysis for P3: “Have you kept a cat as a pet for
the past 5 years?”

petcat1 petcat2 age_cat p_diff lower upper pd result
No Yes 0 - 10 0.01 -0.01 0.04 0.78 No difference
No Yes 10 - 20 -0.02 -0.06 0.02 0.83 Undecided
No Yes 20 - 30 0.01 -0.02 0.04 0.74 No difference
No Yes 30 - 40 0.04 -0.00 0.08 0.92 Undecided
No Yes 40 - 50 0.02 -0.03 0.08 0.73 Undecided
No Yes 50 - 60 -0.05 -0.12 0.01 0.90 Undecided
No Yes 60 - 70 -0.00 -0.09 0.07 0.51 Undecided
No Yes 70 - 80 -0.01 -0.12 0.10 0.57 Undecided
No Yes 80 - 90 0.31 -0.03 0.62 0.92 Undecided

Table 27: HDI + Rope analysis for P3: “Did you have contact with cats in
the past 12 months?”

contcat1 contcat2 age_cat p_diff lower upper pd result
yes no 0 - 10 -0.02 -0.04 0.01 0.83 No difference
yes no 10 - 20 0.02 -0.01 0.05 0.81 No difference
yes no 20 - 30 -0.03 -0.06 0.00 0.92 Undecided
yes no 30 - 40 -0.02 -0.06 0.02 0.83 Undecided
yes no 40 - 50 -0.04 -0.09 0.01 0.90 Undecided
yes no 50 - 60 0.06 -0.00 0.12 0.94 Undecided
yes no 60 - 70 0.03 -0.04 0.09 0.76 Undecided
yes no 70 - 80 0.01 -0.06 0.08 0.61 Undecided
yes no 80 - 90 -0.19 -0.36 -0.02 0.97 Undecided

Table 28: HDI + Rope analysis for P3: “Have you consumed raw meat
products in the past 12 months?”

rawmeat1 rawmeat2 age_cat p_diff lower upper pd result
yes no 0 - 10 0.02 -0.00 0.06 0.92 Undecided
yes no 10 - 20 0.00 -0.03 0.04 0.54 No difference
yes no 20 - 30 0.03 0.00 0.06 0.94 Undecided
yes no 30 - 40 -0.03 -0.07 0.02 0.82 Undecided
yes no 40 - 50 0.03 -0.03 0.08 0.77 Undecided
yes no 50 - 60 0.02 -0.05 0.09 0.64 Undecided
yes no 60 - 70 0.09 0.03 0.15 0.99 Undecided
yes no 70 - 80 -0.01 -0.08 0.07 0.57 Undecided
yes no 80 - 90 0.06 -0.07 0.22 0.76 Undecided
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Table 29: HDI + Rope analysis for P3: “Have you consumed raw pork meat
in the past 12 months?”

rawporkmeat1 rawporkmeat2 age_cat p_diff lower upper pd result
yes no 0 - 10 0.03 -0.02 0.10 0.89 Undecided
yes no 10 - 20 -0.01 -0.05 0.04 0.58 No difference
yes no 20 - 30 0.02 -0.01 0.05 0.82 Undecided
yes no 30 - 40 -0.01 -0.05 0.04 0.63 Undecided
yes no 40 - 50 0.04 -0.02 0.10 0.83 Undecided
yes no 50 - 60 0.12 0.03 0.19 0.99 Undecided
yes no 60 - 70 0.12 0.04 0.19 0.99 Undecided
yes no 70 - 80 -0.06 -0.16 0.05 0.82 Undecided
yes no 80 - 90 0.03 -0.16 0.19 0.61 Undecided

Table 30: HDI + Rope analysis for P3: “Have you consumed raw beef in
the past 12 months?”

rawbeef1 rawbeef2 age_cat p_diff lower upper pd result
yes no 0 - 10 0.02 -0.01 0.06 0.89 Undecided
yes no 10 - 20 0.01 -0.02 0.05 0.76 No difference
yes no 20 - 30 -0.01 -0.04 0.03 0.65 No difference
yes no 30 - 40 -0.06 -0.11 -0.01 0.98 Undecided
yes no 40 - 50 -0.03 -0.08 0.03 0.80 Undecided
yes no 50 - 60 -0.01 -0.07 0.06 0.56 Undecided
yes no 60 - 70 0.07 0.01 0.13 0.97 Undecided
yes no 70 - 80 0.00 -0.07 0.07 0.50 Undecided
yes no 80 - 90 0.05 -0.09 0.20 0.73 Undecided

Table 31: HDI + Rope analysis for P3: “Do you consume unwashed raw
vegetables?”

unwashedveget1 unwashedveget2 age_cat p_diff lower upper pd result
yes no 0 - 10 0.01 -0.02 0.04 0.70 No difference
yes no 10 - 20 0.03 0.00 0.06 0.95 Undecided
yes no 20 - 30 -0.03 -0.06 0.01 0.88 Undecided
yes no 30 - 40 -0.02 -0.06 0.02 0.81 Undecided
yes no 40 - 50 0.01 -0.04 0.06 0.63 Undecided
yes no 50 - 60 -0.05 -0.11 0.02 0.91 Undecided
yes no 60 - 70 0.03 -0.03 0.09 0.78 Undecided
yes no 70 - 80 0.02 -0.04 0.09 0.67 Undecided
yes no 80 - 90 -0.14 -0.28 0.00 0.94 Undecided
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