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Abstract

Hearing loss is a condition that affects the microstructure of the auditory nerve. Diffusion Kurtosis Imaging (DKI) is a non-invasive
MRI technique that can be used to assess the condition of the nerve in patients with hearing impairment. In this study, an auto-
mated pipeline for processing and analyzing diffusion-weighted imaging (DWI) data in subjects with normal hearing, unilateral,
and bilateral hearing loss is proposed to research any differences in the auditory nerves of these three groups. The pipeline includes
preprocessing steps for DWI artefact correction, the application of the DKI model and DTI-based deterministic tractography estab-
lished on an automated algorithm for region-of-interest (ROI) generation based on manual segmentation of the subjects’ cochleae.
Qualitative analysis of fiber tract bundle segments revealed alternations in shape and size between the left and right sides. Be-
tween normal hearing and unilateral deaf subjects, no significant alternations in the diffusion metrics of either side, for both Phase
Encoding directions, were observed. Similarly, no differences were detected when comparing normal hearing and two-sided deaf
subjects. Variations in mean kurtosis were investigated to assess the impact of hearing loss on microstructure complexity but with
no significant outcomes. The automated pipeline was tested in multiple acquisition sessions in 6 out of 10 subjects and statistically
proved to be reproducible. Enhancements to the pipeline can improve the quality of the results and should focus on the correction of
deformations caused by EPI distortions and the integration of an automated masking method of the cochleae. Therefore, additional
studies with a larger dataset and updated acquisition protocol are needed to validate and expand upon these findings to ensure the
acceptance of DKI and fiber tractography as reliable methods for evaluating the condition of the disorder.
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1. Introduction

The auditory nerve is an important part of the human audi-
tory pathway that connects the inner ear with the brainstem.
Sound waves entering the ear as vibrations, are encoded to
electrical impulses by the inner hair cells located inside the
cochlea and are transmitted via this nerve to the cochlear nu-
clei inside the brainstem and other parts of the central audi-
tory nervous system for further processing Møller (2011). The
auditory nerve consists of around 31000 to 32000 nerve fibers
constructed from bipolar ganglion cells. From these fibers, 90-
95% are myelinated type I neurons connecting with the inner
hair cells and around 5-10% unmyelinated type II neurons con-
nected to the outer hair cells (Spoendlin (1985), Spoendlin and
Schrott (1989)). In people with hearing impairment, a small or
total loss of neurons is observed, which strongly depends on the
type of degeneration that caused the damage Spoendlin (1975).

Diffusion MRI (dMRI or DWI) is a special MRI technique
that can be used to study this nerve. DWI utilizes the 3D
Brownian motion of the water molecules inside tissues to ex-
tract useful information about their microstructure and connec-
tivity. It is widely used in clinic and research especially for
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imaging the nervous system Cleveland et al. (1976). Diffusion
weighted images are mostly acquired using spin-echo sequence
together with Echo Planar Imaging (EPI). Simultaneously, mul-
tiple diffusion gradients are applied to both sides of the refo-
cusing (180◦) pulse. The gradients have different directions
and multiple weightings, whose magnitude is related to the b
value (in s/mm2). The resulting diffusion weighted images are
produced with a low signal-to-noise ratio and are prone to ar-
tifacts due to subject related and system related reasons, such
as the gradient switch, the EPI sequence design and scanner in-
stabilities. These affect the clinical outcomes and increase bias
in their qualitative and quantitative evaluation (Baliyan et al.
(2016); Tax et al. (2016)). Thus, careful acquisition prepara-
tion and further data processing are needed to minimise such
artifacts. One of the most challenging parts is the planning of
a processing pipeline that takes into consideration all of the ar-
tifacts and can correct them in multiple steps before moving
to further analysis and quantification of the desired anatomical
region Tax et al. (2022).

A major advantage of the DWI is the ability to use the in-
formation of how much hindered or free the water diffusion in
the tissue is. This can be linked to the structure of the tissue.
Changes in this hindrance indicate structure change which can
be a result of a pathology Beaulieu (2002). Assuming that water
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molecules follow Gaussian distribution, the magnitude and the
dominant orientation of the motion can be described by a model
called diffusion tensor imaging (DTI). DTI can be used to mea-
sure the degree of anisotropic diffusion inside the tissue (Basser
et al. (1994)) and to quantify this anisotropy with metrics like
fractional anisotropy (FA) and mean diffusivity (MD). Pathol-
ogy causes damage in the tissue and affects the hindrance of
the water resulting in changes in the DTI tensor and the afore-
mentioned parameters. The anisotropic diffusion has a principle
orientation, which is described by the eigenvectors of the DTI
tensor. By the use of computational algorithms, the principal
orientation in multiple voxels can be tracked reconstructing ar-
tificial neural pathways. Connecting the axons to a streamline,
a 3D reconstruction of the neural pathways can be performed
with a technique called fiber tractography Basser et al. (2000).
Fiber tracking is a well-known method in brain research and is
used for quantification and visualization of tissue architecture.

More complex models, such as the diffusion kurtosis ten-
sor (DKI), can also be used to investigate the diffusion phe-
nomenon. Assuming movement that deviates from Gaussian
distribution, the DKI model uses the non-Gaussian order to fur-
ther describe complex tissues and their grade of structure Jensen
et al. (2005). Parameters like Mean kurtosis (MK), Axial kurto-
sis (AK) and Radial Kurtosis (RK) are used to quantify the de-
gree of kurtosis. In biophysical models due to the tissue’s com-
plicated structure, the water diffusion may not follow Gaussian
distribution. This deviation described from the kurtosis tensor
can be regarded as a measure of a tissue’s degree of structure.
Thus, both DTI and DKI are suitable models for a non-invasive
study of the auditory nerve.

In clinical research, DTI has been used to study the audi-
tory pathways in patients with Congenital Cochlear Nerve De-
ficiency (CND) Wu et al. (2009) and Unilateral Acoustic Neu-
roma Kurtcan et al. (2016) in Inferior Colliculus and Lateral
Lemniscus, as well as for investigating microstructural alterna-
tions related to ageing both in the previous anatomies and Hes-
chl’s gyrus Lutz et al. (2007). A significant decrease in FA and
an increase in MD have been noticed, verifying that changes in
DTI parameters occur in pathological tissue and indicating its
advantage over conventional MRI techniques in the diagnosis
of auditory diseases. Chinnadurai et al. (2016) used both DKI
and DTI models in CND and highlighted the importance of kur-
tosis parameters in estimating and providing new insights about
microstructural differences. In a study of Kim et al. (2020), DTI
and DTI based tractography are proposed as possible candidates
to access the microstructural changes in subjects with hearing
loss. Both of these studies are focused mostly on the brainstem
and the cortical auditory pathways. Vos et al. (2015) researched
explicitly the auditory nerve using DTI and fiber tractography
highlighting some interesting facts. In single sided deaf pa-
tients, no significant differences in the FA between healthy and
deaf sides were found, but both sides showed significantly re-
duced FA when compared to normal subjects. They suggested
that several things need to be improved for a better study of the
region. To name a few, a greater number of subjects, higher
resolution of DWI, different acquisition protocols and a more
complicated model, such as DKI, could be possible solutions

for further research.
In literature, there are multiple generic pipelines to pro-

cess dMRI data, some of them optimized for the brain. Each
anatomy, like the auditory nerve, has its challenges and specifi-
cations making the commercial pipelines rather than applicable.
Thus, a fully optimized processing pipeline that matches the re-
quirements of this tiny structure needs to be created. Another
major concern is that, in the literature, there are only DTI met-
rics provided for this region of interest in a limited group of
subjects and only between normal hearing and one-sided deaf
subjects Vos et al. (2015). With a small background informa-
tion, the quantification of the auditory nerve is uncharted terri-
tory.

This study aims to provide an automated and optimized pro-
cessing and analysis pipeline of dMRI data of normal hearing,
single-sided and two-sided deaf patients using the DKI model
and DTI-based fiber tractography. Also, it will be tested in
multiple sessions of the same subjects to evaluate its repro-
ducibility. As degeneration can cause neuron loss and change in
microstructural properties Spoendlin (1975), a hypothesis that
there is a difference in DTI and DKI parameters between the
auditory nerves of normal hearing subjects and unilateral and
bilateral deaf patients will be tested.

2. Materials and Methods

2.1. The DTI and DKI model

The DTI model assumes a Gaussian distribution of the dif-
fusion of water molecules inside the tissues. Given the DWI
images and an anatomical T2, the water diffusivity is estimated
by the diffusion tensor (D). The tensor can be visualized as
an 3D ellipsoid defined by given centre and surface coordi-
nates. Its main three orientations are mathematically described
by eigenvectors (ϵ1, ϵ2, ϵ3) with magnitudes the eigenvalues
(λ1, λ2, λ3). The size of the ellipsoid is related to the dis-
tance that a water molecule can travel from its centre to the
surface, while its first eigenvector defines the main orientation
of the diffusivity Basser et al. (1994). FA and MD can be cal-
culated from the diffusion tensor and used as DTI quantifica-
tion parameters. MD is estimated by the average of the eigen-
values (Trace(D)/3 in mm2/s) describing the diffusivity of the
water molecules in a specific area for a given time, while FA
is the degree of anisotropy (values 0 from isotropic to 1 high
anisotropic) Basser (1995). MD can take positive values, while
white , 0.2-0.4 for grey matter and below 0.2 for CSF. For vi-
sualization purposes, RBG colour encoded maps are used for
understanding the main orientation of the ellipsoid (Anterior-
Posterior→ green, Left-Right→ red, Superior-Inferior→ blue)
Pajevic and Pierpaoli (1999).

DKI model assumes a non-Gaussian distribution of the wa-
ter molecules and describes the displacement of the probabil-
ity function from its normal distribution (Figure 1 Steven et al.
(2014)) as a form of peakedness Balanda and MacGillivray
(1988). Given the equation that describes the DTI model:
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Figure 1: Probability distribution for different kurtosis values. A kurtosis of
zero aligns with a Gaussian distribution.

the deviation from the Gaussian distribution is described in the
DWI signal equation as a second polynomial order
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where bi is the b value, D is the diffusion tensor and K is the
Kurtosis tensor. Kurtosis metrics, like Mean Kurtosis, Axial
Kurtosis (AK) and Radial Kurtosis (RK), can be derived to de-
scribe the complexity of the structure. In tissues like white mat-
ter AK is expected low, while RK is high Steven et al. (2014).
From Equation 1, DTI parameters can be estimated from the
DKI model too.

For b-values above 1000 s/mm2, the model estimation of the
natural logarithm of the signal decay is no longer linear. The
DTI model cannot accurately describe the DWI signal atten-
uation (figure 2 Rosenkrantz et al. (2015)). Thus, the devia-
tion of the linearity can only be estimated with a more com-
plicated model like DKI. Kurtosis imaging requires multi-shell
DWI data with at least 30 gradient orientations and two b-values
> 1000 s/mm2, which results in longer echo times and, subse-
quently scanning time.

2.2. Study population and data characteristics

The group consists of 10 healthy subjects (each scanned 4
times in different sessions), 10 additional healthy volunteers, 9
one-sided and 13 two-sided deaf individuals.

The dataset of each subject contains 2 multi-shell 4D
DWI volumes acquired with opposite Phase Encoding di-
rections (Anterior-Posterior, Posterior-Anterior). The diffu-
sion weighted volumes were acquired with b-values of b = 1
s/mm2(13 gradients), b = 400 s/mm2(20 gradients), b = 900
s/mm2(40 gradients) and b = 1500 s/mm2(60 gradients). The
voxel resolution is 1.8 mm3 isotropic and the image dimensions
128 × 128 × 20. In addition, an axial 3D T2-weighted anatom-
ical volume of voxel resolution 0.25 × 0.25 × 0.50 mm3 with
dimensions 528 × 528 × 50, a sagittal anatomical T2-weighted
volume and two survey scans are acquired with the same scan-
ning parameters described in Vos et al. (2015).

Figure 2: Natural logarithm of the DWI signal attenuation as a function of the b
value. The fit of the signal decay using monoexponential (DTI) and DKI model.

2.3. Image processing

The DWI data, and especially those with high b-values, have
relatively low SNR due to fast echo-planar acquisition methods,
the low signal and the presence of thermal noise in the scanner.
This has a great impact on the calculation of DWI parameters
(such as MD), the DTI tensor estimation and the reconstruction
of fiber tracts (Jones and Basser (2004). Thus, denoising was
performed on the data using DIPY (Garyfallidis et al. (2014)).
The PCA reconstruction was done automatically with random
estimation of noise variance based on the Marchenko-Pastur
distribution (Veraart et al. (2016)).

The resulting data were masked in DIPY using a median
filter smoothing of the input volumes and an automatic his-
togram Otsu thresholding to eliminate the effect of the back-
ground to signal drift estimation. Masking parameters were
chosen by trial and error with the main focus on maintaining the
anatomy surrounding the auditory nerve. Subsequently, the data
were corrected for signal drift between DWI volumes caused
by scanner instabilities, like heating, during multiple acquisi-
tion series (Vos et al. (2017)). The signal drift was estimated
based on b = 400 s/mm2volumes and both the estimation and
correction were done on ExploreDTI (Leemans et al. (2009)).
The data were sorted from the smaller to bigger b values and
cropped to 78 × 50 × 20 eliminating the extensive zero back-
ground.

Subject motion and eddy current distortions, caused by the
switch of the gradients during acquisition, result in artifacts and
increased bias to quantitative parameters, such as the FA Pier-
paoli (2010). The DWI volumes were corrected for these arti-
facts by aligning them to those with b = 1 s/mm2, which were
treated as non-DWI for the further processing steps, with proper
rotation of the B-matrix Leemans and Jones (2009). Affine reg-
istration was performed with 12 degrees of freedom and linear
interpolation using elastix Klein et al. (2009).

T2 volumes were resampled to 1.8 mm isotropic voxel res-
olution with trillinear interpolation on ExploreDTI and extra
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anatomies, like the front and rear parts of the skull, were
cropped to 72 × 56 × 14 in DIPY to match the FOV of the DWI
data. Negative pixel values resulting from resampling were set
to 0. The volumes were rigidly aligned to the average of b=1
s/mm2volumes.

In the last step, the DTI and DKI model were fitted on the
DWI data using the REKINDLE estimation Tax et al. (2015) in
native space.

2.4. Tractography

Whole brain DTI-based deterministic streamline tractogra-
phy was performed to AP and PA datasets for each subject.
Seed point resolution was set to 1 mm3 and the FA threshold
for seeding to 0.04, which is low as the auditory nerve path-
way is influenced by partial volume effect from the CSF Vos
et al. (2011, 2015). FA and MD tracking thresholds range from
[0.01, 0.9] and [0.0002, 0.01] mm2/s, respectively. Fiber tracts
with length [10, 500] mm with a maximum angular resolution
of 20◦ were allowed. The tractography was conducted with a
step size of 0.5 using linear interpolation.

Taking into account the tiny structure of the auditory nerve,
the cochleae were used as Seed for tractography analysis. Each
cochlea was manually outlined and segmented as a 3D cube
(of approximately from 278 to 370 mm3, depending on the
size) on ITK-Snap (Yushkevich et al. (2006), www.itksnap.org)
based on the aligned T2-weighted images and the average b =
1 s/mm2DWI volumes, except in a small those subjects or ses-
sions whose anatomical image was missing. The binary masks
are stored separately for the left and right cochlea for each sub-
ject. The coordinates of the centre point were defined and used
as parameters to create 3D hexagonal Seed ROIs that outline the
region of the cochleae. Based on the two center coordinates, the
mid-point was calculated as half of their distance and the mid-
sagittal plane was defined for each subject. The mid-point was
transformed to the right and left 75% its distance from the right
cochlea as

xR = x0 + 0.75× | x(cochlea)R − x0) | (3)

and left cochlea

xL = x0 − 0.75× | x(cochlea)L − x0) | (4)

respectively.
In this way, the sagittal plane transformation depends on the

anatomy and the distance of each subject’s cochleae from the
brain stem. The reason for choosing this method is that is
more robust to anatomical changes in the subject’s brain size
and shape. From the transformed plane, a rectangular ROI will
be created and used as a terminating point for the tractogra-
phy. For automation purposes, and to match each subject’s spe-
cific characteristics, the corners of the rectangular depend on
the minimum and maximum y,z coordinates of the hexagonal
Seed ROI. The rectangular extends 2 voxels below and 1 voxel
above the zmin and zmax on the z plane, while 4 voxels below
and 2 voxels above the ymin and ymax respectively. By reduc-
ing the size of the terminating ROIs, false tracts are excluded,

Figure 3: Manual cochleae segmentation used as an input for the automated
ROI generation algorithm (first figure). Hexagonal seed and rectangular ROIs
used for tractography analysis (second above) and segmentation (third figure).
The big green ROI represents the mid sagittal plane between the two cochleae.

aiming at the localization of the auditory nerve. This is very im-
portant, especially when dealing with a large dataset, where the
visualization and analysis of each subject’s tracts individually is
time-consuming. This automated method is heavily influenced
by the quality of the input masks of the segmented cochleae.
For the segmentation of the auditory nerve tracts, another rect-
angular ROI is located 1 voxel ahead of the centre of the Seed
ROI with the same length and width as the hexagon (Figure 3).

Thus, an automated method was created for analysing and
segmenting the auditory nerve tracts. For a matter of simplic-
ity, a Python interface with all the processing steps was cre-
ated. The user can type the processing step that wants to do
and specify the input and output paths except for the steps
that require the ExploreDTI toolbox. Regarding the tractog-
raphy analysis, the user can specify the input and output path
in the Matlab scripts, but with the ExploreDTI GUI running in
the background. The scripts for both the processing pipeline
and the tractography analysis as well as a file with a detailed
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Table 1: Diffusion tensor and kurtosis measures per group (mean (standard
deviation) over subjects within the group) of the AP data.

Subject Groups (AP)
Normal Single-sided Two-sided
hearing deaf deaf

FA
Left 0.16 (0.03) 0.15 (0.02) 0.16 (0.03)
Right 0.18 (0.04) 0.18 (0.01) 0.17 (0.03)
MD (10−3 mm2/s)
Left 2.21 (0.43) 2.47 (0.18) 2.11 (0.48)
Right 2.26 (0.43) 2.39 (0.29) 2.54 (0.50)
MK
Left 1.40 (0.75) 1.22 (0.11) 1.51 (0.54)
Right 1.14 (0.60) 1.20 (0.29) 1.09 (0.43)
AK
Left 1.29 (0.54) 1.10 (0.10) 1.34 (0.40)
Right 1.13 (0.38) 1.07 (0.21) 0.98 (0.34)
RK
Left 1.52 (0.84) 1.25 (0.14) 1.57 (0.65)
Right 1.21 (0.55) 1.26 (0.34) 1.13 (0.48)

description of the algorithms and the code can be found at
https://github.com/ChristosTsepas/Major-Project.

2.5. Statistical analyses

Group analysis and statistical tests were performed on Mi-
crosoft Excel. First, to evaluate the reproducibility of the whole
processing and analysis pipeline, differences in mean FA across
subjects of the same session are investigated using the ANOVA
test. Each session across subjects represents a group and the
variability between the 4 groups is tested. A two-tailed paired t-
test was applied to compare FA, MD, MK, AK and RK between
the left and right auditory nerve tract. Data of opposite Phase-
Encoding directions are treated as different datasets. In the last
step, the dataset was divided into three groups, normal hearing,
one-sided and two-sided deaf subjects. Between groups, F-tests
were performed to investigate if there were differences in the
variances. Depending on the results of the F-tests, two sam-
pled t-tests (with or without equal variances) were performed
between normal-hearing and one-sided deaf as well as normal-
hearing and two-sided deaf individuals. The main focus is to
detect any significant alternation in the diffusion parameters be-
tween groups.

3. Results

3.1. Processing

From the single-sided group, 5 out of 9 groups were used to
the whole processing pipeline because 3 subjects didn’t have a
clear indication of the PE direction (AP or PA) and subject 8
had fewer DWI volumes than 133. Also, some sessions from
normal hearing subjects were excluded due to the lack of ax-
ial anatomical T2 volume, missing volumes or due to missing
data of opposite PE direction. From the raw data, 126 datasets

Table 2: Diffusion tensor and kurtosis measures per group (mean (standard
deviation) over subjects within the group) of the PA data.

Subject Groups (PA)
Normal Unilateral Bilateral
hearing deaf deaf

FA
Left 0.21 (0.03) 0.17 (0.02) 0.19 (0.03)
Right 0.19 (0.04) 0.20 (0.05) 0.19 (0.03)
MD (10−3 mm2/s)
Left 1.94 (0.43) 2.27 (0.18) 1.96 (0.41)
Right 2.14 (0.34) 2.03 (0.37) 2.04 (0.37)
MK
Left 1.51 (1.03) 1.14 (0.29) 1.59 (0.47)
Right 1.43 (0.48) 1.64 (0.48) 1.55 (0.46)
AK
Left 1.45 (0.73) 1.04 (0.23) 1.52 (0.58)
Right 1.28 (0.38) 1.42 (0.37) 1.39 (0.37)
RK
Left 1.63 (0.99) 1.13 (0.33) 1.24 (1.10)
Right 1.41 (0.54) 1.68 (0.53) 1.52 (0.55)

were used for processing. Results of the automated algorithm
used for tractography analysis and segmentation show that 121
out of 125 left tracts (96.8%) and 107 out of 125 right tracts
(85.5%) could be reproduced and reconstructed. One session
from the normal hearing subject 10 was excluded for both AP
and PA datasets as it were corrupted files. From the resulting
segmentations, 9 left tract and 4 right tract segments showed
very high negative Mean Kurtosis values. 8 out of 9 left and 4
right were manually resegmented to reduce false positive tracts.
The rest of the tracts that couldn’t be reconstructed were manu-
ally evaluated and segmented respecting the already generated
ROIs from the algorithm.

3.2. Tract segment analysis

Opposite PE data were split into two sub-datasets as they
showed significant qualitative differences and couldn’t be con-
catenated into a single dataset. The following analysis was per-
formed on AP and PA datasets independently.

3.2.1. Reproducibility
The reproducibility was tested separately for left and right

tracts. For the ANOVA tests subjects whose tracts could be
reconstructed for every session are included. For the AP data,
6 subjects were used for both left (F = 1.27, Fcrit = 3.10, p =
0.31) and right tracts (F = 0.40, Fcrit = 3.13, p = 0.76). For the
PA data, 6 subjects were used for left (F = 0.75, Fcrit = 3.22,
p = 0.53) and right (F = 0.24, Fcrit = 3.00, p = 0.87). For the
percentage of the data used for the statistical test, the results
showed reproducibility of the analysis for both left and right
tracts. The second session for each subject used for the ANOVA
test was included in the dataset for the following analysis.
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Table 3: Results of paired t-tests between left and right side for AP data.

p-value (AP)
Normal Unilateral Bilateral
hearing deaf deaf

FA 0.12 0.09 0.54
MD 0.70 0.50 0.03
MK 0.26 0.86 0.09
AK 0.33 0.75 0.28
RK 0.24 0.94 0.12

Table 4: Results of paired t-tests between left and right side for PA data.

p-value (PA)
Normal Unilateral Bilateral
hearing deaf deaf

FA 0.15 0.33 0.56
MD 0.20 0.30 0.47
MK 0.84 0.196 0.75
AK 0.48 0.199 0.42
RK 0.55 0.197 0.55

3.2.2. Fiber bundle segment
Qualitatively, a notable discrepancy in the number of tracts

between the left and right segments can be detected. The mean
length of the whole dataset is 9.5 mm for the left and 12.8 mm
for the right segments, almost two voxels difference. In addi-
tion, a few false positive tracts are included in the segments,
which correspond to tracts from remaining artefacts (or noise)
after the preprocessing pipeline as well as tracts due to EPI de-
formations (Figure 4). The automated algorithm for ROI gener-
ation plays a crucial role as the size and shape of the generated
ROIs cannot exclude tracts that are unrelated to the auditory
nerve.

Mean values of diffusion parameters per group can be found
in tables 1 6. Overall, lower FA and higher MD are estimated in
the subject groups compared to controls, except for the MD val-
ues of the right side in PA data. Regarding the DKI parameters,
MK becomes smaller in the patient groups, but only in the AP
data. For AK and RK, no clear pattern in the values is found.
Also, the difference between the two sides in each group is pro-
found. A detailed description of the inter-subject variability can
be found in figure 5.

No laterality differences were noticed between left and right
tracts for all diffusion parameters. Only the mean MD in two-
sided deaf (AP) showed significant differences between the left
and right sides, but this might be mostly due to the high standard
deviation per subject and the nature of the data (false tracts) and
not the means themselves.

As no significant differences were found in the normal hear-
ing subjects, the left and right tracts per subject were averaged
and used for the next statistical step. Comparing the normal
hearing and unilateral deaf groups, the only decrease, slightly
above the approved value for statistical significance, was no-
ticed on the mean FA of the left side for PA data (FA: p = 0.06).
For the left side of the AP data mean FA showed a decrease

Table 5: Results of the t-test comparing average normal hearing and one-sided
and two-sided deaf.

p-value (AP)
NH vs Unilateral deaf NH vs Bilateral deaf

FA
Left 0.08 0.34
Right 0.74 0.84
MD
Left 0.18 0.47
Right 0.39 0.09
MK
Left 0.75 0.30
Right 0.79 0.40
AK
Left 0.31 0.41
Right 0.43 0.12
RK
Left 0.46 0.40
Right 0.64 0.28

with (FA: p = 0.08), but cannot be accepted. No significant
alternations were observed in the other diffusion metrics. Com-
paring normal hearing and bilateral deaf subjects, no significant
differences were found. No statistically accurate differences in
diffusion metrics were observed even when comparing the two
patient groups.

4. Discussion

In this report, an automated pipeline for processing and
analysing DWI data of three subject groups (normal hearing,
unilateral and bilateral deaf) is proposed. DTI-based determin-
istic tractography was performed on the processed data and an
automated algorithm for automated ROI generation for tractog-
raphy analysis based on manual segmentation of the cochleae is
suggested. Albeit the resulting left and right side tracts showed
alternations in their shape and number, there was no difference
in the mean value of the DTI and DKI parameters between the
two sides of each group’s subjects. Normal hearing and one-
side deaf group comparison showed a lower mean FA in the
left tracts of the patient group for PA data. On the other hand,
lower FA and higher MD were observed between controls and
bilateral deaf subjects only for the right side of the AP data, but
with no significance. The results tend to show the expected be-
haviour for FA and MD between controls and patients, but the
high standard deviation within the group cannot ensure that the
FA, indeed, decreases and MD increases in the patients. Lower
FA is an indication of demyelination in the structure of interest
and the results justify this as both of the patient groups showed
a decrease. The same with MD, where increased diffusivity is
connected with less hindrance in the water diffusion and higher
water content in the tissue Hetherington et al. (2015), which
might be the result of inflammation that caused the hearing loss
in the subjects Eisenhut et al. (2019). The partial volume effects
are dominant and present in the calculation of mean FA, whose
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Figure 4: Qualitative tractography results of 3 random subjects representing each group (normal hearing, single-sided and two-sided deaf subjects). At each row,
AP (left) and PA (right) data are depicted. The tracts are visualized on top of the first b=1 s/mm2volume together with directional encoded colour maps. Profound
differences in the anatomical features and the number of true and false positive tracts between the opposite PE volumes can be noticed.

Table 6: Results of the t-test comparing average normal hearing and one-sided
and two-sided deaf.

p-value (PA)
NH vs Unilateral deaf NH vs Bilateral deaf

FA
Left 0.06 0.34
Right 0.97 0.54
MD
Left 0.09 0.70
Right 0.98 0.90
MK
Left 0.21 0.68
Right 0.65 0.82
AK
Left 0.08 0.57
Right 0.90 0.99
RK
Left 0.07 0.44
Right 0.67 0.88

values are closer to those of the CSF rather than white matter.
Although changes in DTI parameters are observed, the initial
hypothesis cannot be accepted either in unilateral deaf subjects
or the bilateral deaf group. Information on the tissue type and
complexity can be derived from the DKI parameters. Positive
MK indicates a complex structure within the region of interest,
which affects the water diffusion and its Gaussian behaviour.

The distribution of the MK values don’t provide essential in-
formation to understand whether the disorder alters the com-
plexity of the tissue’s microstructure. AK proved to be smaller
than RK, which as of Steven et al. (2014), is an indicator that
the segmented tracts contain anatomy with myelinated fibers,
but with a huge influence from partial volumes. Comparing the
results with previous work of Vos et al. (2015), both mean FA
and mean MD appeared higher. For the former, this happened
due to the way the fiber tracts were segmented (less accurate
when compared to manual segmentations), while the latter is
because of the different fitting of the DKI model to the signal
decay. However, to have a clear indication of the distribution of
the results, the whole dataset needs to be included and statisti-
cal analyses to be performed in the total batch. The exclusion
of some datasets affects the outcomes.

4.1. Limitations
In quantification MRI, errors occurred throughout the whole

pipeline propagate and have negative effects on the results. It is
crucial to optimize and validate each step of the pipeline, from
the processing steps to the model, as well as the nature of the
data. Understanding the limitations of the study can lead to
possible solutions to these negative effects.

4.1.1. Processing pipeline
Even though the data of the same subject represent the same

anatomy, the AP and PA data have strong dependencies on the
PE direction during the acquisition. This can be noticed both
qualitatively, by looking at the images, and quantitatively, on
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Figure 5: Box plots of the mean of the diffusion parameters of all points of all tracts in fiber bundle segment per subject. On the left the AP data with population
N1=5, N2=11 and N3=15 per side, for normal hearing, unilateral and bilateral deaf subjects with their code names respectively. On the right, the PA data with
population N1=5, N2=10 and N3=15 per side, accordingly.
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the inconsistent mean values of the diffusion parameters. Both
the cochlea and the auditory nerve are heavily deformed due
to susceptibility-induced Echo Planar Imaging distortions Vos
et al. (2015); Jezzard and Balaban (1995). The reason for ac-
quiring data with opposite PE directions was for the correc-
tion of such deformations, something that the pipeline consid-
ered not to take into account with the data remaining in native
(DWI) space. Experiments were conducted on ExploreDTI, es-
pecially non-rigidly aligning each subject’s data to the respect-
ing T2 volumes to eliminate these artefacts. The outcomes were
far from satisfactory as the AP and PA dependencies were still
present and the opposite PE data couldn’t be concatenated into
a single dataset. Also, deformations and blurring were noticed
when transforming the DWI volumes to the T2 space and the re-
sulting tracts did not align with the expected anatomical region
where the auditory nerve should have been located. Further re-
search needs to be done for the correction of these artefacts and
focus mostly on the optimization of the registration procedure.
Both FSL and elastix (called internally from ExploreDTI) were
used with no clear indicator of the optimal software for cor-
recting the deformations. The optimization needs to be local-
ized on the region around the cochlea and the auditory nerve
and tools validating on whole brain volumes might not be the
suitable candidate. Another possible solution is to use DIPY’s
Symmetric Diffeomorphic Registration in 3D. First, the defor-
mation field can be estimated by non-rigidly aligning the DWI
data to the T2 volume and then the deformation field will be ap-
plied again to the DWI volumes to correct for EPI distortions.
This idea is in between what FSL and ExploreDTI do. Another
idea is to develop a new registration algorithm which calls in-
ternally the elastix toolbox and can be carefully optimized on
the cochlea and auditory nerve.

Regarding the automated pipeline, future improvements will
focus on making it more user-friendly. The user can already
specify the processing step and folder path, but some of the pa-
rameters used in specific functions are predetermined. In future
releases, the user will be able to specify parameters, like image
dimensions on cropping, dilation in masking and patch radius
in denoising, from the interface without diving into the scripts.
Also, the aim is to avoid changing programming languages and
interfering with the Matlab scripts for ROI generation and trac-
tography analysis. Work will be conducted for the scripts to be
called internally using the Matlab engine for Python.

4.1.2. Tractography analysis
The automated algorithm for ROI generation and tractogra-

phy analysis is based on validated APIs like ExploreDTI and
Python’s Numpy library. It was designed in a way that it can
reduce systematic errors as much as possible and limit user in-
terference only on the manual segmentations and the specifica-
tion of ROI size and shape. Thus, any error occurring in the
analysis is based on these two factors. The uneven tract length
testifies to the existence of the algorithm’s limitations. The tran-
sition from voxel coordinates to world coordinates as well as
from Numpy to Matlab and ExploreDTI GUI’s interpretation
of data caused voxel shifting. Also, miscalculation of midpoint
coordinates exists due to uneven cochleae. The midpoint is de-

termined based on the centre coordinates of the masks, but if the
masks are not on the same x-line the sagittal plane perpendicu-
lar to the midpoint will be determined with a voxel difference.
Even though these points need improvement, such a difference
in the tract length couldn’t make so much difference in the cal-
culation of the diffusion parameters. On the other hand, this
could justify why fewer tracts were produced on the right side
of the subjects. To eliminate the false negative tracts the ROIs
used for segmentation can be smaller and more precise on the
actual location of the tracts. The automated algorithm can take
advantage of the information provided on tract density maps to
create ROIs that match the tract’s size and shape. Regarding
the masking, semi-automated methods like the one proposed
on Matloff et al. (2021), can be used as an alternative to man-
ual segmentation of the cochleae. The method is based on T2-
weighted images, so to be implemented properly, the successful
elimination of EPI deformations and alignment with the T2 vol-
ume is required. These improvements can eliminate systematic
errors and enhance the robustness of the method.

4.1.3. Image acquisition
Even though the main focus is on data processing, some

improvements for data acquisition can be suggested. Tak-
ing into account the small cross-section of the auditory nerve
(around 0.5 mm) acquisition protocol needs to be designed with
a smaller voxel size (even lower than 1 mm3). High resolution
will help distinguish the auditory nerve from its counterpart, the
vestibular nerve, and the surrounding CSF. The need for larger
resolution can be noticed in the provided data too. By observ-
ing the data acquired with 1.8 mm3 resolution, one can see that
the area surrounding the auditory nerve consists of a few voxels
(sometimes even 2 or 3). This, also, makes it difficult for the
tractography analysis as there is a hit-or-miss chance of not los-
ing the voxel that contains the important information, especially
when motion artefacts occur. Another suggestion would be the
acquisition of volumes with at least an extra b-value > 1000
s/mm2 (i.e. 2000 s/mm2). Acquiring volumes with at least two
b values above 1000 s/mm2 would be beneficial to the tensor
fitting as it will add more weights to a more precise estimation
of the diffusion parameters. With higher resolution and increase
of the diffusion gradients, larger scanning times are needed and
the resulting images might be prone to thermal noise and arte-
facts due to subject motion. Thus, a realistic acquisition proto-
col needs a balanced design that carefully considers the voxel
resolution, time and limitation of such artefacts.

For further investigation of the auditory pathways beyond the
auditory nerve the acquired data must include parts of the brain
up until or above the temporal lobe. By increasing the FOV, the
same techniques and principles can be applied to examine and
investigate any differences in areas like the inferior colliculus,
lateral lemniscus and the primary and secondary auditory cortex
in patients with hearing loss.

5. Conclusion

In this study, an automated pipeline for processing and
analysing DWI data of healthy, one-sided and two-sided deaf
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subjects is proposed. No laterality differences were found be-
tween the subjects’ left and right tracts and no significant re-
duction was noticed in the diffusion metrics of both unilateral
and bilateral deaf patients. Further research needs to be done to
confirm that the DKI model can be used to access patients with
hearing loss. Therefore, the hypothesis cannot be accepted as
the results lack universality and are not verified for the patient
groups of this study.
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