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Part B – Scientific proposal 

 

B.1  BASIC DETAILS 

 

B.1.1 Title 

 

Deep Learning-Driven Coronary Artery Disease Diagnostics leveraging Cell-Free DNA Methylation 
 

B.1.2 Abstract 

 

Coronary artery disease (CAD), caused by atherosclerotic plaque buildup within coronary arteries, usually remains 

undiagnosed until severe symptoms occur, such as heart attacks (1-4). CAD affects approximately 200 million people globally, 

a leading cause of death in every population (1-3). The current ‘gold standard’ for CAD diagnostics is cardiac catheterization 

and angiogram, a costly and invasive procedure (2). Collectively coronary heart diseases (CHDs) cost approximately 11% of the 

EU healthcare budget over 77 billion euros annually. Due to the high prevalence and costs associated with CAD, novel 

diagnostic and predictive tests are ever more necessary. Here we propose the introduction of cell-free DNA (cfDNA) 

diagnostics, already leveraged in cancer and prenatal diagnostics, within the cardiac diagnostic field (5,6,8,9,13-15). CfDNA is 

released into blood from dying cells, it contains sequence and methylation information from their tissue of origin throughout 

the body. While varying cfDNA compositions have been described for cardiovascular diseases, reliable biomarkers and 

diagnostic tests have yet to be determined (10-12). Therefore, we propose the incorporation of natural language processing 

to create novel deep learning approaches using cfDNA for a classification model to differentiate CAD between patients. Using 

the novel human methylation atlas as a pre-training data corpus and creating novel tokenizers we aim to pre-train and fine 

tune a novel methylation language model capable of incorporating DNA methylation within the model pre-training (17). 

Furthermore, leveraging language model’s unique capabilities to track model attention mechanisms we can calculate which 

parts of the sequence or sequences help differentiate CAD patients from healthy, allowing us to further speculate alternative 

biomarkers (16). Given the success of such a model we can significantly impact the clinical setting of CAD diagnostics as well 

as create a novel language model which can be fine-tuned for various DNA methylation tasks. Furthermore, this approach 

could be leveraged to identify additional CHDs in the future. 

 

B.1.3 Layman’s summary 

 

Cardiovascular diseases are the largest contributors to death globally. Coronary artery disease (CAD), a common 

cardiovascular disease (CVD) is a result of plaque buildup in the coronary arteries, which typically begins with basic symptoms 

such as chest pain. CAD usually goes unnoticed until life-threatening symptoms occur such as heart attacks. During the CAD 

diagnosis patients must undergo multiple cardiovascular tests, the final and most conclusive tests are coronary catheterization 

Part A – Applicant 



TEMPLATE APPLICATON FORM (based on NWO Open Competition Domain Science – M) 
 
 

2 / 10 NWO-ENW v190703 

and angiograms, which are extremely invasive and expensive. Due to the prevalence of this disease and the increasing need 

for innovative diagnostic tools, we propose the use of cell-free DNA (cfDNA). Recent advancements in sequencing technologies 

have initiated the research of cfDNA, which can be sequenced from a blood sample and currently can be used as a diagnostic 

tool for cancer, organ transplant compatibility, and pregnancy complications. More recently it has been shown that patients 

with CVDs have different cfDNA patterns than healthy patients, and we suspect this can be used as a novel diagnostic tool for 

CAD patients. Currently cfDNA research is being propelled using artificial intelligence, but traditional models are not yet 

sufficient for clinical implementation. State-of-the-art artificial intelligence models, Language Models, have recently entered 

the scene of cfDNA research for cancer diagnosis. These models excel at capturing information, patterns, and elements from 

DNA sequences, and in cfDNA cancer research are able to identify tumorous sequences and estimate tumour presence in a 

patient. We suspect using this model and incorporating DNA methylation into a language model we can create an accurate 

diagnostic alternative for CAD disease. Once trained, language models can be fine-tuned to perform a wide variety of tasks 

depending on the type of data. We aim to fine-tune our language model to take the cfDNA sequences of a person and predict 

whether someone has CAD. Building off this first task, we want to predict how at risk a patient is for CAD. Once we’ve 

accomplished these goals, we will perform a study to identify what is the minimum amount of data to perform an accurate 

prediction of CAD. This can allow us to cut down of the amount of data required. Separately, we want to use language models 

to research the biological mechanisms of CAD. Language models allow us to identify which parts of the sequence is the model 

paying attention to. If we can determine these specific parts of the genome from the cfDNA, we can create a list of potentially 

relevant biological markers for research.  

 

B.1.4 Keywords 

 

Language Model, Cell-free DNA, DNA Methylation, Coronary Artery Disease Diagnoses, Deep Learning 

 

B.2  SCIENTIFIC PROPOSAL 

 

B.2.1 Research Topic  

 

Coronary Heart Disease (CHD) is one of the leading causes of death globally in both developing and developed countries (1). 

In 2021, CHD accounted for approximately 34% of deaths in Europe, and cost 11% of the EU healthcare costs, over 77 billion 

euros annually (3). One of the leading underlying causes of CHD is coronary artery disease (CAD) caused by atherosclerotic 

plaques in the lumen of coronary arteries. These plaques can grow, rupture, or erode impeding the normal blood flow (2). 

Untreated CAD eventually leads to myocardial infarctions (heart attacks) in which complete artery blockage prevents oxygen 

and blood from reaching the heart. CAD typically develops over decades and minor symptoms usually go unnoticed until 

severe symptoms arise, such as myocardial infarctions. CAD has been linked to several genetic variants (5). However, studies 

claim lifestyle and environmental factors play a much larger role (1,2,4). CAD has been shown to affect all ethnicities. 

Furthermore, men are more at risk than women, however after the age of 65 these differences gradually diminish. The general 

symptoms of CAD, chest pain and troubled breathing, are shared with numerous other differential diagnoses. Thus, patients 

suspected of CAD are required to undergo numerous tests to confirm CAD as the cause of their symptoms. The current ‘gold 

standard’ diagnostics are cardiovascular catheterization and angiograms, being particularly invasive and costly procedures. 

Furthermore, not all patients are eligible for such procedures, due to potential kidney damage, allergic reactions, or additional 

problems (2). As human life expectancy continues to grow, and sedentary lifestyles become more prevalent the need for 

alternative CHD diagnostic and predictive tools becomes ever more necessary.  Given the severity and prevalence of CHDs 

globally, predictive assessments could provide opportunity for countermeasures before the onset of the debilitating and life-

threatening CHD symptoms.  

 

Recent advances in high-throughput methylation sequencing have initiated the emergence of cell-free DNA (cfDNA) 

sequencing as a diagnostic tool in cancer, organ transplant rejection, preeclampsia, and fetal chromosome abnormalities (6-

10, 14, 15). During cell apoptosis and necrosis chromosomes are degraded by nuclease enzymes, however, nucleosome-wound 

DNA and their respective methylations remain intact. These sequences, averaging 165 bps, are released into the bloodstream 

where they remain for typically six hours until cleared by the liver (11). From a blood sample, these small cfDNA sequences 

contain information including DNA sequence, methylation modifications, and fragmentation patterns which can be leveraged 

to give real-time insight into cell and tissue-specific injuries. Current research claims patients with CHDs have significantly 

increased cfDNA levels for specific tissues when compared to healthy controls, as well as between different CHDs 

pathophysiology (12,13). Despite this, consistent CHD-specific biomarkers for cfDNA have failed to be determined and 

implemented.  
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Atherosclerosis formation and progression is a complex biological process that develops while ageing and is affected by a 

wide range of factors (namely dyslipidaemia, inflammation, blood pressure and others). This complexity is likely behind the 

difficulty in identifying biological biomarkers that can be linked to the presence of CAD, more specifically high-risk CAD. 

Therefore, a more nuanced approach is required that can account for such complexity. We propose the use of deep learning 

technologies. Deep learning is a division of machine learning which uses neural networks to learn and adapt to large datasets. 

Deep learning models for cfDNA cardiovascular diagnoses are currently focused on feed-forward and convolutional neural 

networks (14,15). While convolutional neural networks (CNNs) typically out-perform traditional feed-forward neural networks 

(NNs) they are significantly more computationally exhaustive. Both require extensive high-quality data to perform well and 

are conditionally outperformed by less demanding models such as random forests (RFs) and logistic regressions (LRs) (6,13). 

In cancer cfDNA deep learning models leverage the disparities between fragment lengths of healthy tissue and tumour cfDNA 

which does not occur in the normal cells of CHD patients (7,16). Therefore, we propose the use natural language processing 

models to overcome traditional deep learning insufficiencies. Language models (LMs), such as DNABERT, have emerged as 

state-of-the-art deep learning models which excel at capturing global contextual information between DNA sequences, with 

better results and a fraction of the computation cost of a convolutional neural network (17). LMs outperform alternative deep 

learning models in data scarce environments and are proficient at capturing patterns, subregions, and elemental aspects of 

DNA sequences entirely unsupervised (16,17). Making it an optimal approach to understand cfDNA discrepancies towards CAD 

patients. Additionally, LM’s multi-headed attention mechanisms can be leveraged to identify which elements of a sequence 

the model focuses attention. This aids in understanding the model’s decision making and depending on the model’s 

performance could give insight into unexplored biological elements. The leading methylation LM to date, MethylBERT, was 

pre-trained using the entire human genome which leveraged cfDNA for tumour sequences and yielded impressive capabilities 

for tissue deconvolution and tumour cfDNA classification. The developers have gone so far as to accurately predict tumour 

purity based on cfDNA inputs alone (16). The authors did not however, include DNA methylation within the pre-training of 

their language model, only leveraging DNA methylation for cfDNA deconvolution. Here we propose the creation of a novel 

language model, tokenizing methylated DNA all while pretraining on the first complete DNA-methylation atlas (18). These 

adjustments aim to further optimize deconvolutional capabilities while better leveraging specific DNA methylation patterns. 

Given enough high-quality CAD patient cfDNA data we will train a LM to classify and predict CAD, utilizing unique mechanisms 

of language models to observe sequence and methylation patterns the model identifies relevant for CAD diagnosis.  

 

Project Goals:  

1. Train a general language model Incorporating DNA methylation. 

2. Fine tune model to classify and predict CAD from coronary angiography cohort.  

3. Use language model attention mechanisms to determine potential biomarkers through CAD classification.  

 

B.2.2 Approach  

 

We propose a CAD diagnostic tool leveraging deep learning through the creation of a novel language model. This language 

model will employ patient cfDNA sequences and create embeddings, which will later be fine-tuned for CAD classification 

between patients. After fine-tuning optimization, we can begin to speculate patient discrepancies leveraged by the model in 

its predictions. Language models possess unique capabilities unlike other deep learning models, allowing observation of the 

model’s attention, via its attention mechanisms. If the model focuses on a specific sequences or methylation patterns for a 

given diagnosis, we can begin speculating potential CHD biomarkers from biologically relevant sequences. After discovering 

specific methylations and sequences this information can be further researched to disentangle the biology of CHDs. We split 

the project into three tasks, pre-training, fine-tuning, and biomarker detection and model optimization as shown in Figure 1. 
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Figure 1: Experimental Workflow for creation of novel LM for CAD diagnosis. (A) Leverage normal cell methylation atlas as foundational training corpus 

for LM. (B) Create custom tokenizer, which takes methylated sequences and assigns values for each depending on sequence and methylation. This 

value is combined with positional value to make unique tokens. (C) Pretrain BERT model using tokenized methylation atlas whole genome sequences. 

(D) Run unseen patient cfDNA sequences through tokenizer and then pretrained BERT model to obtain model embeddings. (E) Fine tune model using 

patient cfDNA embeddings for two tasks. (F) The first fine-tuned task is tissue deconvolution per unique sequence, to estimate patient compositions. 

(G) Separately fine tune model for patient healthy and CAD classifications. (H) Use results from F and G to find unique and relevant sequences 

determining differentiation. Backtrack BERT model’s attention mechanisms to determine methylations and sequences used for classifications.  

  

 

Task 1. Creating a LM which incorporates methylation data from the human DNA methylation atlas: 

We plan to utilize the methylation sequencing from the whole genome methylation atlas (18) within the LM’s pre-training, 

where the model learns cfDNA context and methylation patterns. This is based on two fundamental concepts, the pre-

training data corpus and the tokenization of sequences. LMs begin with a tokenization process in which n-kmer length 

sequences are converted to numeric representations for each unique segment, referred to as tokens as shown in Figure 2A-

C. These tokens are further differentiated with positional values per token (Figure 2D-E). The tokens can then be input into 

the LM for pretraining or data analysis and embedding extraction. Previous methylation language models make a non-optimal 

use of methylation information, only incorporating it in fine-tuning. We aim to incorporate sequence methylation into the pre-

training phase during the tokenization process by creating a custom tokenizer which incorporates DNA methylations, more 

specifically, methylated and unmethylated CpG sites as unique tokens (Figure 2C-D). Following the tokenization, the LM will 

be pretrained on methylated sequencing data unlike any DNA LM to date. Integrating the methylation data creates an 

additional layer of information within the pre-training from different tissues of the atlas. The model will be able to incorporate 

not only sequence-specific information, but also, tissue- and methylation-specific information, enhancing its capacity for 

comprehension and analysis. 
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Figure 2: Workflow for custom methylation tokenizer. (A) Example methylation DNA sequence highlighting methylated and unmethylated CpG sites. 

(B) Methylation DNA sequences will initially be split into n length kmers for tokenization process. Unmethylated Cytosine from CpG sites are labelled 

as Uracil, while non-CpG Cytosines remain Cytosines.  (C) Each sequence is converted to unique token value for that specific sequence, repeated 

sequences share the same numerical representation for sequence. We will include novel tokens for unique CpG sites, methylated and unmethylated. 

(D) The numerical representations for sequences are combined with positional values. (E) The combined sequence and positional values create the 

unique input embeddings to be leveraged by the pretrained BERT model.  

 

We adopt the use of the complete normal cell methylation atlas as the foundation for the model pretraining opposed to 

the complete genome traditionally used in DNA language models (18). Initially, these whole epigenomes will be randomly 

broken up into a range of varying length sequences which are tokenized then input as the pretraining data corpus. The model 

learns the contextual information of the methylated sequences here allowing it to differentiate cell types, tissue, and DNA 

activation through the process of Masked Language Modelling. Throughout this process the model randomly masks tokens 

and learns to predict masked tokens. Similarly to MethylBERT we will follow DNABERT’s optimized DNA pre-training 

parameters (17). 

 

Task 2. Fine-tuning of the foundational model to predict CAD in patients cfDNA: 

After pre-training, we can implement cfDNA sequences from healthy and CVD patients within the language model to extract 

embeddings and fine tune our model (Figure 1D). To classify patient’s cfDNA embeddings they will be grouped per patient and 

trained on multiple ML classifiers, such as a neural network and random forest classifiers, to determine the most appropriate 

classifier (Figure 1E). Post fine-tuning the classifiers performance will be validated using unseen data. To verify the model’s 

performance, the same sequences will be identically run through DNABERT, without methylation information, as well as one-

hot encoded and run through the fine-tuning classifiers opposed to using the language model embeddings. MethylBERT 

demonstrated accurate prediction of individuals with tumours and tumour purity from 14 healthy controls, 40 colorectal 

cancer patients, and 44 pancreatic ductal adenocarcinoma patients. We currently have cfDNA sequences from 70 donors, 10 

healthy controls, 40 CAD donors, and 20 alternative CHDs. To practically achieve our goals, we will need to increase our healthy 

controls by 10 donors, CAD patients by 10, costing approximately 20 thousand euros together. Additionally, DNABERT used 

an entire human genome as the pre-training data corpus and pre-trained their model for 25 days on 8 GPUs. Given that we 

plan to use the entire human methylation atlas for the entire genome, the computational costs for training computing capacity 

are estimated at 4 months with 8 GPUs.  

 

We plan to fine tune cfDNA embeddings with two distinct approaches, cfDNA tissue specific deconvolution and patient 

specific CAD classification. First, we will fine tune the language model to deconvolute individual sequences within patients. 

Giving a real-time view on patient’s cell death compositions (Figure 1F). This approach requires modification of the final layers 



TEMPLATE APPLICATON FORM (based on NWO Open Competition Domain Science – M) 
 
 

6 / 10 NWO-ENW v190703 

of the language model, specifying it for this task. Secondly, we can leverage the embeddings on a patient level, creating fine 

tuning models to classify patients with CAD (Figure 1G).  

 

Task 3. CAD Biomarker Detection and Model Optimization:  

While the combined patient cfDNA embeddings are to be used for CAD diagnoses, when combined with the CAD labels we 

can begin to contrast the disease with the controls. Leveraging cell-tissue compositions and tools such as UMAP we will further 

assess disparities between patient groups. Moreover, leveraging BERT’s attention mechanisms, we can calculate attention 

scores for various tokens from the input sequences. This can help us further speculate relevant sequences and methylation 

patterns by determining which sequences the model focuses its attention during the fine-tuning processes.  

 

Given the high costs of cfDNA methylation sequencing, it is essential we minimize the sequencing requirements to increase 

accessibility and feasibility for a clinical setting. New sequencing technologies such as Oxford Nanopore Sequencing can allow 

real-time sequencing, in a clinical setting for diagnosis. These can be equally as costly as modern diagnostic methods, while 

much less invasive, there is yet a great need to minimize the requirements needed for accurate diagnosis. We propose, 

beginning with a process of randomly sub-setting cfDNA sequences per patient to establish the minimum data requirements 

for accurate results from patient cfDNA sequencing.  

 

B.2.3 Feasibility / Risk assessment 

 

CfDNA has already proven to be a multifaceted diagnostic tool (6-10). However, there is still no feasible and straightforward 

methodology to bridge the gap between these cfDNA techniques and CAD diagnostics within a clinical setting. Traditional deep 

learning models have shown sufficient for other sects of cfDNA research such as transplant rejection and pregnancy 

complications (8,15). Nonetheless, creating alternative CHD diagnostic tools is beyond the scope of traditional deep learning 

models. Current models such as feed forward NNs require significant data contributions beyond what is currently available 

for CHDs. Alternatively, language models have proven contextual understanding of DNA sequences from the human genome 

alone. Therefore, the data prerequisites for construction are entirely feasible (Figure 3A). Furthermore, language models have 

sequence input length maximums ranging from 500-2000 bps allowing cfDNA sequences to optimally utilize LMs.  The novel 

whole genome methylation atlas provides an ideal infrastructure for a novel methylation language model training on sequence 

methylation unlike MethylBERT. This language model will be constructed to understand any human DNA methylation 

patterns, which can be leveraged in a range of methylated DNA applications across fields.  

 

Recent studies have elaborated on the significant differences in cfDNA profiles for CHD patients compared to healthy 

individuals, such as increased neutrophil and CD4+ cfDNA. (13). Naturally, language models for circulating DNA have already 

begun to emerge, MethylBERT, which when fine-tuned on tumour DNA, can accurately differentiate tumour DNA from normal 

cfDNA as well as use leverage DNA methylation post embedding to accurately estimate tumour purity per individual (16, 17). 

We aim to take this novel deep learning model and incorporate methylation data within the pre-training of the language 

model, unlike MethylBERT. Incorporating an additional layer of information for the model to learn from would potentially 

allow discovery of unforeseen context between patient and cfDNA features to their methylation and sequences. Post 

sequence specific fine-tuning, we believe this will allow for more accurate tissue deconvolution from cfDNA samples. As shown 

for DNABERT, the foundational DNA language model (17).   

 

For any machine learning model, the demands for high quality data are infinite. While language models surpass other models 

when working with limited data quantities, the fine-tuning still preforms proportionally to the quantity of data. This is a major 

limitation in terms of maximizing model accuracy and performance for CAD diagnosis and prediction. Therefor the feasibility 

for an accurate CAD classification and tissue deconvolution is yet limited (Figure 3A). Liquid biopsies are recent sequencing 

innovations and are currently costly. However, as cfDNA exploratory research and practical applications continue to expand 

this will improve in time. The majority of publicly available cfDNA data is from cancer research. Although the controls samples 

from the experiments are cancer free, we do not know the cardiovascular health of these individuals. However, cohorts from 

similar CHD cfDNA research with similar phenotypes and selection processes would be useful contributions to our own 

datasets, especially regarding healthy CHD controls. Lastly, given inaccurate results from our CAD classifier, we can still 

leverage our embeddings in alternative analyses, fine tuning for more specific biological features within the data. The language 

model’s unique attention mechanisms can show unbeknownst relevance between specific biological features of our 

methylation sequences. While LMs are currently state-of-the-art AI models, there remains risk for the models to overfit and 

underfit on irrelevant sequence elements rather than potential biomarkers (Figure 3A).  
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This project is not without risks, and a comprehensive assessment of the risks has been presented in Figure 3: 

Figure 3: Risk assessment table for the proposal goals. (A) Feasibility for project goals. (B) Risk assessment for proposed goals, in respect to required 

work and costs. (C) Impact Potential for Clinical and Research Impact per project goal.  

 

B.2.4 Scientific (a) and societal (b) impact 

 

While the CAD diagnosis and predictive tools are the overarching goal of the project, the creation of a state-of-the-art language 

model fully incorporating methylation DNA data has major implications for the field of cfDNA research (Figure 3B). Pre-training 

on the novel complete human methylation atlas allows for any type of model fine-tuning for various DNA methylation tasks, 

not limited to cfDNA or CHD research. Given the unprecedented capabilities of DNABERT, which will share the same foundation 

as our own language model, we can expect to predict various features from methylated data and additionally accurately 

deconvolute cfDNA to the tissue level. While, inevitably, newer models will precede our own with larger data corpuses and 

computational resources, this model will lay the foundation for such advancements with little to no risk. 

 

If the fine-tuning portion of our project were to be successful, it would significantly advance CAD diagnostics (Figure 3B). Given 

a high sensitivity, an initial test of patients presenting symptoms within the risk groups for CAD would provide enough proof 

to warrant invasive diagnostics, preventing the need for a series of increasingly invasive and costly tests. Contrarily, a high 

specificity from such tests, would better ensure patients undergoing cardiac catheterization and angiograms were not doing 

so unnecessarily. Given the severity of CAD symptoms an initial cfDNA blood test would be quick, given the convenience of 

on-site nanopore sequencing, minimally invasive predictions could be given the same day, warranting immediate preventive 

action. Treatment for CAD and other CHDs typically involves open heart surgery and such procedures do not occur without 

irrefutable assurance of diagnosis, which can only be provided via a cardiac angiogram. However, in time, as data availability 

and model capabilities increase, this will change given the widespread application of such models, as shown in various 

diagnostic application today. 

 

CAD, and other CHD, diagnoses patients must spend considerable funds and undergo series of increasingly invasive tests to 

be confidently diagnosed. If successful, an AI based diagnostic tool could not only enhance the patients experience, doing a 

simple blood test in place of angiograms, but in the future become cheaper than the current diagnosis. Although the costs of 

cfDNA sequencing is currently high, approximately 1200 euros per patient, with the increase demand for onsite nanopore 

sequencing, and given the historical decrease in sequencing costs the likelihood of sequencing within a clinical setting is rapidly 

approaching. Furthermore, the costs of the sequencing only needs to be less than the collective costs of diagnostic tests per 

patient, which can range from electrocardiograms (EKGs), echocardiography tests, stress tests, chest x-rays, blood work, and 

cardiac catheterization and angiograms. Given the slow onset of CAD and the multi-faceted learning approach from LMs, we 

suspect embeddings will additionally highlight disparities between CAD patients with regards to CAD severity. This can later 

be further leveraged into novel prediction models for CAD onset and severity. Predictive tests and diagnostics for aging 

diseases, such as CHDs, could delay serious risk of myocardial infarctions by years in patients, preventing avoidable medical 

care costs and improving patients’ quality of life.  
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B.2.5 Ethical considerations  

It is important to note that while the data will be publicly available, only patient data given with consent will be used. 

Their anonymity will be maintained throughout this process using anonymised data in secure servers only within the 

UMC Utrecht.  
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