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Abstract 

In the quest for sustainable agriculture, intercropping is emerging as a promising solution to 

monoculture. Nevertheless, the existing research on phenotyping in intercropping systems is 

insufficient. Unmanned Aerial Vehicles (UAVs), especially when equipped with RGB and 

LiDAR imagery, offer a promising avenue for estimating plant height. The accuracy of these 

two methods in estimating maize height in a strip intercropping field, focusing on individual 

and row levels, and observing height patterns throughout the growing season were estimated. 

A crop height model (CHM) for both types of imagery was created by subtracting a digital 

surface model (DSM) from a digital terrain model (DTM). Various percentiles and buffer sizes 

were tested, and the correlation between UAV-estimated plant height and ground truth plant 

height was evaluated using the coefficient of determination (R²) and root mean square error 

(RMSE) to determine the most suitable parameters. The results indicated that LiDAR was more 

accurate in capturing maize tassel height, with higher results for individual crop observations 

(R²= 0.9, RMSE= 13.41cm) than for row observations (R² = 0.89, RMSE = 20.89cm). RGB 

imagery yielded an R² of 0.88 and RMSE of 27.88 cm for individual crop height and an R² of 

0.91 and RMSE of 25.97cm for row observations. Once the optimal parameters are identified, 

the height patterns in rows and over time could be observed within the field experiment. Height 

variations were noted within the experimental field, with southern rows typically having lower 

height values. The influence of neighboring crops was also apparent, as maize plots exhibited 

lower height values with beans as neighboring crop compared to neighboring maize. To 

increase accuracy and automation, future studies should consider using tassel detection. 

Growth curves were observed as highly unique to the different genotypes. This study suggests 

that LiDAR imagery can offer a reliable assessment of individual maize heights in 

intercropping fields and that the noticeable height patterns between rows should be taken into 

account when discerning differences in the behavior of different crops and cultivars in 

intercropping systems. 
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1. Introduction 

1.1. Overview of the topic 

As the global human population is projected to reach 8.5 billion by the year 2030 (Population 

Estimates and Projections | DataBank, n.d.), the imperative to sustain livelihoods on a large 

scale has transformed monoculture into an agricultural standard, driven by the rapid 

advancements in modern industrial practices (Foley, 2011). Nevertheless, this approach has 

given rise to a series of pressing concerns, including biodiversity loss, soil degradation and 

over-reliance on non-renewable resources (Bourke et al., 2021). To confront these challenges, 

it may be crucial to contemplate a shift towards agricultural methodologies harmonizing with 

natural cycles, encompassing factors such as crop diversity. Intercropping stands out as a 

promising practice for mitigating the environmental impacts associated with modern 

agriculture while maintaining high yields (Bourke et al., 2021). Over time, maize has 

demonstrated its potential as a crop within intercropping systems (Seran & Brintha, 2010). 

Nevertheless, the successful implementation of intercropping demands attentive planning, 

involving intricate agricultural designs and the careful selection of cultivars optimized for such 

systems (Bourke et al., 2021).  

To maximize the benefit of intercropping systems, breeding programs must be tailored to 

accommodate the complexity of inter-specific interactions. Accurately measuring height data 

throughout the entire crop cycle assumes significance as it enables the characterization of 

growth rates, overall crop health, and the detection of any requirements for additional care 

(Anthony et al., 2014). Consequently, the utilization of phenomics observations becomes 

imperative to assess the underlying genetic variations (Bourke et al., 2021). The diverse growth 

stages of crops introduce nuances in height definitions, necessitating adjustments in the 

measuring methodology through the growth of the crop. Wang et al. (2020) emphasize the 

critical importance of acknowledging potential variations across different rows in intercropping 

scenarios.  

Traditional manual field phenotyping approaches are labour-intensive,  prone to damage, and 

susceptible to human error. Recent research has shown a growing interest in utilizing Remote 

Sensing (RS) systems, such as Unmanned Aerial Vehicles (UAVs), for monitoring crop traits, 

aiming to detect phenotypic variations within the crops. The use of UAVs allows a higher 

temporal and spatial resolution scale with low cost and operational flexibility (Berni et al., 

2009). Red-green-blue (RGB) cameras, multi/hyperspectral cameras, Light detection and 

ranging (LiDAR) sensors, and thermal and fluorescence imaging sensors can all be mounted 

on UAVs to gather RS data for crop phenotyping (Araus et al., 2018; Xie & Yang, 2020). Araus 

et al. (2018) specifically identify RGB and LiDAR images as the most effective tools for 

measuring crop height. Although the use of LiDAR has been perceived as more accurate than 

SfM RGB, its higher cost and complexity make it less appealing to farmers to implement 

(Malachy et al., 2022). The use of LiDAR, commonly used in forestry studies, is still little 

researched for crop management purposes (Gao et al., 2022).  

1.2. Problem definition 

Intercropping is rising as a good alternative to monoculture offering a solution to its negative 

environmental impacts. Currently, intercropping is primarily employed on small-scale farms, 
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but as its implementation expands, there arises a need to explore efficient methods in 

phenotyping for acquiring knowledge. The utilization of UAVs in crop monitoring within 

intercropping systems has shown promising potential in allowing more efficient measuring, yet 

the current body of research in this domain remains relatively recent and requires further 

development. A crop’s phenotype in intercropping systems intricately depends on a variety of 

factors, including spatial arrangement, crop species interactions, resource availability, 

environmental influences, and temporal dynamics (Bourke et al., 2021). This interplay of 

elements weaves a complex system of research considerations, underscoring the need for more 

comprehensive exploration and augmentation of existing knowledge in the research field. 

Despite the Netherlands significant agricultural presence, studies specifically focusing on 

maize phenotyping remain scarce. 

Maize is one of the world’s leading cereals, with 11 per cent of it being produced in Europe 

(Erenstein et al., 2022). While studies have focused on investigating crop height for maize at a  

field scale and in monoculture, there's a notable gap when it comes to understanding how 

individual maize behaves in intercropping systems. Acknowledging the distinctiveness of the 

selected study area, characterized by its diverse array of genotypes, our objective is to bridge a 

notable research gap within complex intercropping systems. This is why we use maize as the 

focal point for our study, aiming to shed light on its behavior in intercropping scenarios. Height 

has also been noted to correlate with other traits, including yield, serving as a dependable 

predictor for various essential crop characteristics (Qiu et al., 2022; Jamil et al., 2022). By 

observing the possible different height patterns in cultivars, the study hopes to obtain further 

knowledge on maize phenotyping. 

1.3. Research objectives 

The general research objective of this thesis is to assess the feasibility of two UAV-based 

methods, more specifically using RGB and LiDAR imagery, for monitoring maize height in 

intercropping systems. The most accurate method will then be applied to observe height 

patterns between and within the plots of an experimental field.  Here are the research questions 

that will be answered throughout this study: 

-         What key factors should be considered when assessing the effectiveness of UAVs in 

measuring maize height within intercropping systems? 

-         What is the accuracy of the two proposed UAV imagery-based methods (RGB and 

LiDAR) for observing maize height in the context of intercropping? 

-         Are there differences in height dynamics between the inner and outer maize rows in 

maize intercropping strips and do we see variation in these differences between the different 

maize cultivars? 

-         Is there variation in the growth dynamics between different maize cultivars in 

intercropping systems when analyzing their height at multiple time points using UAV data? 

1.4. Scope and limitations 

This study comes with certain limitations that need to be acknowledged. Firstly, it should be 

noted that the research focuses on maize crops, with a particular emphasis on different 
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cultivars. Unlike most field experiments that encompass one or two cultivars, this study delves 

into the examination of 32 cultivars which makes it unique. However, it's essential to recognize 

that height monitoring methods are highly crop-specific, as indicated by Jamil (2022). As a 

result, this investigation will focus exclusively on identifying a method suitable for maize 

crops. 

The primary focus of this study revolves around assessing the capabilities of RS for 

intercropping. While the results will be employed to observe intercropping patterns, it's 

important to highlight that the underlying reasons for these patterns will not be explored in this 

thesis. This would require observations of additional environmental factors which we do not 

possess for this study, as well as some genotypic analysis. Nevertheless, it is our aspiration that 

this research will establish a solid foundation for future agricultural investigations.  

In this study, our focus is not primarily on determining the superior method for maize height 

measurement in intercropping systems, as this assessment would entail consideration of various 

factors, including a cost-benefit analysis. Instead, our objective is to present results obtained 

from two distinct methodologies and to draw comparisons with findings from other studies. By 

doing so, we aim to contribute to the broader understanding of potential methodologies without 

imposing a definitive ranking. Moving forward, the UAV method demonstrating the highest 

accuracy will be selected to analyse growth patterns. This strategic choice ensures optimal 

accuracy in subsequent results. 
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2. Literature review  

2.1. Crop height monitoring in intercropping systems 

2.1.1. Intercropping: A sustainable agricultural practice 

Monocultures took a big rise in the 19th century with the appearance of mechanization, such 

as steam tractors, which gave farmers the possibility for financial and organizational benefits 

(Struik & Kuyper, 2017). Opting for monoculture relieved farmers from the complex 

production requirements of diverse crops, allowing them to maintain high-yield production 

with minimal compromises. However, as our understanding of environmental issues has 

advanced in recent decades (Power & Follett, 1987), monoculture’s dominant role in modern 

agriculture comes with strong concern about its disruption of natural cycles, including water 

pollution, soil erosion, biodiversity loss and over-reliance on non-renewable resources (Steffen 

et al., 2015; Chen et al., 2016). In their early study, Power & Follett (1987) mention how soil 

erosion acceleration and pest damage are being caused by repetitively growing a single cop on 

a field. Giam et al. (2015) shed light on the severe loss of freshwater biodiversity through oil 

palm monocultures in Southeast Asia. Given the studied environmental degradation, the 

sustainability of monoculture as an agricultural practice is beyond dispute. 

Intercropping, as defined by Vandermeer (1992), is an agricultural practice in which two or 

more different crops are strategically grown together in the same field. This approach initiates 

a complex web of interactions among the crops, as they jointly access and compete for essential 

resources, including nutrients, water, light, oxygen, and carbon dioxide (Power & Follett, 

1987). When the elements of an intercropping system exhibit divergent resource utilization 

patterns, effectively complementing each other's environmental use, the result becomes more 

resource-efficient compared to monoculture practices (Jensen, 1996). Notably, the 

intercropping of maize with leguminous plants has exhibited substantial advantages in nutrient 

uptake compared to monoculture maize cultivation (Seran & Brintha, 2010). Simultaneously 

cultivating multiple crops, which may even include various genotypes of a single crop species, 

has thereby demonstrated remarkable outcomes in increased yields, improved yield 

consistency, and enhanced food security (Raseduzzaman and Jensen, 2017; Li et al., 2021). 

Intercropping benefits extend beyond resource optimization, offering a spectrum of 

environmental benefits, including reductions in pest damage (Tooker & Frank, 2012), 

enhanced soil fertility (Li et al., 2021), and the amelioration of water erosion (Power & Follett, 

1987). Because of the advantages it offers, intercropping appears as a hopeful approach for 

establishing sustainability in agriculture (Figure 1). 
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Figure 1: Intercropping as a sustainable agricultural system. 

Intercropping embodies both a traditional and innovative agricultural practice, dependent on 

one's perspective (Bourke et al., 2021). Its historical roots can already be traced back to ancient 

civilizations (Yang et al., 2021). In his book, Vandermeer (1992) underscores the numerous 

intercropping combinations across the globe in the 20th century, with maize-bean intercropping 

being particularly abundant. In contemporary agriculture, intercropping endures as a prevalent 

practice among small-scale farmers in diverse regions, including China, Latin America, and 

Africa (Brooker et al., 2015). In Latin America, up to 90% of bean cultivation is estimated to 

involve intercropping with maize, potatoes, and other crops (Yang et al., 2021). However, this 

traditional agricultural method has largely remained confined to small-scale operations and, as 

Bourke et al. (2021) emphasize, expanding such a system necessitates a reconfiguration of the 

technology currently employed in modern agricultural systems. In his book, Vandermeer 

(1992) challenges the notion that intercropping is exclusively for small-scale farmers, arguing 

that as research technology and machinery for intercrops advance, and specific varieties are 

developed, intercropping will no longer be limited to smaller producers. 

2.1.2. Height phenotyping in intercropping systems 

As presented above, the upscaling of intercropping systems necessitates a redesign of the 

technology currently specialized for modern agricultural systems. Among these advancements, 

enhanced cultivars have played a substantial role in elevating crop productivity (Bourke et al., 

2021). It is however important to recognize that the cultivars optimized for monoculture may 

not be the most suitable choice for intercropping (Bourke et al., 2021). Current breeding 

strategies primarily target the selection of the best-performing individual plant genotypes when 

grown in monoculture, meaning they are cultivated without other plant species. These 

strategies often disregard the potential benefits that may arise from positive interactions 

between different crop species or even different genotypes of the same species when cultivated 

together (Bourke et al., 2021). However, it's becoming increasingly evident that limitations in 

phenotyping efficiency, particularly in high-throughput field phenotyping, present a significant 

hurdle to genetic advancements in intercropping programs (Araus et al., 2018). Recognizing 
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this disparity highlights the importance of tailored field phenotyping approaches in 

intercropping contexts. According to studies, pertinent traits for phenomics assessment include 

yield, biomass, height, leaf area index, chlorophyll and nitrogen (Xie & Yang, 2020; van der 

Meij et al., 2017). Progress in phenotyping is therefore essential for the development of 

effective breeding programs in intercropping.  

One crucial phenotypic trait in intercropping is height, which plays a pivotal role in 

understanding the dynamics of these complex agricultural systems. Plant height is defined by 

Perez-Harguindeguy et al., (2013) as the shortest distance between the highest point of the main 

photosynthetic tissues of a plant and the ground level. Accurate measurement of crop heights 

is indispensable to evaluate how different species interact and compete for resources within 

intercropping contexts. Plant height is one of the most accurately quantifiable traits, making it 

highly valuable for estimating other characteristics within intercropping systems (Van der Meij 

et al.,2017). This morphological trait is essential in providing information on the overall plant 

growth across the growing season and serves as a key parameter for determining advanced 

traits such as biomass and yield (Qiu et al., 2022; Jamil et al., 2022). As a practical example, 

Zhou et al. (2020) underscores the significance of measuring plant height in the context of 

lodging. It's important to note that the methods for measuring plant height can vary depending 

on the crop type and growth stage, as highlighted by Jamil et al. (2022).  

Phenotyping plant height in intercropping systems presents a unique set of challenges that 

distinguish it from phenotyping in traditional monoculture systems. Through the study of pea-

barley and faba bean-wheat combinations, Ajal et al. (2022) have demonstrated that the traits 

of various crop species are affected by the diversity of species. As a result, plants may exhibit 

more nuanced patterns, making the evaluation of individual crop heights, as opposed to field-

scale assessments, a crucial focal point in comprehending their interactions (Jamil et al., 2022). 

Furthermore, the presence of various crops nearby can obstruct clear measurements and 

necessitate specialized techniques that consider height variations among different species 

within the same field. Consequently, height phenotyping in intercropping systems demands 

advanced technologies, enabling researchers to obtain accurate, high-resolution data (Jamil et 

al., 2022). 

2.2. UAV imagery for precise crop height monitoring  

While crop height can, for instance, be measured using a sufficiently tall ruler, obtaining 

quantitative height data through manual means is labor-intensive, time-consuming, and 

potentially detrimental to the plants (Araus et al., 2018). However, recent advances in 

technology have offered a more efficient and non-destructive alternative for crop height 

monitoring. UAVs, equipped with RS technologies, have gained prominence in precision 

agriculture (Araus et al., 2018). Utilizing UAVs enables achieving a greater temporal and 

spatial assessment at a low cost, allowing for the accurate assessment of crop height at multiple 

growth stages, without causing harm to the plants (Berni et al., 2009). Anderson et al. (2020) 

observed a significant impact of genetic factors on maize height measurements. Through a 

comparison of various height measurement approaches, they identified 32 genetic regions 

associated with plant height. This number surpassed the findings of traditional measurements 

alone, highlighting the value of advanced methods. Araus et al. (2018) underscore RGB 

imagery and LiDAR as the most suitable tools for measuring plant/canopy height. 

To gain insights into the current state of crop height monitoring through UAVs across various 

https://www.sciencedirect.com/science/article/pii/S0168169916304586#b0125


17 

 

crops, a targeted search was conducted on Web of Science using the query: ALL=(UAV height 

crop (RGB OR Lidar)). The resulting 222 publications were subsequently organized 

chronologically (Figure 2). The histograms illustrate that the exploration of LiDAR and RGB 

technologies in crop height estimation represents a recent and evolving area of research. 

 

Figure 2: Distribution of publications on UAV crop height monitoring by publication years. 

Under the following query: ALL=(UAV height crop (RGB OR Lidar)). 

2.2.1. RGB technology  

RGB (Red, Green, Blue) technology, uses the visible spectrum to unveil intricate details in 

various applications, notably in agriculture. In the context of crop monitoring, RGB imagery 

has been observed as efficient in discerning subtle variations in plant health, growth, and 

overall conditions (Araus et al., 2018). RGB imagery is widely seen as advantageous due to its 

cost-effectiveness, making it easier to persuade breeders to adopt crop phenotyping practices 

(Araus et al., 2018). Various studies have delved into the realm of crop height measurement, 

employing the versatile RGB technology and a Structure from Motion (SfM) algorithm as a 

key instrument in unravelling the intricacies of plant growth (see 2.2.2). In the study by Han et 

al. (2018), focus was given to plant height assessment, specifically on maize crops. They 

explored the use of RGB imagery to examine the correlation between UAV-estimated and 

ground truth plant height of maize plants. The outcome of this study revealed an 

underestimation of maize height when relying on RGB images. The underestimation is 

attributed to a lack of point clouds for the full reconstruction of the tassel. Grenzdörffer (2014) 

also observes an underestimation of maize height when using RGB. According to this study, 

when the canopy structure is either thin or characterized by the presence of peaks representing 

the highest points of individual plants, using UAV for crop height determination will result in 

lower height measurements compared to manual reference measurements. Chang et al. (2017) 

investigated the height of Sorghum using RGB imagery Their study, involving seven data 

acquisitions over the growing season, highlighted the potential of UAVs for accurate crop 

height assessment, suggesting applicability to other crops for precision agriculture 

management. Jamil et al. (2022) extended the scope to intercropping, concentrating on 

cabbage, pumpkin, barley, and wheat. While their study demonstrated the potential of RGB 

imagery for accurate height assessment in cabbage and pumpkin, alternative methods were 

proposed for barley and wheat due to varying accuracy levels. This collective body of research 

underscores the versatility of RGB technology in crop height assessment while shedding light 
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on challenges and potential applications across diverse crop types. 

2.2.2. Structure for Motion 

Structure for Motion (SfM) is employed in the computation of three-dimensional (3D) models 

from a sequence of two-dimensional (2D) images captured from diverse perspectives (Westoby 

et al., 2012). This methodology involves determining the position and orientation of each 

camera relative to the photographed objects by identifying recurring features, such as corners 

or edges, within the images. Subsequently, utilizing this information, the object's surface is 

represented as a set of spatial points, forming a 3D point cloud generated through triangulation. 

A 3D surface model or mesh of the object is constructed using the obtained point cloud (Khalil, 

2020). The resulting model is manipulable by computer and can be applied to diverse tasks, 

including mapping, surveying, and monitoring changes over time. SfM photogrammetry allows 

monitoring of vegetation with little cost and technical knowledge (Iglhaut et al., 2019) 

2.2.3. LiDAR technology 

LiDAR, or Light Detection and Ranging, has emerged as a valuable technology for precise and 

efficient crop height monitoring. By emitting laser pulses and measuring the time it takes for 

the light to return after interacting with the crop canopy, LiDAR sensors can create detailed 

three-dimensional representations of the vegetation (Lefsky et al., 2002). The application of 

LiDAR, a technology often employed in forestry research, remains relatively unexplored in the 

context of crop management (Gao et al., 2022). However, this high-resolution data allows for 

accurate measurements of crop height, offering insights into the vertical structure of crops. 

LiDAR's ability to penetrate the canopy and provide detailed elevation information makes it 

particularly advantageous in environments with dense vegetation (Anthony et al., 2014). The 

study from Harkel et al. (2019), focused on height measurements for potato, sugar beet, and 

wheat crops using LiDAR technology. Encouraging results were observed for sugar beet and 

wheat, indicating the efficacy of LiDAR in these contexts. However, the same level of success 

was not achieved in the case of potato observation. In a separate study by Gao et al. (2022), 

LiDAR imagery was proposed as an effective tool for monitoring individual crop height within 

the framework of precision agriculture. 

Collectively, these recent studies underscore the specificity associated with the utilization of 

both RGB and LiDAR technologies for crop height monitoring. The effectiveness of these 

technologies is contingent upon factors such as crop type, targeted traits, and specific 

agricultural practices, highlighting the need for tailored approaches in adopting these 

technologies for crop monitoring purposes.  

2.3. Spatiotemporal patterns in maize intercropping 

The accuracy obtained through a height extraction process is highly specific to the type of crop, 

as evidenced by Jamil et al. (2022). This specificity extends to the observation of different 

cultivars within the same crop as demonstrated by Qiu et al. (2022) in their height assessment 

of two maize cultivars using LiDAR. For meaningful comparisons, it becomes imperative to 

conduct a literature review analysis limited to the maize crop.  
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2.3.1. Growth stage of maize in intercropping 

In intercropping systems, the assessment of crop growth stages is pivotal for the success of 

mixed cultivation systems. The growth stage refers to specific developmental phases in the life 

cycle of plants, encompassing key events such as germination, vegetative growth, flowering, 

and grain development (Dambreville et al., 2015). The growth stages of crops are typically 

divided into the vegetative stage (V) and the reproduction stage (R) (Kling & Edmeades, 1997). 

Different crops, or even cultivars within a crop, will have varying resource requirements at 

different stages of their growth. By obtaining phenotype information during different growth 

stages of maize, farmers can strategically plan the intercropping arrangement to ensure that 

companion crops with complementary needs are planted together. The growth stage of maize 

significantly impacts canopy development, especially given its tall and dense nature, 

influencing sunlight penetration and nutrient availability for companion crops. Figure 3 

illustrates the distinct vegetative and reproductive phases of maize. 

  

Figure 3: Vegetative and reproductive stages of a maize plant. Adapted from Zhao et al (2012).  

The initial vegetative stage milestone is the emergence stage (VE), where the seed absorbs 

water and sprouts from the soil (Nleya et al., 2016). Throughout the remaining vegetative 

phase, the plant experiences most of its growth, generating an increasing number of leaves. 

These phases of vegetative growth are identified using numerical divisions, namely V1, V2, 

V3, and so forth up to Vn. Here, 'n' signifies the count of leaves with visible collars. As the 

vegetative stage concludes, the tasseling phase (R1) signifies the plant's maximum growth, 

marked by the full visibility of the tassel and the appearance of pollen. The reproductive stage 

of a maize plant is critical for the production of grains, making it a key focus for farmers aiming 

to optimize yield and quality. During the filling sage (R3-R4) nutrients are transported to the 

cob. Physiological maturity (R6) is the final stage when the kernels reach full size, dry down, 

and the plant approaches senescence (Nleya et al., 2016).  

Considering these stages, critical height measurement points become essential. Guo et al. 

(2022) focus on the heading (Vn) and tasseling (VT) events as critical height observations, 

while Yu et al. (2013) consider the emergence (VE) and three-leaf (V3) stages. Moreover, it is 

important to take into account, especially when working with cultivars, that stages will not 

necessarily appear at the same time points for every cultivar. Guo et al. (2022) determine the 

heading and tasseling dates as the day when these phenological events occurred in at least 50 

% of maize for each plot. Oehme et al. (2022) observed that the precision in assessing maize 

plant height through UAV measurements is influenced by both the growth stage of the plant 
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and the specific manual measurement method used as a comparison. The study noted reduced 

accuracy during the early growth stage due to the smaller crop size and during the maturity 

stage due to difficulty in tassel measurement. Additionally, findings indicated that, during the 

Vn and R1 stages, the manual measurement of the highest straightened leaf correlated more 

closely with UAV measurements than the measurement of the highest leaf. During the maturity 

stage (R6), the tassel alone emerged as a suitable metric for crop height, indicating a distinct 

shift in the preferred height determination measure. In Han et al. (2018) it is however observed 

that the tasseling period is where the model accuracy is the lowest. During the jointing stage, 

Qiu et al. (2022) measure the highest point of the central leave.  

2.3.2. Row patterns in maize intercropping systems. 

Ofori and Stern (1987) mark the three main categories of intercropping as mixed intercropping, 

row intercropping, and strip intercropping. Strip intercropping involves cultivating two or more 

crops simultaneously in distinct strips. These strips are sufficiently wide to allow separate 

cultivation practices but narrow enough to facilitate agronomic interaction between the crops 

(Li et al., 2013). In their research, Wang et al. (2020) conducted a comprehensive analysis of 

maize yield in the context of intercropping systems. By observing variances in yield depending 

on crop proximity, their investigation underscores the significance of assessing crops at the 

row scale within strip intercropping fields. One of the primary resources observed in species 

facilitation within intercropping systems is sunlight (Gebru, 2015). The quantity and quality of 

sunlight reaching the plants can be influenced by factors such as the structure and density of 

the crop canopy (Munz et al., 2014), as well as the orientation, width of the strips and spacing 

of the crops (Wang et al., 2017). Border rows of taller plants, such as maize, will benefit from 

less shading while border rows from shorter plants experience more shading (Munz et al., 

2014). The study conducted by Wang et al. (2017) highlights the significant impact of row 

orientation on sunlight absorption when analysing maize height observations across different 

row configurations (Figure 4). Notably, they observe a discernible variance between the border 

and inner rows within intercropping strips comprising four rows, with the inner rows 

demonstrating superior height values. Maize strips with two rows, which can be considered as 

border rows, exhibit heights similar to the border row values of the four-row strip 

configuration. Maize grown in a monoculture setting portrays the highest height values 

throughout the flowering phase and was the closest to the values of intercropping inner rows. 

 

Figure 4: Maize height in intercropping configurations (162= 2 rows, 1124= 4 rows) and 

monoculture (sole maize) during the growing period in 2013. Wang et al.  (2017), adapted 

from Figure 4. 
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The study notes that maize plants exhibit phenotypic plasticity, allowing them to grow in ways 

that enhance light capture, a key factor in their successful adaptation to intercropping systems.  

2.4. Maize height estimation methods 

As stated, above, height observation is extremely dependent on the crop morphology. To gain 

insight into the research made on maize height estimation through UAV methods, understand 

the possible methodologies, and thereby pinpoint specific knowledge gaps, a more precise 

query search was conducted on Web of Science. The goal was to select publications that 

specifically address the observation of maize height monitoring using RGB and/or LiDAR 

imagery. Through trial, the following query was regarded as the most appropriate: TI=(height 

OR growth) AND (AB = ((maize OR corn)(RGB OR LiDAR))) NOT AB=(machine learning)). 

A total of 29 results were identified and analyzed. The 29 obtained results, which all regard 

maize crop, were then categorized by the imagery and methods used, giving a good overview 

of the research on the topic (Table 1). The two different ground altitude methods are explained 

in the following section. 

Table 1: TI=(height) AND (AB = ((maize OR corn)(RGB OR Lidar))) NOT AB=(machine 

learning). Out of the 29 studies, 8 were estimated as out of scope. The total observed studies is 

n = 21.  

Imagery 
Ground 
altitude 
method 

Plant 
extraction 

scale 
Studies Statistical parameters 

RGB 
n = 14 

Classification 
within DSM  

n= 8 

Individual  
n = 1 

Qiu et al., 2022 

Jointing stage (Vn) 
Measurmeent of the highest point of central 
leave 
n = 38 
Jiongnongke 728: 
R2 = 0.96, RMSE = 0.013 m 
Nongda 84: 
R2 = 0.98, RMSE = 0.011 m 

Plot 
n = 7 

Oehme et al., 2022 

Matirity stage (R6) 
Measurement  of the tassel 
n = 400 
400 different genotypes: 
R2 = 0.38, RMSE = 0.33 m 

Raj et al., 2023 
No manual measurement – height data used 
to estimate health index  

Malambolo et al., 
2018 

Reproductive stage (R) 
Measurement of the tassel  
n = 144 
99th  percentile: 
R2 = 0.77, RMSE = 0.11  

Lu et al., 2021 

Grain filling stage (R3-R4) 
Measurement of the tassel  
n = 36 
99.5th percentile: 
R2 = 0.68 
99.9th percentile: 
R2 = 0.69  
Maximum: 
R2 = 0.64 

Anderson et al., 
2020 

No manual measurement - height used to test 
Weibull sigmoidal function accuracy for 
modeled plant growth 

Li et al., 2022 
Combination of 4 different growth stages 
90th percentile: 
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R2 = 0.80, RMSE = 0.15 m 

Tirado et al., 2020 
Reproductive stage: 
R2 = 0.72  

DTM from 
off-season 

DSM 
n = 6 

Individual 
n = 0 

- 
 - 

Plot  
n = 6 

Han et al., 2018 

487 plots 
Throughout four stages 
Measurements of the tassel 
R2 = 0.896, RMSE=0.21m 

Gilliot et al., 2021 

Reproductive stage 
Measurements of the tassel 
n = 38 
R2 = 0.90, RMSE= 0.16m 

Guo et al., 2022 

Heading and tasseling stages 
n = 100 points 
90th percentile 
R2= 0.938, RMSE= 0.302 m 

Fathipoor et al., 
2019 

Vegetative stage (V12) 
No tassel measurement 
n = 66 
R2 = 0.85, RMSE = 0.067 m 

Li et al., 2016 
Growth stage not provided 
R2 = 0.74, RMSE = 0.21 m 

Xiao et al., 2023 

Vegetative stage (V12) 
No tassel measurement 
n = 20 
R2 = 0.84, RMSE = 0.16 m 

LiDAR 
n = 7 

Classification 
within DSM   

n= 5 

Individual  
n = 0 

- - 

Plot 
n =  5 

Luo et al., 2021 
Growth stage not specified 
n = 41 
R2 = 0.649, RMSE = 0.237 m  

Zhou et al., 2020 
Lodging  
n = 50 
R2 = 0.964, RMSE = 0.127 m 

Luo et al., 2016 
-n = 42 
Growth stage not specified: 
R2 = 0.833, RMSE= 0.230 m 

Luo et al., 2019 
- n = 42 
Growth stage not specified: 
R2 = 0.812, RMSE = 0.238 m 

Li et al., 2015 
Grain filling stage (R3-R4) 
n = 16 
R2 = 0.63, RMSE= 0.17 m 

DTM from 
off-season 

DSM 
n = 2 

Individual 
n = 1 

Gao et al., 2022 

Tasseling stage 
Measurement of the tassel 
n = 289 
100th  percentile 
RMSE = 3.04 cm 
Whole growth stage 
R2 = 0.96 

Plot  
n = 1 

Crommelinck & 
Höfle., 2016 

Reproductive stage 
n = 119 
RMSE = 0.16 m  

The current state of research on maize height monitoring using UAVs reveals several 

noteworthy trends and gaps. Overall, there is a noticeable deficiency in comprehensive studies 

on this subject. There are discernibly more studies discussing RGB technology results over 

LiDAR. At the individual plot scale, the shortage of research is even more pronounced. Only 

one of the studies has explored individual maize height using RGB, employing the 

classification method. This investigation focused on the jointing stage (Vn), meaning that it did 



23 

 

not involve tassel measurement. Similarly, with LiDAR, there is a singular study at the 

individual scale, this time utilizing the off-season Digital Terrain Model (DTM) method, 

specifically during the tasseling stage. The evident knowledge gap in individual-level maize 

studies is apparent. Regarding the ground altitude method, there are more studies employing 

the classification method for both LiDAR and RGB. However, the employment of off-season 

Digital Surface model (DSM) appears to yield superior results compared to the classification 

method for both RGB and LiDAR. The results from the existing literature will be further 

considered in the discussion section. 

2.4.1. Ground altitude extraction 

When measuring height, the selected Ground Altitude (GA) plays a crucial role in achieving 

precise results. Fujiwara et al. (2022) address this significance by introducing three distinct 

methods: (1) Ground and Canopy Classification Method, (2) DTM derived from an off-season 

DSM, and (3) DTM generated through surface information from outside the Region of Interest 

(ROI). The last was however not presented in any of the studies related to maize height crops 

and will thereby not be studied any further. 

In the classification method, variables are allocated to distinguish between ground and canopy 

cover within a singular DSM. Oehme et al. (2022) applied this method to observe maize at 

various growth stages on a plot scale. While promising results were achieved during mid-

stages, challenges arose when measuring height from the tassel. Similarly, Raj et al. (2023) 

employed the classification method proposed in Raj et al. (2021) which notices an increased 

root mean square error (RMSE) toward the end of the growth period, meaning a lower 

suitability of the method during the reproductive period. Qui et al. (2022) confirms these 

findings by observing the classification method is was the least suitable when observing the 

reproductive stage of the maize. Luo et al. (2021) observed that the classification method might 

not be most appropriate for densely planted crops because of the insufficient availability of 

ground point cloud information. 

The off-season DSM method uses an early on DSM, with absent crops, as DTM. The DSM is 

then subtracted from the DTM to create the Canopy Height Model (CHM) (Figure 5). Han et 

al. (2018) created a CHM by subtracting the DSM from the Digital Elevation Model (DEM) at 

various growth stages. While overall results were positive, an underestimation in the tassel 

stage was observed. Wang et al. (2019) confirmed these findings using a similar methodology, 

noting satisfactory results. They conducted individual stage analyses, revealing an increasing 

correlation between UAV and ground truth from seedling to the reproductive stage, possibly 

due to increased plant density forming a continuous canopy. Gilliot et al. (2021) adopted a 

similar method, focusing solely on the reproductive period, and reported commendable results 

in aligning UAV imagery with manual methods. Guo et al. (2022) extended the exploration by 

comparing the DSM method with an indirect approach using multi-indicators, including RGB-

based vegetation indices, demonstrating satisfactory results for both techniques. The findings 

in Luo et al. (2021) indicate that models for estimation of height, utilizing LiDAR variables, 

demonstrated greater accuracy in estimation compared to models relying on CHMs derived 

from LiDAR data.  
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Figure 5: Canopy height model (CHM) extracted from difference between DSM and DTM. 

Taken from: Jamil et al. (2022). 

2.4.2. Metrics for crop height extraction 

In the realm of crop height estimation, metrics play a pivotal role in quantifying the vertical 

dimension of plant growth. Metrics, in this context, refer to numerical parameters or measures 

that are applied to datasets derived from RS technologies, such as RGB imagery, to determine 

the height of crops. Various studies have delved into identifying the most effective metrics for 

accurate crop height estimation. Several studies have investigated the optimal metrics for crop 

height estimation. Malambolo et al. (2018) explored percentiles such as 90th, 95th, 99th, and the 

maximum for Maize and Sorghum. Notably, the study found that the 90th percentile was most 

effective for sorghum estimation, while the 99th percentile was better suited for Maize. This 

observation aligns with the crop-specific nature of the most suitable metric, as confirmed by 

Malachy et al. (2022) and Jamil et al. (2021). Lu et al. (2021) delved into the use of maximum, 

99.9th, and 99.5th percentiles. Their findings suggested that, during the grain-filling period, the 

99.9th percentile of the point cloud provided the most accurate estimation of plant height. Guo 

et al. (2022) explored the average, 75th percentile, and 90th percentile over multiple years, 

ultimately obtaining better results with the 90th percentile. Qui et al. (2022) chose to observe 

the 98th percentile of the CHM. Whilst these studies all seem to favor higher percentile metrics, 

the study by Li et al. (2022) determined that the 90th percentile outperformed the 95th percentile 

in measuring maize cultivar heights across various stages of growth.  Luo et al. (2016) argue 

that single LiDAR metric consistently serves as the optimal variable for estimating biophysical 

parameters of vegetation across various vegetation types, LiDAR data, environments, and 

study areas. 
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3. Methodology  

This section presents an outline of the materials and methods employed in this research. To 

address the above-mentioned research questions, this thesis will be structured into two parts. 

In the first part, RGB and LiDAR imageries will be investigated in assessing maize height in 

intercropping systems. This evaluation will involve a comparative analysis between the UAV-

derived imagery and ground truth data. Section 3.1 gives a description of the experimental site. 

Section 3.2 provides an account of the UAV image acquisition process while field  

measurements are described in Section 3.3. The procedures for estimating plant height from 

UAV imagery are outlined in Section 3.4. The second part on observing different height 

patterns according to data retrieved from parameters defined in the first part.  3.5 highlights the 

assessment of growth patterns within the intercropping field. 

3.1. Experimental site  

In the 2023 growing season, a substantial intercropping field experiment was conducted at 

Wageningen’s experimental sites (at approximately 51.988352° N latitude and 5.656963° E 

longitude). The field was created by combining 32 different cultivars of maize (Table 2) with 

32 different cultivars of faba bean.  

Table 2: List of 32 different maize cultivars used in the intercropping field experiment. 

 

Subsequently, due to some damage, a portion of the faba bean crops was replaced with four 

cultivars of pumpkin. The uniqueness of this field experiment lies in the diverse array of 

cultivars, presenting an exceptional opportunity for uncovering novel intercropping discoveries 

(Figure 6). The primary aim of the field was to assess the interaction effects among the various 

cultivars within each crop with their neighboring crop. Each cultivar plot was configured as a 

rectangular area comprising rows. Each rows possessed a width of 1.5 meters and a length of 

5 meters. A set of ten ground control points (GCP) were established around the experimental 

site for georeferencing purposes. 

Nr Cultivar Nr Cultivar Nr Cultivar Nr Cultivar
1 Remus 9 LG31207 17 Damaun 25 Benco
2 LG31238 10 Ashley 18 NM09 26 Skandik
3 LG32257 11 Crosbey 19 NM01 27 Liberty
4 Golden Bamtam 12 MEZDI KS 20 Flynt 28 Prospect
5 LG31276 13 Black popcorn maize 21 Ambient 29 Vitamin
6 Calo 14 Stowell's evergreem 22 Joy 30 Micheleen 
7 Jakleen 15 Mergoscia 23 SA0060COSMOS 31 Nomad
8 LG31206 16 Black tortilla maize 24 Silverbull 32 LG31218
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Figure 6: Overview of strip-cropping experiment: spatial distribution of maize (yellow), faba 

beans (green), and pumpkins (orange) across plots, including randomized maize genotypes. 

3.2. UAV imagery acquisition 

RGB and LiDAR imagery were acquired through UAV flight at various time intervals of the 

2023 crop season, spaced 14 days apart, spanning from the initial germination phase (20th 

April) to the harvesting stage (11th September). It is important to note that the data was collected 

independently and provided to the author for use in this study. Further details relating to the 

survey data can be found in Figure 7.  

 

Figure 7: Survey data for RGB at (a) germination and (b) harvesting stage. 
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3.3. Field data collection 

Ground truth data was collected to evaluate the UAV data accuracy. The field data was 

measured during the harvest stage on the 11th of September 2023, on the same day as the last 

drone flight to ensure proper comparison. Maize height was measured from the base of the soil 

to the top of the tassel as presented in previous studies (Anthony et al., 2014; Gao et al., 2022) 

To do so, a measuring tool composed of a sliding measuring allowed reading of the value at an 

easier viewpoint instead of having to look at the top of the plant (Figure 8).  

 

Figure 8: Method and location for maize height measurement: from base to tassel top. 

The height measurements were made on multiple maize rows at different areas of the field to 

ensure a representative sample. Two crops were measured per row by estimating a distance of 

1m50 from the edge of each row. The observed crops were checked visually and confirmed to 

be representative. This means that the crops didn't have a broken tassel or a noticeably different 

height compared to their neighbors. In addition, two individual plants per plot were measured 

on the outside of the rows. In total, 208 maize plants were measured in 42 different plots. The 

fieldwork was done by one person in a time frame of approximately 6 hours. 

3.4. Crop height esimation from UAV imagery 

In this section, we detail the methodology for generating CHMs through DSMs, outline the 
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plant extraction approach employed, and provide insight into the statistical analysis conducted. 

An overview of the analysis workflow that was used to conduct these steps is presented below 

using a flowchart (Figure 9). 

 

Figure 9: Flowchart depicting the general overview of the methodology for calculating the 

canopy height model (CHM) and the height of the regions of interest (ROIs) at two different 

scale: individual plant and row. 

The analyses conducted in this study leverage a selection of advanced software tools, 

specifically QGIS, ArcGIS Pro, and R. Section 3.4.1 provides a detailed account of the steps 

involved in generating DSMs. Following this, Section 3.4.2 outlines the process for creating 

CHMs, and Section 3.4.3 explains how these models are utilized to extract plant heights for 

both individual crops and rows. Finally, Section 3.4.4 delves into the statistical analysis 

employed to derive quantitative results. 

3.4.1. Digital Surface Models (DSM) 

The RGB imagery DSMs were pre-generated using the SfM technique, aligning with the 

photogrammetric procedures detailed in the investigation by Jamil et al. (2022). This involved 

the creation of high-resolution rasters with a cell size of 0.0036x0.0036m. The SfM approach 

allowed for the reconstruction of 3D surface models from the RGB imagery, ensuring 

comprehensive coverage and precise spatial representation. Following the established 

methodology, these DSMs formed the foundation for subsequent analyses and height extraction 

procedures in our study. The DSM layers were clipped using the study area polygon as a mask 

through the Clip Raster by Mask Layer function. This step is deemed necessary due to the 

substantial file sizes, facilitating more efficient processing. 
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The LiDAR images (.las), with their significant size containing up to 600 million points per 

layer, were imported into QGIS for processing. To manage the layers more effectively, the LAS 

clip tool from the LAS tools package in QGIS was employed to crop the layers based on the 

study area polygon. The conversion process was conducted utilizing the LAS Dataset to Raster 

tool within ArcGIS Pro. The preference for this tool over the LAS2DEM tool in QGIS was 

driven by its capacity to analyze a larger volume of points with increased speed and efficiency. 

The application of the maximum interpolation method during this conversion facilitated the 

accurate capture of the uppermost points of the vegetation, providing a suitable representation 

of the vertical extent of the plant cover. The resolution was set to match that of the RGB data, 

at 0.0036x0.0036 meters. 

Before commencing any analysis, a thorough examination of the DSMs is imperative to 

identify and rectify possible errors or discrepancies. This entails confirming the uniformity of 

coordinate systems in the images (EPSG:28992 - Amersfoort / RD New in our case), ensuring 

alignment with GCPs, and visually inspecting for any curvature or unexpected value patterns. 

Given the fine nature of maize tassels under investigation, precise observation is crucial for 

accurate analysis and interpretation. An error in the values of the various RGB DSM layers 

was identified and attributed to a variance in the coordinate system calibration of the drones, 

specifically concerning GCPs. To rectify this discrepancy, the DSM layers underwent 

recalibration, resulting in the alignment of values. Additionally, another anomaly was detected 

in the LiDAR data, characterized by distorted lines indicating a lack of image alignment in 

specific areas. This issue was successfully addressed through a new round of pre-processing, 

ultimately resolving the observed irregularities. 

3.4.2. Canopy Height Model (CHM) generation 

According to Luo et al. (2021), classification within a DSM is deemed suboptimal for densely 

vegetated crops, a characteristic reflective of our study context. Moreover, research employing 

the off-season DSM methodology appears to achieve heightened accuracy in results (Table 1). 

Additionally, our possession of high-resolution DSMs depicting the field absence of crops 

further solidifies our decision to generate a CHM from an off-season DTM, as opposed to 

utilizing a classification method reliant on a singular DSM. The methodology employed in this 

study aligns with the framework proposed by Jamil et al. (2022), which defines the CHM as 

the disparity between the DSM and the DTM. To implement this methodology, the DTM and 

DSM datasets are imported into QGIS. The Raster Calculator in QGIS is then employed to 

calculate the CHM by subtracting the DTM from the DSM. 

In the final stage of the CHM generation, the distinction between vegetation and ground 

elevation was introduced. Due to the ground being obscured by grass and weeds, utilizing 

vegetation indices for the distinction of vegetation and non-vegetation was not feasible. 

Instead, a threshold value was selected to delineate the boundary between ground and crops 

based on height. After trial the threshold value of 25cm was chosen as most suitable. This 

methodological step holds significance for various reasons. Firstly, considering the magnitude 

of the dataset, characterized by extensive spatial coverage and high-resolution measurements, 

computational operations are highly resource-intensive. Focusing the analysis solely on the 

vegetation component, with ground elevation falling outside the scope of our research, has 

resulted in a substantial acceleration of processing times. Moreover,  the presence of varying 

ground elevations across the study area could distort percentile observation when exploring 
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different percentiles and buffers to optimize crop height observations. By excluding ground 

data from our analysis, we ensure a focused and accurate exploration of individual maize crop 

heights, free from the confounding influences of ground-related variations. This strategic 

refinement ensures that the ensuing analysis is tailored to the nuanced objectives of our RS 

investigation.  

3.4.3. Plant height extraction 

Han et al. (2018) recommend individual measurements as the optimal approach to mitigate the 

influence of potential leaves from neighbouring plants. In cases where precise plant locations 

are unavailable, a ROI is employed (Malachy et al., 2022). In the context of this study, the field 

data encompasses both exact measurements of individual plant locations and semi-randomized 

row measurements. Consequently, two distinct methods of height extraction are implemented. 

Individual crop height extraction 

In assessing individual crops, the initial step involves the manual placement of points on the 

RGB Ortho mosaic image corresponding to the harvesting period for each measured plant 

(shown in Figure 8). While the potential for automation exists (Zan et al., 2020), such a process 

falls beyond the scope of our study. Luo et al. (2016) emphasize that there is no universal set 

of LiDAR metrics that always works optimally for estimating vegetation parameters across 

different study areas. Therefore, different metrics are tested in this study. Given the spatial 

arrangement of individual plants and their distance from neighbouring ones, higher values 

within these buffers are anticipated to effectively represent individual plant height. According 

to the literature, seven distinct metrics (90th, 95th, 98th, 99th, 99.5th 99.9th, and 100th) are chosen 

and investigated for their suitability in this context. Following this, buffer zones (Figure 10) 

are established around these points utilizing the Buffer tool. Subsequently, the Zonal Statistics 

as Table  tool in ArcGIS Pro is employed to extract statistical values from the CHM within 

these buffers. This tool is recommended over the v.rast.stats tool in QGIS, as the one in QGIS 

only allows the observation of rounded up percentile. The acquired datasets and field 

measurement values are then imported into R for subsequent in-depth analysis. 

 

Figure 10: Buffers around individual crop measurement points visualized with (a) RGB 

imagery and (b) LiDAR data. 
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Row height extraction 

When evaluating height at the row scale, the initial step involves the generation of an individual 

row shapefile. To do so, an R script originally created by Dirk van Apeldoorn was modified to 

generate a shapefile containing polygons (0.3m x 2.5m) representing each maize row. Drawing 

insights from Malachy et al. (2022), who emphasized the potential impact of leaves at the row 

edges on height extraction, we implemented a 10cm gap between neighbouring rows to spare 

our data from any neighbouring effects. An additional 4cm gap was added between the two 

inner rows, accounting for spacing introduced during crop planting. The adjusted shapefile is 

imported into QGIS, and a distinct layer is established to isolate rows subjected to manual 

measurements. Two additional buffer sizes are then considered: one with an additional 4 cm 

buffer, and the other one with a 4cm negative buffer representing a loss of gaps between the 

rows (Figure 11). 

 

Figure 11: Buffers around row ROI visualized with (a) RGB imagery and (b) LiDAR data.    

3.4.4. Statistical Analysis – UAV and ground measurements 

Upon obtaining height values from both RGB and LiDAR imagery at both individual crop and  

row scale, the acquired data for ground truth measurements and RS are imported into R for 

subsequent analysis. A comparative examination between ground truth measurements and 

UAV-derived imagery is conducted to assess the accuracy of the estimation of plant height 

using UAV imagery. Two different metrics are used, the  coefficient of determination (R2)  and 

the RMSE as indicated by previous research (Jamil et al., 2022), with the following equations: 
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In these equations, n signifies the count of individual plant samples. The variable 𝑦𝑖 represents 

the ground-truth-measured height of plant i, while 𝑦̂𝑖 signifies the estimated height of the same 

plant derived from UAV data and ȳi represents the average(mean).  

The selection of suitable parameters for height observation involves balancing the achieved R2 

and RMSE values. This judgment should align with the specific characteristics of the observed 

case. The R2 value captures the goodness of fit, representing the overall relationship between 

variables. This metric is pertinent for discerning patterns among height values of different rows 

and genotypes. Observing RMSE is crucial for obtaining values that accurately reflect reality. 

This parameter becomes particularly relevant in this study when observing the temporal 

changes in height differences among rows. In this case, it is crucial not to singularly focus on 

one of these variables, but rather to consider both in tandem. Scatter plots illustrating the 

regression model between UAV-estimated values and ground truth values are generated for 

both individual crop and row scales.  

The constraints of limited ground truth data collection prohibit a direct validation of the most 

suitable model. To address this challenge, a CHM was generated for the 14th of August, a time 

period that is part of the tasselling stage when the height undergoes minimal change (as 

elaborated in section 2.3.1). The height values were then extracted with the judged optimal 

parameters – including imagery type, buffer and percentile -. Subsequently, a regression model 

was developed to compare the heights obtained on the 11th of September with those on the 

14th of August. This comparative analysis serves as a form of validation, allowing us to assess 

whether similar data are obtained between these two periods. 

3.5. Height patterns data analysis 

Upon evaluating the accuracy of utilizing UAV imagery for maize height observation within 

an intercropping system, the dataset obtained through the estimated optimized parameters - 

encompassing imagery type, buffer, and percentile - can be applied to observe pattern within 

the experimental field. The datasets includes information on maize height, rows, genotype of 

maize and genotype of neighbouring crop. This analysis focuses on the discovery of patterns 

within the data. This exploratory approach allows us to highlight the complexities and nuances 

in the data, laying the groundwork for future research that can delve into these patterns with a 

more detailed statistical analysis through additional data on environmental and genotypic 

factors. 

3.5.1. Height patterns between rows 

To examine potential height variations between rows, we generated two separate maps. One 

map displayed the average height of each individual maize row, while the other visualized the 

average height differences between rows. To create the second map, additional data was 

generated using the Raster Calculator tool. This involved subtracting the values of each pair 

of neighbouring rows within a plot and then averaging these differences. By adopting this 

approach, we are looking at the difference in variations within plots of different size (4 rows, 

8 rows, and monocultures), and thereby ascertain whether rows located closer to other crops 

exhibit more significant height changes (in which case plots with 4 rows would have a higher 

value). Accompanying diagrams facilitate a clearer interpretation of genotype-specific values, 

overcoming the challenges posed by the spatial dispersion of values on the map. 
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3.5.2. Growth dynamics between cultivars 

In the subsequent section, our analysis extends to encompass two additional timeframes, 

necessitating the creation of CHMs for new time periods using the same methodology 

elucidated earlier. The two newly observed time periods are June 7th and July 18th, selected 

based on the LiDAR image quality and the maize growth cycle (as detailed in section 2.3.1). 

Once the CHMs are created, height values are collected for each row of the two new dates, and 

a map for each date, displaying the height per row, is generated. Additional, two extra maps 

are created to reflect the height different between the different periods, thereby evaluating the 

height difference over time of the different genotypes. Diagrams are once again created to 

visualise the data by genotype.  
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4. Results 

4.1. Development of CHM  

Figure 12 portrays the derived CHMs obtained from both RGB and LiDAR imagery. The 

CHMs exclusively display vegetation features, achieved through a suppression of values below 

25cm. The CHM derived from RGB imagery indicates height values up to 288cm, whereas the 

CHM derived from LiDAR imagery exhibits height values extending up to 314cm.    

 

Figure 12: Canopy Height Models (CHMs) derived from (a) RGB and (b) LiDAR imagery. 

The CHMs were generated using DTMs from imagery captured on 20th April (germination 

period) and the DSMs from imagery captured on the 11th September (harvesting period). 

Values below 25 cm, indicative of ground surfaces, were removed from the analysis. 
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The CHMs depicted in Figure 12 were standardized with the same colour scale to facilitate 

direct visual comparison of height values. Upon initial inspection, both models yield 

comparable data, however with distinct visual characteristics. The CHM derived from RGB 

imagery offers a vibrant and detailed depiction of the study area, emphasizing the diversity of 

vegetation. In contrast, the CHM derived from LiDAR imagery presents vegetation with less 

clarity. However, it offers a more nuanced depiction of vertical structures, featuring both lower 

values and higher values visible within the rows. This distinction can be observed in the 

zoomed view provided at the lower part of the figure 12 and is further highlighted by the higher 

values in the LiDAR imagery legend. 

4.2. Optimal settings for maize height estimation through UAV 

To derive plant height from the CHMs, the optimal parameters for the buffer area surrounding 

the measurement point and the distribution threshold (cut-off percentile) for the selected pixels 

within the buffer have to be established. These parameters play a crucial role in ensuring the 

accuracy of the height estimation process. 

4.2.1. Individual crop height extraction 

Figure 13 and Figure 14 provide a detailed analysis of the accuracy metrics involved in 

estimating individual crop height observations using UAV imagery in comparison with 

ground-truth measurements. The evaluation encompasses two key metrics: the R2 on the left 

and the RMSE on the right. This analysis was conducted across a range of distribution 

thresholds, spanning from the 100th to the 90th percentile, and buffer sizes varying from 5cm to 

25cm around the crop. These figures present a comprehensive visual representation of the 

performance of the height estimation process under different distribution thresholds and buffer 

sizes. By systematically assessing the impact of these parameters on the accuracy of height 

estimation, the figures facilitate informed decision-making in selecting optimal settings for 

subsequent analyses.  

   

Figure 13: RMSE (on the left) and R2 (on the right) values at different buffer sizes and 

percentiles from individual crop measurements using RGB imagery. 
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In the analysis of RGB imagery for individual crop height observation (Figure 14), an upward 

trend in percentile correlates with a general decrease in the RMSE value. Notably, an escalation 

in percentile from the 90th to the 99.9th percentile corresponds to an increase in the R2 value. 

However, an anomaly surfaces as the R2 value experiences a decline at the 100th percentile. At 

lower percentiles, a reduction in buffer size is associated with a decrease in RMSE values. This 

trend undergoes a reversal post the 99.5th percentile, wherein a smaller buffer size now 

contributes to an augmented RMSE value. No discernible pattern emerges between buffer size 

and R2 values at different percentiles. The lowest RMSE value (26.2cm) is obtained with a 

25cm buffer at the 100th percentile and the highest value (57.4cm) with a 25cm buffer at the 

90th percentile. A maximal R2 value (0.88) is obtained with a 20cm buffer at the 99,9th 

percentile and the lowest value (0.68) with a 25cm buffer at the 90th percentile.  

   

Figure 14: R2 and RMSE values at different buffer sizes and percentiles from individual crop 

measurements using LiDAR data. 

In the examination of LiDAR imagery (Figure 15), an increase in percentiles also corresponds 

to an exponential decrease in RMSE values. Notably, smaller buffer sizes typically yield lower 

RMSE values, although an exception arises with the lowest buffer size (5cm), which exhibits 

a notably higher RMSE. Throughout the analysis, the R2 value consistently hovers around 0.9 

across various buffer sizes, with the exception of the 90th percentile, where the R2 value dips. 

No apparent pattern emerges between buffer size and R2 values at different percentiles. The 

lowest RMSE (13,3cm) is achieved with a 20cm buffer at the 100th percentile, while the highest 

(64,5cm) is observed with a 25cm buffer at the 90th percentile. Similarly, a maximum R2 value 

(0.9) is obtained with a 20cm buffer at the 99.9th percentile, contrasting with the lowest R2 

value (54) observed with a 5cm buffer at the 90th percentile. 

The selection of optimal parameters for individual crop height measurements through UAV 

imagery involved a balance between RMSE and R2 values. The optimal settings for both 

imagery types were determined to be an observation of the 99,9th percentile with a buffer of 

20cm around the crop. Despite the accompanying decrease in R2 value, the lower RMSE 

indicates that the model yields more precise estimations, particularly at the extremes of the 

height distribution. Figure 15 is showcasing scatter plots (n=40) depicting the alignment 

between field measurements and values derived from RGB and LiDAR imagery, underscoring 
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the trade-offs between precision and goodness of fit in height estimation. 

 

Figure 15: Scatter plots indicating the (a) RGB imagery and (b) LiDAR data values in 

comparison to ground truth measurements, at the individual crop scale. (99.9th percentile and 

a 20cm buffer). 

The scatter plot associated with RGB imagery exhibits a R2 of 0.88 and a RMSE of 27.88cm. 

In comparison, the scatter plot corresponding to LiDAR imagery demonstrates a higher R2 

value of 0.90, accompanied by a substantially lower RMSE of 13.41cm. These statistics reflect 

the stronger correlation and higher precision from LiDAR imagery compared to those derived 

from RGB imagery.  

4.2.2. Row height extraction 

Figure 16 and Figure 17 depict a detailed analysis of R2 and RMSE values, this time for 

estimating row height observations. This analysis was conducted across a spectrum of 

distribution thresholds, ranging from the 100th to the 90th percentile, and buffer sizes varying 

from 4cm to -4cm around the row polygon around the crop.  
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Figure 16: RMSE (on the left) and R2 (on the right) values at different buffer sizes and 

percentiles from row measurements using RGB imagery. 

In the analysis of RGB imagery for row height measurement (Figure 16), a notable pattern 

emerges where increasing percentiles are associated with a consistent decrease in the RMSE 

value, indicative of improved precision in height estimation. From the 90th to the 98th 

percentile, a slight rise in the R2 value is observed, followed by a stabilization until the 99.9th 

percentile. However, a significant drop in the R2 value is evident at the 100th percentile. 

Furthermore, at lower percentiles, a reduction in buffer size correlates with a decrease in RMSE 

values. At lower percentiles, a reduction in buffer size is associated with a decrease in RMSE 

values. This trend undergoes a reversal post the 99th percentile, wherein a smaller buffer size 

now contributes to an augmented RMSE value. No discernible pattern is observed between 

buffer size and R2 values across different percentiles. The lowest RMSE value (19,7cm) is 

obtained with a 4cm buffer at the 100th percentile and the highest (51,2cm) with a 4cm buffer 

at the 90th percentile. A maximal R2 value (0.93) is obtained with a 4cm buffer at the 99th 

percentile and the lowest (0,82) at the 100th percentile. 

  

Figure 17: R2 and RMSE values at different buffer sizes and percentiles from row 

measurements using LiDAR data. 
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In the evaluation of LiDAR imagery for row height measurements (Figure 14), there is an 

observed trend where increasing percentiles lead to a substantial decrease in RMSE values, 

with the exception of the 100th percentile, where the RMSE value increases once again. 

Interestingly, there is minimal variation in RMSE values across different buffer sizes. 

Throughout the analysis, the R2 value remains consistently high, hovering around 0.9 across 

various buffer sizes, except for a dip observed at the 100th percentile. Notably, no discernible 

pattern emerges between buffer size and R2 values at different percentiles. The lowest RMSE 

(20,8cm) is achieved with a 0cm buffer at the 99.9th percentile, while the highest (48,9cm) is 

observed with a 4cm buffer at the 90th percentile. A maximum R2 value (0.9) is attained with a 

4cm buffer at the 99th percentile, contrasting with the lowest R2 value (0,58) observed with a 

0cm buffer at the 100th percentile. 

Just as for the individual crop height observation, the process of selecting optimal parameters 

for measuring row height using UAV imagery required careful consideration of both metrics. 

The most effective settings for both types of imagery were identified as observing the 99.9th 

percentile with a 0cm buffer around the row polygon. In the case of RGB imagery, although 

the 100th percentile yielded a slightly smaller RMSE, it resulted in a significant reduction in 

model suitability (R2). Similarly, for LiDAR imagery, while the 99.5th  percentile exhibited a 

higher R2 value, it was accompanied by a notably larger RMSE value. The corresponding 

scatter plots (n=84) are featured in Figure 18. 

 

Figure 18: Scatter plots indicating (a) RGB and (b) LiDAR data values in comparison to 

ground truth measurements, at the row scale ( 99.9th percentile and a 0cm buffer) 

The scatter plots depicted in Figure 19 present the relationship between field measurements 

and values derived from RGB and LiDAR imagery for row observations. The scatter plot 

associated with RGB imagery exhibits a R2 of 0.91 and a RMSE of 25,97cm. In comparison, 

the scatter plot corresponding to LiDAR imagery demonstrates a lower R2 value of 0.89, 

however accompanied by a lower RMSE of 13.41cm. In this case, both RGB and LiDAR have 

high R2 values, suggesting a strong correlation between the imagery and the tassel height. The 

slight difference may not be substantial enough to be the sole factor in choosing one over the 

other. LiDAR, with its lower RMSE, appears to provide more accurate estimations of maize 
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tassel height compared to RGB. It is thereby concluded that the LiDAR imagery with the 

proposed polygons and the 99.9th percentile presents the optimal parameters for the further 

investigation of patterns within the experimental site. 

The constraints of limited ground truth data collection prohibit a direct validation of the most 

suitable model. To address this challenge, a CHM was generated for the 14th of August, a time 

period that is part of the tasselling stage when the height undergoes minimal change (as 

elaborated in section 2.3.1). Figure 19 shows the regression model between the heights per row 

measured on the 14th of August and the 11th of September. Each colour corresponds to a 

genotype allowing for comparison in growth. 

 

Figure 19: Scatter plot displaying LiDAR data values on the September 11th and August 14th 

at row scale (99.9th percentile and 0cm buffer). Each genotype is represented by a unique 

colour. 

With an R² of 0.90, the scatter plot exhibits a robust correlation between the height estimates 

obtained from LiDAR at these two time points. Additionally, a closer examination of the data 

reveals that the outliers, contributing to an RMSE of 8.64 cm, are predominantly linked to 

genotype. This observation suggests that the discrepancies in height measurements are not 

random but rather can be attributed to the ongoing growth variations within this particular 

genotype, further attesting to the precision and reliability of LiDAR measurements in capturing 

dynamic growth patterns in maize. 

4.3. Growth patterns within experimental site 

Additionally to testing out the reliability of UAV-derived height measurements in an 

intercropping context, this thesis wishes to apply the proposed methodology (see 4.2.) to collect 

insight on the height distribution patterns of the experimental site.  
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4.3.1. Height patterns observations 

Figure 20 presents the distribution of maize crop heights across different rows within the 

experimental field on September 11th, where measured heights spanned from 157 cm to 329 

cm. This visualization reveals significant height variations not only among distinct plots but 

also within the rows of a single plot. These initial results display the presence of different height 

dynamics within the field and can be used for the identification of underlying patterns that 

contribute to the variations in crop height observed within the study area, thereby enhancing 

our understanding of the spatial dynamics affecting maize growth. 

 

Figure 20: Spatial distribution of the average tassel height for each row on September 11th, 

utilizing the 99.9th percentile value of the LiDAR imagery. 



42 

 

Figure 21 provides an overview of row height distributions across the 32 different genotypes, 

initially introduced in Figure 5.  

 

Figure 21: Phenotypic diversity in maize cultivars based on height distributions from 

September 11th. 

The analysis of maize genotypes' height distributions reveals a spectrum of phenotypic 

diversity. The genotypes display distinct phenotypes, with some characterized by generally 

shorter plants and others by consistently taller plants. For instance, genotype 18 exhibits a 

relatively short height, with an average height of 178 cm, while genotype 14 stands out for its 

consistently tall plants, with an average of 294 cm. Furthermore, the distribution of height 

values within each genotype varies significantly. Some genotypes demonstrate a relatively 

uniform distribution of plant heights, suggesting homogeneity, such as genotype 23 with a 

standard deviation of 24 cm. Conversely, other genotypes display extensive variations in 

height, indicating pronounced heterogeneity, as seen in genotype 28 with a standard deviation 

of 68 cm. This variation not only highlights the phenotypic diversity among different genotypes 

but also within the populations of each genotype. 

Figure 22 puts light on the height distribution according to rows in the two different 

intercropping configurations of the field: four rows and eight rows. The complexity of 

phenotypic expression, as depicted through the distribution of row height values in the top 

plots, underscores an inherent variability within genotypes. Thereby, we observe that 

genotypes do not only display difference in height between plots but also between rows. The 

corresponding lower plots depict the average plant height distribution per row for the two 

intercropping configurations. Intriguingly, both configurations exhibit a noticeable downward 

slope towards the southern side, featuring a decline of around 10 cm, with the lowest values 

observed in the southernmost row. Additionally, the configuration with 8 rows exhibits another 

similar slope among the three most northern rows with a decline of about 5 cm. The presence 

of observable row patterns, particularly evident in the southernmost rows, suggests interaction 

with environmental factors. To further understand these interactions, the height distributions 

for each genotype were analysed separately through comparable graphs (Appendix A).  
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Figure 22:  Height distribution across rows by genotypes (top) in two intercropping 

configurations (left = 4 rows, right = 8 rows) on September 11th. 

Figure 23 presents an overview of the observed height patterns in rows for the different 

genotypes for the two intercropping configurations: 4 rows and 8 rows. It not only quantifies 

these patterns but also includes illustrative examples for each, offering a comprehensive 

overview of the dataset. 

 

Figure 23: Overview of the observed height variations across rows by genotypes on 

September 11th. Four types of height patterns are observed: (a) alternating, (b) slope with 

southern decline, (c) convex, and (d) concave. 
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This analysis reveals that different genotypes reflect distinct patterns between rows, 

contributing to the overall variability in plant height. Most of the genotypes reflected either a 

southern sloped tendency (n=15) or an alternating distribution (n=14). Although present in a 

few cases, the observation of convex (n=5) or concave (n=2) patterns were less frequent. These 

findings underscore the complex relationship between genotypes and environmental factors, as 

well as the grouping of different patterns from genotypes.  

In Figure 24, the analysis focused on evaluating the average height of different cultivars of 

maize grown in proximity to varying neighbouring crops. The graphs illustrate the type of crop 

in the right neighbouring strip, categorized as maize (yellow), beans (green), or pumpkin 

(orange). Results show that, on average, crops adjacent to beans exhibited a lower mean height 

compared to those neighbouring maize and pumpkin. This trend varied across genotypes but 

consistently pointed towards a positive influence of beans on crop height.  

 

Figure 24: Height (cm) per row for each genotype on September 11th using LiDAR data.  

Results from Figure 25 shed light on the average height differences between neighbouring rows 

within each plot. This analysis offers insights into how plot configurations, such as those with 

4 rows, 8 rows, or monoculture plots, may influence the variability in height within a plot. 

Specifically, the map seeks to determine whether rows situated closer to different types of crops 

(i.e., border rows) exhibit greater height variation compared to rows located farther from 

neighbouring crops (i.e., inner-rows). If this is the case, it would be expected that plots with 4 

rows would display higher values, as they contain fewer inner rows, which would lower the 

average variation. The map was generated using a Natural Break (Jenks) classification, 

allowing the observation of different groups within a continuous dataset based on natural 

breaks in the data. Upon visual inspection, it is observed that while variations between row 

configurations cannot be detected, variations are observable within genotypes.  
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Figure 25: Average height differences between rows per plot. Observed on September 11th 

with LiDAR data. 
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4.3.2. Temporal patterns 

Additionally to observing spatial patterns, height growth observation could also be obtained 

through the observation of two more dates: the 7th of June and the 18th of July.  Maps displaying 

the height of the maize during these two time periods can be found in Appendix B. 

The two growth periods (GPs) are presented in Figure 24. To make the difference in height 

through time easier to observe, a new dataset with the differences between the June 7th and July 

18th (GP1), and the difference between the July 18th and September 11th was created. An equal 

interval classification was chosen in order to make the two time period maps easily comparable.  

 

Figure 26: Average height differences between rows per plot using LiDAR data. Observed 

for the tie periods of (a) June 7th to July 18th and (b) July 18th to September 11th. 

The GP1 witnesses a notable and relatively homogeneous increase in height across the 

experimental plots. However, within a few patches, distinctive differences are observed, often 

accompanied by even more pronounced increases in height. To receive more clarity on these 

observations, these patches were examined using corresponding ortho and LiDAR images for 

both dates. Upon close examination of imagery from June 7th, anomalies were identified as 

lodging areas, shedding light on the observed patterns (see Figure 25). 
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Figure 27: Detection of lodging areas in the experimental site on June 7th using LiDAR data 

The GP2 is characterised by an overall lower increase in height change compared to the 

previous period. However, the value are much more heterogeneous with a much greater 

variation in height. Some rows even show a decrease in height with values under 0cm.  

Figure 28 illustrates the growth dynamics of various genotypes across four key stages of the 

growing season, marked by days after planting (DAP): June 7th (DAP 54), July 18th (DAP 95), 

August 14th (DAP 122), and September 11th (DAP 150). This figure plots the average height 

per row of each genotype at these intervals to showcase their growth trajectories. While the 

initial phase saw a rapid increase in height for most genotypes, a select few demonstrated a 

notable growth spurt in the subsequent period. Towards the latter part of the season, most of 

the genotypes reached a plateau in growth, with the exception of one cultivar, which continues 

to exhibit robust growth. Detailed observations for each genotype are provided in Appendix C 

and a table with the average heights are presented in Appendix D. 

 

Figure 28: Comparative growth dynamics of plant genotypes over the growing season. 
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5. Discussion 

5.1. UAV-based height estimation for maize height in intercropping 

The primary aim of this study was to evaluate the effectiveness of UAV-based imagery in 

detecting maize height within intercropping systems. By having comparable conditions and 

settings for both imagery types, our analysis was able to directly compare the performances of  

LiDAR and RGB imagery in correlating with measured ground truth data.  

At first, an observation of maize at the individual scale was conducted. Following the 

identification of the optimal settings, notably an observation of the 99.9th percentile with a 

20cm buffer, our findings revealed that LiDAR imagery outperformed RGB imagery in 

correlating with individual crop ground truth data. Specifically, LiDAR imagery exhibited 

stronger model suitability (R²=0.9) and lower root mean square error (RMSE=13.41cm) 

compared to RGB imagery (R²=0.88, RMSE=27.88cm). These results, demonstrate the 

superior performance of LiDAR technology in detecting maize tassels thereby capturing higher 

values, as evident in through scatter plots (Figure 15) and the maximal heights in the CHMs 

(Figure 12). The study conducted by Qiu et al. (2022) used RGB imagery to assess individual 

maize height and reported strong accuracy results for two different genotypes, with R² values 

of 0.96 and 0.98, and RMSE values of 1.3 cm and 1.1 cm, respectively. However, the study 

observed maize at the height of the leaves in the jointing which has been associated to higher 

acracy result than looking at the tassel height (Qiu et al., 2022). Our study is innovative in the 

observation of tassel height at the individual scale through  RGB imagery. In the investigation 

conducted by Gao et al. (2022), LiDAR imagery was employed to evaluate individual maize 

height, yielding superior results (R²=0.96, RMSE=3.04 cm) compared to our own study. This 

difference in results may be attributed to several factors. Notably, the former study possessed 

a larger sample size, potentially reducing the likelihood of errors associated with manual 

measurements. Additionally, the study by Gao et al. (2022) utilized individual crop detection, 

which likely contributed to the accuracy of their measurements. In contrast, our study relied on 

manual detection of tassel location, which could introduce additional human-induced errors. 

Furthermore, it is pertinent to reiterate that this research was conducted across a field hosting 

32 distinct maize cultivars. As demonstrated in Qiu et al. (2022), height accuracy  observations 

vary between cultivar due to difference in phenotype, making here common accurate 

observation more challenging. This genotypic  diversity underscores the robustness of our 

methodology, as the accuracy of our results reflects the capability to discern and characterize 

a multitude of phenotypic expressions within a single analytical framework.  

We furthered our study by observing maize height through UAV imagery at row scale. The 

optimal observations were once again observed at the 99.9th percentile with no buffer 

surrounding the initially created polygon. In comparison to the individual scale, we observed 

similar R2 values with 0.91 for RGB and 0.89 for LiDAR but much higher RMSE value for 

both LiDAR and RGB imageries with values of 20.82cm and 25.97cm for RGB respectively 

(Figure 18). LiDAR imagery was once again associated to better accuracy results.  A strong 

explanation for the similar R² values between the row scale and the individual scale 

measurements is the increased number of manual measurements at the row scale, which 

mitigates the impact of human error and reduces the number of induced outliers. The results 

obtained from row observation in this study align with previous research, showcasing 

consistent results across various methodologies. For instance, Han et al. (2018) and Gilliot et 
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al. (2021) both obtained  a R² value of 0.9 and RMSE values of 21 cm and 16 cm through RGB 

imagery. Similarly, the study by Crommelinck & Hofle (2016), which focused on LiDAR for 

plot maize height estimation, yielded a comparable RMSE value of 16 cm.  

In both individual and row scale observations, the optimal percentile to measure the maize’s 

height (99.9th) did not correspond to the highest percentile. This finding aligns with the study 

by Lu et al. (2021) in which the highest results for tassel height detection were also observed 

at the 99.9th percentile. Shorter crops such as wheat and barley may require the consideration 

of lower percentiles due to the presence of weeds which may become higher that the crops 

(Jamil et al., 2022). However, in our study, we focused on maize, a tall crop, and selected dates 

where the crop height had already surpassed that of the weeds (Figure 12), effectively 

neutralizing this issue. Another and more probable reasoning for this observation is the 

presence of leaves from neighboring crops, which may results in a higher LiDAR-measured 

value than the tassel of the observed individual maize plant.  

This study successfully demonstrates LiDAR technology's potential to accurately measure 

maize height during the reproductive stage. Through comparison with an earlier reproductive 

stage date where minimal height changes were anticipated (Figure 19), a high correlation 

(R2=0.91) was established. Moreover, it was identified that the outliers originated from the 

same cultivar, showcasing higher values on the later date and indicating ongoing growth in this 

genotype. This observation highlights the accuracy and reliability of LiDAR technology in 

capturing maize height, suggesting promising applications in agriculture. 

5.2. Uncertainties and limitations in UAV derived height accuracy  

Our study encountered several limitations that may have impacted the reliability and accuracy 

of our maize height estimations. Firstly, we were constrained by the limited number of 

individual crop field measurements that were collected. Manual measurements are prone to 

human errors, as maize stalks are thin and therefore prone to crop movement from wind making 

the reading of the high crops height value tricky (Gao et al., 2022). With more measurements, 

and more field workers, we would have been able to give less focus to the human-errors. To 

achieve a more comprehensive comparison between cultivars, a greater number of 

measurements would have been necessary, as suggested by Perez-Harguindeguy et al. (2013).  

For the row observation, we also only got to measure two crops per row, which could have 

hindered our ability to capture the full spectrum of maize height variation within the rows.  

Moreover, locating the tassels was a big challenge in this study. We did not have the exact 

location of the individual crop that we measured and we therefore relied on the ortho picture 

to pinpoint the crops. Because we were on the outside of the rows where it was not dense we 

could afford to use a higher buffer, therefore ensuring that the highest tassel value was included 

in our measures. However, this would not have been possible in the center of the rows where 

there is much denser vegetation. While we attempted to account for the location of rows based 

on the movement of crop growth, the generalization of polygons created per row across all 

plots may have led to a slight deviation from the true row placement, potentially impacting our 

results. Incorporating machine learning techniques for individual crop detection could enhance 

the accuracy of our methodology by detecting the exact location of crops and thereby also 

generate unique row placements. This would also have promoted the automation of the process 

and not have to manually select the individual crops. Various approaches are proposed by 

different studies, such as tassel detection (Zan et al., 2020) and seedling detection (Gao et al., 

2022). 
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5.3. Height dynamics between rows of maize cultivars in intercropping  

The investigation of maize height patterns in intercropping systems through different cultivars 

marks a pioneering research in agricultural research. Given the nascent stage of this field, our 

study primarily engaged in an exploration of height patterns between genotypes, rows and 

neighboring crops, laying the groundwork for future analyses. Our initial observations on 

September 11th delineate two primary patterns of height variability:  differences between plots 

and significant variations within rows (Figure 20). 

Analysis of height distributions across genotypes revealed significant variability in the 

phenotypic profiles of different cultivars (Figure 21). This pronounced variability underscores 

the pivotal role of genotypic variation as a primary driver of height disparities among maize 

plots. Further examination into the effects of adjacent crops on maize height revealed another 

noteworthy pattern in plots: plots adjacent to bean crops generally exhibited lower height 

values, whereas those neighboring other maize crops displayed higher values (Figure 24). This 

observation is particularly intriguing given the phenotype difference between beans, which are 

relatively low-growing plants, and maize, which reach greater heights. This pattern aligns with 

and lends support to the findings of Muntz et al (2014), suggesting that the impact of 

neighboring crops on plant height is significant. The lower stature of bean plants adjacent to 

maize may exert a competitive or complementary influence on the growth dynamics of maize, 

resulting in varied height outcomes. These observations not only highlight the critical influence 

of genotype on maize plant height but also underscore the importance of interspecific 

interactions within crop systems. The discernible effect of neighboring crops on plant height 

emphasizes the need for further research into the strategic placement of crops to optimize 

growth outcomes and agricultural productivity.  

In addition to the observed height differences between plots, a detailed investigation into the 

height variations within rows was conducted. Analysis of maize height distribution across four-

row configurations unveiled a notable slope trend, with the southernmost rows consistently 

exhibiting the lowest height values (Figure 22). To mitigate the influence of genotype 

variability on this pattern, an individual analysis for each genotype was performed (Appendix 

B). This slope pattern, still evident in the majority of genotypes (Figure 23), points to sunlight 

exposure as a pivotal factor affecting row height. This observation aligns with the conclusions 

drawn by Wang et al. (2017), who linked variations in maize crop heights to differences in 

sunlight absorption. However, our diverges from the symmetrical border row effect described 

by Wang et al. Instead of a uniform effect across rows, we observe a pronounced impact in the 

southernmost row. This discrepancy may be explained by our specific row orientation, which 

differs from the conditions examined by Wang et al. (2017) by being more southern faced, 

thereby influencing the observed growth patterns (Figure 29). 

 

Figure 29: Row orientation illustrations comparing (a) this study with (b) the Wang et al. 

(2017) study. 
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In addition to the observed slope pattern, certain genotypes exhibited alternating, convex and 

concave patterns. This morphological variability was accompanied by a high degree of variance 

within the rows, indicating that the growth patterns are not solely determined by genotype and 

orientation but are also influenced by additional environmental factors. Such complexity 

suggests that multiple interacting elements contribute to the observed growth dynamics, 

underscoring the intricate interplay between genetic and environmental influences on crop 

development. Subsequent communication revealed that some discrepancies in the observed 

patterns could be attributed to planting errors, with variations in genotypes between rows 1 and 

3 and between rows 2 and 4. These inconsistencies partially account for the alternating growth 

patterns observed in some plots. Another explanation differences in phenotypic plasticity 

between cultivars. Fully understanding the maize’s different height profile would suggest 

observing environmental factors sch as sunlight quantity, water absorption and crop properties.  

5.4. Growth dynamics of maize cultivars in intercropping 

For this section, height were observed on June 7th (DAP 54), July 18th (DAP 95) and September 

11th (DAP 150). Through our analysis, we observed very different growth patterns between the 

two periods (Figure 26). The GP from June 7th to July 18th was marked by a higher maize height 

change  with a general height difference between 50cm and 100cm. Changes outside of these 

values were primarily attributed to lodging areas (Figure 27). Lodging, a disruption caused by 

environmental stressors such as wind or rain, can physically bend or break maize stalks, 

affecting their apparent height (Zhou et al., 2020).  In the GP from July 18th to September 11th, 

lower growth values were noticed with changes that are generally more around 0 to 50cm. 

Some cultivars even showed regression in height,  which can be linked to tassel breakage and 

maize plants drying down. This observed pattern of growth is characteristic of maize's 

developmental stages, where the early vegetative phase is marked by rapid stem elongation, 

transitioning into a reproductive phase where energy is redirected towards flowering and seed 

production, thus slowing stem growth (Nleya et al., 2016). These results resonate with the 

observations of Wang et al. (2017) where high growth was observed till about DAP 100 and 

then stabilization of the growth (Figure 4). However, when looking at the variation between 

plots (Figure 26) and the growth curves by genotypes (Figure 28), we observe that some 

genotypes actually show more height during the second period than during the first one. 

Furthermore, while most cultivars exhibit minimal height variation between August 18th and 

September 11th, cultivar 16, distinguished as the sole black maize in the experimental field, 

continues to demonstrate significant growth. This unique growth pattern is also evident in the 

height comparison between these dates (Figure 19). These observations clearly indicate that 

whilst the expected pattern is generally observed, cultivars have their own growth curve 

thereby having a different resource interaction from each other. 

5.5. Key factors in assessing UAV based observation of maize height in intercropping 

Exploring the effectiveness of UAV maize height within intercropping systems is a pivotal yet 

recent area of research. A meticulous examination of pertinent literature underscores key 

factors that must be considered when delving into a pertinent assessment of the subject.  

Firstly, the selection of imagery requires careful consideration. According to Araus et al. 

(2018), the adoption of RGB and LiDAR imagery is most suitable for achieving accurate crop 

height measurements. Additionally, the scale of observation assumes paramount significance 

within intercropping contexts. Precision is vital to capture nuanced inter-specific patterns 

among neighboring genotypes. Our study addresses this necessity by conducting height 
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measurements at both row and individual crop scales. The diverse range of genotypes within 

intercropping systems necessitates tailored methodological approaches. Different maize 

cultivars will have different accuracy values to a proposed height extraction (Gao et al., 2022; 

Qiu et al., 2022). In our study, this emphasized the need for a methodology capable of 

accurately assessing the different maize genotypes with their unique morphologies. 

Furthermore, the method employed for height extraction carries considerable weight. 

Particularly in dense vegetation scenarios like maize fields, the utilization of off-season DTMs 

has shown superior accuracy (Table 1). The crop growth stage emerges as a pivotal 

consideration due to its profound impact on crop morphology. Maize undergoes notable 

morphological changes during its growth stages, such as the emergence of the tassel during the 

reproductive phase (Oehme et al., 2022). With the tassel being a thin and thereby not easily 

detectable object, more precise imagery is expected to be required than when looking at the 

crop leaves. Height extraction parameters, such as observed percentiles and buffer sizes, 

represent nuanced yet critical determinants. Tailoring these parameters to specific study 

contexts is imperative, as their efficacy is highly dependent on the nature of the observation. 

Finally, striking a judicious balance between accuracy and cost is indispensable. While 

heightened accuracy is desirable, it often comes with elevated costs. Thus, pragmatic 

considerations regarding cost must be carefully weighed against the imperative for precision. 

By meticulously addressing these key factors, our study was established with a robust 

methodology for measuring maize height within intercropping systems. This holistic approach 

sets the stage for further investigation. 

5.6. Future work 

In this study, we have provided additional knowledge for further exploration into the use of 

UAV imagery in assessing phenotypic traits in intercropping systems. Moving forward, there 

are several avenues for continued research and refinement. 

The diverse set of maize cultivars used in this study offers a unique opportunity to delve deeper 

into the genetic factors that influence plant height in intercropping systems. Future plant 

investigations can focus on correlating height observations with yield, root systems, and overall 

plant health, shedding light on the specific genetic determinants of maize height variation. The 

complexity of the experimental field, including neighboring crops like faba beans and 

pumpkins, provides a platform for studying the interplay between different crop types. Shifting 

the focus of height pattern analysis to these neighboring crops using the same field experiment 

can offer insights into how maize height interacts with other plant species in intercropping 

systems. In this study, a hypothesis regarding the lack of accuracy due to imprecise tassel 

identification warrants further investigation was made. A comparative analysis between 

manual observations and tassel detection methods using UAV imagery can shed light on the 

power of automatization in using RS for phenotyping in intercropping systems.  The use of 

pre-disposed pre-processing settings in this study provides a basis for exploring the impact of 

different parameters on UAV performance in intercropping systems. Fine-tuning these 

parameters can enhance the accuracy of height measurements not only for maize but also for 

other crops in intercropping scenarios. Finally, while this study has focused on maize, there is 

scope for comparative studies on optimal methodologies across different crops in intercropping 

systems. Assessing the accuracy of UAV imagery in measuring height across various crops can 

provide valuable insights into the unique challenges and opportunities presented by different 

plant species.  
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By addressing these areas in future research, we can further refine the application of UAV 

technology in assessing crop height and morphology, contributing to more precise and efficient 

agricultural practices in intercropping systems. 
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6. Conclusion 

This study has provided valuable insights into the utility of UAV-based imagery for measuring 

maize height in intercropping systems, emphasising the need for several considerations. Firstly, 

the selection of precise imagery is essential for accurately capturing smaller features like 

tassels, with RGB and LiDAR emerging as the most effective technologies for assessing crop 

height. Furthermore, the scale of observation plays a crucial role, especially since intercropping 

effects are pronounced at the row level. Precision at an individual plant scale has the advantage 

of mitigating the impact of foliage. Moreover, accurately choosing the most appropriate 

method for plant height extraction and its parameters has been identified as highly dependent 

to the observed experimental field. For densely vegetated fields and when early data are 

available, integrating a DTM with a DSM proves to be the most efficient approach. Finally, the 

variability introduced by the presence of multiple cultivars and differing growth stages 

necessitates a flexible methodology that can accommodate these complexities, which may 

differ from the methodology observed for a specific cultivar or growth stage. 

Comparing the performance of LiDAR and RGB imagery with ground truth data, the study 

demonstrated the superior accuracy of LiDAR in capturing maize tassel height. Specifically, 

higher accuracy was observed for individual crop observations (R2= 0.9 , RMSE= 13.41cm) 

compared to row observations (R2 = 0.89, RMSE = 20.89cm). RGB imagery yielded results of 

R2 = 0.88, RMSE = 27.88 cm for individual crop height and R2 = 0.91, RMSE = 25.97cm for 

row observations. However, using LiDAR data has shown extra complications, such as the 

need for high storage capacities and elevated processing time. Using LiDAR may also be more 

costly than RGB Imagery, although technology advancements are gradually reducing this cost 

disparity.  

The research revealed significant height variation influenced by genotypic differences, row 

configurations, and environmental factors, with notable impacts from neighbouring crops on 

maize height. The variability observed within rows for different cultivars suggests a high 

impact of sunlight exposure. However, with a complex interactions at play, the need for an in-

depth exploration of the relationship between maize genotypes and their specific growing 

conditions is required.  

Our research also established patterns in maize growth dynamics, exhibiting a pronounced 

increase in height during the initial vegetative phase followed by a more gradual growth as the 

plants transition into the reproductive stage. However, growth pattern were noticed as highly 

unique to cultivars. In particular, the black maize, showed a much later growth phase than the 

other cultivars. Through observation of growth patterns we were also able to display the 

potential of RS in detecting lodging areas.  

Challenges such as limited sample sizes and the need for manual tassel detection suggest areas 

for methodological refinement. Future studies should explore the method's robustness across 

different crops and intercropping systems, automate data processing, and further investigate 

the genetic basis of height variability among cultivars. 
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Appendix A: Variability in maize height across rows by genotype on 

September 11th. 
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Appendix B: Height maps for June 7th and July 18th using LiDAR 

data. 

B.1. Average tassel height value for each row on the 7th June. Using the 99.9th percentile 

value of the LiDAR Imagery. 
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B.2. Average tassel height value for each row on the 18th July. Using the 99.9th percentile 

value of the LiDAR Imagery.  
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Appendix C: Temporal height variations of maize genotypes in an 

intercropping system. 
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Appendix D: Average maize height (cm) by genotypes throughout the 

growing season 2023 (June to September) 

 

 

Cultivars
June 7th 

(54 DAP)

July 18th 

(95 DAP)

August 14th 

(122 DAP)

Septemebr 11th 

(150 DAP)

1 148 229 267 270

2 111 200 260 263

3 126 210 254 256

4 91 175 240 244

5 127 210 268 269

6 135 200 232 233

7 132 214 269 273

8 119 204 231 235

9 133 215 260 263

10 139 211 258 259

11 129 207 248 251

12 95 172 239 243

13 84 144 195 195

14 96 186 285 293

15 110 189 218 219

16 79 143 234 267

17 90 174 224 229

18 101 163 174 179

19 120 196 217 221

20 140 213 222 223

21 130 201 211 214

22 125 198 219 222

23 127 208 240 243

24 118 199 221 225

25 119 203 234 237

26 133 207 242 244

27 124 206 258 257

28 136 216 234 237

29 131 205 238 241

30 121 206 272 275

31 136 210 263 266

32 132 212 232 234


