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Abstract—Multiple myeloma (MM) is a rare hematological
disease that highly compromises the skeletal system, in the worst
cases leading to vertebral compression fractures (VCFs). To
avoid their progression surgical interventions are carried out
although it is key that these VCFs are detected and treated as
soon as possible. Automatic detection of these fractures using
artificial intelligence (AI) could be very useful and has already
been attempted. However, due to the prevalence of VCFs the
data is highly imbalanced, which negatively affects deep learning
models. In this study the performance of a convolutional neural
network (CNN) VCF detection model is evaluated in different
data imbalance ratios employing different data balancing tech-
niques. The techniques compared are data augmentation, image
generation employing latent diffusion models, a combination of
augmented and diffusion generated images and cost sensitive
learning. No data balancing technique showed a statistically
significant improvement with respect to the baseline. Both data
augmentation and diffusion sampled images hindered perfor-
mance in a statistically significant way specifically in the higher
imbalance ratios.

I. INTRODUCTION

Multiple myeloma (MM) is a malignant proliferation of
plasma cells in the bone marrow [1]. It is a rare hematological
disease comprising 1 percent of all malignancies and 13
percent of hematological malignancies [2]. 80 percent of MM
patients develop skeletal complications such as focal lytic
lesions, hypercalcemia, and vertebral compression fractures
(VCFs).

VCFs are a big healthcare concern in MM patients since
they cause severe bone pain, limit mobility and increase spinal
instability reducing the independence of the patients. VCFs not
only cause a great decrease in quality of life, but are also linked
to an increased mortality. Though current treatment lines such
as radiotherapy, vertebroplasty or kyphoplasty are effective in
delaying fracture progression, it is of utmost importance that
they are applied as soon as possible. The reason for this is
that surgical treatment reaches peak efficacy when performed
before the actual appearance of the VCF. Thus, early detection
is important even in diagnosed patients since 61% of diagnosed
patients develop new VCFs [3].

There have been several attempts of VCF detection models
on CT images employing a CNN [4] or a CNN combined
with an recurrent neural network (RNN) [5]. Though they have
achieved good performance the scenario of having sufficient
training data to achieve these results might not be realistic in
every clinical setting.

Due to the rare nature of the disease we are faced with the
data imbalance challenge. There are several commonly used
approaches to tackle this issue which can be at the algorithm
level such as cost sensitive learning or at the data level such
as data augmentation.

Recently diffusion models have gained a lot of attention
for their widespread applications such as image inpaiting [6],
anomaly detection [7] and image generation [8] [9]. In the
latter, they have shown a great stability and ability to represent
all the data distribution diversely overcoming generative adver-
sarial networks’(GANSs) main pitfall mode collapse [10]. These
generative models have given rise to the possibility of image
generation to create new samples of the minority class. This
has been done successfully for other medical classification
problems such as skin lesion [11] digitalized microscopic cells
images [12] and chest X-ray images [13]. However, image
generation has not been compared to other classically used
approaches. Since it is a technique dependent on the amount
of training data available, there is a possibility that it might
not always be the most effective option. This comparison was
done in the scope of non medical images using GANs [14] [15]
but results were contradictory. Only Suh et al who had larger
amounts of training data found GANs more effective than
classical approaches. Thus, there is no comparison of diffusion
models with respect to other data balancing techniques in
medical images.

Therefore the aim of this study is to perform a comparison
between employing diffusion models and other classically used
data balancing techniques in the VCF detection problem. Plus,
since previous studies did not come to consensus possibly due
to differences in the amount of training data, imbalance ratio
is a new variable introduced in the study. This comparison
between data balancing techniques is repeated employing
training data of varying imbalance ratios.

II. METHODS

The steps taken in this study are the following:

o Train a baseline VCF detection model

o Improve this model using diffusion sampled images

o Separately use other data balancing techniques including
data augmentation, a combination of data augmentation
and diffusion sampling and cost sensitive learning



o Quantitatively compare the performance of each of this
data balancing techniques with respect to the baseline
VCEF detection model

o Observe if imbalance ratio affects the results in this com-
parison by training the previously mentioned models with
training sets of varying imbalance ratios to quantitatively
assess their efficacy

All techniques needed to perform the mentioned steps will
be explained below.

A. Detection model

As a baseline detection model a CNN similar to the LeNet
architecture [16] is employed. This model employs several
convolutional blocks consisting of convolutional layers fol-
lowed by downsampling layers. The last layer is flattened and
several fully connected layers are employed. A schematic of
this simplified architecture can be observed in Figure 1.
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Fig. 1: Schematic of LeNet architecture. Convolutional layers
in yellow, downsampling layers in red and fully connected
layers in purple.

B. Generative Al

1) Diffusion models: The diffusion process learns the dis-
tribution of a dataset and is able to create new samples. It
is separated into the forward and backward processes. The
forward process q is a Markov chain where gaussian noise is
added sequentially to the original image x( in a number of
timesteps T to obtain xg, x1, ..., o7 images. They are noised
according to a fixed variance schedule (;...07. This can be
adjusted on different ways such as a linear scheduler or an
exponential scheduler.
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As a result T images that are progressively noisier are
obtained, the higher the timestep t, the lower the signal to
noise ratio in z;. By implementing a change of notation the
forward process of any arbitrary timestep t can be performed
in a non iterative way. Having o = 1—; and &y = HZ=1 Qg

= N(x; Vo, (1 — a)I) 2

The reverse process py aims to learn how to denoise the
image between two timesteps.
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The variance Yy is fixed as a hyperparameter like explained
previously. Instead of predicting the remaining unknown g
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Ho et al [8] founds better results when predicting the noise
e instead. Thus the loss function to be optimized is a mean
square error between the actual noise € and the predicted noise
eg(xy,t).
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Lastly, once the model is trained zy can be reconstructed
from 7 by sequentially repeating the reverse process T times.
Both the forward and backward process are illustrated in
Figure 2.
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Fig. 2: Schematic visualization of forward (q) and backward
(p) processes. The forward process (q) can be seen from right
to left as noise is sequentially added to the original image.
The backward process (p) can be seen from left to right as the
image is sequentially denoised [8]

Once the model is trained it indirectly learns the distribution
of the training dataset. Therefore, the trained reverse process
can be used to generate new samples of the original distribu-
tion. This is done by inputting random noise to the reverse
process which will be sequentially denoised till a new sample
is reached. For every timestep t = T,..,1:

1 1-— it
where z ~ N(0,1) and 07 = B; or 07 =
when t = 1 for which z =0

It should be noted that it is also possible to parametrize the
variance Yy instead of fixing it as a hyperparameter.

2) Latent diffusion models: As the number of timesteps
employed can be on the scale of the thousands, the diffusion
process can be quite computationally expensive. This along
with other factors such as image size can become an issue. To
avoid this latent diffusion models [17] can be employed. The
key difference with this models is that prior to the diffusion
process latent diffusion models employ an autoencoder to re-
duce the dimensionality of the images. This way the diffusion
model can be trained on the smaller encoded images reducing
computational expense. Nevertheless, the end results remain
the same since the generated synthetic outputs are translated
back to the pixel domain by the decoder as can be seen in
Figure 3.
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C. Data augmentation

Data augmentation is a technique commonly used to in-
crease the amount and diversity of training data. It has been
shown to increase performance and also serve as a form of
regularization. It should be carried out with caution ensuring
variability is introduced in a realistic way. Some of the
commonly used augmentation techniques in medical images
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Fig. 3: Schematic of latent diffusion model’s structure. Au-
toencoder is trained to reconstruct the training images. The
diffusion model is trained as explained in Figure 2 on said
encoded training images. During inference, random noise is
input to the diffusion model to obtain a new sample which
will be decoded back to the pixel domain

include geometric transformations, cropping, occlusion, inten-
sity operations, noise injection and filtering [18].

D. Cost sensitive learning

In contrast with data augmentation, a data level approach
towards dealing with data imbalance would be cost sensitive
learning. It modifies the weight that each class has on the loss
function so that a mistake made on the minority class is more
punished, therefore balancing the lack of cases. The weight of
each class can be made proportional to the imbalance present
in the dataset [19] according to the formula:

n
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where n is the total number of samples, ¢ the number of classes
and n; is the number of samples in class j.

E. Performance evaluation

To individually assess the performance of each model,
sensitivity and accuracy are employed. Sensitivity is defined
as the fraction of the number of true positives and the sum
of the true positives and false negatives. Accuracy is defined
as the fraction of the sum of true positives and true negatives
and the sum of true positives, true negatives, false positives
and false negatives. To compare different models, a t-test is
performed. P values lower than 0.05 are considered statistically
significant.

III. EXPERIMENTS
A. Materials

For this project, two datasets were used, the TotalSegmen-
tator dataset [20] and the in-house dataset from the University
Medical Center Utrecht. The TotalSegmentator dataset is an

open source dataset comprising 1405 CT scans with segmenta-
tions of 104 body structures including bones, organs, muscles
and vessels. These scans were obtained in a retrospective
study, randomly sampled in 2012, 2016 and 2020 ensuring
diversity in age, scanners, sites and sequences. The majority
of these scans were thorax abdomen and pelvis CT though
other scans such as heart CT were also present to a lesser
extent [21]. The in-house longitudinal dataset contained 95
full body CT scans of 50 MM patients and their respective
segmentations obtained by Payer (Coarse to Fine Vertebrae
Localization and Segmentation with SpatialConfiguration-Net
and U-Net) [22].

Two NVIDIA RTX A500 GPUs were employed for the
training of all models.

B. Data preparation

All the operations were performed inside the MONAI
framework [23].

Scans where the spine was not present were discarded as
well as vertebras outside of C7-L4 since VCFs do not usually
occur outside those bounds [1] [2]. Scans with incorrect
segmentations were also discarded. Only in the case of VCF
presence the incorrect segmentations were manually corrected.
Scans with screws that had metal artifacts which highly
compromised the visibility of the adjacent vertebras were also
discarded.

Presence of VCFs was manually checked employing Genant
semiquantitative assessment. This method classifies fractures
according to vertebral height reduction into grade 0 (< 20%
height loss) , grade 1 (20 — 45% height loss), and grade
2 (> 40% height loss) [24]. Vertebras classified as Genant
grade 1 or 2 were labeled as VCF. Out of the 1405 scans in
the TotalSegmentator dataset 756 were found to have correct
segmentations. A total of 42 VCFs were found in 33 of the
scans. The in-house dataset was also inspected to find a total
of 355 VCFs out of 95 scans corresponding to 50 subjects.

Scans were preprocessed to have the same orientation and
voxel dimensions 1x1x1 mm. They were also normalized be-
tween 0 and 1. Scans were cropped to obtain individual images
of each vertebra of 112x112x80 voxels. These croppings were
centered in the segmentation of each vertebra. The neighboring
vertebras were visible to different extents.

The scans were split into the train, test and validation set in
an 80-20-10 proportion. Due to the longitudinal nature of the
in-house dataset the separation into train validation and test
sets was done at the patient level.

C. Diffusion process

The previously explained latent diffusion model was trained
to generate synthetic samples. It was trained with every VCF
from every scan from every patient belonging to the train
set which amounted to 383 VCFs. Sampling was executed
to obtain images of 120x120x80 voxels. A manual inspection
of the results was carried out to select the ones of sufficient
sample quality. Out of the 3320 diffusion sampled images,
653 were selected. The selected ones were preprocessed in
the same pipeline as the real samples.



Fig. 4: Examples of selected diffusion sampled 3D images in
their sagittal, frontal and coronal view from left to right

D. Data augmentation

As explained, data augmentation is a method used to artifi-
cially generate more samples by applying modifications which
mimic changes in the acquisition process or the patient. Some
of these techniques were applied. Geometric transformations
include flipping the images in the sagittal axis, the only one
where the spine has symmetry and cropping by applying
random zooming. Intensity operations include gamma intensity
correction and noise injections include gaussian noise. Lastly,
filtering includes gaussian filters to smooth and sharpen the
images. The results from these techniques can be observed in
Figure 5.

E. Baseline detection

As a baseline detection model a CNN composed of two
3D convolutional layers each of them followed by a batch
normalization layer and a maxpooling layer was employed.
Dropout layers of 0.3 were also added for regularization.
An Adam optimizer with cross-entropyloss was used. Early
stopping evaluating sensitivity with patience of 20 epochs was
implemented.

The performance of this baseline model was evaluated in
different training conditions. Firstly, a gradual variation of the
imbalance ratio in the training data was applied. Secondly, for
each imbalance ratio the performance of the baseline model
on its own as well as in combination of the different data
balancing techniques was evaluated. The test set kept the
imbalance ratio of the original dataset which was 0.03 (with
30 VCFs and 870 non VCFs) in all experiments.

For each imbalance ratio the performance of the following
models was observed:

e The baseline VCF detection model

e The baseline VCF detection model trained with additional
diffusion sampled images

e The baseline VCF detection model trained with data
augmentation
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Fig. 5: Examples of all applied data augmentation techniques
for the same image

o The baseline VCF detection model trained with both
diffusion sampled images and augmented images

o The baseline VCF detection model employing cost sen-
sitive learning

The imbalance ratios can be simulated varying the selection
of images from each class. This can be done in different ways
which will be referred to as data matching and data equalizing.
For data matching, starting with ratio 1 where the number
of VCFs and non VCFs was the same, non VCF images
were progressively added to reduce the ratio as observed in
figure 5a). Then data augmentation and the diffusion sampled
methods were employed to add as many images as needed
to match the number of VCFs to non VCFs as illustrated
in figure 5b). In this method all available VCFs were used
but the number of images across ratios was not constant. For
data equalizing the number of images was kept constant across
ratios. The number of non VCF images would be reduced to
keep the number of images stable as seen in figure 5 d). This
method did not use all available VCFs.

Real training images, augmented images or diffusion sam-
pled images to be used at each ratio, for each model were se-
lected at random. To account for these variability and attempt
to cover the possible data subsets bootstrapping was employed.
20 and 100 bootstraps of each model at each imbalance ratio
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Fig. 6: Illustration of data matching and data equalizing,
methods to simulate the imbalance ratios. In blue the non
VCFs, in red the VCFs and in pink the synthetic VCFs whether
diffusion sampled or augmented images.

were run using data matching and data equalizing respectively.
Training was done with real and generated images (augmented
and synthetic) and validation and testing on real images. A t-
test was done to assess differences in performance in the test
set with respect to the baseline.

IV. RESULTS

For every experiment sensitivity and accuracy are reported
below. Accuracy to account for the overall performance of the
detection model and sensitivity to focus on the detection of
the minority class.

A. Data matching

Table I presents the median sensitivity and interquartile
ranges (IQR) of all models trained with data matching (number
of images not constant). No method presented a statistically
significant improvement. On ratio 0.256 (baseline median sen-
sitivity 0.76 IQR [0.75-0.81]) there is a statistically significant
decrease in sensitivity when employing data augmentation
(median sensitivity 0.67 IQR [0.56-0.73]), diffusion (median
sensitivity 0.69 IQR [0.62-0.73]) and both of them in com-
bination (median sensitivity 0.69 IQR [0.62-0.76]) Table II
presents the median accuracy and interquartile ranges (IQR) of
all models trained with data matching (number of images not
constant). Accuracy increased as the imbalance ratio increased
for every model. No method presented a statistically significant
improvement. Cost sensitive learning significantly decreases
accuracy on ratio 0.256 with respect to the baseline (median
accuracy 0.88 IQR [0.85-0.9]) with a median accuracy of 0.83
(IQR [0.77-0.87]. On ratio 0.5 there is a significant decrease in
accuracy with respect to the baseline (median sensitivity 0.89
IQR [0.85-0.9]) when employing diffusion (median accuracy
0.82 IQR [0.78-0.87]) and diffusion in combination with data
augmentation (median accuracy 0.85 IQR [0.73-0.86]).

B. Data equalizing

Table III presents the sensitivity of all models trained with
data distributed with data equalizing. In all models sensitivity
decreases as imbalance ratio increases. No data balancing
technique increases performance in a statistically significant
way. In ratios 0.06, 0.075 and 0.1 both diffusion and diffusion
in combination with data augmentation cause a significant
decrease in performance with respect to the baseline. The
greatest decrease in sensitivity after applying a data balancing
technique is seen in ratio 0.06 when employing diffusion.
Median baseline sensitivity at the baseline is 0.67 IQR [0.57-
0.76] and median diffusion sensitivity is 0.43 IQR [0.38-0.57].

Table IV presents the accuracy of all models trained with
data distributed with data equalizing. In all models accuracy
increases as imbalance ratio increases. All data balancing
techniques decrease accuracy in a statistically significant way
in the lower ratios (0.06, 0.075 and 0.1). Data augmentation
and data augmentation in combination with diffusion also
decrease performance significantly in ratio 0.5. The greatest
decrease in performance is seen in ratio 0.075 for diffusion
models with a median baseline accuracy of 0.92 IQR [0.89-
0.95] and a diffusion median accuracy of 0.76 IQR [0.7-0.85].

V. DISCUSSION

To sum up, data balancing techniques including, data aug-
mentation, diffusion sampled images, a combination of data
augmentation and diffusion sampled images and cost sensitive
learning were compared. This was done in different imbalance
ratios. These ratios were simulated in our training data employ-
ing two different methods, the key difference between them
being that data equalizing kept the number of images constant
in all ratios while decreasing the number of non VCFs trained
on.

The first notable observation is the large variability in per-
formance. One notable case is the baseline model trained with
cost sensitive learning in ratio 0.06. There sensitivity ranged
from 0.2 and 0.8 (See Figure 22 in the appendix). In most
experiments for the sake of reproducibility and repeatability
a seed is fixed. With this, the same subselections of data
are used in every re-run. Having 100 bootstraps with random
seeds allowed performance across these different subselections
of data to be observed. Though the model should perform
similarly in every subselection of data, we have seen that it is
not always the case. Though the focus of this project was not
to get good performances or particularly robust models, this
calls our attention to how dependent a result can be on seed
placement.

As for the performance of the model trained with the diffu-
sion sampled images, it is surprising to see that not only it fails
to surpass the baseline model but also it decreases performance
in a significant way in both data matching and data equalizing.
A possible reason for this is that the quality of the samples
was not good enough. Though the selected samples presented
the differentiating characteristics of VCFs some of the samples
were lacking in aspects such as the realism of structures that



Diffusion

Augmentation+diffusion

CSL

H Ratio Baseline Augmentation
0.256  0.76[0.75-0.81]  0.67[0.56-0.73]*
0.5 0.71[0.65-0.76] 0.71[0.67-0.76]
0.75 0.76[0.70-0.81] 0.71[0.65-0.77]

1 0.76[0.71-0.82] 0.76[0.70-0.81]

0.69[0.62-0.73]*
0.71[0.67-0.76]
0.71[0.70-0.76]
0.74[0.67-0.81]

0.69[0.62-0.76]*
0.71[0.61-0.77]
0.71[0.55-0.76]
0.76[0.71-0.81]

0.76[0.76-0.80]
0.71[0.67-0.74]
0.71[0.67-0.76]
0.76[0.71-0.81]

TABLE I: Data matching. Median sensitivity [Interquartile ranges (IQR)], CSL = cost sensitive learning. * marks statistically

significant difference with respect to baseline (p < 0.05).

Diffusion

Augmentation+diffusion

CSL

l

|

H Ratio Baseline Augmentation
0.256 0.88[0.85-0.9] 0.87[0.84-0.9]
0.5 0.89[0.85-0.9] 0.85[0.82-0.88]
0.75 0.82[0.75-0.85]  0.81[0.74-0.87]

1 0.81[0.77-0.84] 0.8[0.76-0.83]

0.86[0.82-0.88]

0.82[0.78-0.87]*
0.79[0.78-0.84]
0.83[0.8-0.85]

0.87[0.83-0.92]

0.85[0.73-0.86]*
0.82[0.79-0.84]
0.78[0.76-0.8]

0.83[0.77-0.87]*
0.86[0.82-0.87]
0.84[0.79-0.89]
0.79[0.76-0.86]

TABLE II: Data matching. Median accuracy [IQR], CSL = cost sensitive learning. * marks statistically significant difference

with respect to baseline (p < 0.05).

Diffusion

Augmentation+diffusion

CSL

|

H Ratio Baseline Augmentation
0.06 0.67[0.57-0.76]  0.62[0.46-0.71]
0.075  0.67[0.52-0.71] 0.62[0.48-0.71]
0.1 0.67[0.57-0.76]  0.64[0.52-0.76]
0.25 0.71[0.65-0.76]  0.71[0.62-0.81]
0.5 0.76[0.67-0.81]  0.76[0.67-0.81]
0.75 0.76[0.67-0.81]  0.76[0.67-0.81]

1 0.76[0.71-0.81]  0.76[0.71-0.81]

0.43[0.38-0.57]*
0.5[0.38-0.57]*
0.57[0.43-0.67]*
0.67[0.57-0.71]
0.71[0.67-0.76]
0.76[0.67-0.81]
0.76[0.71-0.81]

0.48[0.38-0.62]*
0.52[0.43-0.62]*
0.57[0.48-0.67]*
0.67[0.57-0.71]
0.71[0.67-0.76]
0.76[0.67-0.81]
0.76[0.67-0.81]

0.67[0.52-0.76]
0.67[0.57-0.76]
0.67[0.57-0.76]
0.71[0.62-0.81]
0.71[0.67-0.76]
0.71[0.67-0.76]
0.71[0.67-0.81]

TABLE III: Data equalizing. Median sensitivity [IQR], CSL = cost sensitive learning. * marks statistically significant difference

with respect to baseline (p < 0.05).

Diffusion

Augmentation+diffusion

CSL

|

H Ratio Baseline Augmentation
0.06 0.91[0.85-0.94]  0.83[0.76-0.88]*
0.075  0.92[0.89-0.95] 0.82[0.76-0.86]*
0.1 0.92[0.86-0.94]  0.84[0.78-0.89]*
0.25 0.87[0.8-0.9] 0.79[0.74-0.85]
0.5 0.84[0.79-0.88] 0.8[0.74-0.85]*
0.75 0.81[0.75-0.85] 0.81[0.75-0.87]

1 0.8[0.74-0.84] 0.8[0.75-0.85]

0.78[0.7-0.83]*
0.76[0.7-0.85]*
0.79[0.69-0.84]*
0.81[0.76-0.87]
0.79[0.72-0.84]*
0.8[0.75-0.85]
0.8[0.74-0.84]

0.82[0.74-0.88]*
0.83[0.76-0.88]*
0.84[0.78-0.87]*
0.82[0.75-0.86]
0.8[0.76-0.84]
0.79[0.72-0.84]
0.79[0.76-0.84]

0.84[0.77-0.92]*
0.85[0.76-0.91]*
0.86[0.81-0.97*
0.83[0.77-0.88]
0.85[0.8-0.88]
0.82[0.78-0.86]
0.81[0.75-0.85]

TABLE IV: Data equalizing. Median accuracy [IQR], CSL = cost sensitive learning. * marks statistically significant difference

with respect to baseline (p < 0.05).

were not bones or the overall blurriness of the image. In
cases where the imbalance ratio was high the model would
be learning mostly from the sampled images rather than the
real ones. This means that the model might have been taking
a shortcut, learning to differentiate between real and sampled
images rather than healthy and VCF. This scenario would
explain the low performances in the test set despite having
a balanced dataset. Furthermore, the imbalance ratios were
the performance was significantly worse for data equalizing
seen in figure were in the lower ratios 0.06, 0.075, 0.1 and
0.25. These ratios are the ones where the number of generated
training images are higher than the real training images. Thus,
in those scenarios the model would be learning more from
synthetic data than from real data.

On the other hand, the widely used technique data augmen-
tation also did not increase performance in a significant way.
This could be because it is not a technique that works well
with spine images. Garcea et al showed that recent studies

(2018-2022) have employed data augmentation successfully.
However, out of these more than 300 studies only three of
them were using spine images. Two of them where employing
MR images and failed to improve the baseline (without data
augmentation) and the remaining study using CT images did
not account for the performance without data augmentation.
Even though it is a widespread technique that is usually
effective, it might not be suitable for every application. On the
other hand, it might also be the case that the chosen parameters
for the transformation resulted in changes that were too subtle.
When doing so the purpose was to obtain realistic images but
it might have resulted in changes that might not introduce
enough variability.

As for cost sensitive learning, it did not increase nor
decrease performance for the most part. The weights were
derived from the number of instances of each class meaning
the greater the imbalance the greater the action of the weights.
In contrast with this simple approach Nguyen et al treated



these weights as trainable parameters inside the model instead
of fixing them [25]. This might be more appropriate approach
since it is not only the imbalance ratio that determines the
weight suitable to correctly detect the minority class.
Moreover, accuracy does not increase significantly with
any technique. There is a trade-off between sensitivity and
specificity and accuracy depends on both of them. However,
the weight each of them hold will depend on prevalence. With
a low prevalence, accuracy will reflect changes in specificity
more than in sensitivity. As mentioned, due to the objective of
improving the detection of VCFs, the focus was on increasing
sensitivity. As a result of the trade-off between sensitivity and
specificity and the higher number of non VCF images in the
test set the overall accuracy decreased. Thus, this metric is not
necessarily correlated to a good performance in a way that is
meaningful to this context. This also serves as an explanation
for the increasing of accuracy with higher imbalance ratios.
Though the imbalance ratio in the test set is not changed during
the experiments there is an inherent imbalance, and there are
less VCFs than non VCFs. As the imbalance ratio increases
in the training set, the model’s ability to identify non VCFs
increases as well improving specificity and therefore accuracy.
As for limitations, it should be noted that to balance all
ratios the same pool of diffusion sampled images that were
trained on all VCFs in the training set were used. When
employing data equalizing, the only ratio where the experiment
was depicted in a realistic way was ratio 1. This is because
when simulating small ratios the diffusion process should have
been trained only on the supposedly available VCFs. However
training the diffusion model on 26 images would not yield
good results. Thus though it was not technically realistic due
to the lack of images the experiments were performed this
way. In contrast, data matching does not present this issue.
However, the comparison of performance in different ratios
is biased. The reason for this is that the lower ratios have a
larger quantity of training data. Though both methods have
their pitfalls, a combination of both results enabled us to draw
conclusions since in both of them adding the diffusion sampled
images hindered the performance of the detection model.
Furthermore, it is worth mentioning that for the diffusion
sampling process, less than 20% of the total diffusion samples
were of acceptable quality. Out of the available evalutation
metrics used for diffusion [26] only metrics that compare
images individually were applicable. These were Structural
Similarity Index or Mean Absolute Error. They were both
tested as possible measures to filter out the lower quality
samples. Each image was compared to a real one. However,
there was no correlation between the scores obtained and the
quality of the samples. As a consequence, a time consuming
manual inspection was carried out. This was a subjective pro-
cess influenced by external factors dependent on the examiner.
To avoid this, more evaluation metrics that could bring an
increased objectivity to this step would be useful asset to the
field of generative Al
It would be interesting to continue this project by employing
explainable Al to observe the attention of the VCF detection

model when employing diffusion sampled images. This way,
confirmation that the sensitivity decreases due to the model
taking shortcuts and learning to predict sampled or real instead
of VCF or non VCF could be obtained. In that case the
problem would be the quality of the samples. This would also
explain why there was no consensus in the previous studies
that employed diffusion models to balance data. Gladh et al
found no improvement when using diffusion samples. The
quantity of training data (hundreds of images) they employed
to train the diffusion models was similar to our dataset. On
the other hand Suh et al used different datasets that had 10 to
100 times more data (thousands and tens of thousands of im-
ages) and they found performance improvements when using
diffusion sampled data. Therefore, our experiments could be
repeated employing a greater quantity of data to create better
quality samples. We could also assess the minimum number
of images needed to successfully sample synthetic images
realistic enough to avoid the shortcut taking behaviour. The
diffusion sampling process could be trained with increasingly
less images to observe the threshold number of cases there
needs to be to obtain sufficiently good samples.

Lastly, in future works it would also be interesting to include
other data balancing techniques such as undersampling or
oversampling.

VI. CONCLUSIONS

The initial aim of comparing data balancing techniques in
different imbalance ratios was achieved. As a result no data
balancing technique was found to improve performance in
a statistically significant way in the VCF detection model.
Both data augmentation and diffusion significantly decreased
performance mostly on the higher imbalance ratios. For dif-
fusion the reason behind this might be a low quality in
the sampled images enticing shortcut taking in the detection
model. Cost sensitive learning did not increase nor decrease
the performance of the VCF detection model significantly.
Out of the tested methods none of them were effective when
balancing the the VCF spine CT dataset. Future works include
training the diffusion model with more images and employing
other variations of cost sensitive learning.
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VII. APPENDIX

A. Extended results
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Fig. 7: Sensitivity of baseline (blue) for each of the imbalance
ratios. Data matching.
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Fig. 8: Sensitivity of baseline (blue) for each of the imbalance
ratios. Data equalizing.
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Fig. 9: Accuracy of baseline (blue) for each of the imbalance
ratios. Data matching.
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Fig. 10: Accuracy of baseline (blue) for each of the imbalance
ratios. Data equalizing.
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Fig. 11: Comparison of sensitivity of baseline (blue) and
baseline trained with augmented images (orange) for each of
the imbalance ratios. Data matching. Imbalance ratio 0.256
where there is a statistically significant difference is marked
with a star
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Fig. 12: Comparison of sensitivity of baseline (blue) and
baseline trained with diffusion sampled images (orange) for
each of the imbalance ratios. Data matching. Imbalance ratio
0.256 where there is a statistically significant difference is
marked with a star
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Fig. 13: Comparison of sensitivity of baseline (blue) and base-
line trained with both diffusion sampled and augmented im-
ages (orange) for each of the imbalance ratios. Data matching.
Imbalance ratio 0.256 where there is a statistically significant
difference is marked with a star
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Fig. 14: Comparison of sensitivity of baseline (blue) and
baseline trained with cost sensitive learning (orange) for each
of the imbalance ratios. Data matching.
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line trained with augmented images (orange) for each of the
imbalance ratios. Data matching.
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Fig. 16: Comparison of accuracy of baseline (blue) and base-
line trained with diffusion sampled images (orange) for each
of the imbalance ratios. Data matching. Imbalance ratio 0.5
where there is a statistically significant difference is marked
with a star
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Fig. 17: Comparison of accuracy of baseline (blue) and base-
line trained with both diffusion sampled and augmented im-
ages (orange) for each of the imbalance ratios. Data matching.
Imbalance ratio 0.5 where there is a statistically significant
difference is marked with a star
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Fig. 18: Comparison of accuracy of baseline (blue) and base-
line trained with cost sensitive learning (orange) for each of
the imbalance ratios. Data matching. Imbalance ratio 0.256
where there is a statistically significant difference is marked
with a star
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Fig. 19: Comparison of sensitivity of baseline (blue) and
baseline trained with augmented images (orange) for each of
the imbalance ratios. Data equalizing.
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Fig. 20: Comparison of sensitivity of baseline (blue) and
baseline trained with diffusion sampled images (orange) for
each of the imbalance ratios. Data equalizing.
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Fig. 21: Comparison of sensitivity of baseline (blue) and
baseline trained with both diffusion sampled and augmented
images (orange) for each of the imbalance ratios. Data equal-
izing. Imbalance ratios 0.06, 0.075 and 0.1 where there is a
statistically significant difference are marked with a star.
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Fig. 22: Comparison of sensitivity of baseline (blue) and
baseline employing with cost sensitive learning (orange) for
each of the imbalance ratios. Data equalizing. Imbalance
ratios 0.075 and 0.1 where there is a statistically significant
difference are marked with a star.
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Fig. 23: Comparison of accuracy of baseline (blue) and
baseline trained with augmented images (orange) for each of
the imbalance ratios. Data equalizing. Imbalance ratios 0.06,
0.075, 0.1 and 0.5 where there is a statistically significant
difference are marked with a star.
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Fig. 24: Comparison of accuracy of baseline (blue) and base-
line trained with diffusion sampled images (orange) for each of
the imbalance ratios. Data equalizing. Imbalance ratios 0.06,
0.075, 0.1 and 0.5 where there is a statistically significant
difference are marked with a star.
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Fig. 25: Comparison of accuracy of baseline (blue) and
baseline trained with both diffusion sampled and augmented
images (orange) for each of the imbalance ratios. Data equal-
izing. Imbalance ratios 0.06, 0.075 and 0.1 where there is a
statistically significant difference are marked with a star.
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Fig. 26: Comparison of accuracy of baseline (blue) and
baseline employing with cost sensitive learning (orange) for
each of the imbalance ratios. Data equalizing. Imbalance ratios
0.06, 0.075 and 0.1 where there is a statistically significant
difference are marked with a star.

B. Examples of discarded diffusion sampled VCFs
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C. Examples of diffusion sampled VCFs







