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Abstract

Studies suggest that damages from extreme weather events, such as tropical cyclones (TCs), are on the
rise even without the direct effects of climate change (CC), with urbanization due to socioeconomic
development as the main driver. The rise in material assets vulnerable to tropical storms constitutes a
significant factor contributing to potential future losses. CC could intensify TCs on top of that. Increased
rainfall and rising sea levels are among the main drivers of the increase in future impact. However,
the composition of future TC impacts is still underexplored. This study showed that urban growth
contributes to future TC impact. Urbanization was, for every possible SSP/RCP scenario, responsible
for more than 50% of the modeled impact. More extreme RCP scenarios impact attributable to CC
increased significantly from 6.1% to 45.2% across the RCP scenarios. The results of this study show that
policymakers should focus on controlled urbanization using spatial planning and building codes. These
results emphasize integrating socioeconomic variables, such as urban, into future TC risk assessments.
This study served as a foundation for more sophisticated future TC impact assessments. For example,
future TC risk assessments should include compound events, such as TC surges and flooding due to
rainfall. Lastly, future studies should perform a more profound analysis of the relationship between
urban land use and exposure to improve the robustness of future TC impact assessments.
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1 Introduction

Tropical Cyclones (TC) are formidable natural phenomena (Collins and Walsh, 2017). TCs caused around
$945.9 billion in damages from 1980 to 2019 (Smith, 2020), which is, according to the NOAA’s National
Centers for Environmental Information, more than half of the total damages caused by weather and
climate disasters (Smith, 2020). Empirical evidence suggests that tropical cyclone impacts can hinder
economic growth in affected countries for over a decade (Krichene et al., 2023). Moreover, the NOAA
states that TCs are responsible for 6,502 of the 13,246 deaths caused by weather and climate events
(Smith, 2020). Most damages during tropical storms are water-related, such as surges and rainfall. The
most frequent hazard occurring is rainfall-induced flooding (Kim et al., 2022).

Studies suggest that damages from extreme weather events, such as TCs, are on the rise due to
urbanization as a result of socioeconomic development playing a significant role (Freeman and Ashley,
2017). The Intergovernmental Panel on Climate Change (IPCC) asserts that the rise in material as-
sets vulnerable to tropical storms constitutes a significant factor contributing to potential future losses
(Schmidt et al., 2009). A comprehensive breakdown of these impacts, especially regarding future pro-
portions between climate change-related and urbanization-related impacts, remains challenging (Meiler
et al., 2023).

Climate change (CC) could intensify TCs on top of that (Wu et al., 2022), though some argue more
evidence is needed (Mendelsohn et al., 2012). CC may increase the volume of rainfall linked to tropical
storms and TCs (Smiley et al., 2022). Some predictions estimate an increase 35% in rainfall due to CC
(Liang and Liu, 2020). Sea level rise (SLR) can also increase storm damage (Yin, 2023). SLR influences
the height of the storm surges, which are huge waterbodies propelled by the powerful wind fields of TCs.

Probabilistic natural catastrophe risk models serve as a quantitative foundation for analyzing risk
and developing mitigation strategies (Eberenz et al., 2021). There has been a growing need for global-
scale TC risk assessments since the mid-2000s (Ward et al., 2020). Previous studies evaluated economic
risk utilizing historical TC data (Cardona et al., 2014). Researchers currently use simulations based
on tropical cyclone records generated by downscaling global climate models to project future tropical
cyclone risk (Korty et al., 2017). TC Risk models depend on hazard, exposure, and the vulnerability of
the affected region (Eberenz et al., 2021). Physical characteristics of a TC, such as wind speed, are all
part of the hazard component (Aznar-Siguan and Bresch, 2019). The number of people or the amount
of assets in a region determines exposure (Geiger et al., 2018).

The devastating impact of TCs in the United States exemplifies the extensive challenges created
by TCs in developed and highly urbanized regions (Senkbeil et al., 2011). This study uses a previous
TC and simulates the impact in future scenarios. TC Irma, which terrorized the South of Florida, is
used. Irma’s catastrophic nature and widespread damage emphasize the importance of understanding
the complex interplay between TC impact, socioeconomic development, and CC (Mitsova et al., 2018).
The frequency and intensity of TCs like Irma will likely increase in the future (Done et al., 2018). The
amount of change depends on of these properties depends on the climate scenario, which is established
within Representative Concentration Pathways (RCPs) (Jewson, 2021). The geographical location of
Florida, along with its developed socioeconomic status, makes it an excellent case study for this research.
Florida’s coastal communities and cities are particularly susceptible to TCs (Coughlin et al., 2009).

This research addresses the underexplored composition of future TC impacts, dissecting the roles
of urbanization and CC and focusing on their economic ramifications. The study seeks to understand
the cumulative effects of these factors on societies susceptible to TCs. By better understanding the
composition of TC impact, governments and stakeholders can design more accurate mitigation strategies
(Ye et al., 2020).

The primary objective is to explore the amount of impact attributed to induced socioeconomic
development-induced urbanization and more extreme tropical cyclones due to CC in future scenarios.
By integrating urban land cover change projections into a climate model, this study seeks to correlate
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exposure with urban land cover change, comprehensively assessing the composition of future TC impacts.
Urban land use is chosen as an indicator of socioeconomic development because that is where, during
extreme climate events, the interplay between infrastructural, environmental, and socioeconomic systems
is exposed (Simpson et al., 2021). The main research question is: “What is the composition impact of
future tropical cyclones impact, and what are the respective contributions of socioeconomic development
and climate change?”

This study uses a multifaceted research approach that combines data analysis, modeling techniques,
and case study analysis to investigate the composition of TC impact. Data sources include a CLImate
ADAptation tool (CLIMADA) and future urban land cover projections based on SSPs. These sources
will facilitate the assessment of exposure, socioeconomic development, and urban land cover change.
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2 Methods

The workflow consisted of multiple steps (Fig. 1). Firstly, a climate adaption model (CLIMADA) was
used to assess current exposure. Additionally, CLIMADA was used to perform impact calculations for
a “base year” situation. CLIMADA is a tool that uses a probabilistic natural hazard model to assess
the potential impact presented by future TCs and lays out a robust framework for impact assessments
(Aznar-Siguan and Bresch, 2019).

Secondly, integrated assessment models, SSPs, presented future socioeconomic development through
urban land expansion.(O’Neill et al., 2017). This study used the SSP2 scenario and SSP5 scenarios. A
global 1-km downscaled Urban Land extent projection by SSP scenarios was used to assess urban land
cover change based on socioeconomic development because the urban landscape is an essential indicator of
socioeconomic dynamics (Gao and Pesaresi, 2021). With this socioeconomic indicator and the exposure
data from CLIMADA, it was possible to examine whether there was a potential relationship between
these two factors and whether this relationship was suitable for analyses for future exposure projections.

Thirdly, a case study of TC Irma, alongside constructed exposure projections, was utilized to evaluate
the proportions of impact attributed to urbanization and CC on projected TC impact for current and
future assessments. This case study included the evaluation of proportions caused by urban growth and
CC. Conducting a current impact assessment of Irma and subsequently situating the same hurricane
within various future climate and socioeconomic scenarios garnered valuable insights into the evolution
of TC impact and its composition in the future. This approach contributed to a clearer understanding
of the intricate relationship between TC impact, urbanization, and CC. CLIMADA utilized the already
implemented exposure dataset and calculated the impact of TC Irma. This dataset was then employed
to assess the intricate relationship between exposure and urban land cover, subsequently informing the
computation of future TC exposure using the SSP-based urban land use datasets. Furthermore, this study
used these projected tropical cyclone exposure maps to conduct future impact assessments. Initially, they
only included urban land cover change, and subsequently, they incorporated both urban land cover change
and the growing impact of tropical cyclones due to CC.

Lastly, this research assessed the CLIMADA model’s strengths and limitations in capturing the im-
pacts of land-use change on TC exposure. We also evaluated its reliability and applicability in different
geographical and climatic contexts relevant to this study.
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Figure 1: Flowchart of the workflow of this study

2.1 Data Collection

2.1.1 Exposure Data

CLIMADA contains gridded asset exposure data Eberenz et al. (2020). Eberenz et al. (2020) propose a
methodology for generating a high-resolution asset exposure map that involves breaking down the overall
asset value of each country. Dissecting this country-level asset value was performed using nightlight lumi-
nosity and population data. These two variables were separately integrated through linear interpolation
to 30-arcsecond resolution gridded datasets. Subsequently, the two datasets were combined for every grid
cell using Equation 1:

(Lit)
n ·

(
Poppix

)m
= (NLpix + δ)

n ·
(
Poppix

)m
(1)

Where NLpix is the nightlight intensity of a grid cell and has a value between 0 to 255 because that
is the derived scale for nightlight intensity, Poppix represents the population count and is made up of
a real positive number. The exponents n and m are integers, where m > 0, δ is set to 1 to prevent
non-illuminated but populated grid cells from being lost. Exponent m is set to zero for grid cells without
population data.

Following this step, Eberenz et al. (2020) used the gathered LitnPopm to disaggregate country-level
asset values linearly. Hence, it creates a representation of economic stocks per geographical grid cell. In
other words, every grid cell represents a value of LitnPopm relative to the sum of the LitnPopm values
of all pixels, as illustrated in the following Equation:

Ipix = Itot
Litn · Popmpix∑N

pixi
(Litn · Popmpixi

)
(2)

Here, Ipix represents the asset value per grid cell. The country-level asset value is Itot and is distributed
relative to every grid cell’s LitmPopm share. N is the total number of grid cells within the relevant
country. Exponents m and n are relative between Lit and Pop and crucial in determining the difference

7



in the distribution of the total amount of grid cells. Changing m and n dictates with which power Lit
and Pop contribute to the disaggregation function. Figure 2 represents the workflow explained above.

Figure 2: Workflow of the LitPop class in CLIMADA (Eberenz et al., 2020)

Higher asset concentrations meant higher degrees of exposure (Fig. 3). These areas of higher exposure
showed a correlation between urban land use and exposure. Cities with large urban cores, such as
Tampa and Orlando, showed well-defined pattern impact compared to more rural areas. This relationship
highlighted the critical role of urban growth in influencing TC exposure.
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Figure 3: PC exposure of South Florida in 2000.

2.1.2 Urban Land Use Data

Implementing urban land use data made analyzing the intricate dynamics between socioeconomic de-
velopment, CC, and tropical cyclone impact possible. Urban land use is one of the characteristics of
socioeconomic development (Li et al., 2014). By using downscaled urban land use projections, trans-
lating those into exposure projections, and integrating them into CLIMADA, an accurate method was
developed for quantifying future tropical cyclone impact due to urban land use change. This study’s urban
land use data was a downscaled Urban Land Extent Projection based on different Shared Socioeconomic
Pathway (SSP) scenarios (Gao and Pesaresi, 2021). The data was available from the Socioeconomic Data
and Applications Center (SEDAC). Each SSP scenario contains projections for the urban land use for
several years up until 2100. Gao and Pesaresi (2021) obtained these urban land use projections by down-
scaling the original 1/8th degree urban expansion maps developed by Gao and O’Neill (2020), consistent
with the SSP scenarios. This section will briefly explain the original downscaling process by Gao and
O’Neill (2020), followed by the second downscaling procedure by Gao and Pesaresi (2021).

Downscaling to 1/8th degree grid cells
Goa & O’Neill (2020) propose a downscaling method that uses a combination of two urban simulation
models (Fig. 4): The Spatially, Long-term, Empirical City developmenT (SELECT) and The Country-
Level Urban Buildup Scenario (CLUBS). CLUBS projects the total new amount of urban land, and
SELECT was used to allocate the new urban land based on the country’s potential for development.

CLUBS creates scenarios to project the amount of country-specific new urban land developed every

9



Figure 4: Framework of the downscaling procedure as proposed by Goa & O’Neill (2020).

decade of the 21st century. These projections depend on GDP, population size, and other SSP-based
socioeconomic trends. Goa & O’Neill used historical economic growth and urbanization data to create
the model. The model combines quantitative Monte Carlo experiments and qualitative analysis of SSP
narratives to predict the amount of urban growth accurately. CLUBS establishes the likelihood of a par-
ticular urban growth rate for region-specific urbanization style. The Monte Carlo Experiments generate
1000 model urban expansion rate alternatives. A high, medium, or low estimate is chosen based on a
country’s urbanization style and SSP scenario.

SELECT allocates the new urban land predicted by the CLUBS model in 1/8th-degree grid cells.
Urban land development potential is determined based on historical data. Changes in urban land were
derived from remote sensing imagery and global data on environmental factors and population dynamics.
The world is divided into 375 subnational regions, where each region is based on existing cities and mod-
eled individually using a Generalized Additive Model (GAM). The advantage of using a GAM is that it
can adapt to regional dynamics and recognize relevant parameters that drive urban land change. This
way, both local variations and global urban growth dynamics are used.

Downscaling to 1km grid cells
The downscaling of the projections, as proposed by Goa & Pesaresi (2021), was done by using a spatial
scalar (Equation 3), updated at the start of each decade to assign urban land expansion to 1-km grid
cells proportionally.

Spatial Scalar1km =
Total Urban Land1km

Total Urban Land(1/8degree)
(3)

Equation 3 shows that the spatial scalar is determined by the amount of urban land present in a
1/8-degree grid cell. More existing land leads to a higher allocation of new urban land expansion. The
downscaling algorithm used a proportional allocation method for urban growth; however, in some cases,
it may surpass available land in particular 1 km grid cells.

Excess allocations within a 1/8-degree grid cell were redistributed among 1 km grid cells with available
land until no overflow occurred. This procedure was repeated every step until there was no overflow. The
algorithm first filled up somewhat developed cells in cases where the 1/8-degree grid cell had more urban
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land expansion than the total available land from grid cells, which had been developed to some degree
(Equation 4).

Spatial Scalarsupplementary
1km =

Total Available Land1km
Total Available Land(1/8degree)

(4)

Figure 5 displays the theoretical workflow of the downscaling algorithm to 1km grids.

Figure 5: theoretic workflow of the downscaling algorithm of the urban land use data to 1km grid cells
(Gao and Pesaresi, 2021)

The spatial distribution in Florida varies from a high fraction of urban land in the downtown areas
of cities such as Tampa and Orlando to a low fraction of urban land use in the rural areas (Fig. 6).
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Figure 6: Urban Land use in 2000 (Gao and Pesaresi, 2021)

2.2 Impact Assessment for Current Situation

2.2.1 Selection of Exposure Indicators

This study used Produced Capital (PC) to assess TC exposure. PC in World Bank wealth accounts
includes manufactured assets and values urban land by applying a markup to other produced assets
(Wodon and Carey, 2018), which is why it was most appropriate for correlating with urban land use

2.2.2 CLIMADA Model Configuration

The calculation of damage involved applying the impact function from Emanuel et al. (2011) to model
TC impact. This model facilitated the computation of TC properties based on imported TCs (Aznar-
Siguan and Bresch, 2019). Historic TC tracks from the International Best Track Archive for Climate
Stewardship (IBTrACS) archive were available within CLIMADA (Aznar-Siguan and Bresch, 2019).

The information about the eye included in a tropical cyclone track was the location, time, central
and environmental properties, and radius of maximum wind speeds (Aznar-Siguan and Bresch, 2019).
Subsequently, 1-minute sustained peak gusts were calculated by combining a static circular wind field with
the translational wind speed generated by the storm’s movement (Aznar-Siguan and Bresch, 2019). The
reduction in the translational component from the cyclone center was factored in through multiplication
by an attenuation factor (Aznar-Siguan and Bresch, 2019).

The impact function from Emanuel (2011) states that property damage only occurs if wind speeds
exceed a certain threshold value, determined at 25.7 m s−1. Property damage increases cubically with
the wind speed (Equation 5 & 6) (Aznar-Siguan and Bresch, 2019):

fij =
v3ij

1 + v3ij
(5)
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vij =
max(vij − vthresh, 0)

vhalf − vthresh
(6)

Where vhalf = 74.7 m s−1 and represents the wind gusts when half of the property is damaged (Aznar-
Siguan and Bresch, 2019). Moreover, vij represents the maximum wind gust at centroid i and caused by
event j (Aznar-Siguan and Bresch, 2019).

2.2.3 Execution of Impact Assessment

With an impact assessment of the “current climate,” it was possible to establish a base for future impact
assessments. It was possible to see the spatial distribution of the modeled damages and how hazard and
exposure translated to impact. The spatial distribution of the modeled impact was important because
future impact patterns should be similar to the current and hence could serve as a consistency check.

During the impact analysis, this research simulated TC Irma’s track on the high-resolution exposure
map from the base year. The outcome was a value representing the total modeled impact on the research
area. Additionally, CLIMADA computed an impact data frame of the research area, illustrating where
the most significant impact was likely to occur.

2.3 Regression Analysis

This section outlines the regression analysis used to explore the relationship between exposure and urban
land use. This relationship was the driving factor in constructing future exposure maps. Firstly, it was
made sure that both datasets had identical spatial dimensions and resolution. This study performed the
regression analysis between exposure and urban land use for the determined “base year” situation, set as
2000 in the urban land use data. The regression analysis was done using several regression models. The
model with the highest resulting R-squared value was selected for constructing future exposure maps,
which was widely used as a goodness-of-fit measure (Cameron and Windmeijer, 1997). The selected
regression model was executed on the pixel values of the two datasets—the analysis aimed to quantify
the statistical relationship between exposure to TC Irma and urban land use.

Before the regression analysis, both datasets underwent preprocessing to ensure data integrity. The
preprocessing involved several steps, including:

Setting X-limit and Y-limit
During data preprocessing, a minimum x-limit of 0 and a y-limit of 0.1 were applied. This strategic ad-
justment excluded pixels representing water from the regression analysis. By implementing these limits,
the analysis focused on the relationship between exposure to TC Irma and urban land use.

2.4 Future Impact Assessments

This section outlines the methodology for conducting future impact assessments, explicitly focusing on the
SSP2 and SSP5 scenarios. The approach centers around harnessing the established relationship derived
from the regression analysis to construct exposure projections for the established SSP scenarios. A CC-
induced TC Irma based on RCP scenarios was also introduced, utilizing global projections presented by
Knutson et al. (2015).

2.4.1 Future Urban Land Use Scenarios (SSP’s)

Downscaled urban land use projections were available for all the different SSP scenarios. As mentioned,
this study explicitly used SSP2 and SSP5 scenarios to construct a time series of projected impacts.
SSP2, also called the “middle of the road” scenario, in which the historical trends of economic, social,
and technical development remained similar in the future (O’Neill et al., 2017). SSP5 represents a
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path dominated by extensive fossil-fuel usage, in which rapid development of third-world countries and
expedited globalization were considered (O’Neill et al., 2017; Rogelj et al., 2018).

2.4.2 Future Exposure Projections

Future exposure projections were made using the regression formula and the future urban land use pro-
jections of SSP2 and SSP5. Firstly, we calculated the difference between the future exposure projections
and the “base year” exposure data. This difference was then used to update the future exposure values.

2.4.3 Future Impact Assessment

Future impact analysis was similar to current impact analysis, except it utilizes constructed exposure
data frames instead of relying on the exposure data already integrated into CLIMADA. Hereafter, future
impact assessments were performed identically to current impact assessments. Firstly, future impact
assessments were performed solely using the projections for future urban land use, focusing exclusively
on changes in impact caused by changes in urban land. Doing this created a baseline scenario, which can
be used as a reference to analyze potential additional impact due to CC (Krichene et al., 2023).

Additionally, future impact assessments were done using future exposure data and projections on TC
intensity based on RCPs and the reference year. The intensity of Irma is adjusted based on different RCP
scenarios, as introduced Knutson et al. (2015), which show these projections for the RCP4.5 scenarios.
By interpolating the RCP values from Knutson et al. (2015) based on their relative radiative forcing,
projections for other RCP scenarios were made. The application of RCP scenarios was all done using
CLIMADA software. An accurate analysis of the damage ratios could done by implementing CC after
first doing an impact analysis based on urban land use change.

2.5 Damage Ratio Analysis

This study used SSP/RCP combinations to analyze urbanization-induced and CC-induced damage ra-
tios. Consequently, the composition of future tropical cyclone impact was accurately displayed. Several
RCPs can make an SSP scenario “work.” Therefore, a damage ratio analysis was done for all possible
combinations between SSP2 and SSP5 and the RCPs. Figure 7 displays a table indicating possible RCP
and SSP scenarios (Gütschow et al., 2021). SSP2 is compatible with RCP scenarios 1.9, 2.6, 4.5 and 6.0.
For SSP5, these are RCP 4.5, 6.0 and 8.5 (Gütschow et al., 2021).

SSP/RCP SSP2 SSP5
RCP2.6 x -
RCP4.5 x x
RCP6.0 x x
RCP8.5 - x

Figure 7: Compatible SSP/RCP combinations. ’x’ denotes a possible SSP/RCP combination (Gütschow
et al., 2021)

Lastly, this study took the projected impact as a percentage of the total US GDP to display the social
costs of future TC Irma. The GDP data was provided by the International Institute for Applied System
Analysis (IIASA) (Riahi et al., 2017)).
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2.6 Consistency check relationship urban land use and TC exposure using
GDP trends

The comparative analysis between the US GDP and projected TC impact served to assess consistency
during the study. This comparison relies on the premise that physical assets, as represented by PC,
contribute to GDP. (Wodon and Carey, 2018). The expectation was that the GDP trend and PC impact
trends were similar because the amount of direct economic losses due to TCs mainly depends on the
proportion of the volume of material assets of a specific region (Schmidt et al., 2009).
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3 Results

3.1 Impact Assessment Results for Base Year Situation

The highest impact was distributed along the tropical cyclone track of Irma, such as Cape Coral, and
between Tampa and Orlando. The spatial distribution of impact indicated the model’s effectiveness in
predicting areas prone to hurricane damage. After running CLIMADA, the model predicted an impact
of approximately 72 billion dollars in PC for the base year. Figure 8 indicates where Irma had the most
significant impact.

Figure 8: PC impact in 2000

3.2 Regression Analysis Results

There is a non-linear relationship between urban land use and TC exposure (Fig. 9). The regression
analysis revealed a non-linear trend, as indicated by the curve in the plot. The coefficient of determination
(R-squared) was 0.639. This R-squared value indicated that approximately 63.9% of the variability in
tropical cyclone exposure can be explained by the non-linear relationship with urban land use (Hagquist
and Stenbeck, 1998). The observed non-linear pattern underscored the complex association between
urban land use and tropical cyclone exposure because it implies that more variables influence the effect
of urban land use on exposure (Ruckstuhl, 2010). New exposure maps were made using the discovered
relation and future urban land use maps used in the impact assessments.
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Figure 9: Regression plot of Urban Land Use vs Exposure

3.3 Future Exposure and Impact Assessment Results

There was an increase in exposure for every scenario, which followed a similar spatial pattern to urban
land use expansion. High exposure rates were found in urban cores and extended outward into rural
areas. This progression aligned with the downscaling method outlined in the methods section. It was
logical that cells designated for urban land use filled up before developing new areas. Based on the
regression analysis, exposure rates should follow the same pattern as urban land use change. Notably, a
distinction emerged between the SSP2 and SSP5 scenarios. In the “Middle-of-the-road” SSP2 scenario,
urban growth occurred at a comparatively moderate rate, whereas the “fossil-fuel-focused” SSP5 scenario
illustrated a substantially accelerated pace of urban expansion.

The spatial patterns in the future impact projections remained similar to those observed in the “base
year” (Fig. 10a & Fig. 10b). The highest impact values were concentrated around Cape Coral in the south
and between Tampa and Orlando in the north, aligning with the tropical cyclone track of Irma. Notably,
there was a significant difference in projected PC impact between SSP2 and SSP5. A notable increase
in pixels containing higher impact values indicated an overall rise in impact. With the introduction of a
CC-induced hazard, this increase in pixels containing a high value became even more evident (Fig. 10c
& Fig. 10d). These maps correspond to combinations of SSP2 with RCP4.5 and SSP5 with RCP8.5

3.4 Damage Ratio Analysis

Figures 12 and 11 show a time series plot of urbanization-induced PC impact, CC-induced PC, and the
aggregated PC impact for the following SSP and RCP scenario combinations: SSP2 with RCP4.5 and
SSP5 with RCP8.5.

The time series under the SSP2 and RCP4.5 (Fig. 12) scenarios revealed dynamic patterns in CC-
induced impact, urbanization-induced impact, and the total aggregated impact. The slope of the CC-
induced PC impact after 2020 was 9.52×108 US dollars, which was notably smaller than the urbanization-
induced PC impact and the aggregated PC impact (2.40 × 109 US dollars; 3.36 × 109 US dollars re-
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Figure 10: Maps illustrating the projected impacts in 2100 based on urban growth and CC scenarios.
Figures (a) and (b) depict impacts solely attributed to urban growth under SSP2 and SSP5, respectively.
Figures (c) and (d) demonstrate impacts considering urban growth under SSP2/SSP5 and CC-induced
hazards under RCP4.5/RCP8.5, respectively.
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spectively). The smaller slope of CC-induced impact indicated a decreasing proportion in the relative
contribution of CC to the overall impact.

Conversely, the total aggregated impact exhibited a consistent linear increase, highlighting a cumula-
tive effect over time. The trends suggested that, while the influence of CC may be decreasing in relative
terms, the combined impact, driven by both CC and urbanization, is progressively growing.

Figure 11: PC Impact of TC Irma under SSP2 & RCP4.5

The time series for the SSP5 & RCP8.5 scenario combination showed a non-linear increase in the PC
impact (Fig. 11). The slope of CC-induced impact showed an enlarging trend, increasing from 2.08×109

US dollars between 2020 and 2040 to 1.16 × 1010 after 2060. This slope increase suggested a growing
relative contribution of CC to the overall impact. Additionally, the share of urbanization-induced damage
decreased over time for the SSP5 & RCP8.5 scenario combination. This decrease became apparent because
the slope of urbanization-induced changed from 4.5 × 109 to 8.73 × 109, which meant that the increase
in CC-induced impact was faster than the urbanization-induced impact.

Figure 11 underscored the sensitivity of impact distributions to the severity of CC scenarios. The
plots distinctly illustrated that, as the severity of RCP scenarios intensified, the proportion of damage
attributed to CC grew accordingly, revealing the distinct influence of CC severity on the overall impact
composition.

Figure 13 displays six pie charts representing the impact ratios between CC-induced and urbanization-
induced impacts under different SSP and RCP scenarios for the year 2100. A notable trend was evident,
highlighting the influence of RCP scenarios on the distribution of impact ratios. The impact ratios
indicated a substantial variation between scenarios. In the mildest RCP scenario (RCP2.6) under SSP2,
the percentage of the damage attributed to CC was notably low, accounting for only 6.1% of the total
impact. In contrast, for the more extreme RCP8.5 scenarios under SSP5, the share of damage induced
by CC increased significantly, reaching 45.2%.

Figure 14 demonstrates the importance of adopting a nuanced approach when considering the impact
of tropical cyclones (TC). The plot illustrates that the damage as a percentage of GDP decreases for
SSP5, characterized by the predominant use of fossil fuels. This decreasing trend likely indicates that
economic growth is increasing more quickly than the impact of TC. From the perspective of TC impact,
one could perceive this as a more favorable scenario than a milder SSP scenario.
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Figure 12: PC Impact of TC Irma under SSP5 & RCP8.5

Figure 13: Pie charts for every analyzed SSP/RCP scenario combination in 2100
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Figure 14: PC Impact as a percentage of US GDP

3.5 Consistency Check

The projected increase in PC impact is consistent with the projected US GDP, which serves as a check
if these impact projections are reconcilable (Fig. 15 & Fig. 16). This study assessed the coherence of the
projected PC impact using a regression analysis between urbanization-induced impact and the projected
GDP for the United States under the SSP2 and SSP5 scenarios. The blue area around the trend line
represents the 95% confidence interval. The regression plots under both scenarios exhibited a strong
linear trend, with an R-squared exceeding 0.99.
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Figure 15: PC Impact under SSP2 vs Projected US GDP

Figure 16: PC Impact under SSP5 vs Projected US GDP
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4 Discussion

This study found that TC impact increases with urban land use expansion in TC-prone areas, holding
hazard and vulnerability factors constant (Strader and Ashley, 2015; Ye et al., 2020). These findings,
which suggest that an increase in wealth will lead to an increase in TC impact, agree with those found
by (Ye et al., 2020).

Impact assessment of the “base year” situation showed that the model has performed well regarding
the spatial distribution of impact. Most of the impact was modeled along the cyclone track of Irma,
which was expected when only wind damage was included in the impact assessment.

The damage ratio analysis gave valuable insight into future damage distribution for a future TC Irma.
These modeled damage fractions differed remarkably from the damage ratio found by Gettelman et al.
(2018). They suggested that for the US, future damage increases are the result of a change in assets and
that a change in TCs has no impact. Gettelman et al. (2018) simulated annual mean cyclone damage
due to future storms based on historical data, where this study solely focused on Irma in current and
future scenarios.

This research applied a consistency check to ensure the reliability of the results. Given that GDP
projections based on SSPs were readily accessible and relied on PC (Wodon and Carey, 2018), they
were deemed the most suitable assessment tool to ensure the consistency of the study results within
the timeframe of this research. Additionally, the anticipated changes in GDP and the impact on PC
were likely to align because the direct economic losses from TCs primarily hinge on the proportion of
material assets within a given region (Schmidt et al., 2009). Based on this, the future must focus on the
spatial planning of urban areas and building regulations for future construction plans (Ye et al., 2020).
Furthermore, socioeconomic development and growth require more safety, which gives governments and
stakeholders opportunities to invest in prevention or mitigation measures to reduce additional TC risk
(Wu et al., 2022). Therefore, economies must act swiftly to foster adaptation within the next decade
before the onset of significant CC impacts (Molua et al., 2020). Notwithstanding the above, increasing
wealth will eventually lead to higher security demands, necessitating mitigation and protection measures.
These measures will ultimately decrease vulnerability (Wu et al., 2018). Higher-income levels reduce
TC vulnerability, suggesting socioeconomic development could serve as a crucial method for currently
developing nations to enhance their resilience and adaptability concerning CC (Ward and Shively, 2017).
Within this framework, more capital becomes invested in vulnerable regions. Consequently, the overall
impact on risk becomes uncertain as enhanced protections shift a portion of risk from frequent and low-
cost events to rare but high-impact occurrences (Hallegate, 2017). The rise in relative risk exposure also
expedites economic advancement. In an optimal developmental trajectory, heightened exposure serves as
both a result and a catalyst for economic growth (Hallegate, 2017). A region-specific cost-benefit analysis
is an excellent solution to give policymakers and stakeholders better knowledge of potential beneficial
mitigation investments and to guarantee the accurate use of those investments (Nguyen et al., 2013).
Blanket global policy measures to reduce TC impact may hinder economic progress (Fig. 14) (Hallegate,
2017).

However, return periods of high-impact TCs are likely to decrease due to CC, so caution is needed
when considering this approach. (Xu et al., 2020). The SSP/RCP scenario combination, which is com-
patible with the current trajectories of global development and CC, shows that approximately 25% of
the projected impact is a result of CC (Fig. 13). The method used to implement CC in the hazard
module of CLIMADA is simplified and solely takes TC frequency and intensity into account. It remains
challenging to explain how TC damage will develop in future scenarios since it is still uncertain whether
current changes in climate have had a noticeable effect on TCs and whether these changes result from
anthropogenic sources (Walsh et al., 2016). It is essential to acknowledge that the modeled impact in the
coastal areas may also be lower than the actual impact. This study did not account for surge effects; how-
ever, they were substantial in some regions (Pinelli et al., 2018). Additionally, the impact assessment did
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not incorporate rainfall-induced damages. Rainfall accompanying Hurricane Irma caused inland flooding,
power outages, and damage to infrastructure (Bacopoulos, 2019). Consequently, the modeled impact by
CLIMADA is lower than the actual impact done by Irma.

Future research should focus on implementing a TC surge and rainfall damage function into the
CLIMADA module to account for these limitations. Including these parameters contributes significantly
to CC. The CC-induced impact would then include damages attributable to the rising sea levels and the
intensification of tropical cyclones (Hoque et al., 2018). Including these factors will lead to an even better
damage ratio analysis between socioeconomic and CC-related damages Aznar-Siguan and Bresch (2019).

There are additional elements that contribute to the limitations of this study. Selecting a base year
for regression analysis exclusively within that temporal frame may exclude long-term urbanization trends
from the analysis. Moreover, the samples employed for regression analysis may exhibit inherent biases
(Wang and Cheng, 2020).
The LitPop class used in CLIMADA for exposure assessment overlooks vulnerability and infrastructure
specifics, leading to potential inaccuracies (Eberenz et al., 2020). For instance, despite having limited
population or nightlight intensity, locations such as mines or power plants carry significant exposure.
These discrepancies undermine the regression analysis, reducing its robustness. Incorporating additional
local infrastructure data into LitPop datasets can enhance accuracy (Eberenz et al., 2020).
Future urban land use data depends on SSP projections. These projections contain a wide range of
uncertainty, which increases successively with each time step (Riahi et al., 2017; Arnell et al., 2019). It is
essential to view these SSP scenarios as theoretical projections of development, and they should serve as
a foundation for further developing possible future scenarios instead of being seen as realistic scenarios
on their own (O’Neill et al., 2014).

Future studies can consider several recommendations. CLIMADA provides a tool to incorporate
adaptation measures into the impact assessment. Future research can use this module to incorporate
vulnerability into the damage assessment. While preventing TC impact is impossible, proper management
strategies can mitigate future damages significantly (Hoque et al., 2018). A cost-benefit calculation can
be an appropriate solution to give policymakers and stakeholders better knowledge of potential beneficial
mitigation investments. Lastly, additional research should take an enhanced look into the relationship
between urban land and exposure. This relationship can be examined more deeply by implementing
additional data using stakeholder engagement to explore regions of high exposure but low fractions of
urban land. Moreover, Future research should incorporate sensitivity analyses to enhance methodological
robustness. Enhancing methodological robustness can involve employing various “base years” and re-
conducting regression analyses for each year. Assessing the consistency of regression coefficients across
different “base years” can provide valuable insights into potential long-term trends overlooked during
initial regression analyses. Additionally, examining whether the regression model maintains consistency
across different time steps serves as a reliability test for the model. Using time series regression analysis
may benefit future research, encompassing long-term and short-term trends (Imai and Hashizume, 2015).
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5 Conclusion

The primary aim of this study was to determine how future TC impact is composed and the respective
contributions of socioeconomic development and CC. This study has elucidated a non-linear relationship
between urban land use and exposure through a regression analysis of Florida’s exposure and urban
land use data. Integrating socioeconomic variables, such as exposure increase due to urban growth, with
projections of a future TC Irma has created a nuanced understanding of how socioeconomic and climate
parameters interact and result in TC impact. Future impact assessments under SSP2 and SSP5 scenarios
indicated significant increases in TC impact due to urbanization. This study introduced CC by combining
the SSPs with the RCPs. Specifically, the pairing of SSP2 with RCP2.6, RCP4.5, and RCP6.0, as well
as SSP5 with RCP4.5, RCP6.0, and RCP8.5, including CC into the assessment, revealed an even more
significant rise in TC impact.

The performed damage ratio assessments have shown shifting dynamics between CC-induced and
urbanization-induced impacts. Urban growth remains the main drive of TC impact; however, under
more extreme RCP scenarios, the damage attributable to CC increases significantly. The SSP2/RCP4.5
combination showed a more significant slope of PC impact for urbanization-induced damage (2.40× 109

US Dollars) than for CC-induced PC impact (9.52× 108 US Dollars). This change with a more extreme
SSP5/RCP8.5 combination. The CC-induced impact initially increased slower than urbanization-induced
damage, with the respective slopes being 2.08 × 109 US Dollars and 4.15 × 109 US Dollars. However,
this changed at later time steps to a point where after 2060, the slope of CC-induced impact was more
significant than the damage caused by urban growth (1.16× 1010 US Dollars and 8.73× 109 US Dollars
respectively). The study has shown that the impact ratio of CC-induced impact can vary between 6.1%
for the most ideal situation (SSP2/RCP2.6) and 45.2% under the most extreme SSP5/RCP8.5 scenario.
These projected PC impact increases were consistent with the projected US GDP, which indicated that
the results were applicable.

Based on the results, future mitigation strategies should focus on building regulations and spatial
planning. Socioeconomic development urges more significant safety measures, demanding proper invest-
ments before the onset of significant CC impact. However, policymaking and mitigation strategy planning
should be region-specific, as global blanket strategy planning could hinder economic progress.

The study’s limitations include excluding compound events (e.g., TC surge and rainfall), neglect of
vulnerability and infrastructure specifics during the impact assessments, and uncertainties within the
SSP and RCP projections. Future research should focus on implementing infrastructure specifics and
vulnerability with the help of local land use data. Research should implement a cost-benefit analysis to
determine appropriate safety measures and mitigation strategies. Lastly, a relationship between urban
land and exposure should be further explored by performing regression analyses over multiple timeframes.

In conclusion, this study provided the foundation for continued research into the dynamic relationship
between socioeconomic development, CC, and TC impact. Growing TC risk in an increasingly developing
and climate-vulnerable world will demand proactive policymaking and integrated approaches to reduce
TC impact.

Data availability
All scripts and data needed to reproduce the results can be found at https://doi.org/10.5281/zenodo.10664112
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