
Online busy time scheduling
Rick van de Bovenkamp
Utrecht University

Abstract. In this thesis we study the online busy time scheduling problem with infinite
processors, where each job has a release time rj , a processing time pj and a deadline
dj . The objective of busy time scheduling is to use multiple processors to schedule jobs
concurrently in order to minimize the time a machine has to be processing jobs. We present
(1 + 4

1+λ)-consistent and (1 + 4
1−λ)-robust algorithm using machine learned advice that

is able to achieve better results than a pure online algorithm. This algorithm will use a
trust parameter, λ ∈ [0, 1], which allows us to control the tradeoff between consistency and
robustness. Moreover, for purely online busy time problem, we introduce a lower bound of 2
for eager algorithms, disprove the currently claimed upper bound of 4, and present a general
framework for analysis.

1 Introduction

Scheduling jobs on parallel machines is a computer science problem that has been studied
extensively by the scientific community. One need only look at the books and surveys that
have been written to find that many settings of this problem exist, and have been researched.
See for example [1], [2], where many of these problem settings are discussed. Most of these
settings focus on minimizing the makespan, the maximum lateness, the total completion
time or the tardiness. But what if we want to schedule jobs in an energy-, or, cost-efficient
manner? In this thesis we will discuss the online busy time problem which, among other
things, models energy-efficient computing closely.

1.1 Busy time scheduling
In 2010, Flammini et al. introduced the busy time problem [3]. In this problem, we want
to schedule a set of jobs on multiple machines, each having one or more processors. The
objective is to schedule the jobs in such a way that the total time that the machines are
actively processing jobs is minimized. In other words, the time that a machine is idle does
not count towards the busy time.

Formally, we have a set of jobs J . Each of these jobs has a release time rj ≥ 0, a required
processing time pj > 0 and a deadline dj ≥ rj + pj . Any instance also defines a parameter
g ≥ 1 which corresponds to the maximum number of jobs that can be ran on a machine in
parallel, in later sections we will focus on the case where g =∞. Any algorithm must then
decide what the starting times sj of each job will be, such that the busy time is minimized [4].
These starting times should be chosen such that sj + pj ≤ dj . The objective of busy time
scheduling is to use multiple processors to schedule jobs concurrently in order to minimize
the time a machine has to be processing jobs.

Of course there are many variations. The jobs can either be rigid (dj = rj +pj) or flexible,
the amount of processors g can be finite or infinite, machines can have varying properties
like processing speed, cost, etc. We will discuss these variations and their current research
on them later, in Section 3.

In 2003, P. Winkler et al. have shown an offline algorithm for solving the wavelength
assignment minimization problem in fiber-optical networks [5]. Here, the objective is to
assign wavelengths to a set of lightpaths such that the switching cost of the network is
minimized. Coincidentally the rigid busy time scheduling problem can be converted into

2 Online busy time scheduling

a wavelength assignment problem and vice versa. They show that the offline problem is
NP-hard once g ≥ 2.

Besides varying the instance parameters one could also vary the objectives of the problem.
A well known objective is to maximize the throughput instead of minimizing the busy time,
where we are given a busy time budget T , and want to maximize the total amount or total
weight of the scheduled jobs [6][7]. Within this thesis, however, we will focus on busy time
minimization as opposed to throughput maximization.

1.2 Online scheduling
While offline scheduling algorithms are useful when one can know in advance what, or even
how many jobs will have to be scheduled, and what their properties are, we often do not
have this information readily available in practice. Instead, jobs may have to be scheduled
as they are revealed to us, and, in this way it might not always be possible to schedule all
requests optimally compared to an offline algorithm. In this section we will discuss various
techniques of developing and analysing algorithms for online scheduling problems.

1.2.1 Online-time and online-list
There are two main models for such online problems; the online-time model and the online-list
model.

In the online-time model, requests are revealed in order of time. For example, in the
context of the busy time scheduling problem, this means that jobs are revealed in order of
their respective release times. This model may be advantageous for developing an algorithm
since it limits the range of possibilities.

In contrast to the online-time model, the online-list model offers no such guarantees, and
requests may come in at any order.

Which of these models is best suited for developing and analyzing online algorithms
depends on the problem and the applications of a given algorithm. For busy time scheduling
specifically, all of the previous results we mention in Section 3 use online-time. This makes
sense for the problem domain since the release times of jobs can be seen as the time the jobs
are revealed to the algorithm, which could very well be the case in practical applications.

One thing to note here is that, when using online-time for job scheduling, there is also
a distinction between clairvoyant and non-clairvoyant problems. In a clairvoyant setting
the processing time of a job is revealed to the algorithm once it is released, while in the
non-clairvoyant setting the algorithm does not know the processing time of a job. Most of
the results mentioned in this thesis will consider the clairvoyant setting, unless otherwise
mentioned.

1.2.2 Competitive analysis
The primary goal of an online algorithm is not necessarily to compute a solution as fast as
possible. Instead, we are looking to optimize the solution quality produced by an algorithm,
compared to the optimal solution. Let ALG(I) denote some algorithm’s solution’s cost
given input instance I, and OPT (I) denote the respective optimal solution. We can then
define the competitive ratio to be some c if for any input instance I, and some constant a,
ALG(I) ≤ c ·OPT (I) + a holds [8]. Such an algorithm is called c-competitive.

Different analyses can show different ranges of the possible competitive ratio of an
algorithm. Therefore, in order to show that the analysis does not overestimate the competitive

3

ratio of an algorithm, one can provide an input instance I for which ALG(I) = c ·OPT (I)+a.
If such an input instance is provided we call the analysis tight.

Aside from developing and analyzing online algorithms, we are also interested in analyzing
the problem as a whole, in order to show what’s possible in the online setting. By providing
an algorithm with a competitive ratio c we prove what is called the upper bound of a problem.
This upper bound tells us that the best-possible competitive ratio is no larger than c.

If we want to show that any online algorithm cannot have a competitive ratio lower than
cmin, we can to provide an adaptive input instance, or adaptive adversary, for which no online
algorithm can possibly perform better than cmin compared to the optimal solution. This
bound, cmin is called the lower bound of a problem. This adaptive adversary does not have
to define which requests are done in advance, instead, it can base its decisions based on what
the algorithm has done so far.

One of the downsides to the competitive ratio is that it only tells us something about the
worst-case performance of an algorithm. In practice, we may be more interested in how well
an algorithm performs on average, or how well it performs on a certain set of input instances.
In Sections 1.2.4 and 1.2.5 we will discuss alternative methods for creating and evaluating
online algorithms.

1.2.3 Resource augmentation

Imagine, for example, that no online algorithm for a problem with a constant, or sufficiently
low competitive ratio, exists. In this case, one can also look into resource augmentation [9],
[10]. With this type of analysis the online algorithm is given more resources than the
adversary, such as more speed or more processors in the context of busy time scheduling.

This method was first introduced by Kalyanasundaram et al. [11] where they analyze two
well-known scheduling problems. These problems both had no known constant-competitive
algorithm in the non-clairvoyant problem settings. When using resource augmentation the
competitive ratios did become constant-competitive, making it potentially as powerful as
clairvoyancy. Resource augmentation is a tradeoff, though, since needing to augment the
resources of an algorithm by a lot also decreases the applicability of such an algorithm.

Interestingly, for the busy time problem, if we augment the speed of an online algorithm,
any rigid job would turn into a flexible job. This could mean that it is a useful technique for
analyzing the problem setting where there are rigid jobs and limited processors on multiple
machines.

1.2.4 Online scheduling with predictions

A different way of developing a good-performing online algorithm is to make use of what
is called advice, or predictions. In the past, researchers have developed a model where the
algorithm can obtain information from a given advisor [12]–[15]. This advisor knows the
input instance and can relay information about this input instance, or the optimal solution,
to the algorithm.

Unfortunately, communicating large amounts of data on the input instance can be very
costly, especially in the setting of communication problems where this model is often used.
Therefore the challenge becomes to find a good competitive ratio while keeping the number
of bits in the advice, called the advice complexity, as small as possible.

In recent years, however, a new model which closely resembles that of the advice model,
has become quite popular. Instead of having an advisor that knows the input instance, we can

4 Online busy time scheduling

use an advisor that gives us, potentially unreliable, predictions about the input instance [16]–
[22]. This advisor can for example be trained using machine-learning techniques.

Since the predictions that are made may contain large errors, we consider it to be
untrusted advice, and therefore, we want to find an online algorithm that has two distinct
properties [16]:
1. Consistency. The algorithm’s performance improves if the quality of the prediction

improves. If the prediction is perfect then the algorithm should perform close to optimal.
2. Robustness. If the prediction is very bad, or even adversarial, the algorithm still limits

the resulting competitive ratio. This competitive ratio should not be much worse than
the best known online algorithm.

We can analyze the algorithm in terms of how well it performs with respect to these
properties. Unfortunately there are multiple definitions used for these parameters. Some
compare ALG to an algorithm that fully trusts the advice, while some compare ALG to
OPT . We define an algorithm to be (r, w)-competitive if its competitive ratio with perfect
predictions is at most r and its competitive ratio with adversarial predictions is at most w.
In Section 5, we will study the multiplier algorithm with machine learned advice, and we
will compare ALG to OPT to determine both the consistency and robustness.

Since we now have two parameters by which to characterize an algorithm’s performance
we may have two algorithms of which none is strictly better than the other. Therefore, the
ultimate objective is to find an algorithm that is pareto-optimal in both aspects, if one exists.

1.2.5 Randomized algorithms
Another type of online algorithm is a randomized online algorithm [23]–[25]. A randomized
algorithm is non-deterministic and is not guaranteed to produce the same result when ran
multiple times on the same input instance. Since the worst-case performance can be pretty
bad, which is why we are actually interested in is the expected cost E[ALG(I)].

A randomized algorithm is considered to be c-competitive if for any oblivious adversary
E[ALG(I)] ≤ c · OPT (I) + a holds [8]. This only proves the upper bound of a problem
though, if we want to define the lower bound of a problem in the randomized setting we can
make use of Yao’s principle [26]. Yao’s principle states that, for a maximization problem,
the lower bound of a problem can be defined by the expected value of an optimal solution,
divided by the expected value of the best-known deterministic algorithm. With this we do
not need to come up with an adversarial instance.

This type of analysis is a bit more optimistic since we do not just look at the worst-case
performance, but at the expected performance. If one is looking for a practical online
algorithm without having the ability to train an advisor, as mentioned in the previous section,
then randomized algorithms can be a suitable option.

1.3 Table of contents
We will first introduce the necessary preliminaries in Section 2. Then, we will look into the
previous research on online busy time scheduling in Section 3. Of all previous research, the
doubler algorithm by Koehler et al. [4] is the most foundational to our research. Therefore,
we will recap their competitive analysis in Section 3.4 before we present our contributions.

In Section 4, we will present an adaptive adversary for online busy time scheduling with
infinite processors. This results in a new lower bound of 2 for eager algorithms, improving
upon the previous lower bound of 1.618 for eager algorithms. Then, in Section 5, we will
look at online busy time scheduling with advice and present a (1 + 4

1+λ)-consistent and

5

(1 + 4
1−λ)-robust algorithm, where λ is a parameter between 0 and 1 that represents the

algorithms’ trust in the advice.
In Section 6, we will present some additional results. More specifically, in Section 6.1, we

will disprove the upper bound of 4 claimed by Fong et al. [27]. And, in Section 6.2, we will
introduce a general crediting method for analyzing both the doubler and overlapper
algorithms from sections 3.4 and 6.1 respectively. We also use this method to introduce the
saver algorithm and show that this has not lead to improvements on the upper bound yet.
Finally, we will conclude and reflect upon our research in Section 7.

2 Definitions and notations

Problem definition. In this thesis, we will focus on the online busy time problem with
unlimited processors. Each instance consists of a set of jobs J , where each job j has a
corresponding release time rj , a processing time pj , and a deadline dj . A schedule consists of
a starting time sj for each job, and it is valid if all jobs are scheduled such that sj + pj ≤ dj .

We define T , the set of active time intervals for some given schedule, as
⋃

j∈J

{ [sj , sj +pj) },

where we always merge touching and overlapping intervals. For example, { [0, 3) }
⋃
{ [2, 4) }

and { [0, 3) }
⋃
{ [3, 4) } both become { [0, 4) }. We let µ(T), the busy time of a schedule,

be the sum of the lengths of the active time intervals.
Definitions for algorithms. The latest start time of a job j is denoted as LSTj , and

we define it as dj − pj . Let Ut denote all unscheduled jobs, that is, those jobs which are
released but are not yet scheduled at time t. When the value of t is clear in a given context
we will refer to Ut as U . Moreover, let T denote the times in the problem instance, which
starts at 0 and ends at max

j∈J
{dj + pj}. We will use these definitions to define the algorithms

in later sections.
Definitions for analysis. Given two jobs in a schedule, j1 and j2, we note that they

overlap iff sj1 ≤ sj2 + pj2 ∧ sj2 ≤ sj1 + pj1 . The interval graph of the schedule is defined as a
graph where each job has a corresponding vertex and there is an edge between their vertices
iff their corresponding jobs overlap.

A connected component in a graph is a maximal set of vertices in the graph for which each
pair of vertices have a path between them. We define a connected component in a schedule to
be a connected component in the interval graph of the given schedule. Since ALG’s solution
may contain multiple connected components, we will denote the set of connected components
as C, where the i-th connected component in C will be denoted as Ci.

Let J(Ci) denote the set of jobs that are inside a connected component Ci. And, let
S(Ci) denote the start time of a connected component Ci. By definition of connected
components, this will be equal to min{sj : j ∈ J(Ci)}. Similarly, let E(Ci) denote the end
time of a connected component. By definition of connected components this will be equal to
max{sj + pj : j ∈ J(Ci)}.

Note that an instance may not have a single optimal solution. Let O be the set of all
optimal solutions for a given instance. Each solution On ∈ O has the same busy time µ(On)
and no better solution can be achieved.

▶ Lemma 1 (Tardy optimal solutions). There exists a tardy optimal solution On in O for
which every connected component Ci in On has S(Ci) = uj = sj for some job j.

Proof: Let f(Ci) denote whether S(Ci) = uj = sj for some job j holds for Ci. Assume
no such solution exists and pick the solution On which has the most number of connected

6 Online busy time scheduling

components Ci for which f(Ci) holds. From this solution pick a connected component Ci for
which f(Ci) doesn’t hold.

Let J ′ be all jobs j for which S(Ci) = sj holds. Calculate the minimum slack SL to be
min{ uj − sj : j ∈ J ′ }. Delay all jobs j ∈ J ′ by this amount and call this new connected
component C ′

i. Now S(C ′
i) = S(Ci) + SL. The end time E(C ′

i) is delayed by at most SL

compared to E(Ci). Thus E(C ′
i)− S(C ′

i) ≤ E(Ci)− S(Ci).
Thus, there should be a solution On′ that has one more connected component for which

f(Ci) holds than On. Since On was picked to have the maximum amount of Ci for which
f(Ci) holds this leads to a contradiction. ◀

Let O∗ denote some tardy optimal solution for which every connected component Ci in
O∗ has S(Ci) = uj = sj for some job j. In the rest of this thesis, whenever we refer to an
optimal solution, we refer to a tardy optimal solution. Moreover, for all previously mentioned
variables, we will use a ‘*’ to denote that this this variable relates O∗ in the rest of this
thesis. For example, s∗

j is the starting time of job j in the optimal solution, and C∗
i is a

connected component in the optimal solution.

3 Previous results

In this section we will list and describe the relative previous results on the online busy
time problem. Table 1 shows the best previous results for the various busy time scheduling
settings. Our contributions are marked in bold text.

Problem setting Remarks Lower bound Upper bound

Flexible jobs, - 1.618 [4], [28] 5 [4] �4 [27]

unlimited processors With advice - (1 + 4
1+λ

, 1 + 4
1−λ

)

Eager algorithms 2 -

Rigid jobs, - g [6] 5 log pmax [6]

limited processors One-sided clique 2 [6] 1 + 1+
√

5
2 [6]

Clique - 2(1 + 1+
√

5
2) [6]

Heterogeneous machines, - O(log pmax
pmin

) [29]

non-clairvoyant

Flexible jobs, - - O(log pmax
pmin

) [4]

limited processors
Table 1 An overview of the current results

3.1 Flexible jobs, unlimited processors
In this problem setting, we consider only instances where the number of processors is
unlimited. This eliminates the decision factor of deciding which machine a job should be
scheduled on. Instead, any algorithm needs to solely focus on when a job should be scheduled.

In 2017 three seperate papers were published on this problem setting, by Koehler et
al. [4], Fong et al. [27] and by Ren et al. [28]. The authors of these papers have presented
upper bounds of 5, 4, and 2

√
2 + 4 respectively. For this thesis, the most relevant algorithm

is the doubler algorithm by Koehler et al., which we study in Section 3.4. According to
Koehler et al., the analysis of the upper bound of 4 by Fong et al. is incorrect. However,

7

they do not prove this claim, so we will study the results by Fong et al. in Section 6.1 and
disprove the claimed upper bound of 4 by Fong et al.

Interestingly, all three papers present online algorithms that are very similar. All of them
wait until some unscheduled job reaches its latest possible starting time, at which point it is
scheduled. Then this job is marked as a primary, or flag job. The algorithm by Koehler et
al. then reserves an open window, relative to the processing time of the scheduled job, under
which all jobs that fit in it are also scheduled. The other two algorithms define a minimum
overlap ratio with the primary/flag job, for which all jobs that satisfy this condition are
scheduled.

The current lower bounds by both Koehler et al. and Ren et al. are 1.618 so there’s still
some improvement possible, either by improving upon the lower bound, or by developing a
better algorithm.

3.2 Rigid jobs, limited processors
In this problem setting, the number of processors we can use is limited, but we do have
unlimited machines available. In contrast to the flexible jobs, unlimited processors setting,
this setting only considers where each job should be scheduled.

In 2014, Shalom et al. first analyzed this setting [6]. They show that the problem has a
lower bound of g and, since this is not a constant-competitive ratio, they also study some
special problem instances. Moreover, they show a 5 log pmax-competitive algorithm for any
instance where the length of jobs does not grow exponentially with the number of processors.
This is done by classifying jobs based on their processing time, and putting them into buckets.
Each machine will then have a bucket assigned to it, and it will only process jobs out of that
particular bucket. They also prove an upper bound of 1 + 1+

√
5

2 and a lower bound of 2 for
one-sided clique instances, and an upper bound of 2(1 + 1+

√
5

2) for general clique instances.
And, they show results for the throughput setting and extend their results to the previously
mentioned context of optical network optimization. Other than considering special instances,
or non-deterministic algorithms, their general results are unlikely to be improved upon, since
they provide a tight analysis for their lower, and upper bounds.

In 2020, Ren et al. introduced a setting that closely resembles the problems faced in
cloud computing [29]. They use a model in which machines may have different numbers
of processors, and the machines may also have varying costs associated to them. Their
algorithm is also non-clairvoyant, meaning the processing times are unknown until a job has
finished running. The competitive ratio of their algorithm is O(log pmax

pmin
) and their analysis

is tight.

3.3 Flexible jobs, limited processors
In this problem setting, we have both flexible jobs and a limited number of processors, with
unlimited machines. Any algorithm should therefore decide both when and where jobs should
be scheduled. Since any instance containing only rigid jobs is also a valid instance for this
problem setting, the lower bound is also at least g, as shown by Shalom et at. [6].

As of now there exists only one paper with results on this problem by Koehler et al. [4].
Their goal was not only to minimize busy time, but also to offer a trade-off between the
busy time and the number of machines used, for which they show a result that uses a mixing
parameter α. They provide a O(log pmax

pmin
)-competitive online algorithm by making use of

the bucketing algorithm by Shalom et al. They estimate the true competitive ratio to be
9 log pmax

pmin
based on their lower bound of busy time scheduling with infinite processors.

8 Online busy time scheduling

Similar to the rigid job setting, one would need to consider special instances or non-
deterministic algorithms if one wants to find an online algorithm that is constant-competitive.
It is plausible that randomized algorithms or algorithms with machine learned advice could
result in constant-competitive results.

3.4 The doubler algorithm
In this section we will recap and explain the doubler algorithm by Koehler et al. [4]. Then,
we will recap the analysis, since we will adapt some of the proofs in Section 5.

3.4.1 Algorithm description
The doubler algorithm keeps track of a set P of primary jobs, which are jobs that are
scheduled at the latest possible starting time, and they will determine how long the machine
is busy. Each time a primary job is scheduled, doubler activates the machine for twice the
job’s processing time pj during which time it can also be busy processing other jobs. While
the machine is busy, doubler will schedule any job that is available and can be scheduled
during this time. Since doubler needs to schedule all jobs before their respective deadlines,
any unscheduled job is scheduled once its latest possible starting time is reached. If this job
does not fit in the current busy time, it will be marked as a primary job.

Algorithm 1 The doubler algorithm

Let P = ∅
for all times t ∈ T do

Schedule every unscheduled job j for which [t, t + pj) ∈ T
if t = LSTj for some unscheduled job then

Let j be some job with t = LSTj and pj = max{pj′ |j′ ∈ U and t = LSTj′}
T = T

⋃
{[t, t + 2pj)}

Schedule job j and add it to P , the set of primary jobs
Schedule every unscheduled job j for which [t, t + pj) ∈ T

end if
end for

In Algorithm 1 we show the precise flow of doubler. Note that, the step where jobs are
scheduled if they fit in the busy time is executed twice. This is necessary because some jobs
may not fit in the busy time initially, while they do fit after a new primary job is scheduled.
If one skips this step, then t is increased for the next iteration and the job may not fit
anymore.

3.4.2 Analysis recapped
In this section, we will recap the doubler analysis by Koehler et al. [4] and show that
doubler is 5-competitive. Koehler et al. also show that the analysis is tight, but for the
purpose of this thesis we will not go into those details. The general idea is that one can
split the total cost of the algorithm into the costs of the optimal and non-optimal busy
time intervals. Then, one can analyze these parts per connected component in the optimal
solution.

Remember that T ∗ denotes the busy time intervals in the optimal solution. Then, let
P1 be the set of all primary jobs which, including their open window, fully fit inside the

9

optimal solution. Formally, P1 = {j ∈ P | [sj , sj + 2pj) ⊂ T ∗}. Let P2 be the set of all
other primary jobs, formally, P2 = P \ P1.

Note that, in the doubler algorithm, any job that is scheduled must be either primary,
or it must fit inside the open window [s′

j , s′
j + 2p′

j) of some primary job j′. Therefore

µ(T) = µ

(⋃
j∈P

[sj , sj + 2pj)
)

. Let µ(P1) denote µ

(⋃
j∈P1

[sj , sj + 2pj)
)

and µ(P2) denote

µ

(⋃
j∈P2

[sj , sj + 2pj)
)

for the rest of this analysis. Since P1 fully fits inside the optimal

solution by definition of P1, it must be that µ(P1) ≤ µ(T ∗). Combined with µ(T) =

µ

(⋃
j∈P

[sj , sj + 2pj)
)

, it follows that µ(T) ≤ µ(T ∗) + µ(P2). This means that, if one can

find an upper bound on the cost of P2 in terms of µ(T ∗), one can find an upperbound for
the doubler algorithm.

In order to analyze the cost of the algorithm in terms of connected components, one can
partition the jobs in P2 by the connected components that they originally belong to in OPT .
Let P i

2 denote the jobs in P2 that are in connected component C∗
i in the optimal solution.

Recall that C∗ is a set of connected components C∗
i . . . C∗

k in OPT , and that they do not
overlap by definition. Therefore µ(P2) ≤

∑
C∗

i
∈C∗

∑
j∈P i

2

2pj . Now one needs to find a bound on

the cost of
∑

j∈P i
2

2pj in order to get a bound on the competitive ratio.

▶ Definition 2 (P i
2 ordered and ρj). Let P⃗ i

2 be the ordered list of the jobs in P i
2 for any i in a

non-descending order with respect to their starting times sj . In order to avoid overly-complex
notation we let ρj denote the jth job in P⃗ i

2.

▶ Lemma 3 (Primary job availability). All primary jobs in P⃗ i
2 are released when the first job

starts. rρj
≤ sρ1 for all ρj.

Proof: By contradiction, assume that rρj
> sρ1 for some job ρj . Note that, the job ρj fits

inside the optimal connected component [s∗
ρj

, s∗
ρj

+ pρj) ⊆ C∗
i , by definition of connected

components and OPT . Therefore rρj
+ pρj

≤ E(C∗
i). Otherwise, it would be impossible

for ρj to fit in C∗
i . Since ρ1 is a primary job that is not fully inside the optimal connected

component by definition of P i
2, it must be that [sρ1 , sρ1 + 2pρ1) ⊈ C∗

i . Moreover, since this
job is primary, it starts at its latest start time, and therefore it must be that the job finishes
running in the algorithm’s solution after the optimal connected component finishes running.
Formally, sρ1 + 2pρ1 ≥ E(C∗

i). Otherwise, if this job starts at its latest start time, and the
end of the job plus its window is before the end of the connected component, it would not be
in P2. Therefore, it must be that sρ1 + 2pρ1 ≥ E(C∗

i) ≥ rρj
+ pρj

. Since by contradiction
it is assumed that rρj > sρ1 , and sρ1 + 2pρ1 ≥ rρj + pρj , job ρj fully fits inside the open
window of job sρ1 . Therefore, ρj must have been scheduled as a non-primary job, but since
ρj ∈ P this is a contradiction. ◀

▶ Lemma 4 (Primary job size growth). The processing time of primary jobs in P⃗ i
2 doubles,

or more than doubles each job. pρj > 2pρj−1 for all j ≥ 2.

Proof: By contradiction, assume that pρj
≤ 2pρj−1 . Recall that job ρj was already released at

t = sρj−1 per Lemma 3, and sρj−1 ≥ sρ1 ≥ rρj
. Therefore, job ρj must have been scheduled

at time sρj−1 under the window of job ρj−1, which means it would not be primary. This is a
contradiction since ρj ∈ P2. ◀

10 Online busy time scheduling

▶ Theorem 5. Doubler is at most 5-competitive

Proof: Let ρmax denote the processing time of the largest job in P⃗ i
2, and let jmax denote the

index of this job. With Lemma 4 in mind one can now see that, by induction,
∑

j∈P i
2

2pj ≤

jmax∑
j=1

2j−jmax · ρmax. And, by the definition of connected components we know that any job in

a connected component can not be larger than the connected component, meaning one can
replace ρmax with µ(C∗

i). This means that
∑

j∈P i
2

2pj ≤ µ(C∗
i) ·

∞∑
j=0

2−j = 4µ(C∗
i).

If one plugs this definition into µ(P2) ≤
∑

C∗
i

∈C∗

∑
j∈P i

2

2pj , one can deduce that µ(P2) ≤

4·
∑

C∗
i

∈C∗
µ(C∗

i) = 4·µ(T ∗). This means that µ(T) ≤ µ(T ∗)+µ

(⋃
j∈P2

[sj , sj + 2pj)
)
≤ 5·µ(T ∗).

And, since OPT = µ(T ∗) by definition, doubler is at most 5-competitive. ◀

4 Lower bound of 2 for eager algorithms

In this section, we will present the proof for a lower bound of 2 for eager algorithms in online
busy time scheduling with unlimited processors.

4.1 Preliminaries
In order limit the number of variations that we have to account for, we will start by defining
the family of eager algorithms.

▶ Definition 6 (Eager algorithms). Let the family of eager algorithms be the family of
algorithms where any algorithm schedules jobs immediately if they don’t increase the busy
time. Formally, the any eager algorithm schedules all jobs j ∈ U at time t for which
µ([t, t + pj)

⋃
T) = µ(T).

▶ Lemma 7 (Optimality of eager algorithms). Any non-eager algorithm’s schedule can be
converted into a schedule produced by an eager algorithm with at most the same busy time.

Proof: Let S denote some schedule which was produced by a non-eager algorithm on some
instance. Let S′ denote the revised, eager schedule, which starts out as a copy of S. Then,
starting from the earliest job, we change the starting time of all jobs which at some point
could have been scheduled without increasing busy time. The new starting time of such a
job becomes the first point in time where scheduling the job does not increase busy time.
And, because the busy times of our machine might change, we repeat this process until no
such jobs can be found.

Since changing a jobs starting time is the same as removing and adding a job to the
schedule, we can say that performing this operation will change the cost of S′ from µ(S)
to µ(S) + remove + add. Scheduling a job eagerly, by definition, does not increase busy
time. This means that add = 0. Note that, removing a job from a schedule can never
increase busy time, meaning remove ≤ 0. Since add = 0 and remove ≤ 0, it must be that
µ(S′) ≤ µ(S). ◀

4.2 Definition
The adversary in Algorithm 2 will release n2 jobs j at the very start, with processing times
that increase linearly by j

n . The deadlines also increase exponentially, namely nj+2, such

11

Figure 1 Initial jobs Figure 2 Not possible since ALG must be eager

that spreading all jobs never spans two deadlines.

Once the algorithm, which we require to be eager, decides to schedule some set of jobs, the
adversary waits until all of those jobs have finished running. Let α denote some parameter
that we will later use to maximize the lower bound. Then, if the ratio between the largest
and smallest jobs in the previous connected component is α or greater, the adversary releases
copies of all jobs but the smallest. We use D1 to classify the set of connected components for
which the ratio was α or greater. The set D2 classifies the set of jobs for which this is not
the case.

Figure 1 shows the initial setup for some small instance at t = 0. Figure 2 shows an
impossible set of scheduled jobs for this instance, since we require the algorithm to be eager.
Figures 3 and 4 show examples where some algorithm scheduled connected components that
will be marked as D1 and D2 respectively. The deadlines in these figures are not at true
scale.

Algorithm 2 Adversarial instance for g = ∞

Require: ALG ∈ A.
Release n2 jobs with rj = 0, pj = 1 + j

n , dj = nj+2

D1 ← ∅, D2 ← ∅
while t < max

j∈J
dj do

if t− ϵ ∈ T and t /∈ T then ▷ Wait until all jobs have finished running
Ci ← the latest connected component of ALG

maxCi
← max

j∈Ci

pj ▷ maxCi
is the longest job processing time in Ci

minCi
← min

j∈Ci

pj ▷ minCi
is the shortest job processing time in Ci

if maxCi
> α minCi

then
for all j ∈ Ci | pj > minCi do

Release a new job j′ with rj′ = t, pj′ = pj and dj′ = dj

end for
Add Ci to D1

else:
Add Ci to D2

end if
end if

end while

12 Online busy time scheduling

Figure 3 Connected component in D1 Figure 4 Connected component in D2

4.3 Analysis
▶ Lemma 8 (Cost of ALG). The cost of ALG is bounded by the cost of each connected
component in D1 and D2. That is, ALG ≥

∑
Ci∈D1

maxCi
+

∑
Ci∈D2

maxCi

Proof: Each of the connected components Ci ∈ C has a cost of µ(Ci) ≥ maxCi
, since we can

never make the busy time of a connected component smaller than the processing time of its
largest job. Each connected component is included in either D1 or D2, but never in both.
Therefore we can partition the cost of ALG into

∑
Ci∈D1

maxCi
and

∑
Ci∈D2

maxCi
. ◀

▶ Lemma 9 (Cost of OPT). The cost of OPT is bounded by the maximum job size and the
connected components in D1. That is, OPT ≤ n + 1

∑
Ci∈D1

minCi

Proof: Once the jobs in some connected component Ci have finished processing, we know
whether Ci will be in D1 or D2. Let OFF denote some algorithm that can change its
decisions offline. By providing the decisions that OFF could make we can determine an
upper bound on the cost of OPT .

If D1 = ∅, which it always is initially, OFF could schedule all jobs at the same time with
a busy time of n + 1, since no additional jobs are released yet. As new jobs are released,
due to some connected component Ci ∈ D1, OFF can change its decisions by delaying some
previously scheduled jobs.

When ALG schedules a connected component Ci such that Ci ∈ D1, the adversary will
release additional jobs with processing times minCi

+ 1
n up to maxCi

after the jobs in Ci

have finished running. Since these newly released jobs have a release time greater than zero,
OFF can no longer schedule all jobs at the same time. Instead, OFF can keep the starting
times for all jobs with processing times up to minCi

the same, and set the startings times for
all jobs with processing times greater than minCi to the release time of the newly released
jobs after Ci. Figures 5 and 6 illustrate this scenario. For illustrative purposes, the deadlines
are not at true scale.

Each time OFF changes its decisions offline, due to some Ci ∈ D1, the cost of the final
connected component in OFF will be n + 1, since this is the maximum job size and we can
schedule all jobs at the same time. And, since OFF may not be able to schedule the job
with pj = minCi

at the same time as the final connected component, the cost of scheduling
this job is at most minCi . Therefore the total cost of OFF is at most n + 1 +

∑
Ci∈D1

minCi .

And, since the solution of OPT will have the lowest possible busy time, by definition of an
optimal solution, we can say that OPT ≤ OFF ≤ n + 1 +

∑
Ci∈D1

minCi .

◀

13

Figure 5 Initial solution OF F with new jobs Figure 6 Revised solution OF F after Ci ∈ D1

Figure 7 New smallest job after D1 Figure 8 New smallest job after D2

▶ Lemma 10 (Charged cost of OPT). We can charge the n-term in the upperbound of the
cost of OPT to D1 and D2 such that n =

∑
Ci∈D1

(
minCi + 1

n

)
+

∑
Ci∈D2

(
maxCi −minCi + 1

n

)
.

Let fi denote the smallest processing time of the jobs in U , right after connected component
Ci has finished running and, if applicable, the adversary has released any new jobs. We
define f0 to be 1, because before any job has been scheduled, the smallest unscheduled job
is the smallest possible job, which has a processing time of 1. When U is empty after k

connected components (meaning all jobs have been scheduled), we define fk to be n + 1,
which is the largest job size.

Let ∆fi be fi − fi−1. Note that fi is a monotonic function, since we require ALG to be
in the eager family of algorithms, and the adversary never releases smaller jobs than minCi

after Ci has finished running. Therefore, since f0 = 1 and the last term fk = n + 1, we

know that
k∑

i=0
∆fi = n. Moreover, since D1 and D2 are disjoint, we can partition

k∑
i=0

∆fi

into
∑

Ci∈D1

∆fi and
∑

Ci∈D2

∆fi.

Next we will determine the value of ∆fi via case distinction.
If Ci ∈ D1, then the algorithm schedules all jobs with processing times minCi

to processing
times maxCi

. Afterwards, the adversary releases new jobs with processing times minCi
+ 1

n

up to maxCi
. Therefore, ∆fi = minCi

+ 1
n −minCi

= 1
n . Figure 7 illustrates this scenario.

If Ci ∈ D2, then the algorithm also schedules all jobs with processing times minCi to
processing times maxCi

. Afterwards, the adversary doesn’t release new jobs as part of
this decision. Therefore, ∆fi = maxCi + 1

n −minCi . Figure 8 illustrates this scenario.

14 Online busy time scheduling

Since n =
∑

Ci∈D1

∆fi +
∑

Ci∈D2

∆fi, we can now say that n =
∑

Ci∈D1

(
minCi

+ 1
n

)
+∑

Ci∈D2

(
maxCi

−minCi
+ 1

n

)
by filling in the costs of ∆fi. ◀

▶ Lemma 11 (Last connected component cost). The last connected component, Ck, is in D2
and it will have a busy time of max

j∈J
pj = n + 1.

Proof: The largest job j ∈ J has size 1 + n(1
n) = n + 1. At some point, ALG will have

to schedule this job or the produced schedule is infeasible. Once this job is scheduled and
finished processing one of two things will happen:
1. The job j is added to D1, and the algorithm will schedule more jobs.
2. The job j is added to D2, and no jobs will be released anymore.

If Ck ∈ D2, then U = ∅, since we require ALG to be eager. Therefore, all smaller jobs
must have been scheduled as well. And, by definition of D2, no more jobs will be released,
meaning this is a possible way to finish scheduling jobs, while preventing the adversary from
releasing more jobs.

If, however, Ck ∈ D1, then the algorithm will release jobs with processing times between
minCk

+ 1
n and maxCk

. Due to the definition of these newly released jobs, it is only possible
for U to be empty afterwards if maxCk

= minCk
. If α > 1 this cannot be the case for any

Ci ∈ D1 since maxCi
≥ α minCi

. Therefore, it is impossible to finish scheduling jobs with a
connected component Ck ∈ D1, while preventing the adversary from releasing more jobs. ◀

▶ Lemma 12 (Total cost of D2).
∑

Ci∈D2

maxCi ≥ n + |D2|+ |D2|2−3|D2|+2
2n .

Proof: As per Lemma 11, one Ci ∈ D2 will have maxCi
= n + 1. Since the minimum job

size is 1 and all other jobs are at least 1
n larger, the other i = [1 . . . |D2| − 1] connected

components in D2 will each increase the total busy time of ALG by at least 1 + i−1
n .

Therefore, these jobs will be scheduled with a busy time of at least
|D2|−1∑

i=1

(
1 + i−1

n

)
=

|D2| − 1 +
|D2|−1∑

i=1

(
i−1

n

)
= |D2| − 1 + |D2|2−3|D2|+2

2n .

Moreover, when we add the largest job the required busy time becomes at least |D2| −
1 + |D2|2−3|D2|+2

2n + n + 1 = n + |D2|+ |D2|2−3|D2|+2
2n . ◀

▶ Lemma 13 (Contribution of 1
n). As n grows to infinity, the contribution of 1

n for each
connected component in D2 in the lower bound of the cost of OPT to the competitive ratio

becomes 0. Formally, lim
n→∞

∑
Ci∈D2

1
n∑

Ci∈D2

maxCi

= 0.

Proof: As per Lemma 12, we know that

∑
Ci∈D2

1
n∑

Ci∈D2

maxCi

=
|D2|

n

n+|D2|+ |D2|2−3|D2|+2
2n

. If we increase n

to infinity while |D2| is very small then |D2|
n approaches 0, and therefore the whole fraction

becomes 0. However, |D2| could be as large as n2 if all Ci ∈ D∈ contain only a single job,
which means |D2|

n can be as large as n.
When |D2| increases by one,

∑
Ci∈D2

1
n is increased by 1

n , while n + |D2|+ |D2|2−3|D2|+2
2n is

increased by more than one. Therefore, even if |D2| increases by a lot, the term |D2|
n is only

increased by less than 1
n -th of the same amount. Meaning as n grows to infinity the fraction

approaches 0, no matter how large |D2| is. ◀

15

▶ Theorem 14. No eager online algorithm can achieve better a competitive ratio better than
2

Proof: We will prove this by looking at the ratio between ALG and OPT and then take the
minimum ratio of the fractions for D1 and D2 separately. ALG

OP T ≥∑
Ci∈D1

maxCi
+

∑
Ci∈D2

maxCi∑
Ci∈D1

(minCi
+ 1

n) +
∑

Ci∈D2

(maxCi
− minCi

+ 1
n) ≥min

∑

Ci∈D1

maxCi∑
Ci∈D1

(minCi
+ 1

n) ,

∑
Ci∈D2

maxCi∑
Ci∈D2

(maxCi
−minCi

+ 1
n)

For the first term, maxCi

> α minCi
for any Ci ∈ D1, and our jobs increase in size by

exactly 1
n . Therefore,

∑
Ci∈D1

maxCi∑
Ci∈D1

(minCi
+ 1

n) ≥ α. Which means that the ratio of the first term is

α.
For the second term, maxCi ≤ α minCi since Ci ∈ D∈ and therefore maxCi −minCi ≤

(1− 1
α) maxCi

. Moreover, in Lemma 13 we have shown that 1
n is insignificant if n is large

enough. Therefore, we can rewrite the ratio of the second term as

∑
Ci∈D2

maxCi

k∑
Ci∈D2

(maxCi
− minCi)

. Com-

bining maxCi
−minCi

≤ (1− 1
α) maxCi

with

∑
Ci∈D2

maxCi

k∑
Ci∈D2

(maxCi
− minCi)

gives us

∑
Ci∈D2

maxCi

k∑
Ci∈D2

(maxCi
− minCi)

≥

∑
Ci∈D2

maxCi∑
Ci∈D2

(1− 1
α) maxCi

. This results in a ratio of α
α−1 for the second term.

To find the competitive ratio, we need to find the best α to maximize ALG
OP T ≥ min

{
α, α

1−α

}
,

which is maximized at α = 2. Therefore, ALG
OP T ≥ 2 if α = 2, showing this is a lower bound

for busy time scheduling with infinite processors. ◀

5 Busy time scheduling with machine learned advice

In this section we will introduce a (1 + 4
1+λ)-consistent and (1 + 4

1−λ)-robust online algorithm
for online busy time scheduling with machine learned advice.

5.1 Preliminaries
In this section, we will not use the widely-used definition of robustness and consistency, that
uses an error-measure. Instead, we will apply a more general definition, first introduced by
Angeloupolos et al. [16]. The ultimate objective function, if using machine learning, is then
to optimize the competitive ratio for an instance, instead of optimizing for some pre-defined
error measure.

▶ Definition 15 (Consistency). We define the consistency of algorithms with machine learned
advice to be the worst-case competitive ratio given that the advice is as good as possible.
Formally, Consistency(ALG) := sup

I
inf
Ŝ

ALG(I,Ŝ)
OP T (I)

▶ Definition 16 (Robustness). We define the robustness of algorithms with machine learned ad-
vice to be the worst-case competitive ratio, irrespective of the advice. Formally, Robustness(ALG) :=
sup

I
sup

Ŝ

ALG(I,Ŝ)
OP T (I)

16 Online busy time scheduling

Commonly, the advice can be given in the form of a prediction, where the prediction
should be as close to the problem instance as possible. Instead of such a prediction we require
the advice to be a series of time intervals. The intuition is that these time intervals advice
the algorithm on when the machine should be busy processing jobs. Note that, if one has a
prediction on what jobs will arrive, then this prediction can be converted into some advice
in the format of a series of time intervals.

5.2 The multiplier algorithm
The multiplier algorithm is very similar to the doubler algorithm by Koehler et al. [4],
described in Section 3.4, but instead of always doubling the algorithm will reserve a variable
window with a relative size wj for each primary job. In order to limit the size of this window
we require that wj is between α = 1−λ

2 and β = 1+λ
2 . Here, λ is the trust parameter which is

between 0 and 1. Semantically, a λ of 1 means the algorithm fully trusts the advice, whereas
a λ of 0 means the algorithm completely ignores the advice.

Algorithm 3 The multiplier algorithm with advice

Let P = ∅
for all times t ∈ T do

Schedule every unscheduled job j for which [t, t + pj) ∈ T
if t = LSTj for some unscheduled job then

Let j be some job with t = LSTj and pj = max{pj′ |j′ ∈ U and t = LSTj′}
Let ŵj = max

t′∈T
{t′ − t} s.t. [t, t′) ⊆ Ŝ

Let wj = max{ 1
β , min{ 1

α ,
ŵj

pj
} }

T = T
⋃
{[t, t + wj · pj)}

Schedule job j and add it to P , the set of primary jobs
Schedule every unscheduled job j for which [t, t + pj) ∈ T

end if
end for

We require the advice, Ŝ, to be a set of time intervals. Then, once a primary job
is scheduled, the algorithm computes the advised busy time which is defined as ŵj =
max
t′∈T

{t′ − t} s.t. [t, t′) ⊆ Ŝ. From this, the algorithm can determine the relative open

window by clamping it between β and α. More formally, wj = max{ 1
β , min{ 1

α ,
ŵj

pj
} }.

The algorithm then activates the machine for wj · pj time during which other jobs can be
scheduled. In Figures 9-12 we illustrate how wj is determined and in Algorithm 3 we show
the precise flow of the multiplier algorithm.

5.3 Analysis
We will start out largely following the analysis of Koehler et al. [4], which we recap in
Section 3.4. The difference between the start of our analysis and the analysis of Khuller et al
is that, instead of a constant relative window, each job may have a different relative window
wj in our algorithm.

First, we redefine T , P1 and P2. Let T =
⋃

j∈P

[sj , sj + wj · pj), since jobs are either

scheduled as primary jobs, or their processing time fully fits inside the window of some
primary job. Let T ∗ denote the busy time intervals in the optimal solution. Then, let P1 be
the set of all primary jobs which, including their open window, fully fit inside the optimal

17

Figure 9 Example 1

Figure 10 Example 2

Figure 11 Example 3

Figure 12 Example 4

Examples for determining the size of the open window

18 Online busy time scheduling

solution. Formally, P1 = {j ∈ P | [sj , sj + wj · pj) ⊂ T ∗}. Let P2 be the set of all other
primary jobs. Formally, P2 = P \ P1.

Then, by definition of T , µ(T) ≤
∑

j∈P1

wj ·pj +
∑

j∈P2

wj ·pj ≤ µ(T ∗)+
∑

j∈P2

wj ·pj . Therefore

if we can find a bound on
∑

j∈P2

wj · pj , we can find a bound on the competitive ratio of our

algorithm.
Note that, since any connected component is a maximal set in the interval graph, connected

components never overlap. Therefore T ∗ =
⋃

C∗
i

∈C∗
C∗

i . This means that we can express the

cost of OPT as the sum of the lengths of the connected components.
In order to get a bound on the cost of P2, we want to do something similar to analyze

P2 per connected component. We denote P i
2 as the set of jobs J(C∗

i)
⋂

P2. Consequently,
µ(P2) ≤

∑
C∗

i
∈C∗

∑
j∈P i

2

wj · pj .

Let P⃗ i
2 be the jobs in P i

2 for any i in a non-descending order with respect to their starting
times sj . In order to avoid overly-complex notation we let ρj denote the jth job in P⃗ i

2.

▶ Lemma 17 (Primary job availability). All primary jobs are released when the first job starts.
Formally, rρj ≤ sρ1 for all ρj.

Proof: For this lemma we can look at the proofs in Lemma 3. When replacing 2 by wj , for
every job j, the proof still holds, since we use a very similar definition of P1 and P2.

By contradiction, assume that rρj > sρ1 for some job ρj . Note that, by definition of
connected components and OPT , the job ρj fits inside the optimal connected component
[s∗

ρj
, s∗

ρj
+ pρj) ⊆ C∗

i . Therefore, rρj + pρj ≤ E(C∗
i). Otherwise, it would be impossible for

ρj to fit in C∗
i . Since ρ1 is a primary job that is not fully inside the optimal connected

component by definition of P i
2, it must be that [sρ1 , sρ1 + wρ1 · pρ1) ⊈ C∗

i . Moreover, since
this job is primary it starts at its latest start time, and therefore it must be that the job
finishes running in the algorithm’s solution after the optimal connected component finishes
running. Formally, sρ1 + wρ1 · pρ1 ≥ E(C∗

i). Otherwise, if this job starts at its latest start
time, and, the end of the job plus its window is before the end of the connected component,
it would not be in P2. Therefore, it must be that sρ1 + wρ1 · pρ1 ≥ E(C∗

i) ≥ rρj + pρj . Since,
by contradiction, it is assumed that rρj

> sρ1 , and sρ1 + wρ1 · pρ1 ≥ rρj
+ pρj

, job ρj fully
fits inside the open window of job ρ1. And therefore ρj must have been scheduled as a
non-primary job, but since ρj ∈ P this is a contradiction. ◀

▶ Lemma 18 (Primary job size growth). The processing time of each primary job increases
by at least a factor of their respective windows. Formally, pρj > wρj−1 · pρj−1 for all j ≥ 2.

Proof: For this lemma we can look at the proofs in Lemma 4. Though, instead of assuming
pρj
≤ 2pρj−1 , we assume that, by contradiction, pρj

≤ wρj−1 · pρj−1 .
Recall that job ρj was already released at t = sρj−1 per Lemma 17, and sρj−1 ≥ sρ1 ≥ rρj .

Therefore job ρj must have been scheduled at time sρj−1 under the window of job ρj−1,
which means it would not be primary. This is a contradiction since ρj ∈ P2. ◀

▶ Observation 19 (Clamped window size). wj is always between 1
β and 1

α since it is defined
as max{ 1

β , min{ 1
α ,

ŵj

pj
} }.

By the definition of connected components, Observation 19 and Lemma 18, we note that∑
j∈P i

2

wj · pj =
∑
j∈ρ

wj · pj has the following properties:

1. pρj
≤ µ(C∗

i) for all j

19

2. 1
β ≤ wρj ≤ 1

α for all j

3. pρj > wρj−1 · pρj−1 for all j ≥ 2

▶ Lemma 20 (A bound on P i
2).

∑
j∈P i

2

wj ·pj ≤ wρmax ·µ(C∗
i) + µ(C∗

i)·
jmax−1∑

j=1

1
wρj+1 ·wρj+2 ...·wρjmax−1

Let the last job in P i
2 be denoted as ρmax and the index of this job be denoted as jmax. If we

look at this last job, we can state that pρmax ≤ µ(C∗
i) because of property 1, and therefore∑

j∈ρ

wj · pj ≤ wρmax · µ(C∗
i) +

jmax−1∑
j=1

wj · pj .

Because of property 3 we can say that wρj
· pρj

< µ(C∗
i) for all j ≤ jmax − 1, no matter

what the value of wρj
actually is. Then, by applying property 2, we can rewrite this as

wρj
· wρj−1 · pρj−1 < wρj

· pρj
< µ(C∗

i) if j ≥ 2. Which means that wρj−1 · pρj−1 ≤
µ(C∗

i)
wρj

.

Repeating the same logic for j − 2 we get wρj−1 · wρj−2 · pρj−2 < wρj−1 · pρj−1 <
µ(C∗

i)
wρj

.

Therefore, wρj−2 · pρj−2 ≤
µ(C∗

i)
wρj

·wρj−1
, which we can repeat for all jobs in P i

2 to generalize to
wρj
· pρj

≤ µ(C∗
i) · 1

wρj+1 ·wρj+2 ...·wρjmax−1
for all j < jmax.

And therefore,
jmax∑
j=1

wj · pj ≤ wρmax · µ(C∗
i) + µ(C∗

i) ·
jmax−1∑

j=1

1
wρj+1 ·wρj+2 ...·wρjmax−1

◀

With this bound on the competitive ratio we can further analyze multiplier’s consistency
and robustness.

5.4 Robustness

Note the definition of robustness, we want to show that, no matter the instance and advice,
we will always have a competitive ratio compared to OPT of at most the robustness.

Looking at the bound on P i
2 in Lemma 20 we see that there are two terms, one on the cost

of the last job in ρ and one term on the cost of the other jobs. wρmax · µ(C∗
i) is maximized

when wρmax is maximal, which is 1
α . Therefore, wρmax · µ(C∗

i) ≤ 1
α · µ(C∗

i).
If we look at the second term on the bound on P i

2 in Lemma 20, we see that the overall
term is maximized when each wρj

is minimized. Therefore, since wρj
≥ 1

β , we know that

µ(C∗
i) ·

jmax−1∑
j=1

1
wρj+1 ·wρj+2 ...·wρjmax−1

≤ µ(C∗
i) ·

jmax −1∑
i=0

βi. And, since there can be arbitrarily

many jobs, we can rewrite this to µ(C∗
i) ·

−∞∑
n=0

βn.

With this, we have an upper bound on the cost of P2, µ(P2) ≤
∑

C∗
i

∈C∗

∑
j∈P i

2

wj · pj ≤

∑
C∗

i
∈C∗

1
α ·µ(C∗

i)+µ(C∗
i)·

−∞∑
n=0

1
β

n. Recall that the total cost of ALGλ is bounded by µ(P1)+µ(P2),

therefore the total cost of ALGλ is at most
∑

C∗
i

∈C∗
µ(C∗

i) + 1
α · µ(C∗

i) + µ(C∗
i) ·

−∞∑
n=0

1
β

n. When

we divide the total cost by OPT =
∑

C∗
i

∈C∗
µ(C∗

i) we get a competitive ratio of 1 + 1
α +

−∞∑
n=0

1
β

n.

Which, by definition of α and β is equal to 1 + 4
1−λ for all λ < 1.

▶ Corollary 21. ALGλ is 1 + 4
1−λ -robust for all λ < 1.

20 Online busy time scheduling

5.5 Consistency (λ < 1)
In order to prove the consistency of our algorithm we will need some way to define the best
possible advice. Instead of reasoning what the best possible advice would be, we will start
out by providing an advisor ADV (I)→ Ŝ. By showing a worst-case competitive ratio using
this advisor we can provide a bound on the consistency of our algorithm.

Let ALGλ(I, Ŝ, t) denote the schedule of running ALGλ on instance I, with advice Ŝ

until time t. From the schedule resulting from ALGλ we can deduce P and U at time t.
Similarly let ADVλ(I, t) denote the advice when T contains all times before t.

We will denote C∗(j) as the time interval of the connected component in OPT that
contains job j. With these definitions, let ADVλ(I) be

⋃
t∈T

ADV ′(I, t, ALGλ(I, ADVλ(I, t−

∆t), t−∆t)). This definition allows us to define ADV ′ such that we can iteratively update
the advice based on the decisions ALGλ has made.

We define ADV ′ such that, once a primary job j has to be scheduled at time t, it advices
multiplier to activate the machine for the amount of time that OPT needs to run the
connected component of job j. The idea behind this is that multiplier, for some optimal
connected component C∗

i , can then increase the size of primary jobs as fast as possible
while not increasing this size much more than µ(C∗

i). Formally, let ADV ′(I, t, ALG) be
Ŝ = {[t, t + µ(C∗(j)))} if t = LSTj for some job j ∈ (U ∈ ALG) and [t, t + pj) /∈ (P ∈ ALG),
and ∅ otherwise. Now we can use this definition to analyze what the worst-case competitive
ratio is when this advice is followed.

▶ Lemma 22 (Cost of ρmax). wρmax · pρmax ≤ 1
β · µ(C∗

i)

Proof: We will do a case distinction based on the size of pρmax .
If β ·µ(C∗

i) ≤ pρmax ≤ µ(C∗
i) then max{ 1

β , min 1
α ,

ŵρmax
pρmax

} } ≤ max{ 1
β , min{ 1

α ,
µ(C∗

i)
β·µ(C∗

i
)}}

= 1
β which means the total cost is at most 1

β · µ(C∗
i).

If α · µ(C∗
i) < pρmax < β · µ(C∗

i) then 1
β <

µ(C∗
i)

pρmax
< 1

α and therefore wρmax = µ(C∗
i)

pρmax
which

means that wρmax · pρmax = µ(C∗
i).

If pρmax ≤ α · µ(C∗
i) then µ(C∗

i)
pρmax

≥ 1
α and therefore wρmax = 1

α which means that
wρmax · pρmax ≤ µ(C∗

i).
Recall that pj ≤ µ(C∗

i) for all j ∈ J(C∗
i). Therefore wρmax · pρmax ≤ max{ 1

β · µ(C∗
i), µ(C∗

i) }
= 1

β · µ(C∗
i). ◀

▶ Corollary 23.
jmax∑
j=1

wj · pj ≤ 1
β · µ(C∗

i) +
jmax−1∑

j=1
wj · pj.

Since we now have a bound on the last job in P i
2, we need to find a bound on the window for

the other jobs.

▶ Lemma 24 (All other jobs have a window of 1
α). wρj

= 1
α for all j < jmax.

Proof by contradiction: We know wρj
≤ 1

α by definition, therefore we assume wρj
= 1

α −x for
some x between ϵ and 1

α−
1
β . Then ŵρj

pρj
= µ(C∗

i)
pρj

= 1
α−x which means that µ(C∗

i) = pρj
·(1

α−x).
We also know that wρjmax−1 · pρjmax−1 < pjmax , so wρjmax−1 · pρjmax−1 < µ(C∗

i). However
µ(C∗

i) = pρjmax−1 ·(1
α−x) = pρjmax−1 ·wρjmax−1 which leads to a contradiction for j = jmax−1.

And for all j < jmax − 1 we know that pρj < pρjmax−1 which means that µ(C∗
i)

pρj
≥ 1

α , since
the same holds for pρjmax−1 . Therefore wρj

= 1
α for all j < jmax. ◀

21

Now we can rewrite the bound on the cost of P i
2 to

∑
j∈P i

2

wj · pj ≤ µ(C∗
i) + µ(C∗

i) ·

jmax−1∑
j=1

1
wρj+1 ·wρj+2 ...·wρjmax−1

≤ 1
β · µ(C∗

i) + µ(C∗
i) ·

−∞∑
n=0

αn This means that the algorithm’s

cost is now bounded by µ(T) ≤
∑

C∗
i

∈C∗
µ(C∗

i) + 1
β · µ(C∗

i) + µ(C∗
i) ·

−∞∑
n=0

αn. When we divide

this bound by OPT =
∑

C∗
i

∈C∗
µ(C∗

i), we get a competitive ratio of 1 + 1
β +

−∞∑
n=0

1
α

n. Which, by

definition of α and β we can rewrite to 1 + 4
1+λ for all λ < 1.

▶ Corollary 25. ALGλ is at most 1 + 4
1+λ -consistent when λ < 1.

5.6 Consistency (λ = 1)

If λ = 1 we define α =∞ and β = 1. For this proof we will re-use the definition of ADVλ(I)
as our advisor. Once t = LSTj for some job j, ŵ = µ(C∗(j)) at the beginning of the optimal
connected component to which j belongs. Then, all jobs that fit inside this connected
component are scheduled because wj · pj = µ(C∗(j)), since α =∞. Therefore the cost of the
connected components is the same as OPT .

5.7 Locally updateable advice

Consistency and robustness are quantifyable measures of the quality of an online algorithm
with machine learned advice. However, for scheduling problems and other problems with
potentially infinitely large instances, we can see that depending on the required format of the
advice, the advice may be infinitely large as well. Such advice may be infeasible to compute.

Moreover, if we use the online-time model for an online algorithm, we may see that it
is easier to predict things about the near future, rather than predicting things about the
far future. Anectodally, we can look at weather predictions to see that this may be true,
and literature confirms this. For reference, see the paper about uncertainty in weather and
climate prediction by Slingo et al. for example [30].

Therefore, we would like to introduce the notion of a locally updateable online algorithm.
An online algorithm with machine learned advice is locally updateable, if the advice about
the future can be revised as time goes on. Allowing the advice to be updated, in an online
algorithm, allows the problem instance to be potentially infinitely large, and it may help the
advisor to provide more accurate advice.

Remember that, in the multiplier algorithm, we require the advice to be in a series
of time intervals. And, we have formulated the algorithm in a way such that the advice
has to be given at the beginning of the problem instance. However, we can reformulate the
algorithm to query the advisor each time t = LSTj for some unscheduled job, and require
the advice to be some number that denotes the advised open window, ŵj . This allows the
advisor to give advice that contains a finite amount of bits, and it allows the advice to make
use of all the local information about the problem instance. Moreover, this does not affect
the consistency and robustness of our algorithm, since the union of all adviced open windows,⋃
j∈P

[LSTj , LSTj + ŵj), is in the same format as Ŝ. Therefore, the multiplier algorithm

can be used as a locally updateable online algorithm.

22 Online busy time scheduling

6 Other results

6.1 The overlapper algorithm

When looking at the doubler algorithm, one might wonder why the algorithm reserves an
open window. Instead, we could look at the potential overlap between a primary job and
some unscheduled job to determine whether this unscheduled job should be scheduled. In
this section, we will analyze the upper bound of such an algorithm.

In 2017, Fong et al. [27], presented an algorithm using this method, and claim that the
algorithm is 4-competitive. We will refer to this algorithm as the overlapper algorithm.
However, Koehler et al. [4] mentioned that this result is not correct, but they did not
provide a counter example to prove this claim. In this section we disprove the claim that the
overlapper algorithm is 4-competitive.

6.1.1 Algorithm description

Since overlapper by Fong et al. is not formulated in an online-time manner we will
reformulate it such that it works in the online-time model. The overlapper algorithm
starts with waiting until some job reaches its latest starting time. Then, the algorithm
will schedule this job, and mark it as a primary job. Let the overlap between two jobs
in a schedule, o(j1, j2), be min{sj1 + pj1 , sj2 + pj2} − max{sj1 , sj2}. And, let the relative
overlap ro(j1, j2) be o(j1,j2)

pj2
. Once a primary job has been scheduled at time t, the algorithm

computes the relative overlap between the primary job and each unscheduled job, as if each
unscheduled job is to be scheduled at time t. Each job that has a relative overlap with the
primary job of more than 0.5 is then scheduled. In Algorithm 4 we show the precise flow of
the overlapper algorithm.

Algorithm 4 The overlapper algorithm

Let P = ∅
for all times t ∈ T do

Schedule every unscheduled job j for which ro(ρ, j) ≥ 0.5 for some primary job ρ

if t = LSTj for some unscheduled job then
Let j be the longest unscheduled job
Schedule job j and add it to P , the set of primary jobs
Schedule every unscheduled job j for which ro(ρ, j) ≥ 0.5 for some primary job ρ

end if
end for

6.1.2 Analysis

As previously shown in the analysis of the doubler algorithm in Section 3.4, the cost of
doubler can be bounded by the cost of the primary jobs. In their analysis, Fong et al. claim
something similar for the overlapper algorithm. Note that all jobs are either primary jobs
or non-primary jobs, and the non-primary jobs are only scheduled if their relative overlap is
larger than, or equal to 0.5. Therefore, any non-primary job must be scheduled in the interval
[sρ, sρ + 2pρ) for some primary job ρ. And thus, the cost of the overlapper algorithm is at
most 2 ·

∑
j∈P

pj .

23

In their analysis, Fong et al. partition the schedule resulting from the overlapper
algorithm into blocks. A block consists of a primary job ρ, and all jobs that were scheduled
because they had a relative overlap with ρ of 0.5 or more. Let Bi denote the block which the
ith primary job belongs to. Then, if some job is in Bk, where k > 1, one of the following
must hold:

The kth primary job could not fit in Bk−1 since the release time of the kth primary job is
after the finishing time of Bk−1
The kth primary job had a relative overlap with the (k− 1)th primary job of less than 0.5

Fong et al. then state that “For any two consecutive jobs ji and jk, if ri < dk, then at
most pk/2 will overlap with ji”. We will interpret the statement as “For any two consecutive
primary jobs ji and jk, if ri < dk, then at most pk/2 will overlap with ji in the optimal
schedule” , where consecutive means that there’s no other primary job with a starting time
between sji and sjk

, and sjk
> sji . If we do not interpret this statement in this way, it is

false, since for a primary job ji and some job jk within the primary job’s block it may be
that:

jk is scheduled after ji is scheduled, if rk > si

ri < dk is always true in this case, since they are in the same block
ro(jk, ji) ≥ 0.5, since jk is in the same block as ji

Then, from the fact that the overlap in the optimal schedule between two consecutive
primary jobs ji and jk is at most pk/2, Fong et al. state that at least pk/2 time is required to
execute job jk in the optimal schedule. If this statement were always true, then the optimal
schedule has a lower bound of 0.5 ·

∑
j∈P

pi. Combined with the upper bound on the cost of

the algorithm, this would result in a competitive ratio of at most 4. However, we believe
this statement is not always true, since it assumes that ji and jk will overlap in the optimal
schedule, whereas these jobs may also overlap with other jobs.

6.1.3 A counter example
In order to provide an adversary for the overlapper algorithm, the adversary will schedule a
sequence of jobs that, in the optimal solution, can be scheduled as one connected component.
This sequence of jobs will consist of a set of small and rigid jobs, R, and some larger primary,
and non-primary jobs, Jp and Jnp respectively. We start out by defining the sequence of jobs
first, but for the analysis to work we will repeat the sequence later in this section. And, on
top of this repeating sequence, the adversary will also release some larger jobs, which in the
end will also form one connected component in the optimal solution at the very end of the
schedule.

Let ℓ denote some length, which will correspond to the size of the repeating connected
components in the optimal solution, and let ϵ be some insignificantly small number. Also,
since we want to create a repeating sequence, let τ be some time at which we want to
generate this sequence of jobs. At times where t ∈ {τ, τ + ϵ, τ + 2ϵ, . . . , τ + ℓ− ϵ}, or formally,
t ∈ {τ + i · ϵ | i ∈ N ∧ i · ϵ < ℓ}, release a rigid job j ∈ R with pj = ϵ and dj = rj + ϵ. This
will force both the algorithm, and the optimal solution to create a connected component
starting at t, with a busy time of at least ℓ.

Then, let π denote a set of processing times of jobs, for which we want to force the
algorithm to schedule them as primary jobs. Since the algorithm schedules jobs as non-primary
only if the overlap is 0.5 or greater, we want to release jobs that are more-than doubling for
Jp. Let π be {ℓ, ℓ

2 − ϵ, ℓ
4 − 3ϵ, ℓ

8 − 7ϵ, . . .}, or formally, π ∈
{

ℓ · 1
2i−1 − (2i−1 − 1)ϵ | i ∈ N

}
,

24 Online busy time scheduling

and all processing times are greater than 2 · ϵ. Release a job j ∈ Jp at time τ + ℓ− pj with
processing time pj and deadline τ + ℓ + 2i · ℓ, for each processing time pj ∈ π, in ascending
order. Here i denotes the index of pj in π in ascending order. And, release a job j ∈ Jnp at
time τ + ℓ− 2pj with processing time 2pj and deadline τ + ℓ + (2i + 1) · ℓ, for each processing
time pj in π, except for the largest processing time, in ascending order.

▶ Lemma 26 (Single component cost OPT). The cost of OPT , when the adversary releases
one set of jobs with τ = 0, is ℓ.

Proof: If the adversary releases one set of jobs such that τ = 0, then at times 0 to ℓ, OPT is
forced to process the rigid jobs with pj = ϵ. The rest of the jobs have a processing time of at
most ℓ, and their release times are ℓ− pj . This means they can all be scheduled such that
they start at, or after t = 0, and they finish at, or before t = ℓ. Therefore, all jobs will form
a connected component that starts at t = 0 and finishes at t = ℓ, meaning the optimal busy
time is ℓ. ◀

In Figure 14 we illustrate a possible optimal connected component.

▶ Lemma 27 (Single component cost ALG). The cost of overlapper, when the adversary
releases one set of jobs with τ = 0, is 4 · ℓ.

Proof: If the adversary releases one set of jobs such that τ = 0, then at times 0 to ℓ,
overlapper is forced to process the rigid jobs with pj = ϵ. Moreover, since the smallest
processing time in π is greater than 2 · ϵ by definition of π, no job will have a relative overlap
greater than 0.5 with the rigid jobs with pj = ϵ. Therefore, these jobs will be scheduled after
t = ℓ.

After t = ℓ, the smallest jobs with pj ∈ π will become the first job that must be scheduled
as a primary job, since it has the earliest lastest starting time. Moreover, since a job with
twice the processing time has also been released, with a later deadline, this job will have a
relative overlap of 0.5, meaning it will be scheduled at the same time as the first primary
job with pj ∈ π. All other jobs with pj ∈ π will also become primary jobs, via the same
logic, since all processing times in π more than double. And, for each of these primary jobs,
except for the largest job with pj = ℓ, a corresponding job with twice the processing time
was released.

Therefore, the total busy time of the jobs with pj ∈ π and pj

2 ∈ π, scheduled by
overlapper, will be ℓ + (ℓ− 2ϵ) + (ℓ

2 − 6ϵ).... Meaning, as ϵ approaches zero, the cost of
these jobs approaches 3 · ℓ. If we add the cost of the rigid jobs with pj = ϵ, the total cost of
the schedule produced by overlapper will be 4 · ℓ. ◀

In Figure 15 we illustrate overlapper’s solution on a single optimal connected compon-
ent.

So far, the competitive ratio of overlapper would be 4, however, the last primary job in
the optimal connected component, is currently scheduled such that no other non-primary job
is scheduled in the same block. In order to force overlapper to schedule such a non-primary
job we will repeat the jobs released in the previously mentioned connected component at
times τ ∈ {0, X, 2X, 3X, ..., N ·X}. Where X is some large number such that none of the jobs
between optimal connected components can overlap, and N is some large number approaching
infinity. As per Lemma 27, overlapper will schedule these jobs with a total cost of 4 ·N · ℓ.

Then, at every time where t = sj in overlapper’s schedule, where pj = ℓ, release a job j′

with pj′ = 2ℓ and dj′ = 2N ·X. This job will be scheduled immediately by the overlapper
algorithm, since the overlap with primary job with pj = ℓ is 0.5. Moreover, since we generate

25

Figure 14 A single optimal connected component

Figure 15 overlapper for a single connected component in OPT

Figure 16 An optimal schedule

Figure 17 overlapper’s schedule

N optimal connected components, this will add N · ℓ to the cost of overlapper. And, in
the optimal schedule, these jobs with pj = 2ℓ can all be scheduled at the same time, meaning
the combined cost of these jobs for OPT is at most 2ℓ. We illustrate the resulting schedules
of OPT and overlapper in figures 16 and 17 respectively.

▶ Theorem 28. overlapper is at least 5-competitive

Combining the additional cost of the jobs with pj = 2ℓ with Lemma 27, the cost of
overlapper becomes 5 · N · ℓ. And, the cost of OPT becomes N · ℓ + 2ℓ. Meaning, as
N approaches infinity, the competitive ratio of overlapper approaches 5, and it is not
4-competitive.

6.2 The crediting method
If we look at both the doubler and the overlapper algorithms, in sections 3.4 and 6.1, we
see both algorithms are very similar. In this section we will introduce generalization between
the two, and show that some possible directions to improve the upper bound. To do this, we

26 Online busy time scheduling

introduce the generic crediting method, which can be used to define both doubler and
overlapper by defining two functions, incr and decr.

The crediting method, just like the doubler and overlapper algorithms, keeps track
of a list of primary jobs, which are jobs that are scheduled at the latest possible starting time.
Each time a primary job j is scheduled, the credit, denoted as κ, is increased to incr(κ, j).
And, when a job has a processing time that’s less than, or equal to the remaining credit, the
job is scheduled. The credit is not immediately consumed, instead it is consumed over time.
The rate at which the credit is decreased depends on the definition of decr(t, ∆t), where
∆t denotes the time that has passed. In order for κ to represent credit that can be used to
schedule other jobs, we require decr(t, ∆t) ≥ ∆t if the machine is processing jobs at time t.
In Algorithm 5 we show the precise flow of the crediting method.

Algorithm 5 The crediting method

Let P = ∅
for all times t ∈ T do

Schedule every unscheduled job j for which pj ≤ κ

if t = LSTj for some unscheduled job then
Let j be some job with t = LSTj and pj = max{pj′ |j′ ∈ U and t = LSTj′}
Schedule job j and add it to P , the set of primary jobs
Set κ to incr(κ, j)
Schedule every unscheduled job j for which pj ≤ κ

end if
Decrease κ by decr(t, ∆t)

end for

If we look at the doubler algorithm, we see that each time a primary job is scheduled,
a window of size 2pj is reserved, in which other jobs can be scheduled. We can use the
crediting method to redefine, by defining incr(κ, j) as 2pj and defining decr(t, ∆t) as ∆t

if t ∈ T and 0 otherwise. This will set the remaining credit to 2pj each time a primary job j

is scheduled, and the remaining credit will linearly decrease to 0 over the span of 2pj , if no
other primary job is scheduled. Therefore, the crediting method will behave exactly the
same as doubler with these definitions.

Instead of doubling, we can also use the crediting method to redefine the overlapper
algorithm. Note that the overlapper algorithm also schedules jobs in a window of size
2pj for some primary job j, however, it is more restrictive than doubler, since no jobs are
scheduled after the primary job has finished running. Therefore, incr(κ, j) is still defined as
2pj , to allow other jobs to be scheduled within that period of time. Moreover, decr(t, ∆t)
is defined as 2∆t if t ∈ T and 0 otherwise, meaning κ decreases twice as fast as doubler.
Since this linearly decreases, the effect is exactly the same as the overlapper algorithm.

Comparing doubler with overlapper using the crediting method we see that, for both
algorithms, incr(κ, j) is defined as 2pj . And, if we look at their analyses we see that both of
their costs are bound by twice the sum of the processing times of all primary jobs, or, in
other words, the sum of incr(κ, j) of all primary jobs. But we can actually define a thighter
bound on the cost of an algorithm using the crediting method. Remember that we require
decr(t, ∆t) ≥ ∆t if the machine is processing jobs at time t. Then, since κ increases by some
factor, ∆incr(κ, j), each time a primary job is scheduled, the total cost of the algorithm can
actually be bound by the sum of ∆incr(κ, j) of all primary jobs.

Let saver be an algorithm using the crediting method where incr(κ, j) is defined as

REFERENCES 27

κ + 2pj , and decr(t, ∆t) is defined as ∆t if t ∈ P and 0 otherwise. Note that the bound on
the cost of saver is the sum of 2pj of all primary jobs. And, all bounds in the analysis of
doubler still hold for the saver algorithm, but we leave this up to the reader to verify.
Also note that saver saves the credit for as long, or longer than doubler and overlapper.
Unfortunately, saving the credit for longer has, so far, not lead to any improvements to the
upper bound on busy time scheduling with infinite processors. Whether other definitions of
incr(κ, j) and decr(t, ∆t) may lead to improvements to the upper bound could be investigated
in future research.

7 Conclusion

In this thesis, we have looked at the online busy time scheduling problem with unlimited
processors. We have analyzed existing research on the problem, and presented an adversarial
instance to increase the previous lower bound of 1.618 to 2 for eager algorithms. Additionally,
we disprove the previous upper bound of 4 by Fong et al. [27], and therefore we establish
that the best known upper bound is 5.

We have tried to further improve upon the upper and lower bounds, but despite our
efforts, have not succeeded as of yet. Given the large gap between the upper and the lower
bounds, future research could focus on narrowing this gap even further. This can be done
either by lowering the upper bound or by increasing the lower bound, whether both of these
are possible remains to be seen.

In order to provide future researchers with a possible direction for decreasing the upper
bound, we have formalized the crediting method. We hope that this can eventually be used
to improve the upper bound, or in other ways help readers understand the online busy time
problem better. Moreover, we found there is not a lot of existing research on the online busy
time problem with limited processors and flexible jobs. We think researching this specific
problem can be quite difficult, and therefore further analyzing the problem with unlimited
processors may help to gain valuable insights into busy time scheduling as a whole.

Additionally, we have also looked into online busy time scheduling with machine learned
advice, and have presented the multiplier algorithm. The multiplier algorithm is at most
(1 + 4

1+λ)-consistent and at least (1 + 4
1−λ)-robust. We have not proven that this analysis is

tight, so it may be that the consistency and robustness are lower than our analysis shows.
Moreover, we have introduced the concept of local updateability, and have shown that the
multiplier algorithm is locally updateable. We hope that other researchers also analyze
the updateability of their algorithm for problems where the instance may, potentially, be
infinitely large.

In summary, we have improved upon existing research on online busy time scheduling
by looking at the lower and upper bounds. Furthermore, we have developed an algorithm
using machine learned advice, which is currently a hot topic in researching online algorithms.
Even though we have not proven the optimality of the algorithms presented in this thesis,
we feel that this thesis can form a foundation for future research within this domain. We
hope that we have inspired our readers to improve upon our results, and that our thesis will
lead to further advancements in online busy time scheduling.

References

[1] J. Y. Leung, Handbook of scheduling: algorithms, models, and performance analysis.
CRC press, 2004.

28 REFERENCES

[2] P. Brucker, Scheduling algorithms. Springer, 2007.
[3] M. Flammini, G. Monaco, L. Moscardelli et al., ‘Minimizing total busy time in parallel

scheduling with application to optical networks,’ Theoretical Computer Science, vol. 411,
no. 40, pp. 3553–3562, 2010.

[4] F. Koehler and S. Khuller, ‘Busy time scheduling on a bounded number of machines,’
in Algorithms and Data Structures: 15th International Symposium, WADS 2017, St.
John’s, NL, Canada, July 31–August 2, 2017, Proceedings, Springer, 2017, pp. 521–532.

[5] P. Winkler and L. Zhang, ‘Wavelength assignment and generalized interval graph
coloring,’ in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’03, Baltimore, Maryland: Society for Industrial and Applied
Mathematics, 2003, pp. 830–831, isbn: 0898715385.

[6] M. Shalom, A. Voloshin, P. W. Wong, F. C. Yung and S. Zaks, ‘Online optimization of
busy time on parallel machines,’ Theoretical Computer Science, vol. 560, pp. 190–206,
2014.

[7] J. Xue, ‘Online weighted throughput maximization scheduling with a busy-time budget,’
M.S. thesis, 2022.

[8] S. Albers, ‘Online algorithms: A survey,’ Mathematical Programming, vol. 97, pp. 3–26,
2003.

[9] C. Chekuri, A. Goel, S. Khanna and A. Kumar, ‘Multi-processor scheduling to minimize
flow time with ε resource augmentation,’ in Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, 2004, pp. 363–372.

[10] K. Iwama and G. Zhang, ‘Online knapsack with resource augmentation,’ Information
Processing Letters, vol. 110, no. 22, pp. 1016–1020, 2010.

[11] B. Kalyanasundaram and K. Pruhs, ‘Speed is as powerful as clairvoyance,’ Journal of
the ACM (JACM), vol. 47, no. 4, pp. 617–643, 2000.

[12] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen and J. W. Mikkelsen, ‘Online
algorithms with advice: A survey,’ ACM Computing Surveys (CSUR), vol. 50, no. 2,
pp. 1–34, 2017.

[13] Y. Emek, P. Fraigniaud, A. Korman and A. Rosén, ‘Online computation with advice,’
Theoretical Computer Science, vol. 412, no. 24, pp. 2642–2656, 2011.

[14] P. Fraigniaud, D. Ilcinkas and A. Pelc, ‘Communication algorithms with advice,’
Journal of Computer and System Sciences, vol. 76, no. 3-4, pp. 222–232, 2010.

[15] M. P. Renault, A. Rosén and R. van Stee, ‘Online algorithms with advice for bin
packing and scheduling problems,’ Theoretical Computer Science, vol. 600, pp. 155–170,
2015.

[16] S. Angelopoulos, C. Dürr, S. Jin, S. Kamali and M. Renault, ‘Online computation with
untrusted advice,’ arXiv preprint arXiv:1905.05655, 2019.

[17] S. Angelopoulos and S. Kamali, ‘Contract scheduling with predictions,’ Journal of
Artificial Intelligence Research, vol. 77, pp. 395–426, 2023.

[18] J. Boyar, L. M. Favrholdt, S. Kamali and K. S. Larsen, ‘Online interval scheduling
with predictions,’ arXiv preprint arXiv:2302.13701, 2023.

[19] A. Antoniadis, C. Coester, M. Eliáš, A. Polak and B. Simon, ‘Online metric algorithms
with untrusted predictions,’ ACM Transactions on Algorithms, vol. 19, no. 2, pp. 1–34,
2023.

[20] A. Wei and F. Zhang, ‘Optimal robustness-consistency trade-offs for learning-augmented
online algorithms,’ Advances in Neural Information Processing Systems, vol. 33,
pp. 8042–8053, 2020.

REFERENCES 29

[21] M. Berg and S. Kamali, Online bin covering with frequency predictions, 2024. arXiv:
2401.14881 [cs.DS].

[22] F. Eberle, A. Lindermayr, N. Megow, L. Nölke and J. Schlöter, Robustification of
online graph exploration methods, 2021. arXiv: 2112.05422 [cs.LG].

[23] K. Pruhs, J. Sgall and E. Torng, Online scheduling. 2004.
[24] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge university press,

1995.
[25] Z. Lotker, B. Patt-Shamir and D. Rawitz, ‘Rent, lease or buy: Randomized algorithms

for multislope ski rental,’ arXiv preprint arXiv:0802.2832, 2008.
[26] L. Epstein and A. Levin, ‘Improved randomized results for the interval selection

problem,’ Theoretical Computer Science, vol. 411, no. 34-36, pp. 3129–3135, 2010.
[27] K. C. Fong, M. Li, Y. Li, S.-H. Poon, W. Wu and Y. Zhao, ‘Scheduling tasks to minimize

active time on a processor with unlimited capacity,’ in Theory and Applications of
Models of Computation: 14th Annual Conference, TAMC 2017, Bern, Switzerland,
April 20-22, 2017, Proceedings, Springer, 2017, pp. 247–259.

[28] R. Ren and X. Tang, ‘Online flexible job scheduling for minimum span,’ in Proceedings
of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, 2017,
pp. 55–66.

[29] R. Ren and X. Tang, ‘Busy-time scheduling on heterogeneous machines,’ in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2020,
pp. 306–315.

[30] J. Slingo and T. Palmer, ‘Uncertainty in weather and climate prediction,’ Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 369, no. 1956, pp. 4751–4767, 2011.

https://arxiv.org/abs/2401.14881
https://arxiv.org/abs/2112.05422

	1 Introduction
	1.1 Busy time scheduling
	1.2 Online scheduling
	1.2.1 Online-time and online-list
	1.2.2 Competitive analysis
	1.2.3 Resource augmentation
	1.2.4 Online scheduling with predictions
	1.2.5 Randomized algorithms

	1.3 Table of contents

	2 Definitions and notations
	3 Previous results
	3.1 Flexible jobs, unlimited processors
	3.2 Rigid jobs, limited processors
	3.3 Flexible jobs, limited processors
	3.4 The doubler algorithm
	3.4.1 Algorithm description
	3.4.2 Analysis recapped

	4 Lower bound of 2 for eager algorithms
	4.1 Preliminaries
	4.2 Definition
	4.3 Analysis

	5 Busy time scheduling with machine learned advice
	5.1 Preliminaries
	5.2 The multiplier algorithm
	5.3 Analysis
	5.4 Robustness
	5.5 Consistency (< 1)
	5.6 Consistency (= 1)
	5.7 Locally updateable advice

	6 Other results
	6.1 The overlapper algorithm
	6.1.1 Algorithm description
	6.1.2 Analysis
	6.1.3 A counter example

	6.2 The crediting method

	7 Conclusion

