
Numerical and analytical model for dipole
tracer tests in heterogeneous aquifers

Oscar Zeijlmans van Emmichoven
6481108

Master Thesis
Final version

Supervisors: Dr. Alraune Zech, Prof.Dr. Ruud Schotting

Department of Earth Science
Utrecht University
The Netherlands

2024

Contents

1 Introduction 3

2 Methods 5

2.1 Groundwater Flow and Mass Transport Equation . 5

2.2 Numerical Model . 5

2.2.1 MODFLOW 6 . 5

2.2.2 Model Setup . 5

2.2.3 Irregular Grid . 5

2.3 Heterogeneous Hydraulic Conductivity . 6

2.3.1 Log-normal Fields . 6

2.3.2 Ensembles of Heterogeneous Fields . 8

2.3.3 Convergence Test . 9

2.4 Analytical Model for Stratified Subsurface . 9

3 Results & Discussion 11

3.1 Heterogeneous Aquifers . 11

3.2 Stratified Aquifers . 12

3.3 Analytical Solution for Stratified Aquifers . 16

3.4 Model Remarks and Recommendations . 17

4 Summary & Conclusion 18

References 19

Appendix 20

1

Abstract

Heterogeneity of hydraulic conductivity in aquifers is a topic touched upon by many researchers, but very
few analyses were reported on the characteristic parameters of solute transport using stochastic methods. We
study he effects of aquifer heterogeneity by running numerical simulations of dipole tracer tests in the software
MODFLOW 6, instigated with Python scripts using the FloPy package. Random hydraulic conductivity fields
are drawn by the Python package GStools from a log-normal distribution, characterized by a mean, variance and
correlation length. A series of ensembles was run with varying variances and correlation lengths. Normalised
mean breakthrough curves of the ensembles were compared for homogeneous, stratified and heterogeneous
aquifers. Outcomes show that an increase in variance leads to an earlier arrival of the tracer, due to the
occurrence of preferential flow paths, but will also lead to more tailing. An increase in correlation length
enhances the effects of an increase in variance. For a short correlation length (i.e. much smaller than the
distance between the wells) the heterogeneous solution tends towards the solution for a homogeneous medium,
while for a longer correlation length, the solution tends towards the solution for a stratified medium. Based on
the ensemble results we conclude that a fully heterogeneous aquifer shows a different breakthrough curve than
stratified or a homogeneous structured aquifers. Therefore it cannot be treated the same way.

2

1 Introduction

The monitoring and modelling of groundwater is of utmost importance as groundwater is a vital source for
clean drinking water supply and irrigation in agriculture. Globally, over 2.5 billion people (32% of the world
population) depend solely on groundwater for their daily needs of drinking water [Grönwall and Danert , 2020].
In the Netherlands up to 60% of drinking water comes from groundwater [Versteegh and Dik , 2015]. The com-
position of groundwater differs, both, in space and time, and depends on a number of factors including, but not
limited to parent rock, intensity of weathering, residence time and external factors, such as precipitation and
temperature, the presence of microorganisms, and land use [Brindha et al., 2014]. The combination of all these
factors leads to whether groundwater is suitable for drinking water and industrial use. Unfortunately, ground-
water is very susceptible to contamination coming from the land surface. Leaching nitrate from fertilisers [Nolan
and Hitt , 2006], leaking septic tanks [Burchart-Korol and Zawartka, 2019] or discharge of industrial wastewater
[Hussain et al., 2021] are only a few examples of possible sources threatening the quality of groundwater. Once
a contaminant has reached the groundwater it is important to determine where the pollutant will end up to
make a proper risk assessment.

The movement of a conservative solute with the groundwater is determined by advection and dispersion. Ad-
vection is the passive transport of the solute with the flow of the groundwater and dispersion is the spreading
of solute in directions other than the flow velocity. Dispersion can be separated in mechanical dispersion and
molecular diffusion, where mechanical dispersion is caused by differences in flow velocity (whether that is due to
differences in hydraulic conductivity, or flow paths differing in length, or resistance within the pore space) and
molecular diffusion is caused by the random movement of the molecules themselves. In practise they cannot be
distinguished. Consequently they are combined in a single dispersion coefficient [Shi et al., 2016].

To accurately model flow through the subsurface, a great sum of data must be acquired. Specifically, the
hydraulic conductivity and dispersion of an aquifer are of interest as they determine the flow velocity through
the subsurface and spreading of solutes in the groundwater. This can be done through tracer tests. In a tracer
test a tracer is introduced into the subsurface. This tracer is then followed through observation points and
finally measured at some extraction point. A wide variety of tracer tests exists, each with their own advantages
and disadvantages. One kind of tracer tests are dipole tracer tests (DTT), also named two-well test or doublet
test. Here two wells are installed in the subsurface; an injection well (or recharge well) and an extraction (or
pumping) well. By injecting and extracting similar amounts of water simultaneously, a dipole flow pattern
arises between the two wells, hence the name “dipole test” (Figure 1, Zech et al. [2018]). After establishing the
flow pattern a tracer with a known concentration is added to the injection well. The tracer particles move over
the streamlines from the injection to the extraction well. At the extraction well the arrival time of the tracer is
measured and a breakthrough curve (BTC) can be constructed [Gelhar and Leonhart , 1982].

Figure 1: Conceptual diagram of a two-well tracer test setup (Figure from Zech et al. [2018]).

The most common issue when modelling groundwater flow is the availability of accurate parameters that apply
to the scales of concern in the field [Gelhar , 1993]. This issue arises from the fact that hydraulic properties
of a subsurface are extremely variable in space. Determining the right parameters for a model has proven to
be challenging. The equations and parameters used in these models are often tested on the scale of laboratory
experiments or small scale field experiments, while, for example, regional scale groundwater models apply the
equations on the scale of several kilometres, thus assuming a certain degree of homogeneity that in reality

3

does not exist.Gelhar [1993] in his book Stochastic Subsurface Hydrology and brings up three suggestions to
circumvent, or at least minimise, the issue:

• The first suggestion states is to measure the actual three-dimensional distribution of, for example, hydraulic
conductivity in complete detail for a field site. The data is then used in a numerical model that captures
all of the effects of the variability. However, this gives rise to a new problem for the scale of the model and
the variability may differ several orders of magnitude (which is almost always the case). In practice, this
solution is not feasible for two reasons: one being the computational burden. The other being the task to
obtain the detailed measurements. Such a program would be impractical, both, financially and time wise;
ignoring the possibility that this may even significantly alter the hydraulic properties of the subsurface.

• The second suggestion is to ignore variability in the subsurface. This assumes that the flow and transport
equations are valid in some average sense for the large-scale field problems. Since the model no longer
considers the variability, that raises the question whether such a model is still representative of the real
situation.

• The third suggestion is to express the variability of the parameters in the subsurface in the form of a
random variable. Instead of identifying all variability in a system, the heterogeneity of the system is
assumed to be, to a certain extend, random. This is done by describing the variations in the hydraulic
properties using stochastic processes or random fields. When solved, these stochastic equations produce
probabilistic results. This approach still requires an adequate amount of field data before being applied
to specific field situations and the results will also include a level of uncertainty to estimate reliability.

A lot of research has been conducted in the field of heterogeneous conductivity in dipole flow setting, but very
few analyses were reported on the characteristic parameters of solute transport using stochastic test methods in
dipole flow settings. In this study we explore the effects of heterogeneity in hydraulic conductivity on the shape
of the break through curve (BTC) in a dipole tracer test setting, through a stochastic approach. We compare
numerical dipole tracer tests (DTT) for a homogeneous, stratified and heterogeneous setting. In addition, we
will compare the numerical results to the analytical solution for a DTT in a stratified subsurface derived by
Zech et al. [2018]. Specifically, we address the research questions:

• What is the impact of the log-normal conductivity heterogeneity parameters correlation length and vari-
ance, on the shape of the BTC?

• How does the BTC for transport in fully heterogeneous conductivity compare to that of stratified and
homogeneous subsurface structures?

• How do the numerical simulation results compare to the analytical solution derived by Zech et al. [2018]?

All data and Python code for the numerical models used in this research will be available on GitHub with
documentation.

4

2 Methods

2.1 Groundwater Flow and Mass Transport Equation

Solute transport in saturated media is described by the advection-dispersion equation (ADE):

∂

∂t
(θc) +

∂

∂xi
(qic) =

∂

∂xi

(
θDij

∂c

∂xj

)
+ θR : i, j = 1, 2, 3 (1)

Where c is the species concentration [M/L3], qi the groundwater flux along the specified axis, Dij is a dispersion
coefficient tensor [L2/T], R is (source of species)/(time and volume of fluid) [M/L3T] and θ is porosity. De-
pending on the complexity of the field situation, this equation can be solved either analytically or numerically
[Gelhar , 1993]. Nowadays there are many methods to approximate complex three-dimensional situations for
both flow and transport, including a wide variety of software packages such as STANMOD (analytical solver of
advection-dispersion equation, Van Genuchten et al. [2012]) or MODFLOW (framework for numerical modelling
of groundwater flow and groundwater transport, Langevin et al. [2017]).

The interest in hydraulic conductivity as decisive parameter originates from Darcy’s law, the equation describing
groundwater flow and flow velocity (eq. 2):

v =
−K

θ
∇h (2)

where v is the flow velocity, ∇h the gradient in hydraulic head, θ the porosity and K the hydraulic conductivity.
Differences in porosity are within one order of magnitude and differences in the hydraulic gradient are in a typical
field setting also relatively small. However, the hydraulic conductivity can vary over 13 orders of magnitude,
making it in most cases the decisive parameter for flow velocity [Kohlbecker et al., 2006].

2.2 Numerical Model

2.2.1 MODFLOW 6

We solve the ADE numerically using the software MODFLOW, the USGS’s open-source modular hydrologic
model[Langevin et al., 2017]. It provides a framework for modellers to simulate simple and complex groundwater
scenarios within the same model. We use the most recent version MODFLOW 6 as it allows for both, groundwa-
ter flow and transport modelling, using irregular spaced grids. The groundwater flow model for MODFLOW 6
is based on a generalized control-volume finite-difference (CVFD) approach in which a cell can be hydraulically
connected to any number of surrounding cells [Langevin et al., 2017].

MODFLOW does not come with a standard graphical user interface (GUI), but instead reads and returns a
series of text files containing all information of the model. To generate the input files and visualise/process the
output files, we use the Python package FloPy [Bakker et al., 2023]. FloPy enables us to setup Python scripts
to write and read MODFLOW files and thus run multiple simulations in a quick and organised manner.

2.2.2 Model Setup

The model scenario is similar to the schematic setup in figure 1. Two wells (an injection and extraction well) are
placed in a square domain. Both wells are fully penetrating and pump at an equal but opposite rate throughout
the whole simulation time. The boundaries of the domain are fixed at a constant head of 0m. At the start of a
run (t = t0), a non-reactive, non-absorbing tracer is introduced to the injection well. A concentration of 1000
g/m3 is injected for 6 hours at a rate of 10−4 m3/s. After these 6 hours, the injection well injects clean water.
For 200 days, every hour (=4800 hours) the concentration in the system is determined. Since there is no way
for the tracer to leave the system other than the extraction well, all mass leaving the system must be extracted
through the well and a BTC can be constructed.

Parameters used for runs with a heterogeneous subsurface are listed in Table 1. In the case of a non-homogeneous
subsurface, the mean hydraulic conductivity refers to the underlying Gaussian distribution, which will be dis-
cussed in more depth in section 2.3

2.2.3 Irregular Grid

An advantage of using MODFLOW 6 is the use of irregular shaped grids. This enables us to increase the
resolution in areas of interest i.e. the area directly around the wells, and lower the resolution in areas we are

5

Parameter Symbol Model settings Default settings
Porosity θ, n 0.3 0.3

Dist. between wells - 10 m 1
Domain size - 4000m x 4000 m 400 x 400 m

Aquifer depth - 8 m 8 m
Number of layers - 20 1

Mean hydr. cond.* Kmean 10−4 m/s 10−4m/s
Longitudinal dispersivity αL 0.5 m 0.5 m
Injection/extraction rate Q (−)10−4m3/s (−)10−4m3/s
Injection concentration C 1000 g/m3 1000 g/m3

Injection time - 6 hours 6 hours
Post injection time - 200 days = 4800 hours 10 days = 240 hours

Table 1: Settings used for simulating a dipole tracer test in a heterogeneous subsurface. *Mean and variance of
underlying Gaussian distribution

not interested in i.e. far away from the wells.

The grid is roughly into three parts (Figure 2). First, a coarse grid is created of 25 by 25 cells. The centre cell
of the coarse grid is divided into 64 by 64 cells. All solute transport is expected to take place in the refined area.
Finally, a square around the centre of 2 by 2 times the distance between the wells is again refined by dividing
every cell into 16 cells. All cell sizes are chosen dependent on the distance between the wells. The coarse cells
are 16 by 16 times the distance between the wells, the middle grid, where the transport takes place, has cells
with sides 0.25 times the well distance and the inner refined grid has cells with sides of 0.0625 times the well
distance. An example grid for a distance of 10 meter between the wells can be seen in Figure 2. The grid is
equally spaced over depth for the number of layers.

2.3 Heterogeneous Hydraulic Conductivity

2.3.1 Log-normal Fields

A Gaussian distribution is characterised by all values being close to a mean, with small and large numbers being
the exception. In a field situation, however, researchers have found the distribution is more skewed towards
the lower side, which is captured better by a log-normal distribution as it also favours lower values [Muñoz-
Carpena et al., 2002]. In addition, using a log-normal distribution has the advantage that negative values don’t
occur, which, again, matches with what is observed in the field. For these reasons the hydraulic conductivity is
classically expressed by a log-normal probability density function (PDF) given by the equation:

Y = lnX (3)

where Y is Gaussian (normal) distributed and X is random and log-normal distributed. In a field situation
the hydraulic conductivity is usually not fully random, but follows a certain spatial structure. To capture this
spatial distribution, we use a 4 parameter log-normal distribution, which depends not only on variance σ2 and
mean µ, but also on a horizontal and vertical correlation length ℓ. The Gaussian spatial correlation function
we use is defined as:

γ (r) = σ2 ·
(
1− exp

(
−
(
s · r

ℓ

)2
))

+ n (4)

where σ2 is the variance, s is a scaling factor for unit conversion or normalisation (=
√
π
8), r is the lag distance,

ℓ is the spatial correlation length and n is the nugget (subscale variance) [Müller and Schüler , 2019].

The log-normal hydraulic conductivity fields are produced using the Python package GSTools. Random fields are
generated with the randomization method. Here, a spatial random field is represented by a stochastic Fourier
integral and its discretised modes are evaluated at random frequencies [Müller and Schüler , 2019]. First, a
random Gaussian distributed field is generated, given a mean, variance and correlation length (Eq. 4). Then,
the value at the centre of each grid cell is log-transformed (x −→ expx). An example of a fully heterogeneous
field is shown in Figure 3. In case of a stratified structure, the correlation length is ignored and each layer is
assigned a random, independent hydraulic conductivity (Figure 1), drawn from a log-normal distribution (Eq.3).

6

Figure 2: Model grid at different resolutions: Coarse outer grid of entire domain (top), medium refined transport
grid (left) and extra refined grid in direct vicinity of the wells (right)

7

Figure 3: Example of a random normal y = log10K field with µ = 10−4, σ2 = 2, L = 10m

2.3.2 Ensembles of Heterogeneous Fields

A multitude of ensembles is created to gain insight into the effect of the stochastic parameters. Within an
ensemble the stochastic parameters (variance, mean and correlation length) are kept the same, but between
ensembles the variance and correlation length differ. The stochastic parameters used for fully heterogeneous
K-fields is shown in Table 2. We test for variances in log-hydraulic conductivity of 0.1, 0.5, 1, 2 and 4. These

Parameter Symbol Model Settings Default Settings
Variance σ2 0.1, 0.5, 1, 2, 4 1

Horizontal Correlation Length ℓ 2.5m, 5m, 10m 10

Table 2: Variance and horizontal correlation length for the ensembles for fully heterogeneous K-fields.

values align with field situations, where a value of 0.1 is almost homogeneous (= variance of 0) and a value
of 4 represents a very heterogeneous aquifer. For the correlation length, we choose the values 2.5 m, 5.0 m,
and 10.0m. These values of the correlation length do not exceed the distance between the wells (=10m). They
are also large enough to be effectively captured by the model resolution (for a distance between the wells of
10m). The vertical correlation length is usually much smaller in the field than the horizontal correlation length.
Therefore we set the vertical correlation length to 20% of the horizontal correlation length. For the stratified

Parameter Symbol Model Settings Default Settings
Variance σ2 0.1, 0.5, 1, 2, 4 1

Number of layers ℓ 10, 20, 40 1

Table 3: Variance and number of layers for the ensembles for stratified K-fields.

cases we apply the same variances of 0.1, 0.5, 1, 2 and 4. Stratified aquifers cannot have different horizontal
correlation lengths. Instead, we consider the number of layers the aquifer is divided in. We created ensembles for
10, 20 and 40 layers. The upper limit of 40 layers has been chosen due to computation times rapidly increasing
with additional layers as displayed in Figure 4. Where a simulation of a single layer takes a couple of minutes,
a simulation with 40 layers takes 6 to 9 hours.

8

Figure 4: Computation time increases with the number of layers. Every dot represents a unique realisation.

2.3.3 Convergence Test

We tested ensemble converges by taking the sum of squares error (SSE). A sample containing the BTC’s of x
runs is created for which the mean BTC is determined by taking the arithmetic mean. We then take the total
difference between the sample mean BTC and the ensemble mean for all 192 runs:

SSE =

t=tend∑
t=0

(
Ȳx(t)− µ(t)

)2 (5)

where Ȳx(t) is the arithmetic mean BTC after x runs and µ(t) is the total ensemble mean BTC. The closer the
SSE is to 0, the better the match between the sample mean and ensemble mean.

2.4 Analytical Model for Stratified Subsurface

The model supports two injection conditions: resident concentration (depth averaged), where the discharge is
equally divided between all layers and flux proportional (in the model referred to as flux-averaged), where the
discharge at the injection and extraction well is averaged based on the layers hydraulic conductivity. Zech et al.
[2018] reported the semi-analytical solution for the probability density function (PDF), which is identical to the
BTC. Assuming a stratified subsurface where each layer is assigned to a random hydraulic conductivity taken
from a log-normal distribution, the BTC for resident concentration mode is given by the equation:

fF
τ (τ) =

1

πτ
√

2πσ2
Y

∫ π

0

exp

[
−
(
σ2
Y /2 + ln g (θ)− ln τ

)2
2σ2

Y

]
dθ (6)

and for flux proportional mode:

fF
τ (τ) =

1

πτ2
√
2πσ2

Y

×
∫ π

0

g (θ) exp

[
−
(
σ2
Y /2 + ln g (θ)− ln τ

)2
2σ2

Y

]
dθ (7)

where σ2
Y is the variance in log-hydraulic conductivity, g(θ) is given as

g(θ) =
1

sin2 (θ)
(1− θ cot θ) (8)

where θ is the angle of the flow lines from/towards the wells, and τ is the dimensionless travel time, defined as:

τ =
qt

4πθa2
(9)

9

where q is the depth averaged flow velocity, t is time, θ the porosity and 2a the distance between the wells.

We created a Python implementation of the semi-analytical solution for both injection conditions (Figure
2.4). Figure 2.4 shows that for a low variance in log-hydraulic conductivity the difference in BTC between
the two injection conditions is small, but increases for a larger variance. From the two injection conditions,
flux proportional (Eq. 7) is the situation normally encountered in the field, hence forward we work with this
condition, unless stated otherwise.

10 3 10 2 10 1 100 101
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PD
F

resident var = 0.1
resident var = 1
in-flux var = 0.1
in-flux var = 1

Figure 5: Implementation of the equations presented by Zech et al. [2018], showing the probability density
function (=BTC) against travel time τ(= qt

4πθa2) for flux proportional (“in-flux”; solid lines) and resident modes
(“resident”, dashed lines) injection conditions, for σ2

Y = 0.1 (red lines) and σ2
Y = 1 (blue lines).

10

3 Results & Discussion

3.1 Heterogeneous Aquifers

Figure 6: Breakthrough curves of all realisations fir each of the ensembles with ensemble mean in dashed black
(sorted by variance)

Figure 6 shows the impact of the variance in hydraulic conductivity on the BTC. With an increase in variance,
the spread of breakthrough curves increases for individual realisations. Especially for a variance of 2 and 4, the
individual runs partially strongly differ from the ensemble mean. For lower variances (i.e. σ2 ≤ 1) the difference
between individual runs only becomes noticeable in the tail i.e. at late times. When the variance increases, the
deviation from the ensemble mean becomes noticeable much earlier, for σ2 = 4 immediately when the tracer
arrives at the extraction well.

The increasing spread in breakthrough curves with increasing heterogeneity is to be expected. With increasing
variance in hydraulic conductivity, the differences in flow resistance between the flow paths increase. The
groundwater will follow the path of least resistance. Thus, a small increase in hydraulic conductivity will lead
to an increase in flow, a common phenomenon referred to as preferential flow. These preferential flow paths allow
the groundwater to bypass parts of the aquifer with low hydraulic conductivity. Consequently, the residence
time of solutes is shorter than expected based on the mean hydraulic conductivity [Hagedorn and Bundt , 2002].
The effect of preferential flow is also visible in Figure 7, where we directly compare the ensemble means for
different variances (but same correlation length) for all 3 selected correlation lengths. On average, the tracer
arrives earlier in aquifers with a high variances compared to aquifers with a low variance.

With a higher variance, not only does the tracer arrive earlier, it also lingers around for longer. Both of the
extremes, high and low conductivity areas, increase. This means that, while the bulk of the tracer may arrive
earlier, it will take longer for the slower flow paths to arrive at the extraction well. Transport at the slowest
velocities becomes visible in the upper part, or tail, of the BTC, hence this is referred to as tailing. The effect
of tailing is not that apparent in Figure 7, but the first signs of extended tailing at higher variances can already
be seen. The final slope of the breakthrough curves at higher variances is less steep than for lower variances.

11

102 103

Time [Hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C/
C 0

[
]

Correlation Length = 2.5m
2 =

0.1
0.5
1.0
2.0
4.0

102 103

Time [Hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C/
C 0

[
]

Correlation Length = 5.0m
2 =

0.1
0.5
1.0
2.0
4.0

102 103

Time [Hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C/
C 0

[
]

Correlation Length = 10.0m
2 =

0.1
0.5
1.0
2.0
4.0

Figure 7: Ensemble mean breakthrough curves for the three correlation lengths 2.5m (left), 5m (centre), 10m
(right). Note log-scale on time axis.

Figure 8 shows the ensemble mean BTCs for a heterogeneous structure for the different correlation lengths ℓ
and variances σ2 = 0.1, σ2 = 1 and σ2 = 4. We see that the tracer arrives a little faster for a larger correlation
length, but this difference only becomes apparent at very high variances. In combination with Figure 7, we
see that the effects of a large variance increase with the correlation length. If the correlation length is smaller
than the distance between the wells, preferential flow is less strong since the tracer encounters different patterns
of high and low conductivity on each flow path, either directly between wells or along a longer (dipole) flow
path. When the correlation length becomes larger, being in the same range as the distance between the wells
or even bigger, the difference in hydraulic conductivity between flow paths will be more pronounced, resulting
in stronger preferential flow.

Figure 9 shows the results of the convergence test for fully heterogeneous structured K-fields for increasing
variance σ2 and different correlation lengths ℓ. This confirms that the total difference from the ensemble
mean increases with increasing variance. For a low variance, the total difference is fairly low, but when more
variance is introduced, the total difference increases multiple orders of magnitude. Comparing the ensembles
for correlation length, we do not observe a clear trend. The deviations from the ensemble mean observed in
Figure 9 are dominated by the difference in variance, but hardly affected by correlation length.

3.2 Stratified Aquifers

Figure 10 shows the ensemble mean BTC’s for a stratified structure with 10 and 40 layers compared to a
homogeneous and heterogeneous structure (ℓ = 10m) for variances σ2 = 0.1, σ2 = 1 and σ2 = 4. We observe
similar behaviour for the stratified aquifers as for the heterogeneous aquifers. For an increasing number of
layers, the variance makes a difference for both, the arrival time and tailing, of the tracer. Figure 10 also shows
that the ensemble mean BTC is only noticeably affected for higher variances. Differences between BTCs are
present mainly at the early arrival stage. This can again be ascribed to the appearance of preferential flow
paths. With multiple layers, there will be high(er) conductivity layers and low(er) conductivity layers. Layers
with higher conductivity will process much more than the lower conductivity layers, on average resulting in a
faster arrival time.

Figure 10 shows that for a low variance (i.e. σ2 = 0.1) the heterogeneous and stratified solution match very
closely. This is to be expected as a variance of 0.1 corresponds to very little heterogeneity. When the variance
increases, however, a divergence can be seen between the heterogeneous and stratified case. For a variance of
1 and higher, the heterogeneous case matches with neither the homogeneous case nor the stratified case with
many layers, but ends up in between the two. For a variance of 4 the heterogeneous solution matches with the
stratified solution for 10 layers during the early arrival of the tracer, but diverges for later times.

Figure 11 shows the mean ensemble breakthrough curves for both, stratified and heterogeneous conductivity,
but now the variance is fixed to 4 and results for different correlation lengths are displayed. For a correlation

12

0 1000 2000 3000 4000 5000
Time [Hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C/
C 0

[
]

2 = 0.1

Correlation Length
2.5 m
5.0 m
10.0 m

0 1000 2000 3000 4000 5000
Time [Hours]

C/
C 0

[
]

2 = 1.0

Correlation Length
2.5 m
5.0 m
10.0 m

0 1000 2000 3000 4000 5000
Time [Hours]

C/
C 0

[
]

2 = 4.0

Correlation Length
2.5 m
5.0 m
10.0 m

Figure 8: Ensemble mean breakthrough curves for three variances σ2 of 0.1 (left), 1 (middle), 4 (right).

length of 2.5m, the heterogeneous case is closer to the homogeneous case, while with an increasing correlation
length the BTC gets closer to the BTCs for stratified media with a very good match to the stratified case for
10 layers.

13

0 50 100 150
Nr runs

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Sq
ua

re
d

Er
ro

r f
ro

m
 m

ea
n

2 = 0.1
Correlation Length

2.5 m
5.0 m
10.0 m

0 50 100 150
Nr runs

2 = 1.0
Correlation Length

2.5 m
5.0 m
10.0 m

0 50 100 150
Nr runs

2 = 4.0
Correlation Length

2.5 m
5.0 m
10.0 m

Figure 9: Convergence test results for ensembles with σ2 = 0.1 (left), σ2 = 1 (middle) and σ2 = 4 (right) for
the three tested correlation lengths. Shown is the total squared error from the ensemble mean for increasing
number of runs (Eq. 5)

102 103

Time [Hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C/
C 0

[
]

2 = 0.1
homogeneous
10 layers
40 layers
Heterogeneous

102 103

Time [Hours]

2 = 1.0
homogeneous
10 layers
40 layers
Heterogeneous

102 103

Time [Hours]

2 = 4.0
homogeneous
10 layers
40 layers
Heterogeneous

Figure 10: Mean breakthrough curves for a homogeneous structure, stratified structure divided into 10 and 40
layers and for a heterogeneous structure for correlation length of 10m.

14

102 103

Time [Hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C/
C 0

[
]

homogeneous
10 layers
20 layers
Heterogeneous =2.5m
Heterogeneous =5.0m
Heterogeneous =10.0m

Figure 11: Mean breakthrough curves for a homogeneous aquifer and stratified aquifer with 10 and 20 layers
compared to BTC for heterogeneous aquifer with similar variance and correlation lengths, 2.5m, 5.0m and 10m
(σ2 = 4) .

15

3.3 Analytical Solution for Stratified Aquifers

Figure 12 shows the BTCs of a stratified medium for different variances from eq. (7), being derived by Zech
et al. [2018] and reproduced here through an independent Python implementation. The analytical solution
differs in behaviour compared to the numerical solution shown in Figure 10. The analytical solution shows that
(under ergodic conditions) the BTC shifts to the left with an increase in variance. While the numerical solution
shows a similar behaviour for the early arrival of the tracer, for later times a higher variance in the model results
in more tailing, as opposed to the analytical model, where this does not happen. The difference between the

10 6 10 4 10 2 100 102 104
0.0

0.2

0.4

0.6

0.8

1.0

C/
C 0

2 =
0.1
1
4
8

Figure 12: Analytical solution for stratified medium, derived by Zech et al. [2018], for variances σ2 of 0.1, 0.5,
1, 2 and 4 ((7)) as a function of travel time τ(= qt

4πθa2).

numerical and analytical model becomes more apparent when both approaches are plotted next to each other.
Figure 13 shows the analytical solution for a homogeneous K-structure plotted against the numerical solution
for a homogeneous K-structure and ensemble means for a stratified and heterogeneous aquifer with a variance
of 0.1 (=almost homogeneous). All three numerical solutions follow the same line. The analytical solution,
however, arrives much earlier than the numerical solutions. Conceptually all lines need to be identical. We
discuss potential causes for the discrepancies later in this section.

The analytical solutions arrives faster than the numerical solution by about a factor of
√
2. Figure13 (right)

shows that the analytical and numerical solutions do match when shifted by a factor of
√
2, but still not a

perfect match. The factor of
√
2 is also specific for these settings as the fitting factor seems to depend on the

distance between the wells and also differs for higher variances.

The discrepancy between the analytical and numerical model can result from different causes:

• Typographical error: To rule out any mistakes in the Python implementation, both, the analytical and
numerical solution have been thoroughly checked on typographical errors. It is highly unlikely this is the
cause for the discrepancy.

• Dispersion: The numerical model includes dispersion while the analytical solution does not. The presence

16

of dispersion affects the shape of the BTC. However, dispersion alone is not enough to make up for the
discrepancy. Results from simulations done without dispersion (αL = 0) show the same discrepancy
observed in Figure 13.

• Numerical issue Modflow 6: The version of Modflow used for this study is fairly new and is still in active
development. During this study, numerical inconsistencies where encountered when creating the model.
The current version of the model, however, shows consistent results for the different K-field structures.
This indicates the discrepancy comes not from within Modflow, but is rather due to a conceptual difference
between the numerical and analytical solution.

Figure 13: Analytical and numerical solutions for homogeneous, stratified and heterogeneous K-structure for
original (left) and fitted (right) analytical solution.

3.4 Model Remarks and Recommendations

Researchers showed the hydraulic conductivity distribution for very heterogeneous structures is not always
successfully captured by a log-normal distribution. Instead, other distributions, for example, a heavy-tailed
Levy α stable distribution [Muñoz-Carpena et al., 2002; Kohlbecker et al., 2006], perform better in these cases
at describing heterogeneity in hydraulic conductivity. Adapting the model to support different distributions
increases the variety in field situations the model can be applied to.

A serious drawback of the model is the computation time for a single run. A single run for a stratified structure
with 40 layers and the current settings takes 6 to 9 hours to finish (runtime for one realisation on the university
cluster and personal laptop is the same). The computation time increases exponentially with an increase in
layers, making this model not viable to run for highly refined aquifers. According to Zech et al. [2018], a
stratified aquifer with a variance of 4 in log-hydraulic conductivity requires over a 100 layers to reach ergodic
conditions. Running an ensemble for such a structure is estimated to take at least 20 hours per realisation. An
adaptation of the model to support the use of multiple cores and graphical processing units (GPU) could speed
up the calculations done by MODFLOW by several orders of magnitude [Hughes and White, 2013].

We did not study the effects of the spatial correlation length being different in the horizontal and vertical
direction. Although the vertical correlation length is set much smaller than the horizontal one to match realistic
field conditions, the ratio between both is chosen arbitrarily. Further model testing could determine how
significant this choice is.

17

4 Summary & Conclusion

In this study, we developed a stochastic, numerical flow and transport model using MODFLOW 6 and FloPy
(Python) to perform dipole tracer tests in a confined aquifer. First, a grid is constructed with refinements near
the wells. The size of the grid scales with the distance between the injection and extraction wells. Next, random
log-normal hydraulic conductivity field are generated in two configurations: stratified and fully heterogeneous.
Ensembles were created for heterogeneous fields with different variances and correlation lengths and for stratified
structures, varying in variance and the number of layers. For each ensemble a mean breakthrough curve
is constructed at the extraction well from simulation results. We ran convergence tests on the ensembles,
identifying the number of runs it takes to approach the ensemble mean. The model results are compared for
identifying the impact of the stochastic parameters. Finally, the numerical model outcome was compared to the
analytical solution for stratified aquifers presented by Zech et al. [2018]. The analytical solution and numerical
solution do not match. One reason for this is that the analytical solution does not take dispersion into account.
However, this alone is not enough to explain the discrepancy. All data and scrips are documented and published
on GitHub.

Based on the results of the numerical model, we draw the following conclusions:

1. For a heterogeneous aquifer, both, the variance and the correlation length of the hydraulic conductivity
impact the shape of the breakthrough curve at the extraction well.

(a) An increase in variance leads to an earlier arrival of the tracer, due to the appearance of preferential
flow. Transport happens predominantly through high conductivity lanes, bypassing low conductivity
zones. However, the extremes in the low conductivity zones are also enhanced resulting in more
tailing of the breakthrough curve.

(b) A decrease in correlation length reduces the effects of an increase in variance. With shorter correlation
lengths all flow paths are more likely to encounter both high and low conductivity zones. This means
there is not a clear preferential flow path to bypass low conductivity zones, on average resulting in
slower transport.

2. The BTC in fully heterogeneous media is different from the BTC observed in stratified or a homogeneous
K-field. For a shorter correlation length (i.e. much smaller than the distance between the wells), the
heterogeneous solution tends towards the solution for a homogeneous medium, while for a longer correlation
length, the solution tends towards the solution for a stratified medium.

The numerical solution did not match the analytical solution from Zech et al. [2018]. This needs to be investi-
gated further, as both solutions describe the same scenario (in case of a stratified subsurface).

Special thanks

I would like to thank Lukas van de Wiel for helping with getting the model to work on the Utrecht University
cluster.

18

References
Bakker, M., et al., FloPy v3.6.0.dev0: U.s. geological survey software release, 2023.

Brindha, K., K. V. Neena Vaman, K. Srinivasan, M. Sathis Babu, and L. Elango, Identification of surface
water-groundwater interaction by hydrogeochemical indicators and assessing its suitability for drinking and
irrigational purposes in chennai, southern india, Appl. Water Sci., 4 (2), 159–174, doi:https://doi.org/10.
1007/s13201-013-0138-6, 2014.

Burchart-Korol, D., and P. Zawartka, Environmental life cycle assessment of septic tanks in urban wastewater
system: A case study for poland, Archives of Environmental Protection, 45 (4), doi:10.24425/aep.2019.130243,
2019.

Gelhar, L., Stochastic Subsurface Hydrology, Prentice-Hall, 1993.

Gelhar, L. W., and L. S. Leonhart, Analysis of two-well tracer tests with a pulse input, Rockwell International
Corp, 1982.

Grönwall, J., and K. Danert, Regarding groundwater and drinking water access through a human rights lens:
Self-supply as a norm., "MDPI", doi:https://doi.org/10.3390/w12020419, 2020.

Hagedorn, F., and M. Bundt, The age of preferential flow paths, Geoderma, 108 (1-2), 119–132, doi:https:
//doi.org/10.1016/S0016-7061(02)00129-5, 2002.

Hughes, J. D., and J. T. White, Use of general purpose graphics processing units with modflow, Groundwater,
51 (6), 833–846, doi:10.1111/gwat.12004, 2013.

Hussain, R., S. A. Khattak, L. Ali, S. Sattar, M. Zeb, and M. L. Hussain, Impacts of the linear flowing industrial
wastewater on the groundwater quality and human health in swabi, pakistan, Environ. Sci. Pollut. Res. Int.,
28 (40), 56,741–56,757, doi:https://doi.org/10.1007/s11356-021-13842-5, 2021.

Kohlbecker, M. V., S. W. Wheatcraft, and M. M. Meerschaert, Heavy-tailed log hydraulic conductivity distri-
butions imply heavy-tailed log velocity distributions, Water resources research, 42 (4), doi:https://doi.org/10.
1029/2004WR003815, 2006.

Langevin, C., J. Hughes, E. Banta, A. Provost, R. Niswonger, and S. Panday, Modflow 6, the us geological
survey modular hydrologic model, US Geological Survey, doi:https://doi.org/10.5066/F76Q1VQV, 2017.

Müller, S., and L. Schüler, Geostat-framework/gstools: Reverberating red (version v1. 1.0), doi:https://doi.org/
10.5281/zenodo, 2019.

Muñoz-Carpena, R., C. M. Regalado, J. Álvarez-Benedi, and F. Bartoli, Field evaluation of the new philip-dunne
permeameter for measuring saturated hydraulic conductivity, Soil Science, 167 (1), 9–24, 2002.

Nolan, B. T., and K. J. Hitt, Vulnerability of shallow groundwater and drinking-water wells to nitrate in the
united states, Environ. Sci. Technol., 40 (24), 7834–7840, doi:https://doi.org/10.1021/es060911u, 2006.

Shi, X., T. Lei, Y. Yan, and F. Zhang, Determination and impact factor analysis of hydrodynamic dispersion
coefficient within a gravel layer using an electrolyte tracer method, International Soil and Water Conservation
Research, 4 (2), 87–92, doi:https://doi.org/10.1016/j.iswcr.2016.05.001, 2016.

Van Genuchten, M. T., J. Šimunek, F. Leij, N. Toride, and M. Šejna, Stanmod: Model use, calibration, and
validation, Transactions of the ASABE, 55 (4), 1355–1366, doi:10.13031/2013.42247, 2012.

Versteegh, J., and H. Dik, De staat van het drinkwater in nederland, RIVM Rapport 2014-0137, 2015.

Zech, A., C. D’Angelo, S. Attinger, and A. Fiori, Revisitation of the dipole tracer test for heterogeneous porous
formations, Adv. Water Resour., 115, 198–206, doi:https://doi.org/10.1016/j.advwatres.2018.03.006, 2018.

19

-*- coding: utf-8 -*-
"""
Created on Thu Dec 7 10:00:25 2023

@author: Oscar Zeylmans
"""

#imports

import os
importimport timetime
importimport flopyflopy
importimport matplotlib.pyplotmatplotlib.pyplot asas pltplt
importimport numpynumpy asas npnp
importimport gstoolsgstools asas gsgs
fromfrom flopy.utils.gridgenflopy.utils.gridgen importimport Gridgen
fromfrom shapely.geometryshapely.geometry importimport Polygon

Default settings. Do not touch!
DEF_settings = {

 # Grid settings:
 "delw" : 1 , # distance between the wells in meter
 "nlay" : 1 , # nr of layers
 "top" : 0 , # position of top aquifer
 "Aqdepth" : 8 , # Depth of the aquifer in m relative to top of the aquifer

 "ncol" : 25 , # nr of columns and rows for coarse grid. Do not touch this!
 "h0" : 0 , # initial hydraulic head in meter.

 # Subsurface properties
 "Kmean" : np.log(1e-4) , # Mean value for hydraulic conductivity. hk = e^Kmean.
 "Kvar" : 1 , # Variance in underlying normal distribution for hydraulic conductivity. ignored if 0
 "CorLen" : 10 , # Corelation length in horizontal plain (m). Vertical correlation = 1/5 of horizontal
 "Layered" : False, # Whether the subsurface is stratified (consists of homogeneous (random) layers)

 "porosity" : 0.3,
 "sconc" : 0.0, # Background concentration
 "al" : 0.5, # Longitudinal dispersivity (m)
 "trpt" : 1.0, # Ratio of transverse to longitudinal dispersitivity

 # Well settings
 "qinjwell" : 1e-4, # Discharge ($m3/s$)
 "qextwell" : -1e-4,
 "Cwell" : 1000, # injection concentration in units/s

 # File location
 "sim_name" : "DTTsim" , # simulation name
 "ws" : "./model" , # Folder to store all model files
 "mf6exe" : "mf6" , # Name of modflow 6 executable

 # Time settings
 "InjTime" : 6, # Duration of the injection ($hours$)
 "PostInjTime" : 24 * 10, # Measuring period after the injection has completed ($hours$)

 # Extra settings
 "length_units" : "meters",
 "time_units" : "seconds",

 "silent" : False,
 "seed" : 20170519, # fixed seed for testing

 # Solver settings, dont touch unless you know what you're doing!
 "scheme" : "TVD", # other option: "UPSTREAM"
 "nouter" : 100,
 "ninner" : 300,
 "hclose" : 1e-6,
 "rclose" : 1e-6,
 "relax" : 1.0,
 }

classclass DTTmodelDTTmodel(object):

 """
 A basic model of for a dipole tracer test in a heterogeneous medium.
 """
 defdef __init__(self, UseRandomSeed = True, flux_averaged = True, **settings):

 """

 """
 self.settings = DEF_settings.copy()
 self.settings.update(**settings)

 self.sim_name = self.settings["sim_name"]
 self.ws = self.settings["ws"]

 ifif UseRandomSeed:
 self.settings.update(seed = np.random.randint(1,2**31))

 self.delw = self.settings["delw"]

 self.ncol = self.settings["ncol"]
 self.nlay = self.settings["nlay"]
 self.botm = np.linspace(self.settings["top"]-self.settings["Aqdepth"]/self.nlay,
 self.settings["top"]-self.settings["Aqdepth"], self.nlay)

 self.ath1 = self.settings["al"] * self.settings["trpt"]

 self.perlen = [self.settings["InjTime"] * 3600, self.settings["PostInjTime"]*3600]
 self.nper = len(self.perlen)
 self.nstp = [self.settings["InjTime"], self.settings["PostInjTime"]]
 self.tsmult = [1.0 forfor x inin range(self.nper)]

 # Generate model grid

##

 # The grid consist of a square of 25x25 coarse cells, each with sides 16 times the well distance.
 # The center cell of this coarse grid is refined into 64x64 cells with sides 0.25 times the well distance.
 # This refined grid is where likely all transport will take place.
 # A square of 2x2 times the well distance around the center is even further refined into cells of 0.0625 times the well
distance (1/16*delw).

 ifif notnot self.settings["silent"]:
 printprint("Building grid...")

 PolyTransport = 16*self.delw * np.asarray(# The center cell of the coarse grid = 16x16 well distance
 [(int(self.ncol/2) ,int(self.ncol/2)),
 (int(self.ncol/2) ,int(self.ncol/2)+1),
 (int(self.ncol/2)+1 ,int(self.ncol/2)+1),
 (int(self.ncol/2)+1 ,int(self.ncol/2))])

 PolyFine = np.asarray(# Refined grid of 2 by 2 well distances centered around the wells
 [(16*self.delw*self.ncol/2-self.delw, 16*self.delw*self.ncol/2-self.delw),
 (16*self.delw*self.ncol/2-self.delw, 16*self.delw*self.ncol/2+self.delw),
 (16*self.delw*self.ncol/2+self.delw, 16*self.delw*self.ncol/2+self.delw),
 (16*self.delw*self.ncol/2+self.delw, 16*self.delw*self.ncol/2-self.delw)])

 # Create a dummy model and regular grid to use as a base grid for gridgen
 name = "dummy"
 sim = flopy.mf6.MFSimulation(sim_name= name, sim_ws=self.ws, exe_name="mf6")
 self.gwf = flopy.mf6.ModflowGwf(sim, modelname=name)
 dis = flopy.mf6.ModflowGwfdis(self.gwf, nlay=self.nlay, nrow=self.ncol, ncol=self.ncol,
 delr=16*self.delw, delc=16*self.delw, top=self.settings["top"], botm=self.botm)

 # Create and build the gridgen model with a refined area in the middle
 PolyTrans = [Polygon(PolyTransport)]
 PolyWells = [Polygon(PolyFine)]
 self.grid = Gridgen(self.gwf.modelgrid, model_ws=self.ws)
 self.grid.add_refinement_features(PolyTrans, "polygon", 6, range(self.nlay))
 self.grid.add_refinement_features(PolyWells, "polygon", 8, range(self.nlay))
 self.grid.build()

 gridprops_vg = self.grid.get_gridprops_vertexgrid()
 self.vgrid = flopy.discretization.VertexGrid(**gridprops_vg)

 # retrieve a dictionary of arguments to be passed
 # directly into the flopy disv constructor
 self.disv_gridprops = self.grid.get_gridprops_disv()
 self.disv_gridprops.keys()

 ifif notnot self.settings["silent"]:
 printprint("...Finished building grid")

 # Constant head boundary conditions

##

 ifif notnot self.settings["silent"]:
 printprint("Setting boundaries...")

 self.chdspd = []
 forfor ly inin range(self.nlay):
 forfor x inin np.linspace(0.5*16*self.delw, (self.ncol-0.5)*16*self.delw, self.ncol, endpoint=True):
 forfor y inin np.linspace(0.5*16*self.delw, (self.ncol-0.5)*16*self.delw, self.ncol, endpoint=True):
 ifif x == 0.5*16*self.delw oror x == (self.ncol-0.5)*16*self.delw oror y == 0.5*16*self.delw oror y ==
(self.ncol-0.5)*16*self.delw:
 ra = self.grid.intersect([(x, y)], "point", 0)
 ic = ra["nodenumber"][0]
 ifif [(ly, ic), self.settings["h0"], 0.0] notnot inin self.chdspd:
 self.chdspd.append([(ly, ic), self.settings["h0"], 0.0])
 ifif notnot self.settings["silent"]:
 printprint("...Finished settings boundaries")

 # Hydraulic conductivity (K-field)

##

 ifif notnot self.settings["silent"]:
 printprint("Setting up K-field...")

 nrCells = len(self.disv_gridprops["cell2d"])

 cellXY = self.grid.get_cellxy(nrCells)
 self.xPos = cellXY[:,0]
 self.yPos = cellXY[:,1]
 self.Kfield = np.ones((nrCells,self.nlay))
 self.Karray = np.ones((nrCells,self.nlay))
 botmExt = np.concatenate(([0],self.botm))

 ifif self.settings["Kvar"] == 0:
 self.hk = np.exp(self.settings["Kmean"]) * self.Karray

 elifelif self.settings["Layered"]:
 kval = np.random.lognormal(mean = self.settings["Kmean"],
 sigma = np.sqrt(self.settings["Kvar"]),
 size = self.nlay)
 self.hk = np.tile(kval, (nrCells,1))

 elseelse:
 # print("Kvar =/= 0")
 forfor ly inin range(self.nlay):
 depth = botmExt[ly]+botmExt[ly+1]
 z = depth*np.ones(nrCells)
 Field = gs.Gaussian(dim=3, var=self.settings["Kvar"],
len_scale=[self.settings["CorLen"],self.settings["CorLen"],self.settings["CorLen"]/5])
 srf = gs.SRF(Field, mean = self.settings["Kmean"], seed=self.settings["seed"])
 self.Kfield[:,ly] = srf.unstructured([self.xPos,self.yPos,z])
 self.Karray[:,ly] = srf.transform("lognormal")
 self.hk = self.Karray

 ifif notnot self.settings["silent"]:
 printprint("...Finished setting up K-field")

 # Pumping wells

##

 # Well Positions
 # Injecion well and extraction well are placed exactly 1 well distance apart in the middle of the center row.
 # The injection and pumping well actually consist out of 4 seperate wells to ensure the model is symmetric around the center
rows.
 ifif notnot self.settings["silent"]:
 printprint("Placing wells...")

 injwellXY = [(self.ncol/2*16*self.delw - self.delw/2-self.delw/32 , self.ncol/2*16*self.delw),
 (self.ncol/2*16*self.delw - self.delw/2-self.delw/16-self.delw/32 , self.ncol/2*16*self.delw),
 (self.ncol/2*16*self.delw - self.delw/2-self.delw/32 , self.ncol/2*16*self.delw-self.delw/16),
 (self.ncol/2*16*self.delw - self.delw/2-self.delw/16-self.delw/32 , self.ncol/2*16*self.delw-self.delw/16)]

 extwellXY = [(self.ncol/2*16*self.delw + self.delw/2+self.delw/32 , self.ncol/2*16*self.delw),
 (self.ncol/2*16*self.delw + self.delw/2+self.delw/16+self.delw/32 , self.ncol/2*16*self.delw),
 (self.ncol/2*16*self.delw + self.delw/2+self.delw/32 , self.ncol/2*16*self.delw-self.delw/16),
 (self.ncol/2*16*self.delw + self.delw/2+self.delw/16+self.delw/32 , self.ncol/2*16*self.delw-self.delw/16)]

 wellist_sp1 = []
 wellist_sp2 = []

 ki_ka = 1
 forfor ly inin range(self.nlay):
 forfor xy inin range(4):
 # if xy == 0:
 # print(f"\n{injwellXY}")
 # print(extwellXY)

 # Injection well settings
 raI = self.grid.intersect([injwellXY[xy]], "point", 0)
 icI = raI["nodenumber"][0]
 ifif flux_averaged:
 ki_ka = self.hk[icI,ly] / np.mean(self.hk[icI,:])
 printprint(ki_ka)

 wellist_sp1.append([(ly, icI) , self.settings["qinjwell"]/4/self.nlay*ki_ka , self.settings["Cwell"]])
 wellist_sp2.append([(ly, icI) , self.settings["qinjwell"]/4/self.nlay*ki_ka , 0])

 # # Extraction well settings
 raE = self.grid.intersect([extwellXY[xy]], "point", 0)
 icE = raE["nodenumber"][0]
 ifif flux_averaged:
 ki_ka = self.hk[icE,ly] / np.mean(self.hk[icE,:])
 printprint(f"{ki_ka}\n\n")
 wellist_sp1.append([(ly, icE) , self.settings["qextwell"]/4/self.nlay*ki_ka , 0])
 wellist_sp2.append([(ly, icE) , self.settings["qextwell"]/4/self.nlay*ki_ka , 0])

 self.spd_mf6 = {0:wellist_sp1, 1:wellist_sp2}

 ifif notnot self.settings["silent"]:
 printprint("...Finished placing wells")

 defdef writefiles(self):
 # MODFLOW 6
 gwfname = "gwf-" + self.sim_name

 self.sim = flopy.mf6.MFSimulation(
 sim_name=self.sim_name, sim_ws=self.ws, exe_name=self.settings["mf6exe"]
)

 # Instantiating MODFLOW 6 time discretization
 tdis_rc = []
 forfor i inin range(self.nper):
 tdis_rc.append((self.perlen[i], self.nstp[i], self.tsmult[i]))
 flopy.mf6.ModflowTdis(
 self.sim, nper=self.nper, perioddata=tdis_rc, time_units=self.settings["time_units"]
)

 # Instantiating MODFLOW 6 groundwater flow model
 self.gwf = flopy.mf6.ModflowGwf(
 self.sim,
 modelname=gwfname,
 save_flows=True,
 model_nam_file=f"{gwfname}.nam",
)

 # Instantiating MODFLOW 6 solver for flow model
 imsgwf = flopy.mf6.ModflowIms(
 self.sim,
 print_option="SUMMARY",
 outer_dvclose=self.settings["hclose"],
 outer_maximum=self.settings["nouter"],
 under_relaxation="NONE",
 inner_maximum=self.settings["ninner"],
 inner_dvclose=self.settings["hclose"],
 rcloserecord=self.settings["rclose"],
 linear_acceleration="BICGSTAB",
 scaling_method="NONE",
 reordering_method="NONE",
 relaxation_factor=self.settings["relax"],
 filename=f"{gwfname}.ims",
)
 self.sim.register_ims_package(imsgwf, [self.gwf.name])

 # Instantiating MODFLOW 6 discretization package
 disv = flopy.mf6.ModflowGwfdisv(self.gwf,
 filename=f"{gwfname}.dis",
 **self.disv_gridprops)

 # Instantiating MODFLOW 6 node-property flow package
 flopy.mf6.ModflowGwfnpf(
 self.gwf,
 save_flows=False,
 xt3doptions=True,
 icelltype=0,
 k=self.hk,
 k33=self.hk,
 save_specific_discharge=True,
 filename=f"{gwfname}.npf",
)

 # Instantiating MODFLOW 6 storage package (steady flow conditions, so no actual storage, using to print values in .lst file)
 flopy.mf6.ModflowGwfsto(self.gwf, ss=1.0e-05, filename=f"{gwfname}.sto")

 # Instantiating MODFLOW 6 initial conditions package for flow model
 flopy.mf6.ModflowGwfic(self.gwf, strt=self.settings["h0"], filename=f"{gwfname}.ic")

 # Instantiating MODFLOW 6 constant head package
 flopy.mf6.ModflowGwfchd(
 self.gwf,
 maxbound=len(self.chdspd),
 stress_period_data=self.chdspd,
 save_flows=False,
 auxiliary="CONCENTRATION",
 pname="CHD-1",
 filename=f"{gwfname}.chd",
)

 # Instantiate the wel package
 flopy.mf6.ModflowGwfwel(
 self.gwf,
 print_input=True,
 print_flows=True,
 stress_period_data=self.spd_mf6,
 save_flows=True,
 auxiliary="CONCENTRATION",
 pname="WEL-1",
 filename=f"{gwfname}.wel",
)

 # Instantiating MODFLOW 6 output control package for flow model
 flopy.mf6.ModflowGwfoc(
 self.gwf,
 head_filerecord=f"{gwfname}.hds",
 budget_filerecord=f"{gwfname}.bud",
 headprintrecord=[
 ("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")
],
 saverecord=[("HEAD", "LAST"), ("BUDGET", "LAST")],
 printrecord=[("HEAD", "LAST"), ("BUDGET", "LAST")],
)

 # Instantiating MODFLOW 6 groundwater transport package
 gwtname = "gwt_" + self.sim_name

 self.gwt = flopy.mf6.MFModel(
 self.sim,
 model_type="gwt6",
 modelname=gwtname,
 model_nam_file=f"{gwtname}.nam",
)
 self.gwt.name_file.save_flows = True

 # create iterative model solution and register the gwt model with it
 imsgwt = flopy.mf6.ModflowIms(
 self.sim,
 print_option="SUMMARY",
 outer_dvclose=self.settings["hclose"],
 outer_maximum=self.settings["nouter"],
 under_relaxation="NONE",
 inner_maximum=self.settings["ninner"],
 inner_dvclose=self.settings["hclose"],
 rcloserecord=self.settings["rclose"],
 linear_acceleration="BICGSTAB",
 scaling_method="NONE",
 reordering_method="NONE",
 relaxation_factor=self.settings["relax"],
 filename=f"{gwtname}.ims",
)
 self.sim.register_ims_package(imsgwt, [self.gwt.name])

 # Instantiating MODFLOW 6 transport discretization package
 flopy.mf6.ModflowGwtdisv(
 self.gwt,
 **self.disv_gridprops,
 filename=f"{gwtname}.dis",
)

 # Instantiating MODFLOW 6 transport initial concentrations
 flopy.mf6.ModflowGwtic(self.gwt, strt=self.settings["sconc"], filename=f"{gwtname}.ic")

 # Instantiating MODFLOW 6 transport advection package
 flopy.mf6.ModflowGwtadv(self.gwt, scheme=self.settings["scheme"], filename=f"{gwtname}.adv")

 # Instantiating MODFLOW 6 transport dispersion package
 ifif self.settings["al"] != 0:
 flopy.mf6.ModflowGwtdsp(
 self.gwt,
 alh=self.settings["al"],
 ath1=self.ath1,
 filename=f"{gwtname}.dsp",
)

 # Instantiating MODFLOW 6 transport mass storage package (formerly "reaction" package in MT3DMS)
 flopy.mf6.ModflowGwtmst(
 self.gwt,
 porosity=self.settings["porosity"],
 first_order_decay=False,
 decay=None,
 decay_sorbed=None,
 sorption=None,
 bulk_density=None,
 distcoef=None,
 filename=f"{gwtname}.mst",
)

 # Instantiating MODFLOW 6 transport source-sink mixing package
 sourcerecarray = [("WEL-1", "AUX", "CONCENTRATION")]
 flopy.mf6.ModflowGwtssm(
 self.gwt, sources=sourcerecarray, filename=f"{gwtname}.ssm"
)

 # Instantiating MODFLOW 6 transport output control package
 flopy.mf6.ModflowGwtoc(
 self.gwt,
 budget_filerecord=f"{gwtname}.cbc",
 concentration_filerecord=f"{gwtname}.ucn",
 concentrationprintrecord=[
 ("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")
],
 saverecord=[("CONCENTRATION", "ALL"), ("BUDGET", "ALL")],
 printrecord=[("CONCENTRATION", "LAST"), ("BUDGET", "LAST")],
)

 # Instantiating MODFLOW 6 flow-transport exchange mechanism
 flopy.mf6.ModflowGwfgwt(
 self.sim,
 exgtype="GWF6-GWT6",
 exgmnamea=gwfname,
 exgmnameb=gwtname,
 filename=f"{self.sim_name}.gwfgwt",
)

 self.sim.write_simulation(silent=self.settings["silent"])

 defdef run_model(self):
 """
 Calls on modflow 6 executable and starts the run.

 """

 success, buff = self.sim.run_simulation(silent = self.settings["silent"])
 ifif notnot success:
 printprint(buff)

 self.headdata = self.gwf.output.head().get_data() # Retrieve hydraulic head data for last timestep
 self.conc_mf6 = self.sim.get_model(list(self.sim.model_names)[1]).output.concentration().get_alldata() # Retrieve
concentration data for all timesteps
 bud = self.gwf.output.budget() # Retrieve budget info (used for showing fluxes in graph)
 self.spdis = bud.get_data(text="DATA-SPDIS")[0]

 # Volume per cell over the whole column is determined by taking the cell area multiplied by the depth of the aquifer.
 # For every timestep the average concentration over the whole column is determined by taking the arithemic mean of the column.
 # Total mass per column is determined by multiplying the average concentration per column with the volume of the column,
corrected for porosity
 # Total mass in the system is summed. Total injected mass is known, thus extracted mass can be determined.
 CellVolume = self.grid.get_area()[:np.shape(self.conc_mf6)[-1]]*self.settings["Aqdepth"] #m3 #volume per grid-column
 CellConcAv = np.mean(np.squeeze(self.conc_mf6, axis = 2), axis = 1) # g/m3 # average concentration per grid-column
 CellMass = CellConcAv * CellVolume * self.settings["porosity"] # m3*g/m3=g # volume times concentration corrected
for porosity
 TotalMass = np.sum(CellMass, axis = -1)

 TotalMassPump = np.zeros(sum(self.nstp)) # Creates numpy array for every timestep (per hour)
 TotalMassPump[:self.nstp[0]] = self.settings["Cwell"] * self.settings["qinjwell"] * 3600 # first 6 cells (injection period = 6
hours) are filled with injected mass
 TotalMassPump = np.cumsum(TotalMassPump) # Injected mass is summed, so TotalMassPump now contains the total amount of mass
injected
 self.BTC = TotalMassPump - TotalMass # Total mass in the system per timestep is subtracted from the total mass injected.
 self.BTCnorm = self.BTC/TotalMassPump[-1] # total mass extracted as percentage of total mass injected

 defdef get_head(self):
 """
 Returns
 - headdata : hydraulic head distribution.

 """
 returnreturn(self.headdata)

 defdef get_conc(self):
 """
 Returns
 - conc_mf6 : concentration distribution per timestep.
 """

 returnreturn self.conc_mf6

 defdef get_flowbudget(self):
 """
 Returns
 - spdis : groundwater flow budgets.

 """
 returnreturn self.spdis

 defdef get_BTC(self, norm = True):
 """
 Parameters

 norm : Bool, optional
 If true returns normalised BTC (as fraction of total injected mass). The default is True.

 Returns

 1d numpy.array containing BTC data per timestep
 """
 ifif norm:
 returnreturn self.BTCnorm
 elseelse:
 returnreturn self.BTC

 defdef plotgrid(self, dpi = 1000, lw = 0.01, savefig = False, figname = "Grid", **kwargs):
 """
 Plots the model grid.

 Parameters

 dpi : int, optional
 Resolution of the generated plot. The default is 1000.
 lw : float, optional
 linewidth. The default is 0.01.
 **kwargs :
 ax, colors. The remaining kwargs are passed into the
 the LineCollection constructor.)

 Returns

 None.

 """
 plt.figure(dpi = dpi)
 self.vgrid.plot(lw = lw, **kwargs)
 plt.title("Model Grid")

 ifif savefig:
 plt.savefig(f"{figname}.pdf")

 defdef plotKfield(self, layer = 0, logValue = True, dpi = 300, figsize = (6,6), levels = 50, savefig = False, figname = "Kfield",
**kwargs):
 """
 Plots the hydraulic conductivity distribution for a given layer.
 If the layer is homogeneous, no plot is made and the K-value is instead printed.

 Parameters

 layer : int, optional
 The layer of which to plot the hydraulic conductivity. The default is 0.
 logValue : Bool, optional
 Whether to plot K or logK. The default is True.
 dpi : int, optional
 Resolution of the generated plot.. The default is 300.
 figsize : tuple, optional
 figure size. The default is (6,6).
 levels : int, optional
 Number of contours to divide K-values over. Higher values result in smoother plots. The default is 50.
 **kwargs :
 Remaining kwargs are passed on to matplotlib.pyplot.tricontourf().

 Returns

 Array with K-values for the given layer

 """
 plt.figure(dpi = dpi, figsize = figsize)

 ifif self.settings["Kvar"] != 0 andand self.settings["Layered"] != True:
 ifif logValue:
 plt.tricontourf(self.xPos,self.yPos,self.Kfield[:,layer], levels = np.linspace(
 np.min(self.Kfield[:,layer]),
 np.max(self.Kfield[:,layer]),
 levels),
 **kwargs)
 plt.colorbar(format=lambdalambda x, _: f"{x:,.2f}")
 plt.title("Hydraulic conductivity (log)")

 elseelse:
 plt.tricontourf(self.xPos,self.yPos,self.hk[:,layer], levels = np.logspace(
 self.settings["Kmean"] - 5*self.settings["Kvar"]**.5,
 self.settings["Kmean"] + 5*self.settings["Kvar"]**.5,
 levels), norm = "log",
 **kwargs)
 plt.colorbar(format=lambdalambda x, _: f"{x:,.2e}")
 plt.title("Hydraulic conductivity")
 plt.axis("equal")
 ifif savefig:
 plt.savefig(f"{figname}.pdf")

 elifelif self.settings["Layered"]:
 printprint(f"Layer {layer} is homogeneous with K-value = {self.hk[layer]}")

 elseelse:
 printprint(f"Layer {layer} is homogeneous with K-value = {self.hk[layer]}")

 returnreturn self.Karray[:,layer]

 defdef plot_head(self, flow = True, grid = False, contours = False, levels = 10, layer = 0, linewidths = 1, colors = "k",
 figsize = (20,6), dpi = 300, fontsize_title_subplot = 12, fontsize_legend = 12, fontsize_labels = 12,
fontsize_ticks = 12, savefig = False, figname = "HeadDistr",
 **kwargs):
 """

 Parameters

 flow : Bool,
 If true will plot the flow around the wells as a vectorfield. The default is True.
 grid : Bool,
 If true will add gridlines to the plots. The default is False.
 contours : Bool,
 If true will add contourlines to the plot. The default is False.
 levels : int,
 The number of contourlines. Only does something if contours are enabled. The default is 10.
 layer : int,
 the layer of which to show the hydraulic head distribution. The default is 0.
 **kwargs :
 Remaining keyword arguments are passed to matplotlib.pyplot.pcolormesh

 Returns

 np-array containing the hydraulic head distribution for the given layer.

 """

 fig, axes = plt.subplots(1,3, figsize=figsize, constrained_layout=True, dpi = dpi)

 ax = axes[0]
 pmv = flopy.plot.PlotMapView(self.gwf, ax = ax)
 hd = pmv.plot_array(self.headdata[layer])

 ifif grid:
 pmv.plot_grid(colors="white", lw = 0.2)
 ax.set_title("Head distribution in the whole domain", fontsize = fontsize_title_subplot)
 ax.set_aspect("equal")
 ax.set_ylabel("y (m)", fontsize = fontsize_labels)
 ax.set_xlabel("x (m)", fontsize = fontsize_labels)
 ax.tick_params(axis = "both", labelsize = fontsize_ticks)

 ax = axes[1]
 pmv = flopy.plot.PlotMapView(self.gwf, ax = ax, extent = self.delw*np.asarray([190,210,190,210]))
 hd = pmv.plot_array(self.headdata[layer])
 ifif grid:
 pmv.plot_grid(colors="white", lw = 0.2)
 ifif contours:
 pmv.contour_array(self.headdata[layer], levels = np.linspace(np.min(self.headdata[layer]), np.max(self.headdata[layer]),
levels), **kwargs)
 ax.set_title("Head distribution in the refined grid", fontsize = fontsize_title_subplot)
 ax.set_ylabel("y (m)", fontsize = fontsize_labels)
 ax.set_xlabel("x (m)", fontsize = fontsize_labels)
 ax.set_aspect("equal")
 ax.tick_params(axis = "both", labelsize = fontsize_ticks)

 ax = axes[2]
 pmv = flopy.plot.PlotMapView(self.gwf, ax = ax, extent = self.delw*np.asarray([198.8,201.2,198.8,201.2]))
 hd = pmv.plot_array(self.headdata[layer])
 ifif grid:
 pmv.plot_grid(colors="white", lw = 0.2)
 ifif contours:
 pmv.contour_array(self.headdata[layer], levels = np.linspace(np.min(self.headdata[layer]), np.max(self.headdata[layer]),
levels), **kwargs)
 ifif flow:
 pmv.plot_vector(self.spdis["qx"], self.spdis["qy"], color="white")
 ax.set_title("Head distribution around the wells", fontsize = fontsize_title_subplot)
 ax.set_ylabel("y (m)", fontsize = fontsize_labels)
 ax.set_xlabel("x (m)", fontsize = fontsize_labels)
 ax.set_aspect("equal")
 ax.tick_params(axis = "both", labelsize = fontsize_ticks)
 plt.colorbar(hd, ax=axes[2])
 ifif savefig:
 plt.savefig(f"{figname}.pdf")

 returnreturn self.headdata[layer]

 defdef plot_conc(self):
 passpass

 defdef plot_BTC(self, norm = True, dpi = 300, **kwargs):
 """
 Parameters

 norm : Bool, optional
 Shows the BTC as fraction of the total injected mass. The default is True.
 **kwargs :
 Keyword arguments are passed on to matplotlib.pyplot.plot

 Returns

 None.

 """
 ifif norm:
 plt.figure(dpi = dpi)
 plt.plot(self.BTCnorm, **kwargs)
 plt.title("BTC at extraction well (normalised)")
 plt.ylabel("Mass ($-$)")
 plt.xlabel("Time ($hours$)")

 elseelse:
 plt.figure(dpi = dpi)
 plt.plot(self.BTC, **kwargs)
 plt.title("BTC at extraction well")
 plt.ylabel("Mass (g)")
 plt.xlabel("Time ($hours$)")

 defdef BTC_toFile(self, filename = None, norm = True, **kwargs):
 """

 BTC data is saved as csv (ascii) file in the folder BTCoutput.
 If no such folder exists one is created in current workspace.

 Parameters

 norm : Bool, optional
 If true writes normalised BTC data to file. The default is true.
 filename: str
 keyword arguments are passed to numpy.savetxt()
 Returns

 None.

 """
 ifif filename == None:
 filename = f"{self.sim_name}_BTC"
 ifif norm:

 np.savetxt(filename, self.BTCnorm, delimiter=",", **kwargs)
 elseelse:
 np.savetxt(filename, self.BTC, delimiter=",", **kwargs)

ifif __name__ == "__main__":

 start_time = time.time()
 Q = 1e-4
 NewModel = DTTmodel(delw = 1, nlay = 1, Kvar = 0, PostInjTime = 24*1, Layered = False, InjTime = 6)

 # NewModel.plotgrid()
 # for i in range(5):
 # NewModel.plotKfield(layer = i)

 NewModel.writefiles()

 start_run = time.time()

 NewModel.run_model()
 end_time = time.time()
 # kfield = NewModel.plotKfield(dpi = 500, figsize = (10,10))

 NewModel.plot_head(flow = False, contours=False, levels = 20, linewidths = 1,
 colors = "k", dpi = 500, grid = True, savefig = True)

 # NewModel.plot_BTC()

 # NewModel.BTC_toFile(norm = True, filename = "Homogeneous BTC",
 # header = ("Model name = " + str(NewModel.sim_name) +
 # ", Welldist = " + str(NewModel.delw) +
 # ", nlay = " + str(NewModel.nlay) +
 # ", corlen = " + str(NewModel.settings["CorLen"]) +
 # ", Kvar = " + str(NewModel.settings["Kvar"]) +
 # ", Kmean = " + str(NewModel.settings["Kmean"]) +
 # ", seed = " + str(NewModel.settings["seed"])))

 # import Functions as fc
 # varlist = [0.01]#, 1, 2]#, 0.5, 1, 2, 4]
 # pdf1, cdf1, Tau = fc.TravelTime8(varlist, -30, 6, 1e4)
 # pdf2, cdf2, Tau = fc.TravelTime11(varlist, -30, 6, 1e4)
 # btc = NewModel.get_BTC()

 # n = NewModel.settings["porosity"] # Porosity used in the model
 # q = NewModel.settings["qinjwell"]/NewModel.settings["Aqdepth"]#/np.sqrt(2) # Discharge per unit depth in m2/s (Q/L = m3/s/m)
 # a = NewModel.settings["delw"] # Distance between the wells (m)
 # TauToTime = np.pi * n * a**2 * Tau / q/ 3600 # Dimensionless Tau converted to real time in hours

 # plt.figure(dpi = 300)
 # for i in range(len(cdf1)):
 # plt.plot(TauToTime[1:], cdf1[i], label = f"Analytical8_{varlist[i]}", linestyle = ":")
 # plt.plot(TauToTime[1:], cdf2[i], label = f"Analytical11_{varlist[i]}", linestyle = ":")
 # plt.plot(btc, label = "Numerical")
 # plt.xlim(100, 2400)
 # # plt.ylim(0,.6)
 # plt.xscale("log")
 # plt.legend()
 # plt.show()

 # run_time = end_time - start_run
 # tot_run_time = end_time - start_time
 # print(round(run_time, 3), round(tot_run_time, 3))

 # bins = np.logspace(-5,1,100)
 # plt.figure(dpi = 300, figsize=(10,10))
 # hist = np.histogram(kfield, bins = bins, density=True)[0]
 # plt.plot(bins[1:], hist/100)
 # plt.xscale("log")
 # plt.title("Hydraulic conductivity distribution", fontsize = 18)
 # plt.xlabel("Hydraulic conductivity K $[m/s]$", fontsize = 16)
 # plt.ylabel("Probability", fontsize = 16)
 # plt.tick_params(axis = "both", labelsize = 16)
 # # plt.ylim(0,0.6)

 # nlay = 2
 # slurmID = 0

 # start_time = time.time()

 # Model = DTTmodel(delw = 10,
 # nlay = nlay,
 # layered = True,
 # PostInjTime = 24*10,
 # Kvar = 1,
 # sim_name = f"run_{slurmID}",

 # ws = f"./model_{slurmID}")
 # Model.writefiles()
 # start_run_time = time.time()
 # Model.run_model()

 # end_time = time.time()

 # modeltime = end_time - start_run_time
 # totmodeltime = end_time - start_time

 # Model.BTC_toFile(norm = True, filename = f"run_{slurmID}_lys{nlay}_oscar",
 # header = ("Model name = " + str(Model.sim_name) +
 # ", Welldist = " + str(Model.delw) +
 # ", nlay = " + str(Model.nlay) +
 # ", Kvar = " + str(Model.settings["Kvar"]) +
 # ", Kmean = " + str(Model.settings["Kmean"]) +
 # ", modeltime = " + str(modeltime) +
 # ", totaltime = " + str(totmodeltime)))

 # for fileName in os.listdir(f"./model_{slurmID}"):
 # #Check file extension
 # if fileName.endswith('.cbc') or fileName.endswith('.ucn'):
 # # Remove File
 # os.remove(f"./model_{slurmID}/" + fileName)

	Introduction
	Methods
	Groundwater Flow and Mass Transport Equation
	Numerical Model
	Heterogeneous Hydraulic Conductivity
	Analytical Model for Stratified Subsurface

	Results & Discussion
	Heterogeneous Aquifers
	Stratified Aquifers
	Analytical Solution for Stratified Aquifers
	Model Remarks and Recommendations

	Summary & Conclusion
	References
	Appendix

