Designing and Analysing Triplets

S.H.J. Duijn
April 16, 2024

Abstract

This research delves into the creation and analysis of triplets—a unique form of 3D objects
capable of casting three distinct shadows when illuminated from different angles. Drawing inspi-
ration from mathematical and artistic concepts, this study investigates methods for generating
triplets from user-defined 2D input shapes and evaluates the impact of input shape characteris-
tics on shadow accuracy. Through the development of a specialized application for triplet design
and experimentation, significant insights are gained. Results indicate a correlation between input
shape thickness and triplet error scores, with higher fill percentages leading to improved accuracy.
Notably, techniques for enhancing the visual appeal by selectively removing cubes show promising
results. Through an exploration of the creation and manipulation of triplets, this study provides
valuable insights into their unique properties and the potential for further modification to enhance
their visual appeal and add additional intriguing characteristics.
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1 Introduction

Since the rise of computers and video games, three-dimensional art has become increasingly popular.
Take, for example, the rotating donut (or torus) in the terminal, created by Andy Sloane in 2006 [29],
using ASCII characters, or the intricate 3D fractals generated through ray marching [11]. Shadows,
too, can be harnessed as an art form, conveying the intended meaning or emotion of an object solely
through projected shadows. Triplets combine these concepts to create intriguing shapes that possess
interesting properties.

Triplets are 3D objects capable of casting three, possibly different, shadows when illuminated from
different angles. For instance, light from above can cast a shadow on the ground below the object,
while light from the side may produce a different shadow. Similarly, light directed towards the front
of the object could result in a third shadow. What makes triplets interesting is their ability to project
three, potentially distinct, 2D shapes from a single 3D object.

This research investigates the process of creating a 3D triplet shape from three 2D input shapes
defined by the user as silhouettes. The objective is to generate a triplet capable of casting three shadows
that exactly match the input shapes. The resulting object could also be rotated to sequentially reveal
all three shapes when looking at it directly.

However, it may not always be feasible to create a shape capable of casting all three predefined
silhouettes. Depending on the input shapes, it might be impossible to produce an object which shadows
precisely match the input silhouettes. One aspect of this research aims to explore the influence of input
size and thickness on the resulting triplet shape and shadow accuracy.

Another area of investigation is the exploration of methods to enhance the visual appeal of the
resulting triplet shape. This could involve selectively removing cubes while preserving the same shad-
ows.

To facilitate these explorations, an application has been developed for creating and visually in-
specting triplet shapes. Please refer to Appendix B for details on this application. Additionally, a font
has been developed for use as input shapes in the experiments.

This document will begin by exploring relevant concepts such as the history of mathematics and
art, font design, and the utilization of shadows in art. Subsequently, the method employed for triplet
creation and evaluation will be introduced. Following this, experiments will be conducted to assess
the impact of varying input shape thickness and to explore methods of enhancing triplet shape appeal
by cube removal. Finally, conclusions will be drawn, and potential topics for future research will be
discussed.

2 Related Work

2.1 The Combination of Math, Computer Science and Art

Creating visually appealing shapes and figures by combining mathematics, computer science, and
artistic expressions has a rich history. This section will briefly introduce some of these shapes and
figures.

A classic example where simple mathematical definitions create beautiful figures is fractals. Fractals
are “exactly the same at every scale or nearly the same at different scales” as defined by Benoit B.
Mandelbrot. A well known fractal and often used for creative and aesthetic purposes, is the Mandelbrot
set, named after Benoit B. Mandelbrot. In 1980, Mandelbrot started to explore how this fractal can
be calculated with the help of a computer [17, 18]. However, the fractal has been explored before in
1905 by Pierre Fatou, a mathematician who specialised in recursive equations. A recursive equation
can be seen as a series of calculations where the next calculation is based on the previous one, with a
predefined starting value.

A Mandelbrot set is a collection of complex numbers that remain bounded when recursively applying
the quadratic map Z,,1 = Z2 + ¢ to them, starting with Zy = 0. A complex number ¢ can be written
as ¢ = x+yi, where x and y are real numbers that can be plotted as coordinates on a 2D plane. Points
(z,y) that belong to the Mandelbrot set are typically represented as black dots on this 2D plane. Points
that will diverge to infinity, and thus do not belong in the Mandelbrot set, can be colored white. Or,
to get a more interesting image, can be colored based on the number of iterations before it diverges to
infinity, see Figure la. In practice, a maximum number of iterations needs to defined. When this is
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reached and Z,, 11 remains within bounds, we can say that the point belongs to the Mandelbrot set. To
check whether complex number 7,11 remains within bounds, the absolute value of this number can be
used. If the absolute value is less than or equal to 2 it is bounded. Additionally, a three-dimensional
extension of the Mandelbrot set, known as the Mandelbulb, also exists. This intriguing shape, when
neatly colored, can resemble fantastical landscapes or planets [33].

Another well known fractal is the Sierpiriski triangle, named after the Polish mathematician Wactaw
Sierpiriski [25]. Sierpinski described the fractal in 1915 but similar patterns already appeared in
the 13th century as a common motif in inlay stonework [30]. The Sierpiiiski triangle consists of an
equilateral triangle which is recursively subdivided into smaller triangles. A simple method to create
a Sierpinski triangle is to start with an equilateral triangle and divide it into four smaller congruent
equilateral triangles, remove the middle one and repeat the process for the other three. Keep repeating
to infinity. An interesting property of the Sierpiriski triangle is that the area of the shape is zero when
the recursion reaches infinity. There are other methods to create the Sierpiriski triangle, like shrinking
and duplication, Pascal’s triangle, towers of Hanoi and using a fractal tree configuration [27, 3].

Fractal trees are another aesthetically pleasing shape created using recursion. It starts with a
root branch which splits into two or more branches at certain angles to the root branch. Recursively
repeat this branching process for the new branches. Depending on the angles used for branching,
tree-like structures can arise. Interestingly, it is possible to create a Sierpinski triangle by using three
branches with a 120° degree angle between them. Fractal trees are a very simple concept that can
create beautiful and intricate figures. Three-dimensional fractal trees can resemble a real tree quite
well with the right configurations [21].

A more recent technique called ray marching makes it possible to render three-dimensional fractals
with low computational cost [28, 11]. Ray marching is a technique similar to ray tracing. For each
pixel on the camera plane, a ray is cast until it hits an object in the scene. With ray marching, the
ray is advanced in steps (marching), until it hits” or is close enough to an object. The amount the
ray is advanced can be just a small delta value. But a smarter way to do this is to make use of a
signed distance function (SDF). This SDF gives the closest point to the surface of an object in the
scene. Now, calculate the SDF at each ray marching step, and safely move this number along the
ray without hitting any objects. If the SDF becomes very small, it can be assumed that the object
is hit. When there are a lot of objects in the scene this becomes expensive to calculate. But, even
with only one object in the scene, it is possible to make it look like there are an infinite amount of
them. This is done by modifying the SDF, for example by taking the modulo of x and y of our point
before calculating the SDF. By modifying the SDF, it is possible to create the Sierpinski triangle and
Mandelbox, a fractal with a square box shape found in 2010 by Thomas Lowe [14]. See Figure 1b for
an artistic example of this.

The golden ratio, also known as the golden number or divine proportion, is an aesthetically pleasing
ratio between two numbers that manifests in nature and has a rich historical presence. The ratio
equals 1+T‘/5 = 1.618... and is usually written as the Greek letter phi: ¢. It has a close connection to
the Fibonacci sequence, a series of numbers where the next number is the sum of the previous two:
{0,1,1,2,3,5,8,13,21,...}. The ratio between each number and the previous gradually equals ¢, the
golden ratio.

The first known mention of it, in 300 BC, was by the ancient Greek mathematician Euclid [13].
Much later, in 1509, a book was published by an Italian mathematician Luca Pacolio called De Divina
Proportione. With illustrations by Leonardo da Vinci, the ratio was praised to represent divine sim-
plicity and orderliness [13]. The golden ratio can be found back in architecture designs from ancient
civilizations like the Greeks and Egyptians, for example in the Parthenon in Athens and the Great
Pyramid of Giza. People argue that it can also be seen in the composition of paintings from artists
like Michelangelo and (unsurprising) Leonardo da Vinci. The Last Supper and The Vitruvian Man are
often used as examples of this proportion [7].

The golden ratio can be observed in natural phenomena, from the arrangement of leaves on a stem
or the spiral pattern of a seashell and pine cone and sunflower seeds. Golden ratio enthusiasts argue
that this is the reason the ratio looks pleasing to the eye when used in graphical design or practical
objects. It is important to note that while the golden ratio has been widely celebrated, its application
is sometimes subjective and can be a matter of interpretation [24].

Another concrete and tangible example of math combined with art are harmonographs or “pen-
dulum drawings”. These are two-dimensional figures consisting of many curves that form interesting



(a) Mandelbrot set. (b) Ray marching fractal art by (c) Harmonograph.
Pete Linforth.

Figure 1: Three examples of art that uses math.

shapes, some of which even give the feeling of depth. They can be created using mechanical construc-
tions, the simplest of which is a pendulum. This is a weighted pendant on a cord that can draw in
sand or on a piece of paper. If the pendant is swung, it can produce beautiful shapes.

Other mechanical devices are harmonographs and spirographs. A harmonograph is a device that
appeared in the mid-19th century and consists of a plane with a piece of paper suspended in the air by
the four corners of the plane [32]. A pen rests lightly on the paper to be able to draw. This is a so called
lateral harmonograph. It basically consists of two pendulums, where one moves along one axis and the
other moves along a perpendicular axis. Different patterns are created by varying the frequency and
phase of the pendulums relative to one another, see Figure 1lc. A spirograph is a geometric drawing
toy that consists of gears with holes for a pencil. When rotated inside other wheel-like gears, the pencil
follows a path that creates interesting figures, so called hypotrochoids and epitrochoids.

These harmonographs resemble the recently developed Spiroplots [8]. Instead of using mechanical
devices, spiroplots are simulated on the computer. They are defined by a number of points connected
by edges. Each edge will then consecutively rotate a around its center by a predetermined number of
degrees. After each edge rotation, connected points will have moved and a dot is drawn for the moved
points. After all edges have rotated, repeat. Do this many times and captivating figures can arise.
This is another example of figures created with simple mathematical definitions.

2.2 Shadows in Art

A shadow is fundamentally the result of the absence of light. There needs to be a light source to create
a shadow, where the shadow is defined by some object that is obstructing the path of light. There
always needs to be two objects and a light source to create a shadow. One object, often referred to as
the occluder, obstructs the light source, while another object, such as a wall or surface, becomes the
canvas upon which the shadow is cast.

The usage of shadows in art, philosophy and entertainment goes a long way back. In art, shadows
were used to add depth and dimension to compositions or even to convey certain emotions. The
use of shadows not only allowed artists to add depth but also to create atmospheric tension and
evoke emotions. For example chiaroscuro, a technique mastered by artists like Caravaggio during the
Baroque period, introduced a heightened sense of drama through the heavy contrast between light and
shadow. More recently, Andy Warhol, with his work 66 Shadows, and Joseph Beuys have explored the
idea of the shadow as the revelation of utter human emptiness as the powerful doppelgidnger of our
“self”. Philosophers have discussed shadows as a metaphorical concept. Plato’s Allegory of the Cave,
from his work ”"The Republic”, delves into the symbolic nature of shadows. In this allegory, prisoners
confined in a cave perceive only the shadows cast by objects behind them. The shadows represent a
distorted reality, an illusion that the prisoners mistake for the true forms. Plato uses this to present
the philosophical concept of the path from ignorance to enlightenment [31].

In modern and contemporary art, shadows continue to serve as a way to convey emotion. The use
of shadows in photography and film further expand the narrative possibilities, allowing for nuanced
storytelling through the manipulation of light and darkness.

Another form of entertainment that makes use of shadows is shadow play. Shadow play probably



originates from China and Indonesian islands of Java and Bali and is still a living folk tradition in
China, India, Iran and Nepal [22, 5]. Tt is a way of storytelling where the audience looks at a translucent
screen which has silhouettes projected on it from behind, often combined with a musical composition.
These silhouettes are cast by intricate puppets which are controlled by the puppeteers or can be cast
by the bodies of the actors themselves.

Shadows can leave a lot to one’s imagination, which can be a positive point because the viewer can
depict the play in their mind as very realistic. The silhouettes can give the illusion that things behind
the screen are happening for real. Although shadow play has its limitations, it is possible to do things
which are not possible with normal actors. A shadow could hide behind another and suddenly appear
out of nowhere. It is also possible to use colored translucent film with the puppets to add colors to the
projected silhouettes. Using your hands to create silhouettes that resemble various animals or figures
is a widely known usage of shadow play. To this day, shadow play is still liked in various cultures by
both children and adults.

Shadows are also used by artists where the actual shadow is the main art piece instead of the
object it was projected by. When looking at the object itself, it might not be immediately clear what
known shape the object represents or the object might appear distorted. But when looking at the
shadow, cast via a light at a certain angle, it becomes clear. This is known as anamorphic shadow art.
Anamorphic art appears in 16th century when artists, mathematicians, and philosophers start using
perspective to blur the boundary between illusion and reality [10].

Anamorphosis is a type of distorted representation of an image or object that only appears as
intended when viewed from a specific angle or through the use of special devices, like a curved mirror
surface. Bernard Pras is an artist who uses anamorphosis, he makes installations from all kinds of
objects, from toothbrushes to pianos. Theses installations only reveal the intended essence of the art
piece when viewed or photographed at a specific angle, see Figure 2b for an example. Some anamorphic
art pieces use shadows to reveal the intended shape. Take for example the Star Wars shadow art from
Red Hong Yi, a Malaysian artist and architect. This Star Wars shadow art is made from several
everyday objects on long pins, which reveal figures of Star Wars characters when light is projected
from the right angle. Without shadows, it is hard to see what the collection of objects should represent
and looks like randomly scattered objects on pins. A 3D model made by Ivana Bajsanski, shows two
different silhouettes when light is projected from two different angles see Figure 2c. This is closely
related to triplets, which show three, possibly different, silhouettes of letters.

(a) Bicycle lane marking. (b) Art installation that reveals (c) Object which produces two
Appears normal only when a face when viewed at a specific different shadows when light is
viewed at the right angle (about angle. Made by Bernard Pras. cast at the right sides. By Ivana
20°degrees). Source: Anamor- Bajsanski.

phic images. [10].

Figure 2: Examples of anamorphic art.

2.3 Font Design and History

To delve into the history of font development we need to go back to a time when books and manuscripts
were only written by hand. The style of writing, or letterform, was calligraphy-like, with long and
elegant characters. Books were a luxury and generally reserved for the elite. But, when people in
middle-class began learning to read, the demand increased. In the mid-15th century the goldsmith
Johannes Gutenberg developed a printing press which used metal letter blocks, which made it durable



and reusable [16]. Now, books could be produced in a relatively fast manner. Gutenberg took inspi-
ration from the presses used in East Asia, where wooden blocks were used. No one knows when the
first press was invented, but the oldest known printed text originates in China during the first mil-
lenium A.D [34]. Gutenberg’s press used the so called Blackletter calligraphy letterform, a wide and
thick calligraphy-like letterform which was based on the hand written manuscripts during Gutenberg’s
time [9, 19]. A downside of this was that the amount of text on a page was limited due to the wide
letterform. In 1470, Nicolas Jenson solved this issue by creating the fist Roman typeface. With this
simpler letterform, more text could fit on a page and thus increasing printing speed. In 1501, the first
italic typeface was created to save even more space. This received quite some critique due to its poor
readability, but italics are still used to emphasize text.

In the 18th century the focus shifted to improve readability. Fonts were created by William Caslon
and John Baskerville that have more contrast in thickness between horizontal and vertical strokes.
These typefaces made letters more distinguishable from one another, improving readability. Improve-
ments were also made to ink and printing presses which made the resulting prints clearer. As another
attempt to improve readability, serifs were introduced by two type designers, Firmin Didot in France
and Giambattista Bodoni in Italy. Another concept, referred to as slab serifs, was introduced in 1815
by Vincent Figgins. Compared to normal serifs, slab serifs are mostly horizontal lines at the end
strokes. Around the same time a font without serifs was developed which gained popularity in the use
of advertisement headers. Around 100 years later another sans serif typeface was introduced by Ed-
ward Jonson and is still in use today by the London underground signs. In the 20th century some well
known fonts were developed like Copperplate Gothic and Helvetica. As well as minimalistic typefaces
like Futura and Optima [4].

When digital screens were introduced, the first digital font was developed in 1968 by Rudolf Hell
called Digi Grotesk. The fonts developed around that time were stored in bitmaps, which were hard
to read at small sizes. These were also popular in video games and nowadays referred to as pixel
fonts. They were mostly monospaced and constructed of cells on a grid. A few years later however,
the first vector fonts were developed, these encode the outline structure in a mathematical fashion
which improved readability and reduced file size. TrueType fonts were created in 1980, which allowed
computers and output devices, like printers, to use the same file. In 1997, this same idea was applied
to Mac and PC, with one font format OpenType, to support both devices. This OpenType format was
later updated to variable fonts for the web, which are able to change size and weight depending on the
design they are used in [35].

We have seen that a font describes not only the style but also the size and weight of a character, and
may include serifs; small features at the end of strokes. In the present there are five basic classifications
of font types: script, display, monospaced, serif and sans serif. Script style resembles handwriting and
can range from formal to very casual and are suitable for screens. Display typefaces are very wide in
appearance and are mostly used for headlines and titles. Monospaced typefaces are spaced equally,
meaning that every character takes up the same amount of space. They are used for displaying code
and headlines, and suitable for typewriters.

In 2005, a study concludes that fonts with small serifs (5% of the character size) are slightly more
legible that sans serif fonts (those without serifs) [2]. They do note that this is mostly because serifs
lead to greater letter spacing. However, 6 years later, a study from 2011 shows a slight, yet noteworthy,
readability advantage in sans serif fonts compared to serif fonts [20]. This knowledge is already applied
in practical contexts, such as traffic signs, which use a sans serif font.

A font can come in various weights, ranging from light and medium to bold. Some fonts even offer
extra-light or extra-bold options. A study from 1940 found no difference in reading speed between
normal and bold weight [23]. However, 70% of the readers expressed a preference for the normal-
weighted font. Another study from 1942 similarly indicates that the optimal reading speed falls
somewhere between normal and bold weights [15]. With an extra-bold weight, reading speed tends to
decrease.

Letters can also be used as entertainment or creative outlet. This is shown by Erik Demaine, he
combines letters with paradigms from math, puzzles, or nature. Erik Demaine has some exquisite
examples of this, such as creating letters using a square piece of paper folded n number of times and
cut only once, creating characters by solving Sudoku puzzles, or using Voronoi diagrams, among others

[6].



2.4 Triplets

The combination of art, computer science and mathematics to create beautiful figures, shadows to
illustrate certain shapes which may not be apparent at a first glance, and typography that is designed
to be clear and consistent, bring us to triplets.

In 1998, at the ACM Symposium on Computational Geometry, O’'Rourke presented the question
what the conditions on three input shapes need to be in order to create a valid triplet [1]. The
definition of a valid triplet is that the three shadows cast by the triplet should exactly resemble the
three predefined desired shapes. For example, consider the letters X, X and 0, for these letters it is
probably not possible to create a valid triplet. Due to the two X’s, there needs to be material in the
middle of the shape to create the cross-section of the X, but for the 0, the middle of the triplet needs
to empty. A combination that should be possible is F, J and 0, for example.

In 2009, Walderveen et al. tries to answer the question by O’Rourke, exploring the validity and
connectivity for triplets with rectilinear polygons (polygons whose edges are parallel to one of the
primary axes) [12]. The validity can be computed with a sweep-plane algorithm with a time-complexity
of O(n?logn) where n represents the total complexity of the three rectilinear shapes. The connectivity
can be checked by employing the sweep-plane algorithm again. This can be done in O((n? + k) logn)
time, where n is the total number of vertices in the rectilinear shapes and k represents the complexity
of the triplet.

More recently, Roggen has created a tool to calculate triplets on the computer and he provides
proofs for the connectivity of the final object and its combinatorial complexity [26]. He also showed
that 70% of all three-letter combinations in the alphabet can create valid volume-connected triplets.
The 26 letters of the alphabet were defined on a 5x5 grid were it is possible to only enable a triangular
part of a cell. A tool was developed in Unity to create triplets where the users can define the three
shape planes themselves. The tool has support for exporting the triplet to a 3D model format and
also allows triangular half-cells to be used. Some limitations of the 5 x 5 grid are that the predefined
letters are not very pleasant to read. For example, some letters are the same when rotated, like I and
H, as well as N and Z, and P and Q.

This research aims to construct a better-looking font with a larger grid size, 14 x 14, and explore
methods to improve the percentage of possible letter combinations. Techniques for creating more
interesting triplet shapes will also be explored.

3 Requirements and Methods to Build a Triplet

A triplet is a three-dimensional shape that is able to cast three, possibly different, shadows. The input
for a triplet consists of these three desired shadow shapes. They will be called shape planes further
on. The shadow that is cast along an axis of a triplet will be called a shadow plane. For a correct
triplet the shape planes and corresponding shadow planes should hold the same three shapes.

3.1 Shape Planes

In theory, a shape plane could be any two-dimensional shape. But, a shape plane that is defined
by two or more separate components will naturally give a triplet that also has two or more separate
components. This is undesirable due to the difficulty to produce this triplet in real life, for example
with 3D-printing or woodworking. The two components should somehow be connected. A solution
could be to use a thin transparent piece of plastic to connect them. But, because this gets complicated
quickly and is outside the scope of this research, only triplets that consist of one component will
be considered. And thus, shape planes should also consist of one component, or in other words, be
connected.

For the purpose of this research, a shape plane is defined by a 2D grid of square cells. A cell in this
grid can either have an enabled or disabled state. When a cell is enabled, the corresponding triplet’s
shadow plane should have a shadow at this cell’s location. To satisfy the connectivity constraint, a
valid shape plane should be edge-connected. This means that it should be possible to reach each
enabled cell from any enabled cell by traversing through top, bottom, left or right neighboring enabled
cells.



3.2 From Shape Planes to Triplet

When three valid input shape planes are given, a triplet can be created. The dimension of the triplet
will depend on the dimensions of the input shape planes. When all three shape planes are square and
of the same dimension, n x n, the resulting triplet will be built from a 3D grid of n x n x n cubes. It is
also possible to build a triplet that is not cubical with n x m X p cubes. The input shape planes then
need to have dimensions of n X m, n X p and m X p. For this research, only square input shapes with
the same dimensions are considered, meaning that the resulting triplets will be cubical.

To create a triplet from the input shape planes, a simple and straightforward approach can be used
by starting with a 3D grid of cubes and removing cubes which obstruct the light were they should not
according to the shape planes. That is, each shape plane is assigned to an axis of the triplet. The
cubes along such axis are removed that match the location of disabled cells in the corresponding shape
plane. For example, the shape plane assigned to the x-axis will cast a shadow on the yz plane, so all
the cubes along the z-axis with yz coordinates that match coordinates in the shape plane of disabled
cells, are removed. An example of the steps taken to create a triplet can be viewed in Figure 3.

adedi

Figure 3: An example of how a triplet can be generated with letters A, B and C as the shape planes.
First, the letter A is made visible along one axis by removing material from the starting cube. This
process is repeated for the letters B and C along different axis which results in the correct shadow
planes.

Using this approach, a triplet where the shadow planes match the input shape planes, will always
have the maximum number of cubes. It might be possible to remove cubes while still keeping the
shadow planes correct, but adding cubes will always result in shadow planes with erroneous cells.
However, it is not always possible to create a triplet where all the shadow planes are as desired and
correspond to the input shape planes.

Even if all three input shape planes are edge-connected it is still possible to get a triplet that
consists of multiple components, depending on the connectivity property. The connectivity can be
vertex, edge or volume-connected. If a triplet is vertex-connected then all cubes in the 3D grid can
be reached from any other cube by traversing through neighboring cubes where a vertex coincides
with at least one of the eight vertices of the current cube. A triplet is edge-connected if the edge
of a neighboring cube coincides with an edge of the current cube, and volume-connected if the faces
coincide. Thus, if a triplet is volume-connected then it is also vertex and edge-connected. Likewise, if
a triplet is edge-connected, it is also vertex-connected. See Figure 4 for an example.

If a triplet is not connected according to the specified connectivity constraint (vertex, edge or
volume), it will have multiple components. To deal with this problem, only the component with the
most cubes will be kept and smaller components will be removed from the triplet. This will cause the
shadow planes to deviate from the input shape planes but it ensures the preservation of the connectivity
constraint.

3.3 Triplet Evaluation

To assess the accuracy of a triplet, an error score will be calculated. Accuracy is determined by how
well the desired shape planes align with the resulting shadow planes. The score is obtained by counting
the number of grid cells in the shape plane that match those in the corresponding shadow plane. This



Figure 4: An example of the connectivity of a 3D shape. The blue shape is volume-connected. The
shape consisting of blue and yellow cubes is not volume-connected but is edge-connected. The shape
consisting of all cubes is only vertex-connected due to the orange cube.

score is then converted to a ratio of the total number of cells in the grid.

Wrong cells in shadow plane
Grid width - Grid height

Score =

With three shadows, three scores are generated, and their sum yields the final error score. In the case
of a perfect triplet, this error score equals zero. In theory the maximum error score could be 3, if all
cells in all three shape planes are enabled but the triplet is empty, for example.

3.4 Improving Triplet Error Score

To increase the likelihood of obtaining a triplet with low or perfect error score, several strategies can
be employed, one of which is rotating the input shape planes. The rotation of a shape plane can yield
a different triplet with more accurate shadows, which results in a lower error score, see Figure 5. The
resulting shadow will also be rotated, but this is no problem because the user can rotate the triplet
itself to the correct orientation. Each shape plane can be rotated by 0°, 90°, 180° and 270° degrees.
Considering these possibilities for each of the three shape planes, a total of 4> = 64 potential input
combinations are possible to experiment with in search of a perfect triplet. Note that rotating a shape
plane might not give a different triplet when the shape exhibits rotational symmetry.

Figure 5: An example where rotating a shape plane results in more accurate shadows. When the M is
rotated 90° degrees clockwise, the shadow of the B becomes whole, unlike when the M is not rotated.

Another strategy is to mirror an input shape if this results in a different shape plane grid. This can
also give a different triplet and thus increasing the chance of obtaining a perfect triplet. An interesting
property of a triplet is that changing the input order of shape planes will be the same as mirroring a
shape plane. This is due to the triplet being defined in a cube. Changing the shape plane input order
will be used here instead of mirroring.

With three input shape planes, a triplet can be constructed in 43-2 = 128 configurations by rotating
shape planes and altering their order. Each configuration will be tested, and the triplet with the lowest
error score among them will be selected as the final output.
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4 Varying Input Shape Thickness

The error score in a triplet is influenced by the characteristics of the input shapes, which can vary in
size, ranging from large to small, and exhibit diverse morphologies, such as being rounded and bulbous
or lanky and branching. This section aims to investigate the impact of input shape thickness on the
error score of triplets.

First the 26 letters in the Latin alphabet will be considered as input shapes, where thickness can
be seen as the boldness of a font. Then, thickness will be defined as the percentage of cells used in
an input shape which will be generated randomly.

4.1 Input Shape Generation

To test whether shape thickness has an influence on the triplet error score, it is desirable to have a
diverse set of thick and thin shapes. Ideally, the shapes should be close to figures that people will use
to create a triplet. For example, silhouettes of letters, animals or common symbols like a heart, arrow
or cross. It is desirable to have multiple shapes with varying thickness for the same figure.

4.1.1 Font Design

The examination of thickness will initially involve the 26 letters of the alphabet, as they inherently
possess variations in thickness through bold and regular versions. Letters can be creatively used to
form interesting triplets, such as incorporating initials or company name abbreviations. This makes
it compelling to explore what the optimal thickness for letters will be to achieve triplets with either
perfect or minimal error scores.

Three versions of each letter will be created, each varying in thickness: thin, medium and thick.
The letters will be defined on a 14 x 14 grid. This dimension was selected because it is possible to
define all three thickness levels with this size, and it gives enough room to create visually pleasing and
distinct letters.

Inspiration for creating this font with three types of thickness was taken from pixel fonts, as the
font will be defined on a grid of square cells. The cells should be edge-connected, and the font should
be monospaced. Monospaced here means that each letter should extend to all edges of the 14 x 14
grid. This will help achieve triplets with a low error score. When a letter does not extend to all edges,
such as a narrow I, and is used in combination with letters that do extend to all edges, such as M and
W, there will always be an error. This is because it is not possible to cast a shadow to the sides of the
narrow I, as required by the M or W. The font will only contain uppercase characters, as they are easier
to define on a grid and more distinct.

Because the goal is to create distinct letters, it was chosen to make vertical lines thicker than
horizontal lines. This makes sure that for example the I and H, will not have the exact same shape
when one of them is rotated 90° degrees.

To facilitate the creation of the pixel grid font, a dedicated application has been developed for the
easy comparison of letters and thickness variations. It also offers the convenience of importing and
exporting fonts, simplifying adjustments to letter designs and their use within the main application.
This application helps to ensure that the letters are distinct and easily legible. An example of the font
created can be seen in Figure 6. The full font and the three thickness versions can be seen in Appendix

A.

4.1.2 Random Generation

To obtain more insightful results, it was decided to also define a set of input shapes by using randomly
generated shape planes. Another perspective on the thickness of an input shape plane, is the number
of enabled cells in the shape grid, referred to as the fill percentage. Using random shape planes makes
it possible to have shape planes with varying fill percentages. This approach is also expected to yield
more comprehensive results as it theoretically covers all possible input shapes when using a sufficient
number of random samples.

The average fill percentages for the thin, medium, and thick font are 31%, 57%, and 74%, respec-
tively. Exploring additional fill percentages provides a more insightful understanding of the influence
of fill percentage. Observations indicate that randomly generating shapes with a fill percentage lower

11


https://sivanduijn.com/font-designer

ABC
ABC
RBLG

Figure 6: The letters A, B and C of the created font, with varying thickness from thin to thick.

than 30% is not practical because with 30%, the shapes become small and thin which makes it almost
impossible to create a triplet that can cast all three shadows accurately. Thus, the fill percentage will
start at 30%. It will be incremented in intervals of 5% and halted when either no change in error score
is observed or when only perfect triplets are consistently produced.

To generate a random shape plane, it must adhere to the constraint of edge-connectedness and
ensure that at least one cell is enabled at each edge of the grid. To guarantee the latter, initially, one
cell at each edge will be randomly enabled. An example of such an initial shape plane can be seen
in Figure 7. It is important to note that when a cell is selected in the corner, a cell for an adjacent
edge might also be chosen in that same corner. This scenario allows for the possibility that only two
cells are enabled, both in opposite corners, while still satisfying the constraint that at least one cell is
enabled at each edge.

Figure 7: An example of the initial state of a random shape plane before randomly enabling neighboring
cells.

The subsequent step involves randomly selecting a disabled neighboring cell of an enabled cell and
enabling it. This process is repeated until the desired fill percentage is achieved. One drawback of this
approach is that it does not guarantee edge-connectedness. It is possible that the edge cells will not be
connected. To address this issue, an unconnected shape plane is discarded, and the process is repeated
until a shape plane which is edge-connected is obtained. An advantage of this approach is that the
shapes encompass a wide variety of potential inputs for a triplet. In theory, they could represent every
possible edge-connected shape. A few example shapes with varying fill percentages can be observed in
Figure 8.

Another approach is to initially connect the edge cells to ensure edge-connectedness. This can be
achieved by randomly selecting one of the four edge cells and traversing into the shape plane in a
straight line until it aligns with a cell to the left or right of the line, at which point the two cells are
connected with a straight line. Continue traversing until another edge cell is aligned. Connect this
other edge cell in the same manner. This process may leave one cell disconnected. This cell will be
connected to the nearest enabled cell. This manner of connecting these edge cells was used because
it is simple to implement and keeps the number of cells needed to connect all edge cells low. After
connecting the edges, continue adding neighboring cells randomly until the desired fill percentage is
reached.

12
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Figure 8: Examples of random generated shape planes with varying fill percentages on a 14 x 14 grid.

The aim is to create shapes that are close to shapes that would be used in the real world to create
triplets, for example letters, playing card suits, arrows, emoji, and so on. But, upon observing the
randomly generated shapes, it became evident that they can exhibit erratic patterns and often contain
small holes. To address this, the decision was made to assign weights to all possible neighbors that
could be enabled. These weights are used as a probability for randomly selecting a neighbor to enable.
They are proportional to the number of enabled neighbors:

Number of enabled neighbors
4

This can be seen as: “The more neighbors a disabled cell has, the more likely it is to be chosen to
be enabled”, aiming to create more rounded and less capricious shapes. After looking at the resulting
shapes using these weights, it was decided to strengthen the weight by raising it to the power of two.

Some examples of these neighbour weighted shape planes with initially connected edge cells can be
observed in Figure 9. A tool has been developed to inspect the randomly generated shape planes with
varying fill percentages and grid sizes.

sl

30% 50% 70%

Weightij =

Figure 9: Examples of random neighbor weighted generated shape planes with varying fill percentages
where the initial state contains connected edge cells on a 14 x 14 grid.

4.2 Results

For the font input, a triplet was built for each unique three-letter combination of the 26 letters, where
repetition of the same letter in a combination is allowed. This results in a total of 3276 unique
combinations. This process was carried out for each font thickness and connectivity type. The average
error score and the percentage of perfect triplets over the 3276 combinations was recorded. The results
can be observed in Table 1.

Looking at this table it is clear that a bold or thick font performs better than a thin one. The thick
font has a significantly smaller error score than the thin font. The percentage of perfect (error score
of zero) triplets for the thick font is 98.69%, which means that almost all three-letter combinations
result in a perfect triplet. Compare this to the thin font, with only 16.27% of perfect triplets, and it
is evident that a bolder font outperforms a thin font.
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Volume-connected Edge-connected Vertex-connected

Error score | % Perfect | Error score | % Perfect | Error score | % Perfect
Thin font 0.1629 16.27% 0.1629 16.27% 0.1558 16.30%
Medium font 0.0545 40.29% 0.0545 40.29% 0.0521 40.38%
Thick font 0.0003 98.69% 0.0003 98.69% 0.0003 98.69%

Table 1: The average error score and the average percentage of perfect triplets is shown for triplets
built from the 3276 unique combinations of the 26 letters of the alphabet. The results are presented
for each combination of connectivity type and font thickness.

For the randomly generated shape planes with varying fill percentage as input, the same pattern can
be observed. Triplets were built using randomly generated shape planes, starting with a fill percentage
of 30% and ending at 70%, with intervals of 5%. Multiple grid sizes were used to explore whether this
has any impact on the error score. Grid sizes range from 14 x 14 to 30 x 30 with increments of 4. The
connectivity constraint for the triplets is volume-connected. For each combination of fill percentage
and grid size, 4000 triplets were built with three randomly generated shape planes. The results for the
average error score can be seen in Figure 10, and the average percentage of perfect triplets in Figure
11.

Random Shape Planes Neighbor Weighted Shape Planes

T T T T I I I I I I I I I I I I I
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Fill Percentage Fill Percentage
Figure 10: The average error score is plotted against the fill percentage of the input shape planes.
Multiple grid sizes are utilized, ranging from 14 x 14 to 30 x 30.

These plots reveal that a higher fill percentage leads to triplets with a lower error score. For
random shape planes, the initial error score at a fill percentage of 30% is slightly higher than that
of the neighbor-weighted shape planes. In both cases, the error score rapidly decreases until a fill
percentage of around 40% is used. For shape planes with a fill percentage of 60% or higher, the
average error score reaches zero.

The plots depicting the average percentage of perfect triplets exhibit the same trend, showing a
correlation between the increase in fill percentage and the percentage of perfect triplets. Around a fill
percentage of 70% or higher, all triplets achieve an error score equal to zero.

Concerning grid size, it can be observed that there is minimal variation in the error score as the
grid size increases. Both random and neighbor-weighted shape planes exhibit lower error scores with
larger grid sizes compared to smaller ones. However, when examining the average percentage of perfect
triplets, smaller grid sizes appear to be slightly more effective for random shape planes.

The decrease in error scores with higher fill percentages and larger grid sizes can be verified by
calculating the error score using the fill percentage as a probability. The probability for an empty cell
in a shape plane is denoted by f, representing the fill percentage as a probability (e.g., 0.3 or 0.5). An
error occurs for this cell if it is impossible to cast a shadow on that location, determined by the other
two shape planes. They must have disabled cells in the corresponding row or column of the filled cell.
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Figure 11: The average percentage of perfect triplets is plotted against the fill percentage of the input
shape planes. Multiple grid sizes are utilized, ranging from 14 x 14 to 30 x 30.

In other words, the entire beam must be empty for the cell to result in an error. The probability for
one cube in that beam to be empty is 1 — f2, as f2 represents the probability of the cube being filled.
The probability for the entire beam to be empty is (1 — f2)9, where g represents the grid size. The
average error score can be approximated as f - (1 — f2)9 - 3. Figure 12 illustrates this function with
the same fill percentages and grid sizes as before.

This figure reveals a consistent trend of decreasing error scores with higher fill percentages, and
larger grid sizes corresponding to lower error scores. However, the error scores for low fill percentages
and small grids are higher than those for randomly generated shape planes. Large grid sizes show lower
error scores at small fill percentages. That the error scores do not align exactly with those of generated
shape planes can be attributed to the reality that the triplet shadow planes are not independent of
each other, and to the fact that the calculated error score applies to all shape planes.

Calculated Error Probabilities
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Figure 12: The calculated error score is plotted against the fill percentage of the input shape planes
for grid sizes ranging from 14 x 14 to 30 x 30.

5 Removing More Cubes
The construction process of triplets produces an output with the maximum number of cubes while

ensuring accurate shadow planes. This process involves cutting away, from each direction, an extrusion
of the inverted desired shape plane. Specifically, an extrusion of the disabled cells in the shape plane.
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In other words, an extrusion of the inverted shape plane is ‘cut away’ in each direction, allowing the
enabled cells in the shape plane to remain as cubes in the triplet and cast shadows. Because of this
the resulting triplet volume will always contain the maximum number of cubes. However, it could be
possible to reduce the number of cubes while maintaining correct shadow planes. This section seeks to
determine the minimum number of cubes required for the creation of perfect triplets using the 14 x 14
grid sized letters.

To answer this, cubes will be removed from perfect triplets created from the medium-boldness
letter combinations, of which the font can be seen in Figure 20. There are 1344 perfect triplets for
this font. Here, ‘perfect’ signifies triplets with an error score of zero. Since these triplets’ shadow
planes are error-free, the logical approach is to only remove cubes that preserve the shadow planes
when removed. This ensures that the triplet stays error-free.

The process of selecting a cube for removal from the triplet grid volume involves a random choice
from all possible removable cubes. As previously mentioned, a cube can only be removed if doing so
maintains the same shadow planes, ensuring the triplet stays error-free. Additionally, cubes situated
on the interior should be retained to avoid creating a hollow shape. It does not make sense to remove
cubes on the inside since this would not be visible to the observer. It is also undesirable for 3D
printing because it makes the shape harder to print and the mesh will inherently be hollow when
printed depending on the infill structure generated by the 3D printing software. While hollowing
might make sense in some contexts, like reducing the weight or adjusting the center of gravity, it is not
applicable here. Therefore, only cubes with a face adjacent to an empty cube, or ‘air’, can be selected
for removal.

Another aspect to keep in mind is that removing a cube might introduce edge-contacts. Edge-
contacts appear when an edge shares more than two faces, see Figure 13. These edge-contacts make

the model not be a manifold anymore.
Iﬁ y »
\ =

> /

\

Figure 13: An example of an edge-contact in a triplet. The highlighted edge is shared by four faces.

A manifold 3D model is characterized by well-defined geometry at every point on its surface,
presenting a smooth, continuous structure without self-intersections or irregularities. Slicing software,
responsible for generating walls, infill, and support structures, and converting models into 3D printing
instructions, prefers manifold models due to their ease of interpretation and processing. This preference
ensures a more accurate and reliable printing process. Conversely, non-manifold models may show
issues like self-intersections, holes, or irregularities. Such challenges make it difficult, or even impossible,
for slicing software to process the model into 3D printing instructions. For this reason, cubes that
cause edge-contacts when removed, are not permitted to be removed.

Using these constraints for cubes that can be removed, a set can be computed containing all possible
cubes for removal. From this set, a cube is randomly selected and removed from the triplet volume.
Then, the set will be recalculated and another cube will be removed. This continues until the set is
empty, meaning that there are no cubes that are on the outside and can be removed without altering
the shadow planes or introducing edge-contacts.

Utilizing random selection, the number of cubes within a triplet after consecutive removals until
further removal is impossible, may not reach the absolute minimum. Instead, it represents a local
minimum. To approach closer to the absolute minimum, the minimum value is used from ten runs for
each medium-boldness letter combination.

Upon removing cubes from all letter combinations, the results for ten letter combinations are
summarized in Table 2. The average minimum number of cubes across all triplets is 333, with an
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average maximum number of cubes removed being 390. See Figure 14 for a visualisation of three
example triplets before and after removing cubes.

Letters | Initial | Removed | Minimum
AGR 775 437 338
BFG 662 339 323
BLW 677 342 335
CRW 870 508 362
DNU 990 582 408
FLM 616 303 313
GNN 991 564 427
HIP 542 257 285
HLN 680 334 346
MPS 713 398 315

Average 723 390 333

Table 2: The initial and (best local) minimum number of cubes for ten triplets from perfect medium-
boldness letter combinations. The best local maximum number of removed cubes is shown and the
average over all 1344 perfect medium-boldness letter combinations.

Upon reviewing these results, it becomes evident that the minimum number of cubes required to
maintain perfect shadow planes is relatively low. Considering the total number of cubes that could
potentially be used, calculated as 14 - 14 - 14 = 2744, the average minimum number of cubes needed,
333, accounts for only 12.1% of this total. However, it is not practical to use all cubes, as doing so
would result in a square cube with all shadow planes being a square as well. But, these results suggests
that, on average, more than half of the initial number of cubes can be removed.

This indicates that a triplet constructed using the method outlined here—taking intersections
of the three input shape planes—retains a significant number of cubes that could still be removed
while maintaining correct shadow planes. This leaves room to further modify a triplet, for example,
enhancing its complexity and visual appeal.

6 Reducing Recognisability of Triplets

In the previous section, it became clear that, on average, more than half of the initial cubes could
be removed for perfect medium-boldness letter combinations. However, upon examining the three
example triplets in Figure 14, it could be said that attempting to remove the maximum number of
cubes, results in thin, erratic, and unappealing triplets. Consequently, these triplets are also difficult
to 3D print and are fragile due to thin structures. This section aims to make triplets more interesting
by selectively removing only certain cubes.

What makes a triplet interesting? Perhaps its size, the shapes of its projected shadows, or keeping
the center of gravity in the middle. Arguably the most intriguing aspect of a triplet is its ability
to cast three different shadows, which may not be immediately apparent when examining the triplet
object itself. The observer must observe the triplet in the correct orientations to view all three shapes.
However, sometimes it is easy to recognize all shapes at a glance in a triplet. For instance, in the
triplets shown in the left column of Figure 14, it is straightforward to identify the letter P in the MPS
triplet as well as the letters B and F in the BFG triplet, and R in the WRC triplet.

6.1 Reducing Number of Cubes in a Slice

This motivates the objective of making triplets less recognizable by reducing the number of cubes in a
slice. A slice, in this context, refers to all the cubes within a plane of the triplet volume while keeping
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Figure 14: Examples of three triplets from the letters MPS, BFG and WRC, before (left column) and after
(right column) removing the (local) maximum number of cubes.

the other axis constant. For example, a slice could encompass all the cubes in the XY plane where z
equals 3. If most of the cubes of a shape plane are contained within one slice, an observer only needs
to examine this plane to determine which shape is being displayed. Even from an angle, it can be easy
to recognize. By reducing the number of cubes in a slice, the shape will be formed by structures in the
triplet which are further away in depth. As a result, the observer must hold the triplet in precisely
the right orientation for the structures to align perfectly, revealing the intended shape.

To achieve this objective, cubes for removal will not be selected at random but instead will use a
weight to determine the probability of being selected. Each cube that is allowed to be removed will be
assigned a weight based on the number of cubes in that slice of the triplet. More precisely, the weight
will be calculated as the ratio between the number of cubes in the slice and the number of cells in the
corresponding shadow plane. When the number of cubes in the slice equals the number of cells in the
shadow plane, the slice will exactly resemble the shadow plane, and the weight will be 1, indicating
that removing a cube in that slice is preferable. Calculating the ratio of the number of cubes in a
slice to the number of cells in the corresponding shadow plane ensures equal weighing regardless of the
shape’s fill percentage, whether high or low. For instance, the letter I with a low fill percentage and
the letter M with a high fill percentage will be weighted equally. Since there are three planes, three
weights will be determined, and their average will yield a final weight ranging from 0 to 1. The full
equation will be:
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Here, Z:o ZZ:O cubegyy, can be seen as the sum of cubes in the XY plane slice with depth k and
grid size g. cellsShadowPlanexy represents the number of enabled cells in the XY shadow plane.
Note that this weight depends on other cubes in the triplet volume. This means that when a cube is
removed, the weights for other cubes that depend on the removed cube need to be recalculated.

6.2 Avoiding Removing Cubes that Introduce Edges

Another improvement that could be made while removing cubes, is to keep the number of edges to
a minimum. Since having a lot of edges can make the triplet look erratic and messy, it is preferable
to keep flat surfaces intact. For example, when there is a flat surface section on the outside of the
triplet, removing a cube from this area might be deemed unsightly and irregular. It would introduce
a hole. This removal would increase the number of edges surrounding the affected cube from 0 to 12,
as depicted in Figure 15. Removing a cube which keeps the number of edges of a triplet minimal is
preferable.

Note that here, each edge has a unit length, so the triplet is seen as the union of unit cubes.
For example, a rectangular parallelepiped with a width, height and length of 1 x 1 x 3, would have
44443 -4 =20 edges.

Figure 15: An example where a cube is removed from a flat surface.

The weight to keep the number of edges minimal is calculated by determining the difference in edges
when a cube is removed. For example, the optimal choice would be to remove a cube situated on an
otherwise flat surface. Removing such a cube would decrease the number of edges by 12. Conversely,
removing a cube from a flat surface as depicted in Figure 15, would add 12 edges. Therefore, the
difference in edges when removing a cube ranges from —12 to +12.

To ensure a value between 0 and 1, the weight for each cube is determined as follows:

12 — AFEdges
24

where AFEdges stands for the difference in number of edges of a triplet after removing cube; .

Note that removing a cube from a flat surface will result in a AFdges value of 12, indicating that
the weight of such a cube is 0. Therefore, any cube that would increase the number of edges by 12
will not be selected for removal. This precaution is intentional, as it is undesirable to remove a cube
from a flat surface.

EdgeW eightCube;ji, =

6.3 Combining Weights

Now, there are two weights for each cube, a slice fill ratio weight and a number of edges weight. These
need to be combined to get one final weight and use that as a probability for selecting a cube for
removal. The most straightforward approach is to just take the average of the two. But, when looking
at the resulting triplet shape, it was found that the difference to a triplet shape which used random
selection cube removal, was minimal, see Figure 16a and 16b. The slice fill ratio is visibly reduced but
it still exhibited cubes removed from flat surfaces and looked erratic and scraggly.
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The two weights can also be combined using a ratio. For example, 20% can be taken from the
slice fill ratio weight and 80% from the edge weight. The weights can also be scaled, allowing for
the strengthening of the weights, making it even less likely for a cube to be chosen for removal if it
introduces edges or resides in a slice with few cubes.

Using this, an equation can be constructed as follows:

FinalWeight = (r - EdgeW eightCube + (1 — ) - SliceW eightCube)P (1)

Where r expresses the ratio between EdgeWeightCube and SliceW eightCube when combined.
p determines how strong the weights are, meaning initially small weights are even small, and large
weights are even larger.

To determine the best values for r» and p, exploration of various combinations was undertaken in
the developed application to find the optimal balance between reducing the number of cubes in a slice
and keeping the number of edges to a minimum. Optimal would be to create a triplet of which the
shapes are not easy to recognise when looking at the triplet shape, but the triplet also does not look
erratic due to a lot of edges. While fine-tuning these numbers, care was taken to ensure that the
triplet did not contain excessively fragmented structures and that it remained visually pleasing. After
experimentation, » = 0.6 and p = 9, resulted in visually interesting triplets that were not erratic, see
Figure 16¢.

Figure 16: Examples of triplets where 250 cubes are removed with different weight calculations
for selecting cubes for removal. (a) Random selection. (b) Weighted with SliceW eightCube and
EdgeW eightCube combined using the average of the two. (c) Weighted using Equation 1 with » = 0.6
and p=09.

6.4 Weighted Removing Results

To assess the difference between removing cubes using weights and randomly removing cubes, an
experiment was conducted. This involved trying to remove 250 cubes from all perfect triplets generated
from medium-boldness letter combinations. It was chosen to remove 250 cubes because this number
is less than the average minimum required cubes (see Table 2), but still high enough to affect the
triplet shape sufficiently. Note that there might be triplets for which the maximum number of cubes
to remove is less than 250. In these cases the maximum number was taken. The average number of
removed cubes over all letter combinations is 244 for random removal and 247 for weighted removal,
which is close to the desired 250.

The number of edges and the maximum slice fill ratio of all slices were recorded before and after
removing the cubes. These numbers were averaged over ten runs for each three-letter combination.
See Table 3 for the results from ten randomly selected letter combinations, along with the average over
all 1344 perfect medium-boldness letter combinations.

Upon examining this table, it becomes evident that for both random and weighted removal, the
slice ratio decreases, and the number of edges increases after removing 250 cubes. The increase in
number of edges makes sense because the initial triplet exhibits a substantial number of flat surfaces,
see Figure 17a. The difference between random removal and weighted removal is minimal concerning
the maximum slice fill ratio. The slice fill ratio for weighted removal is slightly lower, indicating that
the weight did indeed have an effect. The marginal difference could stem from the fact that there are
fewer cubes that can be removed without compromising the shadow planes around a slice fill ratio of
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Before removing | Random removed 250 | Weighted removed 250
Slice ratio | Edges | Slice ratio Edges Slice ratio Edges
AGR 0.91 952 0.64 1758 0.61 966
BFG 1.00 580 0.72 1412 0.62 742
BLW 1.00 476 0.74 1438 0.63 705
CRW 1.00 1028 0.79 1895 0.73 1006
DNU 1.00 772 0.85 1926 0.83 954
FLM 1.00 372 0.74 1266 0.66 685
GNN 1.00 1016 0.81 2072 0.79 1107
HIP 1.00 464 0.69 1200 0.60 725
HLN 1.00 408 0.74 1394 0.66 676
MPS 0.94 902 0.67 1585 0.58 937
Average 0.99 705 0.73 1545 0.66 852

Table 3: The maximum ratio of number of cubes in a slice to the number of cells in the corresponding
shadow plane and the number of edges, averaged over ten runs for each medium-boldness three-letter
combination. Values are shown from before removing cubes and after removing 250 cubes randomly
and using weights with Equation 1 with » = 0.6 and p = 9. The average is shown from all 1344 perfect
letter combinations.

0.7. Alternatively, it could be that randomly removing cubes is already effective in reducing the slice
fill ratio.

However, upon evaluating the number of edges, weighted removal results in significantly fewer edges
than random removal. The average number of edges for weighted removal is slightly higher than before
removal, and even lower for some letter combinations like CRW. Although it is slightly higher, the slice
fill ratio is reduced substantially. This demonstrates that the weight had a pronounced effect on the
triplet shape.

When inspecting various example triplet shapes, as depicted in Figure 17, it becomes evident that
utilizing weighted removal yields different triplet shapes than random removal. The triplets generated
through random removal could be characterized as a disorganized assemblage of cubes, whereas those
formed via weighted removal exhibit smoother surfaces, are tidier and more structured.

7 Conclusions

This research examined the intersection of mathematics with art and font design, presented a method
to construct and assess triplets, investigated the impact of input shape fill percentage on triplet error
scores, and explored a technique to enhance the visual appeal of triplet shapes. Additionally, an
application was developed to play and experiment with triplets.

Initially, an overview of the history of mathematics, perspective, and computer science in art and
font design was provided. This overview highlighted the increasing popularity of mathematical and
graphical computer science concepts, encompassing topics such as the golden ratio, the Mandelbrot
set, fractals, and harmonographs. Additionally, the significance of shadows in art projects that involve
illusions was discussed, along with the evolution of font design from traditional calligraphy to modern
fonts tailored for screen usage. These three concepts resulted in the introduction of the triplet—a 3D
shape projecting three shadows.

To explore the influence of input shape thickness on triplet error scores, a monospaced pixel font
with three distinct boldness styles was developed. Subsequently, a technique for randomly generating
semi-realistic input shapes was developed and utilized.

A correlation between the ‘thickness’ of input shapes and triplet error scores was found. Specifically,
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(a) (b) (c)

Figure 17: Examples of triplets where 250 cubes were removed. Column (a) shows the triplets without
removal, column (b) after random removal and column (c) after weighted removal using Equation 1
with » = 0.6 and p = 9.

higher fill percentages of input shapes resulted in lower error scores, with fill percentages of 70% or
higher yielding perfect triplets with zero errors. Surprisingly, larger grids for input shapes led to
marginally lower error scores, contrary to initial expectations. This might be against intuition but can
be explained by noting that the larger the grid, the lower the influence of a single erroneous cell on the
total error score. These findings were further validated through calculations of expected error scores
based on probabilities for various fill percentages.

The technique used to construct triplets gives a shape that uses the maximum number of cubes
for correct shadows. Remarkably, for perfect triplets generated from the medium boldness font, it was
possible to remove half of the initially required cubes while retaining correct shadows. This creates
room for experimentation with triplet shapes.

So, efforts were made to enhance the visual appeal of triplets by adjusting the ratio of cubes in a
slice to the number of cells in the corresponding shadow. This involved using weights that consider
both the maximum slice fill ratio and the number of edges of a triplet. By removing 250 cubes from
medium boldness letter triplets using these weights, it was possible to create triplets characterized as
more enigmatic, yet still structured, compared to randomly removing the same number of cubes.
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7.1 Future Research

Although this research has explored intriguing aspects of triplets, there are opportunities for further
investigation to broaden the understanding of triplet creation.

Presently, letters and randomly generated shapes serve as input. While these encompass a diverse
range of shapes, gaining insights from commonly used input shapes, such as symbols, primitives, and
other signs converted into a 2D cell grid, could provide additional value. While the initial aim was to
generate shapes randomly to cover all potential forms, using large grid sizes led to the emergence of
recurring patterns. It may be beneficial to employ a set of primitive shapes and randomly selecting a
few for placement at various rotations and locations on the grid. This approach could offer a broader
variety and more realistic shapes for input.

Limitations arise from the use of a grid for both input and output shapes. For instance, smooth
curves cannot be expressed in a triplet, and fine details are constrained by the input grid size. Although
increasing the input grid size could give higher resolution, it may significantly impact performance.
Alternatively, allowing triangles within input shape cells, composed of three of the four corners of a
cell, could facilitate diagonal structures and slightly rounded shapes. See Figure 18 and this demo
application for an example.

Another limitation is the lack of exploration into combining different input shape dimensions to
create non-cubical triplets. For example, combining input shapes with dimensions n X m, n X p, and
m X p could yield a valid triplet with dimensions n x m x p. This would allow the usage of a font
where letters have different widths.

To further reduce the error score and accommodate various input shape dimension combinations,
incorporating thin cells between each cell of the input shapes could be beneficial. This would enable
thin structures to display parts of one shadow without interfering with the other two, see Figure 18
for an example.

Figure 18: An example were thin intermediary cells are utilized to make the letter combination WUI
possible, where the U and I are narrower than the W. Half cells are also used to accommodate the U
and W shape.

Exploring alternative methods for cube removal is another potential research topic. Removing
predefined structures at a time, rather than individual cubes, could improve the overall visual appeal
of triplets by eliminating protruding cubes. Additionally, one could consider the physical properties of
triplet shapes, such as the center of gravity. By strategically removing cubes to maintain the center of
gravity at the center, triplets could be suspended on a wire and rotated to display all three shadows
sequentially using a single light source. Furthermore, optimizing triplets for 3D printing by minimizing
the need for support structures presents another direction for future research.

23


https://triplet-designer.vercel.app

References

Pankaj K. Agarwal and Joseph O’Rourke. “Computational Geometry Column 34”. In: Interna-
tional Journal of Computational Geometry and Applications 08 (1998), pp. 637-642.

Aries Arditi and Jianna Cho. “Serifs and font legibility”. In: Vision research 45.23 (2005),
pp- 2926-2933.

Michael Barnsley, John E Hutchinson, and Orjan Stenflo. “V-variable Fractals and Superfrac-
tals”. In: arXiv preprint math/0312314 (2003).

Roy R Behrens. Fonts and Logos: Font Analysis, Logotype Design, Typography, Type Comparison,
and History. 2001.

Fan Pen Chen. “Shadow theaters of the world”. In: Asian Folklore Studies (2003), pp. 25-64.

Erik D Demaine and Martin L Demaine. “Fun with fonts: Algorithmic typography”. In: Theo-
retical Computer Science 586 (2015), pp. 111-119.

Keith Devlin. “The myth that will not go away”. In: Mathematical Association of America (2007).

Casper van Dommelen, Marc van Kreveld, and Jérome Urhausen. “Spiroplots: a New Discrete-
time Dynamical System to Generate Curve Patterns”. In: Bridges 2020 Conference Proceedings.
Tessellations Publishing. 2020, pp. 353-360.

Stephan Fiissel. “Gutenberg and today’s media change”. In: Publishing research quarterly 16.4
(2001), pp. 3-10.

James L. Hunt, BG Nickel, and Christian Gigault. “Anamorphic images”. In: American Journal
of Physics 68.3 (2000), pp. 232—-237.

Prutsdom Jiarathanakul. Ray marching distance fields in real-time on webgl. Tech. rep. Citeseer,
2012.

JJA Keiren, Freek van Walderveen, and Alexander Wolff. “Constructability of trip-lets”. In:
Abstracts 25th European Workshop on Computational Geometry (EuroCG’09, Brussels, Belgium,
March 16-18, 2009). 2009, pp. 251-254.

Mario Livio. The Golden Ratio: The story of phi, the world’s most astonishing number. Crown,
2008.

Thomas Lowe. What is a Mandelboz. 2010. URL: https://sites.google.com/site/mandelbox/
what-is—-a-mandelbox.

Matthew Luckiesh and Frank Kendall Moss. Reading as a Visual Task. D. Van Nostrand Com-
pany, Incorporated, 1942.

John Man. The Gutenberg Revolution. Random House, 2010.
Benoit B Mandelbrot. The Fractal Geometry of Nature. Vol. 1. WH freeman New York, 1982.

Benoit B Mandelbrot, Carl JG Evertsz, and Martin C Gutzwiller. Fractals and Chaos: the Man-
delbrot set and beyond. Vol. 3. Springer, 2004.

Marshall McLuhan et al. The Gutenberg Galaxy: The making of typographic man. University of
Toronto Press, 2011.

Carmen Moret-Tatay and Manuel Perea. “Do serifs provide an advantage in the recognition of
written words?” In: Journal of Cognitive Psychology 23.5 (2011), pp. 619-624.

WI Newman, DL Turcotte, and AM Gabrielov. “Fractal trees with side branching”. In: Fractals
5.04 (1997), pp. 603-614.

Inge C Orr. “Puppet theatre in Asia”. In: Asian Folklore Studies (1974), pp. 69-84.
Donald Gildersleeve Paterson and Miles Albert Tinker. How to make type readable. 1940.

James Pommersheim. Number Theory: A Lively Introduction with Proofs, Applications, and Sto-
ries. John Wiley & Sons, 2010.

Clifford A Reiter. Sierpinski Fractals and GCDs. Elsevier, 1998, pp. 169-175.

Tim Roggen. Trip-lets: Constructability of trip-lets in theory and in practice. Dept. of Information
and Computing Science, Utrecht University, 2023.

24


https://sites.google.com/site/mandelbox/what-is-a-mandelbox
https://sites.google.com/site/mandelbox/what-is-a-mandelbox

Dan Romik. “Shortest paths in the Tower of Hanoi graph and finite automata”. In: STAM Journal
on Discrete Mathematics 20.3 (2006), pp. 610-622.

Vinicius da Silva and Tiago Novello. “Real-time rendering of complex fractals”. In: Ray Tracing
Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX (2021), pp. 529—
544.

Andy Sloane. Have a donut. 2006. URL: https://www.alkOn.net/2006/09/15/obfuscated-c-
donut.html.

Tan Stewart, WS Anglin, and Kim Williams. “The mathematical tourist”. In: The Mathematical
Intelligencer 19 (1997), pp. 39-49.

Victor I Stoichita. Short History of the Shadow. Reaktion Books, 1997.

Robert J Whitaker. “Harmonographs. ii. circular design”. In: American Journal of Physics 69.2
(2001), pp. 174-183.

Daniel White. “Further exploration of the 3D mandelbulb”. In: The Unravelling of the Real 3D
Mandelbrot Fractal (2009). URL: https://www.skytopia.com/project/fractal/2mandelbulb.
html.

Endymion Porter Wilkinson. Chinese History: a manual. Vol. 52. Harvard University, Asia Cen-
ter, 2000.

Tom Wright. “History and technology of computer fonts”. In: IEEE Annals of the History of
Computing 20.2 (1998), pp. 30-34.

25


https://www.a1k0n.net/2006/09/15/obfuscated-c-donut.html
https://www.a1k0n.net/2006/09/15/obfuscated-c-donut.html
https://www.skytopia.com/project/fractal/2mandelbulb.html
https://www.skytopia.com/project/fractal/2mandelbulb.html

STUUWXYZ

Figure 20: Medium version of the font.

RABCDEFGHI
JKLMNOPOR
STUUVHXYZ

Figure 21: Thick version of the font.

B Triplet Designer Application

An application has been developed to create and visually inspect triplets. The goal was to create an ap-
plication that is user friendly and is easy to understand. It can be viewed at www.sivanduijn.com /triplet-
designer.

It contains functionality to draw your own input shape planes on a user specified grid size. It is
also possible to create triplets from letters using the font described in Appendix A with three boldness
levels. The user can also randomly generate shape planes. Here, the neighbor weighted random
generation is used. Cube removal is supported where the weighted removal is used. The created triplet
shape can be exported to a .stl file.

Heavy calculations, like triplet creation and cube removal, are done in web assembly which is
compiled from Rust code.
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