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ABSTRACT  

Plastic litter is reckoned as an issue of global concern due to its prevalent and ubiquitous nature 

and its detrimental impact on wildlife and ecosystems. One of the ways by which plastic is hypothesized 

to cause harm to the environment is through the release of potentially toxic additives.  

To date, numerous plastic additives are known toxic to human health and the environment. 

However, most environmental risk assessment (ERA) studies and regulatory frameworks do not 

consider plastic additives and their release, leading to a biased and incomplete understanding of the 

ecological implications of plastic pollution. This stems from the lack of accurate and complex 

mathematical tools that represent the complexity of additive release kinetics and the numerous factors 

implicated. Addressing this gap, this study introduces an Additive Release Model (ARM), designed to 

estimate additive losses from plastic litter in aquatic environments. The ARM is intended to implement 

existing models on plastic accumulation and distribution in the environment, allowing a more complete 

and realistic Plastic Environmental Risk Assessment. 

In the designed ARM, Fick’s second law was used as the core equation of the model and two 

consecutive steps were considered, namely internal and external additive diffusion. The factors 

temperature, time, water presence, additive molecular weight (MW), polymer type, and polymer size 

were included. To overcome limitations in input data availability, the Piringer Equation was included in 

the model to estimate worst-case scenario additive Diffusion Coefficients (D*p). This model was then 

used to investigate the release of decabromodiphenyl ether (decaBDE), octabromodiphenyl ether 

(octaBDE), pentabromodiphenyl ether (pentaBDE), and 1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE) 

from Acrylonitrile Butadiene Styrene (ABS), High Impact Polystyrene (HIPS), Polypropylene (PP), and 

Polyamide (PA) polymers. These additives and polymers are commonly found in old and recycled 

Electronic and Electrical Equipment (EEE) devices. To validate the ARM and its output, we introduced a 

positive control. This control was used to compare the ARM's predictions with empirical measurements 

of additive release and diffusion coefficients (Dp) reported in the literature. 

The ARM proved to be a reliable tool for replicating trends in additive release, particularly under 

internally-controlled diffusivity and using empirically estimated diffusion coefficients (Dp). In line with 

previous literature, the ARM modeled cumulative additive release over time and release rates 

escalating with temperature. Notably, low-molecular-weight additives, such as pentaBDE and BTBPE, 

exhibited the highest release indices from every polymer, irrespective of conditions. Consistent with 

other studies, a direct correlation was observed between polymer type, additive diffusivity, and 

additive release, with more amorphous polymers demonstrating higher release rates. However, the 

reliability of our input dataset came into question due to the inaccuracy of certain assumptions 

introduced to overcome the scarcity of input data. Nevertheless, the author was aware of the 

uncertainties and evaluated the output accordingly. 

To conclude, the ARM developed in this study represents a preliminary valuable tool to estimate 

additive release from amorphous polymers. It marks a significant step towards a more comprehensive 

plastic environmental risk assessment (ERA). Yet, further research is needed to increase the complexity 

and reliability of the ARM  
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LAYMAN SUMMARY  

Plastic serves society in many beneficial ways. Its affordable, versatile, durable, and lightweight 

nature explains the increasing demand for this material. Looking ahead, plastic production and use are 

expected to increase in the coming years. However, plastic also is considered a global environmental 

concern as large quantities of plastic items are lost in the environment each year. Once in the 

environment, plastics can harm wildlife, ecosystems, and the quality of natural resources that society 

relies on. 

 

One of the ways by which plastics are known to be harmful to the environment and human 

health is through the release of chemical additives from plastic materials. Additive release refers to the 

leaching of additives from plastic materials into the surrounding environment, including water, soil, 

food, and organisms. These chemical additives are crucial for achieving specific functional properties 

in plastics. For instance, certain chemical additives can enhance plastic’s flexibility, durability, or 

resistance. Nonetheless, many of these chemicals are toxic, and, once released, they become available 

and potentially hazardous, 

 

Additive’s release is affected by the physicochemical characteristics of the plastics and the 

additive chemicals (e.g. different in size, solubility, volatility) and by the different environmental 

conditions (e.g. exposure to ultraviolet (UV) light, microbial degradation). As it is a complex chemical 

process, not many studies on plastics' environmental impact include additives and their release. To 

cover that gap and aid with the implementation of plastic pollution studies, the purpose of this study 

is to develop an Additive Release Model (ARM), a mathematical model designed to estimate additive 

losses from plastic litter in aquatic environments. Mathematical models are useful tools that translate 

real-world systems (i.e. the release of additive chemicals from plastic materials) into mathematical 

equations and correlations.  

 

Our ARM proved to be a reliable tool to mirror trends in additive release under specific 

conditions when using empirically estimated input data on Diffusion Coefficients. It accurately modeled 

cumulative additive release over time, with release rates increasing with temperature. Notably, low-

molecular-weight additives (i.e. the chemicals pentaBDE and BTBPE) exhibited the highest release 

indices from every polymer under any given condition. Consistent with existing literature, a direct 

correlation was observed between polymer type, additive diffusivity, and additive release, with more 

amorphous polymers showing higher release rates. However, the criteria for collecting the input 

dataset must be implemented. 

 

Despite further research is needed to increase the complexity and reliability of the model, our 

ARM represents a valuable tool for estimating additive release from flexible and amorphous plastic 

materials. This model marks a significant step towards a more complete and reliable plastic 

environmental risk assessment (ERA). 
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ABBREVIATIONS 

ABS – Acrylonitrile Butadiene Styrene  

ADM – Accumulation and Distribution Model  

ARM – Additive Release Model  

BPA – Bisphenol A 

BTBPE – 1,2-Bis(2,4,6-

tribromophenoxy)ethane 

BzBP – Benzylbutyl phthalate 

DEHP – Bis(2-ethylhexyl) phthalate  

DEP – Diethyl phthalate 

decaBDE (BDE-209) – Decabromodiphenyl 

ether 

DiBP – Di-isobutyl phthalate 

DMP – Dimethyl phthalate 

DnBP – Di-n-butyl phthalate 

DPP – Dipropyl phthalate 

EEE – Electronic and Electrical Equipment  

HIPS – High Impact Polystyrene 

MW – (additive) Molecular Weight  

octaBDE – Octabromodiphenyl ether 

PA – Polyamide 

PAHs – Polycyclic Aromatic Hydrocarbons 

PBCs – Polychlorinated biphenyls 

PBDEs – Polybrominated diphenyl ethers 

pentaBDE – Pentabromodiphenyl ether 

PE – Polyethylene (PE) 

PP – Polypropylene 

PVC – Polyvinylchloride (PVC) 

TCPP – Tris(1-chloro-2-propyl) phosphate 
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INTRODUCTION 

Plastic materials are synthetic organic polymers made of repeating monomer units. Plastic 

polymers' light, durable, multipurpose, and inexpensive nature explains the increasing popularity and 

demand for these materials (Andrady & Neal, 2009; Filho et al., 2021). Indeed, since the start of mass 

plastic consumption in the 1950s, plastic use and production have increased exponentially (UN 

Environment Program, 2016). In 2018, global plastic production reached 359 million tonnes (Plastics 

Europe., 2022). Looking ahead, plastic production is expected to reach ca. 1800 million tonnes in 2050 

(UN Environment Program, 2016).  

In addition, plastics also contain a wide variety of chemical additives. Such additives are 

intentionally embedded in the primary polymeric matrix to maintain, enhance, and achieve specific 

and valuable properties. This includes, for example, improving flexibility, preventing adhesion, reducing 

flammability, and preventing heat deterioration and oxidation. Furthermore, processing aids that ease 

and enable the production and processing of polymers can also be found in plastic materials. Beyond 

these intentionally added chemicals, non-intentionally added substances (NIASs) such as byproducts, 

contaminants, and breakdown products are also commonly present (Barrick et al., 2021; Bridson et al., 

2021; Wiesinger et al., 2021).   

Plastic has been highlighted as an issue of global concern due to its prevalent and ubiquitous 

nature and its detrimental impact on wildlife and ecosystems (European Environment Agency, 2023; 

Lambert & Wagner, 2017). The systematic loss of plastic products into the environment at every stage 

of their life cycle has led to plastic accumulation in various environmental compartments (Gallo et al., 

2018; Groh et al., 2019). The uptrend in plastic demand, production, and use is expected to aggravate 

plastic environmental pollution and its associated impact. Indeed, global emissions were modeled to 

8.7 million tonnes (mt) for macroplastics and 0.8 mt for microplastics in 2017 (Schwarz et al., 2023). By 

2050, macro and microplastic emissions are expected to reach 2.2 gigatonnes (Gt) and 3.1 Gt, 

respectively, under the business-as-usual scenario (Schwarz et al., 2023).  To tackle the environmental 

impact of plastic litter, it is essential to predict the environmental fate and concentration of plastics in 

different environmental compartments. To that aim, several mathematical models have been 

developed (Sheela et al., 2022; Uzun et al., 2022a). Such mathematical models integrate the various 

transport, transformation, and (bio)degradation processes that ultimately determine the 

environmental occurrence of plastic litter. For instance, Material Flow Analysis (MFA) models have been 

used to estimate the emissions of macro and microplastics into the environment from the plastic value 

chain and into multiple environmental compartments. This type of approach allows the prediction of 

plastic emissions into aquatic and terrestrial ecosystems from different industrial sectors and the 

accumulation patterns at the regional and global scale (Kawecki & Nowack, 2019; Schwarz et al., 2023).  

Yet, the environmental impact of plastic litter goes beyond its accumulation in natural and 

anthropic environments. One of the ways by which plastic litter is hypothesized to be harmful to the 

environment is through the release of plastic additives. While embedded in the polymer matrix, 

additives pose no or limited toxicity due to their low bioavailability and reduced mobility (Viljoen et al., 

2023). However, most additives are not chemically bound to the polymer matrix, they can be easily 

released from the polymer matrix through migration and leaching processes, under certain conditions, 

and at every stage of the plastics life cycle  (Barrick et al., 2021; Bridson et al., 2023; Hahladakis et al., 

2018; Luo et al., 2022). Additive release has been often reported for plastics in use, with packaging 

materials being extensively studied (Groh et al., 2019). Additionally, recent studies have shown an 

increase in the additive release rate following plastic littering into the environment. In most cases, such 

increase is explained by aging processes, such as degradation and fragmentation, endured by plastic 
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materials, which alter the initial additive-polymer configuration, facilitating additive loss (Hahladakis et 

al., 2018; H. Liu et al., 2020; Paluselli et al., 2019; Teuten et al., 2009). Several studies have delved into 

the adverse environmental and health effects associated with plastic-related additives, with some 

reporting potentially toxic additive concentrations in ecological compartments (Chen et al., 2023; 

Fauser et al., 2022; He et al., 2015; Tang et al., 2015, 2016; L. Zhang et al., 2015). Hence, the 

environmental risk posed by plastic depends not only on the occurrence and accumulation of plastic 

polymers themselves but also on the release of potentially toxic additives.  

However, despite the growing scientific evidence and concern about the environmental toxicity 

of plastic additives, most impact assessment studies either do not consider plastic additives or are 

solely focused on a selection of well-known and frequently used chemicals (Bergmann et al., 2022; 

Lebreton et al., 2018; Martin et al., 2017; Matsuguma et al., 2017; Napper et al., 2020; Nawab et al., 

2023). The scarce inclusion of additive chemicals is also evident in many current circularity initiatives 

and regulatory actions (Hahladakis et al., 2018; Stenmarck et al., 2017; Wiesinger et al., 2021). Such a 

trend may account for the limited, scattered, and heterogeneous information on plastic additives, non-

harmonized regulations, and the rapid incorporation of new chemicals into the market (Aurisano et al., 

2021; Groh et al., 2019; Wiesinger et al., 2021). In addition, the complexity of additive release kinetics 

and the numerous factors implicated have likewise hindered the development of theoretical models to 

estimate additive losses.  

Aiming to set a reliable groundwork to assess the release of additives and the related risks to 

human health and the environment, several mathematical approaches have been progressively 

developed over the last decades. However, most of them are tailored to additive release from food-

contact materials and into food, with no or limited application at the environmental level (Douziech et 

al., 2020; Petrosino et al., 2023; Poças et al., 2012; Reynier et al., 2002; Uzun et al., 2022). To date, only 

a few studies have developed theoretical models focused on additive release from plastic litter 

accumulated in ecological compartments. However, these studies are coupled with experimental 

techniques such as passive migration experiments (Feng, 2020; Lee et al., 2018; Sun et al., 2019). 

Therefore, their reliance on empirical estimations limits their applicability and combination with 

existing models on plastic accumulation and distribution. 

RESEARCH FOCUS AND PROJECT OUTLINE 

This study aims to lay the foundations of a first additive release model (ARM) to estimate additive 

losses out of plastic litter in environmental compartments. Our mathematical model is intended to 

implement existing ADM models, allowing a more complete and realistic Plastic Environmental Risk 

Assessment.  

The thesis begins by establishing a theoretical framework. This framework was built based on a 

preliminary literature review and aims to outline the steps involved in additive release kinetics, as well 

as the environmental and physicochemical factors that influence additive loss. The theoretical 

framework served as our first conceptual model, which was later translated into a set of algorithms, 

assumptions, and correlations, resulting in our ARM.  

Subsequently, a set of well-defined PBDE additives was selected based on their environmental 

toxicity and data availability, and a thoughtful input data collection was performed. Next, the ARM 

was used to estimate PBDE release from four polymers commonly used in the Electronic and 

Electrical Equipment (EEE) sector as a first proof of concept. To demonstrate the validity of the ARM, 

a positive control was likewise introduced to validate the ARM output against empirical 

measurements on additive release rate. 
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METHODOLOGY 

PART 1. MODEL DEVELOPMENT  

To establish the groundwork for the Additive Release Model (ARM), a conceptual model was 

constructed based on an initial literature review. The conceptual model delineates a set of well-defined 

environmental and physicochemical factors and provides an overview of additive release kinetics. 

Based on this foundation, the mathematical model was designed. Existing mathematical models on 

additive release in the water phase and from food-contact materials were considered as a reference 

and the boundary conditions were adapted to aquatic environments. The ARM was designed in Excel 

Office 16 and Mathematica v.14. 

 

1.1. The conceptual model  

Conceptual models represent the set of assumptions, ideas, theories, variables, and 

relationships between the different variables controlling the behavior of a system. The conceptual 

model presented here summarizes the current understanding of additive release kinetics along with a 

set of physicochemical and environmental factors governing additive release rate behavior. This 

theoretical model was translated into algorithms, assumptions, dependent and independent variables, 

and correlations between the different environmental and physicochemical factors to build the ARM.  

To obtain a generic overview of (i) the different environmental and physicochemical factors 

governing additive release, and (ii) additive release kinetics, a preliminary literature review was 

performed. The databases PubMed, Scopus, and Google Scholar were used for the search.  

The search items used to explore the physicochemical and environmental factors were plastic 

additives and additive release, together with aquatic environments, ocean, inland water, freshwater, 

environmental fate, toxicity, bioavailability, environmental conditions, and desorption. To study additive 

release kinetics, search items used were plastic additives migration kinetics or plastic additive release 

kinetics or plastic additive desorption kinetics, together with food-contact materials or aquatic 

environments or mathematical models. 

Based on reviewed primary articles and systematic reviews, the abovementioned search items 

were truncated, explored, and adjusted to achieve optimal results. In addition, manual searches of 

reference lists of relevant articles were carried out to identify further studies. 

 

Environmental and physicochemical factors influencing additive release 

Additive mobilization and release from polymers are simultaneously governed by numerous 

physicochemical and environmental factors, as presented in Table 1. Despite the heterogeneity of the 

studies, an overall intertwined solid correlation between both types of factors is commonly reported 

regardless of the type of polymer, additive, and environmental compartment. The revised literature, 

together with the factors evaluated per study, can be found in Annex 1. 

The physicochemical factors polymer size and polymer crystallinity, additive molecular weight 

(MW), and additive hydrophobicity were strongly and consistently associated with additive release 

behavior in the reviewed studies. As a common trend, additive release increases with decreasing 

polymer size, crystallinity, and additive MW (Allan et al., 2022; Li et al., 2019; H. Liu et al., 2020). 
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Additive diffusivity and release are hypothesized to vary between polymer types as a function of their 

polymeric structural disposition and chemical conformation Depending on the disposition, the 

polymer’s structure will range between crystalline and amorphous. More amorphous polymers 

present random chemical conformations and spaces between polymeric chains. As a result, 

amorphous polymers are flexible at low temperatures and additives are expected to diffuse easily 

through them (Allan et al., 2022; Askadskii et al., 2014; Petrovics et al., 2023). Additive hydrophobicity 

determines the desorption kinetics of additives from the polymeric surface and into the nature of the 

surrounding environment (i.e. aquatic environment vs soil-based ecosystems). Such property is usually 

expressed as the octanol-water partitioning coefficient (Kow) or the plastic-water partitioning 

coefficient (Kpw) (Allan et al., 2022; Lee et al., 2018; Li et al., 2019; Town & Van Leeuwen, 2020).  

Table 1. Overview of the different factors and parameters affecting additive release behavior. The number of reviewed studies 
addressing each factor is also presented. The factors are classified as (a) physicochemical factors relative to the polymer and 
additive, (b) environmental factors, and (c) aging effect. The aging effect results from the combination of the exposure of 
polymers with given physicochemical properties to a set of environmental factors over time. 

Factor  Number of studies (N) Ref # 
Physicochemical factor     

Polymer size 10 1, 2, 3, 4, 6, 8, 9, 11, 14, 16 

Polymer type  7 1, 2, 9, 11, 16, 15, 17 

Additive MW 6 1, 3, 9, 16, 18, 19 

Additive hydrophobicity 5 4, 8, 13, 15, 16 

   

Environmental factor     

Time 6 3, 9, 11, 12, 18, 19  

Temperature 8 6, 7, 9, 10, 11, 12, 18, 19 

Water content (w %) 5 1, 5, 6, 14, 18  

UV light exposure 8 1, 2, 4, 5, 6, 7, 11, 19  

Organic matter content (OM%) 3 4, 7, 19  

Microbial activity 3 1, 6, 14 

Organisms intake 3 8, 12, 13 

Hydrostatic pressure 1 14 

pH 4 7, 8, 10, 15  

   

Ageing processes 2 1, 12 

 

Natural factors such as ultraviolet (UV) light exposure, microbial enzymatic activity, and additive 

mobilization upon organisms´ intake were positively associated with increased additive release (Bakir 

et al., 2014; Fauvelle et al., 2021; Hirai et al., 2011; Li et al., 2019; H. Liu et al., 2020; Paluselli et al., 

2019). Aging processes undergone by plastic materials over time are commonly referred to as one of 

the main enhancers of additive release, reflecting the intertwined association between environmental 

and physicochemical factors (H. Liu et al., 2020; Luo et al., 2022; Paluselli et al., 2019). Such an aging 

effect is understood as the alteration of the physicochemical nature of plastic materials and embedded 

additives over time and due to the exposure to environmental stressors (e.g. high temperatures or 

prolonged UV light exposure) resulting in polymer fragmentation, changes in the inherent initial 

properties, and the alteration of additive release rate. For simplification, while maintaining accuracy, 
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only the parameters presented in Table 2 were considered in our model. The selected parameters had 

a well-defined correlation with additive release behavior.  

Table 2. Environmental and physicochemical factors were selected to be included in the ARM. The right column displays the 
factor correlation with additive release behavior (i.e. [-] Decrease, [+] Increase). 

 

 

Additive release kinetics 

Additive release from the polymeric matrix occurs via mass transport mechanisms and desorption 

processes via two consecutive steps depicted in Figure 1, inner additive diffusion through the 

polymeric matrix or Step 1; and additive desorption from the polymeric surface and diffusion polymer-

water boundary layer or Step 2 (Allan et al., 2022; Feng, 2020; Sun et al., 2019).  

 

Figure 1. Primary mass transfer and desorption steps and physicochemical parameters involved in additive diffusion and 
release from spherical MNPs in the water phase: (a) Graphical illustration of additive radial diffusion and release from spherical 
MNPs; (b) additive diffusivity is explained by mass transport mechanisms where particles movement is driven by a difference 
in concentration gradient within the system. In Step 1, internal additive diffusion is explained by Fick’s second law and 
governed by the additive Diffusion Coefficient (Dp). In Step 2, additive desorption from the polymeric surface and external 
additive diffusion is controlled by the additive partitioning coefficient (Kow) and additive diffusivity in the water phase (Dw), 
respectively.  

The mass transport mechanism of a diffusive solvent (i.e. the additive species) through porous 

membranes (i.e. the polymer) is driven by the difference in species concentration at different locations 

FACTOR CORRELATION 

Polymer size [-] Polymer size > [+] Additive release

Polymer crystallinity [-] Polymer crystallinity > [+] Additive release

Additive molecular weight (MW) [-] Additive MW > [+] Additive release

Additive hydrophobicity and hydrophilicity (Kow) [+] Hydrophobicity > [-] Additive release *

Time [+] Time > [+] Additive release

Temperature [+] Temperatura > [+] Additive release

Water presence Strong dependency on additive hydrophobicity

* Strong dependency on water and organic matter presence in the surrounding environment
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within the system. That is, additives embedded in the plastic matrix diffuse towards the polymer 

surface driven by a negative difference in concentration (i.e. from a highly concentrated inner bulk to 

the less concentrated polymer surface) (Figure 1). Once in the surface, additives will desorpt from the 

polymer surface and into the surrounding polymer-water boundary layer. The additive desorption rate 

is determined by additive hydrophobicity, expressed as Kow (Kwon et al., 2017; Lee et al., 2018). The 

internal negative concentration gradient will increase from additive desorption, enhancing additive 

mobilization from the inner matrix  (Paluselli et al., 2019).  

Additive diffusion and release will continue until the equilibrium with the surrounding 

environment is reached. However, when the volume of the surrounding environment is relatively 

“infinite” - as it is assumed under environmental conditions - the additive release process undergoes 

an unsteady-state circumstance until the entire volume of additives is released (Karimi, 2011; Lee et 

al., 2018; Sun et al., 2019). Fick’s second law can explain such unsteady-state mass transfer 

circumstance: 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
                                                               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

Collected literature on additive release kinetics, mass transport mechanisms, and existing 

mathematical models on additive release kinetics can be found in Annex 2. 

1.2. Model design 

Based on the previously described theoretical foundation, a set of assumptions, algorithms, and 

relationships between the different environmental and physicochemical factors were delineated. This 

groundwork was used to build the ARM.  A simplified model overview is presented in Figure 2 below. 

The complete mathematical model can be found in the Supplementary Excel. 

 

 

Figure 2. Simplified overview of the ARM workflow. 
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Fick’s second law 

Existing additive migration models are based on mass transport mechanisms where chemical 

diffusion and release are controlled by the diffusion coefficient (D) and partitioning coefficient (Kow) 

at a given time (t) and temperature (T) range. By combining these factors, the unsteady-state additive 

diffusion process can be explained by Fick’s second Law (Eq. 1) (Costa et al., 2023; Dong & Gijsman, 

2010; Feng, 2020; Karimi, 2011; Lee et al., 2018):  

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

 

where C is the total concentration of additives, D is the diffusion coefficient of additives transport 

through the polymeric matrix, and x (or r for radial/spherical particles) is the distance from the center 

of the particle.   

Assuming a spherical structure of MNP polymers and that additives will diffuse radially, Equation 

(1) takes the form of Equation (2):  

 

𝜕𝐶

𝜕𝑡
= 𝐷 (

𝜕2𝐶

𝜕𝑟2
+  

2

𝑟

𝜕𝐶

𝜕𝑡
)                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

 

Assumptions for the model and boundary conditions  

Several assumptions are taken in this project to estimate additive release under standard conditions: 

1. Plastic particles have a spherical shape, and the surface remains intact. 

2. Plastic composition is homogeneous and isotropic.  

3. Plastic particle size is in the range of micro and nanoplastics (MNPs). MNPs sized 1 µm and 

500 µm are considered. MNPs do not degrade further over time. 

4. The additive is uniformly distributed inside the plastic. The initial maximum concentration 

in MNPs (C0) will equal that of polymers after production. 

5. The additive will diffuse radially within the polymer.  

6. The thickness of the microplastic-water boundary layer (δw) is equal to half of the thickness 

of the plastic (l).  

7. The surrounding environment is considered an “infinite sink” with a constant volume. As 

the environment has a continuous infinite volume, the diffusion coefficient is an unsteady-

state circumstance. 

8. No environmental pollutants are sorpted to the MNP surface. The only chemicals present 

on the MNP surface are those inherent to the polymer. 

9. The environment is stagnant so the influence of turbulence is neglected. Other factors 

inherent to aquatic environments, such as changes in hydrostatic pressure or UV light 

exposure are likewise neglected. Only the environmental factor temperature (T) will 

directly enhance or diminish additive release over time (t).  
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By appliying these assumptions, the model boundary conditions, and initial condition were set to:  

• C = C0, 0 < x < l, t=0 

• C = C0, x = 0, t ≥ 0 

• 𝐽 = −𝐷 (
𝑑𝐶

𝑑𝑥
) = 𝑘 (𝐶0 − 𝐶𝑠), 𝑥 = 𝑙, 𝑡 ≥ 0 .  

 

Where l is half of the thickness of the plastic. Therefore, given that the MNP is spherical: l = r 

(radius). The parameter x refers to any point in the sphere between the center (x=0) and the surface of 

the sphere (x=l=r), and k is the mass transfer coefficient (Figure 3). 

 

 

Figure 3. Graphical illustration of additive radial diffusion and release from spherical MNPs in aquatic environments. 

 

Diffusion Coefficient Estimations 

Empirically, Dp values are obtained using passive sampling experiments performed at a given 

temperature and over time (Allan et al., 2022; Kruczek, 2015; Lee et al., 2018; Sun et al., 2019; Town & 

Van Leeuwen, 2020). However, given the limited available data on experimentally determined diffusion 

coefficients in plastics (Dp), the worst-case diffusion coefficients (D*p) were derived from the Piringer 

equation (Eq. 3) to complete our dataset. A similar approach was previously used in literature, 

(Hamdani et al., 1997; Limm & Hollifield, 1996; Nguyen et al., 2013a; Piringer, 1994; Plastics Europe, 

2021). 

D*p is a polymer-specific upper-bound diffusion coefficient. Thereby, as D*p ≥ Dp, it must be 

emphasized that using D*p leads to the worst-case additive loss estimations. D*p estimations are a 

function of temperature (T) and additive molecular weight (MW). Thus, D*p can be calculated for a 

given additive and temperature range and used instead of Dp.  

Piringer equation is enunciated as follows (Equation 3) :  

𝐷∗𝑝 (𝑀, 𝑇) = exp [ 𝐴∗𝑝 − 0.135𝑀𝑊
2
3 + 0.003𝑀𝑊 −   

10454 ∙ R 

𝑇 ∙ R 
] 𝑖𝑛 𝑚2𝑠−1           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3) 

 

https://plasticseurope.org/wp-content/uploads/2021/11/20130719applicability_of_mathematical_modelling_for_the_estimation_of_specific_migration_of_substances.pdf
https://plasticseurope.org/wp-content/uploads/2021/11/20130719applicability_of_mathematical_modelling_for_the_estimation_of_specific_migration_of_substances.pdf
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where MW is additive molecular mass, T refers to the absolute temperature (ᵒK), A*p is a temperature-

independent and polymer-specific diffusion parameter, and τ is a polymer specific activation energy 

parameter (ᵒK).  

The variables MW and T make D*p values additive- and temperature-dependant. The parameter 

A*p is polymer-specific and temperature-dependent and describes the basic estimated diffusion 

behavior of migrants within the polymer. That is, polymers with low crystallinity (e.g. LDPE) present 

high A*p values, reflecting high diffusion behavior (D*p) and migration rate through the polymer; 

whereas polymers with a higher degree of crystallinity (e.g. polyesters), lower A*p values led to lower 

diffusion and migration rates. 

A*p values can be empirically obtained by performing kinetic studies where additive migration is 

measured at certain time points and given temperatures (J.S. Baughan, 2015). Yet, A*p can also be  

calculated with a mathematical approach used in this study and based on Equation (4), where A’*p is 

a temperature-independent value, T refers to the absolute temperature (T), and τ  to the polymer-

specific activation energy (ᵒK). A’*p and τ were collected from Plastics Europe (2021). 

 

𝐴∗𝑝 = 𝐴′∗𝑝 −  
τ

𝑇
                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4) 

   

the constant τ describes the activation energy  of diffusion (EA). τ is polymer-specific and obtained by 

combining τ and 10454 with the gas constant R (R= 8,13145 J/mol/K).  

𝐸𝐴 = (τ + 10454 ) ∙ R                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5) 

 

Thereby, by using D*p values, additive migration will be overestimated. Consequently, the model 

output will provide additive loss worst-case scenario rates within certain temperature ranges. 

 

Biot number 

In additive loss rate from polymers, the rate-limiting step (i.e. lower step) can be either the 

internal or the external diffusivity. The solution to Equation (1) will depend on the rate-limiting step. To 

estimate which process dominates additive release, the Biot Number (Bi) must be calculated.  

The Biot Number is a dimensionless value originally used in heat transfer calculations. When 

applied to mass diffusion processes in our model, mass transfer Biot Number estimates the ratio 

between the rate of additive transport at the plastic-environment layer on the surface (i.e. Step 2, 

external diffusion) to the additive transfer resistance rate within the polymer (i.e. Step 1, internal 

diffusion) (Tawfik A. Saleh, 2022): 

𝐵𝑖𝑚 =
𝑘 𝐿𝑐

𝐷𝑝
                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6) 

 

where k is the additive mass transfer coefficient in the plastic-water boundary layer. The parameter k 

is a diffusion rate constant that correlates mass transfer area, mass transfer rate, and concentration 
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change as driving force. Dp refers to the diffusion coefficient within the polymer and Lc refers to the 

characteristic length. Lc is estimated as the volume of a system divided by its surface, as depicted in 

Equation (7).  

To obtain Lc values: 

𝐿𝑐 =
𝑉𝑏𝑜𝑑𝑦

𝐴 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7) 

To obtain k values, Equation (8) applies: 

𝑘 =
𝐷𝑤

𝐾𝑜𝑤𝛿𝑤
                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8) 

 

where Dw is the diffusion coefficient in water (m2 s− 1), Kow is the plastic-water partitioning coefficient 

and δw is the thickness of the plastic-water boundary layer. In stagnant aqueous environments, δw is 

assumed as equivalent to the radius of the sphere (δw = r = l). According to Bingbing Sun (2019), Dw 

values can be calculated from the Hayduk-Laudie correlation (Hayduk & Laudie, 1974) as follows:  

 

𝐷𝑤 =
13,26−9

µ1,4 𝑣𝑚
0,589                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (9) 

 

where µ refers to the dynamic viscosity of water (Pa · s) and vm is the LeBas molar volume (cm3 · mol -

1). vm can be calculated from the molecular structure of the diffusan, based on the additive method 

described by Yahyaee et al. (2018) and depicted in Equation (10). N refers to the n number of atoms of 

Carbon, hydrogen, and oxygen, as indicated by the subscripts C, H, O, respectively. DB stands for double 

bonds and 7* is included if diffusants have aromatic rings:    

 

𝑣𝑚 = 7(𝑁𝑐 + 𝑁𝐻 + 𝑁0 + 𝑁𝐷𝐵) + 31,5 𝑁𝐵𝑟 − 7∗                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10) 

 

By combining Equations (6) and (8), Equation (11) can be used to calculate 𝐵𝑖𝑚. 

 

𝐵𝑖𝑚 =
𝐷𝑤

𝐷𝑝

1

𝐾𝑜𝑤

𝐿𝑐

𝛿𝑤
                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11) 

 

Based on Bim values, Fick’s second law was solved based on the rate-limiting step. If Bi>1, additive 

release abides by Case I, in which additive diffusion through the polymeric matrix is the rate-limiting 

step. In this situation, the rate of additive internal diffusion within the polymer is lower than that of 

external diffusion. Case II occurs when the Bi value hovers around 1, meaning the rate of both diffusion 

steps is almost equal. Under this scenario, a careful screening of the ongoing tendency should be 

performed to apply the most accurate solution to Fick’s law.  If Bi <1, additive external diffusion is 

slower, being that the limiting step and Case III would apply (Feng, 2020).  
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Solutions to Fick’s law based on Biot number 

Case I (Bi>1, internal diffusion is the rate-limiting step) and Case III (Bi<1, external diffusion is the 

limiting step) are applied to estimate the ratio between the amount of additives remaining inside 

plastic matrix (M) to the total amount that can release under an infinite time condition (M∞). This ratio 

is indicated as F% and represents the additive fraction (%) remaining in the polymer after a given time.  

 

𝐹 (%) =  
𝑀

𝑀∞
                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12)  

 

Solution to Case I (Bi > 1, internally-controlled process) 

In Case I, Fick’s second law was solved based on the initial condition and boundary conditions described 

by Crank (1975):  

a. 𝐶 = 𝐶0, 0 <  𝑥 <  𝑙, 𝑡 = 0 

b. 𝐶 = 𝐶0, 𝑥 = 0, 𝑡 ≥ 0 

c. 𝐶 = 𝐶𝑠, 𝑥 = 𝑙, 𝑡 ≥ 0  

 

Equation (1) can take the form of:  

𝐶 (𝑥, 𝑡) =
4𝐶0

𝜋
∑

1

2 + 1

∞

𝑛=0

sin [
(2𝑛 + 1)𝑛𝑥

𝑙
] 𝑒

−
(2𝑛+1)2𝜋2𝐷𝑝

𝑙2 𝑡
                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (13) 

𝐹 =  
𝑀

𝑀∞
=

8

𝜋2
∑

1

(2 + 1)2

∞

𝑛=0

exp [−(2𝑛 + 1)2𝜋2
𝐷𝑝𝑡

𝑙2 ]                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (14) 

 

For spheres, the resulting equation will take the form of: 

𝐹 =
𝑀

𝑀∞
=

6

𝜋2
∑

1

𝑛2

∞

𝑛=1

exp ( − 𝑛2𝜋2
𝐷𝑝𝑡

𝑟2
)                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (15) 

 

Solution to Case III (Bi < 1, externally-controlled process) 

Assuming this condition in which the rate-limiting step is external diffusion, Fick’s second law would 

be solved as (Feng, 2020): 

 

𝑉
𝜕𝐶

𝜕𝑡
= 𝐴 𝑘 (𝐶𝑠 − 𝐶0)                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (16) 
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Resulting in: 

𝐹 =  
𝑀

𝑀∞
= 𝑒𝑥𝑝 (−

𝐷𝑤

𝐾𝑜𝑤𝛿𝑤 𝐿𝑐
𝑡)                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (17) 

 

where V is the volume, A the surface area and, Lc refers to the characteristic length of the plastic 

particle.  

 

Estimations of additive released mass fraction [1 – F%] 

F% represents the additive fraction remaining in the polymer after a given time by estimating 

the ratio between the amount of additives remained inside plastic matrix (M) to the total amount that 

can release under an infinite time condition (M∞).  

𝐹 (%) =  
𝑀

𝑀∞
                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12)  

 

To obtain the additive fraction released into the environment, a simple estimation was included 

in the model (Eq. 18). [1 – F (%)] equals the ratio between the additive fraction released over a given 

period of time (Mt) to the total amount that can release under an infinite time condition (M∞), as 

follows: 

[1 − 𝐹 (%)] =  
𝑀𝑡

𝑀∞
                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (18) 

 

Environmental and physicochemical factors included in the ARM 

The ARM here developed is based on three important environmental factors, namely 

temperature (T), time (t), water content (W%); and four key physicochemical parameters, that is 

polymer size (µm), polymer type (i.e. polymer crystallinity), additive molecular weight (MW), additive 

hydrophobicity (Kow). The selected factors were combined, correlated, and included at different 

stages of the ARM to reproduce additive release kinetics and factor-determined additive release 

behavior.  

As presented in Figure 4, D*p is obtained as a function of polymer crystallinity (A*p) and additive 

molecular weight (MW) at a given temperature (T). The Biot number relates polymer size (Lc), water 

presence (Dw, Kow, δw), polymer type (via D*p), additive MW, and temperature (T). The three latter 

parameters are indirectly included in the equation via D*p. Case I solution combines time (t), polymer 

size, polymer type, additive MW, and temperature via Dp. Case II solution considers water presence 

(Dw, Kow, δw), polymer type (via Kow and Dw), and time (t).  

The parameters additive Diffusion Coefficient (D*p) and additive Partitioning Coefficient 

(17Kow) are essential to additive release kinetics (Figure 1). Such factors have been previously used in 
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the literature to determine additive release over time, both in empirical and modeling studies (Allan 

et al., 2022; Kwon et al., 2017; Lee et al., 2018; Town & Van Leeuwen, 2020; Vitrac et al., 2007).  

   

 

Figure 4. Schematic illustration of the ARM workflow including the main equations. The factors considered in each equation 
are indicated according to the legend.  

 

 

PART 2. MODEL APPLICABILITY  

In the second stage of this project, the model was applied to estimate the release from 

Acrylonitrile Butadiene Styrene (ABS), High Impact Polystyrene (HIPS), Polypropylene (PP), and 

Polyamide (PA) of four well-defined polybrominated diphenyl ethers (PBDEs) commonly used in Electric 

and Electronic Equipment (EEE). To select the target additives, an initial screening of available literature 

on additive environmental toxicity was performed. In addition, a positive control was selected and 

included in the analysis to evaluate the accuracy and reliability of the model. 

Upon selection of the target additives, an exhaustive data collection was performed. Next, input 

data was entered into the model, and additive release was estimated at different conditions of time 

and temperature. Finally, the model output was screened and compared to those correlations and 

additive release trends described in the literature.  

The complete model workflow can be found in the Supplementary Excel, worksheet Model 

workflow overview. 

 

𝐷∗𝑝 (𝑀, 𝑇) = exp [ 𝐴∗𝑝 − 0.135𝑀𝑊
2
3 + 0.003𝑀𝑊 −   

10454 ∙ R 

𝑇 ∙ R 
] 𝑖𝑛 𝑚2𝑠−1           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑥 

𝐵𝑖𝑚 =
𝐷𝑤

𝐷𝑝

1

𝐾𝑜𝑤

𝐿𝑐

𝛿𝑤
                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6) 

𝐹 =
𝑀

𝑀∞
=

6

𝜋2
∑

1

𝑛2

∞

𝑛=1

exp ( − 𝑛2𝜋2
𝐷𝑝𝑡

𝑟2
)                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (9) 

𝐹 =  
𝑀

𝑀∞
= 𝑒𝑥𝑝 (−

𝐷𝑤

𝐾𝑜𝑤 𝛿𝑤 𝐿𝑐
𝑡)                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11) 
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2.1. The electronic and electrical equipment (EEE) industrial sector and related 

polybrominated diphenyl ethers (PBDE). 

Before additive selection, the classification per industrial sector used in the study by Schwarz et 
al. (2023) was screened aiming to evaluate the production, consumption and waste management per 
sector. Next, available literature was examined to evaluate the environmental impact and the additives 
most commonly used per sector. On this basis, the EEE industrial sector was selected given the high 
concentrations of environmentally toxic additives found in EEE devices, and the significant 
environmental accumulation of wasted EEE devices (e-waste) in different regions over the last decades 
(Mao et al., 2020; J. Wang et al., 2015; K. Zhang et al., 2012; Zheng et al., 2024).  

Electronic waste (e-waste) has been recognized as an issue of global environmental concern 
(Zhang et al., 2012). In 2014, e-waste was recognized as the fastest-growing solid waste stream in the 
world (International Labour Organization, 2014). Only in 2019, an estimated 53.6 million tons of e-
waste were produced globally, but only 17.4% were documented as formally collected and recycled 
(Forti et al., 2018). According to The United Nations' most recent report on global e-waste monitoring, 
it is estimated that 74 million metric tons of e-waste will be produced by 2030 (Adrian et al., 2020). 

In parallel, e-waste devices are reported to contain large significant concentrations of toxic 
metals (i.e. lead and cadmium), and toxic additives such as polychlorinated biphenyls (PCBs), Polycyclic 
Aromatic Hydrocarbons (PAHs) and Polybrominated Diphenyl Ethers (PBDEs), to name but a few (Mao 
et al., 2020; Tang et al., 2015; K. Zhang et al., 2012). The environmental and human burden of e-waste-
related toxicity is particularly concerning in countries that host large e-waste dumping grounds. In 
countries such as Ghana, China, or Thailand, soil and water have been found to be highly polluted with 
high levels of toxic chemicals and additives associated to e-waste (Alabi et al., 2021; Awere et al., 2020; 
Lu et al., 2023; Pibul et al., 2023; J. Wang et al., 2015). For instance, several studies have reported high 
concentrations of metals and toxic additives such as OPFRs and BFRs in soils from e-waste sites in 
China, a country that until 2018 was processing 70% of the e-waste worldwide (Lu et al., 2023; J. Wang 
et al., 2015). 

In EEE, plastic material is used in the frame, internal structural parts, functional parts, and 
internal electronic components for insulation, noise reduction, and sealing (Nnorom & Osibanjo, 2008). 
Yet, the w/w% (weight by device weight percentage) and type of polymer vary with the type of device 
and material. ABS and HIPS are the plastics more commonly found in e-waste (da Silva Müller Teixeira 
et al., 2021; Martinho et al., 2012). Such observation was supported by Mao et al. (2020), who state 
that ABS, PS, HIPS, and a mixture of PC/ABS are the polymers more present in EEE. In this study, e-
waste polymeric composition was based on the summary provided by Kousaiti et al. (2020) (Table 3). 

Reducing the flammability of EEE devices is imperative given the extreme operating conditions 
of some e-components. To this aim, flame retardants (FRs) are widely used to increase resistance to 
ignition and combustion (Buekens & Yang, 2014). 

Among the different FRs formulations, brominated flame retardants (BFRs) are the most 
powerful group of compounds. BFRs are applied to 2.5M tonnes of polymers annually and the 
electronic industry accounts for the greatest consumption, followed by building materials and 
transportation and off-shore vessels (Buekens & Yang, 2014; Ministry of Environment and Food 
Denmark, 2016). Only in 2016, a Danish project estimated that 70% of used BFRs were contained in 
EEE devices (Ministry of Environment and Food Denmark, 2016).  
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Table 3. Typical e-waste polymeric composition adapted from Kousaiti et al. (2020). 

Typical e-waste composition      

Polymer Acronym w/w (%) in e-waste 

Acrylonitrile Butadiene Styrene ABS 30% 

High Impact Polystyrene HIPS 25% 

Polypropylene PP 8% 

Polycarbonate PC 10% 

PC/ABC PC/ABS 9% 

Polystyrene PS 3% 

Polyamide PA 3% 

Polybutylene terephthalate PBT 2% 

Polyphenyl ether/HIPS PPE/HIPS 7% 

 

Over decades, a growing body of evidence has shed light on the human and environmental 
hazards posed by these chemicals, leading to the classification of some of them, such as PBDEs and 
HBCDDs, as persistent organic pollutants by the UNEP Stockholm Convention. In consequence, BFRs 
such as PBDEs or PBBs were banned in the 2000s (UN, 2010; Stubbings et al., 2021). PBDEs such as 
pentaBDE and octaBDE have been banned in the EU since 2004, and decaBDE since July 2008 (Ministry 
of Environment and Food Denmark, 2016). In consequence, new brominated flame retardants (nBFRs) 
were introduced in the market as an alternative additive. For instance, the nowadays commonly used 
BTBPE was introduced as a replacement for octaBDE (de Wit et al., 2010). 

However, additives such as PBDEs and PBBs are still present in many day-to-day EEE devices via 
recycled polymers. Indeed, some studies have revealed substantial concentrations of BFRs in mixed 
Electrical and electronic waste samples used as the basis of recycled products, particularly in ABS and 
PS-HIPS polymers (Stubbings et al., 2021). In addition, nBFRs such as BTBPE have been demonstrated 
to accumulate in the environment and be potentially toxic to human health and the environment (de 
Wit et al., 2010; Q. Zhang et al., 2023). 

 

2.2. Data collection 

Four polybrominated diphenyl ethers (PBDEs) commonly used as brominated flame retardants 

(BFRs) in the Electrical and Electronic Equipment sector (EEE) were selected, namely pentaBDE, 

octaBDE, decaBDE, and BTBPE. The selection of PBDEs was done based on the reported additive human 

and environmental toxicity and their relative concentrations in EEE devices. As polymers, Acrylonitrile 

Butadiene Styrene (ABS), High Impact Polystyrene (HIPs), Polyamide (PA), and Polypropylene (PP) were 

selected given their significant use in EEE devices (w/w%), measured as polymer weight by device 

weight (Table 3). Other relevant polymers and additives for the EEE industrial sector were not included 

in this study due to limitations in time and data availability.  
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Table 4. Selected additives and polymers associated with the EEE industrial sector. 

 

The physicochemical parameters additive molecular weight (MW), additive hydrophobicity 

(Kow), and polymer upper boundary diffusion value A*p (m2/s) and activation energies (τ, K)  were 

gathered from different empirical experiments and databases. Kow and additive MW values were 

collected from ECHA, PubChem, and EPA databases. The author is aware of the use of plastic-water 

partitioning coefficients (Kpw) to estimate additive desorption rates from polymers and into water in 

previous studies (Allan et al., 2022; Sun et al., 2019). However, as Kpw data is not available for many 

polymer-additive pairs, this study worked based on additive octanol-water partitioning coefficient 

(Kow) assuming the octanol to be the organic phase in our polymer-water system. The complete input 

dataset can be found on the Supplementary Excel, worksheet Input dataset (complete). 

Being aware of the limited available data on diffusion coefficient values for the selected 

additives, worst-case diffusion coefficients (D*p) were derived from Piringer Equation. Polymer-

specific upper boundary diffusion value A’*p (m2/s) and activation energies (τ, K) were collected and 

adapted from (Plastics Europe, 2021) report. Given the absence of A’*p and τ values for ABS, input 

data for ABS was taken from SBS. This decision was made under the assumption that both copolymers, 

ABS and SBS, share a similar composition: Acrylonitrile Butadiene Styrene for ABS and Poly(styrene-

butadiene-styrene) for SBS. The rationale behind this assumption is that the similarity in composition 

would translate into a similar structural conformation and, consequently, similar additive diffusion 

rates.  

The complete input dataset can be found in the Supplementary Excel, worksheet Input data 

(complete). 

 

PART 3. MODEL VALIDATION  

Mathematical models are designed to mirror reality through the simplification of complex 

phenomena into mathematical equations, variables, and correlations. Yet, to demonstrate models' 

ability to accurately reflect and simulate the dynamics of the systems they represent, modeled 

predictions must be validated against empirical data. The process of validation of a mathematical 

model is understood as the operational validation (Tsioptsias et al., 2016). 

Thereby, the operational validation process seeks to evaluate the accuracy and reliability of a 

model in simulating real-world outcomes. In the particular case of this study, the ARM’s operational 

validation was performed by means of a proof of concept (i.e. first application of the model to estimate 

additive release) and the inclusion of a positive control.  

pentaBDE OctaBDE DecaBDE BTBPE 

 Thermoplastic  

copolymer
Polystyrene Polyolefins Polyamide

ABS HIPS PP PA

30% 25% 8% 3%

Polymers

Additives

Flame retardants in e-waste

Brominated flame retardants (BFR)

PBDEs
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3.1. Evaluation of PBDEs release estimations  

Based on the ARM estimations of cumulative PBDEs mass (%) released at different temperatures 

and over time, a detailed inspection of additive release trends was performed. It aimed to prove the 

ARM's ability to qualitatively simulate additive release dynamics and the reproduction of additive 

release trends under different conditions and scenarios (i.e. additive release would decrease with 

polymeric size and increase with temperature) as shown in Figure 5.  

 

Figure 5. Simplified visualization of the qualitative control validation process. To prove the ability of the ARM to reproduce 
real-world additive release, the modeled %F estimations at varying conditions of time, temperature, polymer size, additive 
MW and polymer crystallinity were compared to additive release trends observed in the literature. 

 

3.2. Positive control   

The ARM’s accuracy and reliability were likewise assessed by validating its output against specific 

empirical data (Figure 6). To that aim, the empirical study performed by Sun et al. (2019) was selected. 

Additionally, different sources were used to build a Diffusion Coefficient dataset based on empirical 

estimations. 

Sun et al. (2019) studied the kinetics of decaBDE release from ABS plastic pellets (507µm sized) 

in sealed glass bottles using LDPE (Low-Density Polyethylene) films as an infinite sink over 150 days at 

10ᵒC and 30ᵒC in aquatic conditions. Aiming to compare the measured data with the ARM output, the 

model conditions were set to mimic those adopted by Sun et al. (2019) (Table 5a). Next, the Diffusion 

Coefficient (Dp) values and Additive Release rate (F%) measured by Sun et al. (2019)  (Table5b), were 
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compared to those estimated by the model. A general overview of the experiment conditions adopted 

from Sun et al. (2019) and entered into the model is displayed in Table 5. 

Table 5. Experimental conditions and Dp and F (%)  values collected from Sun et al. (2019). (a) Set of experimental conditions 
adopted from Sun et al. (2019) used to mimic the experimental setup. Aiming for simplification, the MNP size was 
approximated to 500 µm in the ARM. The original size was 507,5 µm. (b) Experimentally measured Dp and F(%) values 
obtained by Sun et al. (2019) under the conditions described in (a). 

 

 

 

 

 

 

 

 

The ARM was run under the conditions described in Table 5a and using the estimated worst-case 

D*p value (D*p = 1.41E-15) for ABS, decaBDE, and at 30°C (Table 6, results). Seeking to prove the validity 

of the worst-case scenario estimation, the ARM was also run using the Dp value measured by Sun et al. 

(2019) (Table 5b, Dp = 6.53E-26). This second estimation was introduced as a positive control for the 

Piringer Equation (Eq. 3). 

In parallel, a batch of experimentally determined diffusion coefficient values (Dp) was collected 

from the literature (Sup. Excel, worksheet Input data (complete)). Empirical Dp values for decaBDE and 

BTBPE in ABS polymers were collected from Sun et al. (2019). To complete our dataset, the average Dp 

estimation from the 10 PBDE examined in the same study (BDE-7, BDE-15, BDE-118, BDE-138, BDE-153, 

BDE-206, BDE-207, BDE-208, BDE-209, BTBPE) at 30ᵒC was used for pentaBDE and octaBDE. Dp (20ᵒC) 

values for the polymer PA were collected from Sun et al. (2019). PA values were obtained using a linear 

correlation between PBDEs diffusion in different polymers and the glass transition temperature (Tg). 

Finally, the empirical Dp values for PP (at 25ᵒC) represent the averaged estimates of Dp values for PBDEs 

within PP polymer, as demonstrated by Allan et al. (2022). Notice that Dp values for HIPS were not 

found in the literature and, therefore, are not presented. Next, collected Dp values were compared to 

our D*p estimations. 

 

a  

Environment (Distilled) water 

Temperature 30ᵒC 

Time (days) 0-150 

Polymer ABS 

Polymer size (mean, µm) 500 

Polymer radio (µm) 250 

Additive(s) BDE-209 (DecaBDE) 

b  

Dp (30°C) 6.53E-26 

F(%) 0.08 
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Figure 6. Simplified visualization of the positive control validation process. (A) Worst-case scenario diffusion coefficient values 
(D*p) were modeled for decaBDE and ABS polymer at 30°C with Piringer Equation. Next, D*p and the empirically measured 
Dp were compared. (B) Orange arrows represent the steps followed to model the worst-case additive release rate (F*%) based 
on Piringer’s diffusion coefficient (D*p). Green arrows represent the steps followed to model the additive release rate based 
on the diffusion coefficient measured by Sun et al. (2019), Dp. Dpemp and F(%)emp indicate the empirical values estimated in 
the literature.  

 

RESULTS 

The release of pentaBDE, octaBDE, decaBDE, and BTBPE from the polymers ABS, HIPS, PP, and 
PA was modeled under varying conditions of time and temperature. To validate the model 
operationally, the resulting additive release trends were assessed as functions of time (t), temperature 
(T), polymer type, and additive molecular weight (MW). Simultaneously, a positive control was 
introduced to demonstrate the accuracy and reliability of the model output through validation against 
empirical data. A complete overview of the ARM’s estimations and the detailed model calculations can 
be found in the Supplementary Excel. 

1. Worst-case scenario Diffusion Coefficients 

D*p is a polymer-specific upper-bound diffusion coefficient. It represents the highest rate (i.e. 
worst-case scenario) at which additives diffuse within a polymeric matrix under specific conditions of  
temperature (T), additive MW, and polymer type.  

As shown in Table 6, D*p values varied with temperature, additive MW, and polymer type. 
Despite the marked consistency in diffusion coefficients displayed for each polymer, significant 
differences are observed between groups, suggesting the clear influence of polymer type on additive 
diffusivity (i.e. 3.2 E-17 – 6.2 E-14 for ABS; 8.8E-22 – 1.7E-18 for HIPS; 1.34E-18 – 5.42E-15 for PP; and 
1.71E-20 – 1.26E-17 for PA). Overall, additive diffusion coefficients increased with temperature. At 
40ᵒC, the highest values for D*p were observed for every additive in the four different polymers. The 
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results also evidence the strong influence of additive MW (g/mol) on additive diffusivity with the 
highest D*p values reported for pentaBDE (564.69 g/mol). the additive with the lower molecular 
weight, followed by BTBPE (687.6 g/mol), octaBDE (801.47 g/mol), and decaBDE (952.22 g/mol). A*p 
estimations and input data can be found in Annex 3.  

Table 6. Summary of worst-case scenario Diffusion Coefficients (D*p) estimated with Piringer Equation (Eq. 3) for the four 
selected additives (pentaBDE (564.69 g/mol); octaBDE (801.47 g/mol); decaBDE (952.22 g/mol);  BTBPE (687.6 g/mol)) per 
polymer (ABS, HIPS, PP and PA) at varying temperatures (ᵒC). D*p values are estimated as a function of polymer type, additive 
MW, and temperature (T). D*p values are polymer size- and time-independent. 

 

 D*p (m2 s-1) 

 ABS  

Additives 0ᵒC 10ᵒC 25ᵒC 30ᵒC 40ᵒC 

pentaBDE 4.67E-16 1.80E-15 1.16E-14 2.06E-14 6.20E-14 

OctaBDE 8.40E-17 3.25E-16 2.08E-15 3.71E-15 1.12E-14 

DecaBDE 3.20E-17 1.24E-16 7.91E-16 1.41E-15 4.24E-15 

BTBPE  1.85E-16 7.15E-16 4.58E-15 8.17E-15 2,46E-14 

 

 D*p (m2 s-1) 
 HIPS 

Additives 0ᵒC 10ᵒC 25ᵒC 30ᵒC 40ᵒC 

pentaBDE 1.28E-20 4.95E-20 3.17E-19 5.65E-19 1.70E-18 

OctaBDE 2.30E-21 8.90E-21 5.71E-20 1.02E-19 3.06E-19 

DecaBDE 8.77E-22 3.39E-21 2.17E-20 3.87E-20 1.17E-19 

BTBPE 5.08E-21 1.96E-20 1.26E-19 2.24E-19 6.74E-19 

 

 D*p (m2 s-1) 

 PP 

Additives 0ᵒC 10ᵒC 25ᵒC 30ᵒC 40ᵒC 

pentaBDE 1.95E-17 9.25E-17 7.85E-16 1.53E-15 5.42E-15 

OctaBDE 3.52E-18 1.67E-17 1.41E-16 2.75E-16 9.76E-16 

DecaBDE 1.34E-18 6.34E-18 5.38E-17 1.05E-16 3.71E-16 

BTBPE  7.74E-18 3.67E-17 3.11E-16 5.55E-16 2.15E-15 

 

 D*p (m2 s-1) 

 PA 

Additives 0ᵒC 10ᵒC 25ᵒC 30ᵒC 40ᵒC 

pentaBDE 9.49E-20 3.67E-19 2.35E-18 4.19E-18 1.26E-17 

OctaBDE 1.71E-20 6.60E-20 4.23E-19 7.54E-19 2.27E-18 

DecaBDE 6.50E-21 2.51E-20 1.61E-19 2.87E-19 8.64E-19 

BTBPE  3.76E-20 1.45E-19 9.32E-19 1.66E-18 5.00E-18 
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2. Rate limiting steps for additive release 

Bi was calculated as a function of additive diffusivity in water (Dw), additive diffusivity within the 

polymer (Dp), additive octanol-water partitioning coefficient (Kow), polymer size (Lc), and water 

presence in the surrounding environment (δw). Resulting Bi estimations for MNPs sized 1 µm and 500 

µm at varying temperatures are displayed in Table 7 for the target additives. The four polymers under 

study were considered. If Bi>1, additive release abides by Case I, in which additive diffusion through 

the polymeric matrix is the rate-limiting step. Case II occurs when the Bi value hovers around 1, 

meaning the rate of both diffusion steps is almost equal. If Bi <1, additive external diffusion is slower, 

being that the limiting step and Case III would apply. 

Overall, MNPs (500 µm) exhibited higher Bi values compared to MNPs sized 1 µm, evidencing 

the marked influence of polymer size on establishing the controlling step in additive diffusivity. While 

for MNPs sized 500 µm Bi values ranged from 0.083 - 144.6 for ABS;  3033.03– 5273988.65 for HIPS; 

0.95– 3456.5 for PP; and 409.16 – 711148.46 for PA. For both sizes, large relative variations in Bi values 

within polymer types (ABS, HIPS, PP, PA) were observed as a function of additive type and temperature. 

As common trends, Bi values decreased with increasing temperature and decaBDE showed the highest 

relative Bi value, evidencing the indirect influence of temperature and the direct effect of additive MW 

on Bi estimations, respectively. Yet, a marked consistency was observed upon assignation of the rate-

limiting step to each of the polymeric groups.  

For 1 µm MNPs, PA and HIPs exhibited Bi>1 at any given temperature and additive species, 

exhibiting the highest values for 1 µm  MNPs at the lowest temperatures considered (Table 7A). For 

ABS, Bi values suggested a slower external diffusion (Bi>1) at every temperature except for the larger 

additives (octaBDE and decaBDE) at 0ᵒC, which displayed a Bi close to 1. An externally controlled 

diffusion (Bi>1) was likewise observed for every additive in PP polymers at 25ᵒC (except for decaBDE), 

30ᵒC, and 40ᵒC. However, at 0ᵒC, diffusion in PP was internally controlled (Bi>1) for octaBDE and 

decaBDE while Bi=1 was observed for pentaBDe and BTBP. For MNPs sized 500 µm, resulting Bi values 

were in every case above 1, indicating that additive release is internally controlled (Case I). The same 

trends as those were described for 1 µm MNPs as a function of temperature, additive MW, and polymer 

type apply (Table 7B). 

Solution to Case II (Bi =1) 

Case II occurs when the Bi value hovers around 1 (values highlighted in green in Table 7), meaning 

the rate of both diffusion steps is almost equal. Under this scenario, a careful screening of the ongoing 

tendency should be performed to apply the most accurate solution to Fick’s law. To substitute Bi=1 

values, ABS polymer 500 µm size was used as the proof of concept.  

As observed in Table 18 (Annex 5), when assuming internally-controlled diffusion (Bi>1, Case I) 

for those additives showing Bi=1 (Case II, highlighted in green, Table 7), a gradual increase in cumulative 

additive mass (%) released from polymers was observed as a function of time and temperature. In 

contrast, if assuming externally-controlled diffusivity (Bi<1, Case III) for those cases with Bi=1 (Case II), 

the model predicted no additive release from the polymer at the highest temperatures and the effect 

of time would be negligible. Such Thereby, when applying Case I (Bi>1) to substitute for Bi=1, observed 

trends on additive release were in line with the described effect of temperature and time in the 

literature. In contrast, the application of Bi<1 (Case III), contradicts the additive release patterns 

reported in existing studies (Table 2). Thereby, further research needs to be done to shed light on the 

validity of the solution to Case III. Yet, given the accuracy of Case I solution to ’ick's second law to 

reproduce additive release patterns at varying conditions and over time, Bi >1 was applied to estimate 

the released additive mass fraction [1 – F(%)] in this study when Bi=1 for MNPs sized 1 µm and 500 µm. 
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Table 7. Summary of Bi values calculated for at varying temperatures (0, 10, 25, 30, 40ᵒC) based on the worst case scenario D*p values  (Table 6). (A) Bi values for MNPs sized 1µm. (B) Bi values 
for MNPs sized 500µm. Bi > 0.1 values (highlighted in blue) indicate that internal diffusion (Step 1) is the rate-limiting step. Bi < 0.1 values (highlighted in orange) indicate that external diffusion 
(Step 2) is the rate-limiting step. 

A Bi (0ᵒC) Bi (10ᵒC) Bi (25ᵒC) Bi (30ᵒC) Bi (40ᵒC) 

ABS (SBS)      

pentaBDE 0.022 0.006 0.001 0.000 0.000 

OctaBDE 0.116 0.030 0.005 0.003 0.001 

DecaBDE 0.285 0.074 0.012 0.006 0.002 

BTBPE 0.037 0.010 0.002 0.001 0.000 

      

HIPS      

pentaBDE 793.885 205.441 32.057 17.978 5.976 

OctaBDE 4222.389 1092.666 170.498 95.618 31.786 

DecaBDE 10392.096 2689.256 419.629 235.334 78.232 

BTBPE 1354.870 350.612 54.709 30.682 10.200 

      

PP      

pentaBDE 0.520 0.110 0.013 0.007 0.002 

OctaBDE 2.767 0.584 0.069 0.035 0.010 

DecaBDE 6.811 1.438 0.170 0.087 0.025 

BTBPE 0.888 0.187 0.022 0.012 0.003 

      

PA      

pentaBDE 107.048 27.705 4.324 2.425 0.806 

OctaBDE 569.350 147.355 22.997 12.898 4.288 

DecaBDE 1401.278 362.668 56.600 31.744 10.554 

BTBPE 182.69 47.28 7.38 4.14 1.38 

 

 

 

 

B Bi (0ᵒC) Bi (10ᵒC) Bi (25ᵒC) Bi (30ᵒC) Bi (40ᵒC) 

ABS (SBS)      

pentaBDE 11.054 2.861 0.446 0.250 0.083 

OctaBDE 58.791 15.216 2.375 1.332 0.443 

DecaBDE 144.696 37.449 5.845 3.278 1.090 

BTBPE 18.865 4.882 0.762 0.427 0.142 

      

HIPS      

pentaBDE 402896.887 104261.263 16268.810 9123.790 3033.035 

OctaBDE 2142862.213 554527.788 86527.892 48526.123 16131.614 

DecaBDE 5273988.654 1364797.627 212961.486 119431.955 39702.949 

BTBPE 687596.451 177935.537 27764.861 15570.945 5176.273 

      

PP      

pentaBDE 264.056 55.735 6.573 3.378 0.951 

OctaBDE 1404.416 296.435 34.958 17.968 5.060 

DecaBDE 3456.532 729.582 86.039 44.223 12.452 

BTBPE 450.645 95.119 11.217 6.291 1.623 

      

PA      

pentaBDE 54326.909 14060.482 2194.372 1230.704 409.168 

OctaBDE 288945.100 74782.599 11671.066 6545.669 2176.216 

DecaBDE 711148.468 184054.101 28724.698 16110.127 5356.079 

BTBPE 92716.006 23996.060 3744.984 2100.358 698.299 
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3. Released fractions of PBDEs   

Using the ARM's estimations of cumulative PBDEs mass (%) released across various temperatures 

and durations, a thorough examination of additive release patterns was conducted. The objective was 

to demonstrate the ARM's capability to simulate the dynamics of additive release and accurately 

replicate additive release trends across diverse conditions and scenarios (i.e. at varying conditions of 

time (t), temperature (T), additive MW and polymer type). The complete dataset on released additive 

mass fraction [1 – F (%)] can be found in Annex 6 and Annex 7 or in the Sup. Excel, worksheets F% 1µm 

and F% 500µm, respectively. 

Effect of size 

As depicted in Figure 7, additive release was influenced by polymer size, with relatively higher 

loss rate for smaller polymers. While the cumulative mass fraction released was of 100% at any 

timepoint for 1 µm, MNPs sized 500 µm exhibited a gradual increase in additive loss, with a release of 

14.2% on day 1 and reaching the 99,9% additive loss after one year. The reference dataset is displayed 

in Sup. Excel, worksheet Trends. 

 

Figure 7. Cumulative mass of decaBDE released at 30ᵒC  from HIPS 1 µm and 500 µm as a function of MNP size. 

 

Effect of temperature 

The effect of temperature was inspected upon comparison of the cumulative release of decaBDE 

from PP at varying temperatures. As depicted in Figure 8, the complete release of decaBDE was 

observed after 150 days at 40ᵒC, and after 365 days at 25ᵒC at 30ᵒC.  A more gradual response and 

lower released mass fractions after 356 days were obtained at 10ᵒC at 0ᵒC, with the estimated loss of 

58.47% and 30.24% of decaBDE, respectively.  The reference dataset is displayed in Sup. Excel, 

worksheet Trends. 
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Figure 8. Cumulative mass of decaBDE released from PP at varying temperatures (ᵒC) as a function of temperature.  

 

Effect of additive MW 

The additive release trends observed in Figure 9 evidence the strong influence of additive MW 

(g/mol) on additive diffusivity with the faster additive release reported for pentaBDE (564.69 g/mol), 

the additive with the lower molecular weight, followed by BTBPE (687.6 g/mol), octaBDE (801.47 

g/mol), and decaBDE (952.2 g/mol). The reference dataset is displayed in Sup. Excel, worksheet Trends. 

 

 

Figure 9. Cumulative additive fraction (%) released from PP over time at 30ᵒC as a function of additive MW. The graph shows 
the cumulative additive release of pentaBDE (564.69 g/mol), BTBPE (687.6 g/mol), octaBDE (801.7 g/mol), and decaBDE 
(952.22 g/mol). 
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Effect of polymer type and additive MW 

The ARM output showed the marked influence of polymer type on additive release. As depicted 

in Figure 10, cumulative additive release from HIPS and PA ranged 19.01% - 61.28% and 46.83% - 

98.58%, respectively, exhibiting a relatively lower loss of additives when compared to the estimations 

reported for PP (100%) and ABS (100%). As observed in Table X, the smallest additive (pentaBDE) 

showed the highest additive release rate, followed by BTBPE, octaBDE, and decaBDE. The reference 

dataset is displayed in Sup. Excel, worksheet Trends. 

 

 

Figure 10. Cumulative additive mass released polymer at 10ᵒC after 3 days (%) as a function of polymer type. 

 

 

4. Positive control 

The accuracy and reliability of the ARM were evaluated by comparing its output with empirical 

data. To that aim, the experiment conducted by Sun et al. (2019) was selected as the positive control 

of reference.  

Sun et al. (2019) investigated the release kinetics of decaBDE from ABS plastic pellets of 507µm 

size placed in sealed glass bottles with LDPE films as an infinite sink in an aquatic media. The experiment 

lasted 150 days and was conducted at 10ᵒC and 30ᵒC. Our ARM was run under the same conditions and 

the output was compared against the Dp and F (%) values obtained by Sun et al. (2019). For the sake 

of simplicity, ABS was assumed to be 500 µm size in our model.  

Beyond Sun et al. (2019), additional sources were used to build a more complete empirical 

Diffusion Coefficient dataset for Piringer’s Equation validation.  

 

Estimation of worst-case scenario Diffusion Coefficients (D*p) 

In our ARM, the Piringer Equation estimates the worst-case scenario for additive diffusivity. 
Thereby, D*p values were expected always to be slightly higher than those measured experimentally 

6
1

9
9 1
0

0

1
0

0

4
2

8
6

1
0

0

1
0

0

3
0

6
8

1
0

0

1
0

0

1
9

4
7

1
0

0

1
0

0

H I P S P A P P A B S  ( S B S )

C
u

m
u

la
ti

ve
 a

d
d

it
iv

e 
m

as
s 

re
le

as
ed

 (
%

)

Polymer

PentaBDe
BTBPE
OctaBDE
DecaBDE

Cumulative additive mass released polymer at 10C after 3 
days (%)



Andrea Rujas Arranz   

31 
 

(D*p > Dp). Only D*p estimations for PP comply with our hypothesis, with 7.8E-16 (D*p) > 3.2E-17 (Dp) 
for pentaBDE; 1.4E-16 (D*p) > 3.2E-17 (Dp) for octaBDE; and 5.4E-17 (D*p) > 3.2E-17 (Dp) for decaBDE 
(Table 8B).  

In contrast, for ABS (Table 8A) and PA (Table 8C), worst-case scenario D*p values were in every 
case significantly higher (closer to 0) compared to Dp estimations. For instance, experimentally 
measured decaBDE diffusivity in ABS was 6.5E-26 while the D*p estimation was various orders of 
magnitude higher, 1,4E-15. A similar disparity was observed for pentaBDE (D*p, 2.1E-14; Dp, 7.0E-24), 
octaBDE (D*p, 2.1E-14; Dp, 7.0E-24), and BTBPE (D*p, 8.2E-15; Dp, 1.1E-24) in ABS polymers. Following 
a similar pattern, an evident contrast between modeled and empirically measured diffusion 
coefficients was likewise observed for PA, with D*p values ranging from 2,35E-18 to 1,61E-19 and Dp 
ranging from 4,86E-23 to 1,15E-25. 

Table 8. Comparison of Diffusion Coefficient values empirically measured (Dp emp) and calculated with the ARM (D*p) for the 
selected additives in ABS polymer at 30ᵒC and PP polymer at 25ᵒC. Empirical Dp values for ABS were reported by Sun et al. 
(2019). Dp values for pentaBDe and octaPBE were estimated as an average of the Dp values from the entire set of PBDEs 
under study by Sun et al. (2019). Estimations on Dp (20*C) values for PA  were obtained using the linear correlation between 
PBDEs diffusion in different polymers and the glass transition temperature in the same study. Empirical Dp values for PP (25ᵒC) 
were collected from John Allan et al. (2022). 

 A B C 
 ABS (30ᵒC) PP (25ᵒC) PA (25ᵒC & 20ᵒC ) 
 Model Literature Model Literature Model Literature 

Additives D*p Dp D*p Dp D*p (25ᵒC ) Dp (20ᵒC ) 

pentaBDE 2.1E-14 7.0E-24 7.8E-16 3.2E-17 2.35E-18 4.86E-23 

OctaBDE 3.7E-15 7.0E-24 1.4E-16 3.2E-17 4.23E-19 4.86E-23 

DecaBDE 1.4E-15 6.5E-26 5.4E-17 3.2E-17 1.61E-19 1.15E-25 

BTBPE 8.2E-15 1.1E-24 - - - - 

 

Biot number 

The Biot number was calculated to determine whether internal or external diffusion was the 
rate-limiting step in the mass transport diffusivity of decaBDE within 500 µm-sized ABS particles.  

The Biot number is dependent on the additive diffusivity rate (Dp). Therefore, due to the 
discrepancies observed between Dp and D*p estimations presented in Table 8A, the Biot number (Bi) 
was computed twice: once using Dp values and once using D*p values. As illustrated in Table 9 below, 
both Bi values suggested internally-controlled additive diffusivity regardless of the diffusion coefficient 
used in the estimation; however, Bi values based on empirical Dp estimations were notably higher.  

Table 9. Comparison of Bi values calculated for MNPs 500µm sized. Modeled Bi values were computed based on D*p 
estimations for decaBDE in ABS at 30ᵒC from this study. Literature Bi values were estimated with Dp from Sun et al. (2019) for 
decaBDE in ABS at 30ᵒC.  

 Based on D*p, model Based on Dp, Sun et al., (2019) 

Diffusion coefficient 1.4E-15 6.5E-26 

Biot number 3.28 70820161170.27 
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Release of decaBDE from ABS (500 µm) at 30ᵒC over 150 days 

Additive release (i.e. [100-F(%)]) was modeled under two scenarios. First, the ARM was run 
considering the empirical diffusion coefficient provided by Sun et al. (2019), Dp. Next, the ARM 
estimations were based on D*p values. As shown in Table 10, a marked mismatching between ARM’s 
release estimations was obtained.  

Additive release estimations based on D*p, showed the almost complete decaBDE release 
(96.3%). In contrast, the ARM estimations based on Dp values (Sun et al., 2019) indicated that only of 
0.012% decaBDE would be released under the same conditions. The former value was relatively high 
when contrasted with the released decaBDE fraction reported by Sun et al. (2019) for plastic A and 
plastic B, 0.115% and 0.038%, respectively.  

Table 10. Summary of estimations on the additive mass fraction (F%) released from ABS polymers based on different Diffusion 
coefficient values. The ARM estimations were made twice, based on the worst-case scenario diffusion coefficient (D*p) 
estimated in this study with the ARM (a) and on the empirically measured diffusion coefficient (Dp) by Sun et al., 2019 (b). 

 

5. Model validation  

Qualitative and quantitative operational validation are two approaches used to assess a 

mathematical model's accuracy, reliability, and effectiveness in representing real-world systems.  

Qualitative operational validation involves assessing the model's performance based on its 

ability to capture the system's behaviors being modeled. Here, the validity of the ARM was determined 

qualitatively by assessing its ability to replicate real-world trends in additive release under varying 

conditions of time, temperature, polymer size and type, and additive MW. Such trends are presented 

in Table 2. In this study, the qualitative validity of the model was assessed in light of previous literature.  

The quantitative operational validation of a model relies on quantitative comparisons between 

the model's outputs and empirical data collected from the real-world system (i.e. positive controls). It 

aims to evaluate its accuracy and reliability in predicting the system's outcome. This study used 

empirical Dp estimations to prove the validity of Piringer’s Equation. Additionally, the estimations on 

additive release measured by Sun et al. (2019) were used as a positive control.  

 

Piringer equation appears to be a reliable tool for estimating D*p  

Given that the Piringer equation (Eq. 3) estimates the worst-case scenario, D*p values were 

expected to be similar to or slightly higher than those reported in empirical studies (D*p ≥ Dp). 

 Model Literature 

 ARM + D*p ARM + Dp 
Sun et al., (2019) 

 Plastic A (ABS) Plastic B (ABS) 

Diffusion Coefficient 
30ᵒC 

D*p (a) Dp (b) Dp (b) Dp (b) 

1.41E-15 6.53E-26 6.53E-26 6.53E-26 

F (%) 0.0369 0.9999 - - 

[1 – F (%)] 0.9631 0.0001 0.0011 0.0004 

[1 – F (%)] * 100 96.3148 0.0121 0.1149 0.0384 

a. Worst-case scenario diffusion coefficient (D*p) estimated in this study with the ARM 
b. Empirically measured diffusion coefficient (Dp) by Sun et al., 2019.  
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However, as summarized in Table 8, D*p estimations for PA and ABS proved not to reproduce literature 

data, with D*p values several orders of magnitude higher (i.e. pentaBDE, 2.1E-14 (D*p), 7.0E-21 (Dp)). 

Under these observations, we hypothesized that potential errors in the modeling process could have 

occurred. These errors could stem from either 1) issues with the mathematical methodology or 2) 

inaccuracies within the input data. 

In contrast, D*p estimations for PP were in agreement with our hypothesis (D*p ≥ Dp) suggesting 

the Piringer Equation's effective performance. Additionally, previous studies using the Piringer 

equation such as the one performed have reported reliable estimations of D*p values when compared 

to literature Dp (Begley et al., 2005; Nguyen et al., 2013b; Plastics Europe, 2021). Consequently, 

Piringer’s Equation was assumed to be a reliable approximation for reproducing the ARM's worst-case 

scenario additive diffusivity in the ARM. Hence, focus was put on the input dataset to explain the 

notable disparity between Dp and D*p values. 

 

The inaccuracy of the input dataset did not affect ARM's qualitative performance 

The inaccuracy of D*p estimations (Table 8) was reflected in discrepancies in the [100-F(%)] 
output. Assuming the validity of the Piringer Equation, a thorough screening of the input dataset was 
conducted. 

 
Inaccuracies in polymer-related parameters were found for ABS, PA, and HIPS. Collected 

A’*p  (m2/s) values for PA, ABS, and HIPS appeared to be only applicable to estimate the diffusivity of 
additives with smaller molecular size (MW) than those selected in this study (Table 11). This 
observation may underpin the obtained mismatch between literature Dp and D*p estimations for PA 
and ABS, suggesting that a higher degree of overestimation (%) should be added to the ARM output. 
 

Table 11. (A) Additive MW range used in A*'p estimations. A*'p were then collected from source Plastics Europe 2021 and 
used as input data for this model. (B) Summary of target additives in this study and their additive molecular weight (MW). 

A  B 

Polymer 
Additive MW 

(g/mol) 
 Additive MW (g/mol) 

HIPS 104-430  pentaBDE 564.69 

PA 32-587  OctaBDE 801.47 

PP 30-2000  DecaBDE 952.22 

ABS (SBS*) 84-689  BTBPE 687.6 

 

 
However, the difference between Dp-D*p for ABS seemed notably greater than the reported 

difference for PA and HIPS. Given the absence of A’*p and τ (K) values for ABS, input data for ABS was 
taken from SBS. This decision was made assuming that both copolymers, ABS and SBS, share a similar 
composition: Acrylonitrile Butadiene Styrene for ABS and Poly(styrene-butadiene-styrene) for SBS. The 
rationale behind this assumption is that the structural conformation of both polymers would be similar. 
However, differences in the parameter glass transition temperature (Tg) was overlooked. Tg values must 
be considered to associate polymer type with additive diffusivity and, consequently, with additive 
release rates (Allan et al., 2022; Sun et al., 2019). The parameter glass transition temperature (Tg) 
reflects the structural conformation of the polymeric chains in the plastic matrix, which ranges between 
crystalline and amorphous. More amorphous polymers present random chemical dispositions, spaces 
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between polymeric chains, and low glass transition temperatures (Tg), resulting in higher additive 
diffusivity rates (Allan et al., 2022; Askadskii et al., 2014; Petrovics et al., 2023; Sun et al., 2019) 

 
As shown in Table 12, the Tg values of both types of plastic were markedly different. In ABS, 

acrylonitrile is the main monomer type in the copolymer. It provides a solid primary structure to the 
material (Izdebska & Thomas, 2016). The absence of the monomer acrylonitrile in SBS results in a more 
flexible and significantly more amorphous type of polymer. Such structural difference is hypothesized 
to translate into lower Tg and higher additive diffusivity (i.e. lower D*p values) for SBS, as evidenced in 
Table 12 (Cao et al., 2023). Thereby, the SBS input dataset was not applicable to estimate additive 
release from ABS polymer. Consequently, the inclusion of ABS as a target polymer was eventually 
disregarded. The output data from the ARM was assessed with SBS as the target polymer.  
 
Table 12. Summary of the glass transition temperature values for the target polymers. Minimum (Tg min) and maximum (Tg 
max) glass transition values are displayed. SBS copolymer is composed of two polymeric segments, a more crystalline section 
of Polystyrene (PS, Tg=70ᵒC) and Polybutadiene (PB, Tg=-80ᵒC) (Cao 2023). 

Polymer Tg min Tg max 

ABS 90 102 

HIPS 88 92 

PA 35 45 

PP -20 -10 

SBS  -80 70 

 
 

In this context, the ARM output was addressed under two premises during the qualitative 
validation of the model. First, due to disparities in additive molecular weights, an additional level of 
overestimation was assumed for the release rates of SBS, HIPS, and PA. Secondly, the use of ABS as a 
target polymer was dismissed despite its high weight percentage (w/w%) in EEE devices. SBS was 
considered instead.  

 
 
The ARM reproduces qualitative additive release behavior under Case I scenario (Bi >1) 

The ARM developed in this study was found to be a reliable tool to reproduce additive release 

trends under Case I. Case I occurs under internally controlled diffusivity, meaning additive diffusion 

within the polymeric matrix acts as the rate-limiting step (Figure 1). In the ARM, this internally 

controlled diffusivity applies when Bi >1.  

The ARM output revealed cumulative additive release mass over time and as a function of 

temperature (Figure 8) These results are consistent with additive loss kinetics described in previous 

studies. For instance, the progressive loss of BFRs from two ABS microplastic pellets at 10ᵒC and 30ᵒC 

during a time-course of 150 days was reported by Sun et al. (2019). Likewise, Paluselli et al. (2019) 

observed the cumulative loss of additives dimethyl phthalate (DMP) and diethyl phthalate (DEP) from 

PVC-cables over a 90 days laboratory experiment. This positive correlation between additive loss, 

increasing temperatures, and time was also evidenced by Dimassi et al. (2023) upon estimation of 

additive leaching of bis(2-ethylhexyl) phthalate (DEHP) under extreme simulated marine conditions 

over 140 days.   

Beyond time and temperature, additive molecular weight also played a role in additive release 

kinetics (Figure 9). Regardless of the type of polymer, the highest additive release rates were reported 

for pentaBDE, the smallest polymer (564.69 g/mol), followed by BTBPE (687.6 g/mol), octaBDE (801.47 
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g/mol) and decaBDE (952.22 g/mol). These observations aligned with our hypothesis and previous 

observations (Dong & Gijsman, 2010; Fauvelle et al., 2021; Paluselli et al., 2019; Teuten et al., 2009; 

Zhou et al., 2017).  For instance, Paluselli et al. (2019) observed selected migration resulting from 

differences in additive MW between the seven phthalic acid esters (PAEs) under study (i.e. DMP, DEP, 

DPP, DiBP, DnBP, BzBP, DEHP)  from PVC-cables and PE-bags. In PVC-cables, additive release was only 

reported for the low-molecular-weight additives DMP and DEP. In contrast, bigger-MW additives such 

as DEHP did not release out of the polymer. Under these observations, it was assumed that the higher 

size, hydrophobicity, and thereby higher Kow, would have hampered the migration and release of DEHP 

during the assessed time-course.  

The effect of polymer size is evidenced by our results. Overall, higher additive release rates were 

observed for the small MNP size considered (1 µm). This size effect stems from the large surface area 

of the smallest MNPs in relation to the overall mass, allowing for higher additive desorption rates from 

on the MNPs' surface. This, in turn, may enhance the internal negative concentration range (Dong & 

Gijsman, 2010; Zhou et al., 2017). Interestingly, we observed the complete loss of 100% additive 

content for 1 µm SBS and PP MNPs, the more amorphous and flexible polymers, even on day 1 and at 

0ᵒC (Annex 7; ABS).  A similar effect was reported by Paluselli et al. (2019) in aquatic conditions. 

Compared to the release from the thicker and structurally consistent PVC-cables, no release of the low-

weight additives was detected from the thinner and more flexible PE-bags, suggesting their complete 

release even before the experiment due to PE-bag larger surface area.  

Finally, a marked difference in additive release rates was observed between polymers regardless 

of MNPs size. The polymer type factor is included in the model in Piringer Equation with the upper-

boundary diffusion coefficient (A*p). Thereby, differences in polymer type were expected to define 

additive diffusion rates (D*p) and, ultimately, additive release estimations. Higher D*p values (i.e. 

closer to 0) result in reduced additive diffusivity and lower release rates.  

In this study, the highest additive release rates [100-(F%)] were obtained for the SBS polymer for 

both considered sizes, 1µm (Annex 6) and 500µm MNPs (Annex 7), and every type of additive (i.e. 

pentaBDE, octaBDE, decaBDE, BTBPE). Compared to SBS, PP displayed slightly lower additive release 

rates, followed by the polymer PA. Finally, the polymer HIPS displayed the lowest additive release 

estimations. According to the literature, high Tg values result in increased additive diffusivity (Dp) and 

lower release rate (Rusina et al., 2007, 2010). In line with this statement, the highest D*p estimations 

and release rates belonged to the polymer with higher Tg, HIPS (Table 12), followed by PA, PP, and SBS. 

Combined, these observations suggest the ARM accuracy to represent the strong correlation between 

polymer structure, additive diffusivity, and additive release rate.  

Thereby, the obtained ARM output under B >1 suggested the accuracy of the model at the 

qualitative operational level. That is, the model reproduces real-world additive release behavior under 

varying conditions of time, temperature, and size for the different additives and polymers considered 

according to the patterns displayed in Table 2. 

 

The ARM solution under Case III (Bi<1) does not reflect additive release behavior 

Additive diffusivity appeared as externally controlled (Bi<1) only for ABS and PP sized 1µm. Under 
Bi<1, internal diffusion outpaces external desorption and diffusion in the aqueous phase (Table 7). This 
scenario was expected for ABS and PP given their low Tg values (Table 12) and relatively small D*p 
values (Table 6). Additionally, the smallest Bi estimations were obtained at higher temperatures (25ᵒC, 
30ᵒC, 40ᵒC) and for pentaBDE and BTBPE, the low-weight additives. These results suggested that the 
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reduced polymer size enhanced the internal diffusion rate of the smallest additives at relatively high 
temperatures.  

 
However, contrary to our expectations, the application of Case III solution to Fick’s law for ABS 

and PP sized 1µm resulted in a released mass fraction of 0% in all cases (Table 17, Annex 4). This 
contrasted with the higher releases observed for ABS and PP sized 500 µm. For instance, 40.76% and 
26.98% of pentaBE and BTBPE were estimated to be released after 30 days at 0 ᵒC from ABS, 
respectively. Considering the effect of size, we expected higher release rates for MNPs sized 1µm. 
Combined, these observations suggest a lack of accuracy on Fick’s law solution under Bi<1 with the 
ARM not reproducing the hypothesized additive release trends.  

 

DISCUSSION 

1. The ARM’s scope of applicability  

The estimations on decaBDE release from ABS modeled by the ARM when using empirical Dp 
estimations are in good agreement with those reported by Sun et al. (2019). Additionally, additive 
release trends under varying conditions complied with those trends described in the literature when 
internal diffusivity was the rate-limiting step. Combined, these observations suggest that the ARM can 
reliably estimate internally-controlled additive release based on empirical Dp values. 

Nonetheless, it should be underlined that the ARM does not consider crucial physicochemical 

processes undergone by additives upon release into the environments. Upon release, additives may 

biodegrade or transform into secondary products, be transported to other compartments, sorpt onto 

organic matter or accumulate in organisms (Van Den Berg et al., 1995; T. Wang et al., 2023). 

Consequently, the initial release concentration may evolve over time and under specific environmental 

conditions, increasing or diminishing the effective environmental exposure. Hence, when interpreting 

the ARM estimations, it is essential to consider that this first ARM version overlooks the relevance of 

these physicochemical processes. To address this gap, data regarding additive transformation, 

transport, and fate must always be used to inform possible over or underestimations. Future efforts 

should focus on including the processes of additive persistence, transport, and fate into the ARM for a 

more complete exposure assessment.  

On the same note, it is important to mention that the ARM is designed to run per environmental 

compartment. Given that environmental compartments are not entirely isolated, additives are 

expected to diffuse within and between them, causing the initially released concentrations to gradually 

diminish. Nevertheless, since plastic loss into the environment follows a systematic and consistent 

pattern, particularly at accumulation hotspots, the ARM can provide insights into the rates of additive 

release in those areas. 

 

2. Addressing the knowledge gap  

Existing plastic Environmental Risk Assessment (ERA) studies do not consider additive loss 

despite the growing body of evidence that, over the last decades, has shed light on the toxicity of plastic 

additives upon release into the environment (Everaert, 2018). The here developed ARM can be 

combined with plastic accumulation and distribution models (ADM) to improve plastic environmental 

risk assessment at the local and global scale. At TNO, Schwarz et al. (2023) implemented the often-

used Material Flow Analysis (MFA) with the development of an ADM. This new approach included 
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plastic degradation rates and fate (transportation) in the environment, allowing a more thorough 

assessment of plastic litter's environmental impact. On this ground, combining ADM with ARM presents 

a promising new avenue to include additive loss in plastic environmental risk assessment. Adopting the 

ADM + ARM method in plastic risk assessment would establish a comprehensive framework to address 

additive toxicity, plastic pollution, impact assessment, and regulatory policymaking.  

In a broader context, the developed ARM lays the foundation for estimating additive losses from 

plastic litter in different environmental compartments, addressing a notable gap in current research. 

The frequent omission of additives and their release into the environment in ERA studies often stems 

from the multiple complexities that hamper the development of accurate and applicable mathematical 

models to predict additive release(da Costa et al., 2024; MacLeod et al., 2023). These complexities 

encompass additive release kinetics and the limited and scattered available information on additive 

chemicals. Moreover, the multitude of physicochemical and environmental factors influencing 

additives, along with the diverse environmental compartments serving as plastic accumulation 

hotspots, further contribute to the complexity of the system. In this context, only a few studies have 

developed theoretical models for the prediction of additive loss in the surrounding environments 

(Feng, 2020; Lee et al., 2018; Sun et al., 2019).  

Furthermore, in most cases, the reliability of existing models on empirical estimations limits their 

applicability and combination with existing models on plastic accumulation and distribution, such as 

the ones built by Kawecki & Nowack (2019) or Schwarz et al. (2023). As a result, most plastic impact 

assessment studies and regulation policies overlook plastic additives or merely focus on a limited 

number of well-known and frequently used chemicals (Bergmann et al., 2022; Lebreton et al., 2018; 

Martin et al., 2017; Matsuguma et al., 2017; Napper et al., 2020; Nawab et al., 2023), providing a biased 

and incomplete assessment of the plastic problem and its ecological impact. 

In significant contrast, several mathematical models have been developed around food-contact 

materials and additive release (Begley et al., 2005; Hamdani et al., 1997; Petrosino et al., 2023; Poças 

et al., 2012; Reynier et al., 2002; Vitrac et al., 2007; Vitrac & Hayert, 2020). The accelerated progress 

around food-related polymers is facilitated by the progressive inclusion of new and more strict 

regulations on food safety and the demand for higher recycling rates of single-use packaging products. 

Additionally, the availability of detailed and constantly updated datasets on additives with reported 

human-related toxicity also eases the progress in this area.  

Despite the high complexity and accuracy of most mathematical models on food-contact 

materials, their applicability for environmental purposes is limited. Models for food-contact materials 

operate by analyzing the migration of additives from packaging materials into food. Beyond their 

complexity, these models often include variables not considered in environmental-based models (i.e., 

the geometry of the packaging, the type of food, its texture, and total volume) (Petrosino et al., 2023; 

Reynier et al., 2002; Vitrac et al., 2007). For instance, in food-contact models, the shape and structure 

of packaging materials play a crucial role. In significant contrast, in environmentally-focused models, 

the priority lies in the release of additives from MNPs in light of the degradation process plastics 

undergo in the environment (Allan et al., 2022). Additionally, in ecological compartments, the 

surrounding environmental phase is presumed to act as an “infinite” sink (Feng, 2020; Sun et al., 2019). 

In the ARM, this is reflected in Assumption 7. In contrast, given the relatively small size of food items, 

their volume capacity is significantly reduced and should be considered as “finite”. Indeed, as described 

by Hadami et al. (1996), considering food as “infinite” may lead to overestimations. Finally, since food 

is ideally only maintained over relatively short periods before its consumption or disposal, the time 

framework considered in food-contact models is commonly shorter (Vitrac et al., 2007). These 

conditions contrast with the extensive periods plastic polymers stay in the environment before their 



Andrea Rujas Arranz   

38 
 

complete degradation. Combined, these disparities evidence the limited applicability of food contact 

models for environmental purposes, emphasizing the necessity of tailored-made models such as our 

ARM to address additive release in ecological compartments. 

 

3. The use of ARM to improve plastic environmental risk assessment (ERA) 

 

The ARM designed in this study is the first proof of concept for additive release from plastics in 

the environment. It provides a crucial step towards a more complete plastic environmental risk 

assessment (ERA).  

Environmental Risk Assessment (ERA) studies aim to evaluate the potential environmental 

damage caused by toxic substances, activities, or natural events. The objective of ERA is to provide a 

scientific foundation for decision-making regarding the management, regulation, or mitigation of risks 

associated with the presence or release of substances in the environment (EFSA, accessed February 

2024). 

The imperative need to include additive release in plastic ERA studies 

To date, a solid batch of studies have evidenced the occurrence of well-known toxic additives in 

the environment (Adjei et al., 2021; Han et al., 2018; Hermabessiere et al., 2017; Lu et al., 2023; 

Mukhopadhyay & Chakraborty, 2021; Schmidt et al., 2020; J. Wang et al., 2015; Zheng et al., 2024). For 

instance, (Zheng et al., 2024) described high levels of bisphenol A (BPA) and bis(2-ethylhexyl) phthalate 

(DEHP) in e-waste soil and agricultural soils surrounding e-waste landfills in the region of Agbogbloshie 

(Ghana). High levels of BPA and DHEP have also been found in the lower stretch of River Ganga 

(Mukhopadhyay & Chakraborty, 2021), significant levels of PBDEs have been detected near e-waste 

areas in China (Leung et al., 2011), and relevant concentrations of DEHP and TCPP (Tris(1-chloro-2-

propyl) phosphate) in the Rhone River (France). In every instance, the studied areas were known to 

accumulate substantial amounts of plastic litter, whether in a controlled or uncontrolled manner. 

Combined, these observations evidence the strong correlation between the accumulation of plastic 

litter in particular areas and the presence of potentially toxic additives. Taking it one step further, it is 

paramount to draw attention to the impact that constant exposure to toxic additives can have on 

human health (Adeniran et al., 2022; Adjei et al., 2021; Awuchi et al., 2019; Linares et al., 2015; Meeker 

et al., 2009). Therefore, plastic litter and the release of associated additives must also be acknowledged 

as a societal issue, with adverse effects impacting both human health and environmental systems. 

It is thereby evident that studies investigating the environmental impact of plastic cannot fully 

comprehend the risks to human health and the environment without accounting for additives and their 

rates of release. Moreover, the abovementioned studies also highlight the significant impact of plastics 

and related additives in different regions worldwide. Particular attention should be given to areas with 

limited or no ecosystem services and inadequate plastic waste management facilities. These areas may 

experience high rates of uncontrolled plastic loss and accumulation, ultimately leading to elevated 

levels of human and environmental exposure(Conlon, 2000; Owens & Conlon, 2021). 

 

The role of the ARM in ERA studies 

To shortly describe the ERA approach, hazard and exposure assessments are executed to 

evaluate chemical risks to human health and ecosystems. Hazard assessment involves evaluating a 



Andrea Rujas Arranz   

39 
 

chemical's inherent properties and its potential to cause harm, often using predicted non-effect 

concentrations (PNECs) derived from dose-response ecotoxicity tests (Hahn et al., 2014; Jung et al., 

2021). Exposure assessment estimates environmental emissions and exposure to the substance, 

resulting in predicted environmental concentrations (PECs) in ecological compartments. PEC values are 

typically derived from field observations or modeling calculations. By comparing the predicted 

environmental concentration (PEC) to the predicted no-effect concentration (PNEC), the risk quotient 

(RQ) can be estimated (Figure 11). The RQ determines the environmental risk of a substance. A 

PEC/PNEC ratio exceeding 1 indicates concern. Typically, PEC and PNEC are measured in mg/L or mg/kg 

(Backhaus & Faust, 2012; Hahn et al., 2014; Jung et al., 2021; Nika et al., 2020; Peterson, 2006). 

 

 

 

Figure 11.  The environmental risk of a substance is calculated using the so-called risk quotient (RQ) through the comparison 
of the predicted environmental concentration (PEC) against the predicted no-effect concentration (PNEC) of the substance; 
RQ=PEC/PNEC. If the PEC/PNEC ratio is greater than 1, the substance is considered of concern. 

The developed ARM allows the prediction of PEC values for selected target additives, combined 

with additive concentration and plastic accumulation numbers. The ARM results present the additive 

mass fraction (%) that is released from a specific polymer of a certain size under given conditions of 

time and temperature [100-(F%)], estimated with Equation (8). By combining the estimated [100-(F%)] 

with additive concentration values for a given polymer, the amount of additive released into the 

environment under specific given conditions can be calculated. These estimations can be combined 

with plastic pollution quantities in a particular environment, and the fraction that degrades to MNPs 

over time due to degradation. Hence, the ARM enables the derivation of predicted environmental 

concentrations (PEC, g/L) through ARM [100-(F%)] estimations, making it a valuable exposure 

assessment tool for addressing additive environmental toxicity. 

However, a certain degree of overestimation (%) on additive release predictions is possible when 

using worst-case scenario Diffusion Coefficient (D*p) values derived from Piringer’s Equation (Eq. 3).  

Based on D*p, the model predicts the worst-case scenario estimations for additive loss from polymers. 

Yet, assessing environmental risks under worst-case scenarios facilitates informed decision-making 

processes. It raises awareness of potential threats and prompts organizations and policymakers to 

consider the full spectrum of potential impacts. Therefore, the use of the ARM would result in the 

prioritization of actions that minimize additive harm to the environment and human health when 

introduced in plastic environmental risk assessment studies.  
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LIMITATIONS AND FUTURE PERSPECTIVES 

In this study, an ARM was developed to model additive release rates from MNPs in aquatic 

environments. As a first proof of concept, the ARM was applied to estimate the release of four PBDEs 

from SBS, PP, PA, and HIPs. However, the reliability of our input dataset came into question given the 

inaccuracy of certain assumptions. Such assumptions were introduced to overcome the low data 

availability of certain parameters and the time limitations. Nevertheless, the author is aware of the 

uncertainties that may have arisen in this regard and the modeled ARM output was evaluated in 

consequence. A clear distinction was made between the model's qualitative performance and its 

accuracy in reproducing empirical estimations while using our input dataset. Nonetheless, additional 

important limitations and uncertainties must be highlighted. 

The ARM model is only applicable to estimate additive release from amorphous polymers. 
According to Crank (1975), additive diffusivity and mass transport kinetics in crystalline (i.e. non-
amorphous or glassy) and semi-crystalline polymers cannot be described by Fick’s second. Additive 
diffusion processes in non-amorphous polymers are often affected by mechanisms such as relaxation 
processes, chain hopping, or localized transport within the matrix. These mechanisms result in 
deviations from the classic Fickian diffusion model, where the diffusion rate is solely dependent on 
concentration gradients. As Fick’s second law describes a concentration-dependent diffusion (i.e. 
Fickian diffusion) driven by a constant negative concentration gradient, additive loss from non-
amorphous polymers needs the consideration of alternative diffusion models (Crank, 1975; Feng, 
2020). Nevertheless, while the ARM can’t be applied to estimate additive loss from crystalline 
polymers, semi-crystalline plastics can be included under certain constraints. Semi-crystalline polymers 
consist of alternating regions of amorphous and non-amorphous sections within the matrix. Thereby, 
ARM additive release would solely estimate additive loss from the amorphous phase. To correct this, 
deep research must be performed to establish the amorphous-crystalline ratio of the material. 
However, in the context of this project, this correction was not included in the ARM due to time 
limitations. A homogeneous and constant additive distribution within the polymer was assumed. 
Thereby, the here estimated additive release rates for PA and PP, both semi-crystalline, should be 
regarded as an overestimation. 

 
We presumed that the inconsistencies in the externally-controlled (Bi<1) additive release output 

might have arisen either from the mathematical solution to Fick’s law or from inaccuracies in the input 
dataset. Although we do not rule out possible errors in the mathematical solution, the same solution 
has been successfully used previously in the literature (Feng, 2020). A tentative explanation is the use 
of the parameter octanol-water partitioning coefficient (Kow) instead of the plastic-water partitioning 
coefficient (Kpw). For instance, O’Connor et al. (2016) reported Kpw values of 5.61 and 6.9 for decaBDE 
(BDE209) and pentaBDE (BDE99), respectively. In contrast, the Kow used in this study for decaBDE and 
pentaBDE were 6.26 and 6.80, respectively. Higher partitioning coefficient values indicate a higher 
affinity of the additive for the organic phase, in this case, the polymer. Therefore, it may be conceivable 
that our Kow values contributed to underestimations in the additive partitioning rates, leading to the 
neglect of additive release rates (0%). Nonetheless, we cannot dismiss other potential factors, including 
the utilization of the sphere's radius for the water-boundary layer.  

 
To correct the potential inaccuracies arising from the use of Kow coefficients, the inclusion of a 

mathematical solution to estimate Kpw values in our model should be considered in our model. 
Preliminary research on the topic led to the work of (Mosca Angelucci & Tomei, 2022) as a promising 
first approach to this matter. In this study, different mathematical approximations are described for the 
prediction of the partitioning equilibrium between the environmental phase and the polymer. Yet, such 
approximations must be carefully evaluated as they rely on the availability of the parameters. 
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Additionally, the ARM presumed no presence of environmental organic pollutants or dissolved 

organic matter in the aqueous medium. In the case of organic pollutants (OP), they are known to sorpt 

to the polymeric surface, influencing the desorption rate of additive release. This sorption of 

environmental pollutants is hypothesized to restrict or facilitate additive loss into the environment 

(Agboola & Benson, 2021; da Costa et al., 2024). In this context, real-world additive loss must be 

expected to differ from ARM estimations. In future studies, it would be of interest to consider additive-

OP and polymer-OP interactions with well-defined groups of commonly found environmental organic 

chemicals (Zhu et al., 2021). The kinetics of these interactions could be included in the ARM as an 

additional parameter seeking to implement the accuracy and complexity of the model.  

The model assumes that the considered MNPs do not further degrade over time. In this line, it 

is assumed that additive concentration within the MNPs would equal that present on the polymers 

upon manufacturing. Consequently, the model disregards the gradual degradation of polymers and the 

resulting release of additives as they age. Both processes have been consistently described in the 

literature (Cao et al., 2023; P. Liu et al., 2020; Luo et al., 2022; Ter Halle et al., 2016).  UV light exposure 

is known to promote polymer aging, enhancing the fragmentation of the material into smaller particles 

(Conradie et al., 2022; Rummel et al., 2019; Viljoen et al., 2023). In this regard, work is currently 

underway to introduce plastic’s degradation rates under UV light conditions (displayed in Annex 8) in 

the ARM.   

Beyond UV light exposure, this first version of the ARM also overlooks other important 

environmental parameters such as microbial activity, organisms intake, or the hydrostatic pressure 

found at the sediment level (Ateia et al., 2020; Chen et al., 2023; H. Liu et al., 2020; Rani et al., 2017). 

These factors were dismissed for the sake of simplicity. Enhanced additive release in biotic conditions 

has been consistently reported in previous studies (Fauvelle et al., 2021; Lin et al., 2022; Paluselli et al., 

2019). The lower pH conditions of the gastric fluids are known to activate additive release mobilization 

upon organism intake (Bakir et al., 2014; Li et al., 2019). As a final remark, the increased hydrostatic 

pressure observed at sediment levels in aquatic environments is recognized to reduce additive release 

due to the narrowing of pore diameters (Fauvelle et al., 2021). Thus, to adapt the ARM for plastic litter 

accumulating at the bottom of aquatic ecosystems, it is advisable to consider incorporating the factor 

of hydrostatic pressure in future studies. 

Thereby, following a careful implementation of this first version of the ARM model, future 

research should focus on the inclusion of additional key parameters that were overlooked in the here 

presented ARM. This gradual inclusion of new variables will enhance the complexity of the ARM, 

resulting in a more reliable and accurate representation of the real-world system we aim to analyze.   

 

CONCLUSION 

In this study, an additive release model (ARM) was built based on a preliminary conceptual 
model. Additive release kinetics were translated into algorithms based on existing models, and a set 
of well-defined parameters was included, namely temperature, time, water presence, polymer type, 
polymer size, and additive molecular weight. The estimations of decaBDE release from ABS modeled 
by the ARM using empirical Dp estimations were in good agreement with those reported by Sun et al. 
(2019), serving as a positive reference control. Additionally, additive release trends under varying 
conditions aligned with those described in the literature. These observations collectively suggest that 
the ARM can reliably estimate internally-controlled additive release based on empirical Dp values. 
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This project lays the foundation for a first ARM version to estimate additive losses from plastic 
litter in environmental compartments. In conjunction with ERA studies, the ARM establishes the 
groundwork to address additive toxicity, plastic pollution, impact assessment, and regulatory 
policymaking. 

Recommendations for future studies include implementing more reliable criteria during the data 
collection process to ensure the quantitative reliability of ARM estimations. Furthermore, additional 
environmental and physicochemical factors should be included in future works to enhance the 
accuracy of the model. 
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ANNEXES 

Annex 1. 

Table 13. Collected literature on environmental and physicochemical factors governing additive release. 

Ref. 
Author, year Title Factors considered  

1 Paluselli, 2019 
Phthalate Release from Plastic Fragments 

and Degradation in Seawater 

Microbial activity, UV light 
exposure, polymer size, 
polymer type, additive 

molecular weight (MW), 
polymer aging 

2 Chen, 2023 
Insight into chemical features of migrated 

additives from plastics and associated risks 
to estuarine ecosystem 

Wave action, UV light 
exposure,  polymer type, 

polymer size 

3 Luo, 2022 
Effects of aging on environmental behavior 

of plastic additives: Migration, leaching, and 
ecotoxicity 

Additive MW, polymer size, 
time 

4 Liu, 2020 
Sunlight-mediated cadmium release from 
colored microplastics containing cadmium 

pigment in aqueous phase 

Uv light exposure, polymer 
size, organic matter 

content (%OM), additive 
hydrophobicity 

5 Ateia, 2020 
Microplastics release precursors of 

chlorinated and brominated disinfection 
byproducts in water 

UV light exposure 

6 Manviri, 2017 
Releasing of hexabromocyclododecanes 

from expanded polystyrenes in seawater -
field and laboratory experiments 

UV light exposure, 
temperature, microbial 

activity, wave action, 
salinity, polymer size 

7 Lertsirisopon, 2009 
Abiotic degradation of four phthalic acid 
esters in aqueous phase under natural 

sunlight irradiation 

Organic matter content 
(%OM), UV light exposure, 

temperature, pH, 
aerobic/anaerobic 

biodegradation 

8 Koelmans, 2014 
Leaching of plastic additives to marine 

organisms 

Organisms intake, polymer 
size, additive 

hydrophobicity 

9 Sun, 2019 

Releases of brominated flame retardants 
(BFRs) from microplastics in aqueous 
medium: Kinetics and molecular-size 

dependence of diffusion 

Temperature, time, 
polymer size, polymer 

type, additive MW 

10 Bakir, 2014 
Enhanced desorption of persistent organic 

pollutants from microplastics under 
simulated physiological conditions 

Organism intake, pH, 
temperature 
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11 Dimassi, 2023 
Effect of temperature and sunlight on the 

leachability potential of BPA and phthalates 
from plastic litter under marine conditions 

Temperature, time, UV 
light exposure, abrasion, 
polymer type, additive 

type, 

12 Raju Maddela, 2023 
Additives of plastics: Entry into the 

environment and potential risks to human 
and ecological health 

Time, temperature, UV 
light, Organisms intake, 

aging proces 

13 Li, 2019 

The release and earthworm bioaccumulation 
of endogenous hexabromocyclododecanes 
(HBCDDs) from expanded polystyrene foam 

microparticles 

Organisms intake, additive 
hydrophobicity, size 

14 Fauvelle, 2021 
Organic additive release from plastic to 

seawater is lower under deep-sea conditions 

Water presence, 
hydrostatic pressure, 

microbial activity, polymer 
size 

15 Takada, 2019 
Degradation of Various Plastics in the 

Environment 

Polymer aging, aquatic 
conditions, organisms 

ingestion, additive 
hydrophobicity, pH 

16 John Allan, 2022 
Examining the Relevance of the Microplastic-

Associated Additive Fraction in 
Environmental Compartments 

Polymer crystallinity, 
additive MW, polymer size, 

additive hydrophobicity 

17 Askadskii, 2013 
The Influence of the Degree of Crystallinity 

on the Glass Transition Temperature of 
Polymers 

Polymer crystallinity 

18  Hahladakis, 2018 

An overview of chemical additives present in 
plastics: Migration, release, fate and 

environmental impact during their use, 
disposal and recycling 

Additive MW, polymer 
type, polymer size, water 

presence, time, 
temperature 

19 Viljoen, 2023 

Leaching of phthalate acid esters from 
plastic mulch films and their degradation in 
response to UV irradiation and contrasting 

soil conditions 

Time, UV light, 
temperature, additive MW, 

organic matter presence 

 

 

Annex 2 

Table 14. Collected literature on additive release kinetics, mass transport mechanisms, and mathematical models. 

Ref. 
Author, year Title 

20 John Allan, 2022 
Examining the Relevance of the Microplastic-Associated Additive 

Fraction in Environmental Compartments 

21 Lee, 2018 
Desorption modeling of hydrophobic organic chemicals from plastic 

sheets using experimentally determined diffusion coefficients in 
plastics 
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22 Sun, 2019 
Releases of brominated flame retardants (BFRs) from microplastics in 

aqueous medium: Kinetics and molecular-size dependence of 
diffusion 

23 Raewyn, 2020 
Uptake and Release Kinetics of Organic Contaminants Associated 

with Micro- and Nanoplastic Particles 

24 Hahladakis, 2018 
An overview of chemical additives present in plastics: Migration, 
release, fate and environmental impact during their use, disposal 

and recycling 

25 Barrick, 2021 Plastic additives: Challenges in ecotox hazard assessment 

26 Bridson, 2021 
Leaching and extraction of additives from plastic pollution to inform 

environmental risk: A multidisciplinary review of analytical 
approaches 

27 Kwon, 2020 
Microplastics as a Vector of Hydrophobic Contaminants: 

Importance of Hydrophobic Additives 

28 Feng, 2020 
Modeling Releases of Polymer Additives from Microplastics into the 

Aqueous Environment 

29 Crank 1975 The mathematics of diffusion 

30 Karimi, 2011 Diffusion in Polymer Solids and Solutions 

31 Dong, 2010 The diffusion and solubility of Irganox® 1098 in polyamide 6 

32 Piringer, 1994 Evaluation of plastics for food packaging 

33 Hamdami, 1997 
Prediction of worst-case migration from packaging to food using 

mathematical models 

34 Limm and Hollifield, 1996 Modeling of additive diffusion in polyolefins 

35 Barnes,  2007 Chemical Migration and Food Contact Materials 

36 Nguyen, 2013 
A computer-aided methodology to design safe food packaging and 

related systems 

37 Plastics Europe, 2021 
Applicability of mathematical modelling for the estimation of specific 

migration of substances from plastics 
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Annex 3. 

Table 15. Temperature-independent A*'p values and activation energies for the different polymers selected.  Data collected 
from Plastics Europe (2021). (*) ABS data belongs to SBS. SBS data was collected from Plastics Europe (2021) and used to 
estimate additive release from ABS based on the similarity in composition between both polymers.  

Polymer A’*p  (m2/s) τ (K) 

ABS (*) 10.5 0 

HIPS 0 1 

PP 13.1 1577 

PA 2 0 

 

Table 16. Estimated temperature-dependant A*p values based on Eq. (4). 

Polymer A*p (0ᵒC) A*p (10ᵒC) A*p (25ᵒC) A*p (30ᵒC) A*p (40ᵒC) 

ABS * 10.5 10.5 10.5 10.5 10.5 

HIPS -0.003660992 -0.003531697 -0.003354016 -0.003298697 -0.003193358 

PP 7.326615413 7.530513862 7.810716083 7.897954808 8.064074725 

PA 2 2 2 2 2 

 

Annex 4.  

Table 17. Cumulative % of additive released (100-F(%))  for ABS and PP MNPs sized 1µm over time under Bi <1. 

Polymer Additive 1 day 3 days 7 days 15 days 30 days 150 days 365 days 

ABS 

pentaBDE (BDE-99) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OctaBDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DecaBDE (BDE -209) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BTBPE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PP 

pentaBDE (BDE-99) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OctaBDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DecaBDE (BDE -209) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BTBPE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Annex 5. 

Table 18. Released mass fraction [1- F(%)] from ABS 500 µm when assuming internally-controlled diffusion (Bi>1) for 
additives and temperatures with Bi=1 (highlighted in green). Complete calculations can be found in the Sup. Excel, 
worksheet F% 500um. 

 

Table 19. Released mass fraction [1- F(%)] from ABS 500 µm when assuming externally-controlled diffusion (Bi<1) for 
additives and temperatures with Bi=1 (highlighted in green). Complete calculations can be found in the Sup. Excel, 
worksheet F% 500um 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 
150 

DAYS 
365 

DAYS 

ABS 

pentaBDE 

0ᵒC 8.28 14.11 21.10 29.99 40.76 75.57 93.63 

10ᵒC 15.92 26.66 38.97 53.60 69.42 98.31 99.99 

25ᵒC 37.50 59.05 78.96 93.87 99.38 100.00 100.00 

30ᵒC 47.99 72.60 90.99 98.98 99.98 100.00 100.00 

40ᵒC 72.66 94.81 99.81 100.00 100.00 100.00 100.00 

OctaBDE 

0ᵒC 3.56 6.12 9.27 13.41 18.67 38.94 56.32 

10ᵒC 6.93 11.84 17.78 25.40 34.77 66.92 87.31 

25ᵒC 17.04 28.46 41.45 56.70 72.83 99.02 100.00 

30ᵒC 22.38 36.88 52.72 70.09 86.02 99.96 100.00 

40ᵒC 36.92 58.26 78.14 93.36 99.28 100.00 100.00 

DecaBDE 

0ᵒC 2.20 3.80 5.78 8.39 11.76 25.22 37.66 

10ᵒC 4.31 7.40 11.18 16.13 22.38 45.92 65.11 

25ᵒC 10.71 18.15 26.96 37.95 50.86 87.35 98.67 

30ᵒC 14.16 23.81 35.00 48.53 63.64 96.31 99.93 

40ᵒC 23.84 39.12 55.63 73.31 88.72 99.99 100.00 

BTBPE 

0ᵒC 5.26 9.01 13.59 19.54 26.98 54.15 74.71 

10ᵒC 10.20 17.30 25.72 36.29 48.79 85.25 98.08 

25ᵒC 24.69 40.43 57.31 75.12 90.14 99.99 100.00 

30ᵒC 32.15 51.51 70.74 87.97 97.63 100.00 100.00 

40ᵒC 51.57 76.78 93.76 99.54 100.00 100.00 100.00 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

ABS 

pentaBDE 

0ᵒC 8.28 14.11 21.10 29.99 40.76 75.57 93.63 

10ᵒC 15.92 26.66 38.97 53.60 69.42 98.31 99.99 

25ᵒC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30ᵒC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

40ᵒC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OctaBDE 

0ᵒC 3.56 6.12 9.27 13.41 18.67 38.94 56.32 

10ᵒC 6.93 11.84 17.78 25.40 34.77 66.92 87.31 

25ᵒC 17.04 28.46 41.45 56.70 72.83 99.02 100.00 

30ᵒC 22.38 36.88 52.72 70.09 86.02 99.96 100.00 

40ᵒC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DecaBDE 

0ᵒC 2.20 3.80 5.78 8.39 11.76 25.22 37.66 

10ᵒC 4.31 7.40 11.18 16.13 22.38 45.92 65.11 

25ᵒC 10.71 18.15 26.96 37.95 50.86 87.35 98.67 

30ᵒC 14.16 23.81 35.00 48.53 63.64 96.31 99.93 

40ᵒC 23.84 39.12 55.63 73.31 88.72 99.99 100.00 

BTBPE 

0ᵒC 5.26 9.01 13.59 19.54 26.98 54.15 74.71 

10ᵒC 10.20 17.30 25.72 36.29 48.79 85.25 98.08 

25ᵒC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30ᵒC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

40ᵒC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Annex 6. Cumulative % of additive released ([1-F(%)]*100) from MNPs size 500 µm over time under Bi >1 

The tables here displayed can be found in Supplementary Excel, worksheet F% 500µm. 

A ABS (500 µm) 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

ABS                    
(500µm) 

pentaBDE 

0ᵒC 8.28 14.11 21.10 29.99 40.76 75.57 93.63 

10ᵒC 15.92 26.66 38.97 53.60 69.42 98.31 99.99 

25ᵒC 37.50 59.05 78.96 93.87 99.38 100.00 100.00 

30ᵒC 47.99 72.60 90.99 98.98 99.98 100.00 100.00 

40ᵒC 72.66 94.81 99.81 100.00 100.00 100.00 100.00 

OctaBDE 

0ᵒC 3.56 6.12 9.27 13.41 18.67 38.94 56.32 

10ᵒC 6.93 11.84 17.78 25.40 34.77 66.92 87.31 

25ᵒC 17.04 28.46 41.45 56.70 72.83 99.02 100.00 

30ᵒC 22.38 36.88 52.72 70.09 86.02 99.96 100.00 

40ᵒC 36.92 58.26 78.14 93.36 99.28 100.00 100.00 

DecaBDE 

0ᵒC 2.20 3.80 5.78 8.39 11.76 25.22 37.66 

10ᵒC 4.31 7.40 11.18 16.13 22.38 45.92 65.11 

25ᵒC 10.71 18.15 26.96 37.95 50.86 87.35 98.67 

30ᵒC 14.16 23.81 35.00 48.53 63.64 96.31 99.93 

40ᵒC 23.84 39.12 55.63 73.31 88.72 99.99 100.00 

BTBPE 

0ᵒC 5.26 9.01 13.59 19.54 26.98 54.15 74.71 

10ᵒC 10.20 17.30 25.72 36.29 48.79 85.25 98.08 

25ᵒC 24.69 40.43 57.31 75.12 90.14 99.99 100.00 

30ᵒC 32.15 51.51 70.74 87.97 97.63 100.00 100.00 

40ᵒC 51.57 76.78 93.76 99.54 100.00 100.00 100.00 

 

B 
HIPS (500 µm) 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

HIPS          
(500µm) 

pentaBDE 

0ᵒC 0.04 0.08 0.12 0.17 0.24 0.54 0.85 

10ᵒC 0.09 0.15 0.23 0.34 0.48 1.07 1.66 

25ᵒC 0.22 0.38 0.58 0.85 1.21 2.69 4.17 

30ᵒC 0.29 0.51 0.78 1.14 1.61 3.58 5.55 

40ᵒC 0.51 0.88 1.35 1.97 2.78 6.16 9.52 

OctaBDE 

0ᵒC 0.02 0.03 0.05 0.07 0.10 0.23 0.36 

10ᵒC 0.04 0.06 0.10 0.14 0.20 0.45 0.71 

25ᵒC 0.09 0.16 0.25 0.36 0.51 1.14 1.78 

30ᵒC 0.13 0.22 0.33 0.48 0.68 1.53 2.37 

40ᵒC 0.22 0.38 0.57 0.84 1.18 2.64 4.10 

DecaBDE 

0ᵒC 0.02 0.02 0.03 0.04 0.06 0.14 0.22 

10ᵒC 0.02 0.04 0.06 0.09 0.12 0.28 0.44 

25ᵒC 0.06 0.10 0.15 0.22 0.32 0.71 1.10 

30ᵒC 0.13 0.22 0.33 0.48 0.68 1.53 2.37 

40ᵒC 0.13 0.23 0.35 0.52 0.73 1.63 2.54 

BTBPE 

0ᵒC 0.03 0.05 0.07 0.11 0.15 0.34 0.53 

10ᵒC 0.05 0.10 0.15 0.21 0.30 0.67 1.05 

25ᵒC 0.14 0.24 0.37 0.54 0.76 1.70 2.64 

30ᵒC 0.19 0.32 0.49 0.72 1.01 2.26 3.51 

40ᵒC 0.32 0.56 0.85 1.24 1.76 3.90 6.05 
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C 
PP (500 µm) 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

PP            
(500µm) 

pentaBDE 

0ᵒC 1.73 2.98 4.53 6.59 9.26 20.05 30.24 

10ᵒC 3.74 6.42 9.72 14.05 19.54 40.61 58.47 

25ᵒC 10.67 18.08 26.85 37.81 50.69 87.18 98.63 

30ᵒC 14.71 24.69 36.24 50.12 65.48 97.07 99.96 

40ᵒC 26.69 43.46 61.12 79.09 92.95 100.00 100.00 

OctaBDE 

0ᵒC 0.73 1.27 1.94 2.83 3.98 8.79 13.53 

10ᵒC 1.59 2.75 4.19 6.10 8.56 18.60 28.13 

25ᵒC 4.60 7.90 11.93 17.20 23.82 48.55 68.28 

30ᵒC 6.39 10.93 16.42 23.52 32.29 63.02 83.82 

40ᵒC 11.86 20.04 29.66 41.55 55.31 91.25 99.46 

DecaBDE 

0ᵒC 0.45 0.78 1.20 1.75 2.47 5.47 8.47 

10ᵒC 0.98 1.70 2.59 3.79 5.33 11.71 17.93 

25ᵒC 2.85 4.91 7.46 10.81 15.10 31.97 47.03 

30ᵒC 3.97 6.82 10.32 14.90 20.70 42.80 61.25 

40ᵒC 7.41 12.64 18.95 27.03 36.91 70.13 89.89 

BTBPE 

0ᵒC 1.09 1.88 2.87 4.18 5.88 12.90 19.71 

10ᵒC 2.36 4.07 6.18 8.98 12.57 26.87 39.99 

25ᵒC 6.79 11.60 17.42 24.91 34.13 65.92 86.45 

30ᵒC 9.01 15.33 22.87 32.42 43.89 79.62 95.84 

40ᵒC 17.32 28.89 42.04 57.43 73.62 99.15 100.00 

 

D 
PA (500 µm) 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

PA            
(500µm) 

pentaBDE 

0ᵒC 0.12 0.21 0.32 0.47 0.66 1.47 2.29 

10ᵒC 0.24 0.41 0.63 0.92 1.30 2.89 4.48 

25ᵒC 0.60 1.04 1.58 2.31 3.26 7.22 11.14 

30ᵒC 0.80 1.39 2.11 3.08 4.35 9.58 14.72 

40ᵒC 1.39 2.40 3.65 5.32 7.47 16.29 24.75 

OctaBDE 

0ᵒC 0.05 0.09 0.14 0.20 0.28 0.63 0.98 

10ᵒC 0.10 0.17 0.27 0.39 0.55 1.23 1.92 

25ᵒC 0.25 0.44 0.67 0.99 1.39 3.10 4.81 

30ᵒC 0.34 0.59 0.90 1.31 1.86 4.13 6.40 

40ᵒC 0.59 1.02 1.56 2.27 3.21 7.10 10.95 

DecaBDE 

0ᵒC 0.03 0.05 0.08 0.12 0.17 0.39 0.60 

10ᵒC 0.06 0.11 0.16 0.24 0.34 0.76 1.18 

25ᵒC 0.16 0.27 0.42 0.61 0.86 1.92 2.98 

30ᵒC 0.21 0.36 0.56 0.81 1.15 2.56 3.97 

40ᵒC 0.36 0.63 0.96 1.41 1.99 4.41 6.84 

BTBPE 

0ᵒC 0.08 0.13 0.20 0.29 0.42 0.93 1.45 

10ᵒC 0.15 0.26 0.40 0.58 0.82 1.82 2.84 

25ᵒC 0.38 0.65 1.00 1.46 2.06 4.58 7.10 

30ᵒC 0.50 0.87 1.33 1.95 2.75 6.09 9.41 

40ᵒC 0.87 1.51 2.31 3.36 4.74 10.43 16.01 
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Annex 7. Cumulative % of additive released from ([1-F(%)]*100) MNPs size 1 µm over time under Bi>1 

The tables here displayed can be found in Supplementary Excel, worksheet F% 1µm. 

A ABS (1 µm) 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

ABS (SBS) 

pentaBDE 

0ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

10ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

25ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

OctaBDE 

0ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

10ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

25ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

DecaBDE 

0ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

10ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

25ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

BTBPE 

0ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

10ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

25ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

B 
HIPS (1 µm) 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

HIPS 

pentaBDE 

0ᵒC 21.19 35.02 50.28 67.30 83.52 99.91 100.00 

10ᵒC 39.13 61.28 81.21 95.16 99.62 100.00 100.00 

25ᵒC 79.18 97.63 99.97 100.00 100.00 100.00 100.00 

30ᵒC 91.15 99.81 100.00 100.00 100.00 100.00 100.00 

40ᵒC 99.82 100.00 100.00 100.00 100.00 100.00 100.00 

OctaBDE 

0ᵒC 9.31 15.83 23.60 33.42 45.16 81.17 96.55 

10ᵒC 17.86 29.76 43.22 58.88 75.16 99.36 100.00 

25ᵒC 41.62 64.59 84.37 96.72 99.82 100.00 100.00 

30ᵒC 52.93 78.30 94.65 99.67 100.00 100.00 100.00 

40ᵒC 78.37 97.35 99.96 100.00 100.00 100.00 100.00 

DecaBDE 

0ᵒC 5.80 9.94 14.96 21.46 29.55 58.54 79.41 

10ᵒC 11.23 19.01 28.19 39.60 52.91 89.25 99.11 

25ᵒC 27.08 44.04 61.83 79.81 93.41 100.00 100.00 

30ᵒC 52.93 78.30 94.65 99.67 100.00 100.00 100.00 

40ᵒC 55.85 81.42 96.23 99.84 100.00 100.00 100.00 

BTBPE 

0ᵒC 13.65 22.98 33.83 47.02 61.87 95.47 99.89 

10ᵒC 25.84 42.17 59.50 77.44 91.83 100.00 100.00 

25ᵒC 57.52 83.11 96.98 99.90 100.00 100.00 100.00 

30ᵒC 70.98 93.86 99.71 100.00 100.00 100.00 100.00 

40ᵒC 93.90 99.94 100.00 100.00 100.00 100.00 100.00 

 



Andrea Rujas Arranz  TNO 

51 
 

C PP (1 µm) 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

PP 

pentaBDE 

0ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

10ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

25ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

OctaBDE 

0ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

10ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

25ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

DecaBDE 

0ᵒC 99.37 100.00 100.00 100.00 100.00 100.00 100.00 

10ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

25ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

BTBPE 

0ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

10ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

25ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

D 
PA (1 µm) 

Polymer Additive Temperature 1 DAY 3 DAYS 7 DAYS 15 DAYS 30 DAYS 150 DAYS 365 DAYS 

PA 

pentaBDE 

0ᵒC 51.48 76.68 93.70 99.53 100.00 100.00 100.00 

10ᵒC 82.50 98.58 99.99 100.00 100.00 100.00 100.00 

25ᵒC 99.98 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

OctaBDE 

0ᵒC 24.24 39.74 56.43 74.18 89.41 99.99 100.00 

10ᵒC 44.29 68.03 87.41 97.93 99.93 100.00 100.00 

25ᵒC 85.59 99.20 100.00 100.00 100.00 100.00 100.00 

30ᵒC 95.36 99.97 100.00 100.00 100.00 100.00 100.00 

40ᵒC 99.97 100.00 100.00 100.00 100.00 100.00 100.00 

DecaBDE 

0ᵒC 15.38 25.78 37.74 52.04 67.68 97.82 99.98 

10ᵒC 28.94 46.83 65.23 83.11 95.35 100.00 100.00 

25ᵒC 63.16 88.28 98.70 99.98 100.00 100.00 100.00 

30ᵒC 76.87 96.78 99.94 100.00 100.00 100.00 100.00 

40ᵒC 96.80 99.99 100.00 100.00 100.00 100.00 100.00 

BTBPE 

0ᵒC 34.71 55.17 74.83 91.13 98.71 100.00 100.00 

10ᵒC 60.81 86.24 98.11 99.96 100.00 100.00 100.00 

25ᵒC 97.47 100.00 100.00 100.00 100.00 100.00 100.00 

30ᵒC 99.79 100.00 100.00 100.00 100.00 100.00 100.00 

40ᵒC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Annex 8.  
Table 20. Yearly degradation rate under UV light (percentile). Source (Schwarz et al.. 2023). 

From To ABS HIPS PP PA 

Inland water Inland water (MP) 0.01505 0.0004 0.0131 0.18 

Wetland Wetland (MP) 0.01505 0.0004 0.0131 0.18 

Ocean Ocean (MP) 0.01505 0.0004 0.0131 0.18 
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