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Abstract

Streamflow predictions are essential for effective water management, en-

abling assessment of water availability, maintenance of agricultural prac-

tices, flood mitigation, and the overall impact on society. Traditional hy-

drological models have a difficult time comprehending some of the com-

plex behavior of the hydrological cycle, leading them to have less accu-

rate streamflow predictions. A hybrid modeling approach that couples the

PCR-GLOBWB global hydrological model with the Random Forest machine

learning algorithm was developed to enhance streamflow predictions. This

study presents an innovative method for improving hydrological simula-

tions by integrating satellite-derived precipitation and evaporation data into

this hybrid modeling setup. The research explores the impact of this inte-

gration across different global contexts and uncovers the varying efficacy of

satellite data in enhancing model accuracy, especially in regions with lim-

ited data. Through a comparative analysis of model performances using

both global and local training datasets, the study emphasizes the critical

importance of using satellite-based data and the strategic use of localized

data for optimal predictions. The findings of this study show that model

performance did not improve with the integration of satellite-based evapo-

ration and precipitation globally. However, it suggests that satellite data

integration offers significant benefits in certain contexts, even though its

overall impact depends on the specific hydrological and geographical char-

acteristics of the target region. This research provides valuable insights into

the potential use of satellite data to enhance the accuracy and reliability of

hydrological predictions, creating opportunities for more informed water

resource management strategies amid global environmental changes.
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1. Introduction
Streamflow plays an important role in the hydrological cycle. It has been

significantly impacted by climate change, leading to more frequent occur-

rences of extreme weather events like droughts and floods [1]. Streamflow

is also essential in water management as it significantly impacts various as-

pects, such as the availability of water resources, agricultural practices, and

accurate flood forecasting. Water resource management could be defined

as preparing, creating, supplying, and controlling the optimal use of water

resources [2]. From a water resources management perspective, identify-

ing trends and variability in streamflow is critical for planning purposes

[3]. Therefore, accurate predictions of streamflow are essential for effective

water resource management. Hydrological models have been carefully de-

veloped to simulate the behavior of the hydrological cycle and predict its

response under changing climatic conditions. Over time, various advanced

statistical and computational modeling techniques have been introduced

for more precise streamflow simulations and forecasting. Operational hy-

drological forecasting systems are essential in water resources management

and preparedness against extreme events [4]. However, it is difficult to pre-

dict the changes in future streamflows as it involves a physical process that

depends upon more than one variable, such as precipitation, evapotran-

spiration, topography, and human activities [5]. Hydrological models can

be classified into physically based, conceptual, and/or data-driven models.

Each type has advantages and limitations in simulating the complex pro-

cesses of the hydrological cycle.

Physically-based models are developed based on the understanding of

the runoff generation processes, transport in channels, and mathematical

formulations of these physical processes [6]. They usually do not attempt

to consider the stochastic nature of the underlying hydrologic system [5].

Conceptual models simplify the representation of the hydrological system

by combining various parameters and processes into a single equation or set

of equations. These models use storage elements as their main components,

filled by inputs like rainfall, infiltration, or percolation and emptied through

evapotranspiration, runoff, and drainage [7]. The increase in global tem-
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peratures is causing shifts in precipitation patterns, melting of glaciers and

permafrost, and changes in the frequency and intensity of extreme weather

events, all of which are altering river streamflow, flood patterns, flow du-

ration curves, and low-flow periods and posing threats to human societies

and ecosystems [8]. Therefore, it is crucial for a hydrological model to accu-

rately simulate rainfall-runoff under changing climatic conditions. How-

ever, according to Dakhlaoui, Merz et al. [9] suggested that the climate

dependence of model parameters seriously questions the validity of con-

ceptual hydrological models under climate change since model parameters

are supposed to represent the physical catchments characteristics without

being influenced by climate conditions [10].

One of the most recent advancements in hydrological modeling is the

introduction of data-driven models. Unlike physically-based or conceptual

models, data-driven models rely on empirical relationships derived from

historical data to predict streamflow behavior. These models consist of ma-

chine learning algorithms and/or statistical techniques that allow the anal-

ysis of large datasets and the identification of patterns in the data. Data-

driven models are constrained by the quality of the input data, and the pre-

processing techniques used can significantly impact their performance. An-

other limitation of these types of models that they cannot adapt to process

changes brought by physical modifications in the catchment area. Conse-

quently, it is doubtful whether they can be applied to scenarios, as the rela-

tionships derived from data may prove invalid in future climates [11]. An-

other common challenge of data-driven models is overfitting, which means

that noise within the data could negatively impact the models predictive

performance when handling new data due to the lack of understanding of

the physical hydrological processes [12].

During the last three decades, hydrologists, water managers, and fore-

casters have worked hard to improve the forecasting accuracy of data-driven

models by adopting several tools and techniques with a wide variety of

computational algorithms and advancing the subject of streamflow model-

ing [5]. Given the strengths and weaknesses of each type of hydrological

model, a hybrid modeling approach that integrates data-driven techniques
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Introduction

with physically-based or conceptual models may offer a promising solution.

General hydrological models remain essential tools for accurate streamflow

predictions. However, their complex nature and limited ability to act upon

insufficient data, oversimplify certain parameters, and lack of adaptation to

climatic changes have prompted the implementation of alternative methods

to enhance performance.

Hybrid model combines global performance with superior local adap-

tivity, surpassing physically based models by replacing complex physical

processes and integrating diverse datasets through highly data-adaptive

neural network parameterization [13]. A hybrid modeling approach inte-

grates a statistical learning algorithm with a physically-based hydrological

model, combining the ability to handle large datasets and identify complex

patterns with physical process representation. This approach can capture

the stochastic nature of the hydrological system, adapt to process changes

caused by modifications in the catchment area, and improve forecast accu-

racy. Artificial Intelligence (AI) offers many popular data-driven models

which have been used extensively in the past couple of decades in differ-

ent aspects of hydrology, including stream flow forecasting, evapotranspi-

ration estimation, solar radiation modeling and rainfall-runoff modelling

[14]. The use of machine learning algorithms, such as artificial neural net-

works (ANNs) and long short-term memory (LSTM) models, can help to

identify the most relevant predictors and generate an ensemble of different

climate model predictions [15]. While some attractive properties of ran-

dom forests are also shared by other data-driven methods, their selection

is driven mostly by their increased predictive performance, their capability

to capture non-linear dependencies and interactions of variables, as well as

their speed, parsimonious parameterization, ease of use, and ability to han-

dle big datasets [16]. By adopting a hybrid modeling approach, water man-

agers, hydrologists, and forecasters can benefit from improved streamflow

predictions, enhanced adaptivity to changing climatic conditions, and the

integration of various datasets. In conclusion, hybrid modeling presents a

promising solution for addressing the challenges associated with individual

hydrological modeling techniques and advancing the accuracy and reliabil-
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ity of streamflow predictions.

Shen et al.[17] developed a model that utilizes the Random Forest method

to improve PCR-GLOBWB daily streamflow predictions of the PCR-GLOBWB

global hydrological model[18]. Three gauging stations along the Rhine River

were selected to investigate how catchment characteristics influence error

correction. Meteorological data and state variables of PCR-GLOBWB were

used to estimate its prediction errors. Then, another error estimation was

made using the Random Forest method. RF error estimation has been added

to PCR-GLOBWB for final corrected predictions. The study has shown that

the RF method improved the performance of the PCR-GLOBWB model. The

equal performance of calibrated and uncalibrated models indicated that RF

can be used for successful error corrections without going through a com-

plex model calibration process.

Work of Shen et al. [17] was extended to a global scale by Magni et al.

[19] in order to explore the potential of using statistical learning methodol-

ogy as a proxy for improving streamflow predictions in ungauged basins.

More predictors were introduced into the model, such as static catchment

attributes, meteorological input, hydrological state variables, and simulated

runoff from the global hydrological model PCR-GLOBWB. The response

variable for the RF model was changed to streamflow observation instead of

error estimation. They achieved significant improvements for most stations.

Collot d’Escury [20] applied some improvements to Magni et al.’s hybrid

modeling by introducing satellite data as an input for the post-processor.

Liquid Water Equivalent (LWE), Snow Cover Fraction (SCF), and Soil Mois-

ture (SM) from remote sensing observations were implemented in the hy-

brid model work of Magni et al. along with meteorological variables, stream-

flow observations, and hydrological state variables from PCR-GLOBWB.

Different input combinations were tested to see whether the complete re-

moval of PCR-GLOBWB variables is possible. The study showed that us-

ing specified remote sensing data did not improve global runs; however,

complete or partial removal of variables can still maintain the model’s high

performance. Collot d’Escury’s study emphasized the importance of using
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satellite-based data as an alternative to model variables. Using satellite data

as an alternative to model variables showed promising results in improv-

ing the precision of streamflow predictions while reducing the number of

predictors and computational time required.

Considering the success of Collot d’Escury, other satellite products might

be valuable for improving streamflow predictions. Exploring alternative

approaches, such as utilizing satellite-based evaporation and precipitation

estimates as inputs, could further enhance the precision of streamflow pre-

dictions. Precipitation and evaporation are the two key components of the

global water cycle [21]. With the advancement of remote sensing technol-

ogy, satellite-based precipitation products have become an effective sup-

plement for measured data [22]. Experiments by Alfieri et al. showed

that satellite-derived GLEAM evaporation data led to a 2% improvement

over baseline runs driven by high-quality ground-based datasets [4]. The

GLEAM data offer spatial coherence, global validity, satellite-derived ob-

servations, a minimalistic approach, validation against ground measure-

ments, and flexibility in application, making them valuable for studying

global land-surface evaporation dynamics and their implications for water

and climate assessments [21]. IMERG precipitation data offer global cov-

erage, high spatial and temporal resolution, integration of multiple data

sources, quality indices for reliability assessment, differentiation of precip-

itation phases, and consistent processing [23]. By integrating these alter-

native data sources into the modeling framework, it might be possible to

enhance the accuracy of streamflow predictions while reducing the com-

putational burden associated with a large number of predictors. Building

on previous research by Magni et al.[19] and using data from two satel-

lites, the study aims to investigate streamflow predictions and assess the

impact of satellite-based data on the performance of a hybrid hydrological

model. By examining different dataset configurations at both global and

local scales, this study seeks to systematically analyze the effects of incor-

porating satellite-based data in the modeling process. Consequently, it will

provide insights into the following questions

• How does the integration of satellite-based precipitation and evapo-
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ration affect the performance of the hybrid hydrological model in pre-

dicting streamflow?

For a more comprehensive understanding of the main research question,

this study will address the following sub-questions:

• Is it possible to completely or partially remove PCR-GLOBWB prod-

ucts as an input to the model and still achieve satisfactory results?

• Does a model trained on local data outperform a model trained on

global data for the same local area?

• How does the model perform in regions with varying availability of

ground-based observations?

• How does the model perform in regions with different climatic condi-

tions with similar data availability?

The results of this research aim to contribute to the understanding of

the potential benefits and limitations of incorporating satellite products in a

hybrid hydrological model.

The thesis is organized into several key sections. The second (2) sec-

tion outlines the sources of data used in the study. Section 3 details the ap-

proach taken to integrate satellite data into the hybrid hydrological model.

This section also provides specific configurations and setups used for the

modeling process. Section 4 presents the findings of the study, including

performance comparisons with and without satellite inputs at both global

and local scales. Discussions are presented in section 5 where implications

of results are evaluated and compared with existing literature to provide

a deeper understanding of their significance in hydrological modeling us-

ing satellite products. Finally, section 6 contains conclusions summarizing

key findings along with their implications, offering insights into potential

benefits as well as limitations of incorporating satellite products in a hybrid

hydrological model.
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2. Data and Methods

2.1 Data
The study utilizes data obtained from previous research and two distinct

satellite products. Information sourced from Magni et al. is available at Zen-

odo [24], encompassing streamflow measurements, meteorological factors,

and hydrological state variables derived from the PCR-GLOBWB model be-

tween 1979 and 2019. Data for streamflow can be obtained by visiting the

Global Runoff Data Centre (GRDC) website. Stations were selected based

on a minimum upstream area of 10,000 km2 and the availability of recorded

data for at least one month between 2000 and 2019; a total of 1342 stations

have available data, as shown in Figure 2.1.

Figure 2.1: Availability (%) of monthly river discharge data spanning from
2000 to 2019 for GRDC stations globally. Circle sizes represent catchment ar-
eas, while the color scale indicates the percentage of available data.
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2.1 Data

2.1.1 GLEAM evaporation data
The Global Land Evaporation Amsterdam Model (GLEAM) is a satellite-

based model that helps estimate land evaporation worldwide. The model

represents a new approach that combines a wide range of currently existing

satellite-sensor products to estimate reliable fields of daily global evapora-

tion at a 0.25-degree spatial resolution [21]. It works by integrating satellite-

observed geophysical variables, such as soil moisture, vegetation optical

depth, and snow-water equivalent, along with reanalysis of air tempera-

ture and radiation and a multi-source precipitation product which drives

the model and estimates terrestrial evaporation and root-zone soil moisture

[25].

Actual evaporation data from the model datasets for 2000 and 2019 have

been selected for this purpose.

Figure 2.2: Availability (%) of monthly satellite-based evaporation data span-
ning from 2000 to 2019 for GRDC stations globally. Circle sizes represent
catchment areas, while the color scale indicates the percentage of available
data.
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2.1.2 IMERG precipitation data
The Integrated Multi-satellite Retrievals for GPM (IMERG) is a precipitation

dataset that combines information from multiple satellite sensors to pro-

vide global precipitation estimates. The GPM satellite constellation consists

of one core observatory satellite and about ten partner satellites, equipped

with the latest Dual-frequency Precipitation Radar, conical-scanning multi-

channel GPM Microwave Imager, and many other advanced instruments

[26]. The IMERG mission utilizes intercalibrated estimates from satellite

passive microwave sensors, microwave-calibrated infrared satellite estimates,

and surface precipitation gauge analyses processed, intercalibrated, and com-

bined to produce high-quality, half-hourly gridded datasets for global pre-

cipitation measurement and research [23]. The high-quality precipitation

estimates and long-term coverage of IMERG are expected to provide in-

sights into future hydro-meteorological processes and climatological stud-

ies. IMERG provides precipitation data with a spatial resolution of 0.5 de-

grees. Coverage is provided for latitudes between 60°N and 60°S, with par-

tial coverage extending to 90° [27], resulting in low coverage in areas close

to the polar regions as seen in Figure 2.3

Satellite-derived precipitation data for the years 2000 and 2019 were cho-

sen for this objective.

Figure 2.3: Availability (%) of monthly satellite-based precipitation data span-
ning from 2000 to 2019 for GRDC stations globally. Circle sizes represent
catchment areas, while the color scale indicates the percentage of available
data.
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2.1 Data

2.1.3 Data pre-processing
The dataset provided by Magni et al. [19] has already undergone pre-processing,

so there is no need for additional manipulation. All the satellite products

were rescaled to 0.5◦ spatial resolution to ensure consistency in the data,

using the Climate Data Operators [28] to process the data. Normalization

of GLEAM evaporation and IMERG precipitation datasets have been per-

formed in the PCRaster Python framework [29]. Normalization as a pre-

processing step was performed using the formula provided below.

xnormi =
xi − µ

σ
(2.1)

where:

• xnormi is the normalized value of a data point.

• xi is the original value of the data point.

• µ is the mean,

• σ is the standard deviation.

After normalizing the data, satellite data was extracted from netCDF

files. It was then processed based on the coordinates of the closest GRDC

station and stored in CSV files for easier integration into R coding for the RF

algorithm. If there are gaps in the data for the area upstream, it can result in

incomplete values for the entire drainage basin. The following calculations

have been performed to address missing data:

Ui = ∑
i

V∗
i .A∗

i (2.2)

where:

• Vi: Value of each cell in the satellite data
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Data and Methods

• V∗
i : For missing values, this sets the cell value to zero

• A∗
i : For missing values, this sets the cell area (weight) to zero

• Ui: Calculated upstream average value for each cell

An R script provided by Collot d’Escury[20] (2023) was used to identify

missing values among the stations. Stations in all the datasets that did not

have at least one month of data were excluded from the study. Normal-

ized parameters are utilized as input forcing data for the PCR-GLOBWB

model and also act as predictors for the Random Forest. The output state

variables of PCR-GLOBWB, which were standardized to the upstream area,

were employed as an RF predictor. Additionally, streamflow observations

from GRDC and streamflow predictions from PCR-GLOBWB are converted

into flow depth by dividing them by the catchment area. These values are

then integrated as predictors for RF. Afterward, a single RF is trained using

these predictors to generate a corrected value of streamflow at previously

unseen locations [19].
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2.2 Methods

2.2 Methods
The current study utilizes a hybrid modeling approach proposed by Magni

et al. [19], with a main focus on utilizing satellite-based data to analyze the

impact of remote-sensing products. Specifically, the study applies the PCR-

GLOBWB hydrological model and the Random Forest method to address

the research question. Streamflow predictions and state variables from PCR-

GLOBWB serve as predictors for the Random Forest algorithm. Addition-

ally, meteorological data, catchment attributes, and satellite data are used in

various combinations as RF predictors. A comprehensive list is available in

the Appendix 5. The next chapter will provide a detailed explanation of the

models employed for hybrid modeling.

2.2.1 PCR-GLOBWB
The global hydrological model PCR-GLOBWB is a grid-based model of global

terrestrial hydrology developed to assess the impact of global changes on

the world’s water resources. The model has five main hydrological mod-

ules: meteorological forcing, land surface, groundwater, surface water rout-

ing, and irrigation and water use, which can simulate soil moisture, snow-

pack, evaporation, runoff, and water storage, and it incorporates detailed

representations of water flow including surface runoff, interflow, and base-

flow, as well as the routing of surface water [18]. The forcing inputs of the

model include precipitation, temperature, humidity, wind speed, and radi-

ation obtained from climate models or reanalysis data such as W5E5 [30],

along with land use and land cover data, water use information, and irriga-

tion.

In this study, PCR-GLOBWB was run without calibration at 30 min res-

olution between 2000 and 2019 at daily timesteps. The model output was

then upscaled to monthly average timesteps.

2.2.2 Random Forest
Breiman’s random forest is a machine-learning algorithm that involves the

creation of multiple decision trees by randomly selecting a subset of features

from the original dataset [31]. It is an ensemble of trees constructed from a
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training data set and internally validated to predict the response based on

the predictors. RF uses Gini impurity reduction for splitting, with predictors

selected from a randomly chosen subset at each split, each tree is built from a

bootstrap sample drawn with replacement, and predictions are aggregated

through majority voting [32].

Random Forest generates multiple subsets of the original data through

bootstrap sampling, where data points are randomly selected with replace-

ment [33]. These subsets are then used to construct decision trees. The mtry

parameter determines how many features are considered at each split, influ-

encing the randomness and diversity among the trees [34]. A smaller mtry

value increases randomness, while a larger value can improve accuracy but

also increases the risk of overfitting due to irrelevant features. Each deci-

sion tree is built by selecting features from the subset and finding the best

split at each node. The ntrees parameter controls the number of trees cre-

ated in the ensemble, with more trees typically improving performance but

also increasing computational costs. During tree construction, the nodesize

parameter ensures that each split requires a minimum number of samples,

preventing trees from becoming too deep and overfitting. However, set-

ting nodesize too high may result in underfitting, where trees fail to capture

complex relationships in the data. Once all trees are constructed, their pre-

dictions are combined through majority voting for classification tasks or av-

eraging for regression tasks, resulting in the final prediction. This ensemble

approach helps mitigate individual tree biases and produces more robust

predictions. In summary, Random Forest utilizes bootstrap sampling, fea-

ture randomness, and ensemble averaging to create a collection of decision

trees that collectively provide accurate and stable predictions.

In Random Forest, for each tree, a test set—disjoint from the training

set—is obtained, and averaging over all these left-out data points and over

all trees is known as the out-of-bag error estimate [35]. These OOB observa-

tions are utilized to estimate the model’s error. This method is beneficial for

estimating test error when bagging on large datasets, where cross-validation

would be computationally burdensome [36].
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2.3 Modeling setup

2.3 Modeling setup

2.3.1 Model configurations
The study involved various configurations, beginning with the work of

Magni et al. We used their dataset as a benchmark for our comparative

analysis to assess the impact of including satellite-based data. To study the

impact of satellite-based data in a hybrid setting, we have developed several

dataset configurations.

Different configurations have taken place in this study, starting with

Magni et al.’s work, where we consider this dataset a benchmark for our

comparative analysis to determine the effects introduced by including satellite-

based data. We are conducting an investigation into the impact of satellite-

based data in a hybrid setting. To achieve this, we have developed several

dataset configurations.

The first configuration, pcr, utilizes the original dataset used by Magni

et al. [19]. This includes PCR-GLOBWB variables, meteorological data,

and catchment attributes. The second configuration, pcr_sat_add, expands

upon the baseline dataset by incorporating remotely sensed variables such

as satellite-based precipitation and satellite-based evaporation data. This

modification allows us to analyze how additional satellite-derived informa-

tion affects the modeling process. The third configuration, pcr_sat, exclu-

sively replaces the related variables in the baseline dataset with satellite-

based data. This setup enables us to isolate the impact of satellite data from

other environmental parameters.

We have developed several dataset configurations to evaluate the Ran-

dom Forest algorithm’s performance without physically based modeling

components. The fourth configuration, sat_meteo, focuses exclusively on

meteorological inputs and satellite-based variables, excluding PCR-GLOBWB

variables and streamflow predictions. The fifth configuration, sat_meteo_-

static, integrates catchment characteristics into the sat_meteo configuration

to assess its performance when incorporating these specific attributes. Fi-

nally, the sixth configuration, meteo_static, includes only meteorological
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variables and catchment attributes. This configuration allows us to see the

RF-based model performance without the contribution of satellite-based

data.

Global runs and local runs are conducted for all the configurations. Lo-

cal runs were conducted in Australia, Brazil, Canada, Russia, South Africa,

and the United States. South Africa, Brazil, and Canada were chosen due

to their distinct climate characteristics in order to assess the model’s perfor-

mance across varied climatic conditions. These countries have similar data

availability as shown in Figure 2.1. Additionally, Australia, Russia, and the

United States were selected based on differences in data availability to ana-

lyze how the model performs with varying levels of data accessibility.

After the model was trained using both global and local data, its perfor-

mance in South Africa, Brazil, Canada, Australia, Russia, and the United

States was compared to determine whether global or local training data

yields better results in these countries.

Table 2.1: Predictors used in different model configurations. * indicates the
exclusion of precipitation and total evaporation.

Configuration
PCR-GLOBWB
discharge and
state variables

Meteorological
variables

Catchment
Attributes

Satellite
Data

pcr X X X
pcr_sat_add X X X X
pcr_sat X X X X*
sat_meteo X X
sat_meteo_static X X X
meteo_static X X
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2.4 Model training and evaluation

2.4 Model training and evaluation
Random Forest is a machine learning algorithm that has been employed in

R using the Ranger package. The Ranger package is known for effectively

managing extensive datasets and impressive performance [37]. Optimizing

hyperparameters such as the number of trees, mtry, and nodesize can sig-

nificantly improve the performance of the algorithm. This process tailors

the model to meet the specific requirements and objectives of the dataset.

Properly selecting and adapting hyperparameters can increase the model’s

precision, resilience, and overall learning abilities.

This study adjusted mtry while keeping the number of trees at 200 and

the nodesize at 5. The Out-Of-Bag Root Mean Squared Error metric was

used to determine the optimal value for mtry in the model. In this approach,

the model’s performance was evaluated with different values of mtry, and

the value that yielded the lowest error rate was selected.

A location-based split sampling was utilized to train and validate the

Random Forest model. This process involves dividing the data into five

subsamples based on location. Each subsample is then further divided into

training and testing stations. Within each subsample, 70% of the data was

used to train the model, and the remaining 30% was used to test its accuracy.

This rigorous method ensures that the model is trained on diverse data, rep-

resenting the entire dataset and not just a specific subset. The entire training

data set has been merged and organized into a single table, which will be

used to train the RF (Random Forest) model. The exact process has also

been applied to the testing data. Once the model was trained, it generated

new predictions for every station in the testing dataset.

The model’s performance was evaluated using the Kling-Gupta Effi-

ciency metric, which combines various parameters for the calculation. The

Kling–Gupta Efficiency (KGE) is used in hydrological modeling to evalu-

ate the accuracy of simulated hydrographs compared to observed data. The

KGE combines three components, correlation, bias, and variability, into a

single efficiency measure [38].

19



Data and Methods

The formula for KGE is:

KGE = 1 −
√
(r − 1)2 + (a − 1)2 + (b − 1)2 (2.3)

where:

• r is the correlation coefficient between observed and simulated values,

• a is the ratio of the standard deviation of the simulated values to the

standard deviation of the observed values,

• b is the ratio of the simulated values’ mean to the observed values’

mean.

KGE ranges from -∞ to 1, with 1 indicating a perfect match between sim-

ulated and observed data [39]. A higher KGE value signifies better model

performance, taking into account correlation, bias, and variability simulta-

neously.
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3. Results
This chapter is segmented into two parts: global runs and local perfor-

mance. The findings from these sections will be elucidated in distinct sub-

sections.

3.1 Global runs

3.1.1 Hyperparameter tuning
Figure 3.1 displays the tuning methodology implemented across all configu-

rations and for every one of the five subsamples. The number of trees (ntree)

was maintained at a total of 200. The range of adjusted values of mtry fluc-

tuated based on the count of predictors present. The objective behind tun-

ing was to ascertain an ideal mtry parameter value that reduces out-of-bag

root mean square error (00B RMSE), consequently improving model effi-

cacy. Due to computational constraints, only the mtry parameter has been

tuned as it is relatively less computationally demanding. Both meteo_static

and sat_meteo_static show similar graphs with a significant drop in error

in the first few values, followed by minimal fluctuations after the minimum

00B RMSE value reached, and close values between all of the subsamples.

Tuning graphs of pcr, pcr_sat and pcr_sat_add show greater fluctuations

after the minimum OOB RMSE value. The difference between subsamples

are also greater in these configurations. The configurations meteo_static and

sat_meteo_static exhibit similar graphs with fewer fluctuations beyond the

minimum 00B RMSE value and closely matched values across all subsam-

ples. The pcr, pcr_sat, and pcr_sat_add tuning graphs reveal more signifi-

cant fluctuations after reaching the minimum 00B RMSE value. Addition-

ally, variations between subsamples are notably larger in these configura-

tions. This is coupled with a marginal elevation in 00B RMSE across these

setups, which might indicate an overfitting phenomenon within the training

dataset. Since sat_meteo was only calibrated for a few variables, comparing

it with other charts would be uninformative. The optimal values of mtry for

every configuration are summarized in Table 3.1.
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Figure 3.1: RF tuning of the mtry hyperparameter, with each panel displaying
all subsamples and a single configuration. The dots indicate the tuned mtry
values, while the lines denote the OOB RMSE score. A fixed ntree of 200 and a
node size of 5 was used.
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3.1 Global runs

pcr pcrSatAdd pcrSat satMeteo satMeteoStatic meteoStatic
S1 24 20 15 4 20 24
S2 18 20 20 4 22 23
S3 22 17 19 4 23 24
S4 21 24 18 4 23 24
S5 23 22 25 4 19 25

Table 3.1: mtry values for each subsample of each configuration.

3.1.2 Variable importance
Figure D.12 presents the mean decrease in impurity values for the top twenty

variables across all five global RF. The variable importance analysis was con-

ducted to determine the relative importance of each predictor in the model.

pcr, pcrSatAdd, and pcrSat demonstrate comparable trends in terms of vari-

able significance. It is evident that satellite-based evaporation ranks third

in importance among the configurations incorporating satellite data. Static

variables make up nearly half of the top 20 variables. In configurations

excluding PCR-GLOBWB variables, meteoStatic and satMeteoStatic yield

very similar outcomes, with the aridity index as the top variable followed

by all the meteorological input. However, with the inclusion of satellite

data, evaporation emerges as the second most crucial factor after aridityIdx.

When using both meteorological and satellite data (i.e., SatMeteo), it is ap-

parent that satellite-based evaporation holds a prominent position in vari-

able importance by ranking at the top. Satellite-based precipitation does

not exhibit an equivalent level of significance as evaporation across both

included configurations.
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Figure 3.2: Square rooted mean decrease in impurity values of the top twenty
variables, averaged over five training subsamples for all the global Random
Forest (RF) configurations. Each type of variable is represented by a different
color.

24



3.1 Global runs

3.1.3 Performance
Figure 3.3 depicts the KGE values of all configurations in boxplots, with

each column representing five subsamples and their cumulative distribu-

tion. The model exhibits similar performance across all subsamples for all

configurations. This consistency indicates the potential for generalization

beyond the specific samples it was trained on. The pcr, pcrSat, pcrSatAdd,

MeteoStatic, and SatMeteoStatic configurations consistently yield success-

ful results with KGE values closer to 1 and smaller boxplots. In contrast,

the satMeteo and uncalibrated configurations exhibit poorer performance,

with satMeteo being particularly inferior between the two. The introduc-

tion of static variables to the satMeteo configuration significantly improves

the model’s performance, as indicated by the increase in KGE value from

satMeteo to satMeteoStatic.

1
2

3
4

5
C

−3

−2

−1

0

1

−3

−2

−1

0

1

−3

−2

−1

0

1

−3

−2

−1

0

1

−3

−2

−1

0

1

−3

−2

−1

0

1

uncalibrated

pcr

pcrSat

pcrSatAdd

satMeteo

satMeteoStatic

MeteoStatic

South Africa

Figure 3.3: Boxplots of KGE for all five subsamples and their accumulation as
rows for six different configurations, including uncalibrated PCR-GLOBWB
discharge simulations. The dashed lines denote ideal (1) and ’good’ (-0.41)
KGE values.
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Figure 3.4 shows the cumulative KGE values of all the configurations

averaged over all subsamples.

pcr, pcr sat, pcr sat add,sat meteo static and meteo static have all de-

livered similar performances. All of their results are better than the un-

calibrated PCR-GLOBWB and sat_meteo configuration. Among the well-

performing configurations, sat_meteo_static and meteo_static demonstrate

marginally better results until KGE values reach 0.
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Figure 3.4: Cumulative distribution functions of KGE for the six configura-
tions and the uncalibrated PCR-GLOBWB, with KGE results averaged across
five subsamples. Only higher KGE scores are depicted, with the x-axis con-
strained to -5.
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3.2 Local runs

3.2 Local runs
Local runs have been conducted in Australia, Brazil, Canada, Russia, the

United States, and South Africa to assess the model’s performance in coun-

tries with varying climatic conditions and different levels of data availabil-

ity. The performance of the model was evaluated after global and local train-

ing in these countries.

3.2.1 Performance after global training vs. local training
The cumulative distributions of KGE values from 5 subsamples of all config-

urations for the countries - Brazil, Russia, and the US - indicate that global

training of the model demonstrates similar performance to locally trained

models in these countries. Specifically for Russia, configurations consist-

ing of PCR-GLOBWB variables, including uncalibrated configuration, ex-

hibit better performance in globally trained models compared to other con-

figurations, which show similar performance for both runs. In Canada’s

case, uncalibrated and sat_meteo configurations performed slightly better

in global training while remaining configurations showed similar perfor-

mances for both runs. Australia shows comparable performances between

uncalibrated, pcr_sat, and pcr_sat_add configurations for both global and

local training. However, sat_meteo and sat_meteo_static displayed worse

performance in the global run while meteo_static configuration showed bet-

ter performance in local run. Graphs of the cumulative distributions of KGE

values for all countries, along with KGE boxplots, are available in the Ap-

pendix 5.
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Figure 3.5: Cumulative distribution functions of globally trained KGE for the
six configurations and the uncalibrated PCR-GLOBWB, with KGE results av-
eraged across five subsamples for Australia, Canada, and Russia. Only higher
KGE scores are depicted, with the x-axis constrained to -5.
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3.2.2 Different data availability
The figure 3.6 presented in this analysis shows the KGE boxplot of Aus-

tralia, Russia, and the United States. These countries have varying data

availability. In Australia, sat_meteo_static shows the best performance in

all five subsamples. This indicates that the satellite-based dataset signifi-

cantly contributes to the accuracy of the model. This improvement is par-

ticularly noticeable when comparing sat_meteo_static to meteo_static, with

satellite data contributing to both higher accuracy and greater consistency

in a RF-based model, as evidenced by a narrower boxplot. For the US and

Russia, configurations including pcr variables marginally outperform other

setups. Importantly, both countries exhibit marked improvements in model

performance when catchment attributes are incorporated into the setups,

underscoring the value of catchment characteristics. Russia’s performance

surpasses that of Australia but falls short of the US. As data availability in-

creases, there is a clear trend towards improved model performance and

consistency.

Australia

Russia

United States

Figure 3.6: Boxplots of KGE values accumulated over five subsamples for six
different configurations, including uncalibrated PCR-GLOBWB discharge sim-
ulations for Australia, Russia, and the US. The dashed lines denote ideal (1)
and ’good’ (-0.41) KGE values.
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The variable importance graphics display the relative significance of in-

put variables in influencing the performance of the hydrological model. In

Australia, the top 5 prominent variables consist of hydrological state vari-

ables followed by precipitation and satellite-based evaporation. Similarly, in

Russia, these five variables are also quite important; however, aridity index

and forest fraction also take second and fourth places respectively with tem-

perature from meteorological variables coming after. In the United States,

the most significant variable becomes aridity index but the top 8 variables

are very similar to those in Russia’s graph. Both temperature and precipi-

tation come after these key factors. As data availability increases from Aus-

tralia to Russia, and then from Russia to the US, satellite-based evaporation

becomes less significant while static variables become more critical.
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Figure 3.7: Square rooted mean decrease in impurity values of the top twenty
variables, averaged over five training subsamples for pcrSatAdd Forest (RF)
configuration for Australia, Russia and the US. Each type of variable is repre-
sented by a different color.
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3.2.3 Different climatic regions
Aridity index is the most important variable for all three types of climatic

countries. Hydrological state variables consist almost half of the top 20 vari-

ables for all of three countries, however their variations change for each of

the countries. South Africa and Brazil show similar trends in the top 8 vari-

ables. While satellite-based evaporation gets place in the top 20 important

variables with different significance levels, satellite-precipitation didn’t get

into the list in any of them. Satellite-based evaporation is highly important

for Canada’s case.
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Figure 3.8: Square rooted mean decrease in impurity values of the top twenty
variables, averaged over five training subsamples for pcrSatAdd Random For-
est (RF) configuration for South Africa, Brazil, and Canada. Each type of vari-
able is represented by a different color.

Figure 3.9 illustrates the cumulative KGE values for three countries: South

Africa, Brazil, and Canada. Overall, Canada demonstrated the best perfor-

mance among these countries. The models pcr_sat_add, pcr, pcr_sat, sat_-

meteo_static, and meteo_static all exhibited strong performances for all of
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the countries. Additionally, both sat_meteo_static and meteo_static showed

slightly better performance in line with global runs. It is worth noting that

Canada outperformed South Africa and Brazil in uncalibrated and sat_me-

teo configurations.
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Figure 3.9: Cumulative distribution functions of KGE for the six configura-
tions and the uncalibrated PCR-GLOBWB, with KGE results averaged across
five subsamples for South Africa, Brazil, and Canada. Only higher KGE scores
are depicted, with the x-axis constrained to -5.
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4. Discussion

4.1
This study investigated the impact of integrating satellite-based precipi-

tation and evaporation data into a hybrid hydrological model to predict

streamflow across various configurations, climates, and regions, empha-

sizing the crucial role of satellite data in improving accuracy and reliabil-

ity. Incorporating satellite-based precipitation and evaporation data did not

result in a significant enhancement of global streamflow prediction accu-

racy. Nonetheless, in regions where data is sparse, there was a slight im-

provement in the model’s efficiency. Although certain stations experienced

an increase in KGE values, the overall performance of the model was not

significantly improved by the utilization of satellite-based data. This sug-

gests that while satellite data can be informative, its influence on model

performance depends on the context and may only lead to enhanced model

performance in some instances. The study shows that removing the PCR-

GLOBWB inputs does not significantly affect model performance, allowing

for more flexible model configurations when PCR-GLOBWB data may be

limited or unavailable. The model’s performance, when utilizing a combi-

nation of satellite data, meteorological information, and catchment charac-

teristics, was notably comparable to scenarios where only PCR-GLOBWB

inputs were used, and it significantly outperformed the uncalibrated PCR-

GLOBWB configurations. This outcome signifies a potentially more practi-

cal and efficient approach to hydrological modeling. However, it is crucial

to recognize this methodology’s limitations and contextual nuances. Firstly,

the reliance on remote sensing data introduces constraints, particularly con-

cerning future projections. Since remote sensing data captures current and

historical conditions, its applicability in forecasting future scenarios is lim-

ited. Moreover, while a Random Forest model, trained on observational

data, may demonstrate high performance in simulating known conditions,

it may struggle to accurately predict outcomes under unobserved scenar-

ios. Unlike process-based models, RF models do not inherently inform on

the underlying mechanisms of streamflow. Instead, they offer a statisti-
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cal representation based on historical data, which may not capture the full

complexity of hydrological processes or the impacts of novel conditions on

these processes. An extensively calibrated PCR-GLOBWB model could po-

tentially exhibit improved performance over an RF model, highlighting the

importance of model calibration in achieving optimal results. This observa-

tion challenges the conventional reliance on comprehensive global ground-

based hydrological datasets but also underscores the importance of under-

standing the context-specific applicability of alternative data integration ap-

proaches.

Model performance, when trained on local or global data, significantly

depends on the region’s specific characteristics and data availability. Glob-

ally trained models use broader PCR-GLOBWB variables and satellite data

datasets to capture wide-ranging patterns effectively. However, the locally

trained model that excluded PCR-GLOBWB variables demonstrated supe-

rior performance in Australia, a data-scarce region, by heavily relying on

satellite data to capture region characteristics and climatic conditions that

improve predictions. An earlier study found that the hybrid model can per-

form similarly to physically based models at a global level but achieved bet-

ter local adaptivity [13]. In our case, the local runs using the hybrid mod-

eling approach performed similarly to global runs, and in some regions,

they even performed worse. For Russia, global training of the hybrid model

demonstrated better performance. This observation highlights a trade-off

between globally and locally trained models: while globally trained ones of-

fer generalization capabilities across diverse environments, locally trained

ones provide enhanced precision for specific contexts.

The hybrid model shows better performance as the data availability in-

creases. The study indicates a significant enhancement in the model’s per-

formance in Australia when focusing on satellite-based data, meteorological

data, and catchment attributes. In a previous study [20], local runs for Aus-

tralia were also conducted, which included several other satellite products

but did not incorporate PCR-GLOBWB variables and catchment attributes;

the results did not show any significant improvement in the model’s per-

formance in Australia. This underscores the significance of choosing spe-

34



4.2 Scientific and societal impacts

cific satellite data and incorporating the characteristics of the study area to

improve hydrological predictions. The superior performance in Australia

suggests satellite-based inputs can offer a more precise and dependable pre-

diction model for regions with certain characteristics.

The model performance varies across Canada, Brazil, and South Africa,

underscoring the influence of regional characteristics on hydrological mod-

eling. Factors such as climatic diversity, data availability, hydrological and

geographical features contribute to this variability. In addition to varying

model performance, satellite-based data showed great significance in the

variable importance list but did not affect the model’s performance. Inte-

grating satellite data can be particularly beneficial for helping to capture a

wide range of hydrological processes. However, the overall impact of satel-

lite data may be limited if the model is already well-calibrated with high-

quality ground-based data. Several studies have evaluated the hydrologi-

cal applicability of different satellite-based data and have generally found

that these data are less effective as inputs compared to ground observations

[40]. This highlights the need for model structures and calibration tech-

niques that effectively utilize the unique strengths of satellite observations.

4.2 Scientific and societal impacts
Using satellite-based precipitation and evaporation data in hydrological mod-

els represents a big step forward for the field of hydrology. Valuable infor-

mation that satellite data provides as an alternative data source bolsters our

capacity to understand and respond to existing water availability and hy-

drological trends. This new approach takes us one step closer to solving

problems regarding model performance espescially in areas with limited

ground-based observations. The success of using satellite data in regions

where monitoring is scarce provides a strong tool for model performance

but also sets a new standard for future research on using remote sensing

technologies to model the environment.

Information that satellite data offers affects the practices in agriculture

as improved model performance can inform better irrigation practices, con-

tributing to water conservation and ensuring crop viability. In urban plan-
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ning, accurate models can guide infrastructure development to manage stormwa-

ter effectively, reducing the risk of flood damage and improving water qual-

ity. Moreover, while satellite data may not predict future events, its de-

tailed insights into past and present hydrological conditions are invaluable

for developing more robust risk assessment tools. By understanding the

variability and trends in water resources over time, communities can bet-

ter anticipate potential water shortages or surplus conditions, aligning wa-

ter use policies and conservation efforts more closely with the realities of

their hydrological environment. This approach enhances resilience to cli-

mate variability, supports the sustainable management of water resources,

and contributes to the overall well-being and safety of populations.

The methodology employed in this research, which harmonizes tradi-

tional hydrological models with machine learning techniques and satellite

data, has broader implications beyond hydrology. Similar approaches could

revolutionize data integration and modeling in related fields such as clima-

tology, environmental science, and agriculture. For instance, climate mod-

els could benefit from enhanced predictive accuracy by incorporating satel-

lite observations directly into model calibration processes, leading to im-

proved climate projections and mitigation strategies. In agriculture, pre-

dictive models that accurately forecast water availability can inform irri-

gation planning, crop selection, and drought management practices, con-

tributing to more sustainable agricultural practices. These potential appli-

cations show how hybrid modeling methods can be applied in various sci-

entific fields with great flexibility and transformative power.

4.3 Limitations and recommendations
Many other satellite data sources can improve streamflow predictions in

our hybrid modeling setup, where we combine PCR-GLOBWB with the RF

method. This could involve using better-quality variables or adding more

data to supplement what is already available. Research has shown that inte-

grating remote sensing LAI into the PCR-GLOBWB model improves evapo-

transpiration and discharge estimates, leading to better overall performance

[41]. Including LAI data provides valuable insights into vegetative cover in
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4.3 Limitations and recommendations

a watershed area, resulting in a more comprehensive representation of hy-

drological processes and improved streamflow estimations. Furthermore,

a previous study by Collot d’Escury [20] incorporated Liquid Water Equiv-

alent, Snow Cover Fraction, and Soil Moisture data into the same hybrid

modeling setup as our study and demonstrated promising results. There-

fore, integrating these datasets with our study has the potential to signifi-

cantly enhance the model’s performance.

The model’s performance varies across regions with different climates

and geography, showing that the model may adapt poorly to certain hydro-

logical processes and conditions. These regions have distinct climatic con-

ditions, which indicate the need for tailored models to address their specific

challenges effectively. The current hybrid approach may only partially meet

these unique requirements. Adjusting the calibration process for the PCR-

GLOBWB model to match each region’s specific local conditions—such as

modifying parameters like soil moisture capacity, vegetation characteristics,

and infiltration rates—could help resolve this issue.

Additionally, the selection of countries allows for the investigation of

the model’s performance across various climatic regions. However, these

countries also exhibit diverse climatic and geographical variations within

themselves. Focusing on specific regions with similar climatic conditions

instead of entire countries would lead to more accurate results regarding

the model’s performance in this context. Clustering spatial data can identify

regions with similar hydrological characteristics, land cover, and climate

variables.

The research has identified a significant improvement in model perfor-

mance in Australia when using satellite data, particularly for models trained

locally. Adopting a transfer learning approach could be advantageous in re-

gions where specific satellite data holds less influence and broader datasets

are more representative. Transfer learning leverages information from data-

rich regions to improve predictions in areas with limited available data[42].

This approach can enhance the model’s performance by addressing the spe-

cific data needs of some regions with less data availability.
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5. Conclusion
This study explores the effectiveness of integrating satellite-based precipi-

tation and evaporation data into a hybrid hydrological model for stream-

flow prediction. The findings highlight the varying impact of satellite data

on model accuracy in different global regions, suggesting contextual bene-

fits rather than consistent improvements. The analysis reveals that in data-

scarce areas like Australia, satellite data enhances model performance by

capturing unique regional characteristics, emphasizing the importance of

tailored model training strategies for both broad applicability and localized

accuracy. Furthermore, the study suggests a potential trade-off between

models trained on global datasets and those with local calibration - with su-

perior performance shown in specific contexts by locally calibrated models.

Despite varied model performance across regions, integrating satellite data

is emphasized as crucial for improving outcomes in areas lacking ground-

based observations. Additionally, there’s a need to further explore PCR-

GLOBWB model biases and limitations while considering alternative satel-

lite data sources and transfer learning approaches to enhance streamflow

predictions in diverse environments.

This study confirms the efficacy of incorporating satellite data into hy-

drological models, particularly emphasizing its role in regions lacking ground

observations. This approach not only aids in capturing unique regional hy-

drological characteristics but also in optimizing model efficiency and ap-

plicability. The implications for hydrology and related fields are profound,

suggesting a paradigm shift towards more adaptive and region-specific model

calibration strategies. Such advancements promise enhanced water resource

management, informed by more accurate and efficient hydrological model-

ing techniques, thereby contributing valuable insights into the sustainability

and resilience of water systems under changing global conditions.
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A. Appendix
The code associated with this study is accessible through the following link:

https://github.com/sbusraisik/PCR-GLOBWB-RF-satellitedata
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B. Appendix
Table A.1: PCR-GLOBWB variables full list.
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C. Appendix
C.1 Cumulative distribution functions
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Figure C.1: Cumulative distribution functions of globally trained KGE for the
six configurations and the uncalibrated PCR-GLOBWB, with KGE results aver-
aged across five subsamples for Brazil, South Africa, and the US. Only higher
KGE scores are depicted, with the x-axis constrained to -5.
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D. Appendix
D.1 KGE Boxplots of Local Runs
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Figure D.1: Boxplots of KGE for all five subsamples and their accumulation
for six different configurations in Australia, including uncalibrated PCR-
GLOBWB discharge simulations. The dashed lines denote ideal (1) and ’good’
(-0.41) KGE values.
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Figure D.2: Boxplots of KGE for all five subsamples and their accumula-
tion for six different configurations in Brazil, including uncalibrated PCR-
GLOBWB discharge simulations. The dashed lines denote ideal (1) and ’good’
(-0.41) KGE values.
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D.1 KGE Boxplots of Local Runs
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Figure D.3: Boxplots of KGE for all five subsamples and their accumula-
tion for six different configurations in Canada, including uncalibrated PCR-
GLOBWB discharge simulations. The dashed lines denote ideal (1) and ’good’
(-0.41) KGE values.
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Figure D.4: Boxplots of KGE for all five subsamples and their accumula-
tion for six different configurations in Russia, including uncalibrated PCR-
GLOBWB discharge simulations. The dashed lines denote ideal (1) and ’good’
(-0.41) KGE values.
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Figure D.5: Boxplots of KGE for all five subsamples and their accumulation
for six different configurations in South Africa, including uncalibrated PCR-
GLOBWB discharge simulations. The dashed lines denote ideal (1) and ’good’
(-0.41) KGE values.
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Figure D.6: Boxplots of KGE for all five subsamples and their accumula-
tion for six different configurations in the US, including uncalibrated PCR-
GLOBWB discharge simulations. The dashed lines denote ideal (1) and ’good’
(-0.41) KGE values.
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Figure D.7: Square rooted mean decrease in impurity values of the top twenty
variables, averaged over five training subsamples for all the Random Forest
(RF) configurations for Australia. Each type of variable is represented by a
different color.
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Figure D.8: Square rooted mean decrease in impurity values of the top twenty
variables, averaged over five training subsamples for all the Random Forest
(RF) configurations for Brazil. Each type of variable is represented by a differ-
ent color.
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Figure D.9: Square rooted mean decrease in impurity values of the top twenty
variables, averaged over five training subsamples for all the Random Forest
(RF) configurations for Canada. Each type of variable is represented by a dif-
ferent color.
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Figure D.10: Square rooted mean decrease in impurity values of the top
twenty variables, averaged over five training subsamples for all the Random
Forest (RF) configurations for Russia. Each type of variable is represented by a
different color.
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Figure D.11: Square rooted mean decrease in impurity values of the top
twenty variables, averaged over five training subsamples for all the Random
Forest (RF) configurations for South Africa. Each type of variable is repre-
sented by a different color.
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Figure D.12: Square rooted mean decrease in impurity values of the top
twenty variables, averaged over five training subsamples for all the Random
Forest (RF) configurations for the United States. Each type of variable is repre-
sented by a different color.
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