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Abstract—Cerebral small vessel disease causes cogni-
tive impairment, dementia, and stroke and is charac-
terized by white matter hyperintensities (WMH) and
other brain lesions. Lesion-symptom mapping (LSM)
aims to understand the relationship between brain
lesion location and cognition by identifying strategic
lesion locations. This study presents a multi-output deep
learning lesion-symptom mapping (DL−LSM) approach
using explainable artificial intelligence (XAI). This
approach is validated in a simulation study using WMH
segmentations of 821 memory clinic patients and artifi-
cial cognitive scores. The study comprised three experi-
ments. The first involved generating artificial cognitive
scores based on the lesion load within three predefined
regions of interest (ROIs). The second experiment
studied the impact of adding noise to these scores on the
DL and XAI methods. The third experiment explored
whether intercorrelations between different ROIs in
the artificial cognitive scores could be detected. Two
convolutional neural networks (CNN) were developed
to predict the artificial cognitive scores, and XAI was
used to identify the locations that influenced these
predictions. The methods were evaluated by quantifying
the model’s predictive performance, identifying the
ROIs in the XAI’s attribution maps, and quantifying
the intercorrelation of the detected ROIs. This study
demonstrates that DL models can predict multiple
artificial cognitive scores based on WMH segmentations,
and that XAI can identify the ROIs associated with
the simulated cognitive scores. Additionally, the results
demonstrate that DL−LSM is robust to low levels of
noise in the artificial cognitive scores and can detect
intercorrelations between ROIs. These findings indicate
that DL and XAI can be used to perform LSM in order to
predict cognitive scores and determine their relationship
with specific lesion locations.

Index Terms—Small Vessel Disease, Lesion-symptom
mapping, Deep Learning, Explainable AI, Neuroimag-
ing, MRI, Simulation Study

I. Introduction

Cerebral small vessel disease (SVD) is a common mi-
crovascular disorder that manifests during aging and can
lead to stroke, cognitive impairment, as well as behavioral
or functional problems [1]. It often co-occurs with vascular
cognitive impairment (VCI), causing long-term disabilities
and worsening the quality of life of the patients [2]. In
addition, SVD can result in a variety of brain lesions,
including lacunes, infarcts, microbleeds, and white mat-
ter hyperintensities (WMH) seen in magnetic resonance

imaging (MRI) and computed tomography (CT) scans
[1, 2]. The diagnosis can be challenging and, it is often
unclear which factors cause these brain lesions and how
they relate to the clinical symptoms. However, it is also
known that the severity of cognitive impairment is related
to the location of brain tissue damage and, it has been
shown that these locations are more correlated to cognition
than to the total lesion volume [3, 4]. For instance, one
study has demonstrated that WMH directly affects specific
cognitive domains and global cognitive function according
to their position in the brain [5].

Hence, lesion-symptom patterns play a significant role
in understanding the cognitive impact of vascular lesions.
Lesion-symptom mapping (LSM) is a technique applied
to identify the specific areas of brain lesions that have
the most impact on cognition. This technique is carried
out by analyzing lesion maps [6]. These maps are lesion
segmentations previously obtained by a neurologist or
automatic procedures that derive from MRI or CT scans.
By computing LSM, an attribution map is generated; this
map displays the relative importance of the lesion map’s
voxels that are most related to the cognitive outcomes.
Therefore, further research on LSM can provide more
information about the underlying brain mechanisms that
contribute to SVD and improve those maps that are already
used in clinical practice [7].

Several LSM methods have been developed over the years,
including the traditional overlap-subtraction approaches,
the conventional voxel-based lesion-symptom mapping
(VLSM) method, and the current machine learning state-
of-art method called support vector regression lesion-
symptom mapping (SVR−LSM) [6]. VLSM compares
patients with lesions to those without lesions on a voxel-
by-voxel basis [8], performing as a univariate method that
cannot asses intervoxel relationships. SVR-LSM overcomes
this issue as a multivariate approach evaluating all voxel
intercorrelations within an entire lesion map, rather than
considering each voxel independently [9]. Nonetheless, the
main limitation of SVR−LSM is that it can only identify
these correlations between a single lesion and a single
cognitive measure, and not on multiple lesion types and
cognitive domains simultaneously. Given that the human
brain is a complex system of interconnected neurons where
different brain areas contribute to one or more cognition
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domains, this becomes a problem [7, 10]. In this regard,
when understanding the cognitive impact of vascular lesions,
it is important to consider the relationship between multiple
lesion types and cognitive scores simultaneously.

The use of deep learning (DL) models for LSM to under-
stand the relationship between brain lesion location and
cognition has not yet emerged. Current research papers only
focus on predicting cognitive performance from MRI lesion
images using DL models, specifically, convolutional neural
networks (CNNs) [11, 12]. CNNs are the most commonly
used neural networks in medical image analysis. Their
model’s complexity and flexibility allow CNNs to extract
features from any kind of image data [13]. In addition,
CNNs can capture the correlation between multiple inputs
and multiple outputs simultaneously. By bringing DL to
LSM, studies can potentially overcome the main limitation
of SVR−LSM and identify the relation between multiple
lesion types and multiple cognitive outcomes. Nevertheless,
DL models have one drawback, called the ”black box”
problem. The black box problem refers to the lack of
the model’s interpretability, where the understanding of
how the model has chosen the respective predictions is
not evident. For this, explainable artificial intelligence
(XAI) methods are applied to comprehend the underlying
decision-making process of the model, providing saliency
maps (attribution maps in LSM) that reflect the voxel’s
contribution to the model’s decision [14].

When it comes to LSM, research papers perform simula-
tion studies to validate their chosen methods [15, 16, 17,
9]. Usually, this is done by obtaining simulated behavioral
scores that follow the patients’ real lesion load of specific
brain areas. Most of the studies perform linear correlations,
whereas in clinical practice the brain-behavior relationship
is not only not linear but also noisy. Pustina et al. (2018)
first introduced this relationship by injecting an error in
the artificial cognitive scores to match the notoriously noisy
brain-behavior relationships [15].

The current study wishes to expand upon the SVR−LSM
algorithm by introducing a novel approach of deep learning
lesion-symptom mapping (DL−LSM). More specifically,
this project proposes a multi-output 3D CNN regression
model to predict multiple artificial cognitive scores based
on a 3D MRI brain lesion image in patients with SVD. It
also proposes implementing XAI techniques to reflect the
attribution of each voxel in the input image to each output
value, identifying the brain lesion locations responsible
for the artificial cognitive scores. This framework will
be validated using a simulation study across a range
of potential brain-cognition relationships, assessing the
capabilities as well as the robustness of the XAI methods
and the deep learning model.

II. Methods

This section describes the research methodology and
provides a comprehensive understanding of the dataset,
simulations, models, experiments, and analyses conducted.

It begins with a description of the dataset and continues
with an explanation of the artificial cognitive score simula-
tions, providing insight into the process of obtaining lesion-
cognition relationships. Next, it describes the architectural
framework and principles of the DL models. Following this,
a detailed explanation of the experimental approaches is
provided, including the proof-of-concept experiment, as
well as the noise and intercorrelation experiments. The last
section summarizes the evaluation metrics used to analyze
the robustness and performance of the experimental results.

A. Dataset

This study used 821 patients from the TRACE-VCI
cohort study, which was conducted between 2009 and 2013
[18]. The TRACE-VCI dataset contains 861 memory clinic
patients with evidence of vascular brain injury on MRI,
regardless of the severity of cognitive impairment. Table I
presents the clinical and demographic characteristics of the
study sample in the current research work. Patients with
a presumed primary etiology other than vascular brain
injury or neurodegeneration were excluded. Moreover, each
patient underwent physical and neurological examination,
laboratory testing, extensive neuropsychological and cogni-
tive testing, and an MRI scan of the brain [19].

Specifically, this study uses WMH segmentations derived
from the FLAIR sequences of the TRACE-VCI MRI scans.
These WMH segmentations were obtained by applying the
k-nearest neighbor classification considering tissue type
priors method. All WMH segmentations, also called lesion
maps, were registered to the T1 1-mm MNI-152 (Montreal
Neurological Institute) brain template [19] using the Elastix
toolbox [20]. Lastly, the 821 lesion maps were cropped to
only brain-containing regions of the MNI-152 space to
minimize memory usage, downsizing the image to 152 ×
179 × 142 mm3.

TABLE I
Demographic and clinical characteristics of the study

sample.

Characteristics Study Sample (n=821)

Demographic Characteristics

Female, n (%) 382 (46.5%)
Age, mean ± SD 67.5 (8.5)

Imaging Characteristics

WMH volume in millilitersa,
median (IQR)

8.02 (3.25-21.34)

Cognitive Characteristics

MMSE, median (IQR) 25.00 (22-28)
CDR, median (IQR) 0.50 (0.50-1)

CDM, Clinical Dementia rating; MMSE, Mini-Mental State Exami-
nation; SD, standard deviation; IQR, interquartile range.
aStandardized WMH volumes were calculated from lesion maps after
transformation to the MNI-152 brain template.
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Fig. 1 shows a heatmap of the total lesion prevalence
across patients. This was achieved by aggregating the lesion
maps of each patient, allowing for a clear visualization of
the distribution of the WMH lesions throughout the brain.

Fig. 1. Total lesion prevalence across all patients represented in the
MNI-152 space.

B. Artificial cognitive scores
The present study validates the proposed DL−LSM

approach in a simulation study that creates synthetic lesion-
cognition relations, based on the procedure described in
Zhang et al. (2014) [9]. Therefore, it serves as a validation
to determine the ability of DL models to localize predefined
lesion-symptom regions of interest (ROIs).

The simulation study was developed using three ROIs
based on the real WMH lesion maps from the 821 patients.
The ROIs were defined in brain areas where at least 10
patients contained a lesioned voxel. This was done by
creating a lesion mask containing the occurrence of lesions
within each voxel of all patients. Each ROI was then defined
as a 5 × 5 × 5 mm3 cube. The first ROI was randomly
located inside the lesion mask and its corresponding area
was removed to ensure that, in the following repetitions,
all of the ROIs were positioned at different locations. This
resulted in three non-overlapping origins for ROI 1, ROI
2, and ROI 3 that were located at (94, 112, 94), (106, 90,
45), and (105, 116, 90), respectively (seen in Fig. 2 A). To
further assess the ROIs, the study conducted a descriptive
analysis by calculating the lesion prevalence within each
ROI and its correlation with the total lesion volume of the
WMH lesion maps.

Fig. 2. Overlap (A) between the three ROIs (red) and the lesion
mask (purple), as well as the overlap (B) between the ROIs and the
lesion map of one patient (yellow). The z slices are in the MNI-152
space.

The artificial cognitive scores were generated based on
the sum of lesion volume within the ROIs (overlap seen in
Fig. 2 B) using the following equations:

scorei =
3∑
k

(lesion-load of ROIk)i (1)

scorei,j = (lesion-load of ROIj)i (2)

where i denotes the i-th subject, and j refers to the j-th
score corresponding to the j-th ROI (j = 1, 2, 3).

Equation 1 was used to assign each patient a simulated
cognitive score based on the sum of the lesion load present
in the three ROIs of the WMH lesion maps. This single-
score simulation was initially generated to establish a
simple one-to-one lesion-cognition relationship and demon-
strate the applicability of DL to LSM. The following DL-
LSM approach was developed to identify relationships
between multiple lesions and cognitive scores. Equation
2 was applied to establish the following relationships based
on the lesion load in a specific ROI of the WMH lesion
maps. Accordingly, each patient was assigned three different
artificial cognitive scores related to the corresponding ROI:
Score 1 was associated with ROI 1, Score 2 with ROI 2,
and Score 3 with ROI 3. These scores ranged from 0 to 1,
with a higher score indicating a greater lesion load within
the ROI.

C. LSM: Deep Learning and XAI
To develop a DL−LSM approach two procedures have to

be considered: (i) designing the neural network architecture
responsible for predicting cognitive scores from the lesion
map input images and, (ii) implementing the XAI technique
to generate the attribution maps that highlight the specific
lesion areas that influenced these predicted cognitive scores.

1) CNN architectures
To overcome this regression task, two different 3D CNN

models were designed. CNNs use 3D convolutional kernels
to analyze the relationship between multiple voxels and the
output, enabling them to identify multi-voxel correlations.

The aim of this study was to compare two CNN
models and determine whether increasing model complexity
is more effective in identifying multiple lesion-behavior
relationships. The CNN architecture initially consists of two
blocks of 3D convolutional layers, which are then followed
by batch normalization and a ReLU activation function.
Both convolutional layers use 3D filters with kernel sizes
of 10 and a stride of 5. The number of output channels
increases from 50 to 100 in the second block. These two
blocks lead to a fully connected layer that is applied for
the final regression task. The architecture of the second
model, referred to as Residual CNN in this study, aims to
implement a residual learning framework. The Residual
CNN consists of a first convolutional block with the same
layers and parameters as the previous CNN, followed by
two sets of residual blocks (as seen in Fig. 3). Each residual
block consists of two 3D convolutional layers with batch
normalization and ReLU activation. The first convolutional
layers within each block have a kernel size of 5, a stride of
3, and a padding of 2. In the second convolutional layer,
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the stride is changed to 1. The number of output channels
increases from 50 to 100 in the second layer. Finally, the
residual connection is introduced by downsampling the
input and output dimensions with a 1 × 1 × 1 convolution.
Following the residual blocks, the model proceeds to an
adaptive 3D average pooling layer that reduces the spatial
dimensions to 1 × 1 × 1. Subsequently, the outputs are
processed by a fully connected layer.

Fig. 3. Residual CNN model architecture.

Both models were trained using 5-fold cross-validation.
In this case, the validation fold was used as a test set to
ensure a more robust evaluation of the methods, and the
remaining folds were used to train the model. Therefore,
predictions of the artificial cognitive scores were obtained
for all test patients at each fold. As a result, five different
models were trained and tested using the complete dataset.

The cross-validation process, as well as the architecture
models, were implemented with the Pytorch library using
Python 3.10.12 [21]. Both models were trained using default
parameters, including a batch size of 4, the AdamW opti-
mizer, and the Mean Squared Error (MSE) loss function.
The learning rate was set to 0.001 and the weight decay
to 0.01.

2) XAI
Neural networks typically consist of many layers con-

nected through numerous non-linear relations, making it
unfeasible to fully comprehend how the neural network
came to its decision. Several researchers in medical imaging
are increasingly using XAI to explain the results of
their algorithms [22]. In this regard, to comprehend the
underlying mechanism of the proposed models, XAI was
the chosen approach. Multiple methods from the captum.ai
library [23] were evaluated, of which two were used in this
study, Gradient Shap, and Occlusion.

Gradient SHAP uses the respective gradients of the
model output to the input features to approximate Shapley
values [24]. It computes the gradients by randomly sampling
from the distribution of a baseline (reference) input and
integrates these along all possible path combinations from
the baseline to the input features. This provides a fair
distribution of the contribution of each feature towards the
prediction for a specific instance, considering all possible
combinations and interactions.

Occlusion is a perturbation-based method that changes
the input image to assess the importance of certain areas
of that image for the task under consideration [25]. This is
done by using a sliding window over the input image and
replacing it with baseline values. After this replacement
the model’s prediction is recalculated in the trained model
to detect changes in the output [22].

The XAI methods were applied with different parameters.
Each method uses a different mathematical calculation, and
the parameters selected strongly influence the generated
attribution maps. Gradient SHAP used a zero image
baseline, 30 randomly generated examples per input, and
a 0.01 standard deviation of Gaussian noise added to the
inputs. For occlusion, a sliding window of size 5 was used
with strides of 3 and 10 perturbations per batch.

The XAI methods were applied to compute 3D attribu-
tion maps using the model weights of the last epoch at each
fold. Attribution maps were created for all test patients at
each fold to later obtain a group-level attribution map by
adding these individual attribution maps. The attribution
map for the entire dataset was created by combining all
fold group-level maps.

D. Experiments
The project conducted several experiments to evaluate

the predictive performance of DL models and the ROI
identification of XAI methods under different simulation
scenarios. The experiments included a proof-of-concept
experiment, a noise experiment, and an intercorrelation
experiment.

1) Proof-of-concept experiment
The aim of the proof-of-concept experiment is to replicate

linear brain-behavior relations, ensuring that each score
depends solely on the lesion load present in the ROIs.
The experiment serves as an introduction to DL−LSM,
aiming to explore the ability of DL models to localize
the predefined lesion-symptom ROIs and capture their
relationships. The first part of this experiment focused
on a 3D CNN single-output model that used the artificial
cognitive scores from the single-score simulation previously
mentioned (refer to Section B, Artificial cognitive scores:
Equation 1) to demonstrate that DL models can capture
one-to-one lesion-cognition relationships. The 3D CNN
model was trained for 60 epochs, and Occlusion was selected
as the explainability method to obtain an attribution map
for each patient.
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The second part of the experiment was to test the ability
of two DL models to predict multiple cognitive scores
and map these to multiple lesion locations. Therefore,
it involved designing two 3D multi-output models: the
CNN and the Residual CNN architectures. Each patient
contained three artificial cognitive scores, as shown in
Equation 2 of Section B, Artificial cognitive scores. Both
models were compared to investigate whether increasing
model complexity is more effective in identifying strategic
lesion locations that are associated with artificial cognitive
scores. The CNN was trained for 70 epochs while the
Residual CNN was trained for 90 epochs due to the deeper
network. Attribution maps were obtained using Gradient
SHAP and Occlusion to analyze the differences between
using two XAI methods, with one map generated for each
score, and therefore three maps per patient.

2) Noise experiment
The purpose of the noise experiment was to replicate the

noisy nature observed in brain-behavior relationships and
generate a more realistic validation of the lesion-cognition
interactions. This can provide insight into the robustness
of DL models to increasing levels of noise in the artificial
cognitive scores.

To conduct this experiment, it was necessary to introduce
noise into the artificial cognitive scores. The first step
involved creating noise distributions, which were then
added to the artificial cognitive scores. Each score was
associated with a distinct noise distribution. Therefore,
before obtaining these distributions, three standard de-
viations were calculated based on each proof-of-concept
artificial cognitive score to ensure that the generated noise
accurately reflected the inherent variability within each
score. Each noise distribution was then obtained following
a Gaussian distribution as shown in Equation 3, with a
zero mean and its corresponding standard deviation.

Noisej ∼ N (0, σj), i = 1, 2, . . . , K (3)

where N is the Gaussian distribution with 0 mean and
σ standard deviation, K is the number of patients in the
dataset, and j = 1, 2, 3 is the distribution of the j-th score.

Next, noisy artificial cognitive scores were generated
based on the formula described in Pustina et al. (2018)
[15] and normalized to a range of 0-1, where a higher score
indicated more lesion load inside the ROI. Each patient
was then assigned three different artificial scores, one for
each corresponding ROI.

scorei,j = (1 − a) × (ROIj lesion-load)i + a × Noisej,i (4)

where 0 ≤ a ≤ 0.5 denotes the noise weight, i represents
the i-th subject, j = 1, 2, 3 is the index for the score and
ROI, and Noise is the noise distribution of the j-th score.

Five noise simulations produced five datasets of noisy
artificial cognitive scores using Equation 4, characterized
by different noise levels. The noise levels were injected into

the scores by setting the noise weight ’a’ to values between
0.1 and 0.5 in steps of 0.1. The noise weight was applied to
the noise distribution and the remaining unity portion to
the lesion load of the ROI. For instance, in the simulation
with a noise level of 0.3, 30% was assigned to the noise
distribution, while the remaining 70% to the ROI lesion
load. This experiment was conducted for both 3D multi-
output models, CNN and Residual CNN. Each architecture
was trained and tested independently per noise level leading
to a total of 10 models, five per architecture. The multi-
output CNNs were trained for 90 epochs, while the Residual
CNNs were trained for 110 epochs. GradientSHAP was
used as the XAI method to obtain one attribution map for
each score.

3) Intercorrelation experiment
The intercorrelation experiment was conducted to sim-

ulate a more plausible behavior of lesion-cognition inter-
actions. It is important to note that lesions in different
areas of the brain are not completely independent of each
other, but rather exist interdependencies or correlations
between them. Accordingly, this experiment was designed
to investigate interdependencies between lesion loads in
different ROIs and to evaluate whether a 3D multi-output
DL model can identify these cognitive intercorrelations.
Specifically, the purpose was to evaluate the minimal
correlation the model could detect between ROIs and
whether the measured attribution could serve as a linear
predictor of the predefined ROI intercorrelations.

To conduct this experiment, the intercorrelated artificial
scores were generated by introducing dependency between
the lesion load of different ROIs. Score 1 always depended
solely on ROI 1 as a baseline check. In this way, each
patient was also assigned three artificial cognitive scores:

s1 = lesion load of ROI1

s2 = b × ROI2 lesion-load + (1 − b) × ROI3 lesion-load
s3 = b × ROI3 lesion-load + (1 − b) × ROI1 lesion-load

(5)

where 0.6 ≤ b ≤ 0.9 is the ROI-contribution weight.

Four intercorrelation simulations were conducted to
produce four datasets of intercorrelated artificial cognitive
scores using Equation 5. The correlations were injected
into the scores by setting the ROI-contribution weight ’b’
to values between 0.6 and 0.9 in steps of 0.1. Note that
the score’s ROI-contribution weight is always set to the
corresponding ROI. Therefore, when generating the scores
with a 0.6 ROI-contribution weight, Score 2 will contain
60% of the lesion load from ROI 2 and the remaining 40%
from ROI 3. Similarly, Score 3 will have 60% from ROI
3 and the remaining 40% from ROI 1. The DL model
selected for this experiment was the CNN 3D multi-output
architecture. It was trained and tested independently for
each ROI-contribution level, resulting in four models. All
models were trained for 70 epochs, and the attribution
maps were computed using Gradient SHAP.
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E. Analysis and evaluation
To evaluate each model, the score predictions and ground

truths across all test folds and patients were concatenated,
and the coefficient of determination or R2 was used to
quantify the predictive performance. R2 was calculated
using the r2 score function from sklearn.metrics, mea-
suring the DL model’s ability to predict artificial cognitive
scores.

The next step involved evaluating the ability of XAI
techniques to highlight the relevant brain regions that
are critical for these artificial behaviors. Hence, for the
proof-of-concept and noise experiments, ROI identification
was evaluated by precision and recall (PR) in the final
attribution map of the entire dataset. To achieve this,
attribution maps were compared to a binary image of
the corresponding ROI. PR curves were generated by
binarising the attribution maps with a thousand different
thresholds from maximum to minimum image value. For
each attribution map, PR curves were obtained by plotting
precision against recall obtained at every possible threshold.
Precision and recall were calculated by [26]:

Precision = TP

TP + FP
(6)

Recall = TP

TP + FN
(7)

with true positives (TP), false positives (FP), and false
negatives (FN).

On top of that, the area under the curve (AUC) was
calculated for each PR curve to provide a more direct
indication of performance. Lastly, when multiple XAI
methods were computed for the same experiment, the
Pearson correlation was calculated between the attribution
maps to evaluate their similarity.

The PR evaluation was not applicable for the intercorre-
lation experiment due to the interdependence between the
ROIs in the artificial cognitive scores. In this experiment,
XAI maps should contain attribution values across multiple
ROIs. To capture this interdependent behavior, an ROI-
contribution rate (RC) was calculated for each ROI with
respect to each artificial cognitive score. The first step
was to obtain the RC score, which involved identifying the
common voxels between the attribution map and the ROI
under examination, as shown in Equation 8. This involves
a simple multiplication between the XAI map and the ROI
binary mask. Secondly, in order to mitigate the influence
of the background voxels present in the attribution map,
the relative contribution of each ROI was calculated. As a
result, this normalization procedure yielded the final three
RC rates for each artificial score, providing a quantitative
measure of overlap that accurately reflects the proportion
of each ROI’s contribution to the artificial cognitive score,
and thus the interdependence between ROIs.

RC scorej =
∑

i(Attribution mapj × ROI maskj)∑
i Attribution mapj +

∑
i ROI maskj

(8)

where j = 1, 2, 3 is for the j-th ROI and j-th score.

III. Results

Before conducting each experiment, a simple analysis
was performed on the ROIs, shown in Table II. The analysis
involved calculating the lesion prevalence within each
ROI and correlating it with the total lesion volume to
comprehend the experimental results. ROI 2 presented the
lowest lesion prevalence and weakest correlation, while ROI
3 exhibited the highest correlation with total lesion volume,
and ROI 1 had the highest lesion load prevalence.

TABLE II
ROIs Specifications

ROI Spearman Correlation Lesion prevalence

ROI 1 0.77 70614

ROI 2 0.71 51142

ROI 3 0.78 67549

Spearman correlation between the ROI’s lesion load and the total
lesion volume, and the lesion prevalence in the ROIs.

A. Proof-of-concept experiment
The CNN single-output model demonstrated a strong

predictive performance (R2 = 0.94) when using the proof-
of-concept artificial cognitive scores. Fig. 4. A displays two
slices of the attribution map computed using Occlusion.
The PR curve was then calculated, resulting in an AUC of
0.62 (Fig. 4. B).

Fig. 4. (A) Attribution map obtained from the single-output CNN
model using Occlusion and (B) PR curve of the corresponding
attribution map. Slices are in the MNI-152 space.

Fig. 5 illustrates the attribution maps for both the CNN
and Residual CNN architectures, comparing Occlusion
and Gradient Shap methods for each score in the multi-
output proof-of-concept experiment. The attribution maps
produced by Gradient Shap were more patchy and noisy
than those produced by Occlusion. The PR curves obtained
from the attribution maps, along with their respective AUC,
consistently showed lower values when using Gradient Shap,
as shown in Fig. A.1 (see Appendix A). Furthermore, the
CNN had a slightly lower sensitivity to Score 1 compared to
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the Residual CNN, but a much higher sensitivity to Score 2
when identifying their corresponding ROIs. ROI 3 was the
most accurate location identified and was similar for both
XAI methods. Although Gradient Shap produced slightly
worse results when quantifying the attribution maps with
the PR curves and AUC, it was substantially faster than
Occlusion. Additionally, the attribution maps from the
CNN were similar between the two XAI methods for each
score, with map-wise correlation coefficients of 0.846, 0.862,
and 0.902 for Score 1, Score 2, and Score 3, respectively.
In contrast, the correlation between both XAI methods for
the Residual CNN was somewhat lower, with a coefficient
of 0.721, 0.781, and 0.870, respectively. Due to the time-
consuming computation of Occlusion, the attribution maps
in the following experiments were generated using Gradient
Shap.

Fig. 5. Attribution maps obtained from the multi-output CNN and
Residual CNN models using Occlusion and Gradient Shap in the
proof-of-concept experiment. Slices are shown in the MNI-152 space.

Table III presents the predictive performance for the
proof-of-concept experiment, quantified by the R2. The
CNN demonstrated superior predictive performance for
each score compared to the Residual CNN. Additionally,
the attribution maps obtained for each of the scores can
be seen in the first row of Fig. A.2 and Fig. A.3 (refer
to Apendix A) for Residual CNN and CNN, respectively.
Finally, the PR curves calculated based on the attribution
maps are shown in blue in Fig. 6. The results of the proof-of-
concept attribution maps are consistent with the predictive
performance of the model, as they show an accurate overlap
between the model’s attributions of important regions and
the actual ROIs.

TABLE III
Predictive Performance for Proof-of-concept (POC) and

Noise Experiments

CNN Residual CNN

Score 1 Score 2 Score 3 Score 1 Score 2 Score 3

POC 0.909 0.907 0.941 0.881 0.847 0.934

Noise 10% 0.815 0.798 0.842 0.848 0.805 0.838

Noise 20% 0.416 0.550 0.645 0.522 0.528 0.626

Noise 30% -0.041 -0.281 -0.742 -0.012 -0.133 -0.697

Noise 40% -0.538 -1.326 -0.126 -0.590 -1.269 -0.125S
im

u
la

ti
on

s

Noise 50% -3.376 -3.138 -0.920 -3.346 -3.305 -0.960

Predictive performance quantified by R2. Each noise model is trained
on a different simulation of artificial cognitive scores, obtained by
injecting the percentage of noise represented.

B. Noise experiment
Table III also presents the predictive performance of

the noise experiment at different noise levels. The results
show a decreasing trend in predictive performance as the
percentage of noise within the artificial cognitive scores
increases. Additionally, attribution maps for the Residual
CNNs can be seen in Fig. A.2, and for the CNN in Fig. A.3
(see Appendix A). The results show that the attribution
maps become more noisy as the noise level of the score
increases. Fig. 6 shows the PR curves and AUC values
for all attribution maps obtained in the noise experiments.
The PR curves reflect this decreasing trend and show the
effect of the noise on the AUC, which decreases to almost
a zero AUC at 50% noise in each of the scores.

C. Intercorrelation experiment
Table IV presents the predictive performance of each

model on the intercorrelation experiment for the three
scores, quantified by R2. All CNNs demonstrate high
predictive performance, with Score 1, Score 2, and Score
3 having approximate R2 values of 0.92, 0.93, and 0.95
respectively, at each ROI-contribution level.

Figure 7 displays the RC rates of relative ROI contri-
bution to each score, calculated for the corresponding
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Fig. 6. PR curves for the proof-of-concept and noise experiment models for the (A) CNN and (B) Residual CNN; AUC per PR curve is
shown in the legend.

attribution maps at each model. The results show that
interdependencies are identified at almost all levels of
ROI-contribution. The intercorrelation between ROIs in
Score 3 was accurately identified at each level; each ROI
was correctly assigned its relative contribution. However,
identifying the intercorrelation between the detected ROIs
in Score 2 was the most difficult. The RC rates measured
for each ROI differed from the predefined ROI-contribution
weights in Score 2. For instance, at an 80% level, ROI 2
had an RC rate of approximately 60%, ROI 3 had 32%, and
ROI 1 had 8%, which should have been 80% contribution
from ROI 2 and 20% from ROI 3. In addition, at an ROI-
contribution level of 60%, the relative contributions were
reversed, with ROI 3 having more influence on Score 2 than
ROI 2. Furthermore, Score 1 exhibited a minor dependence
on ROI 3, despite the fact that it is only dependent
on ROI 1 and not on any other ROIs. The attribution
maps for each of the CNN models are presented in Fig.
A.4 (see Appendix A). These maps accurately identify
the corresponding ROIs that influence each of the scores.
Additionally, it is apparent that the Score 2 attribution
map, at 60%, mainly highlights the three ROIs.

TABLE IV
Predictive Performance for Intercorrelation Experiment

Intercorrelation Simulations

90% 80% 70% 60%

Score 1* 0.920 0.921 0.925 0.935

Score 2† 0.927 0.912 0.939 0.929

Score 3‡ 0.951 0.943 0.956 0.953

Predictive performance quantified by R2. Each noise model is trained
on a different simulation of artificial cognitive scores, characterized
by the percentage of ROI-contribution ’b’ represented. *Score 1 =
ROI 1; †Score 2 = b × ROI2 + (1 − b) × ROI3; and ‡Score 3 =
b × ROI3 + (1 − b) × ROI1.

IV. Discussion

In this study, a novel approach to lesion-symptom map-
ping is introduced, which was validated across a range of
potential brain-cognition relationships in a simulation study.
The simulation study incorporates noise and cognitive
dependence on multiple lesion locations. The approach
aims to expand upon state-of-the-art techniques such as
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Fig. 7. RC rates for the intercorrelation experiment CNNs. The x
axis represents each of the models by the percentage of their ROI-
contribution weight b, used to generate their respective artificial
cognitive scores. Score 1 is only dependent on ROI 1, Score 2 =
b × ROI2 + (1 − b) × ROI3 and Score 3 = b × ROI3 + (1 − b) × ROI1

SVR−LSM, allowing the simultaneous consideration of
multiple cognitive scores and lesion types when studying the
cognitive impact of vascular lesions. The study has demon-
strated that explainable artificial intelligence can identify
specific brain lesion locations responsible for multiple
simulated scores from a multi-output deep learning model
in 3D WMH segmentations of patients with SVD. One
major advantage of using DL−LSM over SVR−LSM is that
the attribution maps produced by the XAI methods are
aggregations of the attribution maps of individual patients,
whereas the SVR-LSM method directly produces group-
based β maps. Therefore, DL−LSM provides personalized
insights for diagnosis and prognosis, enabling targeted
analysis and post-processing to reveal patterns that may
be missed by group-level analysis.

The initial step involved conducting a proof-of-concept
single-output experiment to validate that LSM can be
achieved through DL and XAI. Accordingly, the CNN
model demonstrated strong predictive performance with
an R2 value of 0.94 in predicting artificial cognitive scores
based on the 3D WMH segmentations. The attribution map
supports the findings, as the highlighted areas corresponded
precisely to the ROIs. However, the attribution map showed
fewer attribution values in Score 2, possibly due to its lower
lesion prevalence across all ROIs (Table II). Furthermore,
some noise was detected on the contralateral side of the
brain where the ROIs are located. This could be attributed
to the high degree of symmetry of the WMH lesions that
can be seen in Fig. 1. In addition, the differences in the
PR curve, which quantifies the attribution map, compared
to the visually observed overlap between the XAI map and
the ROIs, are attributed to the sensitivity of this metric to
false positives. The reason for this is that the attribution

maps contain a considerable number of false positives in
the voxels adjacent to the ROIs.

The second step was to expand the proof-of-concept
experiment to a multi-output model using two CNN
regression architectures. The CNN showed better predic-
tive performance for each score than the Residual CNN
architecture when comparing the R2 values. However, when
analyzing the PR curves (refer to Fig. 5 in Appendix A),
the CNN had lower sensitivity to Score 1 compared to the
Residual CNN. Additionally, both models performed best
in Score 3, despite ROI 3 being located in proximate areas
to ROI 1. When using the CNN, Score 2 showed similar
predictive performance as Score 1. ROI 2 was accurately
identified by both XAI methods, with AUC values of
0.61 and 0.7 in Gradient Shap and Occlusion, respectively.
However, it is worth noting that the Residual CNN had
the lowest predictive performance for Score 2. As a result,
the PR curves of the Score 2 attribution maps showed a
quick decay, with an AUC of 0.3 and 0.51 for Gradient
Shap and Oclusion respectively. Based on the specifications
of the ROIs in Table II and the findings of both models, it
appears that DL models may be more sensitive to Score
3 due to ROI 3 having the highest correlation with the
total lesion volume. Furthermore, the lower sensitivity of
Residual CNN to Score 2 may be attributed to the difficulty
in identifying strategic lesion locations with lower lesion
prevalence, such as ROI 2. Instead, the model may be
focusing more on the total lesion volume.

Zhang et al. (2014) [9] performed a multivariate
SVR−LSM using different approaches. One part of the
study aimed to compare the results of applying total lesion
volume control to the lesion images with those obtained
without it. Total lesion volume is already predictive of
cognition, but there are areas in the brain that have a
stronger relationship with cognition than the total volume
alone [3]. Therefore, the aim was to minimize the impact
of the total lesion volume, making it easier to identify
strategic lesion locations. Accordingly, the ROC curves
calculated on the β maps showed an AUC of 0.9405 when
the correction was applied, compared to an AUC of 0.7574
when it was not applied. This indicates that the sensitivity
to identify the specific lesioned areas responsible for the
scores was increased with the total lesion volume correction.
Moreover, it suggests that when using SVR-LSM this
type of correction needs to be applied to obtain more
accurate results. In this work, the total lesion volume
control was not applied, as it is hypothesized that DL
models are capable of learning this correction themselves.
The attribution maps show that the highest attribution
values always overlap within the areas of the ROIs. This
reduces false positives in other WMH lesion areas that
are more correlated to the total lesion volume and have
a higher lesion prevalence across patients (refer to Figure
1). The results suggest that the total lesion volume may
have less impact on the Dl−LSM results. However, as
previously mentioned, the multi-output model is more
sensitive to Score 3 than the other two scores, possibly
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due to its stronger correlation with total lesion volume.
This could be partly due to the lack of total lesion volume
control on the WMH segmentations, which causes the
model to base part of its decision on total lesion volume.
To improve the sensitivity of the model to Score 1 and 2,
future research could explore the implementation of lesion
volume control before applying the DL−LSM technique. It
would be valuable to explore how this modification affects
the outcome and whether there are significant differences
in ROI identification when performing DL−LSM with and
without correction.

When comparing the XAI techniques, both demonstrated
their ability to identify whether a lesion region is directly
related to a cognitive score. It is clear that Gradient
Shap produces more patchy and noisy images due to its
sensitivity to small variations in the input image (WMH
lesions are highly variable between patients). In contrast,
Occlusion maps provide a clearer representation of the ROI
location, but at the cost of a much longer computation
time. It should be noted that both methods use different
mathematical calculations and the resulting attribution
maps are strongly influenced by the parameters chosen. In
this study, Gradient Shap was chosen as the XAI method
due to its significantly lower computational time compared
to Occlusion. However, future experiments should also
consider Occlusion since Score 2 showed a notable difference
in the Residual CNN performance when both XAI methods
were used. Occlusion achieved an AUC of 0.51, while
Gradient Shap only achieved 0.3, indicating a substantial
difference in accuracy.

In the following experiment, noise levels were added to
the synthetic lesion-behavior relationships. Both architec-
tures exhibited a decrease in predictive performance as the
noise level in the artificial cognitive scores increased. At a
noise level of 10%, the PR curves of the CNNs remained the
same as the proof-of-concept PR curves. This shows that
XAI can still identify accurately the ROIs responsible for
the scores, indicating robustness to low levels of noise. In
contrast, Residual CNN showed the opposite pattern, with
a preserved predictive performance at lower noise levels
but decreased accuracy in attribution maps and PR curves,
particularly in Score 3, where the AUC dropped a third of
its value. These findings suggest that, at low levels of noise,
XAI methods are more effective in identifying strategic
lesion locations when using the CNN, despite its lower
predictive performance compared to the Residual CNN,
possibly due to its simpler architecture. Both architectures
lost half of their predictive performance at a level of
20% of noise, and, as expected, the model’s predictive
performance dropped drastically at noise levels above 30%,
with negative R2 values. These negative values indicate
that the regression models do not follow the trend of the
data and that the predictions are worse than those obtained
by simply using the average of the artificial scores as the
predictor. Attribution maps support this behavior, with
the highest attribution values decreasing in ROI regions
and appearing in other areas. The lesion prevalence of

all patients shown in Fig 1 indicates that the patients’
WMH lesions are more frequently distributed around the
periventricular areas and parietal lobes, which correspond
to those identified by the XAI method at higher noise
levels. This suggests that the model relies more on total
lesion volume at higher noise levels and loses its ability to
accurately identify the ROIs.

The intercorrelation experiment was conducted using the
CNN model architecture because it showed greater stability
across all scores compared to the Residual CNN in previous
experiments. The attribution maps for Score 1 and Score
3 accurately identified the specific ROIs that contributed
to their respective scores. However, the attribution maps
highlighted the correct ROIs associated with Score 2 up
to a 70% contribution, where the ROI 1 becomes visible.
In relation to the RC rates that quantify the attribution
maps, it was found that in Score 1, which depends only
on ROI 1, there was a slight correlation with ROI 3.
However, in Score 3, which depends on both ROIs, the
CNN accurately identified the minimal contribution of ROI
1 and ROI 3 at each level. The RC rates for Score 2 did
not match the predefined ROI-contribution weights, but
they captured more dependency in the correct ROI. The
contributions were slightly different from the actual values,
and there was always a contribution of ROI 1, which may
be due to its higher lesion prevalence. The RC rate only
showed a greater dependency on ROI 3 than ROI 2 at the
60% level, suggesting inaccuracies in the CNN’s decision-
making process at that level. These findings are in line
with previous results, indicating that Score 3 consistently
outperforms other scores. In this case, it has a higher
level of dependency due to the strongest correlation of
ROI 3 to the total lesion volume. Meanwhile, Score 2
is the most challenging due to the lowest prevalence of
lesion load in ROI 2. All things considered, these results
demonstrate that DL−LSM can identify intercorrelations
between strategic lesion locations. The model detected
intercorrelations between ROIs from an ROI-contribution
level of 70% up to 90%, meaning that these measured RC
rates can serve as linear predictors of the predefined ROI
intercorrelations.

One limitation of the study concerns the XAI maps.
Although they provide valuable insights into the model’s
decision-making, they can be misleading if not appro-
priately validated. In this case, the performance of the
XAI methods could be assessed due to the presence of a
ground truth. Therefore, the study was certain that the
identified areas by the XAI methods corresponded with
the predefined ground truth ROIs. In situations where
the ground truth is not available in real patient data,
the reliability and robustness of XAI should be evaluated
by examining the consistency across different models or
datasets, performing sensitivity analyses, or relying on
clinician experience. Additionally, the XAI method itself
must be chosen carefully, as the multi-output proof-of-
concept experiment with Gradient Shap and Occlusion
showed substantial differences in LSM.
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Future research should consider applying these method-
ologies to real patient data, specifically cognitive outcomes,
to study if these types of DL model architectures are
suitable for performing LSM in real scenarios. This could
provide insight into the accuracy of these simulations and
test whether they reflect real lesion-cognition relationships.
Moreover, future research should also consider developing
a multi-input multi-output DL model to better capture the
cognitive impact of vascular lesions caused by SVD. SVD of-
ten causes multiple brain lesions, which are intercorrelated
and can affect various cognitive domains. Furthermore,
future work may include assigning varying weights to
the ROIs, altering their morphologies, or applying non-
linear functions to the lesion-behavior relationships, such
as logarithmic or exponential functions. These simulations
might better reflect the complex relationship between
WMH and cognitive scores. Additionally, a potential
experiment could be to test various noise simulations of
artificial cognitive scores within the same DL model. In
clinical settings, each patient may present varying relations
between their cognitive scores and MR-visible vascular
lesions, thus it is important to ensure that models are
robust enough to handle various scenarios. All in all, these
research directions aim to improve the ability of DL−LSM
to understand the complex mechanisms that cause cognitive
impairment associated with SVD and to make DL−LSM
models more practical in clinical settings by ensuring their
resilience to different scenarios.

V. Conclusion

Cerebral small vessel disease presents a challenge in
clinical neuroscience due to its complex manifestation and
impact on cognitive function. The aim of this study was
to introduce a novel approach to LSM using DL and XAI
techniques. The study demonstrates that DL algorithms
and XAI techniques are suitable for predicting multiple
artificial cognitive scores and identifying the strategic lesion
locations that affect these scores in 3D WMH lesions of
patients with SVD. The findings reveal that the DL models
remain robust to artificial cognitive scores with up to 20%
noise, after which their performance declines. Furthermore,
it demonstrates that intercorrelations between different
lesioned areas associated with artificial cognitive scores can
be identified using these types of models. DL−LSM can
help in understanding the underlying brain mechanisms
that lead to neurological dysfunction and provide improved
LSM techniques. Additionally, it could serve as personalized
medicine, allowing clinicians to tailor interventions to the
needs of individual patients through the ability of XAI
methods to generate attribution maps of individual patients.
In conclusion, DL−LSM has the potential to improve our
understanding and management of cognitive impairment
associated with SVD.
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Appendix A
Supplementary data associated with this project.

Fig. A.1. PR curves for each of the scores obtained from the CNN and Residual CNN models in the proof-of-concept experiment, using
Occlusion and Gradient Shap for the attribution maps.
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Fig. A.2. Attribution maps for each score generated by Gradient Shap for each Residual CNN model. The rows correspond to different
models, starting with the proof-of-concept at the top, followed by the five noise experiment models. The percentages refer to the level of noise
added to the artificial cognitive scores used to train the corresponding model. Slices are shown in the MNI-152 space
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Fig. A.3. Attribution maps are provided for each score generated by Gradient Shap for each CNN model. The rows correspond to different
models, starting with the proof-of-concept at the top, followed by the five noise experiment models. The percentages refer to the level of noise
added to the artificial cognitive scores used to train the corresponding model. Slices are shown in the MNI-152 space
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Fig. A.4. Attribution maps for each score generated by Gradient Shap for each CNN model used in the intercorrelation experiment. The
percentages refer to each model and indicate the ROI-contribution ’b’ used to generate the scores. Note that Score 1 = ROI 1; †Score 2
= b × ROI2 + (1 − b) × ROI3; and ‡Score 3 = b × ROI3 + (1 − b) × ROI1. Slices are shown in the MNI-152 space
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