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Abstract

Amplitude-electroencephalography and Magnetic Resonance Imaging are

two non-invasive methods of examining neurological data. Both of these

have demonstrated promising capabilities in the prediction of long-term

neurodevelopmental outcomes for extremely preterm infants. Therefore,

this thesis compared neurodevelopmental outcome predictions made by

aEEG-EEG, MRI datasets, and their combination. Further, it tested the ap-

plication of multiple feature reduction techniques to reduce model com-

plexity. Moreover, it delved into an investigation of the affect caused by

various scaling factors on the MRI dataset on the outcome predictions. Re-

sults show that with factor analysis employed on the aEEG-EEG dataset

and the unscaled version of the MRI dataset, regression models achieved

moderate to high performance scores (ranging from r=0.5407 to r=0.9173),

while classification models achieved balanced accuracies ranging from

0.795 to 0.907. This thesis provides a basis for further research into mul-

tiple modality predictions, hinging on the ability to overcome the hurdle of

data shortages.
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1. Introduction

1.1 Background

Due to advancements in medical care in the fields of obstetrics and neona-

tology, the chances of survival for extremely preterm (EP) infants (i.e. born

before 28 weeks of gestation) have significantly increased over the past few

decades [1]–[4]. Nevertheless, those EP infants who survive face a signifi-

cant risk of enduring long-lasting neurodevelopmental challenges, includ-

ing cognitive and motor deficiencies [5]–[8].

The fundamental structure of the human brain is formed through a con-

tinuous developmental process that begins prior to birth and continues into

adulthood. Early experiences play a crucial role in shaping this structure,

laying down either a sturdy or a fragile foundation for subsequent learning,

health, and behavior [9]. Infants born preterm are more susceptible to hav-

ing a fragile foundation. The premature transition to an extra-uterine envi-

ronment during a critical phase of rapid brain development leads to brain

abnormalities in EP infants, which are the primary contributors to adverse

neurodevelopmental outcomes [10]. Hence, an individualized approach to

precision medicine is warranted for such fragile neonates for preventing

or reducing neonatal brain injury. As a result, there is a growing focus on

identifying accurate and sensitive brain-based markers that can predict the

future outcomes of EP infants while they are still in the neonatal intensive

care unit (NICU) [11]. By doing so, it becomes feasible to provide precision

medicine which includes personalized care and timely interventions to safe-

guard the vulnerable developing brains of EP infants, ultimately reducing

long-term complications in this population.

This thesis builds upon the work of Wang et al. and expands their frame-

work to include an MRI (Magnetic Resonance Imaging) dataset along with
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Introduction

aEEG (amplitude ElectroEncephaloGram) of the cohort [12]. Furthermore,

it explore the possibilities of using more powerful feature reduction tech-

niques in an effort to make the predictions of neurodevelopmental outcomes

more accurate and robust.

1.2 Research Motivation

To understand the evolving landscape of neonatal neurodevelopment, there

arises a necessity to investigate the possible advantages associated with

aEEG-EEG. As neonates mature, an expanded array of clinical, neuromon-

itoring, and neuroimaging data, including MRI scans, becomes accessible.

The integration of these diverse modalities presents an opportunity to refine

predictive models.

The body of literature examining the predictive role of aEEG in assess-

ing outcomes for preterm infants continues to grow exponentially. Never-

theless, several important issues need to be addressed to enhance our un-

derstanding of this domain.

There is a lack of studies specifically targeting extremely preterm in-

fants [13]. Since aEEG characteristics evolve weekly during the preterm

period, findings from other age groups cannot be directly applied to EP in-

fants [14].

The timing of neurodevelopmental evaluations varies among different

studies, and internationally standardized scales are not consistently em-

ployed. This inconsistency complicates the comparison and generalizability

of findings across studies. Existing research, moreover, typically extracts

aEEG characteristics during a later postnatal period, several weeks after

birth, which may not be ideal for implementing early interventions like stem

cell therapy [15]. Therefore, it is necessary to explore the predictive value of

aEEG features obtained during the first few days after birth.

Even when EP infants are included, however, the sample sizes are often

too small to draw definitive conclusions, and variations in procedures and

analyses among studies make it challenging to compare results [16].

10



1.3 Project Characteristics

When it comes to MRI, recently there has been a major focus into the

research regarding factors that can lead to a range of neurodevelopmental

disorders. To explore the relationship between the brain and behavioral

changes in neonates, noninvasive neuroimaging methods such as MRI are

crucial. Due to the relatively smaller size of cerebral structures and the in-

complete maturity of tissues in neonates, it is critical to use age-specific MR

(Magnetic Resonance) sequencing. This is necessary as the signal and con-

trast characteristics in neonatal brains differ significantly from those in adult

brains [17].

Overall, addressing these issues will contribute to advancing our knowl-

edge regarding the role of aEEG and MRI in predicting outcomes for preterm

infants.

1.3 Project Characteristics

1.3.1 Research Question and Objectives

The objective of this project is to create a machine learning pipeline for the

prediction of nuerodevelopmental outcomes for preterm infants.

Figure 1.1: Research steps for developing the prediction models

The Figure 1.1 shows both the datasets undergo a cleaning process. The

aEEG dataset goes through a pre-processing step that includes outlier de-

tection, imputation, and normalization. It is then passed forward to either a

11



Introduction

regression or classification Machine Learning model to get predictions. The

MRI dataset is scaled to form 4 different instances of the dataset. One of

these instances is then passed through the same type of pre-processing as

aEEG. It is used to train either a regression or classification Machine Learn-

ing model to get predictions. Both the predictions are again fed to a regres-

sion or classification model to generate compounded predictions.

The above pipeline is implemented to answer the following questions:

1. Can employing better feature reduction techniques reduce the com-

plexity of the predictions of neurodevelopmental outcomes in preterm

infants?

2. Is it possible to improve the prediction of neurodevelopmental out-

comes in neonatal preterm infants by involving MRI data?

1.3.2 Scope

The project scope is defined as designing the prediction pipeline using ma-

chine learning algorithms that provide the highest standard of interpretabil-

ity. To achieve the best possible predictions, a search is conducted within

the features present in the aEEG and MRI datasets. Finally, a comparative

analysis is conducted to evaluate if a combination of the two datasets gives

better predictions than either dataset alone.

12



2. Theoretical Background

A foundation of the knowledge and a literature review is provided in this

chapter. Firstly, the anatomy of a neonatal infant brain is explained, fol-

lowed by modelling methods of both neonatal aEEG and MRI as well as

their suitability for outcome prediction, and their accompanying limitations.

2.1 Neonatal Cranial Anatomy

The head of a human infant comprises of a skull, CerebroSpinal Fluid (CSF)

and the brain.

The cranium (or skull) is a composite structure made of bone, which

surrounds and protects the brain. The CSF is a clear, colourless body fluid

found in the brain and spine that acts like a buffer to help cushion the brain

and spinal cord from injury, removes waste products, and serves to regulate

intracranial pressure.

Figure 2.1: Parts of the brain (Taken from Anatomy of a Child’s Brain - Stan-
ford Medicine Children’s Health)

The brain is the focal organ of the human nervous system. It is composed

13



Theoretical Background

of the cerebrum, cerebellum, and brainstem (Figure 2.1). The cerebellum’s

function is to coordinate muscle movements, maintain posture, and balance.

The brainstem acts as a relay center connecting the cerebrum and cerebel-

lum to the spinal cord. It also performs many autonomous functions such

as body temperature and heart rate regulation. The cerebrum is the largest

part of the brain and is composed of right and left hemispheres. These hemi-

spheres have distinct fissures, which divide the brain into 4 lobes: frontal,

temporal, parietal, and occipital. Each of these can be further divided into

areas that serve very specific functions [18].

2.2 Modelling the Neonatal Brain

2.2.1 aEEG in Neonatology

Continuous electroencephalography (EEG) monitoring using a full array of

electrodes is considered the most reliable method for monitoring brain ac-

tivity [19]. EEG data can be mathematically represented as a time series

of voltage measurements recorded from multiple electrodes placed on the

scalp. Each electrode corresponds to a specific channel, and the voltage

values captured at regular intervals over time form the EEG signal. Mathe-

matically, EEG data can be denoted as a sequence of voltage values:

EEG(t) = [V1(t), V2(t), V3(t), ..., Vn(t)] (2.1)

where EEG(t) represents the EEG signal at time t, V1(t) to Vn(t) represent the

voltage measurements at each electrode/channel at that specific time point.

EEG signals are typically sampled at a specific sampling rate, denoted as

fs (measured in samples per second). The sampling rate determines how

many voltage measurements are recorded per second and affects the tem-

poral resolution of the EEG signal.

Continuous EEG monitoring is highly valuable for tracking ongoing brain

activity and detecting seizures in newborns.

14



2.2 Modelling the Neonatal Brain

Amplitude-integrated electroencephalogram (aEEG) is a simplified and

non-invasive method of monitoring cerebral function at the bedside using

one or two channels [20]. Its ease of use and effectiveness has led to increas-

ing utilization of aEEG, along with access to the corresponding raw EEG

traces, in neonatal intensive care units (NICUs) to assess brain function in

preterm infants [20], [21]. The aEEG can be initiated soon after admission to

the NICU, enabling early detection and intervention for potential brain dys-

function [22]. Significantly, both qualitative and quantitative parameters of

the aEEG have demonstrated promising capabilities in predicting long-term

outcomes for preterm infants [13], [15], [20], [23]–[28].

aEEG exhibits prime performance in predicting neurodevelopmental out-

comes [29] and has the ability to identify preterm infants who may be at risk

of poor outcomes even without obvious brain injury [15].

aEEG is used in intensive care settings to assess brain function over ex-

tended durations, often spanning hours to days, surpassing the temporal

scope of traditional electroencephalogram (EEG) recordings. aEEG signals,

derived from a modified version of the EEG, can similarly be measured by

the traces of electrical activity detected by electrodes placed on the scalp of a

patient. aEEG can be represented as a compressed display of the EEG signal

over time in the form of a trace or a graph. The vertical axis represents the

amplitude or voltage range, while the horizontal axis represents time.

15



Theoretical Background

Figure 2.2: Example of aEEG recordings from an extremely preterm infant [30]

In contrast to the full EEG signal, aEEG typically involves a reduced

number of channels or electrodes (e.g., one or two channels) to simplify

monitoring and analysis.

Typically, electrodes that measure EEG are arranged according to the

international 10-20 system [31]. This method establishes consistent testing

procedures, enabling the compilation, replication, and effective analysis and

comparison of study outcomes using the scientific method. It relies on the

correlation between the electrode placement and the corresponding region

of the cerebral cortex, ensuring an accurate and standardized assessment of

brain activity. "10-20" refers to the percentages of skull length and width

that are distances between the electrodes. As can be seen in Figure 2.3, each

site of electrode placement corresponds to a letter to identify the area of the

brain it reads. These include: pre-frontal (Fp), frontal (F), temporal (T), pari-

etal (P), occipital (O), and central (C). They are coupled with odd numbers

to refer to the left side of the head, even numbers for the right side of the

head or the letter "z" for zero which corresponds to an electrode placed on

16



2.2 Modelling the Neonatal Brain

the midline of the skull.

Figure 2.3: Electrode locations of International 10-20 system for EEG recording

For neonates, aEEG measures either one or two channels with the appli-

cation of fewer electrodes compared to the standard for adults.

2.2.1.1 Prediction of Neurodevelopmental Outcomes with EEG

The paper by Lloyd et al. poses the question of the viability of EEG in pre-

dicting neurodevelopmental outcomes for preterm infants [28]. They cap-

tured the EEG data at three specific time points throughout the neonatal

period for infants with a gestational age of less than 32 weeks. The EEGs

underwent a visual interpretation assessment using a standardized grading

system, which involves evaluating temporal organization/cyclicity, normal

features, abnormal waves, and abnormal features to assign a grading. The

grading system was then bifurcated into two categories, distinguishing be-

tween normal and abnormal EEG patterns. This dichotomous classification

system was then compared with the outcome measures to draw the main

conclusions of the study. After controlling for potential confounding fac-

tors, the EEG grading system demonstrated statistically significant results

in predicting neurodevelopmental outcomes. It is important to note that

while the grading system was objective, it still relied on interpretation by ex-

pert reviewers. This limitation is commonly acknowledged in EEG studies.

Nonetheless, this particular assessment scheme stands out from previous

grading systems due to the inclusion of detailed definitions in the user in-
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structions manual. This inclusion significantly reduces subjectivity among

reviewers, enhancing the reliability of their results.

Another study by Burger et al. followed 248 preterm infants and as-

sessed their aEEG for dominating background activity, calculation of the

percentage of continuous activity for each period and infant, qualitative vi-

sual assessment Burdjalov score and the minimum, mean and maximum

amplitude parameter values [23]. These values were then compared to the

Bielefelder screening (BISC) performances of the group at five years of age.

It was shown that the minimum amplitude and the percentage of continu-

ous background activity was considerably lower at postnatal week two and

three, respectively, in infants with poor BISC performance. These findings

show significant evidence for the claim that aEEG in preterm infants was

able to predict neurodevelopmental outcomes as well as precursor skills of

literacy at later stages in life.

The study by Wang et al. investigates whether aEEG features obtained

within the first three days after birth could predict neurodevelopmental out-

comes at the age of two and five, in a large and homogeneous cohort of ex-

tremely preterm (EP) infants [12]. They extracted a range of qualitative and

quantitative aEEG features for the analysis of outcome prediction. Initially,

employing machine learning-based regression models to compare findings

with previous studies that used group-level statistics such as multiple re-

gression analysis. Additionally, they utilized Machine Learning-based clas-

sification models to differentiate between EP infants with delayed or op-

timal outcomes, aiming to provide findings that were more clinically ap-

plicable. The goal was to explore effective prognostic tools for long-term

disability and aid in delivering timely and personalized interventions in the

neonatal intensive care unit (NICU) setting.

2.2.2 MRI in Neonatology

MRI or Magnetic Resonance Imaging is a noninvasive neuroimaging tech-

nology that produces three dimensional detailed anatomical images. In

neonatology, it used to establish links between the brain and behavioral

18



2.2 Modelling the Neonatal Brain

changes in newborns and infants. MRI is powerful, non-ionising and has

several advancements to evaluate preterm brains. It is considered the best

method to detect white matter injuries and enables early diagnosis of le-

sions [32], [33].

Figure 2.4: Sagittal, Coronal and Axial/Transversal MRIs

Although, MRI does have some caveats attached to it. It is a more ex-

pensive, time-consuming and challenging method, and sources conflict over

their accessibility in NICUs [34], [35]. Certainly, though, neonates do need

to be moved to a separate scanner from the NICU. This can be dangerous

for unstable infants like preterm neonates. This arises the question: why not

utilize cranial ultrasound (cUS) instead? It is inexpensive, similarly non-

invasive, and can be performed by a variety of trained professionals [35].

cUS is superior than MRI in the detection of acute intraventricular haem-

orrhage, perforator stroke and cerebral sinovenous thrombosis. It is note-

worthy, however, that the majority of infants experiencing neurodevelop-

mental deficits do not display these typical injury patterns. This renders the

sensitivity of cUS (cranial UltraSound) in predicting outcomes poor. MRI

steps in and surpasses cUS in its capability to detect subtle brain abnormal-

ities [36]. Moreover, MRI facilitates comprehensive measurements of brain

regions’ volumes and growth rates, including but not limited to the white

matter, ventricular system, cortex, deep gray matter, and cerebellum. These

regions, frequently altered following preterm birth, are more thoroughly ex-

amined through MRI techniques [37].
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2.2.2.1 Prediction of Neurodevelopmental Outcomes with MRI

Recent studies emphasize the vital role of MRI in detecting brain abnor-

malities at 2 years of age, especially in preterm infants. Woodward et al.

studied the connections between white-matter(WM) and gray-matter(GM)

abnormalities on MRI and the risks of severe impairment [38]. Moderate-

to-severe cerebral WM abnormalities present in infants were predictive of

adverse outcomes on cognitive and motor functions, and of cerebral palsy.

Previously, the cerebral WM was primarily looked at as the site of in-

jury [39], [40]. Newer research, however, highlights the involvement of GM

and the cerebellum as well [41], [42].

Using a 3D volumetric approach to MRI, Kidokoro et al. evaluated MRI

scans of very preterm infants, scoring the severity of brain injuries and im-

paired growth in the WM, GM and cerebellum [43]. They concluded that

WM signal abnormalities were associated with a reduced deep gray mat-

ter area but not with cerebellar abnormality. In addition, that hemorrhages

were associated with cerebellar signal abnormality and volume reduction.

The scoring system they devised provides a comprehensive and objective

classification of brain abnormalities.

Inder et al. review three major forms of brain injury in very preterm in-

fants that can lead to adverse neurodevelopmental outcomes [44]. They ac-

knowledge the modified brain development in preterm infants and yield a

comprehension of pivotal factors influencing the period spent in the NICU.

They further add that adverse neurodevelopmental consequences in preterm

infants stem not only from brain injury but also from impaired brain devel-

opment, occurring independently of injury. They outline the possible areas

of injury and dysmaturation that correlate with the outcomes, as well as

underline potential interventions to improve them.

Advanced MRI techniques not only reveal signal abnormalities but also

define overall and specific changes in brain structure in children who were

born preterm. Therefore, a comprehensive evaluation utilizing MRI is es-

sential to understand the complete impact of preterm birth on the develop-

ing brain, encompassing neurodevelopmental deformities.

20



3. Methodology

Figure 3.1: An infant in the NICU (© 2020 Eddie Lawrence/Science Photo Li-
brary)

3.1 Data Acquisition

The data for this thesis had been previously collected by the Wilhelmina

Children’s Hospital of the University Medical Center Utrecht as a part of the

’Preparing for RSV Immunisation and Surveillance in Europe (PROMISE)’

research project.

This retrospective cohort study included extremely preterm infants (Ges-

tational age < 28 weeks + 0 days) who were admitted to the NICU of the Wil-

helmina Children’s Hospital (WKZ) in Utrecht, The Netherlands, between

October 2006 and September 2018. The infants included in the study had

undergone continuous two-channel aEEG monitoring within the first three

days after birth. Additionally, between 36 and 42 weeks of postmenstrual

age (PMA), the babies also underwent MR Imaging. Infants with genetic

or metabolic diseases, and major congenital malformations, were excluded

from the study. The study obtained permission from the Medical Research

Ethics Committee (abbreviation in Dutch: METC) of the University Medi-
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cal Center Utrecht (UMCU) to use patient data. Since the aEEG data used

were collected as part of routine medical care and the analysis was retro-

spective, written parental consent was not required. For the collection of

the MRI data, oral informed parental consent was obtained. All data were

pseudonymized and de-identified prior to any analysis. An overview of the

data is given in Table 3.1.
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3.1 Data Acquisition

Extremely preterm
infants (n=380)

Maternal and demographic characteristics
Sex
Female 171 (45%)
Male 209 (55%)
Gestational age at birth, in weeks 26.43 (1.1, 23.86-27.86)
Birth-weight, in grams 875.5 (180.5, 460-1480)
Maternal education level
No education 1 (<1%)
Primary education 12 (3%)
Some secondary education 36 (9%)
Completed secondary education 84 (22%)
University education 101 (27%)
Missing 146 (38%)
Clinical characteristics during NICU stay
Morphine
Yes 220 (58%)
No 146 (38%)
Missing 14 (4%)
Cumulative dosage, in mg/kg 1.3 (2.3, 0-18.6)
The administration of anti-seizure, sedative, or anaesthetic medications
Yes 154 (41%)
No 226 (59)
Illness severity
Severe 182 (48%)
Mild 185 (49%)
Missing 13 (3%)
Presence of severe brain injury
Yes 116 (31%)
No 236 (62%)
Missing 28 (7%)
Apgar score
At 1st min after birth 4.9 (2.3, 0-9)
At 5th min after birth 7.1 (1.7, 1-10)
At 10th min after birth 8.2 (1.1, 3-10)
Follow-up age
Age at the time of BSITD-III administration, in years 2.2 (0.25, 1.9-2.7)
Age at the time of CBCL administration, in years 2.2 (0.25, 1.9-2.7)
Age at the time of WPPSI-III administration, in years 5.8 (0.2, 5.4-6)

Table 3.1: Patient characteristics

In the table 3.1, data is presented as "count (%)" for qualitative, and as
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"mean (Standard Deviation (SD), range)" for quantitative columns. The anti-

seizure, sedative, or anaesthetic medications include phenobarbital, lido-

caine, levetiracetam, clonazepam, midazolam, and other potential surgical

anaesthetics. Illness severity is defined based on the total number of days

of mechanical ventilation during the NICU stay: severe for >=7 days, mild

for <7 days. The following number of infants were missing: Birth-weight:

1; Morphine dosage: 14; Apgar at 1st: 8; Apgar at 5th: 5; Apgar at 10th: 87.

3.1.1 aEEG-EEG

As part of the standard care provided to extremely preterm (EP) infants

in the NICU at WKZ, bedside two-channel aEEG monitoring was initiated

promptly after admission and continued for the first three days following

birth. The BrainZ monitor (BRM2 or BRM3; Natus Medical Inc., Seattle,

WA) was utilized for the aEEG recording. Raw EEG signals were recorded

from needle electrodes placed subcutaneously in pairs (i.e. channels) over

the left (F3-P3) and right (F4-P4) frontoparietal cortex. The sampling rate

was set at 256 Hz, and these signals were subsequently processed to gen-

erate aEEG traces. Further, a reference electrode was positioned over the

vertex (Cz). The placement of electrodes was performed by nurses or clini-

cians in accordance with the International 10-20 system.

Figure 3.2: Location and nomenclature of the electrodes on an infant’s head

In the course of this research, the dataset containing aEEG information
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underwent a comprehensive processing pipeline, detailed in the study led

by Wang et al. The initial aEEG was passed through an algorithm that iden-

tified and eliminated any artifacts present in its raw signals. Furthermore,

the pipeline also involved feature extraction. Through this, meaningful and

relevant information was distilled from the raw aEEG signals. This dataset

comprises of 330 distinct features (110 for each day of processed aEEG) from

369 patients.

3.1.2 MRI

MR images were acquired around term-equivalent age (TEA) on a 3.0 Tesla

MR system (Philips Healthcare, Best, The Netherlands) using a sense head

coil [45]. TEA refers to the age at which a prematurely born infant’s brain

development matches that of a full-term infant. Since premature infants

are born before their brains have fully developed, their MRI scans may be

assessed and compared to those of term infants at a certain age to gauge

their developmental progress. Studies have demonstrated that TEA-MRI

correlate with neurodevelopmental outcomes, offering enhanced predictive

accuracy compared to other measures such as neuroimaging, clinical assess-

ments, or physical examinations [34].

The dataset for MRI includes volumes for all the different parts of the

brain along with their volumes relative to the total volume of the brain. The

277 columns contain the patient ID, age of the patient at scan, the total vol-

ume of the brain, volumes of 120 different parts of the brain, the relative vol-

umes of the same 120 parts of the brain and 34 columns from the Kidokoro

system of analysis. This dataset comprises records from 264 patients.

3.1.3 Target Variables

The neurodevelopmental progress of EP infants was assessed during their

routine follow-up appointment at the outpatient clinic of the WKZ when

they were between 2 and 3, and again between 5 and 7 years old. The kids

were rated by medical professionals who had no knowledge of their prior

aEEG-MRI characteristics. The assessments were made using Dutch coun-
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terparts of the following:

• Bayley Scales of Infant and Toddler Development, Third Edition (BSITD-

III) was administered to the preschool age toddlers to evaluate cogni-

tive and motor functioning. Four index scores were provided by the

BSITD-III—cognitive composite score, total motor composite score,

and fine and gross motor sub-scaled scores.

• Child Behavior Checklist (CBCL) was used to assess behavioural or emo-

tional problems, yielding a total problem score.

• Wechsler Preschool & Primary Scale of Intelligence, Third Edition (WPPSI-

III) was used to assess cognitive abilities of early school age children

by providing a full-scale intellectual quotient (FSIQ), and composite

scores for verbal IQ (VIQ), performance IQ (PIQ), and processing speed

(PS).

Lower scores on the BSITD-III, and WPPSI-III indicate poorer functioning,

whereas higher scores on the CBCL indicate more behavioural or emotional

problems. For classification, each outcome was converted into a binary form

(optimal vs impaired) using the thresholds in Table 3.2.

Optimal Impaired
BSITD-III >10 %ile <=10 %ile
CBCL <70 >=70
WPPSI-III >70 <=70

Table 3.2: Thresholds for optimal vs. impaired classification

This system of classifying gives the data distribution given in Fig 3.3.
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Figure 3.3: Distribution of neurodevelopmental outcomes
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On each violin plot, the central gray line denotes the mean, the verti-

cal thick line represents the SD, and the horizontal dash line indicates the

threshold value that divides the optimal and impaired classes. The number

of infants who had outcome measurements is indicated below each violin

plot. The number (and percentage) of infants classified as impaired is given

below each bar plot.

3.2 Exploratory Data Analysis

Two spearman’s correlation coefficient matrices are given in figure 3.4. 3.4

(a) shows a 339 × 339 matrix illustrating the pairwise relationships between

the 330 EEG features and 9 outcomes, while, 3.4 (b) shows a 283 × 283 ma-

trix with 274 MRI features. Within the matrices, the intensity of the colour

gradient corresponds to the strength of the correlation, with lighter shades

indicating positive correlations and darker shades indicating negative cor-

relations. The correlations between individual features of either dataset and

outcomes were relatively weak.

(a)aEEG-EEG (b)MRI

Figure 3.4: Correlation Matrices

A cohort of 601 extremely preterm infants underwent screening. Among

these, 108 were excluded due to either absence of data or presence of pre-

congenital birth defects. 113 more were excluded due to invalid or poor
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quality of data. Subsequently, 380 infants met the eligibility criteria for the

study on aEEG-EEG. The demographics and clinical characteristics of these

infants during their NICU stay is presented in Table 3.1. Out of these, 11

infants did not have any aEEG or MRI data associated with them and hence

were also removed from further analysis.

Of the 369 infants with eligible data, 342 (93%) had available aEEG–EEG

data for all three days (i.e., 20 − 24 hours, 44˘48 hours, and 68˘72 hours),

whereas the remaining possessed data for one (2 [1%]) or two (22 [6%]) of

the specified days. Notably, each infant yielded a total of 339 aEEG-EEG

features comprising nine qualitative and 330 quantitative features. In this

thesis, only quantitative features are analysed.1

From the total 601 preterm infant cohort, 493 were imaged using MRI.

Of these, only 264 (54%) were found to be eligible for this study. The rest

were excluded due either invalid or substantial lack of data.

Figure 3.5: Null values in the aEEG-EEG dataset

1The distributions of the quantitative features across the three periods are delineated
in Appendix A.
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Figure 3.6: Null values in the MRI dataset

Figures 3.5 and 3.6 show null values present in the datasets as yellow

and non-null values as blue.

Initially, as shown in figure 3.3, the following number of outcomes have

been measured:

• BSITD-III: Maximum of 318 (cognitive) and a minimum of 279 (total

motor) with an average of 10% impairment

• CBCL: 295 scores with 2% impairment

• WPPSI-III: 182 scores with an average of 6% impairment

When accounting for the data in the datasets, however, there is outcome

data available that corresponds to patient IDs that have been excluded. An

outline of outcome data matching patient IDs currently in the analysis is

represented in Table 3.3 for aEEG data and in Table 3.4 for MRI data.
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Outcome Measured outcomes Impaired outcomes Impaired %
Cognition 271 25 9
Fine motor 261 29 11
Gross motor 237 20 8
Total motor 233 26 11
CBCL 247 7 3
Full scale IQ 151 10 7
Verbal IQ 151 10 7
Performance IQ 151 7 5
Processing speed 151 14 9

Table 3.3: Number of outcomes available for aEEG-EEG analysis

Outcome Measured outcomes Impaired outcomes Impaired %
Cognition 199 21 10
Fine motor 192 21 11
Gross motor 171 16 9
Total motor 168 19 11
CBCL 189 5 3
Full scale IQ 98 7 7
Verbal IQ 98 7 7
Performance IQ 98 5 5
Processing speed 98 8 8

Table 3.4: Number of outcomes available for MRI analysis

3.3 Data Preprocessing

This section documents all the steps followed to transform and structure the

data into a format that could be utilized in the machine learning algorithms

that model the data subsequently.

3.3.1 Cleaning Data

Cleaning the data refers to the process of identifying and correcting errors

and inaccuracies in an effort to ensure the integrity of the dataset for anal-

ysis. This step streamlines the integration and further analyses of the MRI

and aEEG datasets by standardizing column names. This standardization

also facilitates merging these datasets with another that includes target vari-

ables.
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3.3.1.1 aEEG-EEG

A part of this preprocessing step is removing unnecessary variables from

the datasets to focus on relevant ones. From the aEEG dataset, in particu-

lar, it excludes any remark columns. Although the remarks provided by the

doctors who administered the patients in the study may contain valuable

insights for future medical professionals managing the patient’s care, they

are deemed unsuitable for inclusion in the current research scope. The ex-

clusion is justified by the subjective nature of these remarks, as they might

represent qualitative observations rather than quantifiable statistics.

3.3.1.2 MRI

For MRI, two datasets are provided. One including Kidokoro scores and one

including the volumes and age at scan of infants. All the volumes present

in the second dataset are standardized as numeric data. This involves the

handling various formats and decimal point systems, allowing for consis-

tent treatment of numerical values. The two datasets are then merged to

form a single MRI superset that includes the age of the infants, volumes of

all the parts of the brain and the Kidokoro scores involved with them.

Furthermore, the dataset includes columns for relative volumes, i.e., un-

altered volumes relative to the total brain volume. These exhibit high mul-

ticollinearity. Multicollinearity occurs when two or more independent vari-

ables in a model are highly correlated, making it challenging to distinguish

their individual effects on the dependent variable. Consequently, the rela-

tive volumes will be removed during this step. Further down the pipeline,

more collinear variables will also be removed.

3.3.2 Scaling Data

The MRI dataset includes the volumes of different parts of the brain, along

with the ages of the infants on the day of the scan. As neonates grow, their

brains undergo rapid developmental changes, and accounting for these changes

can be essential for accurate analysis.

Allometric scaling is a mathematical approach that can evaluate the non-
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uniform relationship between observations or quantities (e.g., brain vol-

umes) when comparing across different species. It involves adjusting a scal-

ing exponent to better capture the proportional changes in the variable of

interest with respect to size or age.

According to Wang et al., different allometric exponents for drug dosages

were identified depending on the age range [46]. The lowest similarity in

the exponents was within neonatal populations. Their findings show that

for scaling clearance, while a singular exponent for allometric scaling may

be of value for scaling from adults to paediatric patients, the same cannot

be said for scaling within neonates.

In the context of brain volumes in neonates, different age groups exhibit

differing scaling exponents that would accurately represent brain growth

patterns. The total brain volume, hence, becomes an essential factor for

determining the scaling. Using this, the volumes of the various parts of the

brain can be scaled proportionately to the age of an infant.

For this scaling, the following formula is used:

Vscaled = Voriginal + m ∗ (40 − PMA) (3.1)

Here, Vscaled is the scaled value of the volume of a part of the brain, Voriginal is

the original value of the volume of a part of the brain, 40 is the average age

in weeks for a non-preterm infant, PMA refers to the Post Menstrual Age,

i.e., the infant’s age in weeks when the scan occurred, and finally, m is the

slope of the volume of the part of the brain. Furthermore, when calculating

the slope of the volumes, a 1-D α trimming filter was applied. This refers to

the exclusion of the highest and lowest α% from the analysis in an attempt

to mitigate the influence of outliers on the slope.
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(a) (b)

Figure 3.7: Total volume of the brain vs. age of infant at scan (a) before and (b)
after scaling

The volumes are then divided to get volumes relative to the total brain

volume, and the total brain volume - ventricle volume. In summary, the

following variations of the MRI dataset will be compared further:

1. VNS - No scaling (NS)

2. VVS - Scaling w.r.t. age of infant at scan (VS)

3. VTVS - Scaling w.r.t. age, relative to total brain volume (TVS)

4. VVVS - Scaling w.r.t. age, relative to the difference of total brain volume

and ventricle volume (VVS)

3.3.3 Outlier Detection

Outlier detection involves identifying and potentially removing data points

that deviate significantly from the average of a dataset. For each data point

in a dataset, we compute its z-score, Z, which measures how many standard

deviations it is away from the mean of the dataset. The formula for calcu-

lating the z-score of a data point, X, in a dataset with mean µ and standard

deviation σ, is:

Z =
X − µ

σ
(3.2)

34



3.3 Data Preprocessing

If a data point has a z-score close to 0, it means it is close to the mean. Data

points with z-scores outside a certain threshold range (chosen as, ±3) are

flagged as potential outliers. These flagged data points are then imputed.

3.3.4 Data Imputations

Missing data can occur due to various reasons such as human error during

data entry, equipment malfunction, or even the nature of the data collec-

tion process. Data imputation is a technique used to fill in these missing or

incomplete values within a dataset. The following methods of imputation

were considered:

1. Zero-Value Imputation

This involves imputing the value of the column to 0. The main rea-

son why this can be preferred is to avoid the introduction of potential

biases. It ensures minimal distortion to the original dataset.

2. Minimum Value Imputation

Imputing missing values with the minimum observed value in a dataset.

It helps maintain the original range of values. The limitations of im-

puting missing values with the minimum is that it might underesti-

mate true values and misrepresent the nature of the data.

3. Mean Value Imputation

Imputing missing values with the mean of the observed data helps

maintain the central tendency of the dataset and keeps the overall

average unchanged. Imputing missing values with the mean comes

with the disadvantage that it might underestimate the variability of

the data.

4. Median Value Imputation

Imputing missing values with the median helps maintain the shape

and characteristics of the distribution. The median is less sensitive to

outliers compared to the mean. Median imputation, however, does

not utilize all available information in the dataset, potentially leading

to a loss of variability and information.
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5. Mode Value Imputation

Imputing missing values with the mode helps maintain the original

data characteristics by filling in the missing information with the most

prevalent data point. Mode imputation is less suitable for continu-

ous or numeric variables where it is challenging to define a mode, as

continuous variables often have unique or continuous distributions.

6. Nearest Neighbours Imputation

KNN (k-Nearest Neighbours) imputation estimates missing values based

on similarities or distances between data points. It uses the values of

nearby or similar instances to impute the missing values, leveraging

existing relationships within the dataset. KNN imputation is versatile

and applicable to both continuous and categorical data. It is imper-

ative, however, to choose K judiciously and consider computational

constraints when applying KNN imputation.

3.3.4.1 Checking validity

To check the validity of the various imputation methods, a k-fold cross val-

idated linear regression was performed on the data. This involves splitting

the dataset into k subsets called ’folds’. The model is then trained k times,

each time on a separate fold and evaluated on the remaining folds. The

process provides multiple evaluations of the same dataset. The results are

averaged to get more reliable performance metrics. The following regres-

sion metrics were used to ascertain which imputation method would be the

most suitable:

The r2 score is a measure of the proportion of variance in the target vari-

able that is explained by the independent variables used to train a model.

This value can range from -infinity to 1, where:

• 1 indicates that the model is a perfect fit explaining all of the variance.

• 0 indicates that the model does not explain any variance

• <0 indicates that the model performs worse than a simple mean-based

model.
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The MSE or Mean Squared Error is the average of the squared distances

between the actual and predicted values of the target variable.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3.3)

Where n is the number of samples, yi is the actual value, ŷi is the predicted

value. MSE penalizes larger errors more heavily than smaller errors. The

lower the MSE, the better the performance of the model.

This validity check for imputations was conducted on unadulterated

aEEG and MRI datasets. It was found that the median imputation had the

best performance across all the runs. Therefore, in any further analysis, me-

dian imputations were utilized.

3.3.5 Normalization

Similar to the technique applied in outlier removal, the data is normalized

using z-score. Also known as standardization, it is a statistical technique

used to transform data into a standard normal distribution, particularly use-

ful when dealing with features that have vastly differing scales and units.

Z-score normalization scales the data so that it has a mean of 0 and a stan-

dard deviation of 1.

Figure 3.8: An example of z-normalization
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3.3.6 Feature Reduction

3.3.6.1 Factor Analysis

Before we utilize factor analysis, the suitability of the data must be assessed.

This is usually done via the tests described below.

The Kaiser-Meyer-Olkin (KMO) Test gives a measure of sampling ade-

quacy that indicates the proportion of variance in variables that might be

caused by underlying factors. The higher the proportion, the higher the

KMO-value, the more suited the data is to factor analysis. Its value is given

by:

KMOj =
∑i ̸=j R2

ij

∑i ̸=j R2
ij + ∑i ̸=j U2

ij
(3.4)

where, Rij is the correlation matrix and Uij is the partial covariance matrix.

KMO values vary from 0 to 1. The KMO values between 0.8 to 1.0 indi-

cate the sampling is adequate, between 0.7 to 0.79 are middling and values

between 0.6 to 0.69 are mediocre. KMO values less than 0.6 indicate the

sampling is not adequate and remedial action should be taken [47]. This

remedial action refers to removing these features from our dataset as they

are too correlated and would not offer any more substantial information to

the analysis.

The second test conducted is the Bartlett’s test of Sphericity. It is used to

test the null hypothesis that the variables are orthogonal. If the null hypoth-

esis is true, that would mean that the correlation matrix is an identity matrix.

If so, the variables tested are unrelated and not ideal for factor analysis. If

there are k samples with sizes ni and sample variances S2
i then Bartlett’s test

statistic is given by:

χ2 =
(N − k) ln(Sp

2 )− ∑k
i=1(ni − 1) ln(S2

i )

1 + 1
3(k−1)(∑

k
i=1(

1
ni−1)−

1
N−k )

(3.5)
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where, N = ∑k
i=1 ni and Sp

2 = 1
N−k ∑i(ni − 1)S2

i is the pooled estimate for

the variance [48].

If the data has passed the above two tests, it can be concluded that a

feature reduction technique like factor analysis would be able to capture

significant variance present in the data within a condensed number of vari-

ables.

With the remaining features, we need to find out the number of factors

they need to be reduced to. One method to do this is to look at the cu-

mulative explained variance graph. Usually, the number of factors that are

enough to explain 99% of the total variance in the dataset are chosen.

Factor analysis is a statistical method used to explain the variability of

correlated features. It can be used to draw a lower number unobserved vari-

ables called factors, that can describe the same variation as a higher number

of observed variables. Factor analysis searches for linear combinations of

variables that can form factors. The factor loading of a variable is the quan-

tification of the extent to which the variable is related to a given factor. [49]

The technique attempts to explain a set of p observations in each of n

individuals with a set of k common factors ( fi,j) where there are fewer factors

per unit than observations per unit (k < p). Each individual has k of their

own common factors, and these are related to the observations via the factor

loading matrix L ∈ Rp×k, for a single observation, according to

xi,m − µi = li,1 f1,m + · · ·+ li,k fk,m + εi,m (3.6)

where, xi,m is the value of the ith observation of the mth individual, µi is the

observation mean for the ith observation, li,j is the loading for the ith obser-

vation of the jth factor, f j,m is the value of the jth factor of the mth individual,

and εi,m is the (i, m)th unobserved stochastic error term with mean zero and

finite variance.

When the maximally loaded features are assigned to factors, certain fac-

tors are left empty. These factors are "empty" as no further combination of
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features explains enough variance in the data.

The factor loadings give the weighting of each feature in the linear equa-

tion that forms a factor. These factors can then be used as the new features

that are used to train subsequent models.

3.3.6.2 MRMR

Maximum Relevancy - Minimum Redundancy (MRMR) is a feature selec-

tion algorithm first proposed in the paper by Ding et al. and expanded upon

by Zhao et al. for Uber [50], [51]. MRMR is a minimal-optimal feature se-

lection algorithm. This means that it seeks the smallest set of features that

have maximum predictive possibilities. Working iteratively, MRMR iden-

tifies the features that exhibit the highest relevance to the target variable

while minimizing redundancy with previously selected features.

The Uber paper describes multiple variants of MRMR, however, it con-

cludes FCQ (F-test correlation quotient) to be one of the best. It is highly

valuable not only due to its effectiveness but also because of its simplicity,

which makes it a fast and easily implementable technique in any down-

stream machine learning model.

f is the importance of a feature Xi (i ∈ {1, 2, · · · , m}), given by:

f FCQ(Xi) =
F(Y, Xi)

1
|S| ∑Xs∈S ρ(Xs, Xi)

(3.7)

The numerator is the relevancy of a feature Xi, computed as the F-statistic, F,

between the target variable Y and the current feature Xi. The denominator

is the redundancy, computed as ρ, the Pearson correlation, between the set

of all previously selected features Xs and the current feature Xi, averaged

over the length of selected feature set S.
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3.4 Regression

Linear regression is a statistical method that fits a linear equation to the

relationship between a dependent variable, y, and one or more independent

variables, x.

ŷ = β0 +
n

∑
i=1

βixi + ε (3.8)

The equation above is for a multiple linear regression, where, β0 is the

intercept, βi is the slope for xi, which is the ith independent variable, and ε

is the error term, i.e. the difference between the predicted value ŷ and the

observed value y of the dependent variable.

Machine learning based linear regression is utilized to model the re-

lationship between the dependent variable and one or more independent

variables. The term "linear" refers to the assumption that any change in x

is associated with a linear change in y. What gives it a basis in Machine

Learning, is the training phase. In it, the algorithm "learns" from the train-

ing dataset and adjusts the parameters of the linear equation to minimize

the error between the actual and predicted values.

3.5 Classification

Logistic regression is a statistical method used to predict the probability of

a categorical outcome based on one or more independent variables. Despite

being called "regression", it is actually a classification algorithm. To model

the probability of a binary outcome, it fits a sigmoid function to a linear

combination of independent variables.

P(y = 1|x) = 1
1 + e−ŷ (3.9)
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The equation states the the probability P of the dependent variable y

belongs to the class 1, given the independent variables x is the sigmoid

function applied to the linear model ŷ. The logistic regression fits the lin-

ear model coefficients β to minimize the residual sum of squares between

the observed and predicted target variables. Once the model is trained, it

can be used to predict the probability of an instance belonging to a certain

class. If this probability is greater than a chosen threshold, it is classed as y

belonging to 1, else it will be classed as y belonging to 0.

3.6 Explanation of models

To explain the machine learning models applied in this thesis, SHAP (SHap-

ley Additive exPlanations) is utilized.

The Shapley value is a solution concept in cooperative game theory, pro-

viding a possible answer to the question of how important each player is

to the overall cooperation of a team. In machine learning, they provide a

principled way to explain the predictions of models. The calculated value

is the average marginal contribution of a feature value across all possible

coalitions. This value is calculated by:

φi(v) = ∑
S⊆N\{i}

|S|! (n − |S| − 1)!
n!

(v(S ∪ {i})− v(S)) (3.10)

where S is a coalition of features, N is the set of n total number of features

and the sum extends over all subsets S of N not containing feature i, includ-

ing the empty set. v(S), called the worth of coalition S describes the total

expected sum of payoffs the members of S can obtain by cooperation.

SHAP assigns each feature used to train the model this importance value

φ for its predictions, providing a way to compute which features contribute

the most to a prediction.

42



4. Results

4.1 Feature Reduction

4.1.1 Factor Analysis

Initially, the KMO test is conducted. For the aEEG dataset, out of the 330

total features, 144 passed with a KMO value of over 0.6. These obtained an

average score of 0.9 among the accepted variables. For MRI, out of the 154

total features, the number of features passing with a KMO value of 0.6 for

NS was 60, for VS was 60, for TVS was 56, and for VVS was 55. These ac-

cepted fields obtained an average score of 0.887 for NS, 0.879 for VS, 0.783

for TVS, and 0.774 for VVS. For the sake of consistency, the maximum num-

ber of passed features (i.e. 60) are delivered to the next step. In addition to

the datasets that did not have 60 columns, certain features as determined

by experts at the University Medical Center Utrecht (UMCU) were added.

Total brain volume, ventricle volume and global Kidokoro score are namely

some of the features that were appended.

Secondly, Bartlett’s test of Sphericity is conducted. For the aEEG dataset,

the χ2 value is 98547.854 and a p-value that rejects the null hypothesis.

While for the MRI dataset, the χ2 value is 29481.973 for NS, 28485.747 for

VS, 25574.715 for TVS, and 24258.364 for VVS, and p-values that reject the

null hypothesis for each.

It is important to note that the two tests were conducted on a subset

of variables in the dataset. This was done to mitigate the impact of multi-

collinearity which would result in a singular matrix with a determinant of

0, eventually leading to divide by zero errors.
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(a)

(b)

(c) (d) (e)

Figure 4.1: Cumulative variance graphs for each of the tested datasets

Thirdly, the cumulative explained variance graph is drawn. As can be

seen from Fig 4.1, the red line plots the cumulative explained variance, and

the point where the two dotted lines meet is at 99% of cumulative variance

and the number of factors that should be chosen. For the aEEG dataset, this
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point is at 62 and for MRI: NS is 39; VS is 39; TVS is 42; VVS is 42. To keep

number of features consistent for MRI comparisons, 42 will be chosen.

Finally, the features are factor analysed and the loadings are deduced as

shown in figure 4.2. In (a) and (b) of the figure, the features are sorted on

the basis of the factors they maximally load on to. Whereas, in (c), (d) and

(e), the features remain sorted as they were in (b) to show the differences

that different scalings can make in factoring the MRI dataset.

45



Results

(a)aEEG-EEG

(b)MRI (Unscaled) (c)MRI (Scaled)

(d)MRI (Scaled, Rel. total volume) (e)MRI (Scaled, Rel. total-ventricle volume)

Figure 4.2: Factor loadings for each of the tested datasets
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4.2 Regression Results

Assigning maximally loaded features to factors, it is found that the aEEG

dataset has 45 explainable factors, while MRI has: NS: 35; VS: 36; TVS: 38;

VVS: 38 explainable factors.

4.1.2 MRMR

As concluded from the third step of Factor Analysis, 62 features from aEEG

and 42 features from each MRI dataset are chosen using the MRMR selection

algorithm.1

4.2 Regression Results

A linear regression model was trained on each variation of the datasets. To

compare against the various models, metrics from a leave-one-out-cross-

validation evaluation were used. Mean Squared Error was used as the mea-

sure to calculate the AIC (Akaike Information Criterion) and BIC (Bayesian

Information Criterion) for each model.

1The list of features selected by MRMR is given in Appendix E.
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Results

aEEG-EEG MRI NS
Target Variable Feature Reduction AIC BIC AIC BIC
CognCScaNL None 645.75 1838.051 195.75 706.213

Factor Analysis 80.54 246.238 60.751 179.31
MRMR 114.632 341.566 74.683 216.295

FMTRS None 652.257 1832.113 221.131 726.043
Factor Analysis 85.816 233.703 66.718 175.34
MRMR 119.875 344.44 80.892 220.964

GMTRS_NLca None 653.65 1801.578 204.584 691.542
Factor Analysis 85.136 229.112 64.69 163.82
MRMR 119.299 337.786 79.39 214.481

TMotCScaNL None 645.79 1788.084 251.071 735.286
Factor Analysis 80.858 222.887 60.836 157.393
MRMR 114.966 332.381 75.288 209.619

CBCL_tot2y None 646.299 1807.907 206.303 708.773
Factor Analysis 82.11 228.213 62.602 168.502
MRMR 115.93 337.022 76.44 215.835

FSIQ None 647.749 1646.469 295.824 696.494
Factor Analysis 79.882 196.874 59.72 139.089
MRMR 113.62 303.709 73.515 184.668

VIQ None 647.997 1646.716 295.882 696.552
Factor Analysis 79.568 196.559 59.06 138.428
MRMR 113.639 303.727 73.895 185.049

PIQ None 648.052 1646.772 295.472 696.142
Factor Analysis 80.613 197.604 60.706 140.075
MRMR 114.112 304.2 73.607 184.761

PS None 647.948 1646.667 295.097 695.767
Factor Analysis 79.441 196.432 59.257 138.626
MRMR 113.763 303.851 73.543 184.697

Table 4.1: AIC/BIC scores for linear regression (Best Models)

The model with the lowest values for both turned out to be Factor Anal-

ysis across the board. With aEEG-EEG scoring an average value of 81.552

AIC and 216.402 BIC, and MRI scoring 61.593 AIC and 155.62 BIC.

To gauge the statistical significance of the aforementioned models, per-

mutation tests were employed. In these tests, the scores of the outcomes

were subject to random shuffling iteratively, a total of 1000 times per test.

The metrics tested were the Mean Squared Error (Eq. 3.3), and the Pearson

correlation metric r.

r = ∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2 ∑(yi − ȳ)2

(4.1)
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4.2 Regression Results

The value of r ranges from −1 to 1, where 1 denotes a perfect match, 0 de-

notes a chance prediction, and negative values indicate progressively poorer

performance.

4.2.1 aEEG-EEG

aEEG-EEG r p (r) mse p (mse)
BSITD-III
Cognitive composite 0.3746 <0.001 211.144 <0.001
Fine motor scaled 0.5755 <0.001 12.158 <0.001
Gross motor scaled 0.5235 <0.001 15.5018 <0.001
Total motor composite 0.5539 <0.001 132.4329 <0.001
CBCL
Total behavioural problem 0.4775 <0.001 72.1681 <0.001
WPPSI-III
Full-scale IQ 0.7888 <0.001 90.0927 <0.001
Verbal IQ 0.7895 <0.001 92.3642 <0.001
Performance IQ 0.7854 <0.001 74.7971 <0.001
Processing speed 0.6788 <0.001 132.7127 <0.001

Table 4.2: Prediction performance of linear regression on aEEG-EEG

The prediction performance of the significant models was moderate for BSITD-

III (r=0.3746− 0.5755) and CBCL (r=0.4775), and high for WPPSI-III (r=0.6788−
0.7895). Conversely, the composite scores for cognition, total motor, and

processing speed did have high mean squared errors (mse=211.144, 132.4329,

132.7127).
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Results

(a)Regression plot for CognCScaNL (b) Regression plot for PS

(c)SHAP values for CognCScaNL (d)SHAP values for PS

Figure 4.3: Regression results for aEEG-EEG for cognitive composite score and
processing speed score

In Figure 4.3 (a) & (b), the x-axis shows the predicted values, the y-axis

shows the actual values, the solid line indicates linear regression fit, and the

shaded area indicates a 95% confidence interval.

Examining the top 5 SHAP values for the factors most influential to the

results, the following is observed2:

• Cognition composite score: Factor 6, Factor 16, Factor 1, Factor 34 and

Factor 0, correspond to a linear fusion of features with statistics of

aEEG range (day 1), range (day 3), range (day 2), amplitude (day 3),

and connectivity (day 2/3), respectively.

• Processing speed score: Factor 16, Factor 6, Factor 39, Factor 1 and Factor

29, correspond to a linear fusion of features with statistics of aEEG

range (day 3), range (day 1), spectral content (day 1), range (day 2),

2All features corresponding to the factor are present in Appendix D.

50



4.2 Regression Results

and spectral content (day 2), respectively.

4.2.2 MRI

MRI NS r p (r) mse p (mse)
BSITD-III
Cognitive composite 0.4883 <0.001 195.5259
Fine motor scaled 0.5189 <0.001 8.0684 <0.001
Gross motor scaled 0.628 <0.001 17.7953 <0.001
Total motor composite 0.6066 <0.001 128.4436 <0.001
CBCL
Total behavioural problem 0.5218 <0.001 65.1569 <0.001
WPPSI-III
Full-scale IQ 0.7986 <0.001 78.2548 <0.001
Verbal IQ 0.7649 <0.001 105.6402 <0.001
Performance IQ 0.8199 <0.001 52.4974 <0.001
Processing speed 0.6634 <0.001 146.3863 <0.001

Table 4.3: Prediction performance of linear regression on MRI (Unscaled)

The prediction performance of the models on the MRI dataset was better

than aEEG-EEG for all BSITD-III (r=0.4883− 0.628, mse=8.0694− 195.5259),

CBCL (r=0.5218, mse=65.1569) and WPPSI-III (r=0.7649− 0.8199, mse=52.4974−
146.3863).
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Results

(a)Regression plot for CognCScaNL (b)Regression plot for PS

(c)SHAP values for CognCScaNL (d)SHAP values for PS

Figure 4.4: Regression results for MRI for cognitive composite score and pro-
cessing speed score

In Figure 4.4 (a) & (b), the x-axis shows the predicted values, the y-axis

shows the actual values, the solid line indicates linear regression fit, and the

shaded area indicates a 95% confidence interval.

Examining the top 5 SHAP values for the factors most influential to the

results, the following is observed3:

• Cognition composite score: Factor 0, Factor 37, Factor 25, Factor 3 and

Factor 4, correspond to a linear fusion of volumes of GM, entire brain,

Anterior temporal lobe GM, CSF, and thalamus (high intensity), re-

spectively.

• Processing speed score: Factor 0, Factor 22, Factor 31, Factor 33 and Fac-

tor 8, correspond to a linear fusion of volumes of GM, WM, Superior

temporal gyrus GM, Cingulate gyrus WM, and Gyri parahippocam-

3All features corresponding to the factor are present in Appendix D.
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4.2 Regression Results

palis WM, respectively.

4.2.3 Combination

Combination r p (r) mse p (mse)
BSITD-III
Cognitive composite 0.5976 <0.001 156.4118 <0.001
Fine motor scaled 0.6424 <0.001 7.3358 <0.001
Gross motor scaled 0.7417 <0.001 12.5239 <0.001
Total motor composite 0.755 <0.001 74.1583 <0.001
CBCL
Total behavioural problem 0.5407 <0.001 54.3845 <0.001
WPPSI-III
Full-scale IQ 0.8923 <0.001 35.2361 <0.001
Verbal IQ 0.8508 <0.001 47.077 <0.001
Performance IQ 0.9013 <0.001 28.928 <0.001
Processing speed 0.9173 <0.001 46.3915 <0.001

Table 4.4: Prediction performance of linear regression on the combination of
aEEG-EEG and MRI (Scaled wrt age, relative to (total volume - ventricle vol-
ume))

The predictions of the models of the combination of aEEG and MRI predic-

tions outperformed both aEEG and MRI alone for all the outcome predic-

tors. BSITD-III: r=0.5976 − 0.755, mse=7.3358 − 156.4118; CBCL: r=0.5407,

mse=54.3845; WPPSI-III: r=0.8508 − 0.9173, mse=28.928 − 46.3915.

(a)Regression plot for CognCScaNL (b)Regression plot for PS

Figure 4.5: Regression results for the combination of aEEG-EEG and MRI for
cognitive composite score and processing speed score.
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In Figure 4.5 the x-axis shows the predicted values, the y-axis shows the

actual values, the solid line indicates linear regression fit, and the shaded

area indicates a 95% confidence interval.

It can be seen that all the regression results for the datasets studied are

significant. The predictions made mostly show a moderately positive cor-

relation with the actual values. Furthermore, the Fine, Gross motor scaled

scores, Total motor composite scores, and all the WPPSI-III scores show a

strong positive correlation for all datasets. It can be seen that the regression

model that combines both aEEG-EEG and MRI prevails over the individual

models.

4.3 Classification Results

A 3-fold weighted logistic regression model was trained on each variation

of the datasets. Each fold was stratified to maintain the ratio of instances of

each class. Models with at least 2 samples per class per fold were considered

robust. Further, performance metrics were estimated with 95% Confidence

Intervals (CIs) based on 1000 bootstrap resamples.

Log likelihoods of probability estimates were used as the measure to

calculate the AIC and BIC for each model.
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4.3 Classification Results

aEEG-EEG MRI NS
Target Variable Feature Reduction AIC BIC AIC BIC
CognCScaNL None 651.172 1843.473 299.859 810.322

Factor Analysis 81.963 231.568 62.585 167.705
MRMR 115.145 342.078 75.954 217.566

FMTRS None 651.352 1831.208 300.085 804.997
Factor Analysis 82.57 227.622 63.031 166.262
MRMR 115.785 340.35 76.098 216.171

GMTRS_NLca None 651.427 1799.355 300.099 787.056
Factor Analysis 82.364 222.951 63.129 161.946
MRMR 115.61 334.098 76.125 211.216

TMotCScaNL None 651.576 1793.87 300.216 784.431
Factor Analysis 82.655 222.949 63.199 164.144
MRMR 115.588 333.003 76.369 210.7

CBCL_tot2y None 651.111 1812.718 299.659 802.13
Factor Analysis 82.041 224.353 62.464 164.284
MRMR 115.142 336.234 75.661 215.056

FSIQ None 652.222 1650.942 301.196 701.866
Factor Analysis 83.255 196.687 63.771 144.717
MRMR 116.493 306.582 77.322 188.476

VIQ None 652.241 1650.961 301.129 701.799
Factor Analysis 83.242 197.2 63.863 143.765
MRMR 116.274 306.363 77.338 188.492

PIQ None 652.441 1651.161 301.029 701.699
Factor Analysis 83.043 200.035 63.654 144.6
MRMR 116.191 306.28 77.065 188.219

PS None 652.363 1651.082 301.142 701.812
Factor Analysis 83.127 202.035 64.123 140.115
MRMR 116.447 306.536 77.605 188.759

Table 4.5: AIC/BIC scores for logistic regression (Best Models)

The models with the lowest values for both turned out to be the blan-

keting Factor Analysis. With aEEG-EEG scoring an average value of 82.696

AIC and 213.933 BIC, and MRI scoring 63.313 AIC and 155.282 BIC.

The performance metrics used for the best models include the balanced

accuracy(BA) and the f-beta score.

Abalanced =
sensitvity + speci f icity

2
(4.2)
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fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(4.3)

speci f icity = TN
TN+FP , sensitivity = TP

TP+FN ,

precision = TP
TP+FP , recall = TP

TP+FN

(4.4)

Where, TP is True Positive, TN is True Negative, FP is False Positive, and FN

is False Negative All of these range from 0 (completely incorrect) to 1(com-

pletely correct).

4.3.1 aEEG-EEG

aEEG-EEG BA (95% CI) p (BA) Fβ (95% CI) p (Fβ) Precision (95% CI) Recall (95% CI)
BSITD-III
Cognitive composite 0.729 (0.661-0.795) <0.001 0.557 (0.401-0.712) <0.001 0.356 (0.267-0.483) 0.560 (0.4-0.72)
Fine motor scaled 0.718 (0.649-0.789) <0.001 0.568 (0.428-0.709) <0.001 0.333 (0.241-0.469) 0.571 (0.429-0.714)
Gross motor scaled 0.704 (0.621-0.792) <0.001 0.521 (0.315-0.679) <0.001 0.324 (0.219-0.5) 0.526 (0.316-0.684)
Total motor composite 0.67 (0.603-0.755) <0.001 0.459 (0.308-0.647) <0.001 0.343 (0.245-0.474) 0.462 (0.308-0.654)
CBCL
Total behavioural problem 0.637 (0.567-0.71) 0.014 0.287 (0.144-0.430) 0.013 0.4 (0.167-1.0) 0.286 (0.143-0.429)
WPPSI-III
Full-scale IQ 0.670 (0.589-0.773) 0.005 0.375 (0.249-0.619) 0.006 0.375 (0.182-1.0) 0.375 (0.25-0.625)
Verbal IQ 0.666 (0.589-0.766) 0.003 0.375 (0.249-0.617) 0.006 0.375 (0.167-0.75) 0.375 (0.25-0.625)
Performance IQ* 0.689 (0.593-0.793) 0.013 0.429 (0.222-1.0) 0.017 0.429 (0.222-1.0) 0.4 (0.2-0.6)
Processing speed 0.652 (0.584-0.724) 0.008 0.334 (0.25-0.5) 0.006 0.357 (0.217-0.601) 0.333 (0.25-0.5)

Table 4.6: Prediction performance of logistic regression on aEEG-EEG

The prediction performance of the aEEG models was moderately high for

BSITD-III (BA=0.67− 0.729), and moderate for CBCL (BA=0.637) and WPPSI-

III (BA=0.652 − 0.689). For the latter, they also had low Fβ scores (CBCL

Fβ=0.287, WPPSI-III Fβ=0.334− 0.429). Performance IQ is starred due to in-

sufficient instances in each class during resampling, consequently rendering

its performance metrics unverifiable.
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4.3 Classification Results

(a)Confusion Matrix for CognCScaNL (b)Confusion Matrix for PS

(c)SHAP values for CognCScaNL (d)SHAP values for PS

Figure 4.6: Classification results for aEEG-EEG for cognitive composite score
and processing speed score

Examining the top five SHAP values for the factors most influential to

the results, the following is observed4:

• Cognition composite score: Factor 19, Factor 2, Factor 47, Factor 35 and

Factor 34, correspond to a linear fusion of statistics of aEEG features

involving amplitude (day 1), range/amplitude (day 1), amplitude (day

2), range (day 2), and amplitude (day 3), respectively.

• Processing speed score: Factor 29, Factor 12, Factor 38, Factor 27 and

Factor 50, correspond to a linear fusion of statistics of aEEG features

involving spectral content (day 2), spectral content (day 2), connec-

tivity (day 2), spectral content (day 3), and spectral content (day 2),

respectively.

4All features corresponding to the factor are present in Appendix D.

57



Results

4.3.2 MRI

MRI NS BA (95% CI) p (BA) Fβ (95% CI) p (Fβ) Precision (95% CI) Recall (95% CI)
BSITD-III
Cognitive composite 0.724 (0.654-0.802) <0.001 0.523 (0.381-0.666) <0.001 0.446 (0.318-0.625) 0.524 (0.381-0.666)
Fine motor scaled 0.746 (0.663-0.818) <0.001 0.642 (0.448-0.79) <0.001 0.361 (0.256-0.5) 0.65 (0.45-0.8)
Gross motor scaled 0.727 (0.65-0.798) <0.001 0.532 (0.334-0.664) <0.001 0.444 (0.286-0.643) 0.533 (0.333-0.667)
Total motor composite 0.707 (0.636-0.779) <0.001 0.524 (0.368-0.679) <0.001 0.412 (0.273-0.588) 0.526 (0.368-0.684)
CBCL
Total behavioural problem* 0.672 (0.58-0.694) 0.006 0.395 (0.199-0.401) <0.001 0.333 (0.125-1.0) 0.4 (0.2-0.4)
WPPSI-III
Full-scale IQ* 0.683 (0.589-0.783) 0.025 0.4 (0.201-0.599) 0.012 0.5 (0.25-1.0) 0.4 (0.2-0.6)
Verbal IQ* 0.694 (0.589-0.833) 0.019 0.402 (0.201-0.783) 0.017 0.667 (0.3-1.0) 0.4 (0.2-0.8)
Performance IQ* 0.666 (0.65-0.667) 0.096 0.336 (0.332-0.336) 0.024 1.0 (0.25-1.0) 0.333 (0.333-0.333)
Processing speed 0.805 (0.650-0.894) 0.002 0.663 (0.334-0.829) 0.002 0.5 (0.25-1.0) 0.667 (0.333-0.833)

Table 4.7: Prediction performance of logistic regression on MRI (Unscaled)

The prediction performance of the MRI models was slightly better than

that of aEEG-EEG for eligible outcomes in BSITD-III (BA=0.707 − 0.746,

fβ=0.523 − 0.642) and WPPSI-III (BA=0.805, Fβ=0.663). Total behavioural

problem, Full-scale IQ, Verbal IQ and Performance IQ are starred due to a

lack of instances in each class when resampling occurred. These metrics are

not verifiable.
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4.3 Classification Results

(a)Confusion Matrix for CognCScaNL (b)Confusion Matrix for PS

(c)SHAP values for CognCScaNL (d)SHAP values for PS

Figure 4.7: Classification results for MRI for cognitive composite score and
processing speed score

Examining the top five SHAP values for the factors most influential to

the results, the following is observed5:

• Cognition composite score: Factor 24, Factor 18, Factor 11, Factor 37 and

Factor 25, correspond to a linear fusion of volumes of medial and infe-

rior temporal gyri WM, Kidokoro cerebellum overall score, thalamus

(low intensity), entire brain, and anterior temporal lobe GM, respec-

tively.

• Processing speed score: Factor 17, Factor 12, Factor 28, Factor 33 and Fac-

tor 32, correspond to a linear fusion of volumes of gyri parahippocam-

palis GM, brainstem, cingulate gyrus GM, Cingulate gyrus WM, and

Cingulate gyrus WM, respectively.

5All features corresponding to the factor are present in Appendix D.
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4.3.3 Combination

Combination BA (95% CI) p (BA) Fβ (95% CI) p (Fβ) Precision (95% CI) Recall (95% CI)
BSITD-III
Cognitive composite 0.894 <0.001 0.876 <0.001 0.517 0.882
Fine motor scaled 0.856 <0.001 0.836 <0.001 0.471 0.842
Gross motor scaled 0.832 <0.001 0.779 <0.001 0.423 0.786
Total motor composite 0.898 <0.001 0.878 <0.001 0.6 0.882
CBCL
Total behavioural problem* 0.872 0.006 0.75 0.004 0.75 0.75
WPPSI-III
Full-scale IQ 0.907 <0.001 0.855 <0.001 0.667 0.857
Verbal IQ 0.9 <0.001 0.854 <0.001 0.6 0.857
Performance IQ 0.9 0.002 0.801 0.003 1.0 0.8
Processing speed 0.795 <0.001 0.742 <0.001 0.353 0.75

Table 4.8: Prediction performance of logistic regression on the combination of
aEEG-EEG and MRI (Unscaled)

The prediction performance of the combination model was better than that

of aEEG or MRI alone. BSITD-III: BA=0.832− 0.898, Fβ=0.779− 0.878; WPPSI-

III: BA=0.795 − 0.907, Fβ=0.742 − 0.855.

(a)Confusion Matrix for CognCScaNL (b)Confusion Matrix for PS

Figure 4.8: Classification results for the combination of aEEG-EEG and MRI
for cognitive composite score and processing speed score

It is important to note that the evaluation of this combined model did

not adhere to the same protocol employed for the aEEG and MRI models.

The split of training and testing data for the former two models and the

combined model occurred independently to assess the performance of the

combined model. This approach was necessitated by the absence of any

intersecting samples in the test sets between aEEG and MRI.
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5. Discussion

This thesis delved into the potential of aEEG and MRI in predicting neu-

rodevelopmental outcomes for extremely preterm infants.

Building upon the work done by Wang et al., this research was able to

find configurations of aEEG-EEG data that led to better predictive perfor-

mance [12]. Moreover, the addition of MRI allowed for a comparative anal-

ysis with another modality of neurological input which ushered the devel-

opment of new prediction models with even better prediction results.

Through the employment of multiple feature reduction techniques, it

was determined that factor analysis was the most optimal. It uses factor

loadings to identify underlying variables that can elucidate variances in the

dataset, hence reducing dimensionality. The results yielded were found to

have better performance when compared to those without any feature re-

duction, while substantially reducing model complexity.

In addition, results showed that analyzing MRI alone led to more correct

predictions for BSITD-III scores, especially for those associated with motor

function. MRI also showed slightly better results for CBCL and WPPSI-III

scores for linear regression.

Similarly, the model that combines MRI and aEEG predictions also shows

better predictive performance for linear regression. The logistic regression

results, however, were calculated on a different split of datasets than those

of the aEEG and MRI alone. While they indeed exhibit superior perfor-

mance, it is important to acknowledge that the results cannot be unequivo-

cally regarded as factual given the present configuration of the data.

Additionally, it was found that disabling any scaling of MRI data availed,

comparatively, the best results. This was in contrast to the notion that as vol-

umes in the brain would increase as an infant grows, the scoring of the brain

impairment would need a flat volume slope to distinguish between infants
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with abnormalities and those without. This is an assumption that the wider

body at the UMCU is trying to challenge.

Looking at the SHAP values that explain the models tested, it is evident

that the cognitive composite score is derived from values of the range of the

aEEG, while that for the processing speed quotient comes from the aEEG

features involving spectral content. Due to the novelty of the research con-

ducted, currently literature does not exist for the further verification of the

results shown by the SHAP values for aEEG predictions.

For the explanation of features regarding predictions made using the

MRI dataset, a comparison is made with the works of Inder et al. and Ki-

dokoro’s conclusions [44] [43]. Linear regression of the MRI dataset shows

values derived from GM, deep GM, CSF and the temporal lobe for the cog-

nitive composite score, and from GM, WM, and temporal lobe for the pro-

cessing speed quotient. These findings are mostly consistent with Inder’s

work. Logistic regression, however, points additionally to the thalamus as a

source of influence for cognitive abilities. This has been regarded as a part of

the brain that has no clear evidence of association to the cognitive function.

Despite initially appearing to encompass a sizable cohort of infants to

study and analyse, the mismatch of the several datasets causes a scarcity

of usable information. A major loss stems from the unavailability of an

independent evaluation set that could determine the truthful performance

of the models with real-world values. This can only be overcome by the

collection of more data.

The contributions of features to the models were evaluated through SHAP

values. It is important to note that SHAP values solely assess the signifi-

cance of features within the particular model, rather than its broader real-

world importance. Considering the potential for inaccuracies in predictions

made by the machine learning models, SHAP values may not consistently

reflect reality. Future research should consider methodologies that incorpo-

rate an assessment of features’ real-world importance with validation from

an external source.

Furthermore, the prognosis of an extremely preterm infant does not solely
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hinge on the data collected within a limited temporal snapshot. A reliable

prediction would ideally include a progressive timeline of clinical and neu-

roimaging data, enabling the model to differentiate circumstances that de-

viate from that of a healthy infant.

Ultimately, in the future, a state-of-the-art machine learning model may

be able to predict neurodevelopmental abnormalities with higher certain-

ties. This would aid a medical professional by allowing them to administer

precision treatments without wasting time scouring through the massive

amounts of medical data that can be collected.
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6. Conclusion

This study establishes that MRI datasets may not need to be heavily pre-

processed by scaling volumes with respect to age, or relative to specific vol-

umes. Moreover, models can be trained on a limited number of features, and

an even smaller number of factors to suitably predict long term outcomes

of neurological developments. The findings made here offer the prospect

of developing an automated tool for long-term neurodisability prognosis,

which could facilitate early precision medicine interventions in the Neona-

tal Intensive Care Unit.
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A. Appendix - Distributions

Figure A.1: Distributions of quantitative EEG features across the first three
postnatal days

Figure A.1: Day 1, day 2, and day 3 are represented in blue, orange, and

green, respectively. 1 = delta frequency band. 2 = theta frequency band. 3 =

alpha frequency band. 4 = beta frequency band.
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Appendix - Distributions

Figure A.2: Distributions of MRI features
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B. Appendix - Regression

(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Behaviour (f)Full-Scale IQ

(g)Verbal IQ (h)Performance IQ (i)Processing Speed

Figure B.1: Linear Regression Results for aEEG-EEG
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Appendix - Regression

(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Behaviour (f)Full-Scale IQ

(g)Verbal IQ (h)Performance IQ (i)Processing Speed

Figure B.2: Linear Regression SHAP graph for aEEG-EEG
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(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Behaviour (f)Full-Scale IQ

(g)Verbal IQ (h)Performance IQ (i)Processing Speed

Figure B.3: Linear Regression Results for MRI
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Appendix - Regression

(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Behaviour (f)Full-Scale IQ

(g)Verbal IQ (h)Performance IQ (i)Processing Speed

Figure B.4: Linear Regression SHAP graph for MRI
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(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Behaviour (f)Full-Scale IQ

(g)Verbal IQ (h)Performance IQ (i)Processing Speed

Figure B.5: Linear Regression Results for Combination of aEEG & MRI
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C. Appendix - Classification

(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Behaviour (f)Full-Scale IQ

(g)Verbal IQ (h)Performance IQ (i)Processing Speed

Figure C.1: Classification Results for aEEG-EEG
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(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Processing Speed

Figure C.2: Classification SHAP graph for aEEG-EEG

FSIQ, VIQ, PIQ, and CBCL scores did not have enough instances in each

class when testing the models. Hence, their SHAP graphs have not been

included.

13



Appendix - Classification

(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Behaviour (f)Full-Scale IQ

(g)Verbal IQ (h)Performance IQ (i)Processing Speed

Figure C.3: Classification Results for MRI NS

(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Processing Speed

Figure C.4: Classification SHAP graph for MRI NS

FSIQ, VIQ, PIQ, and CBCL scores did not have enough instances in each

class when testing the models. Hence, their SHAP graphs have not been
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included.

(a)Cognition (b)Fine Motor (c)Gross Motor

(d)Total Motor (e)Behaviour (f)Full-Scale IQ

(g)Verbal IQ (h)Performance IQ (i)Processing Speed

Figure C.5: Classification Results for Combination of aEEG & MRI
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D. Appendix - Factor Loadings

Factor Features

Factor 0 [’second_connectivity_coh_max_1’, ’second_connectivity_coh_-

max_2’, ’third_connectivity_corr_3’, ’first_asi_hemi’, ’third_-

connectivity_corr_4’, ’third_connectivity_coh_max_2’, ’third_-

connectivity_coh_mean_1’, ’second_connectivity_coh_max_4’,

’third_connectivity_coh_max_3’, ’third_connectivity_corr_2’,

’second_asi_hemi’, ’third_asi_hemi’, ’second_connectivity_-

coh_mean_1’, ’third_connectivity_coh_mean_3’, ’second_con-

nectivity_coh_max_3’, ’third_connectivity_coh_mean_4’, ’sec-

ond_connectivity_BSI_2’, ’third_connectivity_coh_mean_2’,

’third_connectivity_corr_1’, ’third_connectivity_coh_max_1’,

’second_connectivity_BSI_3’, ’third_connectivity_BSI_3’, ’sec-

ond_connectivity_coh_mean_2’, ’second_connectivity_corr_1’,

’second_connectivity_coh_mean_3’, ’first_connectivity_BSI_4’,

’second_connectivity_coh_mean_4’, ’first_connectivity_coh_-

max_2’, ’second_connectivity_corr_3’]

Factor 1 [’second_rEEG_asymmetry_4’, ’second_rEEG_lower_margin_-

1’, ’second_rEEG_median_3’, ’second_rEEG_CV_2’, ’second_-

rEEG_asymmetry_3’, ’second_rEEG_asymmetry_1’, ’second_-

rEEG_CV_1’, ’second_rEEG_lower_margin_2’, ’second_ISP_-

Median’, ’second_rEEG_median_4’, ’second_rEEG_CV_3’, ’sec-

ond_amplitude_kurtosis_2’, ’second_rEEG_median_2’]

Factor 2 [’first_amplitude_env_SD_1’, ’first_amplitude_env_mean_1’,

’first_amplitude_total_power_1’, ’first_rEEG_upper_margin_1’,

’first_rEEG_mean_1’, ’first_rEEG_width_1’, ’first_rEEG_SD_-

1’, ’first_amplitude_SD_1’, ’first_sp_abs_D’, ’first_IBI_burst_-

number’]
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Factor Features

Factor 3 [’first_rEEG_mean_2’, ’first_amplitude_SD_2’, ’first_rEEG_-

mean_3’, ’first_sp_abs_A’, ’first_rEEG_SD_3’, ’first_amplitude_-

env_mean_3’, ’first_amplitude_total_power_3’, ’first_rEEG_-

upper_margin_3’, ’first_rEEG_width_3’, ’first_amplitude_env_-

SD_3’]

Factor 4 [’third_rEEG_asymmetry_2’, ’third_rEEG_median_2’, ’third_-

rEEG_CV_2’, ’third_rEEG_asymmetry_4’, ’third_rEEG_CV_-

1’, ’third_rEEG_asymmetry_1’, ’third_rEEG_asymmetry_3’,

’third_amplitude_kurtosis_3’, ’third_rEEG_CV_3’]

Factor 5 [’third_amplitude_env_SD_2’, ’third_rEEG_upper_margin_-

2’, ’third_sp_abs_T’, ’third_rEEG_SD_2’, ’third_amplitude_-

env_mean_2’, ’third_amplitude_total_power_2’, ’third_rEEG_-

width_2’, ’third_amplitude_SD_2’]

Factor 6 [’first_mse_max’, ’first_rEEG_CV_4’, ’first_IBI_burst_prc’,

’first_rEEG_asymmetry_1’, ’first_rEEG_CV_3’, ’first_rEEG_-

CV_1’]

Factor 7 [’first_amplitude_env_mean_4’, ’first_amplitude_total_power_-

4’, ’first_rEEG_mean_4’, ’first_rEEG_median_4’, ’first_ampli-

tude_SD_4’]

Factor 8 [’second_rEEG_SD_2’, ’second_amplitude_env_mean_2’, ’sec-

ond_amplitude_total_power_2’]

Factor 9 [’first_rEEG_SD_2’, ’first_rEEG_upper_margin_2’, ’first_rEEG_-

width_2’]

Factor 10 [’third_mse_slope_high’, ’third_mse_max’, ’third_mse_auc’]

Factor 11 [’second_sp_abs_D’, ’second_rEEG_median_1’, ’second_rEEG_-

mean_1’]

Factor 12 [’second_spectral_flatness_3’, ’second_spectral_entropy_3’]

Factor 13 [’third_rEEG_width_3’, ’third_rEEG_upper_margin_3’]

Factor 14 [’first_rEEG_lower_margin_3’]

Factor 15 [’third_sp_rel_B’]

Factor 16 [’third_rEEG_lower_margin_1’, ’third_rEEG_median_1’]
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Appendix - Factor Loadings

Factor Features

Factor 17 []

Factor 18 [’first_rEEG_median_2’, ’first_rEEG_lower_margin_2’, ’first_-

rEEG_median_3’]

Factor 19 [’first_amplitude_total_power_2’, ’first_amplitude_env_mean_-

2’]

Factor 20 [’first_rEEG_median_1’, ’first_ISP_Median’]

Factor 21 [’first_rEEG_lower_margin_1’]

Factor 22 [’first_SATRate_Median’]

Factor 23 [’first_amplitude_skew_1’]

Factor 24 [’third_rEEG_SD_1’, ’third_rEEG_width_1’]

Factor 25 []

Factor 26 [’third_amplitude_kurtosis_2’]

Factor 27 [’third_spectral_diff_1’]

Factor 28 [’second_amplitude_skew_1’]

Factor 29 [’second_mse_slope_high’]

Factor 30 []

Factor 31 [’third_amplitude_skew_1’]

Factor 32 [’first_spectral_diff_4’]

Factor 33 [’first_rEEG_SD_4’, ’first_rEEG_width_4’]

Factor 34 [’third_amplitude_env_SD_3’]

Factor 35 [’second_rEEG_asymmetry_2’]

Factor 36 [’first_IBI_length_median’]

Factor 37 []

Factor 38 [’second_connectivity_coh_freqmax_1’]

Factor 39 [’first_sp_abs_T’]

Factor 40 [’third_connectivity_coh_freqmax_2’]

Factor 41 [’first_ISI_Median’]

Factor 42 []

Factor 43 []

Factor 44 [’third_sp_abs_A’]

Factor 45 []
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Factor Features

Factor 46 [’first_spectral_diff_1’]

Factor 47 [’second_amplitude_skew_2’]

Factor 48 []

Factor 49 []

Factor 50 [’second_spectral_diff_2’]

Factor 51 [’second_spectral_diff_1’]

Factor 52 [’second_IBI_length_median’]

Factor 53 []

Factor 54 [’first_IBI_length_max’]

Factor 55 []

Factor 56 []

Factor 57 []

Factor 58 []

Factor 59 []

Factor 60 []

Factor 61 []

Table D.1: Factor Loadings for aEEG-EEG

Factor Features

Factor 0 [’volume - Cortical gray matter’, ’volume - Anterior temporal

lobe medial part right GM’, ’volume - Superior temporal gyrus

middle part right GM’, ’volume - Occipital lobe right GM’, ’vol-

ume - Occipital lobe left GM’, ’volume - Frontal lobe right GM’,

’volume - Frontal lobe left GM’, ’volume - Parietal lobe right

GM’, ’volume - Parietal lobe left GM’, ’volume - Temporal lobe

right GM (merged region)’, ’volume - Superior temporal gyrus

right GM (merged region)’]

Factor 1 [’volume - Cerebellum’, ’volume - Cerebellum left’, ’volume -

Cerebellum right’]
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Appendix - Factor Loadings

Factor 2 [’volume - Gyri parahippocampalis et ambiens anterior part left

GM’, ’volume - Gyri parahippocampalis et ambiens anterior

part right GM’, ’volume - Gyri parahippocampalis et ambiens

right GM (merged region)’]

Factor 3 [’volume - CSF’, ’volume - CSF.1’]

Factor 4 [’volume - Deep Gray Matter’, ’volume - Thalamus right high

intensity part in T2’, ’volume - Thalamus left high intensity part

in T2’]

Factor 5 [’volume - Caudate nucleus right’, ’volume - Caudate nucleus

left’]

Factor 6 [’volume - Anterior temporal lobe medial part right WM’, ’vol-

ume - Anterior temporal lobe lateral part right WM’]

Factor 7 [’volume - Lentiform Nucleus right’, ’volume - Lentiform Nu-

cleus left’]

Factor 8 [’volume - Gyri parahippocampalis et ambiens posterior part

right WM’, ’volume - Gyri parahippocampalis et ambiens right

WM (merged region)’]

Factor 9 [’Kido_WMscore40’, ’Kido_Globalscore40’]

Factor 10 [’volume - Cingulate gyrus anterior part left GM’, ’volume -

Cingulate gyrus left GM (merged region)’]

Factor 11 [’volume - Thalamus right low intensity part in T2’, ’volume -

Thalamus left low intensity part in T2’]

Factor 12 [’volume - Brainstem’, ’volume - Brainstem spans the midline’]

Factor 13 [’volume - Medial and inferior temporal gyri posterior part

right WM’, ’volume - Medial and inferior temporal gyri right

WM (merged region)’]

Factor 14 [’volume - Subthalamic nucleus right’, ’volume - Subthalamic

nucleus left’]

Factor 15 [’volume - Cingulate gyrus posterior part right GM’, ’volume -

Cingulate gyrus right GM (merged region)’]

Factor 16 [’volume - Insula right GM’, ’volume - Insula left GM’]
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Factor 17 [’volume - Gyri parahippocampalis et ambiens posterior part

right GM’]

Factor 18 [’Kido_CBscore40’]

Factor 19 [’volume - Intra-cranial background’]

Factor 20 [’volume - Cingulate gyrus anterior part right WM’]

Factor 21 [’volume - Gyri parahippocampalis et ambiens posterior part

left GM’]

Factor 22 [’volume - White matter’]

Factor 23 [’volume - Gyri parahippocampalis et ambiens posterior part

left WM’]

Factor 24 [’volume - Medial and inferior temporal gyri anterior part right

WM’]

Factor 25 [’volume - Anterior temporal lobe lateral part right GM’]

Factor 26 [’Kido_CB_volumereduction40’]

Factor 27 [’volume - Ventricles’]

Factor 28 [’volume - Cingulate gyrus posterior part left GM’]

Factor 29 []

Factor 30 [’volume - Cingulate gyrus anterior part right GM’]

Factor 31 [’volume - Superior temporal gyrus posterior part right GM’]

Factor 32 [’volume - Cingulate gyrus left WM (merged region)’]

Factor 33 [’volume - Cingulate gyrus posterior part right WM’]

Factor 34 []

Factor 35 []

Factor 36 []

Factor 37 [’volume’]

Factor 38 []

Factor 39 []

Factor 40 []

Factor 41 []

Table D.2: Factor Loadings for MRI Unscaled
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Appendix - Factor Loadings

Factor Features

Factor 0 [’volume - Cortical gray matter’, ’volume - Anterior temporal

lobe medial part right GM’, ’volume - Superior temporal gyrus

middle part right GM’, ’volume - Occipital lobe left GM’, ’vol-

ume - Superior temporal gyrus posterior part right GM’, ’vol-

ume - Frontal lobe right GM’, ’volume - Parietal lobe right GM’,

’volume - Parietal lobe left GM’, ’volume - Temporal lobe right

GM (merged region)’, ’volume - Superior temporal gyrus right

GM (merged region)’]

Factor 1 [’volume - Cerebellum’, ’volume - Cerebellum left’, ’volume -

Cerebellum right’]

Factor 2 [’volume - CSF’, ’volume - CSF.1’]

Factor 3 [’volume - Gyri parahippocampalis et ambiens anterior part left

GM’, ’volume - Gyri parahippocampalis et ambiens anterior

part right GM’, ’volume - Gyri parahippocampalis et ambiens

right GM (merged region)’]

Factor 4 [’volume - Cingulate gyrus anterior part left GM’, ’volume -

Cingulate gyrus left GM (merged region)’]

Factor 5 [’volume - Deep Gray Matter’, ’volume - Thalamus right high

intensity part in T2’, ’volume - Thalamus left high intensity part

in T2’]

Factor 6 [’volume - Anterior temporal lobe medial part right WM’, ’vol-

ume - Anterior temporal lobe lateral part right WM’]

Factor 7 [’volume - Caudate nucleus right’, ’volume - Caudate nucleus

left’]

Factor 8 [’volume - Lentiform Nucleus right’, ’volume - Lentiform Nu-

cleus left’]

Factor 9 [’volume - Thalamus right low intensity part in T2’, ’volume -

Thalamus left low intensity part in T2’]

Factor 10 [’Kido_WMscore40’, ’Kido_Globalscore40’]
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Factor 11 [’volume - Medial and inferior temporal gyri posterior part

right WM’, ’volume - Medial and inferior temporal gyri right

WM (merged region)’]

Factor 12 [’volume - Gyri parahippocampalis et ambiens posterior part

right WM’, ’volume - Gyri parahippocampalis et ambiens right

WM (merged region)’]

Factor 13 [’volume - Brainstem’, ’volume - Brainstem spans the midline’]

Factor 14 [’volume - Insula right GM’, ’volume - Insula left GM’]

Factor 15 [’volume - Cingulate gyrus posterior part right GM’, ’volume -

Cingulate gyrus right GM (merged region)’]

Factor 16 [’volume - Gyri parahippocampalis et ambiens posterior part

right GM’]

Factor 17 [’volume - Anterior temporal lobe lateral part right GM’]

Factor 18 [’volume - Intra-cranial background’]

Factor 19 []

Factor 20 [’volume - Cingulate gyrus anterior part right WM’]

Factor 21 [’Kido_CBscore40’]

Factor 22 [’volume - Cingulate gyrus posterior part right WM’]

Factor 23 [’volume - Gyri parahippocampalis et ambiens posterior part

left GM’]

Factor 24 [’volume - Medial and inferior temporal gyri anterior part right

WM’]

Factor 25 [’volume - Subthalamic nucleus left’]

Factor 26 [’volume - White matter’]

Factor 27 [’volume - Gyri parahippocampalis et ambiens posterior part

left WM’]

Factor 28 [’volume - Ventricles’]

Factor 29 [’volume - Cingulate gyrus anterior part right GM’]

Factor 30 [’Kido_CB_volumereduction40’]

Factor 31 [’volume - Cingulate gyrus posterior part left GM’]

Factor 32 [’volume - Frontal lobe left GM’]

Factor 33 [’volume - Subthalamic nucleus right’]
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Factor 34 [’volume - Occipital lobe right GM’]

Factor 35 []

Factor 36 [’volume - Cingulate gyrus left WM (merged region)’]

Factor 37 []

Factor 38 [’volume’]

Factor 39 []

Factor 40 []

Factor 41 []

Table D.3: Factor Loadings for MRI Scaled wrt Age

Factor Features

Factor 0 [’volume - Cerebellum’, ’volume - Cerebellum left’, ’volume -

Cerebellum right’]

Factor 1 [’volume - Cortical gray matter’, ’volume - Frontal lobe right

GM’, ’volume - Frontal lobe left GM’]

Factor 2 [’volume - Parietal lobe right GM’, ’volume - Parietal lobe left

GM’]

Factor 3 [’volume - CSF’, ’volume - CSF.1’]

Factor 4 [’volume - Gyri parahippocampalis et ambiens anterior part left

GM’, ’volume - Gyri parahippocampalis et ambiens anterior

part right GM’]

Factor 5 [’volume - Anterior temporal lobe lateral part right GM’, ’vol-

ume - Temporal lobe right GM (merged region)’]

Factor 6 [’volume - Deep Gray Matter’, ’volume - Thalamus right high

intensity part in T2’, ’volume - Thalamus left high intensity part

in T2’]

Factor 7 [’volume - Cingulate gyrus anterior part left GM’, ’volume -

Cingulate gyrus left GM (merged region)’]

Factor 8 [’volume - Lentiform Nucleus right’, ’volume - Lentiform Nu-

cleus left’]
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Factor 9 [’volume - Medial and inferior temporal gyri posterior part

right WM’, ’volume - Medial and inferior temporal gyri right

WM (merged region)’]

Factor 10 [’volume - Occipital lobe right GM’, ’volume - Occipital lobe

left GM’]

Factor 11 [’volume - Caudate nucleus right’, ’volume - Caudate nucleus

left’]

Factor 12 [’volume - Cingulate gyrus anterior part right GM’, ’volume -

Cingulate gyrus anterior part right WM’]

Factor 13 [’volume - Insula right GM’, ’volume - Insula left GM’]

Factor 14 [’volume - Gyri parahippocampalis et ambiens posterior part

right GM’, ’volume - Gyri parahippocampalis et ambiens right

GM (merged region)’]

Factor 15 [’Kido_WMscore40’, ’Kido_Globalscore40’]

Factor 16 [’volume - Gyri parahippocampalis et ambiens posterior part

right WM’, ’volume - Gyri parahippocampalis et ambiens right

WM (merged region)’]

Factor 17 [’volume - Superior temporal gyrus middle part right GM’,

’volume - Superior temporal gyrus right GM (merged region)’]

Factor 18 [’volume - Brainstem’, ’volume - Brainstem spans the midline’]

Factor 19 [’volume - Thalamus right low intensity part in T2’, ’volume -

Thalamus left low intensity part in T2’]

Factor 20 [’volume - Superior temporal gyrus posterior part right GM’]

Factor 21 [’volume - Gyri parahippocampalis et ambiens posterior part

left GM’, ’volume - Gyri parahippocampalis et ambiens poste-

rior part left WM’]

Factor 22 [’volume - Cingulate gyrus posterior part right GM’, ’volume -

Cingulate gyrus right GM (merged region)’]

Factor 23 [’volume - Subthalamic nucleus right’]

Factor 24 [’volume - Medial and inferior temporal gyri anterior part right

WM’]

Factor 25 [’volume - Cingulate gyrus posterior part left GM’]
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Factor 26 [’volume - Anterior temporal lobe medial part right WM’]

Factor 27 [’volume - Intra-cranial background’]

Factor 28 [’volume’]

Factor 29 [’Kido_CBscore40’]

Factor 30 [’volume - Cingulate gyrus left WM (merged region)’]

Factor 31 [’volume - Cingulate gyrus posterior part right WM’]

Factor 32 [’volume - Ventricles’]

Factor 33 [’Kido_CB_volumereduction40’]

Factor 34 [’volume - Anterior temporal lobe medial part right GM’]

Factor 35 [’volume - Anterior temporal lobe lateral part right WM’]

Factor 36 []

Factor 37 [’volume - White matter’]

Factor 38 [’volume - Subthalamic nucleus left’]

Factor 39 []

Factor 40 []

Factor 41 []

Table D.4: Factor Loadings for MRI Scaled wrt Age, Relative to Total Volume

Factor Features

Factor 0 [’volume - Cerebellum’, ’volume - Cerebellum left’, ’volume -

Cerebellum right’]

Factor 1 [’volume - Cortical gray matter’, ’volume - Frontal lobe right

GM’, ’volume - Frontal lobe left GM’]

Factor 2 [’volume - CSF’, ’volume - CSF.1’]

Factor 3 [’volume - Deep Gray Matter’, ’volume - Thalamus right high

intensity part in T2’, ’volume - Thalamus left high intensity part

in T2’]

Factor 4 [’volume’, ’volume - Ventricles’]

Factor 5 [’volume - Lentiform Nucleus right’, ’volume - Lentiform Nu-

cleus left’]
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Factor 6 [’volume - Cingulate gyrus anterior part left GM’, ’volume -

Cingulate gyrus left GM (merged region)’]

Factor 7 [’volume - Parietal lobe right GM’, ’volume - Parietal lobe left

GM’]

Factor 8 [’volume - Gyri parahippocampalis et ambiens anterior part left

GM’, ’volume - Gyri parahippocampalis et ambiens anterior

part right GM’]

Factor 9 [’volume - Medial and inferior temporal gyri posterior part

right WM’, ’volume - Medial and inferior temporal gyri right

WM (merged region)’]

Factor 10 [’volume - Superior temporal gyrus middle part right GM’,

’volume - Superior temporal gyrus right GM (merged region)’]

Factor 11 [’volume - Caudate nucleus right’, ’volume - Caudate nucleus

left’]

Factor 12 [’volume - Cingulate gyrus anterior part right GM’, ’volume -

Cingulate gyrus anterior part right WM’]

Factor 13 [’volume - Occipital lobe right GM’, ’volume - Occipital lobe

left GM’]

Factor 14 [’volume - Gyri parahippocampalis et ambiens posterior part

right GM’, ’volume - Gyri parahippocampalis et ambiens right

GM (merged region)’]

Factor 15 [’volume - Insula right GM’, ’volume - Insula left GM’]

Factor 16 [’Kido_WMscore40’, ’Kido_Globalscore40’]

Factor 17 [’volume - Cingulate gyrus posterior part right GM’, ’volume -

Cingulate gyrus right GM (merged region)’]

Factor 18 [’volume - Gyri parahippocampalis et ambiens posterior part

right WM’, ’volume - Gyri parahippocampalis et ambiens right

WM (merged region)’]

Factor 19 [’volume - Brainstem’, ’volume - Brainstem spans the midline’]

Factor 20 [’volume - Thalamus right low intensity part in T2’, ’volume -

Thalamus left low intensity part in T2’]

Factor 21 [’volume - Superior temporal gyrus posterior part right GM’]
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Factor 22 [’volume - Subthalamic nucleus right’]

Factor 23 [’volume - Medial and inferior temporal gyri anterior part right

WM’]

Factor 24 [’volume - Gyri parahippocampalis et ambiens posterior part

left GM’, ’volume - Gyri parahippocampalis et ambiens poste-

rior part left WM’]

Factor 25 [’volume - Anterior temporal lobe lateral part right GM’]

Factor 26 [’volume - Anterior temporal lobe medial part right WM’]

Factor 27 [’volume - Intra-cranial background’]

Factor 28 [’volume - Cingulate gyrus posterior part left GM’]

Factor 29 [’volume - Anterior temporal lobe medial part right GM’]

Factor 30 [’Kido_CBscore40’]

Factor 31 [’volume - Cingulate gyrus posterior part right WM’]

Factor 32 [’volume - Cingulate gyrus left WM (merged region)’]

Factor 33 [’volume - Anterior temporal lobe lateral part right WM’]

Factor 34 [’Kido_CB_volumereduction40’]

Factor 35 [’volume - White matter’]

Factor 36 [’volume - Temporal lobe right GM (merged region)’]

Factor 37 []

Factor 38 [’volume - Subthalamic nucleus left’]

Factor 39 []

Factor 40 []

Factor 41 []

Table D.5: Factor Loadings for MRI Scaled wrt Age, Relative to (Total Volume
- Ventricle Volume)
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E. Appendix - MRMR Feature Selection

The following features were chosen by MRMR:

1. EEG: [’second_connectivity_coh_freqmax_1’, ’second_sp_rel_B’, ’first_-

mse_slope_low’, ’third_connectivity_coh_max_1’, ’first_amplitude_skew_-

4’, ’second_spectral_diff_2’, ’second_connectivity_coh_freqmax_3’, ’first_-

connectivity_coh_mean_2’, ’third_amplitude_env_SD_4’, ’third_rEEG_-

width_3’, ’first_FD’, ’third_spectral_edge_frequency’, ’first_spectral_-

flatness_1’, ’third_sp_abs_B’, ’first_spectral_flatness_4’, ’second_rEEG_-

SD_3’, ’third_rEEG_width_4’, ’second_spectral_flatness_4’, ’second_-

amplitude_skew_1’, ’first_rEEG_width_3’, ’first_amplitude_skew_2’,

’first_connectivity_corr_3’, ’first_rEEG_asymmetry_1’, ’third_rEEG_-

upper_margin_3’, ’second_amplitude_skew_4’, ’second_rEEG_asym-

metry_4’, ’first_amplitude_total_power_4’, ’third_connectivity_BSI_-

1’, ’second_amplitude_SD_4’, ’second_rEEG_median_4’, ’second_asi_-

hemi’, ’first_rEEG_CV_1’, ’third_amplitude_kurtosis_3’, ’first_mse_-

slope_high’, ’third_connectivity_coh_freqmax_2’, ’third_spectral_flat-

ness_2’, ’second_connectivity_coh_freqmax_2’, ’third_amplitude_env_-

mean_4’, ’first_rEEG_upper_margin_3’, ’third_amplitude_env_SD_1’,

’third_connectivity_coh_freqmax_1’, ’first_spectral_entropy_3’, ’first_-

sp_abs_B’, ’second_spectral_entropy_2’, ’third_amplitude_kurtosis_-

1’, ’third_connectivity_BSI_2’, ’second_spectral_diff_3’, ’third_spectral_-

flatness_4’, ’third_spectral_diff_2’, ’second_spectral_flatness_2’, ’sec-

ond_connectivity_BSI_2’, ’first_spectral_entropy_4’, ’first_amplitude_-

env_SD_4’, ’third_spectral_entropy_4’, ’third_amplitude_total_power_-

4’, ’first_rEEG_SD_4’, ’first_rEEG_mean_2’, ’first_connectivity_coh_-

freqmax_2’, ’second_sp_abs_B’, ’first_spectral_flatness_3’, ’third_mse_-

slope_high’, ’second_spectral_diff_4’]

2. MRI NS: [’Kido_WM_Myelinationdelay40’, ’volume - Superior tem-

poral gyrus middle part left WM’, ’Kido_WM_Callosalthinning_MidMM40’,
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’volume - Thalamus right low intensity part in T2’, ’volume - Supe-

rior temporal gyrus posterior part left GM’, ’volume - Lateral Ven-

tricle left’, ’Kido_WM_VolumereductionMM40’, ’volume - Cingulate

gyrus anterior part left WM’, ’Kido_GMscore40’, ’Kido_DGMscore40’,

’Kido_WM_cysticlesions40’, ’volume - Insula right WM’, ’volume -

Brainstem’, ’volume - Gyri parahippocampalis et ambiens anterior part

right WM’, ’Kido_GMscore_classes40’, ’Kido_CB_signalabnormality40’,

’Kido_WM_Callosalthinning40’, ’volume - Cingulate gyrus posterior

part left GM’, ’volume - Cingulate gyrus anterior part right GM’, ’vol-

ume - Anterior temporal lobe lateral part right WM’, ’Kido_CB_vol-

umereductionMM40’, ’Kido_WM_Dilatedlateralventricles_leftMM40’,

’volume - Anterior temporal lobe medial part left WM’, ’Kido_WM_-

Dilatedlateralventricles40’, ’volume - Anterior temporal lobe lateral

part left WM’, ’Kido_WM_Volumereduction40’, ’Kido_GM_gyralmat-

uration40’, ’volume - Background’, ’Kido_DGM_signalabnormality40’,

’volume - Lateral occipitotemporal gyrus gyrus fusiformis anterior

part right GM’, ’Kido_WM_Callosalthinning_SpleniumMM40’, ’vol-

ume - Gyri parahippocampalis et ambiens posterior part right WM’,

’Kido_WM_focalsignalabnormality40’, ’Kido_WM_Callosalthinning_-

GenuMM40’, ’volume - Subthalamic nucleus left’, ’volume - Cingulate

gyrus right WM (merged region)’, ’volume - Amygdala left’, ’volume

- Medial and inferior temporal gyri posterior part right WM’, ’volume

- Ventricles’, ’volume - Medial and inferior temporal gyri anterior part

right GM’, ’volume - Lateral occipitotemporal gyrus gyrus fusiformis

left WM (merged region)’, ’volume - Gyri parahippocampalis et ambi-

ens posterior part right GM’]

3. MRI VS: [’volume - Anterior temporal lobe lateral part left WM’, ’vol-

ume - Background’, ’Kido_WM_Dilatedlateralventricles_leftMM40’, ’vol-

ume - Lateral occipitotemporal gyrus gyrus fusiformis left WM (merged

region)’, ’Kido_DGMscore40’, ’Kido_WM_Callosalthinning_MidMM40’,

’volume - Lateral Ventricle left’, ’volume - Ventricles’, ’volume - Amyg-

dala left’, ’volume - Lateral occipitotemporal gyrus gyrus fusiformis

anterior part left WM’, ’Kido_GMscore40’, ’Kido_WM_Volumereduc-
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tion40’, ’volume - Cingulate gyrus anterior part left WM’, ’volume -

Brainstem’, ’Kido_GMscore_classes40’, ’Kido_WM_focalsignalabnor-

mality40’, ’volume - Medial and inferior temporal gyri posterior part

right WM’, ’volume - Insula left GM’, ’Kido_WM_Callosalthinning_-

SpleniumMM40’, ’Kido_CBscore40’, ’volume - Gyri parahippocam-

palis et ambiens posterior part right WM’, ’Kido_GM_gyralmatura-

tion40’, ’Kido_WM_Callosalthinning_GenuMM40’, ’Kido_WM_cysti-

clesions40’, ’volume - Superior temporal gyrus posterior part right

GM’, ’volume - Cingulate gyrus anterior part right GM’, ’ age at scan’,

’volume - Gyri parahippocampalis et ambiens posterior part left GM’,

’volume - Cingulate gyrus right WM (merged region)’, ’volume - Gyri

parahippocampalis et ambiens anterior part right WM’, ’volume - Sub-

thalamic nucleus left’, ’volume - Gyri parahippocampalis et ambiens

posterior part right GM’, ’Kido_WM_Callosalthinning40’, ’Kido_DGM_-

signalabnormality40’, ’volume - Superior temporal gyrus middle part

left WM’, ’volume - Lateral occipitotemporal gyrus gyrus fusiformis

anterior part right WM’, ’volume - Medial and inferior temporal gyri

anterior part right GM’, ’volume - Thalamus right low intensity part in

T2’, ’Kido_CB_signalabnormality40’, ’volume - CSF’, ’Kido_WM_Di-

latedlateralventricles_rightMM40’, ’volume - Anterior temporal lobe

lateral part right WM’]

4. MRI TVS: [’Kido_WM_Volumereduction40’, ’Kido_WM_Callosalthin-

ning_GenuMM40’, ’volume - Superior temporal gyrus middle part left

WM’, ’volume - Superior temporal gyrus posterior part left GM’, ’vol-

ume - Gyri parahippocampalis et ambiens posterior part right GM’,

’volume - Medial and inferior temporal gyri anterior part left WM’,

’Kido_CBscore40’, ’volume - Background’, ’volume - Thalamus right

low intensity part in T2’, ’volume - Insula right WM’, ’ age at scan’,

’Kido_GM_increasedIHD40’, ’volume - Medial and inferior temporal

gyri anterior part right GM’, ’volume - Medial and inferior tempo-

ral gyri anterior part right GM.1’, ’volume - Thalamus left low in-

tensity part in T2’, ’volume - Gyri parahippocampalis et ambiens left

GM (merged region)’, ’Kido_WM_cysticlesions40’, ’Kido_WM_Dilat-

31



Appendix - MRMR Feature Selection

edlateralventricles_rightMM40’, ’volume - Gyri parahippocampalis et

ambiens anterior part right WM’, ’volume - Hippocampi and Amyg-

dala’, ’Kido_WM_VolumereductionMM40’, ’volume - Lateral occipi-

totemporal gyrus gyrus fusiformis posterior part left GM’, ’volume -

Superior temporal gyrus posterior part right WM’, ’volume - Lateral

occipitotemporal gyrus gyrus fusiformis left WM (merged region)’,

’volume’, ’volume - Lateral Ventricle left’, ’Kido_CB_signalabnormal-

ity40’, ’Kido_GM_gyralmaturation40’, ’volume - Insula left GM’, ’vol-

ume - Subthalamic nucleus left’, ’volume - Frontal lobe left WM’, ’vol-

ume - Superior temporal gyrus posterior part left WM’, ’Kido_DGM-

score40’, ’Kido_WM_Myelinationdelay40’, ’volume - Ventricles’, ’Kido_-

GMscore40’, ’volume - Cerebellum’, ’volume - Amygdala left’, ’Kido_-

WM_focalsignalabnormality40’, ’volume - Lateral occipitotemporal gyrus

gyrus fusiformis posterior part left WM’, ’volume - Anterior temporal

lobe lateral part right GM’, ’volume - Cerebellum left’]

5. MRI VVS: [’volume - Medial and inferior temporal gyri anterior part

right GM.1’, ’volume - Gyri parahippocampalis et ambiens left WM

(merged region)’, ’volume - Insula right GM’, ’volume - Temporal lobe

right WM (merged region)’, ’Kido_CB_signalabnormality40’, ’volume

- Thalamus right low intensity part in T2’, ’volume - Lateral occip-

itotemporal gyrus gyrus fusiformis posterior part right GM’, ’Kido_-

WM_focalsignalabnormality40’, ’Kido_WM_Callosalthinning_MidMM40’,

’volume - Brainstem’, ’volume’, ’volume - Gyri parahippocampalis et

ambiens left GM (merged region)’, ’ age at scan’, ’volume - Lateral

occipitotemporal gyrus gyrus fusiformis posterior part left GM’, ’vol-

ume - Gyri parahippocampalis et ambiens posterior part left WM’,

’volume - Lateral occipitotemporal gyrus gyrus fusiformis anterior

part right WM’, ’Kido_WM_Volumereduction40’, ’volume - Ventricles’,

’Kido_GMscore40’, ’volume - Medial and inferior temporal gyri ante-

rior part right GM’, ’Kido_WM_VolumereductionMM40’, ’Kido_WM_-

Dilatedlateralventricles_rightMM40’, ’Kido_DGMscore40’, ’volume -

Amygdala left’, ’Kido_GM_gyralmaturation40’, ’volume - Lateral oc-

cipitotemporal gyrus gyrus fusiformis posterior part left WM’, ’vol-
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ume - Gyri parahippocampalis et ambiens anterior part left WM’, ’vol-

ume - Insula left GM’, ’volume - Subthalamic nucleus left’, ’volume

- Lateral Ventricle left’, ’Kido_WM_cysticlesions40’, ’volume - Lateral

occipitotemporal gyrus gyrus fusiformis posterior part right WM’, ’vol-

ume - Hippocampi and Amygdala’, ’Kido_CBscore_classes40’, ’vol-

ume - Lateral occipitotemporal gyrus gyrus fusiformis left WM (merged

region)’, ’Kido_CBscore40’, ’volume - Superior temporal gyrus pos-

terior part right WM’, ’volume - Gyri parahippocampalis et ambiens

posterior part right GM’, ’Kido_GM_increasedIHD40’, ’volume - In-

sula right WM’, ’volume - Thalamus left low intensity part in T2’, ’vol-

ume - Superior temporal gyrus posterior part left GM’]
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