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Abstract

This paper presents the study of open charmed hadron production in ultra-relativistic Pb-
Pb collisions at a center of mass energy of

√
sNN = 5.02 TeV, carried out within the Trajectum

theoretical framework. Charm quarks are viewed as excellent probes of the deconfined state of
matter formed in these collisions, the quark-gluon plasma (QGP). The initial conditions for the
heavy-ion collision is simulated using the TRENTomodel for the transverse profile. The space-time
evolution of the medium temperature and its flow velocity field are calculated through (2+1)-
dimensional viscous relativistic hydrodynamics. The motion of charm quarks through the medium
is treated as Brownian motion and modeled using a Langevin approach. For the subsequent
formation of hadrons a hybrid hadronization method is employed, including hadronization through
both fragmentation and coalescence. The fragmentation parameters are tuned based on comparison
to data in a pp collision environment. The strength of the coupling between the charm quarks
and the constituents of the plasma is quantified by the spatial diffusion coefficient (2πTDs). This
spatial diffusion constant is modeled using a linear temperature dependence ansatz, 2πTDs =
α(T/Tc − 1) + β. We find that smaller values for α and β are able to describe v2(pT). However,
these values give a large underestimation for the pT-differential multiplicities at high transverse
momentum. Whilst larger values for α and β are more suited to describe the pT-differential
multiplicities, but this parameterization gives an underestimation of the v2(pT). A simultaneous
description for both pT-differential multiplicity and v2(pT) remains challenging within the current
framework.
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1 Introduction

In an extreme high temperature and energy density environment, quantum chromodynamics (QCD)
predicts the phase transition of hadronic matter to a color-deconfined state of matter called the quark-
gluon plasma (QGP) [1–3]. This hot and dense state of matter comprised of deconfined quarks and
gluons is believed to have permeated the early universe [4]. A remarkable feature of the QGP is that it
exhibits behaviour of a near perfect fluid with a very small shear viscosity to entropy density ratio, η/s.
The expansion and evolution of the plasma can be described by relativistic viscous hydrodynamics [5].
Heavy ion collider experiments at the Large Hadron Collider (LHC) [6] and the Relativistic Heavy-ion
Collider (RHIC) [7] aim to characterise this hot and dense state of matter produced in heavy-ion col-
lisions.

Heavy quarks (charm and beauty) are of particular interest for probing the hot and dense plasma.
Due to their heavy mass it is possible to evaluate the charm quark production cross-sections and
initial transverse momentum spectra with perturbative QCD schemes [8]. In addition, thermal pro-
duction of cc pairs by the QGP medium is expected to be negligible at temperatures reached at both
RHIC and LHC energies [9]. Charm quarks interact with the thermal plasma constituents through
elastic and inelastic (gluon radiation) [10] QCD processes. These interactions and the in medium
space-time evolution of charm quarks can be modeled using a Langevin approach. Throughout these
in medium interactions the flavour of charm quarks is conserved. Therefore, since charm quarks are
primarily produced in hard scattering processes before formation of the QGP [11, 12], the initially
produced charm quarks experience the entire medium evolution. These aforementioned reasons make
charm quarks excellent probes for the QGP.

Strong modification of the transverse momentum (pT) distributions of charmed hadrons in heavy
ion collisions with respect to the momentum distributions found in p + p collision systems are evi-
dence for the in-medium interactions and energy loss of charm quarks [13,14]. Transport properties of
the medium can be assessed through measurements of anisotropies in the azimuthal distribution and
modification of the transverse momentum (pT) distribution of charmed hadrons. Initial-state spatial
anisotropies are converted by the collective dynamics of the expanding plasma into final-state particle
momentum anisotropy [15]. This anisotropic flow is quantified by the Fourier expansion coefficients vn
of the emitted particles azimuthal angular distribution φ relative to the initial state symmetry plane
angle Ψn (for the n-th harmonic) [16, 17]. Anisotropic flow is also a measure of the shear viscosity of
the QGP, which is one of the key transport coefficients of the medium. However, these transport prop-
erties can not be measured directly. What is possible is to create a model which simulates heavy-ion
collisions where the quantities of interest are the input parameters of the model. Such a model can then
attempt to recreate observables measured in experiments, such as the measurements of anisotropic flow
and the modification of transverse momentum of charmed hadrons. These measurements can then be
use to constrain the model parameters and extract the physics information of interest. One of these
model parameters is the charm quark spatial diffusion coefficient Ds. This spatial diffusion coefficient
is directly linked to the thermalization time of charm quarks in the QGP medium τQ = (mc/T )Ds,
where T is the medium temperature and mc is the charm quark mass. This transport coefficient
conveniently encodes the in medium interactions of the charm quark with the QGP and can also be
calculated through lattice QCD .

Another interesting feature of the QGP is highlighted by Au+Au measurements by the STAR col-
laboration [18] of charmed baryon to meson ratios, especially Λ±

c /D
0. At intermediate transverse

momentum (2-6 GeV) this ratio shows an enhancement in heavy ion collisions with respect to the
ratios given by model predictions of a p+ p collision from perturbative QCD calculations with charm
fragmentation parameters tuned on e+e− and e−p measurements [19,20]. However, model predictions
including hadronization of charm quarks through both coalescence and fragmentation are able to cor-
rectly predict this enhancement in the baryon to meson ratio [21,22]. This suggests that charm quark
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1 INTRODUCTION

coalescence plays an important role in the hadronization of charm quarks. In this work we use the
Trajectum model developed in Ref. [23] to simulate heavy ion collisions. Trajectum is a state of the
art event-by-event model which simulates the QGP as a hydrodynamically expanding boost-invariant
(2+1D) medium. Trajectum employs TRENTo initial conditions and employs a hybrid hadronization
model to hadronize heavy quarks. In previous works [24], the second order hydrodynamic transport
coefficients have been fixed using a Bayesian parameter analysis.
This work aims to gauge the dependence of heavy quark observables generated by Trajectum on both
the hybrid implementation of fragmentation and coalescence, and model parameters governing the
charm quark spatial diffusion coefficient. This will be done by simulating pp and Pb-Pb collisions at
a center-of-mass energy of

√
sNN = 5.02 TeV, whilst varying model parameters. These simulation re-

sults will be compared to anisotropic flow and pT-differential multiplicity measurements by the ALICE
collaboration to try and constrain model parameters.

In this work, firstly a short summary of the relevant theoretical background for the evolution of
the QGP and the evolution of heavy quarks within the medium and their subsequent hadronization
will be given. This is followed by an explanation of the Trajectum framework and the implementation
of the relevant physics used to generate the results presented in this thesis. Then the results generated
by Trajectum will be presented and compared to ALICE measurements. Finally the outlook of this
research will be given.
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Figure 1: Visualization of the fundamental particles of nature in the Standard Model [25]

2 Theory

In this chapter all the relevant theory for the evolution of the QGP and heavy quarks within a heavy-
ion collision will be covered. The goal of this section is to summarise the theories used to describe the
hot and dense plasma. It will start by briefly summarizing the Standard Model and Quantum Chro-
modynamics (QCD). Then a description of relativistic hydrodynamics which describes the dynamics
of the bulk QGP. This is followed by a description of the evolution of a heavy-ion collision in which
the plasma is created and a section on the in medium evolution of heavy quarks. Finally a description
of the different hadronization mechanisms of heavy quarks will be given.

2.1 Standard Model

The Standard Model of particle physics describes the fundamental building blocks and three of the four
fundamental forces of nature, the electromagnetic, weak and strong nuclear force. These forces result
from the exchange of the gauge bosons of each respective theory. The electromagnetic force is carried
by the photon, the weak nuclear force is carried by the W and Z bosons and the gluon is responsible
for the strong force. The Standard Model includes the electromagnetic, strong and weak forces and
explains how these forces act on all of the matter particles shown in Fig. 1. In this thesis the main
focus is on quarks and gluons which experience the strong force. In the Standard Model there are six
different types of quarks with different masses and charge commonly referred to as quark flavours, up,
down, strange, charm, beauty and top. The dynamics of quarks and gluons will be explained in the
following section 2.2.

2.2 Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is the theory governing the strong interaction. The strong inter-
action is described by a local, non-Abelian SU(3) gauge theory. The fundamental charges connected
to this gauge theory are called color charges and this theory describes the force that binds quarks into
colorless hadrons. Within the standard model only quarks and gluons carry a color charge, so these
are the only subatomic particles which ’feel’ the strong force. Even though the color charge carried by
quarks and gluons is unrelated to the everyday meaning of color, an analogy was drawn and the three
individual colors in QCD were named red (r), green (g) and blue (b). These are the three distinct color
charges which can take on different values. The QCD Lagrangian describes the dynamics of quarks
and gluons. Since quarks are spin- 12 particles the Lagrangian for a free quark is given by:

Lq = ψ(iγµ∂µ −m)ψ. (2.1)
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2 THEORY

The quark field ψ is a three-component color-vector

ψ =

ψr

ψg

ψb

 (2.2)

and each of the colour-vector components are four-component Dirac spinors. Since quarks and gluons
both carry a color charge the QCD Lagrangian needs a contribution term for quarks, gluons and quark
gluon interactions. The SU(3) Lie group has 8 generators. A generator is an element within a group
that can be used to produce all of the other elements of the group through repeated multiplication.
In the context of quantum field theory, a generator can also be viewed as an operator corresponding
to a symmetry transformation. For an SU(3) gauge theory, such as QCD, the generators are the 8
Gell-Mann matrices 1

2λa. Each generator of the group has one gluon field Aa
µ where µ denotes the

spacetime coordinates and a goes from 1 to 8 representing each individual gluon field. To ensure local
gauge invariance the partial derivative ∂µ is replaced by a covariant derivative defined in terms of the
generators and gauge fields of the group:

∂µ → Dµ = ∂µ − igAµ, (2.3)

where g is the coupling constant for strong interactions. The generators and gluon fields combined
give a four-potential Aµ = 1/2λaA

a
µ which leads to the interaction vertex between quarks and gluons.

Replacing the four-gradient in equation 2.1 with the covariant derivative leads to the Lagrangian for
quark-gluon interactions

Lq,qg = ψ(iγµDµ −m)ψ = ψ(iγµ∂µ −m)ψ + ψ(gγµAµ)ψ = Lq + Lqg. (2.4)

The commutator of two covariant derivatives of the gauge theory describe the dynamics of the gauge
boson, in this case the gluon. Therefore the field strength tensor is defined as:

Fµν =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (2.5)

The SU(3) gauge theory is non-Abelian because the generators, 1
2λa, do not commute. Using the

definition of the four-potential, Aµ = 1
2λaA

a
µ, and the commutation relation [λa, λb] = 2if c abλc, in

which fabc are the structure constants of the SU(3) gauge theory, the gluonic field strength tensor can
be written as:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfa bcA

b
µA

c
β . (2.6)

The final term, gfa bcA
b
µA

c
β , which is due to the non-Abelian nature of SU(3) gives rise to gluon self-

interactions shown in the two diagrams on the right of Fig. 2. The contraction of two field-strength
tensors is not gauge invariant, but the color trace is invariant.

Tr(F ′
µνF

′µν) = Tr(UFµνU
†UF ′µνU†) = Tr(FµνF

µν), (2.7)

which is due to the cyclic property of the trace. Since the Lagrangian must be gauge invariant only
the trace of the contraction of the gluon fields can appear in the gluon field Lagrangian, which is given
by:

Lg = −1

2
Tr(FµνF

µν). (2.8)

So the final Lagrangian for QCD is:

LQCD = Lq + Lqg + Lg = ψ(iγµ∂µ −m)ψ + ψ(gγµAµ)ψ − 1

2
Tr(FµνF

µν). (2.9)

This Lagrangian describes the interaction between quarks and gluons, shown in Fig. 2 and the prop-
agation of a free quark.
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2.2 Quantum Chromodynamics (QCD)

Figure 2: The three fundamental QCD interaction vertices [26]. The quarks are denoted by solid lines
and the gluons are represented by the curly lines.

(a) Gluon-loop diagram (b) Quark-loop diagram

Figure 3: Examples of fermionic and bosonic loop corrections to the gluon propagator leading to
screening and anti-screening effects, respectively.

2.2.1 Running Coupling Constant and Perturbative QCD

When particles collide, they interact with one another. At high energies perturbative methods can be
used to do calculations of these interaction processes. These perturbative methods are based on an
expansion in powers of the strong coupling constant αs, which measures the strength of the interactions
between quarks and gluons. However, this coupling constant is not really a constant. The coupling
constant depends on the four-momentum transferred across two vertices between interacting quarks
and gluons, qµ. This is due to loop corrections to the gluon propagator shown in Fig. 3, where a gluon
can split into a quark anti-quark pair or two gluons.

Fig. 3b shows an example of a gluon splitting into a quark anti-quark pair. These fermionic loops
lead to a screening effect which increases coupling strength at increasing momentum transfer just like
an e+ + e− loop correction to the photon propagator in Quantum Electrodynamics (QED). However,
unlike photons in QED the gluons can interact with themselves creating a gluon loop shown in Fig. 3a.
These gluon loops lead to an anti-screening effect which increases the coupling strength at decreasing
momentum transfer. Introducing Q2 = −qµqµ for momentum transfer and µ2 as a reference scale at
which the coupling strength is known, the evolution of αs(Q

2) becomes:

αs(Q
2) =

αs(µ
2)

1 + β0αs(µ2)ln(Q2/µ2)
, (2.10)

where β0 = 11n−2f
12π , n is the number of colours and f is the number of quark flavours. In the Standard

Model there are six quark flavors and there are three colours. So β0 is positive meaning that the anti-
screening effect caused by the gluon loops is stronger than the screening effect caused by fermionic
quark loops and αs decreases with increasing Q2 as illustrated in Fig. 4. More in depth information
on the running coupling constant in QCD can be found in [27].
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2 THEORY

Figure 4: Running coupling constant in QCD [28]

(a) qq → qq s-channel (LO) (b) qq → qq t-channel (LO) (c) qq → qq (NLO)

Figure 5: Examples of LO and NLO processes in which a quark and an anti-quark interact and produce
another quark anti-quark pair

So, when the momentum transfer is large, the coupling is small. This means that quarks in hadrons
behave almost like free particles when probed at large enough energies. This property of the strong
interaction is known as asymptotic freedom. At small coupling, meaning high momentum transfer,
perturbative QCD (pQCD) is valid. With perturbative QCD interaction processes between particles
can be calculated up to a truncated order of the coupling constant. This is done by drawing Feynman
diagrams consisting of the vertices shown in Fig. 2, and calculating the scattering cross-section by
summing over all possible topologically distinct Feynman diagrams for a certain process. Typically
this sum is only taken up to a certain order in the number of interaction vertices. Consider the process
of a quark and an anti-quark interacting and producing another quark-antiquark pair shown in 5. The
first two Feynman diagrams have two interaction vertices so they are of the order O(α2

s). The diagram
on the right of 5 has three interaction vertices, so it is of the order O(α3

s). In a pQCD calculation of an
interaction process the Feynman diagrams with the least number of interaction vertices representing
that process will have the largest contribution and are called the leading order (LO) diagrams. Feynman
diagrams representing the same process with the next smallest number of interaction vertices are called
next to leading (NLO) and so forth. In perturbative calculations more interaction vertices means a
smaller contribution to the calculation, since at high momentum transfer in which pQCD is valid,
αs ≪ 1.

Processes with high momentum transfer are referred to as hard processes. However, as the momentum
exchange between colour charges decreases, the coupling strength becomes so strong that it is impossi-
ble to isolate a quark from a hadron. This phenomenon is called color confinement and it is the reason
why we can not observe quarks directly. In the region of low momentum transfer the perturbative
approach is no longer applicable and non-perturbative approaches such as lattice QCD (lQCD) [29–31]
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2.3 Relativistic Hydrodynamics

and Effective Field Theories (EFT) [32,33] are used to calculate phenomena such as color confinement
and the phase transition between the QGP and hadronic matter. The dynamics of the plasma are
described by relativistic hydrodynamics which is discussed in the next section (2.3).

2.3 Relativistic Hydrodynamics

Relativistic hydrodynamics describes fluids at near lightspeed velocities in local thermal equilibrium.
To acquire the relativistic fluid dynamic equations, the energy-momentum tensor Tµν can be derived
from the continuity equations.

∇µT
µν = 0, ∇µJ

µ = 0. (2.11)

The energy-momentum tensor for an ideal relativistic fluid (Tµν
(0)) needs to contain the hydrodynamic

degrees of freedom such as, energy density (ϵ), momentum density p, particle number density, a
fluid velocity vector uµ and it also must contain the metric tensor gµν . The metric tensor used here
is the Minkowski metric, gµν = diag(+,-,-,-) and the fluid velocity vector obeys the normalisation
gµνu

µuν = uµuµ = 1. Tµν is symmetric and transforms as a tensor under Lorentz transformations,
the most general form which symmetry allows is

Tµν
(0) = ϵ(a1g

µν + a2u
µuν) + p(a3g

µν + a4u
µuν) (2.12)

In the local restframe of the fluid, uµ =

(
1

0⃗

)
. In this frame Pascal’s law is valid, meaning the pressure

exerted by a certain portion of the fluid is the same in all directions and perpendicular everywhere
to the surface on which it acts [34]. So the space-like components T ij

(0) should be proportional to the

pressure, T ij
(0) = pδij . The T 00

(0) component represents the proper internal energy density of the fluid,

denoted by ϵ. These conditions lead to the following equations when imposed on 2.12

(a1 + a2)ϵ+ (a3 + a4)p = ϵ, −a1ϵ− a3p = p (2.13)

These equations imply that a1 = 0, a2 = a4 = 1, a3 = −1. So the energy-momentum tensor of an ideal
relativistic fluid becomes

Tµν
(0) = ϵuµuν − p∆µν (2.14)

Where the tensor ∆µν = gµν − uµuν is introduced for later convenience. This tensor serves as a
projection operator on the space orthogonal to the fluid velocity uµ. It has the properties ∆µνuµ =
∆µνuν = 0 and ∆µν∆α

ν = ∆µα. Without external sources the energy-momentum tensor is always
conserved, ∂µT

µν
(0) = 0. It proves useful to project these equations in the parallel and perpendicular

directions to the fluid velocity, uµ. For the parallel projection, one finds

uν∂µT
µν
(0) = uν∂µ[ϵuµuν − p∆µν ] = uµ∂µϵ+ ϵ(∂µu

µ) + ϵuνu
µ∂µu

ν − puν∂µ∆µν

= (ϵ+ p)∂µu
µ + uµ∂µϵ = 0 (2.15)

where the identity uν∂µu
ν = 1

2∂µ(uνu
ν) = 0 was used. For the perpendicular projection, one finds

∆α
ν ∂µT

µν
(0) = (ϵ+ p)uµ∂µu

α − ∆µα∂µp = 0. (2.16)

D = uµ∂µ, ∇α = ∆µα∂µ are introduced for the projection of derivatives parallel and perpendicular to
the fluid velocity. ∇α is the gradient in the fluid rest frame and D is the time derivative in the fluid

rest frame, since in the fluid restframe uµ =

(
1

0⃗

)
→ D = u0∂0. Rewriting equations (2.15) and (2.16)

with the gradient and time derivative in the fluid restframe gives the following equations

Dε+ (ε+ p)∂µu
µ = 0

(ε+ p)Duα −∇αp = 0 (2.17)
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2 THEORY

These are the fundamental equations for a relativistic ideal fluid [35].

By definition, in the ideal fluid picture all viscous effects are neglected. To include the effects of
viscosity the energy momentum tensor becomes

Tµν = Tµν
(0) + Πµν (2.18)

With Πµν the viscous stress tensor that includes the contributions to the energy momentum tensor
stemming from dissipation. Considering a system at zero chemical potential, all momentum density
is due to the flow of energy density, uµT

µν = εuν → uµΠµν = 0 [35]. The fundamental equations of
viscous fluid dynamics are found by projecting the conservation equations of the energy momentum
tensor parallel and perpendicular to the fluid velocity. So with the inclusion of the viscous stress tensor
and the choice of system the fundamental equations for relativistic viscous fluid dynamics are

Dε+ (ε+ p)∂µu
µ − Πµν∇(µuν) = 0,

(ε+ p)Duα −∇αp+ ∆α
ν ∂µΠµν = 0. (2.19)

An elegant way to derive expressions for Πµν is to use the second law of thermodynamics, which states
that entropy always increases locally. Temperature, energy density, pressure and entropy density s, are
all related through the same basic thermodynamic relations for a system with no chemical potential

ε+ p = Ts, Tds = dε. (2.20)

In equilibrium the entropy 4-current sµ = suµ and the second law of thermodynamics can be rewritten
in the covariant form

∂µs
µ = ∂µ(suµ) = uµ∂µs+ s∂µu

µ = Ds+ s∂µu
µ ≥ 0. (2.21)

So in combination with the thermodynamic relations (2.20) the second law (2.21) can be rewritten as

∂µs
µ = Ds+ s∂µu

µ =
1

T
Dε+

ε+ p

T
∂µu

µ =
1

T
Πµν∇(µuν) ≥ 0. (2.22)

Usually Πµν is split into a traceless part πµν → πµ
µ = 0, and a leftover part with non-vanishing trace,

Πµν = πµν + ∆µνΠ. (2.23)

In a similar the a new notation for the traceless part of ∇(µuν) is introduced,

∇<µuν> ≡ 2∇(µuν) −
2

3
∆µν∇αu

α, (2.24)

using the tracelesness of πµν and the operator definition ∆µν∆α
ν = ∆µα the second law can be rewritten

into:

∂µs
µ =

1

2T
πµν∇<µuν> +

1

T
Π∇αu

α ≥ 0. (2.25)

Defining,

πµν = η∇<µuν> = 2ησµν , Π = ζ∇αu
α, (2.26)

for the bulk and sheer pressure, the inequality is guaranteed to be satisfied when η ≥ 0 and ζ ≥ 0 [35].
With η and ζ the shear and bulk viscosity coefficients, respectively. In the non-relativistic limit Πµν

becomes that of the Navier-Stokes equations [35]. However, this relativistic Navier-Stokes equation
allows for superluminal propagation thereby violating causality. Proof for the violation of causality of
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2.4 Heavy Ion Collisions and the Quark-Gluon plasma

the relativistic Navier-Stokes equations is given in Apendix A of Ref [35]. This problem is solved by
replacing the relations in (2.26) by the differential equations called the Israel-Stewart equations [36]:

DΠ = − 1

τΠ(ε)
[Π + ζ(ε)∇αu

α] (2.27)

∆µ
α∆ν

βDπ
αβ = − 1

τπ(ε)
[πµν − 2η(ε)σµν ] (2.28)

The projectors in front of Dπαβ ensure that the equation is traceless and orthogonal. τΠ and τπ
are timescales over which the viscous pressures relax to the Navier-Stokes limit. The Israel-Stewart
equations are the first-order hydrodynamic equations, since they contain derivatives up to the first
order. So in summary, the Israel-Stewart equations (2.27) yield four different parameters, referred to
as the first order transport coefficients:

η(ε), ζ(ε), τπ(ε), τΠ(ε) (2.29)

The dependence on the energy density, or equivalently the temperature since temperature and energy
density are directly related to one another, is made explicit. These transport coefficients envelop
information about the underlying theory since they depend on the microscopic details of the theory.
They also have an influence on macroscopic observables, which can be measured experimentally, since
they enter the equations governing the hydrodynamical evolution. The Israel-Stewart equations (2.27)
can be generalized even further by expanding the equations for bulk pressure and shear stress, which
are derivative expansions up to first order derivatives, into second order hydrodynamics which contain
derivatives up to the second order in the following form:

DΠ = − 1

τΠ(ε)
[Π + ζ(ε)∇αu

α + δΠΠ(ε)∇αu
αΠ (2.30)

− λΠπ(ε)πµνσµν ]

∆µ
α∆ν

βDπ
αβ = − 1

τπ(ε)
[πµν − 2η(ε)σµν + δππ(ε)πµν∇αu

α (2.31)

− ϕ7(ε)π<µ
α πν>α + τππ(ε)π<µ

α σν>α − λπΠ(ε)Πσµν ] [23].

In both first and second order hydrodynamics the stress energy tensor is described by (2.18). The
second order expansion adds the following transport coefficients:

δΠΠ(ε), λΠπ(ε), δππ(ε), ϕ7(ε), τππ(ε), λππ(ε).

Just like the first order transport coefficients, the second order transport coefficients can in prinicple
be derived from the microscopic theory, and they could possibly be measured experimentally. These
transport coefficients are very important for describing the quark-gluon plasma stage within the sim-
ulations of heavy ion collisions, since they characterize the dynamical properties of a fluid. Next, we
will examine the evolution of a heavy-ion collision in which the QGP is created and how it freezes out
to form hadrons.

2.4 Heavy Ion Collisions and the Quark-Gluon plasma

As mentioned in section 2.2 quarks and gluons are always confined into hadronic matter. However, at
large temperatures and/or densities QCD matter udergoes a phase transition into a deconfined state.
These temperatures can be reached by colliding heavy ions at ultra-relativistic energies in a small
volume creating a very high energy density. When this system reaches thermal (near-)equilibrium a
significant portion of the evolution of the heavy-ion collision will be described by a hot and dense
QGP, which in turn can be described using hydrodynamics as discussed in section 2.3. The evolution
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Figure 6: Visualisation of the evolution of a heavy-ion collision at LHC energies [37]

of a heavy-ion collision can be described by a series of different stages [37], which are visualised
schematically in Fig. 6. These stages include: An initial state, determined by the wavefunction of
the colliding nuclei; small and large-Q2 interactions between partons drawn from colliding nucleons;
equilibration and subsequent expansion of the QGP; chemical freeze-out of hadrons; a hadron resonance
gas phase where hadrons interact and decay; stable particles fly freely to the detector. A more detailed
review on the complete evolution of a heavy-ion collision is given in Ref. [2].

2.4.1 Initial Collision

Before the nuclei collide they will be highly Lorentz contracted into discs due to their ultra-relativistic
velocities, as can be seen in Fig. 6. The distance between the center of each disc is the impact
parameter, b. This impact parameter is closely related to the number of nucleons in each nucleus
directly participating in the inelastic interaction, Npart. If we consider the nuclei as transparent we
can count the number of inelastic nucleon-nucleon collisions between the left and right moving nuclei.
The cumulative count of these inelastic nucleon-nucleon collisions is referred to as Ncoll. For example,
consider two nuclei with their constituent nucleons lined up in a row colliding head-on. If one nucleus
has 3 nucleons and the other has 5, Npart = 8, but Ncoll = 15. When the centers of each nucleus are
close to each other, b is small. At small b, Npart and Ncoll will be large, since large parts of the nuclei
will overlap as they collide. When b is large Npart and Ncoll will be small. Collisions with a small
impact parameter are referred to as central i.e. head-on and collisions with large b are referred to as
peripheral. In a real central heavy ion collision a nucleon which is located at the center of the nucleus
will on average hit approximately 12 nucleons from the other nucleus, but it will hit fewer nucleons
if it is located more on the edge of the collision [2]. This means that in central collisions Ncoll is
much larger than Npart. Due to the high number of binary nucleon-nucleon in central collisions more
particles are produced than in peripheral collisions. Particle multiplicity, which is defined as the num-
ber of particles produced in a collision, therefore gives an experimental handle on collision centrality,
since the centrality of a collision can not be directly measured [37]. As the heavy ions collide, most of
the incident partons lose energy, but are not deflected by any large angle. Most of these interactions
involve little transverse momentum (pT) transfer, so they are considered soft. A small fraction of the
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2.4 Heavy Ion Collisions and the Quark-Gluon plasma

Figure 7: Estimated temperature dependence of the specific shear and bulk viscosity divided by entropy
density. Figure taken from [41].

incident partons undergo hard perturbative interactions with high transverse momentum transfer, this
leads to the production of particles with high pT [2]. The partons within the nuclei that are involved
in the soft interactions determine the overal entropy deposition and energy density of the initial state.
The hard perturbative processeses from large Q2 interactions are mostly driven by Ncoll. These hard
interactions enable the production of high momentum/mass quarks. These heavy quarks (HQs) are
considered heavy for two distinct reasons. The first reason is that the mass of the quark is larger
than the QCD scale parameter ΛQCD. The QCD scale parameter characterizes the transition between
the weak and strong coupling regimes. It essentially signifies the energy scale below which quarks and
gluons become confined. So since, mQ ≫ ΛQCD the evaluation of the cross-section and pT spectra with
perturbative QCD schemes becomes possible [8]. The second reason is that mQ ≫ T meaning that the
HQ mass is much larger than the temperature of the plasma, which implies that thermal production of
heavy quarks in the QGP is expected to be negligible contrary to the thermal production of light quark
flavors. Therefore the heavy quark production is set by the initial hard scatterings. These two scale
hierarchies in combination with the fact that heavy quarks are produced initially, with a τ0 < O(10−1)
fm/c [38], make them excellent probes since they witness the entire evolution of the plasma.

2.4.2 QGP Formation

After the initial collision, when the nuclei are moving away from each other, they leave matter behind
them. Up to a good approximation this matter is produced in a way that is boost-invariant in the
beam direction, meaning the axis along which the nuclei travel. Some time after the initial collision this
matter will hydrodynamise and the system can be described by hydrodynamics. This is different from
thermalization since the matter is not yet in equilibrium at this stage and large gradients of the stress-
energy tensor exist. The process of hydrodynamization is poorly understood and the formation time
is also subject to discussion. Kinetic theory states that it will occus after approximately 1 fm/c [39],
whilst holographic calculations predict an earlier formation of this stage after roughly 0.35 fm/c [40].
On top of that, different models for the hydrodynamization process provide different answers for the
initial state of the hydrodynamic fluid right after hydrodynamization.
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2.4.3 Hydrodynamical evolution of the QGP

When the hydrodynamic fluid is formed the next stage of the description of the evolution of the heavy-
ion collision is viscous relativistic hydrodynamics. Viscous hydrodynamics is well understood, but
what is less understood are the values of the transport coefficients coming into the evolution through
equations (2.30-2.31). The transport coefficients with the most visible effect on the experimental
observables are the bulk and shear viscosities. This is logical, since hydrodynamics is a derivative
expansion, and higher order derivatives are assumed to contribute less to the evolution of the system.
The only first order coefficients entering the evolution are the bulk and shear viscosities, so they
have the most influence on the evolution of the plasma and therefore on the measured experimental
observables. A fluids ”quality” is determined by its specific shear viscosity, which is the dimensionless
ratio between the shear viscosity and the entropy density s, η/s. The entropy density is a proxy for
the number density, so the specific shear viscosity is in essence a viscosity per unit. A remarkable
feature of the QGP is that the specific shear viscosity is very small η/s ≈ 1/4π. Which means the
plasma is nearly a perfect fluid. The temperature dependence of the specific shear viscosity is shown
on the left in Fig. 7. But what is the effect of the specific shear viscosity on hydrodynamics, and
what is the link to experimental observations of heavy-ion collisions? Most apparent is the impact
that the specific shear viscosity has on the flow and collective behaviour of the system. Anisotropic
flow of the hot and dense medium can be measured experimentally, it is a measure of the amount of
hydrodynamic collective motion developed in the QGP [16]. The anisotropic flow parameters vn are
defined as the Fourier coefficents of final state particle azimuthal angle distributions with respect to
the collision event plane.

dN

dφ
∝ 1 + 2

∞∑
n=1

vncos[n(φ− Ψn)] (2.32)

Where Ψn is the event-plane angle. The second order harmonic flow coefficient v2 is called elliptic flow
and is often the largest coefficient in heavy-ion collisions. A higher shear viscosity would create a more
isotropic system and therefore reduce the anisotropic flow [41]. So the anisotropic flow parameters vn
are the primary viscometer for the QGP.
Bulk viscosity ζ is related to the rate of expansion of the fluid, which can be seen from the way
it enters equation (2.30). It impacts the evolution of the QGP predominantly by diminishing the
radial expansion rate, thereby leading to a decrease in the transverse momentum observed in emitted
particles.

2.5 Heavy Quark Diffusion

As mentioned in subsection 2.4.1 heavy quarks are very good probes of the QGP since they witness
the entire evolution of the system. Another benefit of the high mass of heavy quarks is that due to
their high masses, they are expected to be influenced less by the hot and dense medium than light
parton flavors [42]. To study the in medium parton evolution and energy loss, two mechanisms are
often considered: quasi elastic scattering of the quarks with the in medium partons and gluon radiation
induced by the medium. These two energy loss mechanisms are called collisional and radiative enrgy
loss, respectively. Collisional energy loss is considered to be the dominant energy loss mechanism for
heavy quarks, especially at low energies [42, 43]. This is due to a phenomenon called the ”dead-cone
effect” [44], where the large masses of the heavy quarks suppress the phase space of gluon radiation.
For small momentum transfers, the multiple scatterings of heavy quarks with thermal partons within
the QGP medium can be treated as Brownian motion and is commonly described using the Langevin
equation [45]. In this work, the only energy loss considered is collisional energy loss. So the motion of
the heavy quarks inside the thermalized medium can be described by the Langevin equation, expressed
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in terms of their position and momentum:

dxi =
pi
Ei
dt,

dpi =
(
FDrag
i + FDiff

i

)
dt, (2.33)

where dxi and dpi are the changes in position and momentum in the ith time step dt of the heavy
quark [45]. The drag force component of this equation is given by:

FDrag
i = −ηD(pi)pi, (2.34)

where ηD(pi) is the drag coefficient. The other term in equation (2.33), FDiff
i = ξi is just a thermal

noise term. This thermal noise can be dependent on the heavy quark momentum, but in this work, for
the sake of simplicity, we do not consider such dependence. The random momentum kicks generated
by the thermal noise satisfy the following correlation relation [46]:

⟨ξi(t)ξj(t′)⟩ = κδijδ(t− t′). (2.35)

Where κ is the momentum diffusion coefficient, this momentum diffusion coefficient can be linked to
the drag coefficient through the dissipation-fluctuation relation in the non-relativistic approximation:

ηD(p) =
κ

2TE
. (2.36)

In the limit of low momentum transfer this becomes:

ηD =
κ

2TmQ
. (2.37)

This can be connected further to the spatial diffusion coefficient which is directly related to the thermal
relaxation/equilibration time τQ of the heavy quark via [47]

τQ =
mQ

T
Ds, Ds =

T

mQηD(0)
=

2T 2

κ
. (2.38)

The spatial diffusion coefficient Ds is often scaled by the thermal wavelength λth = 1/(2πT ) of the
QGP medium to create a dimensionless quantity Ds/λth = (2πTDs) which quantifies all relevant
components: the drag force (2.34) and the thermal random force (2.35) within the Langevin approach.
So the interactions between the QGP medium and the heavy quarks are all conveniently encoded within
2πTDs. This spatial diffusion constant is a proxy for the coupling strength of the heavy quark with
the thermal medium. A small value for Ds means that frequent rescattering of the heavy quark limits
its spatial dispersion, so it characterizes a strong coupling to the medium. In Fig. 8 the temperature
dependence of the charm quark spatial diffusion constant is shown. The datapoints in this figure
represent the spatial diffusion coefficient as calculated through quenched lattice QCD [48,49]. Whilst
the colored bands are visualizations of potential-based T -matrix calculations [50,51]. The dash-dotted
line is the spatial diffusion coefficient as calculated through perturbative QCD [52]. The x-axis is scaled
by Tc which is the critical temperature below which a deconfined QGP can no longer be sustained and
the system will undergo a phase transition into hadronic matter.
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Figure 8: Charm quark spatial diffusion coefficient scaled with the thermal wavelength, in the QGP
(T > Tc) and for D mesons in hadronic matter (T < Tc). The bands are potential-based T-matrix
calculations, and the data points are extracted from quenched lattice QCD. [53]

2.6 Heavy Quark Hadronization

After cooling down the QGP can no longer maintain local hydrodynamic equilibrium and it can no
longer be described by hydrodynamics. At this stage the constituents of the plasma will ”freeze out”
chemically and form particles. It is important to note that this does not happen instanteneously
throughout the QGP. This occurs when the local temperature within the plasma drops below the
critical temperature Tc, meaning that this process is continuous since there are temperature gradients
within the QGP. This process is called hadronization. Shortly after all particles have frozen out they
will still interact and decay. These decaying particles will decay further, forming a hadronic cascade.
As the system expands particles will no longer interact, with the exception of unstable particle decays,
and the particles will travel in straight trajectories. The lifetime of these particles is long enough for
them to reach the detector and they are the only things that can be observed directly from a heavy-
ion collision and they carry information about the different stages of the evolution of the heavy-ion
collision. As mentioned earlier in section (2.4.1), heavy quarks are suited for probing the dynamical
properties of the QGP. So in this thesis the focus partially lies on heavy quark hadronization, which
is different from the hadronization of light quarks. There are two ways in which a heavy quark can
hadronize into a hadron, fragmentation and coalescence. When a heavy quark fragments it picks up
a light quark/quarks from quark-antiquark pairs created by a radiated gluon and together the heavy
and light quark form into a hadron. Fragmentation is the dominant hadronization mechanism at high
transverse momentum. However, at low momenta a heavy quark is more likely to hadronize through
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a coalescence/recombination mechanism. In the case of coalescence, the heavy quark combines with
thermal quarks from the QGP medium. The probability of a heavy quark to combine with thermal
quarks into a hadron depends on the overlap of the wave functions of the constituent partons with the
wave function of the combined hadron. The next sections will give more in depth information on the
mathematical approach for fragmentation and coalescence models.

2.6.1 Fragmentation

The fragmentation process describes the transition of perturbative objects (quarks and gluons) into
confined hadrons. Processes involving fragmentation are described by separating the contributions to
the process into a perturbative and non-perturbative part [54]. The calculation is usually done by con-
voluting the perturbative heavy quark production cross-section with a non-perturbative fragmentation
function which describes the decrease in the momentum of the heavy quark as it hadronizes:

dσH
dpT

(pT) =

∫
dz

z
Dnp

Q→H(z)
dσpert

dpT

(pT
z

)
. (2.39)

In this formula Dnp
Q→H(z) is the non-perturbative fragmentation function and z is the fraction of mo-

mentum carried over from the primordial heavy quark to the fragmented hadron. Note that this
formula is not the result of rigorous theoretical calculation, but more so the result of logical assump-
tions. Moreover it is subject to very large uncertainties in the region where the heavy quark pT is not
much larger than its mass m.
The main characteristics of the non-perturbative fragmentation function Dnp

Q→H(z) can be identified
by basic QCD arguments. It was recognized early [55] that the fragmented hadron should retain a
large amount of the momentum of the primordial heavy quark. Furthermore it was argued that the
average momentum lost by the quark when fragmenting was given by:

⟨z⟩ ≈ 1 − ΛQCD

m
. (2.40)

From this equation it becomes obvious that the non-pertubarbative fragmentation function of the
heavy quark must be very hard, i.e. it loses little momentum when hadronizing, since ΛQCD ≪ mQ.
In the limit of a very heavy quark the fragmentation function is expected to be peaked near z = 1.
This can also be seen from a very basic argument: a fast-travelling massive quark will only lose very
little speed, and therefore momentum, when it picks up a light quark from the vacuum by radiating
an energetic massless gluon [54]. Thus the shape of the non-perturbative fragmentation function will
show a peak that becomes increasingly centered around z = 1. Some of the most used fragmention
functions are:

• Peterson et al. [56]:

Dnp
Q→H(z) ∝ 1

z

(
1 − 1/z − ϵ

1 − z

)−2

, (2.41)

• Kartvelishvili et al. [57]:

Dnp
Q→H(z) ∝ zα(1 − z), (2.42)

• Collins & Spiller [58]:

Dnp
Q→H(z) ∝

(1 − z

z
+

(2 − z)ϵC
1 − z

)
(1 + z)2

(
1 − 1/z − ϵC

1 − z

)−2

, (2.43)

• Bowler [59]:

Dnp
Q→H(z) ∝ z−(1+bm2

h,⊥)(1 − z)aexp
(
−
bm2

h,⊥

z

)
, (2.44)

18



2 THEORY

Figure 9: Visualization of different fragmentation functions.

where ϵ, α, ϵC , a, b and mh,⊥ are all non-perturbative parameters dependent on the fragmented hadron
species. These parameters are fixed by fitting the calculated pT-differential cross-section of a certain
hadron species obtained in equation (2.39) to the pT-differential cross-section measured in data. Fig.ure
9 shows the different fragmentation functions listed in this section. Notice that all these functions are
peaked near z = 1. Which means that the heavy hadron will retain a large part of the momentum of
the primordial hadronized heavy quark as is required.

2.6.2 Coalescence

Hadronization purely through fragmentation can not reproduce various measured observables, such
as anisotropic flow and baryon to meson ratios in Pb-Pb collision [18], [60], [13]. However, these
observables have been calculated correctly using a hybrid hadronization approach through both frag-
mentation and coalescence [21]. The basic idea behind heavy quark coalescence is that a heavy quark
within the QGP can combine with a comoving thermal parton within the medium adding up their
respective momenta. Especially at low to intermediate momenta coalescence is believed to be the main
hadronization mechanism [61].
In this work we base our coalescence mechanism on the ”sudden recombination” model for coales-
cence developed by [62]. The momentum distributions for produced mesons and baryons in a sudden
recombination model are determined by the following expressions [45]:

dNM

d3pM
=

∫
d3pqd

3pQ
dNq

d3pq

dNQ

d3pQ
fWM (p⃗q, p⃗Q)δ(p⃗M − p⃗q − p⃗Q),

dNB

d3pB
=

∫
d3pq1d

3pq2d
3pQ

dNq1

d3pq1

dNq2

d3pq2

dNQ

d3pQ
fWB (p⃗q1, p⃗q2, p⃗Q)δ(p⃗B − p⃗q1 − p⃗q2 − p⃗Q). (2.45)

In these equations fWM (p⃗), fWB (p⃗) are the Wigner functions of the constructed meson or baryon and
dNq

d3pq
,
dNQ

d3pQ
are the momentum distributions of a valence light and heavy quark in the recombined heavy

flavour meson or baryon. Within Trajectum we only consider heavy flavour baryons with one heavy
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quark as can be seen from equation (2.45). For light quarks and antiquarks within the QGP we use
the Fermi-Dirac distribution as the momentum distribution in their local fluid cell:

dNq

d3p
=

∫
d3p

gqV

eE/Tc + 1
, (2.46)

where gq = 6 represents the spin and color degeneracies of the light quark and a uniform distribution
throughout position space is assumed inside volume V. This momentum distribution is then integrated
numerically to yield the light quark density at the freeze-out temperature. The wave function of a
meson can be approximated by the ground-state wave function of a simple quantum harmonic oscillator,
from this the Wigner function in momentum-space for a meson can be calculated and it is given by [45]:

fWM (q2) = NgMρqσ
3e−q2σ2

. (2.47)

Where N is a normalization constant which makes sure that when a heavy quarks momentum pQ = 0
the probability for that heavy quark to coalesce is 1, gM is a statistic factor which takes the color and
spin degrees of freedom into account and ρq is the light quark density at the freeze-out temperature.
q2 = q⃗ · q⃗ and q⃗ is the relative momentum between the two particles defined in the center-of-mass frame
of the meson:

q⃗ ≡ 1

E′
q + E′

Q

(EQp⃗
′
q − Eqp⃗

′
Q). (2.48)

The width parameter σ in equation (2.47) is related to the harmonic oscillator frequency ω through
the relation σ ≡ 1/

√
µω, µ = mqmQ/(mq +mQ) is the reduced mass of the heavy flavour meson.

The Wigner function for a heavy flavour meson can be further extended to a three-particle system for
baryon production. This is done by averaging over all ways to first recombine two quarks and then
adding the third one. This leads to the following equation:

fWB (q21 , q
2
2) = NgBρ

2
qσ

6e−σ2(q21+q22), (2.49)

q1 and q2 are defined in the center-of-mass frame of the produced baryon:

q⃗1 ≡ 1

E′
1 + E′

2

(E′
2p⃗

′
1 − E′

1p⃗
′
2), q⃗2 ≡ 1

E′
1 + E′

2 + E′
3

[(E′
1 + E′

2)p⃗′3 − E′
3(p⃗′1 + p⃗′2)], (2.50)

and for the baryon the reduced mass is:

µ =
mqmQ

2mQ +mq
. (2.51)

The reduced mass is the same for all charm baryons since we use a thermal mass of 300 MeV for the
light u,d,s constituents of the QGP, so mq = ms = md = mu. This is a reasonable assumption for the
up and down quarks, but the thermal strange quark mass is often considered to be higher.
The Wigner functions in equations (2.47, 2.49) are directly related to the probability of forming a
hadron through coalescence. So due to their Gaussian nature it becomes obvious that the probability
of forming a hadron through coalescence is high if the relative momentum difference between the quark
constituents of the hadron is small

Trajectum employs a hybrid hadronization model, meaning that heavy quarks can either fragment
or recombine. The hadronization method of the heavy quark depends on its momentum and on the
light quark density in the QGP as the temperature reaches the freeze-out temperature.Trajectum sim-
ulates a heavy-ion collision up until the chemical freeze-out. So after the entire QGP has cooled down
below the freeze-out temperature T < Tc and all particles have hadronized the simulation ends. The
next section will briefly summarize the Trajectum framework.
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3 Trajectum

Trajectum is a state of the art heavy ion simulation code created by, [23]. The code consists of
three different executables. Collide, Analyze and Collect. Collide simulates the collision from its
pre-equilibrium stage, to its hydrodynamical stage and subsequently calculates the freeze-out surface
after which the code goes from a continuous hydrodynamical description towards a discrete particle
description. After all particles have frozen out the collide executable is finished. The output of the
collide executable can be fed into a hadronic afterburner, i.e., UrQMD [63] or SMASH [64]. Which
simulates the interactions of the particles produced by the collide executable up to the point where
the particles can be considered as non-interacting and also simulates the decay of unstable particles.
The output of the afterburner or the collide output directly after the freeze out can then be used by
the analyze executable to calculate the observables of the collision with the weight of each event taken
into account. The collect executable then collects all data and outputs a mathematica file for further
data processing. In the following subsections a more in depth explanation of each executable will be
given.

3.1 Collide

As previously mentioned collide simulates three distinct stages of a collision. The pre-equilibrium,
hydrodynamical and hadronic stage. The pre-equilibrium stage generates the initial conditions for the
hydrodynamical evolution of the QGP. These initial conditions are passed to the component of the
code which handles the hydrodynamical evolution, the hydrodynamics model. The hydrodynamics
model then evolves the system through time step by step. For this evolution the model depends on
two auxiliary components:

• Transport coefficients, which contains the equation of state together with the first and second
order transport coefficients as discussed in section 2.3.

• Partial differential equation (PDE) solvers, which implement an algorithm for the solving of
partial differential equations.

After the computation of each time step by the hydrodynamics model, the new state of the fluid is
handed to the final component of collide, the hadronizer. The hadronizer computes the freeze-out
surface and generates particles from the QGP. After the last computed time step the hadronizer ends
the computation when there is no new addition to the freeze-out surface and collide will move on to the
next event. In summary there are five components which make up the collide executable and together
simulate the collision:

• Initial conditions

• Hydrodynamics model

• Transport coefficients

• PDE solver

• Hadronizers

The next subsections will explain these components in short. Ref [23] gives an in depth explanation
for each component.
An important point to note is that throughout this work boost invariance is assumed. This means
that we solve hydrodynamics in 2+1D, we do this by taking the Milne metric:

dss = dτ2 − dx2 − dy2 − dη2

τ2
, (3.1)
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this metric is related to the Minkowski metric through the coordinate transformation:

τ =
√
t2 − z2, η =

1

2
log

( t+ z

t− z

)
. (3.2)

Where τ is the proper time and η is the pseudorapidity. This metric makes boosts correspond to shifts
in pseudorapidity and boost invariance can be implemented by assuming that there is no η-dependence
in any of the variables constituting the fluid.

3.2 Initial conditions

The initial conditions component within collide provides the initial conditions for the hydrodynamical
evolution. Within Trajectum there is a choice between four different sets of initial conditions:

• Monte Carlo Glauber [65–68]

• Ohio State University [69,70]

• TRENTo [71],

• Gubser flow [72–74]

The initial conditions used throughout this work are the TRENTo [71] initial conditions. This is
a phenomenological model which describes the initial state of a heavy ion collision. TRENTo also
includes a model for the evolution from the proper time of collision τ = 0+ up to the moment when
hydrodynamical evolution is started, this is called the free-streaming time τfs.
The first step to calculating the initial conditions for the hydrodynamical model is to determine the
positions of nucleons within the colliding nuclei. For two colliding protons this is trivial, since a proton
is by definition a nucleon. To determine the nucleon positions for other nuclei, we assume that the
distribution of nucleons within the nucleus follows a Saxon-Woods distribution [75,76]:

ρ(r, θ, ϕ) = ρ0
1 + w(r/R(θ))2

1 + exp
(

r−R(θ)
a

) , (3.3)

ρ is the probability density to find a nucleon at spherical coordinates (r,θ, ϕ). In this equation ρ0 is a
normalization constant, R is the radius of the nucleus, a represents the depth of the ’skin’ of the nucleus
and w corresponds to deviations from a spherical shape. [75]. Since the only heavy ions collided in
this work are lead (Pb208) ions and we assume no spherical deformation and a constant nuclear radius
(R(θ) = R), the parameters for this distribution are set according to Ref. [77] and are given in Table
1. TRENTo initial conditions also mimic a hard-core repulsion potential between nucleons by requiring
that the distance between two nucleons is greater than a pretedermined minimal distance dmin. In
this work this minimal distance is set at dmin = 0.8001 fm. So nucleon positions are sampled from the
Saxon-Woods distribution (3.3), with the parameters set to the ones given in Table 1 whilst enforcing
the minimal distance requirement.
After all nucleon positions in both ions are known, the number of participating nucleons, or ’wounded’
nucleons, are calculated. From these participating nucleons TRENTo initializes the plasmas stress-
energy tensor at time τfs. When all initial conditions for the plasma have been determined the
hydrodynamics model calculates the evolution of the plasma.

3.3 Hydrodynamics Model and Transport Coefficients

Within collide both first and second order hydrodynamics as discussed in section 2.3 can be used to
calculate the evolution of the plasma. The transport coefficients model is tasked with computing the
pressure of the plasma through an equation of state (EoS). In this work the EoS used is a Lattice
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3 TRAJECTUM

Nucleus R (fm) a (fm) w (fm)

208Pb 6.68 0.447 0

Table 1: Parametrization of the Saxon-Woods distribution for a 208Pb ion used in collide. Parameters
taken from Ref. [77]

QCD equation of state with a temperature dependence in some of the transport coefficients and we
use second order hydrodynamics. For the equation of state the following parametrization is used [78]:

P

T 4
=

1

2
(1 + tanh[ct(t− t0)])

(pid+ an/t+ bn/t
2 + dn/t

4

1 + ad/t+ bd/t2 + dd/t4

)
. (3.4)

All parameters in this equation are the same as the ones used in Ref. [23].
Since a temperature dependent EoS is used in this work, the shear and bulk viscosities are also
dependent on temperature [41]:

η

s
(T ) =

{
(η/s)hrg T < Tc,

(η/s)min + (η/s)slope(̇T − Tc)(̇
T
Tc

(η/s)crv
) T > Tc,

ζ

s
(T ) =

(ζ/s)max

1 +
(

T−(ζ/s)T0

(ζ/s)width

)2 ,

where Tc is the freeze-out temperature, and

(η/s)hrg, (η/s)min, (η/s)slope, (η/s)crv, (ζ/s)max, (ζ/s)T0 , (ζ/s)width

are parameters which have been fixed by a Bayesian analysis in Ref. [41]. The shear and bulk relaxation
times have been calculated in Ref. [79], and are defined by the following constants:

τπsT

η
,

τΠsT (1/3 − c2s)2

ζ
,

where cs is the speed of sound. The second order hydrodynamic coefficients used are given by the
following constants [79]:

δππ
τπ

,
ϕ7
P
,

τππ
τπ

,
λπΠ
τπ

,
δΠΠ

τΠ
,

λΠπ

τΠ( 1
3 − c2s)

,

which have been fixed in a previous Bayesian parameter analysis [24]. Trajectum solves the hydrody-
namics equations with a partial differential equation (PDE) solver. The PDE solver used in this work
is the MUSCL solver, which is guaranteed to be stable. This solver interfaces with the hydrodynam-
ics model which gives the hydrodynamical functions to solve and the solver updates the state of the
plamsa from proper time τ to τ + ∆τ . After each timestep ∆τ the updated plasma state is handed
over to the hadronizer which generates particles from the plasma.

3.4 Hadronizer

Heavy quarks are hadronized through fragmentation and coalescence as discussed in sections 2.6.1 and
2.6.2. The hadronization method used in Trajectum for light quarks is the Cooper-Frye hadronization
method [80]. The first step in this particlization proces is computing the freeze-out surface. This is an
isotherm of a user specified temperature Tfr. After calculating the freeze-out surface the next step is
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3.5 Analyze

to generate particles from the fluid. A number of particles is generated according to Poisson statistics
and the particles are generated using the Cooper-Frye formula [80]:

E
dNi

d3p
=

gi
(2π)3

∫
σ

1

exp(p · u/T ) ± 1
pµd3σµ. (3.5)

With gi the number of degrees of freedom for particle species i and σµ the local surface normal. This
formula is designed in a way that the hadronization process is not a change in physical processes, but
rather a change in the description of the process, such that the particles are produced in a way that
the stress-energy tensor remains continuous on average across the freeze-out surface.
After all particles have frozen out Trajectum terminates the simulation and it outputs 5 files. An input
file which contains all the parameters the user gave to collide, a geometry file describing the collision
geometry, an extra file containing the generated initial conditions and two particle files which contain
particle positions, momenta and identities. One particle file contains the lighter hadrons which can be
decayed with a hadronic afterburner like UrQMD or SMASH. The other particle file contains heavy
particles which need to bypass the hadron cascade.

3.5 Analyze

After collide has calculated the particle positions, momenta and identities after the freeze-out, the
analyze executable is tasked with calculating observables from the particle lists create by collide. The
analyze executable does this on an event-by-event basis and it calculates all observables in two passes
over the data files. In the first pass analyze determines the centrality class of the collision. This is done
by counting the number of reconstructed charged tracks in each event as a measure of the number of
particles produced. Of course since Trajectum is a simulation detection efficiency is a 100%. However,
for comparison with an actual experiment it is important to use the same method to determine the
centrality. Because some experiments make certain cuts on measured data and for comparison we
must be able to make the same cuts. After the initial determination of the centrality of each event a
second pass over the data is made, in which the observables requested by the user are calculated. Of
course certain cuts can be made on these observables such as cuts on: transverse momentum, rapdity
or pseudorapidity. Since we can also oversample events in collide, the analyze executable takes each
events statistical weight into account. After analyze is done, it produces a file in which a summary of
the events generated is given. This file can then in turn be passed to the final executable of Trajectum,
collect.

3.6 Collect

Collect is the final step in the Trajectum framework. Collect determines the boundaries of the centrality
classes and computes the observables from the summaries. This results in a ‘filename.mathematica‘
file, which can be read into ‘Mathematica‘. Multiple instances of collide and analyze can be run in
parallel, collect can process all these files at once and correctly calculate each events statistical weight
within the entire dataset.
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4 METHODS

(a) gg → cc s-channel (b) gg → cc t-channel (c) qq → cc s-channel

Figure 10: Hard processes for open charm production used in Trajectum

4 Methods

The goal of this work is to research charmed hadron production in different collision systems and the
propagation of charm quarks through the QGP medium. To research this we try to recreate different
collision systems to look at the difference in charm production for different collision systems. We also
explore the different hadronization mechanisms of charm quarks and their impact on the anisotropic
flow and transverse momentum spectra of charmed hadrons. To investigate the propagation of charm
quarks trough the QGP medium the effect of the spatial charm quark diffusion constant Ds on both
anisotropic flow and transverse momentum is investigated. Throughout this entire work, 15000 events
are simulated per parametrization and peripheral events are oversampled.
In this section the different simulation methods to tune model parameters on data will be discussed.
At first the fragmentation methods deployed within Trajectum will be discussed by recreating a pp
collision environment. Subsequently the QGP drag force will be turned on and heavy quark diffusion
effects as discussed in section (2.5) will be taken into account. Then the impact of coalescence without
the presence of heavy quark diffusion within the QGP will be discussed. Finally all elements will
be implemented and the implementation of a Pb-Pb collision simulation with a hybrid hadronization
approach and heavy quark diffusion will be discussed. In this thesis the behaviour of the charm quark
is studied. This study can be extended to also include bottom quarks, but certain model parameters
will have to be tuned to measurements of bottom hadrons which are less abundant than charmed
hadron measurements.

4.1 proton-proton collision

To simulate a proton-proton collision Trajectum uses both Pythia 8.309 [81] and LHAPDF-6.5.4 [82]
to calculate the initial momenta and coordinates of the charm quarks produced from the Parton
Distribution function (PDF) of the incoming protons. The Pythia settings used for the creation of
charm quarks are:

• (”HardQCD:hardccbar = on”), this produces the charm quarks through the gg → cc and qq → cc
channels shown in Fig. 10.

• (”BeamRemnants:primordialkT = on”), this adds the primordial momentum of the parent quarks
to the heavy quarks.

• (”4:m0 = 1.275”), to change the charm quark mass from the default value of 1.5 GeV to the
1.275 GeV mass used throughout the Trajectum framework.

The beam energy is set to
√
sNN = 5.02 TeV and the PDF used is the default NNPDF2.3 QCD+QED

LO [83] for proton beams. The charm quarks are produced through the hard QCD processes shown
in Fig. 10. The number of charm quarks produced per binary collision are sampled with a Poisson
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4.1 proton-proton collision

Hc f(c→ Hc)[%]

D0 39.1 ±1.7(stat)
+2.5
−3.7(syst)

D+ 17.3 ±1.8(stat)
+1.7
−2.1(syst)

D+
s 7.3±1.0(stat)

+1.9
−1.1(syst)

Λ+
c 20.4±1.3(stat)

+1.6
−2.2(syst)

Ξ0
c 8.0±1.2(stat)

+2.5
−2.4(syst)

D∗+ 15.5±1.2(stat)
+4.1
−1.9(syst)

Table 2: Charm quark fragmentation fractions into charm hadrons, f(c → Hc). Taken from Ref [84].
The fragmentation fractions are determined from measurements in pp collisions at

√
s = 5.02 TeV.

distribution. The average of the Poisson distribution is a model parameter which we can tune, the
cc-rate. All charm quarks produced are back to back charm anticharm pairs. We assume that there is
no QGP production in a pp collision. So to simulate this environment we turn off charm quark diffu-
sion and make it impossible for the heavy quarks to hadronize through a coalescence mechanism. This
entails that all produced charm quarks hadronize through fragmentation. Heavy quark hadronization
in Trajectum occurs when the temperature of a fluid cell within the QGP drops down below a prede-
termined freeze-out temperature Tc. However, as mentioned earlier in proton-proton collisions there
is no QGP production. The way this is corrected without uprooting the entire Trajectum framework
is by making the QGP transparent for heavy quarks so they do not experience any of the effects
exerted by the QGP such as heavy quark diffusion. So when the temperature of the QGP fluid cell
containing a heavy quark drops below Tc in the case of a proton-proton collision it will fragment into a
hadron. There are of course a multiple hadron species a charm quark can fragment into. To determine
which hadron species the charm quark will fragment to, we took the fragmentation fractions for open
charm hadrons from Ref [84] shown in Table 2. These fragmentation fractions are then summed and
normalised in the following way:

Pi =

NHc−1∑
i=1

fi(c→ Hc)+fi−1(c→ Hc), Ptot = P(NHc−1),

Pj = δij
Pi

Ptot
. (4.1)

This creates a probability interval between 0 and 1, so the probability of finding a particle species to
hadronize to is always one.

In Trajectum the fragmentation function used is the Peterson fragmentation function (2.41), [56].
The exact function used is:

D(z) = 4ϵc
1

z

(
1 − 1/z − ϵc

1 − z

)−2

. (4.2)

The prefactor of 4ϵc is to make sure Dmax(z) = 1 so it can be used as a probability density. The way
fragmentation is implemented into Trajectum is as follows:

• A random z′ ∈ [0, 1] is generated and plugged into (4.2).

• Another random number x ∈ [0, 1] is generated and if x < D(z′), z′ will become the fraction of
momentum from the heavy quark carried by the fragmented hadron, so z′ → z, pH = zpQ.

• However, if x > D(z′) another value for both z′ and x will be generated and the described process
will be repeated until a suitable momentum fraction is found.
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Figure 11: Visualization of the Peterson fragmentation function and the dependence of the average
value of the momentum fraction on ϵc

Since Dmax(z) = 1 a momentum fraction will always be found. However, there are kinematical
constraints implemented in Trajectum which makes sure energy conservation is not violated. So if
EH > EQ the charm quark will be rejected from fragmentation. In equation (4.2) there is one parameter
that can be tuned to fit the shape pT-differential cross-sections or multiplicities measured in collision
experiments, ϵc. The ϵc parameter only influences the shape of the pT-differential multiplicities, the
number of produced charm quarks in Trajectum are governed by the cc-rate. Fig. 11 shows the ϵc
dependence of (4.2). In the legend of this figure the average value of z is also shown. This is calculated
by this equation:

⟨z⟩ =

∫ 1

0
zD(z)dz∫ 1

0
D(z)dz

. (4.3)

From Fig. 11 it becomes unequivocally obvious that a smaller value for ϵc leads to a larger value
of ⟨z⟩, meaning that the fragmentation function becomes harder as ϵ becomes smaller. So a smaller
ϵc leads to more momentum retention of the fragmented hadron from the parent heavy quark than a
larger ϵc value. Typical values for ϵc used in literature are around ϵc ≈ 0.022 [85].

4.2 Charm Quark interaction with the QGP medium

After recreating a pp collision environment, we investigate the effect of the interactions of charm quarks
with the QGP medium. All initial conditions will be kept the same as in the previous section and all
charm quarks still only hadronize through fragmentation. The only change we make is that the charm
quarks can now interact with the QGP medium.

As discussed in section 2.5, charm quarks lose energy when traversing the QGP due to in-medium
interactions. In this subsection the numerical framework used for the in-medium evolution of charm
quarks coupled with the expanding QGP will be described. Since a charm quark is considered heavy,
gluon radiation is neglected. As mentioned in section 2.5, the spatial diffusion constant scaled with
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4.2 Charm Quark interaction with the QGP medium

the thermal wavelength conveniently encodes all relevant components within the Langevin approach
for the in-medium interactions of the charm quarks: diffusion and drag. In this work we model the
spatial diffusion constant with a linear temperature dependence as is also done in Ref. [86]:

2πTDs = α
( T
Tc

− 1
)

+ β, (4.4)

the dimensionless parameters α and β will be explored in a wide range to see their impact on the
pT-differential multiplicity spectra and the anisotropic flow of charmed hadrons. The parameter α
represents the slope of the spatial diffusion constant and β represents the value of (2πTDs) at T = Tc.
The charm quark motion follows the modified Langevin transport equation (2.33), the relativistic
hydrodynamics model supplies the local temperature and flow velocity at the local rest frame of the
fluid cell. The numerical procedure to calculate the heavy quark motion in the QGP medium is as
follows:

1. The charm quarks are sampled with their initial positions xµ and momenta pµ in the laboratory
frame, according to their initial phase-space configurations generated by PYTHIA.

2. Then all charm quarks are moved from τ ≈ 0 to τfs as free streaming particles, and their positions
xµ are modified accordingly.

3. Subsequently a QGP fluid cell at xµ is searched, and both its temperature T and fluid velocity
uµ is extracted from the hydrodynamic simulation. After this the charm quark is boosted to the
local rest frame of the fluid cell and the charm quark momentum is calculated in this frame.

4. Make a discrete timestep ∆t = γ∆τ , with gamma the Lorentz factor to boost from the laboratory
frame to the local rest frame. This timestep is used to update the charm quark momentum pµ.

pi(t+ ∆t) − pi(t) =
(
FDrag
i + FDiff

i

)
∆t, (4.5)

the drag and diffusion force terms are driven by the following:

(a) the drag force term is driven by the drag coefficient ηD, which is related to the spatial and
momentum diffusion coefficients Ds and κ in the zero-momentum limit by:

ηD =
1

2πTDs

2πT 2

mQ
, κ =

1

2πTDs
4πT 3. (4.6)

In Trajectum the drag force term is given by:

FDrag
i ∆t = exp

(−γ∆τκ

2mQT

)
= exp(−ηD∆t). (4.7)

(b) the thermal force exerted on the charm quark is driven by the correlation profile given in
equation (2.35). This is discretized in the following way:〈

FDiff
i (t)FDiff

j (t+ n∆t)
〉
≡ κ

∆t
δijδ0n. (4.8)

This correlation is implemented by sampling a momentum deflection from a normal distri-
bution with width

√
κ/∆t using a Box Muller sampling technique [87].

5. When the momentum of the charm quark has been updated its position also gets updated after
time step ∆t

xi(t+ ∆t) − xi(t) =
pi(t)

Epi
(t)

∆t, (4.9)

with pi the four-momentum obtained in the previous step. After both the momentum and
position of the charm quark have been updated in the local fluid rest frame the charm quark is
boosted back to the laboratory frame.
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Figure 12: Momentum distribution from which thermal quarks are sampled.

6. Steps (3)-(5) are repeated until the temperature within the local fluid cell drops below the freeze-
out temperature, i.e., T < Tc and the charm quark hadronizes.

As can be seen from equations (4.6, 4.7 and 4.8), a larger value for the spatial diffusion constant
(2πTDs) leads to less drag and less momentum diffusion. This suggests that higher values for the
spatial diffusion constant will lead to more suppression of transverse momentum and more collective
behaviour.

4.3 Coalescence Implementation

When the temperature within a fluid cell containing a charm quark drops below the freeze-out tem-
perature, T < Tc, the charm quark will hadronize. Up until this point we only allowed charm quarks
to hadronize through fragmentation. However, charm quarks can hadronize through both fragmenta-
tion and coalescence as discussed in section 2.6.2. To purely research the effect of the addition of the
coalescence mechanism on top of the fragmentation mechanism, interactions of charm quarks with the
medium was turned off.

The probability of a charm quark to hadronize through either fragmentation or coalescence is de-
pendent on its momentum among other things. The most important constraint implemented in this
work is that when a quarks momentum goes to zero it is forced to hadronize through coalescence:

lim
pQ→0

P tot
coal(pQ) = 1. (4.10)

Where P tot
coal is the total coalescence probability for a charm quark to either coalesce into a meson or a

baryon. All charm quarks must hadronize, since quarks have to be bound, so P tot
coal(pQ)+Pfrag = 1. The

probability for a charm quark to coalesce is also dependent on the width parameter of the recombined
hadron σ ≡ √

µω, as was discussed in section 2.6.2. In Trajectum the effective thermal mass is the
same for all plasma quarks and it is a model parameter which can be tuned, the harmonic oscillator
frequency ω is also a model parameter. The way the coalescence probability for mesons and baryons
depends on these model parameters is as follows:

PM
coal ∝

NDOFσ
3

9
√

2
ρq, (4.11)

PB
coal ∝

NDOFσ
6

27
ρ2q. (4.12)
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4.3 Coalescence Implementation

Where NDOF are the numbers of degrees of freedom of the produced hadron and ρq is the light quark
number density calculated by numerically integrating the Fermi-Dirac momentum distribution for the
thermal quarks:

gq
2π2

∫
d3p

p2

eE/Tc + 1
. (4.13)

However, a charm quark does not necessarily have to recombine with a thermal quark. It can also
recombine with another charm quark to form a charmonium state. The probability to form a charmo-
nium state is proportional to:

P cc
coal ∝

NDOFσ
3

9
√

2VFO

Nc, VFO =
4

3
πR3. (4.14)

In this equation the recombinationradius, R is the maximum radius up to which charm quarks can
recombine with each other and Nc is the number of charm quarks within this radius. All these
probabilities are calculated for all charmed hadron species and added up together, P tot

coal = P cc
coal +

PM
coal + PB

coal. Then to satisfy the limit in equation (4.10), is multiplied with a function dependent on
momentum. In this work two different switch functions will be invesigated:

• A Gaussian function, P tot
coal → P tot

coalexp
(
−p2

Q

χ

)
, Pfrag → Pfrag

(
1 − exp

(
−p2

Q

χ

))
.

• An exponential function, P tot
coal → P tot

coalexp
(
−pQ

χ

)
, Pfrag → Pfrag

(
1 − exp

(
−pQ

χ

))
.

After the switch function is applied the coalescence and fragmentation probabilities are normalized in
such a way that P tot

coal(pQ) + Pfrag = 1. When all probabilities have been normalized to one a random
number is generated between 0 and 1 to decide the whether the charm quark will recombine into a
meson, baryon or charmonium state or if it will fragment. Since the implementation of fragmentation
has already been discussed in section 4.1, this subsection will describe the implementation of the
coalescence mechanism into either a meson, baryon or charmonium state. Firstly we recall the basics
of the coalescence mechanism, which is that a heavy quark combines with at least one comoving thermal
parton from the QGP medium or it combines with another heavy quark adding up their respective
momenta to produce a hadron. The way this is implemented within Trajectum is as follows:

• To form a meson, a charm quark recombines with one thermal quark from the QGP medium.
This thermal quarks momentum is sampled from the momentum distribution shown in Fig. 12.
This momentum is then boosted from the local fluid rest frame to the laboratory frame and
added to the charm momentum. Then the relative momentum q⃗ between the thermal quark
and the charm quark in the center of mass frame of the composite particle is calculated through
equation (2.48). From this relative momentum the probability that the recombined meson is
accepted is determined by generating a random number x ∈ [0, 1] and checking if:

x < e−q2σ2

, (4.15)

If this is not the case, the charm quark will not recombine with the thermal quark and the
hadronization channel will be reevaluated. When the condition in equation (4.15) is satisfied the
meson will be formed.

• To form a baryon, the charm quark needs to recombine with two thermal partons. Both these
partons momenta are sampled from the momentum distribution shown in Fig. 12. These mo-
menta then also get boosted from the local fluid rest frame to the laboratory frame. Then first
the relative momentum in the center of mass frame of the composite baryon between the com-
bination of two quarks q⃗1 is calculated and then the relative momentum of the remaining quark
with the combination, q⃗2 is calculated through equation (2.50). After this is done the merger
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probability of the average of all different combinations is calculated and once again a random
number x ∈ [0, 1] is generated to determine if:

x < e−(q21+q22)σ
2

, (4.16)

and just as the meson if this is not true the hadronization channel will be reevaluated. If this
statement is true the baryon will be formed.

• For a charmonium state the process is the same as for a meson, except for the fact that it
recombines with another charm quark so the momentum is already defined in the lab frame.

4.4 Pb-Pb collision

With the implementation of both hybrid hadronization and heavy quark interactions with the QGP
medium, a Pb-Pb collision environment can be simulated. The initial creation of the charm quarks from
binary nucleon-nucleon collision for the Pb-Pb simulation is similar to that of the pp collision. However,
the parton distribution function of a nucleon within a Pb ion is different from the parton distribution of
a single proton. So a different LHAPDF file is used, the file used is the EPPS21nlo CT18Anlo Pb208/0
PDF [88]. This nuclear parton distribution function takes into account the nuclear effects present in
the heavy nuclei, the difference in the initial charm transverse momentum spectra between the different
parton distribution functions is shown in Appendix B. The parameters fitted from the pp-collision will
now be tested on the Pb-Pb collision simulation and compared to real data.

4.5 Parameter tuning

In summary, at first we recreate a pp-collision environment and tune the input parameters ϵc and the
cc-rate on the pT-differential multiplicities (d2N/dydpT) of open-charmed mesons at midrapidity
(|y| < 0.5), measured by the ALICE collaboration. Rapidity is defined as:

y =
1

2
log

(E + pz
E − pz

)
, (4.17)

where E is the particles energy and pz the particles momentum component along the direction of the
beam axis. It is important to note that we model a pp-collision by replacing the nucleon PDF of a
nucleon in a Pb ion, with a single proton pdf, turning off all in-medium interactions and only allowing
charm quarks to hadronize through fragmentation. However, the entire plasma is still created and
evolved in the same way as in a heavy ion collision. To fit the pT-differential multiplicities for open-
charmed mesons measured by ALICE, we vary the ϵc parameter between 0.015-0.045, to fit the shape
of the transverse momentum spectra and we fit the cc-rate to match the order of magnitude of the data.

Then the contribution of adding in-medium interactions between charm quarks and plasma constituents
whilst still forcing charm quarks to hadronize only through fragmentation to the pT-differential mul-
tiplicities will be explored. This is done by varying the α and β parameters which govern the spatial
charm diffusion coefficient, (2πTDs) = α(T/Tc − 1) + β, between 0-8. Furthermore, the effect of in-
medium interactions on the collective behaviour of open-charmed mesons is explored by looking at the
effect of the α and β parameters on the elliptic flow coefficient as a function of transverse momentum
v2(pT) and comparing this to the v2(pT) of open-charmed mesons measured by ALICE. The elliptic
flow coefficients from Trajectum are calculated using the reaction-plane method, due to the fact that
the reaction plane can be determined perfectly since it is a simulation, but the datapoints measured
by ALICE use the scalar product method. Calculation details for the different methods can be found
in Ref [89] and Ref [90], for the reaction plane and scalar product method respectively.

Subsequently the effect of adding coalescence as a hadronization mechanism to the pp-collision en-
vironment on both the pT-differential multiplicities and v2(pT) without charm quarks interacting with
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the medium is explored. The effects of both switch functions are explored. Finally, a full Pb-Pb
collision environment will be simulated by replacing the single proton PDF to the nuclear parton dis-
tribution function of a nucleon within a Pb ion taking nuclear effects into account and allowing both
in-medium interactions and charm quark hadronization through coalescence. The parameters tuned
on the pp-collision environments will then be tested on the Pb-Pb collision environment. Both the
pT-differential multiplicities and v2(pT) measured by ALICE in Pb-Pb collisions at

√
sNN =5.02 TeV

will be compared to the simulation results obtained with the tuned parameters.
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5 Results

In this section the results from the collisions simulated by Trajectum will be presented and compared
to data measured by the ALICE detector. The main two observables presented in this section are:
Particle multiplicities at mid-rapidity, |y| < 0.5, and elliptic flow in the rapidity range |y| < 0.8. This
section will be structured as follows: First all QGP and coalescence effects will be turned off to simulate
a pp-collision environment where no QGP gets created and all heavy quarks will hadronize through
fragmentation; then the impact of heavy quark diffusion will be explored by turning on the QGP drag
force; subsequently the effects of coalescence without heavy quark diffusion will be explored; finally
a complete Pb-Pb collision with both coalescence and heavy quark diffusion will be simulated and
compared to ALICE data.

5.1 pp Results

In this subsection, the results of the pT-differential particle multiplicities (d2N/dydpT) for prompt D-
mesons at midrapidity (|y| < 0.5) produced by Trajectum from a proton-proton collisions at

√
sNN =

5.02 TeV are presented. These results are compared to the pT-differential particle multiplicities for
prompt D-mesons at midrapidity measured by the ALICE collaboration [14]. For the proton-proton
collision simulation all QGP effects are neglected and hadronization is purely through the fragmen-
tation channel. So there are no hadrons produced through coalescence. As discussed in the methods
section 4 the fragmentation function used within Trajectum is the Peterson fragmentation function
(2.41). The only parameter which can be tuned within this fragmentation approach to fix the shape
of the pT-differential particle multiplicities to match the measured data is the ϵc parameter. To match
the exact values of the pT-differential multiplicities the cc-rate is tuned to cc-rate = 6. Fig. 13 shows
the effect of varying the ϵc parameter and a comparison to prompt D0 meson production from Ref [14].
In this section all symbols representing data points are centered in each pT interval and the horizontal
bars represent the bin width. Vertical error bars or bands represent all statistical uncertainties. In
the calculation of the model ratios in the lower panel of the left figure of Fig. 13, the uncertainties
were propagated treating them as highly correlated. Whilst in the calculation of the ratio between
data and model in the bottom panel of the right figure of Fig. 13 the uncertainties were propagated as
uncorrelated. This method of uncertainty propagation between ratios is used throughout this entire
section.

The effect of the ϵc parameter on the pT-differential multiplicities becomes obvious from Fig. 13.
Three different values for ϵc where used: 0.045, 0.03 and 0.015. A large value for ϵc leads to a lower
⟨z⟩ than a small value for ϵc as can be seen from Fig. 11. As a result the pT-differential multiplicities
of the simulations with ϵc = 0.045 are largest at low pT, 0 < pT < 1 GeV, but for pT > 3 GeV the
multiplicities with smaller ϵc are larger and vice-versa for the ϵc = 0.015 results. The value for ϵc which
leads to the best agreement with data is ϵc = 0.03, which is a reasonable value for the ϵc parameter
compared to usual literature values [85]. In Fig. 15 the pT-differential multiplicities of D0, D+, D∗+

and D+
s are presented and in the bottom panels the ratio between model and data is shown. For all

model calculations in Fig. 15 ϵc = 0.03. At the intermediate to high pT interval 5 < pT < 30 GeV the
model predictions for all D meson species presented agree reasonably well. Only for the D+ meson
Trajectum overpredicts the pT-differential multiplicity especially in the low transverse momentum
region. This is most likely due to the fact that the implementation of fragmentation within Trajectum
is a form of independent fragmentation, which is subject to large uncertainties when mQ ≈ pT, instead
of a more sophisticated approach such as string fragmentation. For baryons the model predictions
do not agree very well with the measured data. Fig. 14 shows both the pT-differential multiplicity
of the Λ±

c baryon and the ratio between the Λ±
c and D0 pT-differential multiplicities. From these

figures it becomes exceedingly obvious that the simple implementation of independent fragmentation
is not equipped to accurately predict baryon formation. The right hand side of Fig. 14 shows the
pT-dependence of the Λ±

c /D
0 multiplicity ratio. In the datapoints taken from Ref [91] a clear trend
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5.1 pp Results

Figure 13: Left: D0 meson pT-differential multiplicities predicted by Trajectum for different values
of ϵc. The bottom panel shows the ratio of the different model calculations for different values of ϵc,
the baseline calculation uses ϵc = 0.03. Right: Comparison of D0 meson pT-differential multiplicities
calculated by Trajectum to the values measured by ALICE. Datapoints taken from [14].

Figure 14: Left: Λc baryon pT-differential multiplicity as produced by Trajectum compared to the
multiplicity measured by ALICE [91]. Right: The ratio of the pT-differential Λc multiplicity divided
by the D0 pT-differential multiplicity as produced by Trajectum compared to the ratio measured by
ALICE [91]
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5 RESULTS

is visible, the ratio peaks at intermediate pT around (1-2) GeV and then gradually decreases with
increasing transverse momentum. The ratio produced by Trajectum shows no such pT dependence,
but rather stays constant around a ratio of 0.4 with small deviations. The only models which have
been able to accurately predict these ratios are models which also include color reconnection.
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5.1 pp Results

Figure 15: pT-differential multiplicity of all prompt D meson species produced in pp collisions compared
to model predictions by Trajectum with ϵc = 0.03. The ALICE data is taken from Ref [14]. The lower
panel of each plot shows the ratio between model predictions and data.
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5.2 pp Results with drag force

In this subsection, results of the both pT-differential particle multiplicities (d2N/dydpT) for prompt
D0-mesons at midrapidity (|y| < 0.5) and the average elliptic flow v2(pT) coefficient for non-strange
D-meson species in a rapidity range of |y| < 0.8 are presented. These results are obtained from a
proton-proton collision simulation with a center-of-mass energy of at

√
sNN = 5.02 TeV, where the

produced charm quarks interact with the QGP medium created and all charm quarks hadronize through
fragmentation. As mentioned in section 4.5 the plasma is initialised and evolved in the same way as
in a heavy-ion collision, but the parton distribution function is that of a free proton instead of a PDF
including nuclear effects. The pT-differential multiplicities are compared to the results for a pp-collision
environment where there is no in-medium interaction of charm quarks, the baseline model parameters
have been fixed to ϵc = 0.03 and the cc production rate = 6. The parameters varied in this section
are the parameters governing the spatial charm quark diffusion constant (2πTDs) = α( T

Tc
− 1) + β.

Figure 16: D0 meson pT-differential multiplicities predicted by Trajectum for different values of the
spatial charm quark diffusion constant (2πTDs) = α( T

Tc
− 1) + β. The bottom panel shows the ratio

of the different model calculations for different values of the spatial charm quark diffusion constant,
the baseline calculation assumes no drag and no diffusion with a fragmentation parameter ϵc = 0.03.

Fig. 17 shows the pT-differential mulitplicity of D0 mesons with and without in-medium interac-
tions for different parametrizations of the spatial charm diffusion coefficient. From this figure one thing
quickly becomes obvious and that is that a higher value for (2πTDs) leads to a less extreme modifica-
tion of the transverse momentum distribution. This can be seen from the fact that the parameterization
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5.2 pp Results with drag force

of (2πTDs) = 4( T
Tc

− 1) + 8 gives the highest pT-differential multiplicity over the intermediate to high
transverse momentum range (1-36) GeV. This is to be expected since the spatial diffusion coefficient

is inversely related to the momentum diffusion coefficient, κ = 4πT 3

2πTDs
. As discussed in section 4 a

lower momentum diffusion coefficient will lead to less drag exerted on the charm quark, meaning a
less extreme modification of its momentum. Another interesting feature in this figure is that for the
value α = 7, β = 1, the modification of the transverse momentum is the most extreme. For this
parameterization the pT-differential multiplicity is the lowest throught the intermediate to high trans-
verse momentum range (2-36) GeV. When this parameterization is compared to the parameterization
of α = 0, β = 8 it seems that β has a greater influence on the transverse momentum spectrum than
α. Since α is the slope of (2πTDs) this could mean that in most events the QGP temperatures vary
between 1 to 2 Tc not often exceeding 2Tc, which is the value at which the two parameterizations give
the same value for (2πTDs), due to the vastly different pT-differential momentum spectra for the two
paremeterizations.

○
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○ ○
○ ○ ○
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Figure 17: The average elliptic flow coefficient for all non-strange D-meson species as produced by
Trajectum for different values of the spatial charm quark diffusion coefficient is shown here compared
to the average elliptic flow of non-strange D-meson species as measured by ALICE [90].

Fig. 17 shows the average elliptic flow coefficient for non-strange D-meson species in the 30-50% cen-
trality region. In Fig. 17, it can be seen that there is more elliptic flow when the spatial diffusion
coefficient is lower. Which is to be expected, since a lower spatial diffusion leads to more momentum
diffusion and drag and thus more collective behaviour. The greatest elliptic flow in the low to inter-
mediate transverse momentum region (1-10) GeV is produced by the parameterization where α = 7
and β = 1. This once again suggests that the QGP temperature in most events lies between 1 to 2 Tc.
Another interesting feature in this plot is that in the low to intermediate pT region the parameteriza-
tion where α = 0 and β = 8 consistently has a lower v2 coefficient than the parameterization where
α = 6 and β = 4. This could further constrain the QGP temperature to the region of (1-5/3) Tc, since
at 5/3Tc both parameterizations take on the same value for (2πTDs) and below that temperature the
parameterization where α = 6 and β = 4 leads to a lower (2πTDs). At higher pT the error bars on
the v2 become so large that there can not be any valid conclusions drawn from this region except for
the fact that the flow needs to approach zero for high pT.
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5 RESULTS

Figure 18: Average elliptic flow (v2(pT)) coefficients of non-strange D mesons for charm quarks
hadronizating through both fragmentation and coalescence. Compared to ALICE v2 measurements [90]

5.3 pp Results with coalescence

In this subsection, results of the both pT-differential particle multiplicities (d2N/dydpT) for prompt
D0-mesons at midrapidity (|y| < 0.5) and the average elliptic flow v2(pT) coefficient for non-strange
D-meson species in a rapidity range of |y| < 0.8 are presented. These results are obtained from a
proton-proton collision simulation with a center-of-mass energy of at

√
sNN = 5.02 TeV, but charm

quarks are now also able to hadronize through coalescence in addition to fragmentation. However,
Charm quarks do not interact with the QGP medium. The results for the hybrid hadronization imple-
mentation will be compared with the baseline pp-results for purely fragmentation and the elliptic flow
will be compared to the elliptic flow measured by ALICE in [90]. Fig. 20 shows the pT-differential
multiplicities for all D-meson species where they can hadronize through both coalescence and fragmen-
tation compared to pT-differential multiplicity of all D-meson species where hadronization only occurs
through fragmentation. From this figure the first thing that becomes clear is that at high transverse
momentum (pT > 10 GeV) there are very few charm quarks hadronizing into D-mesons through the
coalescence mechanism, which is expected. Another thing that can be seen from this graph is that
there is a negligible difference between the gaussian and exponential switch function used. This means
that the kinematic constraints through the Wigner functions (2.47, 2.49) is the dominant probabil-
ity mechanism. At intermediate pT there is a large spike in all meson multiplicities with respect to
the multiplicities where charm quarks only hadronize through fragmentation, with a peak around 5
GeV. Since coalescence combines the momenta of recombining quarks this is also expected behaviour.
However, the increase of Ds mesons is very large, of the order of 10 times more Ds mesons produced
around 5 GeV. This is lot higher than expected and is probably due to the underestimation of the
strange quark thermal mass adopted in Trajectum.

In Fig. 18 the average non-strange elliptic flow coefficients are shown as a function of transverse
momentum. Also for the elliptic flow predictions there is negligible difference between the exponential
and gaussian switch functions. For both there is some small collective behaviour in the intermediate
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5.3 pp Results with coalescence

Figure 19: Left: Λc baryon pT-differential multiplicity as produced by Trajectum through both coa-
lescence and fragmentation compared to the multiplicity of Λc baryons produced only through frag-
mentation. Right: The ratio of the pT-differential Λc multiplicity divided by the D0 pT-differential
multiplicity for Λc baryons and D0 mesons produced through both fragmentation and coalescence
compared to the baryon to meson ratio through only fragmentation.

pT range (0-10) GeV, but the v2 for a Pb-Pb collision is expected to be much higher. This leads us to
believe that most of the elliptic flow from heavy ion collisions comes from the in-medium interactions
of the charm quarks with the constituents of the plasma.
Fig. 19 shows the pT-differential multiplicity of Λc baryons through both coalescence and fragmentation
compared to the production through fragmentation only. Here something peculiar is happening. At
low pT the yield with coalescence is lower than the yield through only fragmentation. A possible
explanation for this is an overestimation of the probability for a charm quark to recombine into a D
meson, and therefore there are no charm quarks left to recombine into a Λc baryon. On the right
hand side of this figure the baryon to meson ration of Λc/D

0 is shown and compared to the value
measured by ALICE [90]. This figure shows that the ratio of Λc/D

0 produced by Trajectum goes
down at intermediate pT instead of going up as is shown in the measured data. This confirms that
in this transverse momentum range the probability to recombine into a D meson as opposed to a Λc

baryon is too high.
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5 RESULTS

Figure 20: pT-differential multiplicity of all prompt D meson species produced through both coalescence
in fragmentation in pp collisions compared to model predictions by Trajectum with hadronization only
through fragmentation and ϵc = 0.03. The lower panel of each plot shows the ratio between the model
predictions with and without coalescence.
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5.4 Pb-Pb Results

Figure 21: The pT-differential yields of prompt D0 mesons as produced by Trajectum, compared to the
pT-differential yields measured by ALICE [92]. The red line shows the D0 mesons which hadronized
through fragmentation and the green line shows the D0 mesons which hadronized through coalescence.

5.4 Pb-Pb Results

In this section, we present the result of a full Pb-Pb simulation. This means that charm quarks
can hadronize through both coalescence and fragmentation, and the charm quarks interact with the
constituents of the QGP medium. Also, the free proton PDF is replaced by a nuclear parton dis-
tribution function for a 208Pb nucleus, which takes nuclear effects into account. Results of both the
pT-differential particle multiplicities (d2N/dydpT) for prompt non-strange D-mesons at midrapidity
(|y| < 0.5) and the average elliptic flow v2(pT) coefficient for non-strange D-meson species in a rapid-
ity range of |y| < 0.8 are presented. The pT-differential particle yields and elliptic flow coefficients
obtained by Trajectum, will be compared to the yields and elliptic flow coefficients measured by the
ALICE collaboration [92] and [84] respectively. The ϵc parameter has been fixed to ϵc = 0.33, since
this was the best fit to the pp collision data. The parameters α and β governing the spatial diffusion
constant are fixed to α = 4 and β = 8 throughout this section.

Fig. 21 shows the pT-differential multiplicities for D0 mesons and the contributions of the different
hadronization mechanisms. The green line represents the amount of D0 mesons which have hadronized
through coalescence and the red line shows the number of D0 mesons which have hadronized through
fragmentation. From this figure the hierarchy between the two different hadronization mechanisms be-
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5 RESULTS

Figure 22: Left: prompt D± meson pT-differential multiplicities predicted by Trajectum. Right:
prompt D∗± meson pT-differential multiplicities predicted by Trajectum. Both pT-differential meson
yields are compared to the prompt D-meson yields measured by ALICE [92] in Pb-Pb collisions at√
sNN = 5.02 TeV. The green lines show the D-mesons hadronized through coalescence and the red

lines represent the D-mesons hadronized through fragmentation.

comes clear. At intermediate transverse momentum (2-8) GeV, the dominant production mechanism
is coalescence. At higher pT fragmentation rapidly becomes the favoured hadronization mechanism.
So much so that at a transverse momentum of over 14 GeV the contribution of coalescence to the
pT-differential multiplicity can be considered negligible. So at low transverse momentum most charm
quarks hadronize through coalescence and at high transverse momentum the preferred hadronization
mechanism for charm quarks is fragmentation, as expected. The pT-differential multiplicity for D0

mesons is overestimated in the region where coalescence is the dominant mechanism. At higher trans-
verse momentum (pT > 10) GeV the predictions by Trajectum agree reasonably well with the data.
In Fig. 22 the pT-differential yields for the other two non-strange D-meson species are shown. In
this figure the predictions for the D± mesons agree reasonably well with the measured data over the
transverse momentum region (2-24) GeV. However, the predictions for the D∗± mesons do not agree
with the data in any part of the transverse momentum region.

Fig. 23 and Fig. 24 show the elliptic flow coefficients of non-strange D mesons as a function of transverse
momentum. In the 0-10% centrality interval it can be seen already that at low to intermediate pT
(0-10) GeV Trajectum under predicts the elliptic flow of non-strange D mesons. The under prediction
of elliptic flow at low to intermediate transverse momentum becomes even more obvious in the 30-50%
centrality region. In the elliptic flow measurements by ALICE [84] there is a pronounced peak around
pT ≈ 3 GeV, which is absent in the model predictions by Trajectum. Since the elliptic flow is mostly
driven by the in-medium interaction of charm quarks this suggests that a different parameterization
for the temperature dependence of the spatial diffusion coefficient and/or a momentum dependence in
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5.4 Pb-Pb Results

the spatial diffusion coefficient is needed to correctly predict the elliptic flow.

Figure 23: The average v2(pT) of non-strange D mesons at 0-10% centrality predicted by Trajectum
compared to the measured elliptic flow coefficients by ALICE [84]

Figure 24: The average v2(pT) of non-strange D mesons at 30-50% centrality predicted by Trajectum
compared to the measured elliptic flow coefficients by ALICE [84]
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6 SUMMARY AND CONCLUSION

6 Summary and Conclusion

In this section the results of the conducted research will be summarised. The next section discusses
the conducted research and gives an outluk on potential future research which can be done based on
this work.

In this work the production of open charmed hadrons was investigated using the Trajectum theo-
retical framework. These results were obtained by firstly recreating a pp collision environment and
from there building up to a Pb-Pb collision environment. This was done by individually adding in
in-medium interactions between charm quarks and the constituents of the hot and dense plasma and
adding the option of hadronization through coalescence as a mechanism to form a hadron. Finally a
nuclear PDF was added to the calculations to also include nuclear effects in the simulation.

The pT-differential multiplicies of D mesons at midrapitity at a collision energy of
√
sNN = 5.02 TeV

were calculated using the Peterson fragmentation function with the ϵc parameter set to ϵc = 0.33. It
was found that this value for the ϵc parameter leads to good agreement with the measured data for D
mesons. However, this independent fragmentation calculation was not able to correctly reproduce the
Λ±
c transverse momentum spectrum and the Λ±

c /D
0 baryon to meson ratio.

For the simulations of the pT-differential multiplicies of D mesons and the elliptic flow with the inclusion
of in-medium interactions between the charm quarks and the QGP. It was found that the value of the
charm quark diffusion constant at the critical temperature T = Tc was the dominant parameter in
comparison to the slope of the linear diffusion constant. In other words, for the linear temperature
dependence assumption of the charm quark diffusion constant (2πTDs) = α(T/Tc−1)+β, β has more
influence on both the pT-differential yield and the elliptic flow of D mesons than α.
For the simulations with the inclusion of coalescence as a hadronization mechanism, it was found that
the difference in the switch function chosen to influence the transition from coalescence to fragmentation
as outlined in equations (4.3) was negligible. This shows that the Wigner function (2.47) for a given
meson is dominant in picking the hadronization mechanism. Furthermore, it was shown that the
addition of coalescence as a particle production mechanism had limited effects on the elliptic flow of
the produced non-strange D mesons.
The simulation of the full Pb-Pb collision environment showed an under prediction of the elliptic flow at
low to intermediate transverse momentum. The pT-differential yield of D± mesons showed reasonable
agreement with data. However, both D0 and D∗± mesons showed differences in the predicted pT-
differential yields and the measured yields by the ALICE collaboration. To make more accurate
predictions using Trajectum, further research is needed. The next section includes suggestions for
further research based upon this work.
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7 Discussion and Outlook

The results for the open charmed hadron production in heavy-ion collisions as simulated by the Tra-
jectum framework were presented in this work. In this secion the steps which can be taken in further
research based on this work to further increase the accuracy of the model predictions will be discussed.

The modeled in-medium heavy quark energy loss was only through collisional energy loss in this
work. However, at LHC energies the heavy quarks themselves become ultra-relativistic [45] and radia-
tive energy loss through gluon radiation becomes the dominant effect at high transverse momentum.
In Ref [45] the Langevin equation governing the heavy quark energy loss is modified in the following
way:

dp⃗

dt
= −ηD(p)p⃗+ ξ⃗ − dp⃗g

dt
, (7.1)

where p⃗g is the momentum of the radiated gluon. The medium-induced gluon momentum is calculated
from the higher-twist formalism [93]:

dNg

dxdk2⊥dt
=

2αs(k⊥)q̂

k4⊥
P (x)sin2

( t− ti
2τf

)( k2⊥
k2⊥ + x2m2

Q

)
, (7.2)

where k⊥ is the transverse momentum of the radiated gluon, and x is the ratio of the gluon energy
over the heavy quark energy, the gluon splitting function is denoted by P (x), the formation time of
the gluon is τf and q̂ is the gluon transport coefficient which can be related to the spatial diffusion
constant. The probability to radiate a gluon during each timestep ∆t is then given by the following
integral:

Prad = ∆t

∫
dxdk2⊥

dNg

dxdk2⊥dt
. (7.3)

So in addition to the update of the momentum through diffusion and drag in the step by step process
shown in 4.2 the gluon radiation should also be included.
A linear temperature dependence of the spatial charm quark diffusion coefficient was assumed. Other
works [9] have also explored a quadratic temperature temperature dependence,

2πTDs = a+ b
( T
Tc

)2

. (7.4)

Testing out different temperature dependencies and their effect on the elliptic flow and pT-differential
hadron yields would be an interesting test to constrain the temperature dependence of the spatial
diffusion coefficient.

Furthermore, the number of D mesons formed through coalescence by Trajectum seems to be influenced
by the number of resonances this D meson species has. For further work it would be interesting to
implement a way to only include the ground state D meson production and first correctly predict the
production of these mesons, before including the resonance mesons. A simple PDG selection is shown
in Appendix A.

Another big discrepancy between model predictions and measured data is the pT-differential baryon to
meson ratio Λ±

c /D
0. This is most likely due to the fact that Trajectum uses an indepent fragmentation

method, which is a little outdated. Recent works using fragmentation through color reconnection such
as Pythia 8 (CR Mode 2), have been able to succesfully reproduce the pT-differential Λ±

c /D
0 ratio [90].

So implementing a more sophisticated fragmentation method would most likely lead to more accurate
baryon production through fragmentation.

Within Trajectum all thermal quarks, u,d and s, have the same mass of 300 MeV. However, strange
quark masses are usually modeled with a mass around 475 MeV [45]. This is a significant increase so
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adding a more correct thermal mass for the s quark should lead to more accurate predictions of Ds

production.
Also the initial charm quarks in this work are produced using the (”HardQCD:hardccbar = on”) setting
of Pythia. However, this does not take additional charm production sources such as flavor excitation
and shower branchings into account which are major additional sources. This can be circumvented by
producing the charm quarks with the SoftQCD group from Pythia.

For further work, it would also be interesting to perform a Bayesian parameter analysis on the param-
eters governing the production of charmed hadrons in Trajectum. In order to further constrain all the
model parameters using measured data.

This work still leaves a lot to be improved upon. However, a promising start was made for the
further exploration of the production of open charmed hadrons using the Trajectum theoretical frame-
work.
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A Appendix

Figure 25: D0 pT-differential multiplicity with an explicit PDG = 421 selection compared to ALICE
measurements [92].

Figure 26: D± pT-differential multiplicity with an explicit PDG = 411 selection compared to ALICE
measurements [92].
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B APPENDIX

Figure 27: D∗± pT-differential multiplicity with an explicit PDG = 413 selection compared to ALICE
measurements [92].

B Appendix

Figure 28: Ratio of the initial transverse momentum spectra for charm quarks between a nuclear 208Pb
PDF and a proton PDF.
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