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Abstract

Vision-language models (VLMs) are increasingly successful, but ques-

tions remain about the extent and nature of their grounding in the visual

modality. Many prior approaches to this question tend to focus on either

performance-based measures of grounding (what can a model do?) or com-

parisons between a model’s internal representations and a normative hu-

man baseline (is a model doing things in a humanlike way?). This study

tests whether the results of each of these two approaches are correlated

with one another in the context of a benchmark specifically designed to

measure grounding. I design a human experimental environment to ex-

tract human saliency maps for a subset of the VALSE grounding bench-

mark. I also generate attribution maps for four VLMs for the same stimuli.

My analysis creates a "humanlikeness" similarity metric for visual model

attribution maps, and finds that model attribution maps are detectably

"humanlike" on average. However, the degree of attribution humanlike-

ness does not correlate with model performance on the VALSE benchmark,

either between or within models. The utility of this attribution-based hu-

manlikeness metric as a complement to performance-based benchmarks

remains unclear.
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1. Introduction

Recent advances in AI have included the development of vision-language

models or VLMs. Though architecturally similar to their large language

model (LLM) cousins, their advantage is that as multimodal models, they

are able to interpret multiple modalities and, in some cases, create joint rep-

resentations. Though the performance of these and related model architec-

tures continues to reach once-unattainable heights, this has only intensified

long-running debates about the opaque internal worlds of these “exotic,

mind-like entities” (Shanahan 2023, p. 11). In an echo of Senator Howard

Baker’s famous Watergate line, AI researchers keep asking, in various for-

mulations: What does the model know and how does it know it?1

A prominent line of inquiry focuses on whether models’ representation

of the world is grounded, and grounded correctly, in the physical environ-

ment. (Grounding is a theoretically specific concept that I will discuss later.)

Many approaches to answering these questions rely on designing challenges

that would presumably require a model to be grounded to succeed at them.

Such challenges focus on what a model can do as a measure of whether it

is grounded. An example of such a challenge set is VALSE (Parcalabescu,

Cafagna, et al. 2022), which we will explore in more detail later. This bench-

mark includes images such as those shown in Figure 1.1, each paired with

a correct and incorrect caption (called the foil). The results for four models

on whether they could pick the correct caption are given in Figure 1.1; the

idea is that the more of these challenges each model gets right, the more

grounded a model is by this or that criterion.

But there is another way to investigate whether a model is seeing the

world in a desirable way: that is to ask not what a model can do, but how

1“What did the president know, and when did he know it?”, repeatedly asked during
the 1973-74 Watergate hearings that terminated the Nixon presidency (Cass 2014).
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Introduction

Figure 1.1: Four randomly-selected images and captions/foils from the VALSE
benchmark, along with information on whether each of four vision-language
models was able to choose the correct caption. (The images have been resized
to square to display here; the typo "hamburger rots the table" occurs in the
original dataset.)

the model does it. Explainable AI (XAI) tools are one way to explore this

aspect of model behavior. Importantly, XAI can tell us whether models

are succeeding at tasks in a way that is humanlike or, alternatively, non-

humanlike and even incomprehensible to human observers. To those who

see human ways of thinking as the goal, a humanlike model is “right for the

right reasons” (Selvaraju et al. 2019). Different approaches to model evalu-

ation reflect different normative goals: some frame the goal of AI models as

performance by any means; others see AI as a way of emulating specifically

humanlike ways of thinking.

When models are more humanlike in what they pay attention to, are

they also better at grounding challenges? To explore this question, I design

and implement an experimental study on a specific dataset and a number

of VLMs that asks whether a model’s attribution maps’ similarity to human

saliency maps predicts the model’s performance on grounding challenges.

How do we get this information about models and people? For AI mod-

els, information about what the model finds important in an image is gener-

ated with model-agnostic visual attribution methods. Humans’ importance

distribution over each image will be called human saliency maps, and they

will be gleaned from human subjects in an online experimental environ-

ment.
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1.1 Key terms and variables

While not exhaustive, this study’s results can help set the agenda for

future research about the relationship between humanlikeness and perfor-

mance in AI.

1.1 Key terms and variables

• Vision-Language Model (VLM): An AI model that incorporates both

text and image inputs.

• Stimulus (s): One of the 99 data points (image, caption, foil) selected

from the VALSE dataset for use in this study.

• Validated Subset of VALSE: Parts of the VALSE dataset that are con-

sidered validated by the validation criteria of the original VALSE au-

thors.

• Model (m): Each model m in the study is an implementation of LXMERT,

CLIP, FLAVA, or SigLip, all of which are VLMs.

• Model Output Score ( fm(s)): I define and implement this single scalar

output for each model m where it takes stimulus s as input. Positive

outputs indicate the model has correctly responded to a given stim-

ulus. Also referred to as the prediction difference, it is typically the

model’s score for the correct caption minus the model’s score for the

incorrect caption.

• Human Saliency Map (Hs,down): The aggregate human saliency map

for each stimulus s, a downsampled (to a 4x4 matrix) average of im-

portance scores given to each image pixel by human subjects in the

online experimental environment.

• SHAP/Shapley Attribution Map (Φ′
m,s): A 4x4 matrix representing

the importance score assigned to each image region in stimulus s by

the SHAP method, for model m. The prime symbol (′) denotes that it

has been normalized and set to all-positive values before being used in

the analysis. The term "attribution map" is used rather than "attention

map" to avoid confusion with other concepts in machine learning.
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Introduction

• Humanlikeness Score (RCm,s): This metric, also referred to as the

human-SHAP similarity metric, represents the similarity (rank cor-

relation) between the human saliency map Hs,down and SHAP attribu-

tion map Φ′
m,s for a given stimulus s and model m.
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2. Background and motivation

This chapter will provide the background that motivates this line of inquiry,

as well as the related work and considerations that inform the methodology.

Finally, it will formulate the research questions of the project in more detail.

The first section, 2.1 will give background on the current state of VL

models. Next, section 2.2 will frame the AI grounding debate’s stakes and

discuss what it means to ask whether a VLM is grounded.

Next, section 2.3 will discuss two ways of measuring the grounding of

models: performance-based (section 2.3.1) and interpretability-based (sec-

tion 2.3.2). For interpretability-based evaluation, models’ comparison to

ground-truth saliency maps is also discussed, as well as the usefulness of

this method for the present study. Section 2.3.2.2 explores the pragmatic

side of generating both XAI attribution maps and human saliency maps,

outlining some of the ways prior researchers have generated and used such

maps. This includes a discussion of studies that extract saliency maps di-

rectly from human subjects, and the usefulness of this method. On the topic

of human saliency maps, section 2.3.2.4 clarifies the relationship between

model grounding and humanlike attribution maps, asking: are humanlike

attribution maps a good measure of model grounding in the first place?

Finally, having outlined both the overall conversation around VLM ground-

ing and the motivations for focusing on XAI and human saliency maps as

a way of exploring this question, we proceed to the final research questions

in section 2.4.

2.1 Current state of VLMs

New neural architectures have enabled an ongoing “boom of Transformer-

based universal multimodal encoders pretrained on several multimodal tasks”
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Background and motivation

(Bernardi and Pezzelle 2021, p. 7). Such models are categorizable into single-

and two-stream variants which, respectively, treat the visual and language

input as either two concatenated pieces of data or first create separate rep-

resentations of each medium which are then often combined into a shared

representation (Bugliarello, Cotterell, et al. 2021).

Though VLMs tend to achieve impressive performance compared with

earlier computer-vision algorithms, there remains significant room for im-

provement. As recent study of VLMs (Bugliarello, Sartran, et al. 2023, p. 9)

concludes:

While recent pretrained VLMs achieve impressive performance

on various downstream benchmarks (such as visual question an-

swering and image retrieval), recent benchmarks have highlighted

that they still struggle with tasks that require fine-grained un-

derstanding—where a model needs to correctly align various

aspects of an image to their corresponding language entities.

[emphasis added]

This assessment, based on testing several noteworthy recent VLMs on

four benchmarks (including the VALSE benchmark used in the present study),

reflects a key challenge in producing multimodal intelligence: the challenge

of grounding.

2.2 What grounding means for VLMs

Current discussions of grounding originate from the “symbol grounding

problem” that emerged in philosophy of mind discussions in the 20th cen-

tury: the contention that symbols acquire true semantic meaning only in

relation to real-world objects. This argument has long bedeviled AI re-

searchers, who have in various forms had to confront the question: “How is

symbol meaning to be grounded in something other than just more mean-

ingless symbols?” (Harnad 1990, p. 340). Searle 1980 seminally explored this

question in his “Chinese Room” thought experiment describing a system of

rules (i.e. a computer program) that a human being could execute to pro-
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2.2 What grounding means for VLMs

duce speech in Chinese without themselves understanding the language.

Searle generalizes this state to computers; he proposes that “[t]he fact that

the programmer and the interpreter of the computer output use the symbols

to stand for objects in the world is totally beyond the scope of the computer.

The computer, to repeat, has a syntax but no semantics” (Searle 1980, p. 423).

The arrival of connectionist architectures (of which modern transform-

ers are a subset) seemed initially promising, considering such models have

a more “bottom-up” relationship with input data. Even so, philosophers of

mind continued to challenge the meaningfulness and groundedness of con-

nectionist models’ internal representations (Christiansen and Chater 1993).

In contemporary AI research, the grounding problem has frequently taken

on a less philosophical and more empirical flavor, including in research on

the grounding of multimodal models. In technical research, the question is

often less whether the internal representations of the VLM have any unam-

biguous semantic meaning in theory. Rather, the focus lies on ability: do

models evince grounding in the success with which they are able to han-

dle specific challenging inputs? As Bernardi and Pezzelle 2021 write: “An-

swering a question that is grounded in an image is a crucial ability that re-

quires understanding the question, the visual context, and their interaction

at many linguistic levels” (p. 1).

While their discussion focuses on visual question-answering (VQA), it

is broadly applicable to VLMs which are tasked with simultaneously at-

tending to visual and textual information. For this study, we can frame the

symbol grounding problem in that more limited way: the symbols in the

textual data acquire meaning in relation to elements of the visual data. If

this relationship is not correctly understood by the model, that indicates a

lack of grounding. To make it more specific, take the example from VALSE

in Figure 2.1. To solve challenges like these reliably, the model should be

able to identify the action in the photo and the female subject as the ac-

tor, while also understanding on some level that the caption has the correct

subject-verb relationship for the scene.

But we should pause on the word “understand”. The extent to which
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Background and motivation

Figure 2.1: An image drawn from the VALSE dataset, with caption and foil.

current models can “understand” something at all remains a subject of in-

creasingly active discussion. One recent paper (Mitchell and Krakauer 2023,

p. 1) notes that,

[u]ntil quite recently there was general agreement in the AI re-

search community about machine understanding: while AI sys-

tems exhibit seemingly intelligent behavior in many specific tasks,

they do not understand the data they process in the way humans

do.

Note how this quote holds "the way humans do" as a kind of gold stan-

dard, as opposed to "seemingly intelligent" machines. More recently, the

anthropocentric consensus on intelligence has been challenged, including

in the popular press (Johnson and Iziev 2022). Even so, Shanahan cautions

against applying “understand” and other anthropomorphic terms to mod-

els. Instead, he argues that a model does not “know” or “believe” a piece

of information; rather, it “contains” it, like an encyclopedia (Shanahan 2023,

p. 5).

Sidestepping the ambiguous word “understand”, Yuksekgonul et al. 2022,

p. 2 uses the verb “represent” to describe what a grounded model must be

able to do to the relation between text and image:

Whereas humans effortlessly parse natural scenes containing rich

objects in relation to one another, it is unclear whether machines

understand the complexity of these scenes. To do so, models

must be able to correctly represent objects, their attributes, and

the relations between objects.

We need not endorse the anthropomorphic “understand” but can stick

12



2.3 Quantitative evaluation of model grounding

with the more neutral “represent”. We are concerned with the question

of whether models represent the relationship between image and text in

a multimodal setting in a way that is desirable. But how does one measure

grounded representation empirically? And what role does the concept of

"humanlikeness" play in the measurement of grounding?

2.3 Quantitative evaluation of model grounding

There are two main ways of quantitatively testing whether a model is grounded,

and the present study engages with both. This section will describe various

approaches to measuring grounding in the literature.

One approach is a more performance-focused understanding (section

2.3.1). Performance-based challenges can, for instance, be drawn from the

VALSE benchmark, which was specifically designed to measure grounding

in the visual modality (Parcalabescu, Cafagna, et al. 2022).

The second approach (section 2.3.2) focuses on how a model accomplishes

its tasks, rather than whether it does. In the visual modality, this is often done

by comparing what the model looks at in an image to what humans look at.,

i.e. taking humanlikeness as a measure of grounding.

2.3.1 Performance-based evaluation of VLM grounding

A dominant approach to probing the groundedness of current VLMs in the

visual modality is the development of benchmarks which specifically target

one or several types of grounding (Bugliarello, Sartran, et al. 2023). The

concern these benchmarks address is that without specifically designing

challenges that require grounding, models are “prone to exploiting short-

cut strategies” (Yuksekgonul et al. 2022, p. 6). Such shortcut strategies are

those that use “spurious” correlations in the large datasets which are dif-

ficult to detect because “[t]ypically such correlations are not apparent to

humans performing the same tasks” (Mitchell and Krakauer 2023, pp. 3–4).

The benchmarks are designed to make it more difficult for models to solve

challenges using such shortcuts.
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Background and motivation

Benchmarks tend to focus on one or several parts of speech or linguistic

phenomena, and include challenges that test a model’s ability to use this

part of speech or concept. Major benchmarks include SVO-Probes, which

tests VLMs on verb understanding by making models distinguish correct

and incorrect images which can differ by verb, subjects, or objects (Hen-

dricks and Nematzadeh 2021). Another benchmark, VSR (F. Liu, Emer-

son, and Collier 2023), focuses on spatial reasoning; it consists of a series

of images and candidate captions for each image, such as “The hair dryer

is facing away from the person”—a VLM is then tasked with determin-

ing whether or not each caption is correct, and the authors shows perfor-

mance for the VLMs they tested significantly lags behind humans. The

Winoground benchmark (Thrush et al. 2022) contains pairs of images with

corresponding pairs of captions; both captions contain the same words, but

in a different order, and models are tasked with matching captions with im-

ages within each pair of pairs; the researchers write: “To perform well on

Winoground, models must not only encode text and images well [...], but

they also must be able to synthesize information across the two modalities”

(Thrush et al. 2022, p. 1)

A benchmark which specifically probes the visual grounding of VLMs’

linguistic competence, is the aforementioned VALSE (Vision And Language

Structured Evaluation) benchmark introduced in Parcalabescu, Cafagna, et

al. 2022. VALSE’s focus on testing the grounding of linguistic competence

in the visual modality in a variety of linguistic phenomena makes it well-

suited to exploring the questions raised in this paper, and the VALSE dataset

is the basis of the methodology developed here. Another reason for choos-

ing VALSE is the variety of types of challenges compared to other bench-

marks (Bugliarello, Sartran, et al. 2023), which affords more flexibility in

data selection throughout the methodology development process.

VALSE comprises a suite of tests which target the visio-linguistic ground-

ing of pre-trained VLMs, for six distinct linguistic phenomena. As noted in

the VALSE paper, “Since most V&L models are pretrained on some version

of the image-text alignment task, it is possible to test their ability to dis-

tinguish correct from foiled captions (in relation to an image) in a zeroshot

14



2.3 Quantitative evaluation of model grounding

Figure 2.2: This image adapted from the VALSE paper depicts the 6 linguistic
phenomena used, with an example each (Parcalabescu, Cafagna, et al. 2022).

setting. The construction of foils can serve many investigation purposes.

With VALSE, we target the linguistic grounding capabilities of V&L mod-

els” (Parcalabescu, Cafagna, et al. 2022, p. 2). This approach uses a previ-

ously proposed foiling technique (Shekhar et al. 2017), providing the model

with a correct or incorrect caption for the same image, and asking it to pro-

vide a likelihood score for each caption-image pair. Several techniques are

used in generating the VALSE dataset to minimize the possibility of spuri-

ous associations and confounds that could enable the model to pick the cor-

rect caption without grounding its decision in the image. Figure 2.2 shows

instances of each linguistic phenomenon in the VALSE dataset.

The more reliably a model picks the caption over the foil, the better the

model is assumed to be at grounding its interpretation of linguistic struc-

tures in the visual modality. For instance, choosing the correct caption be-

tween “A woman shouts at a man” vs. “a man shouts at a woman” would

presumably require a correct representation of subject-object relations in the

visual modality; merely identifying the presence of “man”, “woman”, and

“shouting” in the image is not enough to reliably solve this challenge (Par-

calabescu, Cafagna, et al. 2022, p. 3).

2.3.2 XAI-based evaluation of VLM grounding

Though performance on fine-grained benchmarks is one way to probe the

groundedness of models, there are metrics other than performance which

can shed light on whether models represent or encode the desired relation-

ship between text and image. One way has involved explainable AI (XAI)

techniques, which create a representation of how or why a model arrived at
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Background and motivation

Figure 2.3: A figure from Ribeiro, S. Singh, and Guestrin 2016 uses LIME to
show that a wolf vs. husky classifier is incorrectly using snow in the back-
ground as a major reason for its decision – a spurious correlation deliberately
inserted into the training data by the researchers.

a certain output. This section will summarize different directions in this

space and go into detail on visual XAI methods and their role in grounding

research.

In many cases, XAI-based comparisons between models and humans

come with a normative assumption that humanlike ways of solving prob-

lems are preferable. An early and well-known example is a 2016 paper

which used the LIME explainability method to generate visual evidence that

a model in the study was using “spurious correlations” in the training data

to classify photos as “wolf’ or “husky”, relying on the presence of snow in

the background rather than features of the animal (Ribeiro, S. Singh, and

Guestrin 2016). Implicit in this approach is the assumption that some mod-

els not only get tasks wrong, but can do a task in an undesirable way by,

in this instance, focusing on apparently irrelevant parts of an image. See

Figure 2.3 for that paper’s illustration of how XAI exposed this incorrect

approach. In this example, the model misclassifies the husky as a wolf, and

commits the dual sin of being both wrong and wrong for the ’wrong rea-

sons’. But even if the image had shown a wolf, the model would have been

right for the ’wrong reasons’, because its decision was caused by an undesir-

able part of the image—at least if we follow a human-understanding-based

concept of model grounding.

On the other hand, XAI can also show that models do represent infor-

mation in a way researchers deem desirable. Some researchers have used

localization-based interpretability techniques to find evidence that large lan-
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2.3 Quantitative evaluation of model grounding

guage models seem to represent core syntactic structures and other linguis-

tic constructs in specific parts of their architecture (Tenney, D. Das, and

Pavlick 2019; Htut et al. 2019). In one case, this led to the conclusion that

“[models] are representing language in a satisfying way” (which is itself a

human-normative assessment) and are learning to represent “syntactic and

semantic abstractions” (Tenney, D. Das, and Pavlick 2019, pp. 4593–97). XAI

tools can also be used to assess the overall way a model processes its inputs,

like whether multimodal models like VLMs are actually attending to both

modalities at all, and to what extent (Hessel and L. Lee 2020; Parcalabescu

and Frank 2023). This last approach is helpful for checking whether multi-

modal (vision + language) models are actually relying on both modalities,

or suffering from "unimodal collapse" (an issue explored in Yuksekgonul et

al. 2022).

On a more granular level, Cao et al. 2020’s paper "Behind the Scene"

uses probing techniques to determine to what extent visual and linguistic

knowledge is encoded inside the attention layers of several VLMs. This ap-

proach is notable for combining model dissection (an XAI technique) with

performance-based measures, using a benchmark to assess the usefulness

of latent knowledge in the model’s internal representations. Thus, this last

approach could be seen as a hybrid, XAI + performance approach to evalu-

ating grounding.

In the visual modality, XAI can be combined with ground-truth attribu-

tion maps to evaluate grounding. This is explored in the next section.

2.3.2.1 The use of ground-truth maps + XAI to measure grounding

A notable way XAI has been used in grounding-related research is by com-

paring a model’s XAI explanations to “ground-truth” explanations, such as

a map of human saliency over an image (i.e. a numeric representation of

which parts of the image humans look at, and the relative important of each

pixel or region). An implicit assumption behind such measurement is that

a model whose attention pattern is more humanlike is likely to be a better

model, or at least more desirable by a specific criterion.
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Ground-truth explanations are sometimes used not just to evaluate mod-

els, but to improve them. Human-generated explanations have been used

to validate XAI techniques themselves (Rao et al. 2021; Park et al. 2018), as

well as to better train models by forcing their attention or attribution pat-

terns to be more humanlike (Selvaraju et al. 2019; Sood et al. 2023). Such

work has a longer history in the machine-learning research community; for

instance, Donahue and Grauman draw on the NLP-derived method of “an-

notator rationales” to force a non-neural model architecture to more closely

align with what humans report as important areas of an image (Donahue

and Grauman 2011).

Other studies have used XAI to probe to what extent object detection

models are looking at the correct annotated regions of the image input (Y.

Liu and Tuytelaars 2020; Xu et al. 2020). This last type of paper uses ground-

truth saliency not for performance enhancement, but to answer a question

about a model: is the model interpreting the visual modality correctly?

For my project, the most relevant subset of prior XAI studies are those

papers that directly use ground-truth annotations of images to probe whether

a multimodal VL model is correctly attending to the relationship between text

and image in a task.

C. Liu et al. 2016, for instance, use ground-truth saliency maps to eval-

uate the “correctness” of the attention of an image-captioning model, us-

ing object locations as the basis for the ground truth. The authors define

“correctness” as “the consistency between the attention maps generated by

the model and the corresponding region that the words/phrases describe

in the image” (C. Liu et al. 2016, p. 1). Wu and Mooney take a similar ap-

proach, mathematically comparing human-annotated maps to explanations

generated by a model by vectorizing each explanation and taking a cosine

similarity (Wu and Mooney 2019).

A highly relevant paper which directly uses human subject-derived ground-

truth maps to evaluate a model is “Human Attention in Visual Question

Answering: Do Humans and Deep Networks Look at the Same Regions?”

A. Das, Agrawal, et al. 2017. In this study, the researchers use an online
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survey to extract saliency maps from human subjects for visual question-

answering (VQA) tasks; I take this study as the primary inspiration for the

present study’s human data collection. The authors compare these human

saliency maps to a machine-produced attribution map for each question-

image pair, which is similar to my study’s ultimate approach. The authors

find that both models they studied produce “attention maps [that] are posi-

tively correlated with human attention maps” (A. Das, Agrawal, et al. 2017,

p. 7).

A. Das, Agrawal, et al. 2017 compare their human saliency maps to ma-

chine attribution maps using mean rank-correlation coefficients across ex-

amples for a given model. Other metrics that can be used to quantify simi-

larity are EMD (earth-mover’s distance) and IoU (intersection over union),

among others (Rodis et al. 2023, pp. 18–19). Saliency/attribution map com-

parison metrics will be discussed further in chapter 3.

One ambiguity that can emerge in the XAI research space is what ground-

truth comparison even tells us about machine-produced attribution maps.

In some cases, researchers use such comparisons as a way of evaluating not

the quality of the model, but the quality of the XAI method itself (see Rodis

et al. 2023, pp. 19–20 for examples). In one study, we see a hybrid approach

where the XAI method’s quality is evaluated against human explanations,

while also confirming the fact that the XAI method’s output is still gen-

erally faithful to the model’s actual attention (Wu and Mooney 2019). In

this study’s case, I take attribution maps output by the chosen XAI method

(SHAP) as reflective of the importance assigned by the model to various

parts of a given image. I use the comparison to human saliency maps to

draw conclusions about the humanlikeness of a model’s relationship with

the visual modality.

2.3.2.2 How other studies generate human saliency maps

How do prior studies create the human saliency maps they use as ground-

truth? There are those which use researcher-annotated objective ground

truth like bounding boxes of objects for object detection, where the annota-
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tion is straightforward and the choices seemingly obvious. However, even

for object detection there are more subtle cases; for instance, it may be rea-

sonable to use tropical flora in the background to help identify a species of

bird. In such cases, the ground truth of “correct” human saliency is less

obvious, and the non-trivial nature of generating ground-truth maps be-

comes clearer. A recent survey on multimodal explainability identifies the

generation of ground-truth saliency maps as a much-needed area of further

research (Rodis et al. 2023, p. 20), which the present study contributes to.

Many previous approaches to generating such saliency maps use eye-

tracking technology (e.g. Yang et al. 2022), using human eye-tracking data

for a given image as the ground-truth attention distribution; since this is

not feasible for the present study, this overview focuses on cheaper and less

labor-intensive methods.

In one approach, Park et al. 2018 use object segmentation and then hu-

man input as the basis for saliency maps. The researchers pre-segment im-

ages into objects and ask human subjects to report the most relevant seg-

ments of an image for a given question-answer pair (the correct answer is

provided). This self-reported human importance is then aggregated into

saliency maps over each image.

In Jiang et al. 2015, by contrast, the experimental environment lets sub-

jects explore images without a specific task. This paper’s innovation lies in

providing a robust alternative to eye-tracking technology that still does not

rely entirely on self-reporting by human subjects. The researchers create an

interface that initially blurs the image, and lets users move their mouse to

unblur the parts they find salient, a way of presenting the image that is in-

spired by how the human gaze glances over a visual scene region by region.

An example of this process (from the original paper) is shown in Figure

2.4. The mouse movement pattern is recorded for each subject, and used to

approximate the task-neutral (“task-free”) saliency of various parts of each

image.

The aforementioned paper A. Das, Agrawal, et al. 2017 takes Jiang et

al. 2015’s methodology as a starting point, creating a “game-like” inter-
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Figure 2.4: This image from the Jiang et al. 2015 paper visualizes their experi-
mental interface with an example: the red circle represents the location of the
mouse. Near the mouse’s location, the image is unblurred in a way that emu-
lates the way the human eye runs over a scene.

face. However, rather than letting subjects freely explore an image, the

researchers prompt them with specific question-answering tasks, allowing

them to click-to-unblur parts of the image in the context of the VQA task.

The researchers trial three different variants of the interface in which, re-

spectively, (a) the blurred image is provided with a question but without

the correct answer, which the subjects have to provide, (b) the blurred im-

age is provided with the correct answer, and the subjects need only unblur

the relevant portions to the question-answer pair, and (c) the blurred im-

age is provided alongside the answer and the unblurred image. The three

variants of the interface are depicted in Figure 2.5.

To evaluate the quality of the human saliency maps gathered from each

variant of the interface, the researchers created a new set of saliency-sharpened

images for each interface. In these variants, the parts selected by that in-

terface’s human subjects are unblurred. The researchers then feed these

selectively-sharpened images to other human subjects and evaluate their

performance on the VQA task. The assumption is that the more accurate

the saliency map, the higher the accuracy of the subjects will be on the VQA

task, because the unblurred parts will provide the information needed to

answer correctly. This led the researchers to the outcome that the blurred-

image-with-answer (interface b) led to the highest performance (78.7% ac-

curacy), followed by the blurred image without answer (75.2%), shown in

the first image in Figure 2.5.

Based on this finding, they deploy the interface b) in the final study,

21



Background and motivation

Figure 2.5: The three variants of the interface implemented in A. Das,
Agrawal, et al. 2017, as depicted in the original paper.
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which provides the blurred image along with the question and correct an-

swer. The researchers use this method to create the VQA-HAT dataset of

human saliency maps, subsequently used by other researchers as ground-

truth saliency maps (e.g. Selvaraju et al. 2019). My approach to human data

collection takes A. Das, Agrawal, et al. 2017’s method as a starting point,

since it is a method that extracts human saliency maps in an "objective",

task-oriented way but is far cheaper and easier to deploy than eye-tracking

technology.

2.3.2.3 Model attribution maps

I have just discussed techniques in the literature for creating ground-truth

human saliency maps to compare AI models’ behavior to. But equally im-

portant is the generation of AI attribution maps: what do we compare to the

human maps?

The approach used to generate AI attribution maps should ideally be

model-agnostic, meaning it can work for any model; this facilitates the scal-

able calculation of humanlikeness metrics across and between models. There

are different levels of the model at which attribution can occur. Some re-

searchers use model internals like attention (a specific term within attention-

based architectures) as a way to get at which parts of an image a model finds

important (Sood et al. 2023). Others, however, caution that it is important

to show not just whether a model looked at a given part of the image, but

whether that region meaningfully influences the model’s output (Sun et al.

2020; Selvaraju et al. 2019).

These considerations make SHAP (Lundberg and S.-I. Lee 2017) an ap-

propriate XAI method: it is both model-agnostic and focuses on cause and

effect, empirically estimating how a given part of the data (in this case, re-

gion of an image) influences the output of a model. This causal approach is

why I call the XAI maps in my study attribution maps rather than attention

maps.

2.3.2.3.1 SHAP SHAP is a method for approximating Shapley values.

Shapley values, introduced in 1953, can be used as the basis for model-
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agnostic, local explanations; that is to say, they can provide an explanation

connecting a specific model output to specific parts of a specific input, for

any model for which the input data is available. Segmenting the input into

a discrete number of features, Shapley values are a representation of each

feature’s contribution to model m’s output value fm (which should be a sin-

gle scalar value) (Molnar 2022). This relationship is captured in equation 2.1

(adapted from Molnar 2022):

ϕm,s(i) = ∑
S⊆{1,...,p}\{i}

|S|!(p − |S| − 1)!
p!

(
fm(S ∪ {i})− fm(S)

)
(2.1)

Here, Shapley value ϕm,s(i) reflects the numeric average contribution of

feature i to the model m’s output value fm(s) for stimulus s. This contri-

bution is obtained by summing over S, the set of all possible coalitions of

non-i features (i.e., sometimes each feature is included, sometimes excluded

from a coalition). p is the number of features of each stimulus s. For each

coalition, we take the difference of the value of the output variable fm with

feature i included in the feature coalition and the output value without fea-

ture i included. In the case of images, features are image regions (superpix-

els), and the omission of a feature means masking out the corresponding

region. To summarize, we calculate the difference of the output value for

the input with and without the target feature i, and average this difference

over all possible coalitions of other features. This is a local feature contri-

bution value reflecting only a specific image and a specific superpixel. The

fm values are calculated by repeatedly modifying the image by masking out

superpixels excluded from a given coalition. A Shapley value ϕm,s(i) for

feature i is a local value, pegged to a specific model and input set of features

1...p.

When we finally apply the estimated Shapley value of each region to an

image, we get a saliency map: positive ϕm,s(i) values suggest that superpixel

i of stimulus m on average increases a given model output fm(s) by that
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Figure 2.6: The SHAP values for different superpixels for image classifiers;
each classification label gets its own model output and corresponding SHAP
values (source: Explain ResNet50 ImageNet classification using Partition explainer
— SHAP latest documentation 2024).

ϕm,s(i) value; negative values suggest that region on average decreases the

output by that much. With some mathematical processing on both ends,

this distribution can be numerically compared to a human saliency map.

Figure 2.6 shows some examples of SHAP attribution maps for two images;

each map corresponds to a single per-label output value for a classifier, and

red superpixels are those with positive SHAP values, i.e. those which are

estimated to increase the output value.

The SHAP method approximates Shapley values (the overwhelming num-

ber of coalitions makes exhaustive Shapley calculations computationally

unaffordable). Lundberg and S.-I. Lee 2017, introducing the method, show

that the theoretical underpinnings of SHAP satisfy several important re-

quirements for a robust attribution model and, in fact, encompass several

previously-extant XAI methods. SHAP’s theoretical robustness, model-agnosticity,

intuitive appeal, easy implementation, and wide usage make it a suitable

candidate for generating VLM attribution maps that can be compared to

human saliency maps. My study’s implementation of SHAP is described in

detail in chapter 3.
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2.3.2.4 A key question: Is humanlike attribution a measure of ground-

ing?

I began this overview with a discussion of the grounding question (section

2.2), and then the assertion that XAI techniques and ground-truth human

maps can be used to evaluate the groundedness of a model in some sense

(section 2.3).

But is groundedness necessarily related to humanlikeness? Are more

humanlike models in some way "better"?

At least since the Turing Test was proposed, many thinkers have as-

sumed a link between humanlikeness and true intelligence in the behav-

ior of machines (Brynjolfsson 2022). In the 1970s, AI pioneer Marvin Min-

sky said “I draw no boundary between a theory of human thinking and a

scheme for making an intelligent machine” (Lake et al. 2016). This is an as-

sumption implicitly or explicitly reflected in AI research that uses human

saliency as a model for AI attention (for examples see section 2.3.2.1). Those

who favor humanlike intelligence explicitly support their approach with

reasoned arguments. Lake et al. 2016, for instance, distinguishes between

outcome-oriented “statistical pattern recognition” (how machine learning

generally learns) and understanding-focused “model-building” (what they

believe humans do), implicitly positioning the latter as the preferable goal

for truly intelligent AI. This reflects the views of those who see human

saliency maps as the gold standard for intelligent vision models. In this

view, humanlikeness is not just indicative of a more grounded model, but

rather almost a prerequisite.

However, exponential performance gains among machine-learning mod-

els whose behavior is largely unintelligible to human observers have prompted

some to reevaluate this anthropocentric view and grant more credence to

another view: that non-humanlike pattern recognition is a meaningful, and

perhaps equally legitimate path to intelligence (Mitchell and Krakauer 2023).

If this view is correct, humanlikeness is more of a subjective measure with

limited practical utility, and its relationship to model quality or grounding

becomes more dubious.
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As it stands, the AI research community continues to, on the one hand,

emphasize performance-based measures of grounding (benchmarks like VALSE)

while often implicitly assuming, in XAI studies, that some attention patterns

are better than others—better because they are more humanlike. The ongo-

ing ambiguities around the concept of "humanlikeness" and its role in AI

research are core to the motivation of the present study.

My research centers this dichotomy: between emphasizing performance

and emphasizing humanlikeness in normative assessments of AI. I try to

find an empirical relationship between the two metrics: 1) a metric of hu-

manlikeness and 2) a performance metric on a grounding benchmark (VALSE).

The implications of this will now be discussed.

2.4 Research questions

The previous sections have discussed performance-based measures of ground-

ing as well as XAI-based measures of humanlikeness. In this study, I design

an experimental methodology and set of statistical tests to shed light on the

relationship between humanlikeness and model performance, specifically

model performance on a dataset (VALSE) that is itself created to test for

model grounding. In the A. Das, Agrawal, et al. 2017 study my methodol-

ogy is inspired by, a slight relationship is found between model humanlike-

ness and performance, though it is a secondary finding and the effect is not

very strong. I do expect, as a result, that a similar relationship will be found

here.

If it turns out that when their attribution is more humanlike, models do

better on performance-based grounding challenges, that would validate ap-

proaches to AI research that center humanlikeness as a desirable outcome.

It would suggest that human-machine attribution comparisons could serve

as complements to performance-based benchmarks as another part of the

same story, a slightly different angle on grounding. It would imply that

the two approaches—humanlikeness and performance—converge to some

degree.
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If, on the other hand, a VLM’s benchmark performance has no statistical

relationship with how humanlike its attribution is, this puts into question

whether at least this particular attribution map to human comparison tech-

nique has anything meaningful to say about a model’s performance and, by

extension, its groundedness (assuming performance on VALSE benchmark

correlates to some degree with grounding). Such an outcome would favor

understandings of model quality that are centered on performance, and call

into question the utility or wide applicability of humanlikeness metrics in

model evaluations for visio-linguistic grounding.

However, before we can even begin studying the relationship between

performance metrics and humanlikeness (research question 2), it is impor-

tant to establish whether there is a statistically measurable relationship be-

tween human saliency maps and model attribution maps in the first place.

This is the focus of research question 1. After all, if the human saliency

maps and AI attribution maps in the study are statistically unrelated, the

humanlikeness metrics in RQ2 are unlikely to be statistically meaningful.

This study asks two quantitatively testable research questions:

1. RQ1: For each of the VLMs considered, is the average similarity be-

tween the model’s XAI attribution maps and the corresponding hu-

man saliency maps statistically significantly higher than the average

similarity expected by random chance? (More simply: are the attribu-

tion maps for each model on average significantly humanlike?)

• Null Hypothesis (H01): The average similarity between each model’s

XAI attribution maps and corresponding human saliency maps is

not significantly different from the average similarity that would

be expected by chance.

• Alternative Hypothesis (HA1): The average similarity between

each model’s XAI attribution maps and the corresponding hu-

man saliency maps is significantly greater than what would be

expected by chance.

2. RQ2: Does the similarity between a model’s XAI attribution maps and
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human saliency maps correlate with the model’s performance, both on

individual images for each model and in aggregate across models, on

the VALSE benchmark? (More simply: do models tend to do better on

VALSE when their attribution maps are more humanlike?)

• Part 1: Within-model test

– Null hypothesis (H02.1): There is no statistically significant

correlation between a model’s per-image similarity to human

saliency maps and its performance on individual images from

the VALSE benchmark.

– Alternative Hypothesis (HA2.1): There is a positive correla-

tion between a model’s per-image similarity to human saliency

maps and its performance on individual images from the VALSE

benchmark.

• Part 2: Between-model test

– Null hypothesis (H02.2): There is no statistically significant

correlation between a model’s aggregate similarity to human

saliency maps and its overall performance on the VALSE bench-

mark.

– Alternative Hypothesis (HA2.2): There is a positive correla-

tion between a model’s aggregate similarity to human saliency

maps and its overall performance on the VALSE benchmark.

The implications of RQ1’s alternative hypothesis being confirmed would

be that the SHAP-human comparison methodology developed in this study

successfully detects an expected similarity between human and XAI maps

for the models considered. This is an important part of verifying the valid-

ity of the SHAP-human comparisons; it also contributes to understanding

the relationship between human-labeled ground truth attribution maps and

XAI methods. Beyond this study, it would also indicate the more generaliz-

able usefulness of the human saliency map generation technique developed

in my study, helping remedy what Rodis et al. 2023 calls a shortage of stud-

ies developing ground-truth human saliency maps.
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The implications of RQ2 are potentially more impactful: it helps us learn

more about whether we can measure model grounding by evaluating its at-

tribution maps, and what role a "humanlikeness" metric can play in evalu-

ating model grounding. Confirming either alternative hypothesis for RQ2

could be suggest humanlikeness metrics as a useful complement to performance-

based measures of grounding, perhaps even to be used in conjunction with

a benchmark like VALSE, telling a different "side" of the model grounding

story.

Another benefit of finding a humanlikeness metric that is validated in

this way is that it would be useful to situations where "correct" model out-

puts are less obvious, so performance-based benchmarks become less appli-

cable. In such contexts, researchers may still want to know to what extent a

model’s performance-agnostic internal behavior aligns with expectations.
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The methodology, which passed an Utrecht University ethics QuickScan

with no flagged issues1, is sketched out in the diagram in Figure 3.1. It

can be divided into 5 major steps, which are labeled as such in the diagram.

The first three steps were data collection and generation steps. The first

step was to select what subset of the VALSE benchmark to collect saliency

and attribution maps for, and generate a set of stimuli (section 3.1.1). The

second step was to generate human attribution maps by running a human

experiment exposing human subjects to the selected stimuli, and process-

ing the results (section 3.1.2). The third step was to implement four VLMs

(LXMERT, CLIP, FLAVA, SigLip) and generate model attribution maps (with

SHAP), as well as model outputs for the same stimuli and across the broader

VALSE dataset — in order to have performance data to analyze (see section

3.1.3).

The fourth and fifth steps were data analysis steps. The fourth step was

to compute similarity metrics between the human and SHAP attribution

maps (section 3.2.1). In the fifth step, these comparison metrics, as well as

the outputs for each model, were used to answer the two research questions

(section 3.2.2).

3.1 Data collection

To generate the data used in the final analysis, I selected a subset of the

VALSE dataset and made slight modifications to it (section 3.1.1). I then fed

these stimuli along with correct and incorrect captions to both human sub-

1The Ethics and Privacy Quick Scan of the Utrecht University Research Institute of
Information and Computing Sciences was conducted (see Appendix C). This research
project was classified as low-risk without a fuller ethics review or privacy assessment
required.

31



Methodology

Figure 3.1: A sketch of the overall methodology in five steps.

jects and AI models. For the humans, I used a data collection interface to

generate attribution maps for each stimulus (section 3.1.2). For the AI mod-

els, I used the model-agnostic XAI method SHAP to generate attribution

maps (section 3.1.3).

The key task that both humans and AI models were tasked with is this:

presented with an image and a caption (correct description) and foil (incor-

rect description), they were asked to choose which is correct. Data from

this interaction was used to generate attribution maps, which show which

regions of the image contributed more or less to the output.

3.1.1 Creating a set of experimental stimuli

I selected a subset of the VALSE dataset to present to human subjects as well

as to use as the basis for the SHAP attribution maps. I refer to the elements

of this dataset as the stimuli – with each stimulus consisting of an image

and a caption (correct) and foil (incorrect) that goes with it. This section

describes how the stimuli were selected and prepared.
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The images in VALSE are themselves drawn from various pre-existing

datasets, namely the MSCOCO 2014 (Lin et al. 2014), MSCOCO 2017 (COCO

- Common Objects in Context 2017), VisDial 1.0 (A. Das, Kottur, et al. 2016),

SWiG (Ocampo and Bather 2022), and Visual7w (Zhu et al. 2015) datasets.

Many images in some of the non-MSCOCO datasets are originally from

MSCOCO 2014 or 2017 as well. I loaded the images from the source datasets

and aligned them with the filenames present in the VALSE dataset’s online

repository, thus creating a copy of the original VALSE dataset, as instructed

by VALSE’s online data repository (Parcalabescu, Cafagna, et al. 2022).

VALSE contains a number of distinct linguistic phenomena that models

are tested on in the original VALSE paper. These are "existence", "plurality",

"counting", "relations", "actions" and "coreference." (Examples can be seen

in section 2.3.1.) Some of these “pieces” are more appropriate than others to

deploy in an experimental setting with humans to collect saliency maps.

Existence, for instance, requires models to evaluate the presence of an ob-

ject in the image and is thus related to object detection; in this way, it is often

obviously localizable to a specific point in an image. Similarly, relations and

the subject-object interchange of actions, while more complex, are reason-

ably localizable. Coreference, plurality, and counting, however, may pose the

risk of having more complex saliency considerations. Ultimately, I made the

decision to limit the study to the first three phenomena mentioned here (ac-

tions, relations, existence), largely out of a desire to have significant results

with a modest number of samples, since I expect there to be less divergence

between different human subjects on which regions matter.

In the end, I generated 33 samples from VALSE for each of the three

pieces: existence, relations, and actions, for a total of 99 experimental stim-

uli. Within each linguistic phenomena, I aimed for a balance between dif-

ferent levels of difficulty. This is accomplished through three steps: first,

initially sampling a subset of the VALSE dataset; then, manually evaluating

the quality of the stimuli; and finally, sampling the final set of 99 stimuli in a

balanced way. The exact way this was done is likely to hold little theoretical

interest and is thus laid out in detail in Appendix B.
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Figure 3.2: The human data collection interface, initially (left) and after 5 clicks
(right).

In the rest of this paper, when I refer to “stimuli” or “experimental stim-

uli”, it refers specifically to this set of 99 stimuli which have been edited and

balanced before being presented to both human subjects and AI models.

3.1.2 Generating human saliency maps

I used an online, custom-built experimental environment2 to collect data

from human subjects (Figure 3.2). I then used the collected data to create

averaged human saliency maps for each stimulus. The score each point

on an image gets this way is meant to represent the following intuition:

The higher the score that a part of the image gets, the greater its interest

to human subjects as they explored the image to determine the correct

caption.

2The code for the interface is available on GitHub at
https://github.com/skshvl/thesis-webapp-public
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3.1.2.1 Considerations for the interface design

My approach to collecting human saliency maps takes as its starting point

the data collection methodology of a previous paper (A. Das, Agrawal, et

al. 2017), which is discussed at some length in section 2.3.2.2. After testing

several iterations of their interface, the authors finally selected one in which

human subjects were presented with the image, a question and the correct

answer. They then had to unblur the most relevant regions of the image.

This was found to produce the highest quality attention maps. However, in

my study an approach without the answer pre-given is used. In this inter-

face variant, humans see both the caption and the foil and can reason about

which is correct by deblurring the image, without already knowing the right

answer. The following considerations support this design decision:

1. The quality difference between the provided answer and no-provided-

answer variants of the interface was not very large in the A. Das,

Agrawal, et al. 2017 study (78.7% vs 75.2% by their quality metric for

attribution maps).

2. Unlike the straightforward question-answering (VQA) task from A.

Das, Agrawal, et al. 2017, choosing a correct caption between two

highly similar captions is not an intuitive and familiar task to most

people. As a result, asking subjects to reason hypothetically about what

regions would help them choose the correct answer when they already

know what the answer poses a risk to the quality of the data. Turning

the task into a “real” task in which the answer is unknown and must

be found through deblurring the image would address this concern.

I deployed an interface online, collecting several human attention maps

per image based on where people clicked; the contributions of people who

picked the correct caption were then converted to aggregate attention maps

for each image.

The methodology for converting clicks into attention maps is a modified

version of very similar methodologies already present in the literature (A.
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Das, Agrawal, et al. 2017; Jiang et al. 2015)3, discussed in detail in section

2.3.2.2.

3.1.2.2 Interface design

I built an interface using the Flask framework in Python, and deployed it

to a GDPR-compliant web server provided by the cloud computing service

PythonAnywhere.

The interface consisted of introductory pages to get consent and explain

the experiment, a training step, and finally a series of images presented in

the interface shown in Figure 3.2. For each image, a user can click one of two

candidate captions. They are encouraged to first deblur the relevant areas of

the picture, but if the answer is already clear, they can check “I can answer

without de-blurring” and choose a caption. They also have the option of

saying they “can’t decide” or to report a problem. Initially (left in Figure

3.2), the image is fully blurred. After several clicks on relevant parts of the

image, those areas are de-blurred (right). Information about where the user

clicks is stored to generate the aggregate human attention map.

The 99 stimuli were randomly divided into three groups of 33 each, with

equal representation of actions, relations, and existence stimuli in each sub-

group.

3.1.2.3 Turning clicks into saliency maps

The technical details of how human clicks were collected and converted into

an attention map for each subject and picture are given here. The math of

the de-blurring and mask generation process is based on an adapted version

of the technical implementation of the A. Das, Agrawal, et al. 2017 study.

Each image was resized to 400 by 400 pixels before being presented to

experimental subjects. This both keeps attribution map sizes consistent be-

tween images and matches the 1:1 aspect ratio presented to the VLM mod-

els in generating their attribution maps. The de-blurring of each image was

3An author on A. Das, Agrawal, et al. 2017 provided me with the files to their original
online interface implementation.
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governed by a de-blurring mask with the same size (400 x 400). Each pixel

in the de-blurring mask could have a score between 1 and 255, and is ini-

tialized to 1.0, which we can represent with the variable mask(x, y) where x

and y are the coordinates of the pixel.

A mask(x, y) value of 1.0 corresponds to a maximally blurred pixel, while

255 corresponds to a fully unblurred pixel (i.e. the original image). Mean-

while, a value exactly in the middle (128) corresponds to a medium-blurred-

pixel. The three main blur intensities and their corresponding mask values

are as follows:

1. No blur: mask(x, y) = 255.0

2. Gaussian blur with kernel size (33,33): mask(x, y) = 128.0

3. Gaussian blur with kernel size (99,99): mask(x, y) = 1.0

When m(x, y) for a pixel lies between the three mask values given in this

list, the pixel value is determined by linear interpolation between the two

adjacent blur levels. So for instance if a pixel’s mask(x, y) = 64.5, which lies

at the midpoint between 1 and 128, the pixel’s RGB color value will be an

exact mean of the medium (33,33) and maximally (99,99) blurred versions

of the pixel value.

Each time a user clicks on the image, the coordinates of the click (X, Y)

are passed to the de-blurring mask, and the value of the mask at each point

within the mask, mask(x, y) is then updated by calculating a mask update

variable ∆mask(x, y).

∆mask(x, y) can have a nonzero value for all points (x, y) in the mask

within the radius BrushRadius of 100 (outside this radius, the mask is not

updated). Equation 3.1 shows how ∆mask(x, y) is determined.

∆mask(x, y) =

100 × exp
(
− d(x,y)2

0.4×BrushRadius2

)
if d(x, y) ≤ BrushRadius

0 if d(x, y) > BrushRadius
(3.1)
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Figure 3.3: The mask (left) depicting the value of m(x, y) at each point, and the
correspondingly unblurred image (right) after a user has clicked to unblur six
times.

where d(x, y) is the Euclidean distance between any given point (x, y)

in the mask and the user click location (X, Y). This equation is the same as

used in the implementation of A. Das, Agrawal, et al. 2017, except for the

BrushRadius value differing and the maximum ∆mask(x, y) value per click

of 100 being significantly higher in this case than used in the original study.

(In the original study, users could “stroke” across an area, encompassing

multiple clicks in a single mouse movement, hence the ∆mask for each click

was lower.)

With each user click, ∆mask(x, y) is calculated for each point and used

to update the mask value for each point, mask(x, y), up to 255, based on

Equation 3.2.

mask(x, y) = min
(

mask(x, y) + ∆mask(x, y), 255
)

(3.2)

After each click, this updated mask was then used to update the display

of the image to the user. Figure 3.3 depicts the mask for an image after six

clicks (left, with lighter areas having higher mask values), and the corre-

sponding unblurred version of the image (right).
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Once a user submitted an answer, the final version of the mask was

recorded as the saliency mask corresponding to that interaction.

3.1.2.4 Human data collection timeline

Between February 1 and 9, 2024, a group of 17 experimental subjects re-

cruited through the service Prolific were each shown a set of stimuli. First,

15 experimental subjects saw 33 stimuli each, leading to 495 user-stimulus

interactions. Each individual stimulus was seen by 5 subjects. Human inter-

actions with each stimulus were then validated according to the following

criteria: 1) the user correctly identified the caption and 2) the user clicked to

deblur the image at least once.

The rationale for these validation criteria, respectively, is that 1) we are

interested in interactions where humans explored the image sufficiently to

produce a correct answer, which is presumed to be trivial for a sufficiently-

informed human subject (otherwise they can select that they cannot answer)

and 2) a response in which nothing is deblurred cannot contribute to making

a deblurring-based attribution map.

After this initial group of 15 subjects was shown a set of 33 stimuli each,

this generated 337 validated user-stimulus interactions (out of 495 total in-

teractions). However, only 78 out of 99 stimuli corresponded to at least 3

such validated user interactions – 3 was the minimum I had decided on for

generating an aggregate attribution map for each stimulus.

To increase the number of stimuli for which human saliency maps were

available, I presented each of the 17 stimuli which only produced 2 vali-

dated interactions in the initial data collection to two additional experimental

subjects on Prolific. The goal of this was to increase the number of validated

interactions for these stimuli, so that more aggregate human saliency maps

would be created.

After collecting more data, the number of stimuli with 3 or more vali-

dated responses increased to 92 out of 99 stimuli. (Now, out of 529 total

interactions, 357 were validated, and of those, 348 belonged to a stimulus

with at least three validated interactions.) Thus, aggregate human saliency
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Figure 3.4: A diagram depicting the normalization, averaging, and downsam-
pling of human attention maps.
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maps could be generated for 92 stimuli.

3.1.2.5 Creation of aggregate human saliency maps

On a stimuli-per-stimuli basis, the masks from validated user responses

were 1) normalized, 2) averaged on a pixel-by-pixel basis across masks from

the same stimulus, and 3) downsampled to a 4x4 array. This whole process

is visualized for the "A woman punches a man" stimulus in Figure 3.4.

Assume each stimulus s each validated user mask is represented by the

matrix Mi,s, where i represents the user and each element consists of the cor-

responding mask(x, y) value for that stimulus s and human subject i. I first

normalized each of these masks by dividing each element by the element-

wise sum of the matrix to produce the normalized mask Ni,s, according to

Equation 3.3, where mask(x, y) is any given element of Mi,s.

Ni,s =
Mi,s

∑ Mi,s
(3.3)

Then, for each stimulus s (among stimuli for which at least 3 validated

responses were available) for which there are three or more validated nor-

malized masks each represented as some matrix Ni,s, I generated aggregate

human mask Hs for that stimulus (s), as shown in Equation 3.4, where n

is the number of validated normalized masks for a given stimulus s (never

less than 3), and i represents each human-generated index from 1 to n.

Hs =
1
n

n

∑
i=1

Ni,s (3.4)

Hs,down = Downsample4×4(Hs) (3.5)
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Figure 3.5: For each image, the top row visualizes four human-generated
masks, while the second row visualizes what the aggregate saliency map looks
like before and after downsampling.
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Finally, this aggregate mask for each stimulus was downsampled as in

Equation 3.5 by averaging across 16 square patches arranged in a 4 x 4 struc-

ture, leading to a final Hs,down with shape (4,4); this downsampling by av-

eraging does not affect normalization.

This aggregate downsampled human saliency map Hs,down was used

as the human saliency map for each of the 92 stimuli s for which it was

generated. The entire process for a single example with 5 validated user

attention masks is illustrated in Figure 3.4. Three more examples of this

process are illustrated in more compact form in Figure 3.5.

3.1.3 Generating model attribution maps

I used the model-agnostic SHAP method (described in 2.3.2.3.1) to gener-

ate attribution maps for each stimulus-model combination for four mod-

els. Separately, I also recorded the output of each model on a large por-

tion of the VALSE dataset as well as the experimental stimuli. The code for

each model’s implementation and the generation of attribution maps can be

found on this project’s data analysis GitHub repository4.

3.1.3.1 Model selection and implementation

The aim of this study is not to give a comprehensive overview of the state

of the art of VLMs in terms of how humanlike their attribution maps are.

Rather, I use a mix of models to inject variety into the results of the study,

and aim to use models with some variety of architectures and expected per-

formances on the VALSE dataset. Another consideration in model selection

is ease of implementation for the zero-shot image-text alignment task. All

models were loaded through the Huggingface interface (Hugging Face - Doc-

umentation 2024), and in the case of CLIP and LXMERT I repurposed some of

the implementation code from the VALSE paper’s GitHub repository (Par-

calabescu, Cafagna, et al. 2022).

All images were resized to square before being passed into the models

4Data analysis repository for this project: https://github.com/skshvl/thesis-data-
public/
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Scalar Output Value for
Stimulus s

Overall
VALSE
Accu-
racy

LXMERT
(2019)

✓ ✓ ✓ fm(s) =
Pcaption(s)− Pfoil(s)

53.3%

CLIP (2021) ✓ ✓ fm(s) = scorecaption(s)−
scorefoil(s)

71.6%

FLAVA (2022) ✓ ✓ ✓ fm(s) = scorecaption(s)−
scorefoil(s)

67.2%

SigLip (2023) ✓ ✓ fm(s) = scorecaption(s)−
scorefoil(s)

66.8%

Table 3.1: A summary of the models used in the study. fm(s) represents the
single scalar output value of model m for stimulus s. The overall VALSE acu-
racy is averaged between the accuracy on the validated actions, existence, and
relations examples in the entire VALSE dataset.

to generate output scores as well as for SHAP attribution maps.

The models are summarized in Table 3.1. The models used are all dual

encoders, but generate one of two types of final representations: a joint im-

age/text representation (LXMERT and FLAVA) or separate encodings of im-

age and text (CLIP and SigLip). The former involves a cross-modal or mul-

timodal layer to create a joint representation, while the latter does not. Each

either by design or with a little final processing allows users to generate a

similarity score between the image and text modalities, represented in a sin-

gle scalar output. This scalar output fm for each model is used as the basis

for SHAP attribution maps, but also to generate performance data for each

model in this study.

The Shapley value (defined in Equation 2.1) estimate can be represented

as ϕm,s(i, j), which represents the impact of image patch with coordinates

(i, j) for a model m and stimulus s on the output variable fm(s). (s refers
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Figure 3.6: SigLip, when shown this image with the caption “There is at least
one bike on the rack” and the foil “There are no bikes on the rack”, assigns
them each the following image-text similarity scores, respectively: -4.9801
(caption) and -4.7209 (foil) and the caption-foil difference is -0.2592. The model
thus gets it wrong.

to both the image and the caption/foil of each stimulus.) We define the

scalar variable fm for each model so that positive values correspond to the

correct choice (caption) and the negative values to the incorrect choice (foil).

Moreover, the higher the magnitude of the value, the more confident the

model is. The output value defined here for each model will be used in this

study whenever a single scalar output for a model is required. Table 3.1

contains the scalar output formula for each model.

For example, the model SigLip, when shown Figure 3.6 with the caption

“There is at least one bike on the rack” and the foil “There are no bikes on

the rack”, assigns them each the following image-text similarity scores, re-

spectively: -4.9801 (caption) and -4.7209 (foil) and the caption-foil difference

is -0.2592. The caption-foil score difference will be fm(s), where s identifies

the stimulus for which fm is the single scalar output for model m.

In this case, fm(s) is negative: -0.2592. This shows the model making a

mistake: it assigns a higher score to the foil than to the caption. The caption-

foil difference fm(s) is the representation of the model’s final answer on

which text is correct: positive means caption, and negative means foil.

Further technical details of each model and its implementation are dis-
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cussed in Appendix A.

3.1.3.2 Generating SHAP attribution maps

We generate attribution maps for each image-model pair by using the SHAP

package. The SHAP package, as explained in section 2.3.2.3.1, approximates

Shapley values. The entire process for generating model attribution maps

in my study is illustrated in Figure 3.7.

To run my 99 experimental stimuli through the SHAP process, I resized

each image to a square and divided it into 16 equally sized square patches,

arranged 4x4. I then defined a 4 x 4 matrix that identifies whether any given

patch is visible or masked. In its starting position, the image matrix A looks

like this, with all patches set to visible:

A =


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



We also provide SHAP with a "background matrix" B which has the

value:

B =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



We then use the SHAP package to generate a set V of 172 variants of

matrix A that “mask out” different areas using the shap.Explainer() class.

For any matrix A′ in set V, one or more patches may be replaced with the

0 background value from background matrix B. An example can be seen in
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part (a) of Figure 3.7.

We also pass SHAP a prediction function which takes this masked ver-

sion of the matrix, A′, converts it to a masked image we can call s′ (part (b)

of Figure 3.7), and generates a model output score fm(s′) for the modified

image s′ (part (c) of the figure). When converting the matrix to an image,

patches with a 0 value get replaced with a blurred version, generated with

a Gaussian Blur function with kernel size (99, 99) — the same as the highest

blur level in the human study. Two examples of such partly-blurred images

are shown in part (b) of Figure 3.7.

In the SHAP package’s approximation algorithm, the model outputs for

these 172 variant matrices A′ are generated and compared, to estimate the

contribution of each of the 16 square patches of the image to the output

score, represented in a Shapley value ϕm,s(i, j) for each patch row i and col-

umn j in the 4x4 arrangement of patches. A high positive ϕm,s(i, j) value

is indicative of an important region that increases the correctness of the

model’s output by increasing the caption-foil difference. But what of a neg-

ative value?

If we consider what a negative Shapley value ϕm,s(i) means, a negative-

valued patch is one that lowers the model output score, i.e. decreases the

caption-foil difference and pushes the model towards the wrong answer.

However, we are most interested in the saliency of the region; that is, we

want to know whether it has a big impact on the model’s assessment, be-

cause an impactful region for the model is likely to be important for human

subjects, too, if they see the picture in a similar way. Thus, we take the mag-

nitude of the SHAP values of each patch, and normalize them to add up to

1 (see part (e) of Figure 3.7), creating a new set of SHAP values ϕ′
m,s(i, j) for

each patch (i, j), where m is the model and s is the stimulus for which the

SHAP values are being generated:

ϕ′
m,s(i, j) =

|ϕm,s(i, j)|
∑4

i=1 ∑4
j=1 |ϕm,s(i, j)|

47



Methodology

Figure 3.7: A graphical representation of the generation of a normalized SHAP
map for CLIP. (Other models go through the same process.)

48



3.1 Data collection

The 4x4 normalized, positive SHAP matrix of ϕ′ values for each model

m and stimulus s can be represented as Φ′
m,s as seen in Equation 3.6.

Φ′
m,s =


ϕ′

m,s(1, 1) . . . ϕ′
m,s(1, 4)

... . . . ...

ϕ′
m,s(4, 1) . . . ϕ′

m,s(4, 4)

 (3.6)

This process was applied to all 99 experimental stimuli (s) for all four

models m: LXMERT, CLIP, FLAVA and SigLip, resulting in a total of 396

model attribution matrices Φ′
m,s. Figure 3.8 shows the SHAP maps gener-

ated for the same stimulus for four different models, as well as the model

(m) output fm(s) for each unmodified stimulus s (positive f means correct).

3.1.3.3 Generating model outputs

Each model m’s output for the edited set of 99 final stimuli s, represented by

variable fm(s), was also saved. These will be important for the comparison

between humanlikeness metrics and model performance data.

Separately, I ran each model on the entire validated VALSE dataset for

the existence, relations, and actions pieces, leading to 2637 output data points

fm(v) for each model m and VALSE data point v (I do not call v a "stimulus"

because I reserve that term for the 99 stimuli in the human study).

Note that this process used the original content of the VALSE dataset,

leaving out the edits made in the data generation stage of my experiment.

This data is not used to directly compare behavior between the model and

humans, but rather as reference data for the overall performance of each

model on the relevant parts of VALSE.
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Figure 3.8: Raw and normalized SHAP attribution maps for four models on
the same stimulus, as well as the model output for each stimulus.
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3.1.4 Summary of data collection

To summarize, as a result of the data collection steps described in sections

3.1.1, 3.1.2, and 3.1.3, I have created the following data structures:

1. A set of 99 edited stimuli drawn from the VALSE dataset, including an

image, caption, and foil.

2. For each stimulus s for which enough human data is available (92

out of 99 stimuli), an aggregate downsampled human saliency map

Hs,down, represented as a 4x4 matrix.

3. For each stimulus s and model m (among CLIP, LXMERT, FLAVA,

SigLip):

(a) A model output score for that stimulus, fm(s).

(a) A normalized, positive-valued SHAP attribution map represented

as matrix Φ′
m,s which estimates each stimulus image region’s im-

pact on the model output for that stimulus, fm(s)

4. For each validated data element v in the actions, relations, and exis-

tence pieces of the VALSE dataset, a model output score fm(v) for each

model m.

For the rest of the analysis, I will use 92 rather than 99 stimuli in the

analysis, as these are the ones for which human maps are available.

3.2 Data analysis

This section discusses final data processing by generating comparison met-

rics and then describes the methodology for answering the research ques-

tions quantitatively.

3.2.1 Calculation of comparison metrics

Before running the final data analyses, I calculated individual similarity

metrics between each model’s SHAP attribution maps and their correspond-

ing human saliency maps, each of them being normalized arrays of shape
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(4,4).

There is one SHAP attribution map, Φm,s for each combination of model

m and stimulus s, as defined in Equation 3.6. There is one aggregate human

attribution map, Hs,down, for each stimulus s, as defined in Equation 3.5.

The metric comparing each model-stimulus combination’s Φ′
m,s and Hs,down

should be a metric that would be able to detect correlation between the two

maps, if it exists.

3.2.1.1 Metrics considered

In Rodis et al. 2023’s review of multimodal explainability, a list of metrics

for comparing attention maps to ground-truth maps is given; among these,

Earth Mover’s Distance (EMD) and Rank Correlation (referred to later as

RC) are particularly suitable for this context. RC was also used in two

closely related precursor studies: A. Das, Agrawal, et al. 2017 and Selvaraju

et al. 2019.

3.2.1.1.1 Earth Mover’s Distance (EMD) The intuition behind EMD is

that it is the amount of “work” required to turn one distribution (say, the

human saliency) into another (the SHAP attribution map) if we imagine

each as a pile of earth (hence the "earth" mover). The earth mover’s distance

between the two matrices in this case can be represented by the following

equation:

EMDs,m (⃗a, b⃗) = minF ∑
ij

fijdij

where⃗ and b⃗ are flattened versions of the 4x4 SHAP attribution map Φm,s

(for a given model and stimulus) and 4x4 aggregate downsampled human

attribution map Hs,down (for a given stimulus). dij is the Euclidian distance

between elements i and j of the first and second matrices5, respectively, and

5The distance is based on the Euclidian distance between the two entries in the orig-
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F represents the set of all possible transportation arrangements of "mass"

between the distributions, where each element fij is an element representing

that transport between elements i and j.

I implemented EMD using the Python Optimal Transport library (Fla-

mary et al. 2021).

Note that, unlike Rank Correlation, for our purposes the numeric value

of EMD has little direct meaning except relative to other EMD values. Smaller

EMD values indicate greater closeness between two distributions.

3.2.1.1.2 Rank Correlation (RC) as a similarity metric The rank correla-

tion, also called Spearman Rank Correlation (scipy.stats.spearmanr — SciPy

v1.12.0 Manual 2024) approach first converts each two-dimensional distri-

bution to a flat vector, say x⃗ and y⃗ , and then replaces values at each index

with the rank of that value in the vector by applying a Rank function.

In our case, for each vectorized 4 x 4 attribution/saliency map, the low-

est value cell gets the rank 16, while the highest value gets rank 1. This

creates two new vectors, r⃗x and r⃗y with 16 elements each.

We can arbitrarily say that the first of these vectors is a flattened and

ranked version of a given stimulus s’s human saliency map:

r⃗x = Rank
(

Flatten(Hs,down)

)

While the second vector is a flattened and ranked version of a given

stimulus s and model m’s SHAP attribution map Φ′
m,s:

r⃗y = Rank
(

Flatten(Φ′
m,s)

)

inal two-dimensional matrixes, treating the row and column of each element as a spatial
location.
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The order of which vector is which has no impact on the final RC value.

We then calculate di for each i going from 1 to 16:

di = rxi − ryi

The equation for RC is given in Equation 3.7, where n = 16 in our case

and RCm,s represents the Rank Correlation between the corersponding hu-

man and SHAP maps for model m and stimulus s. The Spearman correla-

tion RC can go from -1 to 1, with 0 representing no correlation, 1 a perfect

correlation, and -1 a perfect inverse correlation.

RCm,s = 1 −
6 ∑n

i=1 d2
i

n(n2 − 1)
(3.7)

Intuitively, RC represents how similar the two vectors are in how the

elements are ranked. In a perfectly correlated set of vectors, the values may

differ, but each element i has the same ranking in both vectors and thus each

di = 0, leading to a perfect RC = 1.

I implemented RC with SciPy’s Spearman implementation scipy.stats.spearmanr6.

3.2.1.1.3 Other metrics considered Two further metrics considered were

Chi-Squared 7 and Kullback-Leibler divergence 8. However, the first pro-

duced no discernible quantitative difference between randomly shuffled

maps and related maps, while the second led to cases with infinite values.

Both were discarded.

6scipy.stats.spearmanr — SciPy v1.12.0 Manual 2024
7scipy.stats.chisquare — SciPy v1.12.0 Manual 2024
8scipy.stats.entropy — SciPy v1.12.0 Manual 2024
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Figure 3.9: An example of an EMD and RC calculation between a downsam-
pled human saliency map and a normalized SHAP attribution map for CLIP.

3.2.1.2 Evaluation of metrics

To evaluate the appropriateness of each metric, RC and EMD, density dis-

tributions were created for each model, with two variants of the metric:

1. Similarity metric between SHAP and human map for same stimulus

(this is how the metric is meant to work)

2. Similarity metric between a) the SHAP map for a given stimulus and

model and b) a human map drawn from a random stimulus (after the

human maps list was shuffled). Thus, each SHAP map is paired with

most likely an unrelated human map.

The rationale for evaluating these two variants for each metric is as fol-

lows: for the metric to be practically useful, variant (1) should produce val-

ues notably different from variant (2). Otherwise, it would appear that the

metric is either not measuring the correlation properly, or there is no correla-

tion at all between corresponding human and SHAP attribution maps, since
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a randomly paired set of SHAP-human maps produces the same average

SHAP-to-human correlation. 9

Figures 3.10, 3.11, 3.12 and 3.13 show the distributions of the two metric

variants above for both EMD and RC for each model’s SHAP attributon

maps and human saliency maps. We see that both EMD and RC produce,

to varying degrees, a clear distribution that is distinct from random (note

that for EMD smaller values imply greater similarity; for RC, greater values

imply greater similarity).

A visual inspection of these graphs leads to the conclusion that EMD

distances are generally closer to the randomized metric’s distribution, while

RC shows both a clear positive correlation between human and SHAP maps

and is visibly distinct from its shuffled variant.

Whether the difference between the RC to human maps and the RC to

shuffled human maps is statistically significant is the subject of RQ1, so we

will not rigorously answer it here; regardless, a visual inspection of the

graphs in Figures 3.10, 3.11, 3.12 and 3.13 suggests RC as the most promising

metric for identifying similarities between SHAP and human maps. Thus,

in the final analysis I generated a Spearman RC score between each SHAP

map Φ′
m,s for stimulus s and each model m and its corresponding human

saliency map Hs,down.

An RCm,s score was generated for each stimulus s for which a human

saliency map was available, so for 92 out of 99 stimuli. This score RCm,s

represents the humanlikeness of the attribution map for model m’s output

for stimulus s.

9A reader may object: Isn’t one of the research questions whether there is a correlation
at all between SHAP maps and human maps? Isn’t choosing a metric based on whether it
shows a correlation cherry-picking? My answer would be that not every metric is suitable
to detect a difference, and I use visual intuition at this stage, in addition to a motivated
choice of metric based on prior research, to determine which metric is most appropriate to
detect a correlation.
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Figure 3.10: The distribution of RC and EMD variant values for LXMERT.

Figure 3.11: The distribution of RC and EMD variant values for CLIP.

57



Methodology

Figure 3.12: The distribution of RC and EMD variant values for FLAVA.

Figure 3.13: The distribution of RC and EMD variant values for SigLip.
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3.2.2 Answering the research questions

What follows are the main research questions (posed in section 2.4), this

time restated including the variables developed in the methodology so far:

1. RQ1: For each of the four models, is the average (across stimuli s)

similarity RCm,s between each model m’s attribution map Φ′
m,s and the

corresponding human saliency map Hs,down statistically significantly

higher than the average similarity expected by random chance?

• Null Hypothesis (H01): The average similarity RCm,s,AVG between

each model’s attribution maps and corresponding human saliency

maps is not significantly greater than the average similarity that

would be expected by chance.

• Alternative Hypothesis (HA1): The average similarity RCm,s,AVG

between each model’s XAI attribution maps and the correspond-

ing human saliency maps is significantly greater than what would

be expected by chance.

2. RQ2: Does the similarity between a model m’s XAI attribution maps

and human saliency maps, RCm,s, correlate with the model’s perfor-

mance, both on individual stimuli s for each model and in aggregate

between models, on the VALSE benchmark?

• Part 1: Within-model test

– Null hypothesis (H02.1): There is no statistically significant

correlation between a model’s per-image similarity to human

saliency maps RCm,s, and its output on individual stimuli,

fm(s).10

– Alternative Hypothesis (HA2.1): There is a positive correla-

tion between each model m’s per-image similarity to human

saliency maps, RCm,s, and its output on individual stimuli,

fm(s).

10In this part of the study, I take output score fm(s)as a direct and more continuous
indicator of performance than binarizing the performance into correct/incorrect.
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• Part 2: Between-model test

– Null hypothesis (H02.2): There is no statistically significant

correlation between a model m’s distribution of similarity

scores RCm,s to human saliency maps and its overall accuracy

on the VALSE benchmark.

– Alternative Hypothesis (HA2.2): There is a positive corre-

lation between a model m’s distribution of similarity scores

RCm,s to human saliency maps and its overall accuracy on

the VALSE benchmark.

What follows is a discussion of the methodology for answering each re-

search question.

3.2.2.1 RQ1 methodology

From the distribution of rank correlation (RC) scores visualized in section

3.2.1.2, it appears that the average rank correlation RCm,AVG between SHAP

and equivalent human maps, averaged across stimuli s for a given model

m, is significantly 1) greater than zero and 2) greater than the average corre-

lation when the list of human maps is shuffled. This seems evident in each

graph, but visual inspection does not prove significance. There are two tests

I do to demonstrate the significance.

1. To test whether the average attribution humanlikeness scores (RCm,AVG)

for each model significantly deviates from zero, suggesting a mean-

ingful similarity between SHAP and human-generated maps, we con-

ducted a one-sample t-test against the null hypothesis that RCm,AVG =

0 for each model.

2. However, even if we prove that the RCm,AVG for each model is (statis-

tically significantly) greater than zero, there is a possible confound: it

could be that on average any human map is, equally correlated with

any SHAP map due to, for instance, a center bias in both types of maps.

To rule this out, I also ran a kind of permutation test: For each model,

I generated 10,000 shuffled variants of the dataset that shuffled the

pairing of SHAP and human maps without changing the maps them-
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selves. Here, I hypothesize that RCm,AVG > (RCm,AVG)AVG, 10k variants;

that is to say, RCm,AVG for each model is significantly greater than the

average such value across all permutations of the dataset.

The following are the exact steps I took for this second analysis:

1. Determine the average rank correlation between the 92 SHAP maps

and their corresponding human maps, for each model m across stimuli

s (this average was also needed for the one-sample t-test described

above):

RCm,AVG =
∑92 stimuli

s RCm,s

92

2. Generate 10,000 variants indexed by i ∈ {1, ..., 10, 000} of the dataset

in which the order of the human maps is randomly shuffled in each

case, such that a given human saliency map Hs,down is replaced with

some human map Hs(i),down, where s(i) is the stimulus which replaces

stimulus s in given dataset variant i.

3. For each shuffled dataset variant i, compute the RCm,AVG,i value.

4. Calculate the proportion of RCm,AVG,i values that is greater than the

actual average rank correlation for the model, RCm,AVG.

p =
#{i|RCm,AVG,i ≥ RCm,AVG}

10, 000

This is a p-value representing the likelihood that the average human-

likeness metric for model m, RCm,AVG, came from the distribution of

randomly shuffled datasets RC scores. If it is low enough, I can reject

the null hypothesis and take it as significant that RCm,AVG, original dataset >

(RCm,AVG)AVG, 10k variants.
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3.2.2.2 RQ2 methodology

For this part of the analysis, I normalized the output scores fm(s) for each

model by dividing it by that model’s output’s standard deviation σ( fm) on

all of VALSE (validated actions, relations, existence pieces only). This leads

to normalize output score f ′m(s) for a given stimulus s and model m:

f ′m(s) =
fm(s)
σ( fm)

This normalization has no impact on the statistical significance of the find-

ings for each model, but is done to make comparisons between models more

intuitive, since each architecture produces a wider or narrower spread of

output values.

3.2.2.2.1 RQ2 part 1: Within-model test I evaluate the null hypothesis

that within each model’s performance data on the set of 92 stimuli (each de-

noted by s), the model attribution’s humanlikeness scores (RCm,s) correlate

with the normalized model outputs for the same stimuli, f ′m(s). The output

f ′m(s) is taken as representative of performance: the greater the value, the

more confidently accurate the model is.

For each model, a separate rank-correlation calculation was performed

between the list of RCm,s scores and the list of equivalent f ′m(s) scores, gen-

erating a rank-correlation score ρ. Note that this is a completely separate use

of rank-correlation as a statistical analysis metric, rather than a map similar-

ity metric as earlier. The repeated use of rank correlation in the study for

two different purposes is incidental and has no methodological import.

The reason for this choice of statistical test is that we are not interested in

the numerical details of how RCm,s correlates with f ′m(s) for a given model.

Rather, we want to know whether it does. Rank correlation focuses on iden-

tifying a relationship without worrying about whether the relationship is

linear, quadratic, or otherwise.
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To test for statistical significance of the correlation for each model m be-

tween RCm,s and f ′m(s) across stimuli s, I conduct a Spearman rank correla-

tion test with the SciPy library11, which automatically generates a p value.

3.2.2.2.2 RQ2 part 2: Between-models test For this part of the analysis, I

am interested in determining whether the distribution of RCm,s humanlike-

ness scores for each model across stimuli has a relationship with the model’s

overall accuracy on the actions, relations and existence phenomena in the val-

idated VALSE dataset.

I treat the RCm,s values as a distribution, one for each model. I use a

one-way ANOVA test to determine whether the mean rank correlations are

significantly different between models. Here, a sufficiently low p value is re-

quired to reject the null hypothesis that the rank correlations are not differ-

ent, on average, among the four models considered. If they are significantly

different, the relationship between their average values and the aggregate

accuracy of each model will be explored.

3.2.2.3 Significance threshold

To set the significance thresholds for this study, I divide the standard α =

0.05 by the total number of statistical tests performed. I then apply the up-

dated α uniformly to each statistical test.

I count the number of statistical tests as follows:

• For each model m in RQ1, I perform 2 statistical tests to see whether (1)

the average humanlikeness RCm,AVG > 0 and (2) the average human-

likeness RCm,AVG is significantly greater than the average across 10,000

permutations of the dataset, (RCm,AVG)AVG, 10k variants. This makes for

a total of 8 statistical tests.

• For each model m for RQ2.1, I perform a single rank-correlation test

between its output values fm(s) and its humanlikeness scores RCm,s.

This makes for a total of 4 statistical tests.

11scipy.stats.spearmanr — SciPy v1.12.0 Manual 2024
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• For RQ2.2, I perform a single one-way ANOVA test against the null

hypothesis that all models m have statistically the equivalent RCm,AVG.This

makes for 1 statistical test.12

Thus, I have a total of 13 statistical tests, meaning α = 0.05
13 = 0.0038.

12If the reader is confused, I can "spoil" here that because no significant difference is
found by this test, no additional tests are performed on individual differences between
models, hence only one statistical test is done.
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4. Results

The experimental results for each research question are provided below.

4.1 Research question 1

For RQ1, I found with high significance that we can reject the null hypoth-

esis and conclude that the average humanlikeness score, RCm,AVG, for each

model m is:

1. significantly greater than 0 (no correlation), and

2. significantly greater than RCm,AVG for randomly shuffled variants of

the dataset, which we can represent as (RCm,AVG)AVG, 10k variants.

The p values for each confirmed hypothesis per model are in Table 4.1.

The findings are also visualized in Figure 4.1: the left side of each graph

shows the distribution of RCm,s values for the unpermuted dataset for each

model, as well as the mean value RCm,AVG as a dashed vertical line.

The right side of each graph shows the distribution of RCm,i,AVG across

10,000 permuted datasets (where i is one of these permutations), as well as

model RCm,AVG (±
standard error of
means)

p-value for
finding:
RCm,AVG > 0

p-value for finding:
RCm,AVG >
(RCm,AVG)AVG, 10k variants

LXMERT 0.263 ± 0.030 < 0.0001
(t-statistic: 8.663)

<0.0001

CLIP 0.227 ± 0.030 < 0.0001
(t-statistic: 7.601)

<0.0001

FLAVA 0.266 ± 0.028 < 0.0001
(t-statistic: 9.354)

<0.0001

SigLip 0.236 ± 0.031 < 0.0001
(t-statistic: 7.622)

0.0005

Table 4.1: p-values for the two statistical tests in RQ1.
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where the original RCm,AVG falls on this distribution. It is visually obvious

that the RCm,AVG of the original dataset falls on the far edge of the distribu-

tion, which explains why the p-values are so low for each model.

Note that the distribution of humanlikeness scores for each stimulus can

vary quite a lot, and many stimuli produce negative humanlikeness scores.

My study only finds with high significance that the average humanlikeness

for each model is significantly (1) greater than zero and (2) greater than what

could be expected for a randomly shuffled dataset. The focus on averages

leads to a significant result despite the wide spread of individual RCm,s val-

ues.
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4.1 Research question 1

Figure 4.1: The left side of each graph shows the value density of RCm,s for
the unshuffled dataset for each model, as well as the mean value RCm,AVG as
a dashed vertical line. The right side of each graph shows the distribution
of RCm,i,AVG across 10,000 permuted datasets, as well as again RCm,AVG as a
dashed line.
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4.2 Research question 2

For RQ2, the study failed to reject either null hypothesis (H02.1 and H02.2).

4.2.1 RQ2: Part 1

The outcome of the rank correlation tests between model attribution hu-

manlikeness per stimulus s (RCm,s) and model output for stimulus s ( f ′m(s),

σ-normalized) is seen in Figure 4.2, including rank-correlation coefficients

(ρ, referred to in the graphs as "Spearman correlation") for each model and

the associated p-value. (Again, note that this "Spearman correlation" is com-

pletely distinct from the rank correlation equation previously used to com-

pute the human-model attribution similarity scores, and serves a distinct

purpose.

There was no statistically significant positive rank correlation within any

of the four models between the model humanlikeness (RCm,s) and the model

output ( f ′m(s)) across stimuli. For SigLip, there is a negative correlation with

p value 0.02, but with the Bonferroni-corrected α of 0.0038, that p-value is

too high to be statistically significant.

4.2.2 RQ2: Part 2

The distribution of RCm,s scores on a model-by-model basis is seen in Fig-

ure 4.3, which on the x-axis depicts the model’s overall average accuracy (a

straight average between the accuracy over the three linguistic phenomena).

The visual intuition that these distributions are not significantly different

from one another is confirmed by a one-way ANOVA test, which leads to

a p-value of 0.73, meaning it is highly likely that the four RCm,AVG values

come from the same population.

Without significant differences in RCm,s, or its average RCm,AVG, between

models, analyzing the relationship between RCm,AVG and overall model

quality is pointless.
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4.2 Research question 2

Figure 4.2: The Spearman rank-correlation coefficients (plus p-value) for each
model are printed above the scatter-plot. This represents the rank correlation
between the x-axis RCm,s similarity score and the y-axis normalized model
output ( f ′m(s)) for each stimulus s.
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Figure 4.3: The distribution of RCm,s for each model m is plotted in this scat-
terplot, where the x-axis represents each model’s overall accuracy on the three
linguistic phenomena used from VALSE.
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5. Discussion

5.1 What the results say

The statistical confirmation of the hypothesis for RQ1 allows me to conclude

that the average humanlikeness score RCm,AVG between SHAP and human

maps for each model is the result of a statistically significant relationship

indexing SHAP maps to human maps, which is virtually impossible to be

replicated by shuffling the pairings of the maps randomly.

An additional vindication of the RC similarity scores calculated here is

that they closely track the rank correlations found in A. Das, Agrawal, et al.

2017 for two VLM models on another task: there, the models had average

XAI-human map rank correlations ranging from 0.249 to 0.264. (Mine range

from 0.227 to 0.266.)

This means the outcome of RQ2 becomes more meaningful as well, be-

cause the humanlikeness metric used in that analysis, RCm,s, is on average

indicative of a genuine, non-random alignment between the models’ attri-

bution maps and the corresponding human saliency maps.

The fact that the RCm,s metric appears to be meaningful strengthens the

validity of the results for RQ2, which lead to the conclusion that at least

this method of measuring model humanlikeness (comparing SHAP attribu-

tion maps to human saliency through rank correlation) does not correlate

with performance on VALSE, whether across stimuli for a single model, or

between models.

5.2 What the results mean

My findings vindicate my A. Das, Agrawal, et al. 2017-inspired method of

generating task-specific human saliency maps. However, the intuition that
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that a humanlikeness metric based on these saliency maps should itself cor-

relate with performance on VALSE has not been confirmed.

Had it been confirmed, it may have suggested, on a more conceptual

level, that there is some kind of quality called "grounding" that is related to,

and affects, both performance and humanlikeness. As it stands, this remains

speculative in the context of this experiment.

Ultimately, this experiment and its results demonstrate some of the short-

comings of a subjective measure like "attribution humanlikeness" as in this

case. On an ontological level, it is far from guaranteed that downsam-

pled SHAP maps and human saliency maps from my web interface are an

"apples-to-apples" comparison, and that the humanlikeness score this pro-

duces measures the kind of grounding that VALSE also gets at.

In the end, when we compare this humanlikeness score with a more

performance-based evaluation approach like the VALSE benchmark, a kind

of epistemological hierarchy emerges. A correlation with VALSE perfor-

mance would have vindicated the humanlikeness score in this study. Now,

the absence of a correlation leaves its status indeterminate, while not mean-

ingfully undermining the validity of VALSE as a benchmark.

The strength of a benchmark like VALSE lies in the fact that it is in some

sense not "just" a measure of raw performance; its challenges are designed to

match human-defined categories of comprehension. Thus, without directly

using XAI methods, this granular performance-based approach gets at some

understanding of what human concepts the model represents. This implies

that benchmarks like VALSE might still offer indirect insights into models’

conceptual alignment with human thought, despite not directly drawing on

humanlikeness metrics derived from attribution maps or other XAI meth-

ods.

5.3 Study limitations

I did my best in the methodology design stage to avoid some of the pitfalls

of this study, such as an unbalanced or poor-quality dataset, or a meaning-
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less human-AI comparison metric. Even so, some limitations remain:

• Despite the VALSE filtering process documented in Appendix B, some

of the final stimuli that "made the cut" continue to have obvious issues.

The stimulus whose foil is "A toilet pees on a woman" is certainly not

helping the quality of either the human or model attribution data. A

more rigorous data filtering might have improved this issue some-

what, though most stimuli are unproblematic and this is unlikely to

be the decisive factor leading to a lack of significance in RQ2.

• The model-agnostic SHAP approach reduced the question of attribu-

tion to a single 4x4 matrix for each model and stimulus; the lack of

granularity and the one-size-fits-all nature of this approach, while help-

ing make the methodology scalable, has obvious drawbacks for the

quality of the output data.

• The human data collection process was open to abuse by bad-faith ac-

tors who just wanted to finish the study quickly; subjectively, there

were individual human saliency maps I saw which struck me as non-

sensical on a case-by-case basis, but there was no way to "prove" they

should be discarded. More subjects in the future could cancel out this

issue.

5.4 Future work

The humanlikeness metric RCm,s is drawn from a very specific kind of at-

tribution map, which looks only at the visual modality. Other, more model-

specific methods could shed more light on different and more subtle ways a

model may or may not correspond to "humanlike" cognition (e.g. Cao et al.

2020).

Attention-based mechanisms which examine VLM attention in the vi-

sual modality (rather than model-agnostic attribution) could be a useful,

more dissection-based XAI counterpart to the human data collection inter-

face as I developed it here. Sacrificing model-agnosticity and scalability for

a more granular approach to one or two models could end up being a more
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fruitful approach.

Ultimately, creating a rigorous, empirically validated metric to evaluate

the groundedness of how a model does what it does, regardless of perfor-

mance, continues to be a worthwhile pursuit.
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A. Appendix: Details of models and their

implementation

More details about the four models used in this study are given in this ap-

pendix. Their properties are summarized in Table 3.1.

A.1 LXMERT

Published in 2019, the LXMERT model represented a significant step for-

ward in multimodal representation. Its architecture first encodes the text

and image input separately with transformer architectures, and then passes

the resulting representations through a cross-modal encoder. It was trained

on five tasks that incorporate both modalities to varying extents: “(1) masked

cross-modality language modeling, (2) masked object prediction [...], (3)

masked object prediction via detected-label classification, (4) cross-modality

matching, and (5) image question answering” (Tan and Bansal 2019, p. 2). A

key feature is that at the image encoding stage, it represents the image as a

set of detected objects and their positions, while text is represented through

“index-aware word embeddings”.

LXMERT was used as one of the key models used in both the origi-

nal VALSE study (Parcalabescu, Cafagna, et al. 2022) and the more recent

bugliarellf_measuring_2023 benchmarking study, where LXMERT achieved

the worst performance on VALSE (though still better than chance) out of all

models tested, with an accuracy of 59.6%.

Given an image resized to a square (as in all models in this study) and a

caption and foil, LXMERT outputs, among other quantities, two “cross rela-

tionship scores” for each text-image pair: one for the likelihood of the text

and image matching, and the other for the likelihood of the text and image

not matching. We pass these scores through a softmax filter per caption to
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Figure A.1: Model output f (on the x axis) distribution for LXMERT.

generate the following quantities:

• Probability of caption being correct, probability of caption being incor-

rect, adding up to 1: Pcaption, P caption incorrect

• Probability of foil being correct, probability of foil being incorrect,

adding up to 1: Pfoil, Pfoil incorrect

I then take the difference between the likelihood of the caption Pcaption

and the foil Pfoil as the output variable fm(s) for stimulus s. If this value is

positive, the model gets it “right.” If this value is greater in magnitude, the

model is more confident in its choice.

In Figure A.1, we can see the density distribution of the scalar LXMERT

output fLXMERT(s) (on the x axis) for the stimuli s in the validated subset

of VALSE (so not just the selected stimuli) for each of the three linguistic

phenomena in our study and overall, as well as the accuracy rate for each.

Values where the x-axis is above 0 represent correct judgements.
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A.2 CLIP

Published by OpenAI in 2021 (Radford et al. 2021), CLIP is a widely-used

VLM featured in the original VALSE study (Parcalabescu, Cafagna, et al.

2022). CLIP uses two separate transformer-based architectures to encode,

respectively, images and captions, creating a vector representation for each.

Rather than using cross-attention directly, CLIP was trained with a con-

trastive objective, aiming to keep correct image-caption pairs close by in the

vector space, while incorrect pairs were kept more distant; however, this

objective is accomplished without creating a joint representation.

Aside from the VALSE study, CLIP also featured in the more recent

Bugliarello, Sartran, et al. 2023 paper that included the VALSE benchmark;

there, it achieved a middle-of-the-road overall VALSE accuracy of 64.0%.

Given an image and two captions, CLIP produces a raw logit output for

each image-caption pair, which represents the image-text similarity score

for the caption and foil. We take the difference between these values as

the scalar output fCLIP(s); if it is positive, the caption has a higher score

and the model gets it right; greater difference magnitudes suggest increased

confidence.

Figure A.2 shows the density distribution of the scalar CLIP output for

the validated subset of VALSE for each of the three linguistic phenomena in

our study and overall, as well as the accuracy rate for each.
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Figure A.2: Model output f (on the x axis) distribution for CLIP.

A.3 FLAVA

Published in 2022, the FLAVA model aims to combine the strengths of contrastively-

trained dual-encoder models like CLIP and cross-modal fusion models like

LXMERT. It uses pretraining objectives generally associated with both of

these categories. It is also designed to be useful for unimodal contexts in

addition to the multimodal tasks for which CLIP and LXMERT were built.

The researchers behind FLAVA aim for “a foundational language and vision

representation that enables unimodal vision and language understanding

as well as multimodal reasoning, all within a single pre-trained model” (A.

Singh et al. 2022).

Architecturally, FLAVA resembles LXMERT more than CLIP: It first en-

codes the text and image modalities separately, then passes these encodings

into a multimodal encoder that is used as the basis for a final representation.

However, unlike LXMERT, FLAVA directly calculates “contrastive logits”

between the input text and images, which are equivalent to the CLIP output

logits, with higher values representing greater similarity.

As in CLIP, we take FLAVA’s scalar output fFLAVA to be the difference
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Figure A.3: Model output f (on the x axis) distribution for FLAVA.

between the similarity scores for a given stimulus s, the caption score minus

the foil score. A positive value means the caption was chosen over the foil.

Figure A.3 shows the density distribution of the scalar FLAVA output for

the validated subset of VALSE for each of the three linguistic phenomena in

our study and overall, as well as the accuracy rate for each.
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A.4 SigLip

Published by Google researchers in 2023, SigLip (Sigmoid Loss for Lan-

guage Image Pre-Training) is the newest model used in my study (Zhai et

al. 2023). It is CLIP-inspired in its architecture, but according to its authors

achieves an improvement in performance while also employing a more ef-

ficient training strategy. Even though it still employs contrastive learning,

it uses a sigmoid loss to assess similarity on the image-text pair level, and

unlike the CLIP pretraining, does not normalize this similarity with softmax

across the entire dataset.

As in CLIP, the scalar output fSigLip is the difference in image-text simi-

larity logit scores.

Note that on the three sub-parts of VALSE used in this study, SigLip

actually performs worse than CLIP in my implementation. This is visible

in Figure A.4, which depicts the density distribution of the scalar SigLip

output for the validated subset of VALSE for each of the three linguistic

phenomena in the present study and overall, as well as the accuracy rate for

each. (Compare to CLIP’s performance as depicted in Figure A.2.
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Figure A.4: Model output f (on the x axis) distribution for SigLip.
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B. Appendix: Details of experimental stim-

uli generation

This appendix describes how the final set of 99 stimuli used to generate

attribution maps for each model was selected and prepared for the experi-

ment.

B.1 Initial sampling of the VALSE dataset

I restricted the study to those entries in the VALSE dataset where the ma-

jority of MTurk annotators to the original dataset successfully picked the

caption as the correct label. This same validation criterion was used by the

VALSE researchers to validate their data.

Another consideration is that I wanted to make sure the examples used

in my study come from a range of difficulty levels. In order to do this, I

first ran elements of the VALSE dataset through the CLIP model (Radford

et al. 2021). This generated an image-text score for each image’s caption and

foil. The difference between these scores (the CLIP prediction difference) is

taken as an indication of the difficulty of the question for CLIP. The higher

the caption score is compared to the foil, the easier it was for the model to

choose the correct caption. The graph in Figure B.1 shows a histogram of

this score difference across the three “pieces” considered here. A scatterplot

for the same data is shown in Figure B.2.

This part of the data sampling, using this distribution of performances,

proceeded in the steps shown in Figure B.3, with the goal of producing a

final subsample that was balanced between different CLIP output scores.
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B.1 Initial sampling of the VALSE dataset

Figure B.1: CLIP prediction difference across validated instances of VALSE
dataset for three linguistic phenomena.

Figure B.2: A scatterplot (with false horizontal displacement) depicting the
range of CLIP output values for each linguistic phenomenon considered in the
study.
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Figure B.3: The initial stage of VALSE stimuli filtering. Note that the CLIP
prediction difference is the fCLIP variable defined in section A.2.

B.2 Sampling the final 99 stimuli

A number of captions and foils in the 269 initially sampled stimuli (see pre-

vious section) had issues that needed to be corrected before being usable in

the final study. The edits made, and their rationales, are given in Figure B.4.

Having arrived at the set of 269 stimuli and edited the captions and foils

as summarized in Figure B.4, I next eliminated those of the set that remained

less suitable for the final experiment.

B.2.1 Eliminating unsuitable stimuli

Here, I took separate approaches for the actions/relations and existence

pieces.

B.2.1.1 Actions and relations stimuli

For the actions and relations stimuli, the issues stem from the fact that the

VALSE foils, which were generated by modifying the captions, are some-

times implausible or semantically invalid. This issue was widespread enough

that in the initial data sampling, I sampled more stimuli from the actions
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B.2 Sampling the final 99 stimuli

Figure B.4: How stimuli in the VALSE dataset were edited.

and relations pieces to ensure there would be enough validated stimuli left

over.

For instance, in the actions piece, there is a stimulus with caption “A man

chisels a metallic element” and matching foil “A metallic element chisels

man.” The foil here is so implausible as to be absurd, so neither human

subjects nor AI models would really need to see the image to eliminate the

foil from consideration. For the existence piece, the risk of such implausible

foils is far lower, because all captions in the existence category are of the

form “There are/is. . . ” or “There are/is no. . . ”. The presence and absence

of some object in a picture are generally equally plausible.

To reduce implausible stimuli, I manually labeled all the sampled actions

and relations stimuli with “approve”, “reject”, or “unsure.” The rejections

are meant to be obvious cases where the foil makes no sense, while the “un-

sures” capture those cases where the foil is implausible but not impossible.

While the process relies partly on subjective judgment, labeling problem-

atic captions can help improve the quality of the study, and the full list of

stimuli marked in this way, including rejection rationales, is available in the
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Approve Reject Unsure Total
relations 61 5 39 105
actions 41 27 36 104
Total 102 32 75 209

Table B.1: Actions and relations approve/reject/unsure records.

VALSE piece CLIP output group approval #

actions

high_perf Approve 8
Unsure 4

low_perf Approve 8
Unsure 4

medium_perf Approve 6
Unsure 3

relations

high_perf Approve 8
Unsure 4

low_perf Approve 8
Unsure 4

medium_perf Approve 6
Unsure 3

Table B.2: Final counts for actions and relations pieces, 33 stimuli each.

project’s GitHub repository for data1. The final counts of labeled stimuli by

linguistic phenomenon are given in Table B.1.

To prevent this selection from biasing the data in a specific direction (e.g.

making the challenges more difficult or easier for CLIP), I sampled from the

labeled relations and actions examples based on the following requirements

to produce 33 of each.

1. All "rejected" images were rejected

2. A 2:1 ratio was maintained between "approved" and "unsure" exam-

ples

3. Equal representation for high, medium, and low-performing exam-

ples (based on CLIP outputs calculated earlier)

This led to the counts in Table B.2.

1URL: https://github.com/skshvl/thesis-data-public/
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B.2 Sampling the final 99 stimuli

B.2.1.2 Existence stimuli

The 60 existence stimuli sampled in the initial sampling process from VALSE

did not have plausibility issues on the captions or foils. They did, how-

ever, pose a different risk in light of the experimental design. This is be-

cause the human data collection relies on humans seeing blurred versions

of each stimulus image, and selectively unblurring it to identify the correct

caption. In discussions with my supervisor, the risk emerged that because

existence stimuli only require identifying simply whether something is ab-

sent or present in the image, particularly many of the existence stimuli may

be resolvable without un-blurring anything at all. This would likely lower

the informativeness of the human saliency maps.

To reduce the risk of such too-easy (when blurred) stimuli in the exis-

tence piece, I created a simple survey showing a blurred version (the same

blur level as in the final experiment) of each of the 60 existence stimuli sam-

pled from VALSE, alongside the caption and foil. The survey then simply

asked whether the user was able to identify the correct caption, including

an option to answer “Unsure”. A screenshot of the survey is seen in Figure

B.5.

A group of 5 adults including my research group and acquaintances

completed this survey. The results were then sorted into bins by stimu-

lus, to assemble the best possible quality group of 33 final existence stimuli.

Figure B.6 summarizes the different groups of stimuli based on this survey,

ranked from most to least desirable, including whether they were included

in the final 33 or not.

This resulted in the distribution of "existence" stimuli by performance

groups for CLIP output seen in Table B.3. While this distribution is less

balanced than the final counts for relations and actions (Table B.2), it still

shows a healthy mix of different difficulty levels for CLIP.
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Figure B.5: A screenshot from a small-scale survey on the existence piece.

Figure B.6: Outcome of the small-scale survey on "existence" stimuli.
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B.3 Summary

linguistic phenomenon performance group Selection

existence
high_perf 9
low_perf 10

medium_perf 14

Table B.3

Figure B.7: A scatterplot of CLIP output values for the 99 stimuli. Compare to
Figure B.2

.

B.3 Summary

For a final look at the sampled stimuli, 33 for each of the actions, relations,

and existence linguistic phenomena, we can take a look at Figure B.7. It de-

picts the distribution of CLIP prediction difference values for each linguistic

phenomenon, this time only for the final selected stimuli (including mean

and standard deviation). A visual comparison to a similar graph for the en-

tire validated VALSE dataset (Figure B.2) shows that our final sample is a

good representation of the range of values in the unfiltered dataset.

The final number of stimuli (99) was chosen because it would result in

close to this many aggregate human saliency maps, which could then be
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Linguistic phenomenon Performance group counts for final
CLIP implementation (low, middle,
high)

Existence 9, 13, 11
Relations 12, 9, 12
Actions 12, 9, 12

Table B.4: Performance group counts updated for CLIP implementation and
outputs after dataset changes and re-implementation of CLIP.

used to calculate as many distance metrics to XAI attribution maps. We

expect close to 100 individual distance metrics per AI model to be sufficient

to test for a significant statistical relationship between these distance metrics

and that model’s output (as a measure of accuracy).

B.4 Revisiting dataset balancing after study con-

clusion

Note that the CLIP prediction difference used to balance the dataset came

from an initial implementation of CLIP that was based on code found in the

MMSHAP GitHub repository (Parcalabescu and Frank 2023). For the final

analysis of SHAP maps and CLIP performance on each stimulus, a differ-

ent implementation of CLIP was used. Additionally, some of the data was

edited as described above, and these edits were made after the initial CLIP

scores were generated. Likely due to small differences in implementation

(such as resizing) and these differences in the input data, the scores in the

output of my final CLIP implementation were modestly different from these

initial outputs used to balance the 99-stimuli dataset. However, after re-

running the same analysis as above with this final CLIP implementation,

sorting the stimuli’s CLIP outputs into performance groups based on up-

dated thresholds derived from the larger VALSE dataset, the 99-stimulus

dataset was still quite balanced. Table B.4 show the counts for each linguis-

tic phenomenon according to the new analysis.

I report this for full transparency; the choice of CLIP output as a balanc-

ing metric is arbitrary in the first place. This updated analysis shows that
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B.4 Revisiting dataset balancing after study conclusion

the dataset remains well-balanced with a new implementation of CLIP.
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C. Appendix: Utrecht University ethics check

The Utrecht University ethics QuickScan by the Research Institute of Infor-

mation and Computing Sciences1 produced the following result, meaning

the research design was not flagged for ethics issues. The summary PDF is

reproduced starting on the following page.

1https://www.uu.nl/en/research/institute-of-information-and-computing-
sciences/ethics-and-privacy
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