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Abstract

In number theory, Chebyshev’s psi function (denoted by ψ) sums the logarithms of the largest prime
powers below a given parameter. It is known that, asymptotically, ψ(N) grows like N . In fact, this
statement is equivalent to the Prime Number Theorem. However, precise estimates of values of ψ are
relatively hard to obtain because of its relationship with primes, which are still somewhat mysteri-
ous. In this thesis, we present two algorithms for computing ψ(N) using arguments based on recent
approaches in [HT23] and [HKM23] for sums of related arithmetic functions. The former only consid-
ers elementary methods and sums certain arithmetic functions in roughly O(N3/5) operations using
roughly O(N3/10) memory, while the latter also uses ideas stemming from basic Fourier theory and
runs in roughly O(N1/2) operations using roughly O(N1/2) memory. We also discuss details regarding
the implementation in C++. The implementation can be found on GitHub.

https://github.com/JoelGanesh/CompPsi
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Chapter 1

Introduction

Number theoretic functions play a central role in analytic number theory. Here, we should note that
a number theoretic function is a function from the positive integers (natural numbers) to the complex
numbers whose values may depend on the prime factorization of its input. Some examples of number
theoretic functions are:

• the prime indicator function,

1prime(n) =

{
1 if n is prime,
0 otherwise;

• the Möbius function,

µ(n) =

{
0 if p2 divides n for some prime p,
(−1)t otherwise, where t is the number of distinct prime divisors of n;

• the Von Mangoldt function,

Λ(n) =

{
log p if n is a proper power of a prime p,
0 otherwise;

• Euler’s totient function,

φ(n) = #
{
k ∈ {1, 2, . . . , n} : gcd(k, n) = 1

}
= n

∏
p|n

p prime

(
1− 1

p

)
.

In particular, partial sums of the previous examples have been studied in the past. For example, the
Prime Number Theorem states that the prime counting function, defined via

π(N) =
∑
n≤N

1prime(n) =
∑
p≤N

p prime

1,

is asymptotically equal to N/ logN as N →∞, which is to say that

lim
N→∞

π(N)

N/ logN
= 1.
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In fact, this statement has been shown to be equivalent to other statements such as:

• ψ(N) =
∑

n≤N Λ(n) being asymptotically equal to N , as N →∞;

• M(N) =
∑

n≤N µ(n) satisfying M(N)/N → 0, as N →∞.

Proofs of these equivalences can be found in [Apo13, pp. 74–80, 91–101], for example. The function
ψ is known as Chebyshev’s second function or Chebyshev’s psi function and M is known as Mertens
function.

The main function appearing in this thesis will be Chebyshev’s psi function. Chebyshev’s psi function
is named after the Russian mathematician Pafnuty Chebyshev, who lived between 1821 and 1894.
As mentioned in [BJ99], some of Chebyshev’s contributions were related to the distribution of prime
numbers; in [Che52b], he showed that the Prime Number Theorem would follow if the limit

lim
N→∞

π(N)

N/ logN

exists. Moreover, in [Che52a], he proved a conjecture by Bertrand, currently known as Bertrand’s
postulate, stating that for any integer n > 3, there must be a prime strictly in between of n and 2n− 2.
In this article, he also implicitly shows that for sufficiently large N ,

0.92129 · N

logN
< π(N) < 1.10556 · N

logN
,

as mentioned in [BJ99]. The Prime Number Theorem was later discovered independently by Hadamard
and de la Vallée Poussin in 1896.

After the discovery of the Prime Number Theorem, the study of summatory functions like π(N), ψ(N)
and M(N) continued. In fact, in some sense these functions all have been related to the zeros of the
Riemann zeta function, ζ, which is defined as the analytic continuation of the function

ζ ′ : {s ∈ C |Re(s) > 1} → C, s 7→
∞∑
n=1

1

ns
,

to C\{1}. The locations of the non-trivial zeros of the Riemann zeta function are still unknown. The
Riemann hypothesis, originally formulated in 1859, does suggest a very restrictive pattern for these
zeros, but it remains unsolved to this day. Because of its implications in (analytic) number theory, it is
still a relevant open problem. To illustrate this, we note that the Riemann hypothesis implies sharper
bounds on the above summatory functions than we have mentioned. For instance, it has been shown
that the Riemann hypothesis is equivalent to the inequality

|ψ(N)−N | ≤ 1

8π

√
N log2N,

holding for N ≥ 74, and likewise, it is also equivalent with the statement that for every ε > 0, there
exists a constant C(ε) > 0 so that for sufficiently large N ,

M(N) ≤ C(ε)N
1
2
+ε. (1.1)

Because of equivalences like these, there has been substantial interest in computing values of these
summatory functions at large inputs. It also has led to conjectures on even sharper bounds on these
functions. For instance, Mertens conjecture states that |M(N)| ≤

√
N for all N ≥ 1. However, this
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conjecture has been disproven in 1985 by Odlyzko and te Riele in [OR85]. In fact, they mention that
it is very probable that

lim sup
N→∞

|M(N)|√
N

=∞,

implying that the inequality given in (1.1) is about the sharpest one could consider. We note that the
proof by Odlyzko and te Riele is non-constructive in the sense that the proof does not give a particular
counterexample, but rather shows one exists. Even today, there are no known counterexamples,
although it has been shown in [KR06] that the first counterexample must be of size at most 106.91·10

39
.

The increased interest in computing values of these summatory functions has led to a search for
efficient methods. A naive way to compute these sums would be to add all individual terms together.
These implementations generally rely on some variant of the sieve of Eratosthenes to find the prime
factorizations of integers, which generally suffices to compute individual terms. At a first thought, the
naive approach may also seem to be reasonably efficient. After all, one might wonder how one would
compute the number of prime numbers without listing them all, for instance. As a result, it may be
somewhat surprising that in 1871, Meissel [Mei70] developed a method to compute the number of
primes up to N essentially using only the primes up to

√
N . He used this method to compute values of

π(10n) for n = 7, 8, 9 by hand, which were published in [Mei70; Mei71; Mei83; Mei85]. As mentioned
in [Leh59; LMO85], the method was based on an observation by Legendre in [Leg08] stating that

π(N)− π
(
⌊
√
N⌋
)
+ 1 = N −

∑
p1≤

√
N

p1 prime

⌊
N

p1

⌋
+

∑
p1<p2≤

√
N

p1, p2 prime

⌊
N

p1p2

⌋
−

∑
p1<p2<p3≤

√
N

p1, p2, p3 prime

⌊
N

p1p2p3

⌋
+ · · · . (1.2)

More specifically, as stated in [LMO85, p. 537], the method by Meissel “can be viewed as reducing the
number of terms” present in the above identity by Legendre.

With the invention of computers, Meissel’s method was later improved by several others. For instance,
in [Leh59], Lehmer simplified and generalized the method by Meissel which made it possible to com-
pute quantities such as the number of k-th prime powers below N . Lehmer also computed π(109) and
π(1010), and noted that Meissel’s calculation of π(109) was off by 56. In 1985, Lagarias, Miller and
Odlyzko [LMO85] improved on the method by Meissel-Lehmer and were able to compute π(10n) for
n = 12, . . . , 16.

In 1987, Lagarias and Odlyzko published a completely different method in [LO87] to compute π(N)
using integrals involving the Riemann zeta function. While this method had better theoretic bounds
on the computation time, the method was not put into practice until 2013, where Platt used it to
compute π(1024) [Pla13]. One of the main reasons explaining the substantial time gap is the difficulty
in manipulating analytic objects using computers.

Returning to the end of the 20th century, in 1996, Deléglise and Rivat [DR96a] further improved on
the algorithm by [LMO85] to compute π(10n) for n = 15, . . . , 18. Interestingly, Deléglise and Rivat
have also considered methods to compute values of the Mertens function and Chebyshev’s psi function
in [DR96b] and [DR98], respectively. Specifically, they were able to compute M(10n) for 6 ≤ n ≤ 16
and they compute approximations of ψ(10n) for 10 ≤ n ≤ 15, where computations were reportedly
done using 33 digits of precision.
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At this point, we want to begin describing algorithms in terms of their time and space complexity. The
time complexity of an algorithm represents the rough number of operations needed to complete it. In
contrast, the space complexity of an algorithm represents the rough amount of memory required to
complete it. To quantify the time and space complexity of an algorithm, it is conventional to use Big-O
notation; it is said that the time (resp. space) complexity of an algorithm with input N is O(g(N)) if
there exists a constant C > 0 such that the number of operations (resp. amount of memory) needed
to complete the task with input N does not exceed C · |g(N)| for sufficiently large N .

Using the above notation, the method by Deléglise and Rivat to compute π(N) has time complex-
ity O

(
N2/3(logN)−2

)
and space complexity O

(
N1/3(logN)3 log logN

)
. Their methods to compute

M(N) and ψ(N) share the same time complexity, which is O
(
N2/3(log logN)1/3

)
, and the same space

complexity, which is O
(
N1/3(log logN)2/3

)
.

As mentioned in [HT23], the methods by Deléglise and Rivat have been further improved by others.
However, they also mention that as of 1996, these improvements were mainly focused on the actual
implementation. As a result, the time complexities of these algorithms could only improve existing
time complexities by logarithmic factors. Nevertheless, a noteworthy improvement is by Hurst in
2018, which was able to compute M(2n) for n ≤ 73. To put the improvement in perspective, we note
that 273 ≈ 9.4 · 1021.

Only recently, there have been successful attempts to improve the time and/or space complexity
by more than just a logarithmic factor. In 2023, Helfgott and Thompson [HT23] describe an algo-
rithm to compute M(N), sharing some similarities with [DR96b], with a time and space complexity
of O

(
N3/5(logN)3/5(log logN)2/5

)
and O

(
N3/10(logN)13/10(log logN)−3/10

)
respectively. They were

able to compute M(2n) for n ≤ 75 and M(10n) for n ≤ 23. Another successful attempt in 2023 was
by Hirsch, Kessler and Mendlovic [HKM23] who describe a generic method to compute values of sum-
matory functions such as the prime counting function and Mertens function with a time and space
complexity of O(N1/2+ε) for any ε > 0, where the implied constant may depend on ε.

The main focus of this thesis will be the computation of precise approximations of ψ(N) using the
recent techniques discussed in [HT23] and [HKM23]. We will compare the performance of both algo-
rithms, also comparing it with the known algorithm discussed in [DR98]. We will start by introducing
sieving techniques used to compute values of functions such as µ(n) and Λ(n), in particular noting
the sieve of Eratosthenes which we already briefly mentioned above. After this we will discuss how
to use Vaughan’s identity to obtain an identity for ψ(N). This basically replaces Legendre’s identity
described in (1.2) used by Meissel, Lehmer and others to count primes. After this, we will get to the
main part of the thesis, which compares the two approaches. We will end with details regarding the
implementation in C++, where we will also go over some of the results.
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1.1 Basic definitions and notation

1.1.1 Asymptotic analysis

Above we defined notions for the time and space complexity of an algorithm. We mentioned that
the time (resp. space) complexity measured the number of operations (resp. amount of memory)
necessary to complete a task. These complexities help to understand how quickly a computation can be
done. However, we did not go over the definition of an operation or how we measure memory. Below,
we will consider the computation of an individual addition, subtraction, multiplication or division to
require a constant number of operations. In contrast, the amount of memory needed will be measured
in the amount of bits that need to be stored as random-access memory (RAM), which is memory that is
required to be retrievable within constant time. We note that in practice, operations such as additions
on numbers are typically not evaluated in a constant number of operations, as they generally operate
on the binary representation of integers, requiring a logarithmic amount of operations. Nevertheless,
it is quite common to measure the time complexity this way and we will follow this convention.

In order to consider chains of asymptotic inequalities, we will use the notation f(N)≪ g(N) to mean
the same thing as f(N) = O(g(N)). We recall that the notation f(N) = O(g(N)) was used to say that
there exists a constant C > 0 such that f(N) ≤ C · |g(N)| for sufficiently large N . In the same vein, we
will use the notation f(N) ≫ g(N) to say that there exists a constant C > 0 such that for sufficiently
large N , f(N) ≥ C · |g(N)|.

We will say that f(N) is of order g(N) if both f(N) ≪ g(N) and f(N) ≫ g(N) hold. That is, f(N)
is of order g(N) if there exist constants 0 < C1 < C2 such that C1 · |g(N)| ≤ f(N) ≤ C2 · |g(N)| for
sufficiently large N .

We will also write f(N) ∼ g(N) to mean the same thing as f(N) and g(N) being asymptotically equal,
i.e.,

lim
N→∞

f(N)

g(N)
= 1.

Lastly, we will say that f(n) is roughly equal to g(n) if the quantity f(n) − g(n) is bounded by a
constant, for any n ≥ 1.

1.1.2 Prime indexation

As seen in the introduction, prime numbers pop up frequently in text, but also in function definitions,
sums etc. As a result, we will reserve the variable p to always denote a prime number. Here we
potentially use subscripts when multiple primes are considered.
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Chapter 2

Computational Sieves

To compute ψ(N) naively, we need to store values of Λ(n) for n = 1, . . . , N . Similarly, for approaches
to be considered in later chapters, we will need to store values of Λ and µ, which primarily depend
on the prime factorization of the input. We will also see that it is desirable to compute the prime
factorizations of integers in some range.

In this chapter, we will first focus on the sieve of Eratosthenes, which is used to generate all prime
numbers up to some bound. There are different methods to compute the prime factorizations of
integers, but the algorithm we consider can be easily adapted to compute the desired tables for Λ
and µ as well. After discussing the sieve of Eratosthenes, we will discuss two segmented sieves which
reduce the space complexity. One simply lowers the memory requirement, while the other lowers the
space complexity even further, at the cost of additional time complexity. Afterwards, we extend the
algorithm to compute the complete prime factorizations of integers and finally describe adaptations to
the algorithm to find tables for Λ and µ.

2.1 Sieve of Eratosthenes

The sieve of Eratosthenes determines all primes up to a given bound, say N , by eliminating composite
numbers. The sieve of Eratosthenes works as follows. We start with an array of the integers between
2 and N , where we keep track if integers are composite or not. At each iteration, we mark the first
integer which has not been marked yet, say n, to be prime. Furthermore, we mark proper multiples of
n to be composite. We then run these iterations until we have marked all integers to be either prime
or composite.

To verify that the sieve of Eratosthenes works correctly, we note that the algorithm marks composites
correctly. Thus, it is only possible that the algorithm incorrectly marks a composite number to be
prime. Let us now suppose that q is a composite number which is incorrectly marked as a prime. Then
q must be divisible by a prime p < q. As we established before, p cannot have been incorrectly marked
to be composite, so p must have been marked to be prime. This in turn implies that q should have
been marked to be composite, as multiples of p are marked to be prime in the same iteration where p
is marked to be prime, leading to a contradiction. We note that, in essence, the idea behind the sieve
of Eratosthenes is that an integer n is composite if and only if there is some prime p < n dividing n.

Below we illustrate the sieve of Eratosthenes by considering the interval [2, 10].
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2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

Figure 2.1: Visualization of the sieve of Eratosthenes on the integers between 2 and 10.
The colors gray, green and red identify the unmarked, prime and composite numbers respectively.

Having discussed this example, we can make the observation that, when marking a prime p, it suffices
to mark multiples of p of the form kp for k ≥ p to be composite. This can be explained by noting that
smaller multiples of p are divisible by a prime q < p, which should therefore have been marked to be
composite at an earlier stage. This observation also implies that if after some iteration all integers up
to
√
N are marked, then the remaining unmarked integers are prime.

Before discussing different optimizations regarding the space complexity, we briefly analyze the run-
ning time of the current algorithm. During the iteration where we mark the prime p, we mark ⌊N/p⌋
integers in total, corresponding to the multiples of p. After having found all primes p ≤

√
N , we

can determine the remaining primes by going over the array one last time. It follows that the time
complexity of the program is of order

N +
∑

p≤
√
N

N

p
.

Mertens’ second theorem [Mer74; Vil05] states that
∑

p≤K p−1 ∼ log logK as K →∞. As a result, we
note that the time complexity of the current algorithm is O(N log logN).

2.2 Segmented variants

Above we have illustrated the generic idea behind the sieve of Eratosthenes and we have discussed its
time complexity. We will now focus on the space complexity instead. Note that in the implementation
above, the memory required is proportional to the number of integers considered, as we are keeping
track of a table with entries for each of the integers between 2 and N . If we are to store a complete
table of all the primes up to N at some point, then there is not much memory to be saved as the
number of primes less than N asymptotically grows like N/ logN by the Prime Number Theorem.
Therefore, in order to save memory, we want to process small segments of the table separately. We
will refer to such algorithms as segmented sieves.

There have been several implementations of segmented sieves. However, some if not most of them
can only be used to determine the primes up to some bound. While this is the essence of the sieve
of Eratosthenes, we are instead interested in methods which can be generalized to compute values of
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functions which depend on the prime factorization of an integer such as µ. We will elaborate on a
traditional description of a segmented sieve and also mention a variant by Helfgott.

2.2.1 Traditional segmented sieve

As we observed above, once we have determined all the primes up to
√
N and marked all of their

proper multiples to be composite, the remaining unmarked entries are prime. This motivates the idea
of splitting the table into segments of length roughly

√
N . For a segment I, we then mark all multiples

of primes p ≤
√
N in I to be composite, leaving only the primes unmarked. Below we illustrate the

concept with an example where we focus on a particular segment for [2, 100]. We assume that we
have already computed the primes up to 10 using the generic version of the sieve of Eratosthenes as
illustrated in Figure 2.1.

41 42 43 44 45 46 47 48 49 50

(a) We start with an array consisting of the integers between 41 and 50.

41 42 43 44 45 46 47 48 49 50

41 42 43 44 45 46 47 48 49 50

41 42 43 44 45 46 47 48 49 50

41 42 43 44 45 46 47 48 49 50

(b) We mark multiples of 2, 3, 5 and 7 to be composite.

41 42 43 44 45 46 47 48 49 50

(c) We mark the remaining integers to be prime.

Figure 2.2: Visualization of the segmented sieve of Eratosthenes on (40, 50] ⊂ [2, 100].
The colors gray, green and red identify the unmarked, prime and composite numbers respectively.

To implement this algorithm, we consider segments of the form Ik = (k
√
N, (k + 1)

√
N ] ∩ [2, N ]

for k = 0, 1, . . . ,M = ⌊
√
N⌋. We then apply the above method on the segments I1, . . . , IM by first

computing and storing the primes p ≤
√
N by using the generic sieve of Eratosthenes on I0. To

process I0, it takes O(
√
N log logN) time and O(

√
N) memory. Similarly, to process a segment Ik

for 1 ≤ k ≤ K, analogous to the analysis of the generic sieve of Eratosthenes, the time and space
complexity are O(

√
N log logN) and O(

√
N) respectively, as the intervals are of length roughly

√
N .

In conclusion, by processing the segments Ik for k ≥ 1 separately, we are able to obtain the same time
complexity of O(N log logN) to process the whole table. At the same time, we dramatically reduce
the memory requirement from O(N) to O(

√
N).
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2.2.2 Helfgott’s segmented sieve

In [Hel20], a segmented sieve is presented by Helfgott where segments of length roughly ∆ =
3
√
N(logN)2/3 are considered. To sieve such a segment I for primes, the author asks for which in-

tegers m ≤
√
N we can expect some multiple of m to be present in I. Namely, if we are given a list L

of integers 2 ≤ m ≤
√
N for which there is a multiple in I, we can essentially apply the same idea as

in the traditional segmented version to obtain all the primes in I. That is, by marking the multiples of
m in I for each m ∈ L, only the prime numbers in I remain unmarked.

As mentioned in [Hel20], heuristic arguments suggest that L is of size roughly ∆ logN , which in turn
suggests that this approach may be fruitful. Using local linear approximations and ideas stemming
from Diophantine approximation, it was possible to find strict enough conditions on m ∈ L to obtain
an algorithm with time complexity O(N logN) and space complexity O( 3

√
N(logN)2/3). While this al-

gorithm has a slightly worse time complexity compared to the traditional segmented sieve, it improves
the space complexity significantly. This makes this algorithm useful when memory requirements be-
come problematic.

2.3 Prime factorization sieve

In the previous sections we have seen methods to sieve primes. We now adapt these methods to find
the prime factorization of integers in [2, N ] for fixed N . For completeness, we consider a segmented
variant to optimize the space complexity at no extra cost. We will also briefly mention Helfgott’s
adaptation to further optimize the space complexity at the cost of a slightly worse time complexity.

As before, we consider segments Ik = (k
√
N, (k + 1)

√
N ] ∩ [2, N ], for k = 0, 1, . . . , ⌊

√
N⌋, of length

roughly
√
N . We wish to compute the complete prime factorization of each integer in some segment.

Let us first think of how to store the prime factorization of an integer n. A common way to store prime
factorizations is to store prime divisors separately, together with their multiplicity. That is, we store
the prime factorization of an integer n by storing the pairs (p, νp(n)) for prime divisors p of n. Here,
νp(n) denotes the multiplicity of p in the prime factorization of n.

Before computing the prime factorizations of integers inside any segment, we first compute the prime
numbers up to

√
N using the sieve of Eratosthenes. Let us now fix a segment I. For each prime

p ≤
√
N and for each integer j = 1, . . . , ⌊logp(n)⌋, in increasing order, we mark multiples of pj in I to

be divisible by pj by adding a new pair (p, j) to the corresponding prime factorization list. After this
process, for any integer n ∈ I, the pairs (p, νp(n)) for primes p ≤

√
N dividing n have been correctly

established.

Therefore, it remains for us to find the pairs (p, νp(n)) for primes p >
√
N dividing n. Fortunately, any

integer n ≤ N can have at most one prime divisor p >
√
N , and it appears with multiplicity 1. Hence,

it suffices to compute the product
Pn =

∏
p≤

√
N

pνp(n).

If Pn = n, then each prime divisor p of n satisfies p ≤
√
N so that the prime factorization of n is

complete. If instead Pn ̸= n, then the remaining prime factor of n must be n/Pn, with multiplicity 1.
Therefore, we add the pair (n/Pn, 1) to complete the prime factorization of n.

It remains for us to analyze the time and space complexity of the described algorithm. To determine
the time complexity, note that we first have to compute the primes up to

√
N . Using the sieve of Er-

atosthenes, this can be accomplished in time O(
√
N log logN). Now, assuming we can add and update

11



pairs to the container in O(1) time, the time complexity to find all prime divisors, with multiplicity, of
integers in I is majorized by

∑
p≤

√
N

⌊logp(n)⌋∑
j=1

√
N

pj
≪
√
N ·

∑
p≤

√
N

∑
j≥1

1

pj
≪
√
N ·

∑
p≤

√
N

1

p
≪
√
N log logN.

Here we use that
∑

j≥1 p
−j = (p− 1)−1 ≪ p−1 using identities for geometric series, while for the last

step we invoke Mertens’ second theorem. Lastly, assuming products of two integers can be determined
in O(1) time, the computation time necessary to compute the prime factors p >

√
N of integers n ∈ I,

if they exist, is roughly

∑
n∈I

∑
p≤

√
N

p|n

1 =
∑

p≤
√
N

∑
n∈I
p|n

1≪
∑

p≤
√
N

√
N

p
≪
√
N log logN,

by again invoking Mertens’ second theorem. In conclusion, the time complexity to determine the
prime factorization of all integers n ≤ N is given by O(N log logN), noting that there are roughly

√
N

segments in total.

To compute the space complexity, note that for each integer in a segment I, we need to store the
integers themselves as well as their prime factorizations. We store the prime factorization by saving the
pairs of prime divisors and their multiplicity. For a prime p dividing n, this takes O(log p+log νp(n)) =
O(νp(n) log p) space measured in bits. Noting that∑

p|n

νp(n) log p = log
∏
p|n

pνp(n) = log n,

we see that the space complexity to process a segment is of order O(
√
N logN).

2.3.1 Helfgott’s implementation

Another method is described by Helfgott in [Hel20] using segments of size roughly O( 3
√
N(logN)2/3).

The same ideas are used as briefly mentioned in Section 2.2.2. Using the same reasoning as above, the
space complexity becomes O( 3

√
N(logN)5/3), as O(log n) bits are needed to store the prime factoriza-

tion of n. On the other hand, the time complexity remains O(N logN). Again, while the algorithm has
a slightly worse time complexity in comparison with the above implementation, it can become useful
when memory requirements become an issue.

2.4 Computing tables for Λ and µ

To compute tables for Λ and µ, we could use the prime factorization sieve as before to generate the
prime factorizations of integers, and use these directly to compute the values of Λ and µ quickly.
However, noting that Λ(n) = 0 whenever two distinct primes p and q divide n, while µ(n) = 0 if p2

divides n for some prime p, it becomes clear that such an approach is needlessly inefficient. Therefore
we want to adapt the prime factorization sieve to be more suited for the functions Λ and µ. We
will again focus on segmented implementations. It should be mentioned that to reduce the space
complexity even further, we could consider approaches as in [Hel20], as briefly mentioned in Section
2.3.1.

12



2.4.1 Sieving values of Λ

As before, we consider segments Ik = (k
√
N, (k + 1)

√
N ] ∩ [2, N ] for k = 0, 1, . . . , ⌊

√
N⌋. We first

apply the sieve of Eratosthenes to determine the primes up to
√
N . Let us now fix a segment I. We

start with an empty table consisting of entries for each of the integers in I. Because of the properties
of Λ, it suffices to find the prime powers in I. For each prime p ≤

√
N , we mark the multiples of

p by updating their value in the table to be 0. Afterwards, we check for powers of p in I, and mark
them by replacing their value in the table by log p. Finally, after having considered all primes p ≤

√
N ,

the remaining integers are primes. Therefore, to account for the primes p in I ̸= I0, we update their
respective value in the table to be log p. At the end, we obtain a table of values of Λ(n) for n ∈ I, as
desired.

As we take similar steps as in the (segmented) sieve of Eratosthenes, their time complexities are
similar. In fact, the only difference between the two algorithms is that prime powers are marked one
additional time. As this can only lead to an increment of the constant factor of the time complexity of
the algorithm, we note that the algorithm runs in O(N log logN) time.

To discuss the space complexity, we have to note that, from a computational perspective, the values of
Λ are stored as integers using a placeholder for logarithms. For example, Λ(9) is stored as an object
Log(3), which can later be evaluated to an approximation of log 3. As a result, storing values of Λ(n)
for n inside some interval I = (N1, N2] takes space proportional to the length of I, as∑

pk∈I

log p =
∑

pk≤N2

log p−
∑

pk≤N1

log p = ψ(N2)− ψ(N1) ∼ N2 −N1.

As a result, the space complexity of the algorithm is O(
√
N).

2.4.2 Sieving values of µ

We again consider segments Ik = (k
√
N, (k + 1)

√
N ] ∩ [2, N ] for k = 0, 1, . . . , ⌊

√
N⌋ and apply the

sieve of Eratosthenes to determine the primes up to
√
N . Fixing a segment I, we start with a table

consisting of ones for each of the integers in I. We will also keep track of a table used to mark. As µ
is multiplicative and satisfies µ(p) = −1 and µ(pj) = 0 for j > 1, it suffices to flip the sign of values
corresponding to multiples of p while values corresponding to multiples of p2 should become 0. After
we have done this procedure for primes p ≤

√
N , it remains to take care of the integers with a prime

factor p >
√
N . For this, we use an analogous method as used for the prime factorization sieve: for

each integer n in the table, we store an additional integer Pn =
∏

p|n,p≤
√
N p. These products can be

computed during the procedure without an increase in the overall time complexity. Note that if n is
squarefree satisfying Pn ̸= n, then n has (exactly) one prime factor p >

√
N . To take account for this,

we simply flip the sign of their corresponding entries in the table for µ.

By a similar analysis as done for the prime factorization sieve, we can observe that the time complexity
of this algorithm is O(N log logN). To compute the space complexity, we have to analyze the memory
usage in a bit more detail. It turns out that on average we also need logN bits for each of the products
Pn, since the space complexity to store the products Pn is of order∑

n∈I
logPn =

∑
n∈I

∑
p|n

p≤
√
N

log p≪
√
N
∑

p≤
√
N

log p

p
≪
√
N logN,

where in the last step we used that
∑

p≤K log(p)/p ∼ logK, which is known as Mertens’ first theorem
[Mer74; Vil05]. As a result, the space complexity to store the products Pn, and therefore to compute
the table of values of µ is O(

√
N logN).
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Chapter 3

Vaughan’s Identity

The goal of this thesis is to provide different approaches to computing ψ(N). Vaughan’s identity
forms the basis of these approaches, so we introduce the identity in this chapter. To formulate and
prove Vaughan’s identity we first establish some standard definitions and results from analytic number
theory.

We recall from the introductory chapter that a number theoretic function is a complex-valued function
from the natural number. Apart from the examples given in the introduction, simple but important
examples of number theoretic functions are 1, δ : N→ C, where for any n ∈ N,

1(n) = 1 and δ(n) =

{
1, if n = 1

0, otherwise.

Definition 3.1. Given two number theoretic functions f and g, we define their Dirichlet convolution to be
f ∗ g : N→ C, where for any n ∈ N,

(f ∗ g)(n) =
∑

d1d2=n

f(d1)g(d2).

We remark that δ acts as an identity element for Dirichlet convolutions: given any number theoretic
function f , we observe that

(f ∗ δ)(n) =
∑

d1d2=n

f(d1)δ(d2) = f(n).

In fact, the set of number theoretic functions f satisfying f(1) ̸= 0 form a (commutative) group with
operator ∗ and identity element δ. While this result is not particularly important to prove Vaughan’s
identity, it gives rise to the following useful examples.

Example 3.2. The Möbius function µ satisfies the identity∑
d|n

µ(d) =

{
1, if n = 1

0, otherwise.

That is, we have an identity between number theoretic functions 1 ∗ µ = δ.

Example 3.3. Given an integer n ≥ 1, write n = pk11 · · · p
kt
t using unique prime factorization. We observe

that by definition of Λ,∑
d|n

Λ(d) =

t∑
j=1

kt∑
k=1

log pj =

t∑
j=1

log p
kj
j = log

t∏
j=1

p
kj
j = log n.

As a result, we note that 1 ∗ Λ = log, or equivalently, using Example 3.2, Λ = µ ∗ log.
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The above example already gives a useful relation between Λ, µ and log. However, to do computations
using these relations, we would like to restrict the number of divisor pairs (d1, d2) with d1d2 = n to
be considered. Vaughan’s identity restricts these pairs by bounding divisors. For simplicity, given a
number theoretic function f and a fixed integer M , we define the number theoretic functions f≤M ,
f>M such that for any n ∈ N,

f≤M (n) =

{
f(n), if n ≤M
0, otherwise,

and f>M (n) =

{
f(n), if n > M

0, otherwise.

We can now state Vaughan’s identity as follows.

Lemma 3.4 (Cf. [Vau80]). Fix integers D,M ≥ 1. Then for any integer n > M , we have that

Λ(n) = (µ≤D ∗ log)(n)− (µ≤D ∗ Λ≤M ∗ 1)(n) + (µ>D ∗ Λ>M ∗ 1)(n).

That is, for n > M ,

Λ(n) =
∑
dk=n
d≤D

µ(d) log(k)−
∑

dmk=n
d≤D,m≤M

µ(d)Λ(m) +
∑

dmk=n
d>D,m>M

µ(d)Λ(m).

This identity can be proven using a relation between number theoretic functions and their respective
Dirichlet series.

Definition 3.5. Let f be a number theoretic function. We define the formal Dirichlet series of f as

D(f, s) =
∞∑
n=1

f(n)

ns
.

Below, we consider formal Dirichlet series on subsets of C where it converges absolutely. We remark
that any Dirichlet series has a unique abscissa of absolute convergence σ ∈ R ∪ {±∞} such that for
s ∈ C, D(f, s) converges absolutely when Re(s) > σ, while D(f, s) either converges conditionally or
diverges when Re(s) < σ. For simplicity, we will write

Hσ = {s ∈ C : Re(s) > σ}.

A number theoretic function is completely characterized by its Dirichlet series: if there exists a non-
empty open subset U ⊂ C such that for two number theoretic functions f and g we have D(f, s) =
D(g, s) for all s ∈ U , then f = g. Therefore, any identity between Dirichlet series can be translated
into an identity between their respective underlying number theoretic functions. We will use this to
prove Vaughan’s identity.

We will now discuss the foreshadowed relation between Dirichlet convolutions and Dirichlet series.

Lemma 3.6. Let f and g be number theoretic functions and suppose that D(f, ·) and D(g, ·) have abscissa
of absolute convergence at least σ. Then D(f ∗ g, ·) converges absolutely on Hσ and for all s ∈ Hσ, we
have

D(f ∗ g, s) = D(f, s)D(g, s).

Proof. Let s ∈ Hσ. By absolute convergence of D(f, s) and D(g, s), we may rearrange terms to obtain

D(f, s)D(g, s) =

( ∞∑
n=1

f(n)n−s

)( ∞∑
m=1

g(m)m−s

)
=

∞∑
n=1

∞∑
m=1

f(n)g(m)(nm)−s

=
∞∑
k=1

( ∑
nm=k

f(n)g(m)

)
k−s.
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Remarking that (f ∗g)(k) =
∑

nm=k f(n)g(m), we observe that the identityD(f ∗g, s) = D(f, s)D(g, s)
holds. It remains for us to prove that the series converges absolutely. To this end, remark that

∞∑
k=1

∣∣∣∣∣k−s
∑

nm=k

f(n)g(m)

∣∣∣∣∣ =
∞∑
k=1

k−Re(s)

∣∣∣∣∣ ∑
nm=k

f(n)g(m)

∣∣∣∣∣
≤

∞∑
k=1

k−Re(s)
∑

nm=k

|f(n)| · |g(m)|.

By rearranging terms as before, we obtain that

∞∑
k=1

k−Re(s)
∑

nm=k

|f(n)| · |g(m)| =

( ∞∑
n=1

|f(n)|n−Re(s)

)( ∞∑
m=1

|g(m)|m−Re(s)

)
<∞,

by absolute convergence of D(f, s) and D(g, s). Hence D(f ∗ g, ·) converges absolutely on Hσ. ■

We finally prove Vaughan’s identity.

Proof of Lemma 3.4. We recall that given integers D,M ≥ 1, we need to show that for any integer
n > M ,

Λ(n) = (µ≤D ∗ log)(n)− (µ≤D ∗ Λ≤M ∗ 1)(n) + (µ>D ∗ Λ>M ∗ 1)(n).

We have argued that it suffices to prove the identity for their corresponding Dirichlet series. To this
end, let s ∈ C with Re(s) > 1, so that all considered Dirichlet series converge absolutely. We first note
that

D(µ>D, s) = D(µ, s)−D(µ≤D, s) and D(Λ>M , s) = D(Λ, s)−D(Λ≤M , s).

Hence, using Lemma 3.6, we can write

D(µ>D ∗ Λ>M ∗ 1, s) = D(Λ>M , s)
(
D(µ, s)−D(µ≤D, s)

)
D(1, s).

Since µ ∗ 1 = δ, we have D(µ, s)D(1, s) = D(δ, s) = 1, again by Lemma 3.6. As a result,

D(µ>D ∗ Λ>M ∗ 1, s) = D(Λ>M , s)
(
1−D(µ≤D, s)D(1, s)

)
.

By expanding the above product and by using that D(Λ>M , s) = D(Λ, s)−D(Λ≤M , s), we obtain that

D(µ>D ∗ Λ>M ∗ 1, s) = D(Λ>M , s)−D(Λ, s)D(µ≤D, s)D(1, s) +D(Λ≤M , s)D(µ≤D, s)D(1, s).

Rearranging terms, while noting that D(Λ, s)D(1, s) = D(log, s) using Lemma 3.6, we find that

D(Λ>M , s) = D(µ≤D, s)D(log, s)−D(Λ≤M , s)D(µ≤D, s)D(1, s) +D(µ>D ∗ Λ>M ∗ 1, s).

By applying Lemma 3.6 once again and by using the unique correspondence between Dirichlet series
and their underlying number theoretic functions, we have proven the desired identity. ■

It’s worth noting that there exist various formulations of Vaughan’s identity, which often can be found
to be equivalent using techniques such as Möbius inversion, as mentioned in [HT23]. In fact, a
generalization of Vaughan’s identity can be found in [Hea82, pp. 1366–1369] and [IK04], which is
useful in different settings.

We conclude this chapter with the following corollary of Vaughan’s identity, which will provide the
basis for later chapters.
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Corollary 3.7. Fix an integer N ≥ 1 and write M = ⌊
√
N⌋. Then for any integer M < n ≤ N , we have

that
Λ(n) =

∑
dk=n
d≤M

µ(d) log(k)−
∑

dmk=n
d,m≤M

µ(d)Λ(m).

In particular,
ψ(N) = ψ(M) +

∑
n≤N

∑
dk=n
d≤M

µ(d) log(k)−
∑
n≤N

∑
dmk=n
d,m≤M

µ(d)Λ(m).

Proof. Apply Vaughan’s identity with D =M = ⌊
√
N⌋. Then we obtain that for M < n ≤ N ,

Λ(n) =
∑
dk=n
d≤M

µ(d) log(k)−
∑

dmk=n
d,m≤M

µ(d)Λ(m) +
∑

dmk=n
d,m>M

µ(d)Λ(m).

We are able to omit the sum ∑
dmk=n
d,m>M

µ(d)Λ(m)

as it is empty for any n ≤ N < (M + 1)2. By adding the terms for n =M + 1, . . . , N , we obtain that

ψ(N) = ψ(M) +
∑

M<n≤N

∑
dk=n
d≤M

µ(d) log(k)−
∑

M<n≤N

∑
dmk=n
d,m≤M

µ(d)Λ(m). (3.1)

Finally, note that for n ≤M ,∑
dk=n
d≤M

µ(d) log(k) =
∑
dk=n

µ(d) log(k) = (µ ∗ log)(n) = Λ(n),

using that µ ∗ log = Λ as we discussed in Example 3.3. Similarly, for n ≤M we have that∑
dmk=n
d,m≤M

µ(d)Λ(m) =
∑

dmk=n

µ(d)Λ(m) = (µ ∗ Λ ∗ 1)(n) = Λ(n),

since µ ∗ 1 = δ. As a result, the difference of the two above double sums cancel each other out for
n ≤M . We conclude that (3.1) can be rewritten as

ψ(N) = ψ(M) +
∑
n≤N

∑
dk=n
d≤M

µ(d) log(k)−
∑
n≤N

∑
dmk=n
d,m≤M

µ(d)Λ(m). ■
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Chapter 4

An Elementary Approach

In this chapter, we will discuss an elementary approach to calculate ψ(N) =
∑

n≤N Λ(n). The method
we apply is based on [HT23]; we first apply an identity to split the desired sum into smaller sums.
Then we use some techniques to make computations feasible. This generic approach is also used for
similar elementary algorithms discussed in [LMO85] and [DR96b], for example.

The identity we are going to use is Vaughan’s identity, which has been discussed in the previous
chapter. In particular, we will use Corollary 3.7. We recall that Corollary 3.7 states that given N ,
writing M = ⌊

√
N⌋, we have that

ψ(N) = ψ(M) +
∑
dk≤N
d≤M

µ(d) log(k)−
∑

dmk≤N
d,m≤M

µ(d)Λ(m). (4.1)

The term ψ(M) can be computed naively using a computational sieve for values of Λ, as discussed in
Chapter 2. However, by observing that

ψ(M) =
∑
m≤M

Λ(m) =
∑
p≤M

⌊logp(M)⌋ log(p),

we can save on the number of operations needed as we now only need to consider the primes up to
M instead of all prime powers up to M .

We will now quickly glance over the computation of the first double sum appearing in Equation 4.1.
Note that ∑

dk≤N
d≤M

µ(d) log(k) =
∑
d≤M

µ(d)
∑

k≤N/d

log(k).

To store the sums
∑

k≤N/d log(k) = log
(
⌊N/d⌋!

)
exactly, we essentially need to store exact representa-

tions of n! for certain integers n ≥ M . This would take too much time and space. As a result, we will
store these sums by considering approximations. Given these approximations, we can compute the
above sum by storing a table of the values of µ(d) for d ≤ M , using the corresponding computational
sieve discussed in Chapter 2.

As a result, to compute the first double sum in Equation 4.1, we need to find approximations of log(n!)
for large integer values for n. It makes sense to consider the expression log Γ(x) for x > 0 instead, as
Γ is analytic on the half-plane {s ∈ C : Re(s) > 0}, while Γ(n) = (n − 1)! for any integer n ≥ 1. The
following lemma allows us to find arbitrarily close approximations of log Γ(x) relatively quickly.
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Lemma 4.1 (Cf. [Tem96]). For any integer k ≥ 0, let us denote Bk ∈ Q for the k-th Bernoulli number,
uniquely characterized by the property that for any z ∈ C with 0 < |z| < 2π,

z

ez − 1
=

∞∑
k=0

Bk

k!
zk.

Then for any real number x > 0 and for any integer m ≥ 1, we have that

log Γ(x) =

(
x− 1

2

)
log x− x+ log

√
2π +

m−1∑
n=1

B2n

2n(2n− 1)
x1−2n +Rm(x),

where

|Rm(x)| ≤ |B2m|
2m(2m− 1)

x1−2m.

We observe that the larger x is chosen, the faster the convergence is of the series in the above lemma.
To give a sense for how quickly this series converges, note that for a practical situation in which
N > 1010, it suffices to consider m = 3 to get approximations of log(n!) for integers n ≥M > 105 with
accuracy 7.0 ·10−29 at worst. As a result, the practical limitation of these computations rather depends
on the precision bound guaranteed by compilers. In Chapter 6 we elaborate on this limitation in more
detail.

We will finally focus on the second double sum appearing on the right-hand side of Equation 4.1.
Following [HT23], we consider a parameter M0 ≤M and we observe that∑

mdk≤N
m,d≤M

Λ(m)µ(d) =
∑

mdk≤N
M0<max{m,d}≤M

Λ(m)µ(d) +
∑

mdk≤N
m,d≤M0

Λ(m)µ(d). (4.2)

The analysis of the two double sums on the right-hand side of Equation 4.2 will take considerably
longer. We will therefore discuss these in two separate sections.

4.1 Dependent variable case

We start by considering the double sum in Equation 4.2 in the case where m and d cannot be taken to
be completely independent. That is, we construct an algorithm to compute the double sum∑

mdk≤N
M0<max{m,d}≤M

Λ(m)µ(d). (4.3)

We consider the cases m ≤ d and d ≤ m separately. As we essentially consider the case d = m twice,
we have that∑

mdk≤N
M0<max{m,d}≤M

Λ(m)µ(d) =
∑

mdk≤N
M0<d≤M

m≤d

Λ(m)µ(d) +
∑

mdk≤N
M0<m≤M

d≤m

Λ(m)µ(d)−
∑

M0<m≤M

Λ(m)µ(m)

⌊
N

m2

⌋
.

(4.4)
Observing that µ(m) = 0 whenever m is not squarefree, while Λ(m) = 0 whenever m is not a prime
power, it follows that µ(m)Λ(m) = 0 when m is composite. Thus, the latter sum on the right-hand
side of Equation 4.4 simplifies to

−
∑

M0<m≤M

Λ(m)µ(m)

⌊
N

m2

⌋
= −

∑
M0<p≤M

Λ(p)µ(p)

⌊
N

p2

⌋
=

∑
M0<p≤M

log(p)

⌊
N

p2

⌋
.
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Note that we can compute approximations of the above sum using a segmented computational sieve
for finding primes, as discussed in Chapter 2. Hence we only have to focus on the two double sums
on the right-hand side of Equation 4.4. In order to reduce the space needed to discuss these cases, we
will consider the general expression ∑

abk≤N
M0<a≤M

b≤a

f(a)g(b),

where f and g are arithmetic functions. Note that this allows us to retrieve our original sums by con-
sidering (f, g) ∈ {(Λ, µ), (µ,Λ)}. By writing Dg(n, a) =

∑
b|n,b≤a g(b), we can rewrite the summation

as ∑
abk≤N

M0<a≤M
b≤a

f(a)g(b) =
∑

M0<a≤M

f(a)
∑

n≤N/a

∑
b|n
b≤a

g(b) =
∑

M0<a≤M

f(a)
∑

n≤N/a

Dg(n, a). (4.5)

Suppose that we can find an upper bound C(n) for the expected number of operations needed to
compute Dg(k, a) for some k = 1, . . . , n and some fixed value of a. Then we can recursively compute
and keep track of the sums Sg(n, a) =

∑
k≤nDg(k, a) for n ∈ [N/M,N/M0] in O

(
(N/M0)C(N/M0)

)
time and negligible space. Hence, given a segmented table of values f(a) for the integers a ∈ [M0,M ],
we are able to compute the double sum in Equation 4.5 in O

(
(N/M0)C(N/M0)

)
time. Note that for

f ∈ {µ,Λ}, we can compute tables of values of f using (segmented) computational sieves discussed
in Chapter 2. We discuss the corresponding time and space complexity in Section 4.1.1.

Following our previous argument, it remains for us to find an upper bound only dependent on n in
which we are able to compute Dg(k, a) on average over k = 1, . . . , n given some fixed integer a, where
g ∈ {µ,Λ}. As the values of µ(n) and Λ(n) depend on the decomposition of n into prime factors,
we want to compute and store the prime factorizations of integers n ≤ N/M0. Note that this again
can be done using (segmented) computational sieves discussed in Chapter 2. We elaborate on the
corresponding time and space complexity in Section 4.1.1.

In [HT23], an algorithm is presented to compute Dµ(n, a) for any n ∈ [K, 2K] and fixed a in
O(log logK) operations on average, given the prime factorization of n. In particular, it is possible
to compute Dµ(n, a) for n ∈ [1, . . . , N/M0] and fixed a in O(log logN/M0) operations on average. In
order to not repeat their work on this matter, we will instead focus on the simpler case for DΛ(n, a).
Suppose the prime factorization of n is given by pe11 · · · p

et
t . Then we have

DΛ(n, a) =
∑
d|n
d≤a

Λ(d) =
∑

1≤j≤t
1≤k≤ej
pkj≤a

Λ(pkj ) =
∑

1≤j≤t
1≤k≤ej
pkj≤a

log pj =
t∑

j=1

min

{
ej ,

⌊
log a

log pj

⌋}
log pj .

As a result, the computation of DΛ(n, a) takes time proportional to the number of distinct prime
divisors of n, also denoted ω(n). To analyze the amount of operations needed, we note that since
ω(n) =

∑
p|n 1, we have∑

n≤K

ω(n) =
∑
n≤K

∑
p|n

1 =
∑
p≤K

∑
n≤K
p|n

1 =
∑
p≤K

⌊
K

p

⌋
=
∑
p≤K

(
K

p
+O(1)

)
∼ K log logK.

Here, we repeat that from Chapter 2 that the last step follows from Mertens’ second theorem [Mer74;
Vil05], stating that

∑
p≤K p−1 ∼ log logK. We conclude that the average number of distinct prime divi-

sors of n ≤ K isO(log logK). Thus, for n = 1, . . . , N/M0 we can computeDΛ(n, a) inO(log log(N/M0))
time on average, given the prime factorization of n.
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In conclusion, we compute the double sum ∑
mdk≤N

M0<max{m,d}≤M

Λ(m)µ(d)

via a case distinction according to Equation 4.4. The latter sum on the right-hand side of Equation 4.4
is computed naively. The remaining two double sums have been rewritten so that they can essentially
be computed via calculation of a couple of simpler summations while storing partial results.

4.1.1 Analysis of the time and space complexity

We have referred a couple of times to Chapter 2 for the computation of tables of values for Λ and µ,
as well as a list of prime factorizations for integers in some interval. Here we did not mention details
regarding the time and space complexity. This was done deliberately as we consider two variants of
segmented sieves in Chapter 2: the traditional approach and an adaptation by Helfgott discussed in
[Hel20]. We will briefly analyze the time and space complexity of the computation of the dependent
variable sum for both approaches.

In case of the traditional segmented sieve, we can store tables of Λ(n) and µ(n) for n ∈ [M0,M ] via
segments of length roughly

√
M resulting in a time complexity of O(M log logM) and space complex-

ity of O(
√
M). To store the prime factorizations of integers n ∈ [1, N/M0], we can proceed by using

segments of length roughly
√
N/M0 resulting in a time complexity of O

(
(N/M0) log logN

)
and space

complexity of O
(√

N/M0 logN
)
. The time complexity for the remaining tasks described above is

given by O
(
(N/M0) log logN

)
, with negligible space consumption. We conclude that the desired sum

in (4.3) can be computed inO
(
(N/M0) log logN) time andO

(√
N/M0 logN) space, sinceN/M0 ≥M .

If we were to use the adaptation by Helfgott, then we can store the tables of Λ(n) and µ(n) for
n ∈ [M0,M ] using segments of length in the order of 3

√
M(logN)2/3, resulting in a time and space com-

plexity of O(M logM) and O
(

3
√
M(logN)5/3

)
respectively, assuming we first compute the prime fac-

torizations of integers in a segment. Similarly, to find the prime factorizations of integers in [1, N/M0],
Helfgott’s segmented sieve considers segments of length in the order of 3

√
N/M0(logN)2/3. This results

in a time and space complexity of O
(
(N/M0) logN

)
and O

(
3
√
N/M0(logN)5/3

)
respectively.

4.2 Independent variable case

In this section we compute the double sum∑
mdk≤N
m,d≤M0

Λ(m)µ(d) =
∑

m,d≤M0

Λ(m)µ(d)

⌊
N

md

⌋
. (4.6)

The approach we consider is identical to the approach taken in [HT23], so we mainly discuss the
general steps.

The main problem with calculating the above double sum is the fact the expression inside the floor
function is dependent on both m and d. Suppose for an instance that the expression could be written
as a sum F (m) +G(d). Then we could proceed using a separation of variables:∑

m,d≤M0

Λ(m)µ(d) (F (m) +G(d)) =
∑

m≤M0

Λ(m)F (m)
∑
d≤M0

µ(d) +
∑

m≤M0

Λ(m)
∑
d≤M0

µ(d)G(d). (4.7)
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Provided that values of F and G can be computed in constant time, this makes evaluation of the
desired sum possible in O(M0 log logM0) operations and O(

√
M0 logM0) space by using traditional

segmented sieves discussed in Chapter 2 to obtain tables of Λ and µ.

With the above observation in mind, it makes sense to consider the local linear approximation of the
function f(x, y) = N/(xy) at a point (m0, d0) ∈ N2, which is given by

N

xy
≈ N

m0d0
+ cx(x−m0) + cy(y − d0), (4.8)

where

cx =
∂

∂x

(
N

xy

)∣∣∣∣
(x,y)=(m0,d0)

= − N

m2
0d0

and cy =
∂

∂y

(
N

xy

)∣∣∣∣
(x,y)=(m0,d0)

= − N

m0d20
.

Note that the individual terms in the local linear approximation are not dependent on both x and y.
This motivates the analysis of the difference between, for instance,

S =
∑

m,d≤M0

Λ(m)µ(d)

⌊
N

md

⌋
(4.9)

and

S1 =
∑

m,d≤M0

Λ(m)µ(d)

(⌊
N

m0d0
+ cx(m−m0)

⌋
+
⌊
cy(d− d0)

⌋)
, (4.10)

as S1 can be computed using separation of variables as illustrated in Equation 4.7. This illustrates the
basic idea used in [HT23] to compute the desired appearing in (4.6). It turns out that it is desirable
to compute the difference S − S1 by considering an intermediate step. More specifically, in [HT23], a
method is described which we will use to compute S − S1 via computation of the differences S − S0
and S0 − S1, where

S0 =
∑

m,d≤M0

Λ(m)µ(d)

⌊
N

m0d0
+ cx(m−m0) + cy(d− d0)

⌋
. (4.11)

Similar as in [HT23], from now on, we consider the quantities

L(m, d) =

⌊
N

md

⌋
, L0(m, d) =

⌊
N

m0d0
+ cx(m−m0) + cy(d− d0)

⌋
and

L1(m, d) =

⌊
N

m0d0
+ cx(m−m0)

⌋
+
⌊
cy(d− d0)

⌋
,

so that S =
∑

m,d≤M0
Λ(m)µ(d)L(m, d), while Sj =

∑
m,d≤M0

Λ(m)µ(d)Lj(m, d) for j ∈ {0, 1}.

To analyze the differences S − S0 and S0 − S1, we need to look at the differences L(m, d)− L0(m, d)
and L0(m, d)− L1(m, d). As a result, we need to have control over the error term in Equation 4.8, for
which it makes sense to consider the above local linear approximations of N/(xy) on small rectangular
regions. We will mimic the setup used in [HT23], which can be summarized as follows. We first
partition the region [1,M0]

2 into dyadic rectangles of the form R(A,B) = [A, 2A) × [B, 2B). A fixed
rectangle R = R(A,B) is then subdivided into rectangles Ix × Iy of fixed width 2a and height 2b with
a specified center (m0, d0), so that Ix = [m0 − a,m0 + a) ∩ [1,M0], and Iy = [d0 − b, d0 + b) ∩ [1,M0].
The values of a and b are determined for each region R = R(A,B) and are used to bound the error
term in Equation 4.8. We discuss values for these parameters in Section 4.2.1.
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Below we fix a rectangular region Ix × Iy using the notation as above. In [HT23], formulas are
established for the differences L(m, d)−L0(m, d) and L0(m, d)−L1(m, d) for (m, d) ∈ Ix× Iy. Before
we state these results, we need to establish some additional notation used in [HT23]. First of all, the
coefficient cy appearing in Equation 4.8 is approximated by a reduced fraction a0/q where q ≤ Q := 2b,
with the property that the difference

δ := cy −
a0
q

satisfies |δ| ≤ 1/(qQ). We note that this bound on δ can be accomplished by Dirichlet’s approximation
theorem. Additionally, for fixed m ∈ Ix, we write r0 ∈ {0, 1, . . . , q} such that

β :=

{
N

m0d0
+ cx(m−m0)

}
− r0

q

is minimized. If multiple choices of r0 exists, the greater one is chosen to ensure that β ∈ [− 1
2q ,

1
2q ).

We discuss details regarding the implementation of obtaining a0 and q in Chapter 6.

Using the above notation, we are able to state the results from [HT23] on the differences between
L(m, d), L0(m, d) and L1(m, d). We first consider the general case.

Lemma 4.2 (Cf. [HT23]). Suppose that (m, d) ∈ Ix × Iy. If a0(d− d0) + r0 ̸≡ 0,−1 (mod q), then we
have that L(m, d) = L0(m, d). Moreover, if q ∤ a0(d− d0) + r0, then

L0(m, d)− L1(m, d) =


1 if a0(d− d0) > q − r0,
1 if q | (d− d0) and δ(d− d0) < 0,

0 otherwise,

where k represents the unique integer in {0, 1, . . . , q − 1} congruent to k modulo q.

The result for the remaining case for the difference L0(m, d)− L1(m, d) can be stated as follows.

Lemma 4.3 (Cf. [HT23]). Suppose that (m, d) ∈ Ix × Iy while a0(d − d0) + r0 ≡ 0 (mod q). Then,
if r0 ̸≡ 0 (mod q),

L0(m, d)− L1(m, d) =

{
1 if β + δ(d− d0) ≥ 0,

0 otherwise.

If instead r0 ≡ 0 (mod q), then

L0(m, d)− L1(m, d) =


1 if β < 0 and δ(d− d0) < 0,

1 if βδ(d− d0) < 0 and β + δ(d− d0) ≥ 0,

0 otherwise.

(4.12)

Let us now fix an integer m ∈ Ix. To discuss the remaining cases for the difference L(m, d)−L0(m, d),
we define integer intervals I = I(m) and Jr = Jr(m) for r = 0, 1 so that

I = {d ∈ Z : β + δ(d− d0) < 0} and Jr = {d ∈ Z : γ2d
2 + γ1,rd+ γ0 < 0},

where γ0 = qN , γ2 = −a0m and

γ1,r = m

(
a0d0 − (r0 + r)− q

⌊
N

m0d0
+ cx(m−m0)

⌋)
.

As noted in [HT23], the coefficient γ2 is non-negative. As a result, we note that Jr is indeed an interval
for r = 0, 1.

Below we consider the difference L(m, d)−L0(m, d) when a0(d− d0)+ r0 ≡ 0,−1 (mod q). Note that
the cases q = 1 and q > 1 are considered separately to take into account that for q = 1 the residue
classes 0 and −1 modulo q overlap.
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Lemma 4.4 (Cf. [HT23]). Suppose that (m, d) ∈ Ix × Iy. If q > 1 and a0(d − d0) + r0 ≡ 0 (mod q),
then

L(m, d)− L0(m, d) =

{
1 if d ∈ I − (I ∩ J0),
0 otherwise.

Lemma 4.5 (Cf. [HT23]). Suppose that (m, d) ∈ Ix × Iy. If q > 1 and a0(d− d0) + r0 ≡ −1 (mod q),
then

L(m, d)− L0(m, d) =

{
1 if d ̸∈ J1,
0 otherwise.

Lemma 4.6 (Cf. [HT23]). Suppose (m, d) ∈ Ix × Iy. If q = 1, then

L(m, d)− L0(m, d) =

{
1 if d ̸∈ (I ∩ J0) ⊔ ((N\I) ∩ J1),
0 otherwise.

We will not discuss the proofs of Lemmas 4.2–4.6 in detail, as this has already been done in [HT23].
However, we do want to remark that the proofs are very elementary in essence.

As we stated earlier, I, J0 and J1 are integer intervals. This makes them easy to work with from a
computational perspective, as we can store them in constant time using only the two endpoints of the
interval. It should be noted that the complement of I, i.e., N\I, is also an integer interval. Moreover,
the intersection of two intervals is again an interval.

As mentioned in [HT23], the roots of a quadratic equation can be computed in constant time, using
the quadratic formula. As a result, computation of the intervals J0 and J1 does not require more than
constant time as well. Similarly, the intervals I and N\I can be computed in constant time, as well as
any intersection of two intervals. As a result, for fixed m ∈ Ix, as claimed in [HT23], it is possible to
compute the sums

S′
0 =

∑
d∈Iy

µ(d)
(
L(m, d)− L0(m, d)

)
and S′

1 =
∑
d∈Iy

µ(d)
(
L0(m, d)− L1(m, d)

)
in constant time, assuming we have stored tables of values

ρr,d′ =
∑

d∈Iy , d≤d′

a0(d−d0)≡ r (mod q)

µ(d) and σr =
∑
d∈Iy

a0(d−d0)>q−r

µ(d),

for r ∈ {0, 1, . . . , q − 1} and d′ ∈ [d0 − b, d0 + b), as well as the sum

τ =
∑
d∈Iy

δ(d−d0)<0
q|(d−d0)

µ(d).

We recall that we use n to denote the integer representative of n modulo q in [0, q).

To illustrate how the sums S′
1 and S′

2 can be computed in constant time by storing the above objects,
we consider the computation of the contribution of Lemma 4.5. Assume that we have determined that
J1 = [d1, d2]. Then the contribution corresponding with Lemma 4.5 is given by∑

d∈Iy
a0(d−d0)≡−r0−1 (mod q)

µ(d)−
∑

d∈Iy , d1≤d≤d2
a0(d−d0)≡−r0−1 (mod q)

µ(d).
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If we were to write ρ′d = ρ−r0−1,min{d,d0+b−1} for d ≥ d0 − b, while ρ′d = 0 for d < d0 − b, the above
expression simplifies to

ρ′d0+b−1 −
(
ρ′d2 − ρ

′
d1−1

)
,

which can be computed in constant time, given ρ. We note that the table ρ suffices for the computation
of the contributions corresponding with Lemmas 4.3–4.6, while the table σ and the value τ are used
to compute the contribution of Lemma 4.2.

It remains for us to elaborate on the computation and storage of the objects ρr,d′ , σ and τ . We note
that the tables ρ and σ, as well as the value τ , can be computed in O(b) operations, assuming we
have access to a table of the values of µ. To see why, we note that ρ and τ essentially consider partial
sums of µ, which can be computed recursively. Then σ can be computed as a partial sum of values of
ρ∗r = ρr,d0+b−1:

σr+1 =
∑
d∈Iy

a0(d−d0)≥q−r

µ(d) = σr + ρ∗q−r.

To elaborate on the space complexity of storing the above objects, we note that ρ actually stores
redundant information as ρr,d′ = ρr,d′′ , where d′′ ≤ d′ is the largest integer congruent to r modulo
q, as mentioned in [HT23]. This essentially means that we can reduce the size of ρ by a factor of q,
leading to ρ only storing O(b) entries. As these entries are of size O(b), this means that ρ can be stored
using O(b log b) space. The objects σ and τ also require O(b log b) space, meaning that the overall
memory usage is O(b log b).

In conclusion, the computation of

S =
∑

m,d≤M0

Λ(m)µ(d)

⌊
N

md

⌋
=

∑
m,d≤M0

Λ(m)µ(d)L(m, d)

is done by considering local linear approximations of N/(xy) centered at small rectangles. Given a
specific small rectangle Ix × Iy, we compute

S′ =
∑

(m,d)∈Ix×Iy

Λ(m)µ(d)L(m, d)

by relating it to
S′
j =

∑
(m,d)∈Ix×Iy

Λ(m)µ(d)Lj(m, d),

for j = 0, 1. As S′
1 allows separation of variables, it is possible to compute S′

1 relatively efficiently, in
O(a+ b) operations, assuming we have access to tables of Λ and µ. Additionally, by fixing m ∈ Ix, we
elaborated on the method discussed in [HT23] allowing computation of∑

d∈Iy

µ(d)
(
L(m, d)− L0(m, d)

)
and

∑
d∈Iy

µ(d)
(
L0(m, d)− L1(m, d)

)
in constant time. This was done by computing and storing certain tables using O(b) operations and
O(b log b) space, excluding the computation and storage of the necessary table of values of µ. As these
tables can be used for all values of m ∈ Ix, it is possible to compute the differences S′−S′

0 and S′
0−S′

1

in O(a + b) operations. As a result, we have shown that S′ can be computed in O(a + b) operations
and O(b log b) memory, excluding the time and space necessary to compute and store the values of µ.
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4.2.1 Choices for parameters a and b and analysis of the time complexity

There are a couple of things left for us to discuss. First of all, we should obtain values of a and b.
Recall that a and b were defined such that Ix = [m0 − a,m0 + a) and Iy = [d0 − b, d0 + b), and that
they should be chosen such that the absolute error in Equation 4.8 is at most 1/(2b). Moreover, as it
stands, we have only given an upper bound on the number of operations needed to compute∑

(m,d)∈Ix×Iy

Λ(m)µ(d)

⌊
N

md

⌋
.

In this section, we will establish an upper bound for the number of operations needed to compute the
complete sum related to the independent variable case, i.e.,∑

m,d≤M0

Λ(m)µ(d)

⌊
N

md

⌋
.

In [HT23], a method is described on how to choose values of a and b given the constraint on the error
term. In short, for any region R(A,B) = [A, 2A)× [B, 2B), it suffices to take

a =

⌊
A · 3

√
A

6N

⌋
and b =

⌊
B · 3

√
A

6N

⌋
. (4.13)

The choices for a and b become problematic in case that a = 0 or b = 0, as the corresponding rectangles
Ix × Iy ⊂ R(A,B) would be empty. We explain how to solve this issue in Section 4.2.2.

From now on, we assume that a, b ≥ 1. We compute the time complexity of the computation over
a dyadic rectangle R(A,B). We recall that, provided we have computed and stored values of Λ and
µ, the computation over a fixed rectangle Ix × Iy ⊂ R(A,B) can be done in O(a + b) additional
operations and O(b log b) additional memory. To store values of Λ and µ efficiently, we process the
rectangle R(A,B) in batches of width and length of order

√
M0. This way, we can use traditional

segmented sieves discussed in Chapter 2 to compute the values of Λ and µ corresponding to the
rectangle R(A,B) in O

(
(A + B) log logN

)
operations and O(

√
M0) space. For each individual batch,

being a subset of some rectangle Ix × Iy, we can then compute its contribution to

∑
(m,d)∈Ix×Iy

Λ(m)µ(d)

⌊
N

md

⌋
, (4.14)

with a negligible time increment. As a result, the computation of (4.14) over all rectangles Ix × Iy in
a dyadic region R(A,B) is possible in

O

(
(A+B) log logN +

AB

ab
· (a+ b)

)
= O

(
3

√
N

A
· (A+B)

)
= O

(
N1/3

(
A2/3 +BA−1/3

))
(4.15)

operations and

O
(√

M0 + b log b
)
= O

(√
M0 +B

3

√
A

N
logN

)
= O

(√
M0 +

3

√
M4

0

N
logN

)
(4.16)

memory, since A,B ≤M0.
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Note that we have simplified the space complexity in (4.16) so that it is independent of A,B. There-
fore, the estimate of the space complexity suffices for all rectangles R(A,B) ⊂ [1,M0]

2. In other
words, the space complexity for the computation of the sum∑

d,m≤M0

Λ(m)µ(d)

⌊
N

md

⌋

is O(max{
√
M0,

3
√
M4

0 /N logN}). To compute its corresponding time complexity, we note that it
remains to sum (4.15) over A,B of the form 2i and 2j with i, j = 0, 1, . . . , ⌊log2(M0)⌋ to cover the
region [1,M0]

2 completely. That is, the time complexity is majorized by

N1/3
∑

i,j≤log2 M0

(
22i/3 + 2j−i/3

)
operations. Using identities for geometric series, we note that the first part of the sum simplifies to

N1/3
∑

i,j≤log2 M0

22i/3 ≪ N1/3 logM0

∑
i≤log2 M0

22i/3 ≪ N1/3M
2/3
0 logM0.

Likewise, the second part of the sum simplifies to

N1/3
∑

i≤log2 M0

2−i/3
∑

j≤log2 M0

2j ≪ N1/3M
2/3
0 .

We conclude that we can compute the sum corresponding to the independent variable sum in

O(N1/3M
2/3
0 logM0) = O(N1/3M

2/3
0 logN) (4.17)

operations and

O

(√
M0 +

3

√
M4

0

N
logN

)
(4.18)

memory.

4.2.2 Alternative approach in case that a or b is small

As we mentioned in the previous section, the analysis above does not account for the case where a = 0
or b = 0. In this case, we can instead compute the sum naively. In fact, as in [HT23], we will consider
naive computation in a more general setting. More specifically, as in [HT23], we will consider naive
computation in case that min{a, b} < C, for some constant C ≥ 1 which can be chosen freely.

The corresponding rectangles being relatively small seems to suggest that naive computation should
not have an impact on the time complexity. However, without being careful, this is actually false. To
illustrate this, we note that as it stands, we want to evaluate the sum∑

(m,d)∈Ix×Iy

Λ(m)µ(d)

⌊
N

md

⌋
naively if either a < C or b < C, where |Ix| = 2a and |Iy| = 2b. Noting that all rectangles to be
considered in the dyadic region R(A,B) ⊃ Ix × Iy are of equal length and width, this directly implies
that we want to compute the sum ∑

(m,d)∈R(A,B)

Λ(m)µ(d)

⌊
N

md

⌋
(4.19)
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naively if either A ≤ (6C3N)1/4 or A1/3B ≤ (6C3N)1/3. Here, we transformed the conditions on a
and b into conditions on A and B by using (4.13). Note that the naive computation of (4.19) takes
O(AB) operations, representing the size of the rectangle R(A,B) = [A, 2A)× [B, 2B).

Focusing on the case A ≤ (6C3N)1/4 ≪ N1/4, the time complexity becomes of order at least ∑
i≤log2

4√N

2i

 ∑
j≤log2 M0

2j

≫ N1/4M0, (4.20)

where we identified A and B with 2i and 2j respectively, sharing similarities with the end of Section
4.2.1. It is not immediately clear that this becomes problematic. So, to put it into perspective, we
note that the final time complexity of the described algorithm is approximately O(N3/5), while (4.20)
would result in a time complexity of order at least N13/20.

The previous suggests that our current restrictions for the consideration of naive computation are too
lenient. As a result, we should consider a more restrictive setting. In [HT23], it was a tangible decision
to consider the restriction B ≤ A. The reason for this decision can be explained by noting that they
originally consider the sum ∑

m,d≤M0

µ(m)µ(d)

⌊
N

md

⌋
,

which is symmetric in both variables. As the computations over rectangles [A, 2A) × [B, 2B) and
[B, 2B)× [A, 2A) yield the same value, the restriction B ≤ A is useful to essentially halve the number
of operations needed. A less evident reason to consider this restriction is to reduce the time complexity
corresponding to the naive computation for these small rectangles: the time complexity corresponding
to the case B ≤ A ≤ (6C3N)1/4 is majorized by∑

0≤j≤i≤log2
4√N

2i+j ≤
∑

i,j≤log2
4√N

2i+j ≪ N1/2.

Additionally, the time complexity corresponding to the case A1/3B ≤ (6C3N)1/3 ≪ N1/3 is of order

∑
i,j≤log2 M0

i/3+j≤log2
3√N

2i+j ≪
∑

i≤log2 M0

2i
∑

j≤−i/3+ log2
3√N

2j

≪ N1/3 ·
∑

i≤log2 M0

22i/3 ≪ N1/3M
2/3
0 .

We note that the above estimates of the time complexity can be determined using identities for geo-
metric series and are negligible in comparison with (4.15).

The drawback of using the restriction B ≤ A is obvious; they cannot be considered for any rectangles
R(A,B) where B > A. As these rectangles do need to be considered, at a first glance, this may seem
to be introducing a new problem. However, we want to note that the functions Λ and µ appearing in
(4.6), (4.7), (4.9), (4.10) and (4.11) can essentially be replaced by any two functions f and g, without
needing to change anything essential in the described method to compute their differences. The only
thing to keep track of is the fact that we would then need to consider tables of values of f instead of
Λ, or tables of values of g instead of µ. In particular, we can swap the roles of Λ and µ to obtain the
desired symmetry to consider dyadic rectangles R(A,B) where B > A.

To conclude this section, we note that for small rectangles it is possible to consider naive computa-
tion without increasing the overall time complexity by restricting the computation to dyadic regions
R(A,B) for which B ≤ A. To compute the contributions on dyadic regions R(A,B) for which B > A,
we can swap the roles of Λ and µ throughout Section 4.2 without other issues arising.
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4.3 Final estimates of the time and space complexity

We have described an algorithm to calculate ψ(N) by first rewriting it using Vaughan’s identity. At the
end of the introductory discussion of the sum, we determined that the sum could be computed using
a case distinction for large indices and small indices based on a parameter M0 ≤M = ⌊

√
N⌋.

The case where one of the indices is large is handled by writing the sum towards divisors sums to
be computed recursively. We showed that it requires either O

(
(N/M0) log logN

)
operations and

O(
√
N/M0 logN) memory if we consider traditional segmented sieves, or O

(
(N/M0) logN

)
opera-

tions andO
(

3
√
N/M0(logN)5/3

)
memory when considering Helfgott’s adaptation discussed in [Hel20].

On the other hand, the case where both indices are small requires O
(
N1/3M

2/3
0 logN

)
operations and

O
(
max{ 3

√
M4

0 /N logN,
√
M0}

)
memory by subdividing the calculation over small rectangles. This

allows us to consider local linear approximations to reduce double sums to a couple of related simple
sums. We took care of small rectangles using a naive approach. We showed that it is possible to
implement naive computation without increasing the order of the time complexity.

To obtain the optimal time bound using this approach, we consider both variants of usage of seg-
mented computational sieves separately. In the case of usage of traditional segmented sieves, we
should take M0 to be of order N2/5(logN)−3/5(log logN)3/5 which would result in a time complexity
of O

(
N3/5(logN)3/5(log logN)2/5

)
and a space complexity of O

(
N3/10(logN)13/10(log logN)−3/10

)
.

If we were to consider Helfgott’s adaptation instead, then we optimal time bound by taking M0

to be of order N2/5, with corresponding time and space complexity given by O(N3/5 logN) and
O
(
N1/5(logN)5/3

)
respectively. We finally remark that the usage of the traditional segmented sieve

throughout Section 4.2 does not impact the overall space complexity.
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Chapter 5

An Approach using Fourier Theory

We will now consider an approach which uses ideas from Fourier theory. The actual usage of Fourier
theory will not be discussed in this chapter, and can instead be found in Appendix A.

As before, let N ≥ 1 be an integer and write M = ⌊
√
N⌋. Applying Vaughan’s identity, we obtain that

ψ(N) = ψ(M) +
∑
dk≤N
d≤M

µ(d) log(k)−
∑

mdk≤N
m,d≤M

Λ(m)µ(d). (5.1)

As explained in Chapter 4, we can approximate both ψ(M) and the first double sum in (5.1) relatively
easily. We will therefore shift focus to the second double sum.

We recall from Chapter 3 that given an arithmetic function f , we define its restriction to integers less
than M as f≤M . That is,

f≤M (n) =

{
f(n), if n ≤M,

0, otherwise.

In order to compute the latter double sum, we now follow an approach similar to that considered in
[HKM23] for which we first rewrite it as∑

n≤N

(Λ≤M ∗ µ≤M ∗ 1)(n) (5.2)

We consider a parameter ∆ = ∆N > 0 and define the segmentation array of a function (with respect
to ∆). For reasons which only become apparent later, we will assume that ∆ → 0 as N → ∞, while
∆≫ N−ε for some ε ∈ (0, 1). When optimizing ∆, we will observe that taking ∆ to be of order 1/

√
N

minimizes the time complexity, thereby satisfying the above constraints.

Definition 5.1 (Segmentation array, cf. [HKM23]). Given a number theoretic function f : N → C, we
define its segmentation array f : {0, 1, . . . , N} → C, with N = ⌊∆−1 log2N⌋, via

f [k] =
∑

2k∆≤n<2(k+1)∆

f(n), k = 0, 1, . . . , N.

We also define the segmentation index k(n) = ⌊∆−1 log2 n⌋ so that for k = 0, 1, . . . , N ,

f [k] =
∑

n : k(n)=k

f(n).

The segmentation index k(n) has the following property if n is a product of integers, which turns out
to be useful later on.
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Lemma 5.2 (Cf. [HKM23]). Fix a positive integer t ≥ 2. For any choice of positive integers n1, . . . , nt,
we have the following inequalities:

k
( t∏
i=1

ni
)
− t+ 1 ≤

t∑
i=1

k(ni) ≤ k
( t∏
i=1

ni
)
.

Proof. The proof follows easily by induction after proving the base case (t = 2), stating that

k(n1n2)− 1 ≤ k(n1) + k(n2) ≤ k(n1n2),

or in other words, ⌊
log2(n1n2)

∆

⌋
− 1 ≤

⌊
log2(n1)

∆

⌋
+

⌊
log2(n2)

∆

⌋
≤
⌊
log2(n1n2)

∆

⌋
.

Recall that for any two real numbers x, y > 0, ⌊x + y⌋ − 1 ≤ ⌊x⌋ + ⌊y⌋ ≤ ⌊x + y⌋, which shows the
above holds using logarithm properties. ■

Given two arithmetic functions f and g, we now wish to define a convolution of f and g and relate it
to the Dirichlet convolution f ∗ g.

Definition 5.3 (Discrete convolution). Given two arrays f and g of the same size N + 1, we define their
discrete convolution via

(f ⋆ g)[k] =
∑

k1+k2=k

f [k1]g[k2],

for k = 0, 1, 2, . . . , N .

The reason for introducing discrete convolutions while (5.2) considers Dirichlet convolutions can be
explained by the fact that discrete convolutions can be transformed into products relatively easily,
while Dirichlet convolutions cannot. More specifically, using the discrete Fourier transformation, say
F , the convolution f ⋆ g can be related to F−1(F(f) · F(g)), where multiplication is taken entry-wise.
This relation is discussed in more detail in Appendix A. In particular, we show that this allows us to
compute all entries of f ⋆ g in O(N logN) operations and O(N) memory using a so-called Fast Fourier
Transform. For comparison, the naive approach would take O(N

2
) operations and O(N) memory.

We should mention that our method differs slightly from the method described in [HKM23]. Instead of
discrete Fourier transformations, [HKM23] considers number theoretic transformations. In our current
setting, we cannot use the same kind of transformation, as number theoretic transformations operate
on integer-valued functions, which would not work for Λ. We discuss more details regarding the
differences in Section 6.4.2. There we also discuss a potential method to apply number theoretic
transformations by reconsidering our setting.

To relate the Dirichlet convolution as in the summand of (5.2) to the corresponding discrete convolu-
tion Λ≤M ⋆ µ≤M ⋆ 1, we will rewrite

(Λ≤M ⋆ µ≤M ⋆ 1)[k] =
∑

k1+k2+k3=k

Λ≤M [k1] ⋆ µ≤M [k2] ⋆ 1[k3]

=
∑

d1, d2, d3:
k(d1)+k(d2)+k(d3)=k

Λ≤M (d1)µ≤M (d2)1(d3),
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where in the second step, we used the second characterization of the segmentation array as in Defini-
tion 5.1. This implies that

k(N)∑
k=0

(Λ≤M ⋆ µ≤M ⋆ 1)[k] =
∑

d1, d2, d3:
k(d1)+k(d2)+k(d3)≤k(N)

Λ≤M (d1)µ≤M (d2)1(d3).

The idea now is to distinguish the cases d1d2d3 ≤ N and d1d2d3 > N . Namely, suppose that
d1d2d3 ≤ N . Then, by Lemma 5.2, the condition k(d1) + k(d2) + k(d3) ≤ k(N) is satisfied, so
that ∑

d1d2d3≤N
k(d1)+k(d2)+k(d3)≤k(N)

Λ≤M (d1)µ≤M (d2)1(d3) =
∑

d1d2d3≤N

Λ≤M (d1)µ≤M (d2)1(d3)

=
∑
n≤N

(Λ≤M ∗ µ≤M ∗ 1)(n).

As a result, analogous to [HKM23], we have proven the following lemma.

Lemma 5.4 (Cf. [HKM23]). For any integer N ≥ 1, we have that∑
k≤k(N)

(Λ≤M ⋆ µ≤M ⋆ 1)[k]−
∑
n≤N

(Λ≤M ∗ µ≤M ∗ 1)(n) =
∑

d1d2d3>N
k(d1)+k(d2)+k(d3)≤k(N)

Λ≤M (d1)µ≤M (d2)1(d3).

(5.3)

As we mentioned above, in Appendix A we show that the first sum appearing in Equation 5.3 can
be calculated in O(N logN) operations and O(N) space, where N = k(N) ≪ ∆−1 logN , given the
entries of Λ≤M , µ≤M and 1. That is, given the required segmentation arrays, we can compute the first
sum appearing in Equation 5.3 in O

(
∆−1(logN)2

)
operations and O(∆−1 logN) memory.

We note that we can compute the arrays Λ≤M and µ≤M in O(M log logM+∆−1 logN) operations and
O(
√
M+∆−1 logN) memory by first computing tables of the values of Λ(n) and µ(n) for n ≤M using

computational sieves discussed in Chapter 2. Moreover, the individual entries of the segmentation
array 1 can be computed in constant time, resulting in an additional time and space complexity of
O(∆−1 logN).

To compute the desired sum ∑
n≤N

(Λ≤M ∗ µ≤M ∗ 1)(n),

it remains for us to compute the right-hand side of Equation 5.3, which we will refer to as the error
term. As in [HKM23], we compute the error term using a naive approach. More specifically, we
first compute a bound on the integers n > N which can be written as a product of three terms, say
n = d1d2d3, such that k(d1) + k(d2) + k(d3) ≤ k(N). We then compute the prime factorizations
of these integers to find all of their decompositions into three factors. Finally, we determine the
decompositions satisfying the constraint on the segmentation indices, and for those satisfying the
constraint we evaluate their contribution to the error term.

We first establish a bound on the integers n > N satisfying n = d1d2d3 with k(d1) + k(d2) + k(d3) ≤
k(N) for some triplet (d1, d2, d3) of positive integers.
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Lemma 5.5 (Cf. [HKM23]). Suppose that a tuple (d1, d2, d3) of positive integers with n = d1d2d3 > N
satisfies k(d1) + k(d2) + k(d3) ≤ k(N). Then n lies in the interval (N,N + S] for some S of order ∆N .

Proof. By Lemma 5.2, we have that k(n)− 2 ≤ k(d1) + k(d2) + k(d3) ≤ k(N). By definition of k, this
implies that n ≤ 23∆N . Since ∆→ 0 as N →∞, Taylor’s Theorem implies that 23∆ − 1 is of order ∆.
Letting S = (23∆ − 1)N , we conclude that n ≤ N + S, where S is of order ∆N . ■

To determine the decompositions of n ∈ (N,N +S], we need to find the complete prime factorizations
of these integers. Using the prime factorization sieve discussed in Chapter 2, this can be done in
O(max{

√
N,∆N} log logN) operations and O(

√
N logN) memory. To elaborate on this in a bit more

detail, we note that in order to compute the prime factorizations of integers in (N,N + S], we first
need to compute the primes up to

√
N + S ≪

√
N , which takes O(

√
N log logN) operations and

O(
√
N logN) memory. We can then process the interval (N,N + S] in batches of length roughly

√
N ,

and proceed by following the method described in Chapter 2.

Given n ∈ (N,N + S], it remains for us to compute the sum∑
d1d2d3=n

k(d1)+k(d2)+k(d3)≤k(N)

Λ≤M (d1)µ≤M (d2)1(d3),

given the prime factorization of n, say n = pe11 · · · p
et
t . As stated previously, this is done using the

naive method involving calculating the individual decompositions into three factors of integers n in
(N,N +S]. To obtain all decompositions of n into three factors, we essentially have to iterate through
the prime divisors of n: for j = 1, . . . , t we need to subdivide factors of pejj over the three parts of the
decomposition.

In Section 6.2.2, we mention that the number of operations needed to compute the above decom-
positions is majorized by their count. Additionally, it should be noted that since we essentially store
the prime factorizations of the decompositions, it is possible to compute Λ(d1)µ(d2)1(d3) in negligible
time. In particular, there is no need to store tables of values of Λ and µ. We conclude that, given the
factorization of n, the time complexity to compute the error term is bounded by the total number of
decompositions into three factors of n.

In order to bound the number of decompositions, we use the following lemma.

Lemma 5.6 (Cf. [Shi80; NT98]). Let f be a non-negative multiplicative arithmetic function and assume
that there exist constants C,D such that f(pl) ≤ C · lD for any prime p and any integer l ≥ 1. Then,
given Nα ≤ S ≤ N for some 0 < α < 1, we have that

∑
N<n≤N+S

f(n)≪ S

logN
· exp

∑
p≤N

f(p)

p

 ,

where the implied constant depends only on C,D and α.

In short, the lemma gives an upper bound on the average value of f(n) when n ranges over a short
interval (N,N+S], where the bound can be computed using only the values of f at primes p ≤ N . This
allows us to quickly derive an upper bound on the number of decompositions of integers in (N,N +S]
into a fixed number of factors.
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Corollary 5.7 (Cf. [HKM23]). The number of decompositions of integers in (N,N + S] into k factors is
O(∆N logk−1N).

Proof. We apply Lemma 5.6 with the function f = τk, where τk(n) counts the number of decompo-
sitions of n into k factors. It is not hard to see that τk satisfies the conditions of the lemma: τk is
non-negative and multiplicative and with counting arguments it can be observed that

τk(p
l) =

(
l + k − 1

k − 1

)
≪ lk−1.

Moreover, since ∆ ≫ N−ε for some ε ∈ (0, 1), it follows that there exists α ∈ (0, 1) such that for
sufficiently large N , Nα ≤ S ≤ N , given that S is of order ∆N . We conclude that the conditions in
order to apply Lemma 5.6 are satisfied and hence

N+S∑
n=N+1

τk(n)≪
S

logN
· exp

∑
p≤N

k

p

 .

By Mertens’ second theorem [Mer74; Vil05], exp(
∑

p≤N p−1) ∼ exp(log logN) = logN , so that by
Lemma 5.5

N+S∑
n=N+1

τk(n)≪ S logk−1N ≪ ∆N logk−1N. ■

Using the above corollary, we obtain a time complexity of O(∆N log2N) to compute the error term.

5.1 Final estimates of the time and space complexity

To summarize the Fourier theoretic approach, we note that we used Vaughan’s identity, discussed in
Chapter 3, to find an expression for ψ(N). Using this identity, it remained for us to consider the sum∑

mdk≤N
m,d≤M

Λ(m)µ(d) =
∑
n≤N

(Λ≤M ∗ µ≤M ∗ 1)(n),

as we explained in Chapter 4. We then used a similar approach as in [HKM23], where it was observed
that Dirichlet convolutions were similar enough to discrete convolutions so that the difference∑

k≤k(N)

(Λ≤M ⋆ µ≤M ⋆ 1)[k]−
∑
n≤N

(Λ≤M ∗ µ≤M ∗ 1)(n)

is given explicitly by ∑
d1d2d3>N

k(d1)+k(d2)+k(d3)≤k(N)

Λ≤M (d1)µ≤M (d2)1(d3). (5.4)

We argued that it was possible to compute the necessary segmentation arrays in O(M log logM +
∆−1 logN) operations and O(

√
M + ∆−1 logN) memory. Then, by the use of methods discussed in

Appendix A, we noted that it is possible to compute∑
k≤k(N)

(Λ≤M ⋆ µ≤M ⋆ 1)[k]

in O(∆−1 log2N) operations and O(∆−1 logN) memory.
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Afterwards, it remained for us to compute the error term as given in (5.4), which was done using a
naive approach. We argued that if a tuple (d1, d2, d3) contributes to the error term, then the product
n = d1d2d3 lies in (N,N +S], where S = (23∆− 1) ·N ≪ ∆N . By computing the prime factorizations
of integers n ∈ (N,N + S], we could compute all decompositions of integers in (N,N + S] into three
factors. For each explicit decomposition, we can then check the condition on the segmentation indices
directly and find its corresponding value in negligible time, assuming we keep track of the prime
factorizations of the individual factors in the decomposition. We showed that the error term can be
computed in O(

√
N log logN +∆N log2N) operations and O(

√
N logN) memory.

As a result, we obtain a total time complexity ofO(
√
N log logN+max{∆−1,∆N} log2N). To optimize

the time bound, we take ∆ to be of order 1/
√
N , resulting in a time complexity of O(

√
N log2N) and

a space complexity of O(
√
N logN).

Finally, we want to mention that it is possible to decrease the space complexity at the cost of a larger
time complexity, which is also discussed in [HKM23]. For this, it is necessary to increase the order of
∆. However, in this case we also have to reconsider the method we used to factorize the integers in
(N,N + S], since its corresponding space complexity is also given by O(

√
N logN). Using Helfgott’s

adaptation of the factorization sieve discussed in [Hel20], which we also briefly mentioned in Section
2.3.1, we can adapt the choice of ∆ so that for any fixed 0 < ε < 1

6 , we can compute ψ(N) using the
Fourier-theoretic approach with time complexity O(N1/2+ε) and space complexity O(N1/2−ε), where
the implicit constants may depend on ε.
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Chapter 6

Implementation in C++

In this chapter we discuss details regarding the implementation of the methods described in previous
chapters. We have implemented an algorithm in C++. The main reason for this choice is that it has
been recognized to have better performance than other well-known programming languages, such
as C# or Python, while still being relatively easy to use. C++ also seems to be the standard when
implementing scientific computational algorithms. Our implementation can be found on GitHub.

Below we discuss the use of external libraries and we highlight certain parts of the implementation
which have only been mentioned briefly in the previous chapters. We will also analyze the results we
have obtained, focusing on bottlenecks in the algorithms for both of the described methods. Finally,
we discuss several aspects which could be considered in the future.

6.1 External libraries

As we briefly mentioned in Chapter 4, some computations necessary to evaluate ψ(N) need to be
approximated in order to keep a reasonable time and space complexity. The standard C++ library does
allow to store approximations using floating-point number types such as double and long double.
However, on 64-bit processors, the precision of such approximations typically extends to roughly 15
digits. This does not suffice for our purposes. For example, suppose that we wish to compute ψ(1010)
up to 8 digits after the decimal. Since ψ(N) ∼ N , this would require at least 18 digits of precision. As
a result, using the standard data types provided in C++, it is not possible to get the desired precision.
We also need to point out that the accuracy of floating-point numbers may decrease after performing
many computations with them, which makes it desirable to work with 20 digits of precision at a
minimum in this fictive example.

As a result, we require custom data types which allow for more precision. We decided to use Boost for
this purpose. Boost is a collection of external C++ libraries covering different useful extensions of the
standard C++ library. Boost provides a multiprecision library, which allows us to store approximations
of real numbers with at least 100 digits of precision, which is more than enough for our purposes. We
also use this library for its implementation of 128 bit integers to ensure certain computations with
integers do not overflow.

Coincidentally, Boost also provides implementations of special math-related functions. One of these
functions happens to be x 7→ log Γ(x). We discussed in Chapter 4 that approximations of values of this
functions are useful for the computation of ψ(N) using both the elementary and the Fourier-theoretic
approach. It is worth noting these implementations work in combination with the Multiprecision
library we mentioned above.
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Boost also provides methods to implement parallelization of the algorithm. Although we have not
used this in our current implementation, this might be worth looking at in the future, which is why
we discuss this option in more detail in Section 6.4.

6.2 Highlighted parts of the algorithm

6.2.1 Diophantine approximation

In Chapter 4 we described a method to compute ψ(N) using elementary methods which was based on
[HT23]. When we elaborated on the method, we briefly mentioned that we need to approximate the
differential coefficient cy by some fraction a0/q where q was bounded by some constant, while a0 is
relatively prime with q. In this section we want to elaborate on the algorithm used in [HT23] used to
compute these values.

To be a bit more precise with how accurate the fraction a0/q should represent cy, we note that in
the corresponding chapter, q should be taken less than or equal to Q, where Q is some predefined
constant, and the difference should satisfy |cy−a0/q| ≤ 1/(qQ). In Chapter 4, we mentioned that such
an approximation is possible by Dirichlet’s Approximation Theorem.

To find such an approximation, it helps to look at the continued fraction representation of cy. For
simplicity, we define a continued fraction to be an expression of the form

[a0; a1, a2, . . . , an] := a0 +
1

a1 +
1

a2+
1

. . .+ 1
an

,

where n ≥ 0 and a0, a1 . . . , an are rational numbers, with a1, . . . , an ̸= 0. In fact, often it is desired
to consider a0 ∈ Z and a1, . . . , an ∈ N, which ensures uniqueness if an ̸= 1. We remark that this only
allows us to define continued fractions of rational numbers. Since cy is rational, this does not pose
any problems.

The representation of cy as a continued fraction gives rise to the so-called convergents: by writing
cy = [a0; a1, . . . , an], for k = 0, 1, . . . , n we define the k-th convergent of cy as [a0; a1, a2, . . . , ak]. It is
known that the convergents of a rational number α essentially represent the best approximations of α
as fractions with bounded denominator: if p/q represents a convergent of α, then there is no rational
p′/q′ with q′ ≤ q such that |α − p′/q′| < |α − p/q|. This suggests that in order to obtain the desired
approximation of cy, we should iteratively compute the convergents of cy and find their corresponding
representation as a reduced fraction.

To obtain the continued fraction of α0 = cy, we proceed as follows. We first set a0 = ⌊α0⌋. If α0 ∈ Z,
then we are done. Otherwise, we define α1 = 1/(α0 − a0) > 1, and note that

α = a0 +
1

α1
.

We can now set a1 = ⌊α1⌋, and we can proceed as before by defining α2 = 1/(α1 − a1) > 1 if α1 ̸∈ Z
and set a2 = ⌊α2⌋, and so on. Since α0 = cy is rational, there will be a point at which αn ∈ Z, in which
case the continued fraction of α is given by [a0; a1, a2, . . . , an].

It remains for us to convert convergents to fractions, for which we use the following lemma.
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Lemma 6.1. Let a0 ∈ Q and let a1, a2, . . . , an ∈ Q̸=0. Write p−2 = 0, p−1 = 1, q−2 = 1 and q−1 = 0.
Then for 0 ≤ k ≤ n,

[a0; a1, a2, . . . , ak] =
pk
qk
, (6.1)

where we define pk = ak · pk−1 + pk−2 and qk = ak · qk−1 + qk−2 recursively.

Proof. We proceed by induction on k. We observe that

p0
q0

=
a0p−1 + p−2

a0q−1 + q−2
= a0,

which indeed corresponds with the first convergent of [a0; a1, a2, . . . , an]. To handle the general case,
we note that [a0; a1, a2, . . . , ak−1, ak, ak+1] = [a0; a1, a2, . . . , ak−1, (akak+1 + 1)/ak+1]. As a result, if
we are to assume that the induction hypothesis holds for some k ≤ n − 1, we can substitute ak for
(akak+1 + 1)/ak+1 to obtain that

[a0; a1, a2, . . . , ak−1, ak, ak+1] =
pk−1 · (akak+1 + 1)/ak+1 + pk−2

qk−1 · (akak+1 + 1)/ak+1 + qk−2

=
(akak+1 + 1) · pk−1 + ak+1 · pk−2

(akak+1 + 1) · qk−1 + ak+1 · qk−2

=
ak+1(akpk−1 + pk−2) + pk−1

ak+1(akqk−1 + qk−2) + qk−1
=
ak+1pk + pk−1

ak+1qk + qk−1
=
pk+1

qk+1
,

by applying the definitions of pk, qk, pk+1 and qk+1. We have thus shown that the induction step holds,
which concludes the proof. ■

In conclusion, we obtain the following algorithm.

Algorithm 1 Rational Approximation Algorithm (Cf. [HT23])

Input: α ∈ R, Q ∈ Z≥1.
Output: (p, q) ∈ Z2 such that |α− p/q| ≤ (qQ)−1 with gcd(p, q) = 1.

function APPRBYFRAC(α, Q)
p← [0, 1]
q ← [1, 0]
while q1 ≤ Q do

a← ⌊α⌋
p← [p1, a · p1 + p0]
q ← [q1, a · q1 + q0]
if α = a and q1 ≤ Q then

return (p1, q1)
else if α = a then

return (p0, q0)
end if
α← 1/(α− a)

end while
return (p0, q0)

end function
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6.2.2 Computation of the segmentation error

In Chapter 5 we split the computation of ψ(N) up into two parts. One part consists of the computation
of some kind of convolution using the Fast Fourier Transform, as explained in Appendix A. For the other
part we considered naively computing the segmentation error, i.e.,∑

N<d1d2d3≤N+S
k(d1)+k(d2)+k(d3)≤k(N)

Λ≤M (d1)µ≤M (d2)1(d3).

In this subsection, we go over some of the details of the implementation of this part.

To briefly summarize what we meant by naive computation of the segmentation error; we first find
the prime factorization for each the integers in (N,N + S]. Using the prime factorization of a fixed
integer n ∈ (N,N + S], we can obtain all decompositions of n into three factors, corresponding to the
divisors d1, d2 and d3 appearing in the sum above. For each decomposition (d1, d2, d3) of n, we finally
check if the condition regarding the segmentation indices is satisfied. If so, we add the corresponding
term to the error.

The prime factorizations of integers n ∈ (N,N + S] can be computed using one of the computational
sieves discussed in Chapter 2. From now on, fix an integer n ∈ (N,N + S] and suppose that n has
prime factorization pe11 · · · p

et
t . Then to obtain the decompositions of n into three factors, we can make

use of the following observation: a decomposition (d1, d2, d3) of n, where di has prime factorization∏t
i=1 p

eij
i for j = 1, 2, 3, is uniquely characterized by the property that for each i ∈ {1, . . . , t}, we

have that ei1 + ei2 + ei3 = ei. The subdivisions of the exponents ei into three parts can be computed
recursively using the following algorithm by considering k = 3.

Algorithm 2 Subdivisions of exponent e into k parts (non-negative integers).

Input: e, k ∈ Z≥1.
Output: The list of all fi = {ei1, . . . , eik} such that

∑k
j=1 eij = e with eij ≥ 0 for j = 1, . . . , k.

function SUBDIVIDEEXPONENTS(e, k)
E ← ∅
if k = 1 then

E ← {{e}}
else

for a = 0, 1, . . . , e do ▷ The last entry gets value a, subdivide e− a into k − 1 parts.
F ← SUBDIVIDEEXPONENTS(e− a, k − 1)
for f ∈ F do

E ← E ∪ {f ∪ {a}}
end for

end for
end if
return E

end function

We note that the number of operations in the above computation is majorized by the number of
elements in the outputted list.
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As the Möbius function is multiplicative and satisfies µ(p2) = 0 for any prime p, we can save time and
space by only considering subdivisions of exponents whose corresponding part is either 0 or 1. While
this idea has been incorporated in the actual implementation, we have neglected this component in
the above algorithm as it is a relatively minor addition.

The remaining part of the algorithm is to merge the subdivisions of the exponents corresponding to
different prime factors to obtain the desired decompositions (d1, d2, d3). Then, for a fixed decomposi-
tion, we need to check if it satisfies the constraint on the segmentation indices and if it does, add its
corresponding contribution to the error term. While the process is relatively involved, it does not add
much to talk about it in more detail here.

6.3 Discussion of the results

In Appendix B, we have organized our results in tables. Below we analyze these results in more detail,
mainly focusing on the computation time.

In the following graph, we compare the computation times of the elementary and the Fourier-theoretic
method. We chose to include a naive implementation for reference. We recall from Chapter 4 that
the naive way to compute ψ(N) was to determine the primes up to N and use these to evaluate ψ(N)
directly using the identity

ψ(N) =
∑
p≤N

⌊logp(N)⌋ log(p).
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The above graph suggests that the elementary method outperforms the Fourier-theoretic method. The
basic explanation for this phenomenon is that the implicit constant appearing in the algorithm for
the Fourier-theoretic method is large in comparison with the factor corresponding to the elementary
method. This becomes apparent when closely looking at the graph, where we notice that even for
small values of N , the Fourier-theoretic method performs poorly in contrast with both the elementary
and the naive approach.

The significantly larger implicit constant for the Fourier-theoretic method can partially be explained
by noting that our implementation of the FFT algorithm is very basic. We already illustrated this in
Appendix A when we explicitly mentioned that it only operates on arrays of lengths which are powers
of 2. In the worst case, this leads to double the time complexity. We observe that this also explains
the bumps we see in the corresponding plot: some values of N simply result in advantageous sizes
of the corresponding arrays to be convolved. Another contributing factor for the bad performance
by the Fourier-theoretic method is the fact that we need to operate with approximations during a
significant proportion of the computation. In contrast, the elementary method (and the naive method,
for that matter) enables us to defer the use of approximations until the last stage where we compute
its contribution to the sum.

However, as should be expected, the Fourier-theoretic method will eventually outperform the elemen-
tary method. By trying the fit the crude estimates of the time complexities corresponding to both
methods, the turning point seems to be around N = 285. We do not expect this turning point to be
possible to achieve in the near future. However, if it is somehow possible to increase the performance
of the Fourier-theoretic method, we might be able to decrease the turning point so that it can actually
be achieved. In Section 6.4 we discuss some potential improvements we could consider in the future.

6.4 Future considerations

6.4.1 Parallelization

It has become common for computers to have multiple processing units. This allows for parallel
execution of code, which in turn results in an increase in performance. The method to implement
parallel execution is often referred to as parallelization. It essentially reduces the time needed to
complete a task simply by using more processing power and memory.

It is possible to implement parallelization in C++ using Boost’s Thread library. For our purposes,
threads can be thought of objects managed by the different processing units. For the elementary
method, we could consider parallelization of the computation of the sums corresponding to the de-
pendent and independent variable cases. For both cases, we could consider the use of so-called thread
pools. In essence, a thread pool is a collection of threads following instructions from a central compo-
nent. The central component keeps track of a list of moderate tasks which it hands out to the threads.
If a thread completes a task, it reports the results back to the central component, and then potentially
gets assigned a new task. This process continues until there are no tasks left.

To describe how thread pools can be used to compute the sum corresponding to the dependent
variable case, we note that the most time is spent on the computation of the sums of divisor sums∑

n≤N/aDg(n, a) for a =M0+1, . . . ,M , as present in (4.5). As a result, it might be useful to consider
tasks such as the computation of ∑

N/(a+1)<n≤N/a

Dg(n, a),

for a =M0 + 1, . . . ,M .

41



Similarly, for the independent variable case, the computation of∑
m,d≤M0

Λ(m)µ(d)

⌊
N

md

⌋

is split over dyadic regions R(A,B), which are further subdivided into fixed rectangles Ix × Iy. As
a result, given a region R(A,B), it is natural to consider tasks which compute the contribution cor-
responding of an individual rectangle Ix × Iy ⊂ R(A,B). However, for smaller regions R(A,B), it
may be better to consider tasks computing the contribution over the whole region R(A,B) directly.
This is explained by noting that the introduction of many trivial tasks may lead to threads needing to
wait significant amounts of time before getting assigned tasks and/or report their contributions to the
central component, which could nullify the purpose of threads.

For the Fourier-theoretic approach, most time is spent on the computation of discrete Fourier trans-
formations. As a result, to parallelize this approach, we should focus on parallelization of the FFT
algorithm. Note that the FFT algorithm was essentially based on repeatedly splitting the computation
into two parts. As a result, we could consider running multiple of these smaller parts in parallel. For
example, in a scenario where we have 4 processing units and we are considering an array of length
2n with n ≥ 2, we could run the FFT algorithm in parallel on inputs of size 2n−2. In a more general
setting, we should be able to apply similar ideas.

6.4.2 Number theoretic transformations

In Chapter 5, we described a method to compute ψ(N) partially via the evaluation of the convolution
Λ≤M ⋆ µ≤M ⋆ 1. We have also related convolutions with discrete Fourier transformations (DFTs)
in Appendix A. However, we could also take a different approach. Instead of relating convolutions
with DFTs, under some circumstances it is also possible to relate convolutions to number theoretic
transformations, abbreviated to NTTs. In fact, the following idea is also used in [HKM23], which is the
main paper we used to develop the method described in Chapter 5.

Below, N ≥ 1 is a fixed integer assumed to be a power of 2. We also let p be a (large) prime number
such that N divides p− 1, so that there exists a primitive N -th root ζN in (Z/pZ)×.

Definition 6.2. Consider a function f : {0, 1, . . . , N−1} → Z/pZ. We define the NTT of f as the function
N f : {0, 1, . . . , N − 1} → Z/pZ via

N f(n) =
N−1∑
k=0

f(k) · ζknN .

If we compare the definition of NTTs with the definitions of DFTs (present in Appendix A, we see that
they have a lot in common. In fact, the lemmas provided for DFTs in Appendix A can also be shown to
hold for NTTs, with identical proofs. In particular, it can be shown that if we are given two functions
f, g : {0, 1, . . . , N − 1} → Z/pZ, then for any n ∈ {0, 1, . . . , N − 1}, N (f ⋆ g)(n) = (N f)(n) · (N g)(n),
where equality should be taken modulo p. This in turn can be used to consider convolutions of
functions f, g : {0, 1, . . . , N − 1} → Z, by considering their images modulo a sufficiently large prime p
of the form kN + 1 for some k ∈ N.
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As explained above, NTTs only make sense for functions whose image lies in Z. Hence, it does not
make sense to consider the NTT of Λ≤M , for example. This is why we originally decided to take a
different approach as discussed in [HKM23]. However, the advantage of NTTs over DFTs is that they
work on integers instead of floating-point numbers. This makes partial results stay exact, leaving less
room for error. Moreover, integers require significantly less memory to store. Hence, it may be useful
to look into this further.

The main idea on how to develop an approach involving NTTs is the following. As the entries of the
segmentation arrays µ≤M and 1 are integers, it is possible to consider using an algorithm computing
the convolution µ≤M ⋆ 1 using NTTs. Now, noting that we want to compute∑

k≤k(N)

(Λ≤M ⋆ µ≤M ⋆ 1)[k] =
∑

k1+k2≤k(N)

Λ≤M [k1](µ≤M ⋆ 1)[k2],

we could proceed by rearranging terms:∑
k1+k2≤k(N)

Λ≤M [k1](µ≤M ⋆ 1)[k2] =
∑

k≤k(N)

(µ≤M ⋆ 1)[k]
∑

m≤k(N)−k

Λ≤M [m]. (6.2)

By keeping track of the partial sum∑
m≤K

Λ≤M [m] =
∑

m<2(K+1)∆

Λ≤M (m),

for K = 0, 1, . . . , k(N), we can compute the sum in (6.2) by iterating over k in descending order. As
a result, we observe that it is possible to use NTTs without changing the order of the time and space
complexity corresponding to the Fourier-theoretic approach. In fact, we expect this method to perform
better by a constant factor, as it does not rely as much on computations with floating-point numbers
requiring many digits of precision.

6.4.3 External library for computing discrete Fourier transformations

Because of the inefficiency of the FFT algorithm we provide, we have already considered the use of an
external library specialized in the computation of discrete Fourier transformations. However, popular
choices for performance such as FFTW, KFR or oneMKL only work with standard data types such as
floats and doubles. As we already discussed in Section 6.1, without changing the method used to
evaluate ψ(N) in some capacity, we cannot achieve the desired level of precision using these data
types.

That being said, in Section 6.4.2 we introduced an alternative approach that involves computing
convolutions on integer-valued arrays. While this approach is used to motivate the use of a different
kind of transformation, this approach also prompts us to reconsider the use of one of the external
libraries mentioned above. To elaborate on why, we note that can store entries of integer valued
arrays using doubles or even floats, assuming that these integers are not excessively large. Since
the convolution of two integer-valued arrays is again integer-valued, we can round the entries of the
array after performing convolutions. However, we note that for large arrays, it is possible for values to
be rounded incorrectly. This is something to keep in mind when implementing this approach, as the
corresponding errors they introduce will likely be significant.
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Appendix A

Convolutions and the Fast Fourier
Transform

In this appendix, we relate the computation of convolutions to the computation of discrete Fourier
transformations and their inverses. We also describe a relatively basic algorithm to compute these
transformations, known as the radix-2 Fast Fourier Transform (FFT). Finally, we will show that the
corresponding time and space complexities are given by O(N logN) and O(N) respectively.

A.1 Relating convolutions to discrete Fourier transformations

The definition of a convolution has been given in Chapter 3, but in order to make this chapter self-
contained, we repeat the definition.

Definition A.1. Given functions f, g : {0, 1, . . . , N − 1} → C, we define the convolution of f and g as the
function f ⋆ g : {0, 1, . . . , N − 1} → C such that for n ∈ {0, 1, . . . , N − 1},

(f ⋆ g)(n) =
∑

n1+n2=n

f(n1)g(n2).

As suggested in the introduction of this appendix, we want to relate convolutions with discrete Fourier
transformations. To elaborate on the relation, we give a definition of a discrete Fourier transforma-
tions. Below we let ζN = e2πi/N , so that ζN is a primitive N -th root of unity in C.

Definition A.2. Given a function f : {0, 1, . . . , N − 1} → C, we define its discrete Fourier transformation
Ff : {0, 1, . . . , N − 1} → C where for any n ∈ {0, 1, . . . , N − 1},

(Ff)(n) =
N−1∑
k=0

f(k)ζknN .

Similarly, we define the inverse discrete Fourier transformations F−1f : {0, 1, . . . , N − 1} → C, where for
any n ∈ {0, 1, . . . , N − 1},

(F−1f)(n) =
1

N
·
N−1∑
k=0

f(k)ζ−kn
N .
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Lemma A.3. For any function f : {0, 1, . . . , N − 1} → C and for any n ∈ {0, 1, . . . , N − 1}, we have that(
F−1(Ff)

)
(n) = f(n).

Proof. By definition, we have that

(
F−1(Ff)

)
(n) =

1

N
·
N−1∑
k=0

(Ff)(k)ζ−kn
N =

1

N
·
N−1∑
k=0

N−1∑
m=0

f(m)ζ
k(m−n)
N =

1

N
·
N−1∑
m=0

f(m)

(
N−1∑
k=0

ζ
k(m−n)
N

)
.

As ζN is a primitive N -th root of unity, for m ∈ {0, 1, . . . , N−1} we have that
∑N−1

k=0 ζ
k(m−n)
N = N ·δmn,

where δmn is equal to 1 if m = n and 0 otherwise. As a result,

(
F−1(Ff)

)
(n) =

N−1∑
m=0

f(m)δmn = f(n). ■

Lemma A.4. Consider functions f, g : {0, 1, . . . , N − 1} → C and let n ∈ {0, 1, . . . , N − 1}. Then

(Ff)(n) · (Fg)(n) =
N−1∑
a=0

 ∑
n1,n2∈{0,...,N−1}
n1+n2 ≡ amodN

f(n1)g(n2)

 ζanN .

Proof. We first note that

(Ff)(n) · (Fg)(n) =

(
N−1∑
k=0

f(k)ζknN

)
·

(
N−1∑
l=0

g(l)ζ lnN

)
.

Writing l = lmodN , the function ĝ : Z→ C, l→ g(l)ζ lnN is N -periodic, it follows that for fixed k ∈ Z,

N−1∑
l=0

g(l)ζ lnN =
N−1∑
l=0

g(l − k)ζ(l−k)n
N .

In particular,(
N−1∑
k=0

f(k)ζknN

)
·

(
N−1∑
l=0

g(l)ζ lnN

)
=

N−1∑
k=0

N−1∑
l=0

f(k)g(l − k)ζ lnN =
N−1∑
a=0

(
N−1∑
k=0

f(k)g(a− k)

)
ζanN .

By rewriting the inner summation, we derive the desired identity. ■

Note that the previous lemma almost relates the product of two Fourier transformations of two func-
tions to the Fourier transformation of their convolution. Using a process called padding zeros, this
relation can be made explicit. We state the result in the following corollary.

Corollary A.5. Given functions f, g : {0, 1, . . . , N−1} → C, define functions f̃ , g̃ : {0, 1, . . . , 2N−2} → C
such that for h ∈ {f, g} and for n ∈ {0, 1, . . . , 2N − 2},

h̃(n) =

{
h(n) if n < N,

0 otherwise.

Then F(f ⋆ g) = (F f̃)(F g̃). That is, for any n ∈ {0, 1, . . . , 2N − 2},
(
F(f ⋆ g)

)
(n) = (F f̃)(n) · (F g̃)(n).
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This relation can be extended to chains of convolutions. We state the general result in another corol-
lary.

Corollary A.6. Given functions f1, . . . , fk : {0, 1, . . . , N − 1} → C, for i = 1, . . . , k, we define functions
f̃i : {0, 1, . . . , k(N − 1)} → C similar as in Corollary A.5. Then

F(f1 ⋆ · · · ⋆ fk) =
k∏

i=1

F f̃i.

In short, the strategy to compute values of a chain of convolutions f1 ⋆ · · · ⋆ fk, we first compute the
discrete Fourier transformations of the functions f̃i for i = 1, . . . , k. We then compute the values of
the functions g : {0, 1, . . . , k(N − 1)} → C, where for n = 0, 1, . . . , k(N − 1),

g(n) =

k∏
i=1

(F f̃i)(n).

Finally, by performing the inverse transformation, using Lemma A.3 we obtain that

(f1 ⋆ · · · ⋆ fk)(n) = (F−1g)(n).

A.2 Computation of discrete Fourier transformations

In the previous section we showed that convolutions are related to discrete Fourier transformations
(DFTs). In this section, we elaborate on a relatively basic method used to compute DFTs on arrays
of size N in O(N logN) time and O(N) space. Recall that such an algorithm is called a Fast Fourier
Transform (FFT).

On a surface level, the idea is to compute the DFT of size N via a reduction to two DFTs of size N/2,
in a way such that we can easily deduce the original DFT by combining the results of the two smaller
DFTs. The two smaller DFTs are then to be computed using recursion. For the recursion to work, we
will assume that N is a power of 2. The idea is made more explicit in the following diagram.

[a0, a1, a2, . . . , aN−1]

[a0, a2, a4, . . . , aN−2] [a1, a3, a5, . . . , aN−1]

[b0, b2, b4, . . . , bN−2] [b1, b3, b5, . . . , bN−1]

[c0, c1, c2, . . . , cN−1]

FFT FFT

Figure A.1: Diagram of the radix-2 FFT algorithm.
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In the diagram above, we use the correspondence between a function f : {0, 1, . . . ,M} → C and an
array [a0, . . . , aM ] with an = f(n) for any n ∈ {0, 1, . . . ,M}. If we continue using the notation as in the
diagram, it suffices to find formulas for the coefficients c0, . . . , cN−1 in terms of b0, . . . , bN−1. Hence, let
us write out the coefficients b0, . . . , bN−1 and c0, . . . , cN−1. By definition, for any n ∈ {0, 1, . . . , N − 1},
we should have that

cn =

N−1∑
k=0

ak · ζknN ,

while for n = 0, 1, . . . , N/2− 1, it is given that

b2n =

N/2−1∑
k=0

a2k · ζknN/2 and b2n+1 =

N/2−1∑
k=0

a2k+1 · ζknN/2.

Noting that ζN/2 = ζ2N , we make the observation that cn = b2n + ζnN · b2n+1 for n ∈ {0, 1, . . . , N/2− 1}.
To obtain the coefficients cn for n ∈ {N/2, N/2+ 1, . . . , N − 1}, we observe that ζN/2

N = −1, so that by
writing n = N/2 +m with m ∈ {0, 1, . . . , N/2− 1}, it follows that

cn =

N−1∑
k=0

ak · ζ
k(N/2+m)
N =

N/2−1∑
k=0

a2k · ζ2kmN −
N/2−1∑
k=0

a2k+1 · ζ
(2k+1)m
N = b2m − ζmN · b2m+1.

Having established identities for the coefficients c0, . . . , cN−1 in terms of b0, . . . , bN−1, we obtain the
following algorithm.

Algorithm 3 Radix-2 FFT

Require: [a0, a1, . . . , aN−1] is an array of complex numbers, where N is a power of 2.
Output: [c0, c1, . . . , cN−1] = F([a0, a1, . . . , aN−1])

function FFT([a0, a1, . . . , aN−1])
if N = 1 then

c0 = a0
else

[b0, b2, . . . , bN−2]← FFT([a0, a2, . . . , aN−2])
[b1, b3, . . . , bN−1]← FFT([a1, a3, . . . , aN−1])
for n = 0, 1, . . . , N/2− 1 do

cn ← b2n + ζnN · b2n+1

cn+N/2 ← b2n − ζnN · b2n+1

end for
end if
return [c0, c1, . . . , cN−1]

end function

We can use the same approach to compute inverse discrete Fourier transformations (IDFTs). The main
difference is that we should now replace ζN with ζ−1

N . Additionally, the final output should be scaled
by a factor of 1/N . Remark that this indeed returns the desired inverse transformation, by using
Definition A.2 and Lemma A.3.
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We now briefly analyze the time and space complexity of the algorithm. It should be clear that the
space complexity of the algorithm, when applied to arrays of size N , is O(N); when implemented
correctly, no more than 2N entries need to be stored at any time. The analysis for the time complexity
is a bit more involved. If we are to write F (N) for the time complexity of the algorithm applied to
arrays of size N , then we have the following recurrence relation for F (N): F (1) ≪ 1 and given that
N is a proper power of 2, then

F (N) = 2 · F (N/2) + f(N),

where f(N)≪ N . As a result, using induction, we have that for any k ≥ 1,

F (2k) = 2k · F (1) +
k∑

l=0

f(2l) · 2k−l ≪ 2k +
k∑

l=0

2k ≪ k · 2k,

implying the bound F (N) = O(N logN), as N was assumed to be a power of 2. We note that for the
analysis of the time complexity, we have essentially considered a special case of [Cor+09, Thm 4.1].

Finally, we remark that we can extend the above algorithm to any positive integer N , although the
algorithm becomes less efficient in the general case. The reason for this is that given the size of the
array is not a power of 2, we can extend its size to be a power of 2 by padding zeros at the end.
It should be mentioned that this does not affect the DFT. At worst, this results in double the time
complexity and space complexity, so the order of the complexities stay the same.

50



Appendix B

Results

To analyze the computation time of the elementary and the Fourier-theoretic method, we have com-
puted values of ψ at powers of 2 and 10. These tables may also serve as a verification of the imple-
mentations, as the given approximations can be compared with known values, such as those present
in [DR98]. However, we note that in [DR98], approximations are done using 33 digits of precision, of
which they discard the last 12 digits to ensure correctness of the results.

To verify relatively small results up to 100 digits, we note that for any integer N ≥ 1,

ψ(N) = log lcm(1, 2, . . . , N).

Hence, using a table of values for lcm(1, 2, . . . , N), it is possible to find better approximations of ψ(N)
for relatively small values of N . We note that a table of values of lcm(1, 2, . . . , N) for N = 1, . . . , 2308
can be found at OEIS.

Below we provide computations with both 33 digits of precision, as well as with 100 digits. As we
present our results with the number of digits that the specified precision would allow, it is possible
that the final digits of results may slightly misrepresent the digits that should appear in the values of
ψ. This is illustrated, for example, when comparing the results for 33 digits and 100 digits. We note
that, generally, it seems that at worst the two last digits of an approximation are incorrect.

We note that the Fourier-theoretic method yields incorrect results for N = 1010. The precise cause of
this issue is currently unknown, but it is possible that it is caused due to limitations of floating-point
numbers. More specifically, the Fourier-theoretic approach occasionally works with the quantity 2k∆

for k = 0, 1, . . . , ⌊∆−1 log2N⌋, where we recall that ∆ is of order 1/
√
N . This is used to determine

the integers between 2k∆ and 2(k+1)∆, which are needed to compute segmentation arrays. Due to
rounding errors, it is possible that some integers were placed in the incorrect interval, leading to
incorrect results.
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B.1 Elementary method

Table B.1: Approximations of ψ at powers of 10 with 33 digits of precision.

n ψ(10n) Time (in seconds)
2 94.0453112293573922460049312446068 0.002
3 996.680912247175240263021765666415 0.006
4 10013.3966932631147837203245944702 0.032
5 100051.564025657954250923140327612 0.135
6 999586.597495632922033061533011302 0.593
7 9998539.40334597536635289816238934 2.620
8 99998242.7966267823416068404575383 11.697
9 1000001595.99042758043906519942950 50.798
10 10000042119.8334736147597841157928 217.679
11 100000058456.430302189943653434057 931.892
12 1000000040136.76545665644667959163 3989.998
13 10000000171997.1232250780423641037 16774.599

Table B.2: Approximations of ψ at powers of 10 with 100 digits of precision.

n ψ(10n) Time (in seconds)
2 94.045311229357392246004931244606927241326097311452

85310924864280321045214810768851301599372780732813

. . . 0.01

3 996.68091224717524026302176566642154166577843690213
98669138260098914052791521458932321639080369652377

. . . 0.04

4 10013.396693263114783720324594470187567072560129718
13945674321991600537980308750231337336978099304402

. . . 0.23

5 100051.56402565795425092314032761162712492914624321
57729289419878000282687266030514746601286515877966

. . . 0.94

6 999586.59749563292203306153301130446359633577788026
41352302044700225170939094028835979120742512656846

. . . 4.34

7 9998539.4033459753663528981623893319752768018964902
11932942941683953079499316238810603994703425846425

. . . 19.31

8 99998242.796626782341606840457535809044522868171269
60114125131028399761689495560119337885164360379220

. . . 85.97

9 1000001595.9904275804390651994295128367679624178605
68112514510678741800038392277688681944982118559046

. . . 381.60

10 10000042119.833473614759784115792952972441071115933
08179000606626316872889077116588928477095285056352

. . . 1621.68

11 100000058456.43030218994365343405605601334959367638
28079756527152212390844097427799329030625778294828

. . . 6988.50

12 1000000040136.7654566564466795916283073918337620519
32367998351419644089321058042127344614800791898687

. . . 29350.63
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Table B.3: Approximations of ψ at powers of 2 with 33 digits of precision.

n ψ(2n) Time (in seconds)
6 62.3372311946094678664350956942222 0.002
7 126.931392722082685411048954429787 0.002
8 251.493070098374288041734366407922 0.003
9 514.798302016957843162770144892161 0.004
10 1025.06656080372486827859454222209 0.005
11 2040.81270767888271014625892631911 0.010
12 4106.63334062358093971297326242314 0.016
13 8176.96942522025652890506729101286 0.025
14 16408.5149001376439005750952273718 0.043
15 32736.9194849982858056440284847680 0.059
16 65466.4004649675067715752652194889 0.102
17 131090.520252360273209150058284933 0.162
18 262034.929116135174615004602439372 0.268
19 524474.325752850856684039527350317 0.401
20 1048430.42140378882800111609473991 0.607
21 2097211.86180868788457552425025792 0.974
22 4194440.87689810858185292628312021 1.520
23 8388383.54209352646657803421581388 2.357
24 16776556.2899881680628659621777678 3.642
25 33556481.8232019797525042661578507 5.741
26 67109113.4642236322530917276467655 8.920
27 134216112.717281913707632360111760 14.153
28 268436833.423884297699309528690799 22.267
29 536866944.479688244019098393407396 34.281
30 1073749873.23231136870374874255868 53.622
31 2147479854.22805622493446329897090 81.162
32 4294956670.13448734354261455325371 126.805
33 8589957985.05308924238833541323923 196.982
34 17179891462.6292018815929325372037 306.093
35 34359687815.6755503108213114646455 477.336
36 68719431461.3277946390675891673312 737.598
37 137438955228.481954053641028138097 1144.511
38 274877885788.633190492617817659750 1752.836
39 549755934915.775299599932837336315 2724.370
40 1099511624070.95152439277117475971 4236.570
41 2199022895973.20878249463819275869 6521.847
42 4398047079564.13389956259751778781 9934.160
43 8796092823052.77806992147564431876 15404.534
44 17592186538719.4325863211427129387 24103.794
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Table B.4: Approximations of ψ at powers of 2 with 100 digits of precision.

6 62.337231194609467866435095694222509810030914907948
45783197599315306203163104509873448717717833667314

. . . 0.01

7 126.93139272208268541104895442978764344579478402185
11694373256382511695212907691969343068819202590657

. . . 0.01

8 251.49307009837428804173436640792178837690587789301
54903407548474616059732128340785671245729830741019

. . . 0.02

9 514.79830201695784316277014489216346427304262054221
70215373261447463887308863481340432222417218560710

. . . 0.03

10 1025.0665608037248682785945422220903191180478326344
50969306340361946417387029786398452646703205106405

. . . 0.04

11 2040.8127076788827101462589263191186682722886385178
75454916359094553273661342013308289222374252413277

. . . 0.07

12 4106.6333406235809397129732624231835758364818282635
58961488299962432361845295691737840488614406586540

. . . 0.12

13 8176.9694252202565289050672910128938166000645544393
15361807820026478436755299616834791703354629748536

. . . 0.19

14 16408.514900137643900575095227372036531881429513443
53329216184568579365323975933738506612497766008774

. . . 0.32

15 32736.919484998285805644028484768044045520395152992
89159411800498893720552022917618836891811631655702

. . . 0.45

16 65466.400464967506771575265219489383391088626982692
62512633711803613235710441159716051155305243864622

. . . 0.74

17 131090.52025236027320915005828493383004927207788336
40502728678234204012088421029784731949596431977109

. . . 1.10

18 262034.92911613517461500460243937446034308690979821
95469049938130545331352243462867816581475512951654

. . . 1.86

19 524474.32575285085668403952735032158188670313607556
51844967210647879050235565584733530800257097171879

. . . 3.06

20 1048430.4214037888280011160947399371127545026744801
88358861632822870519056721891813090658945660840070

. . . 4.88

21 2097211.8618086878845755242502579466885641155949621
47334156524437551415956753754638586383707374125450

. . . 7.21

22 4194440.8768981085818529262831202788637710628747992
52003896897221997964227499964219596062474327035486

. . . 11.30

23 8388383.5420935264665780342158140138691759609432451
60027510961025038919048464340532540683581798656931

. . . 17.71

n ψ(2n) Time (in seconds)

Continued on next page
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Table B.4: Approximations of ψ at powers of 2 with 100 digits of precision. (Continued)

24 16776556.289988168062865962177768104742686966300870
33818342041685959558050311280281864471746395114117

. . . 27.66

25 33556481.823201979752504266157851202201593279791696
62927995885923520851307021189701601760138543947631

. . . 44.40

26 67109113.464223632253091727646766536732212763353259
34009093994248732737309131842076247356050482288102

. . . 68.48

27 134216112.71728191370763236011176184457579107923685
42924603864889415340735556760975046681277666435795

. . . 106.01

28 268436833.42388429769930952869080266201657040195999
77319047281498675409757072368391342618189932105077

. . . 162.99

29 536866944.47968824401909839340740453279778348285421
94111708913061276153905244648448851466278359678910

. . . 252.75

30 1073749873.2323113687037487425586951234287117090704
79909203660673824879988331295130852538505734736802

. . . 393.89

31 2147479854.2280562249344632989709341442453720991428
95951956626425468458534612365253065685250811647095

. . . 608.96

32 4294956670.1344873435426145532537744903269668839369
06432473650360666084159784066869566243176789648787

. . . 945.81

33 8589957985.0530892423883354132393524847950316238721
88674507432179025730616754749279439183165353197190

. . . 1464.14

34 17179891462.629201881592932537203944624931525822556
68725426998225529914671832325448758604956651156156

. . . 2271.12

35 34359687815.675550310821311464646156248089824633846
45790361701398764267987507218797979546567949412454

. . . 3545.00

36 68719431461.327794639067589167332251215272048248619
57415128088309604586449360813899263585924967244511

. . . 5471.66

n ψ(2n) Time (in seconds)
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B.2 Fourier-theoretic method

Table B.5: Approximations of ψ at powers of 10 with 33 digits of precision.

n ψ(10n) Time (in seconds)
2 94.0453112293573922460049312446068 0.032
3 996.680912247175240263021765666414 0.092
4 10013.3966932631147837203245944702 0.431
5 100051.564025657954250923140327612 1.856
6 999586.597495632922033061533011302 7.620
7 9998539.40334597536635289816238934 32.031
8 99998242.7966267823416068404575383 145.688
9 1000001595.99042758043906519942950 569.871
10 10000042536.4975913483686507492957 2652.443
11 100000058456.430302189943653434056 10207.670
12 1000000040136.76545665644667959114 28825.182

Table B.6: Approximations of ψ at powers of 10 with 100 digits of precision.

n ψ(10n) Time (in seconds)
2 94.045311229357392246004931244606927241326097311452

85310924864280321045214810768851301599372780732813

. . . 0.11

3 996.68091224717524026302176566642154166577843690213
98669138260098914052791521458932321639080369652377

. . . 0.34

4 10013.396693263114783720324594470187567072560129718
13945674321991600537980308750231337336978099304402

. . . 1.82

5 100051.56402565795425092314032761162712492914624321
57729289419878000282687266030514746601286515877966

. . . 7.47

6 999586.59749563292203306153301130446359633577788026
41352302044700225170939094028835979120742512656846

. . . 29.28

7 9998539.4033459753663528981623893319752768018964902
11932942941683953079499316238810603994703425846425

. . . 121.01

8 99998242.796626782341606840457535809044522868171269
60114125131028399761689495560119337885164360379220

. . . 548.93

9 1000001595.9904275804390651994295128367679624178605
68112514510678741800038392277688681944982118559046

. . . 1982.93

10 10000042536.497591348368650749295950317535021797758
48424751145106368191861649229759362148195155250924

. . . 9516.57

11 100000058456.43030218994365343405605601334959367638
28079756527152212390844097427799329030625778294828

. . . 39336.52
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Table B.7: Approximations of ψ at powers of 2 with ∼33 digits of precision.

n ψ(2n) Time (in seconds)
6 62.3372311946094678664350956942222 0.028
7 126.931392722082685411048954429787 0.026
8 251.493070098374288041734366407922 0.044
9 514.798302016957843162770144892161 0.069
10 1025.06656080372486827859454222209 0.099
11 2040.81270767888271014625892631911 0.170
12 4106.63334062358093971297326242314 0.329
13 8176.96942522025652890506729101286 0.406
14 16408.5149001376439005750952273718 0.718
15 32736.9194849982858056440284847680 0.965
16 65466.4004649675067715752652194889 1.684
17 131090.520252360273209150058284933 2.729
18 262034.929116135174615004602439372 3.818
19 524474.325752850856684039527350317 5.739
20 1048430.42140378882800111609473991 8.845
21 2097211.86180868788457552425025792 14.379
22 4194440.87689810858185292628312021 26.820
23 8388383.54209352646657803421581388 29.622
24 16776556.2899881680628659621777678 59.195
25 33556481.8232019797525042661578507 65.640
26 67109113.4642236322530917276467655 130.493
27 134216112.717281913707632360111760 165.444
28 268436833.423884297699309528690799 283.884
29 536866944.479688244019098393407397 313.813
30 1073749873.23231136870374874255868 628.709
31 2147479854.22805622493446329897090 1070.247
32 4294956670.13448734354261455325371 1351.624
33 8589957985.05308924238833541323927 2131.806
34 17179891462.6292018815929325372037 2946.027
35 34359687815.6755503108213114646451 4827.097
36 68719431461.3277946390675891673313 6485.789
37 137438955228.481954053641028138096 11067.220
38 274877885788.633190492617817659798 14210.710
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Table B.8: Approximations of ψ at powers of 2 with 100 digits of precision.

6 62.337231194609467866435095694222509810030914907948
45783197599315306203163104509873448717717833667314

. . . 0.08

7 126.93139272208268541104895442978764344579478402185
11694373256382511695212907691969343068819202590657

. . . 0.07

8 251.49307009837428804173436640792178837690587789301
54903407548474616059732128340785671245729830741019

. . . 0.17

9 514.79830201695784316277014489216346427304262054221
70215373261447463887308863481340432222417218560710

. . . 0.30

10 1025.0665608037248682785945422220903191180478326344
50969306340361946417387029786398452646703205106405

. . . 0.41

11 2040.8127076788827101462589263191186682722886385178
75454916359094553273661342013308289222374252413277

. . . 0.77

12 4106.6333406235809397129732624231835758364818282635
58961488299962432361845295691737840488614406586540

. . . 1.37

13 8176.9694252202565289050672910128938166000645544393
15361807820026478436755299616834791703354629748536

. . . 1.78

14 16408.514900137643900575095227372036531881429513443
53329216184568579365323975933738506612497766008774

. . . 2.91

15 32736.919484998285805644028484768044045520395152992
89159411800498893720552022917618836891811631655702

. . . 3.74

16 65466.400464967506771575265219489383391088626982692
62512633711803613235710441159716051155305243864622

. . . 7.30

17 131090.52025236027320915005828493383004927207788336
40502728678234204012088421029784731949596431977109

. . . 11.32

18 262034.92911613517461500460243937446034308690979821
95469049938130545331352243462867816581475512951654

. . . 16.93

19 524474.32575285085668403952735032158188670313607556
51844967210647879050235565584733530800257097171879

. . . 22.62

20 1048430.4214037888280011160947399371127545026744801
88358861632822870519056721891813090658945660840070

. . . 37.79

21 2097211.8618086878845755242502579466885641155949621
47334156524437551415956753754638586383707374125450

. . . 57.54

22 4194440.8768981085818529262831202788637710628747992
52003896897221997964227499964219596062474327035486

. . . 112.84

23 8388383.5420935264665780342158140138691759609432451
60027510961025038919048464340532540683581798656931

. . . 111.99

n ψ(2n) Time (in seconds)

Continued on next page
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Table B.8: Approximations of ψ at powers of 2 with 100 digits of precision. (Continued)

24 16776556.289988168062865962177768104742686966300870
33818342041685959558050311280281864471746395114117

. . . 247.00

25 33556481.823201979752504266157851202201593279791696
62927995885923520851307021189701601760138543947631

. . . 234.55

26 67109113.464223632253091727646766536732212763353259
34009093994248732737309131842076247356050482288102

. . . 522.87

27 134216112.71728191370763236011176184457579107923685
42924603864889415340735556760975046681277666435795

. . . 659.25

28 268436833.42388429769930952869080266201657040195999
77319047281498675409757072368391342618189932105077

. . . 1135.47

29 536866944.47968824401909839340740453279778348285421
94111708913061276153905244648448851466278359678910

. . . 1070.61

30 1073749873.2323113687037487425586951234287117090704
79909203660673824879988331295130852538505734736802

. . . 2494.60

31 2147479854.2280562249344632989709341442453720991428
95951956626425468458534612365253065685250811647095

. . . 4175.74

32 4294956670.1344873435426145532537744903269668839369
06432473650360666084159784066869566243176789648787

. . . 5256.60

n ψ(2n) Time (in seconds)
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