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Layman summary 
Throughout our life mutations, small changes to our DNA, accumulate in each cell and are passed on to 

the daughter cells. Most of these mutations will not have any impact on the functioning of the cell, 

these are called passenger mutations. However, sometimes a mutation can be a driver mutation. Driver 

mutations accelerate cell growth, division and cause cells to become cancer cells. A tumour starts from a 

single cell that acquired one or more driver mutations. As the tumour grows new mutations will 

continue to accumulate. These mutations will only be present in the descendent cells of cell where the 

mutation happened. After some time, a tumour will consist of several different subpopulation of cells 

with their own unique mutations. Understanding at what point in time driver mutations happen 

provides valuable information on how cancers arise. However, this is a difficult challenge since the 

sequencing data from a tissue sample taken at diagnosis shows all mutations currently present but does 

not reveal when they happened. One approach is to take multiple samples from the tumour at different 

points in time to keep track of new mutations. However, the limited number of samples also leads to a 

limited resolution in timing mutations. Interestingly, recent studies have presented a new method to 

time a specific type of mutations from only a single sample. This method works for a mutation where a 

sizable genetic region gets duplicated, including all the small mutations that are present in that region. 

The basic concept is as follows, when a small mutation occurs it is only present in once place in the 

genome. If a duplication of a genetic region takes place all mutations already present will also be 

duplicated and are now present at two locations in the genome. All mutations that occur after the 

duplication will only be present in one place. It is possible to count how many mutations occurred 

before and after the duplication. Mutations happen at a fairly stead rate over time and the number of 

mutations that accumulated can thus be translated to how much time has passed. This creates the 

opportunity to order driver mutations that initiated the cancer in time. To achieve this, we present a 

statistical model to time duplications called PyroTimer. We implement the model in a powerful, flexible 

and fast probabilistic programming framework called Pyro. We evaluate two different implementations 

of the model and also evaluate two different inference algorithms. To evaluate the accuracy of the 

model we simulate realistic data where we know the correct answer. We also compare the performance 

on real world data and compare it to an already existing implementation for timing duplications. We 

find that PyroTimer can accurately time duplications and runs quickly on large datasets. When used on 

real world data it seems that the estimation of the sample purity can be off in some cases which affects 

the ability to accurately time duplications.  



Abstract 
A tumour starts from a single precursor cell. During the evolution of the tumour, somatic SNVs and copy 

number alterations accumulate. At the point of diagnosis, the tumour often consists of multiple cell 

lineages with their own unique mutations these lineages are called subclones. A sample taken at 

diagnosis provides a snapshot in time of the current state of a tumour. We can reconstruct the clonal 

architecture of a tumour and express the size of the subclones as their cancer cell fraction (CCF). Besides 

spatial information we can also infer the temporal ordering of SNVs and copy number gains. The 

concept relies on identifying mutations that were present before the duplication and thus were also 

duplicated. Mutations after the duplication will not be duplicated. Using clock-like mutational processes 

we can time when a duplication occurred, from the very first cell division. Here we present PyroTimer, a 

Bayesian mixture model to time copy number gains. We implement it with a flexible and scalable 

probabilistic programming framework named Pyro. Using realistic simulated data, we validate the 

performance of PyroTimer using Hamiltonian Monte Carlo and Stochastic Variational Inference as 

inference algorithms. In the end we compare the results on real world data from PCAWG and provide a 

comparison between the current MutationTimeR implementation in R. We show that PyroTimer is a 

high performance and functional tool to time copy number gains. 
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Introduction 
Somatic mutations accumulate in the human genome from the first cell division until death. These 

mutations originate from endogenous as well as exogenous processes. The vast majority of mutations 

will be selectively neutral passenger mutations. However, some will be driver mutations that increase 

proliferation and lead to tumorigenesis. 

Since a tumour originates from a single precursor cell, the somatic mutations from the precursor cell will 

be present in all tumour cells. During the evolution of a tumour, single nucleotide variants (SNVs), copy 

number alterations (CNAs) and other types of mutations constantly create new lineages. Through 

somatic evolution some lineages will disappear while a lineage with a beneficial mutation will persist 

and expand (Figure 1). In the end a tumour will contain multiple different lineages called subclones that 

will carry mutations not shared with the other subclones. These subclonal mutations are only present in 

a proportion of the tumour cells which is expressed as the cancer cell fraction (CCF). 

Sequencing data from a biopsy taken at diagnosis provides a snapshot in time of a tumour. Due to the 

limited sequencing depth with bulk sequencing approaches, mutations that are only present in a small 

fraction of the cells cannot be detected. The lower bound of detection depending on the sensitivity of 

the sequencing approach used. Therefore, only subclones with a higher CCF can be detected. Previous 

research outlines how the clonal architecture of a tumour can be reconstructed by using SNVs1.

 

Figure 1. Evolution of a tumour. A driver mutation that increases proliferation forms a tumour precursor cell. Different cell 
lineages emerge and disappear during the somatic evolution of the tumour. At some point in time a lineage will persist and 
create a subclone. This subclonal expansion happens at the Most Recent Common Ancestor (MRCA) cell which is the last cell that 
all tumour cells originate from. Mutation that occur before the subclonal expansion are present in all tumour cells, also called 
clonal mutations. Subclones make up a fraction of the tumour cells expressed as the cancer cell fraction (CCF). Mutations with a 
low CCF cannot be detected by bulk sequencing. Figure take from2 

 

Besides spatial insight into tumours there is a great research interest in the temporal ordering of 

mutations. Existing methods for temporal ordering of mutations relied on multiple samples taken from 

an individual tumour at different points in time3. Nevertheless, the temporal resolution and range is 

restricted by the limited number of samples. However recent studies present a new method to infer the 



timing of duplications and provide temporal ordering for SNVs from a single sequencing sample. The 

concept of timing duplications relies on establishing the multiplicity of a mutation with a statistical 

model. The multiplicity of a mutation is the number of copies that are present in the genome. 

The multiplicity of a de novo SNV is one but can be altered by copy number changes. When a duplication 

of a genetic region occurs, all SNVs present in that region before the mutation will also be duplicated 

and their multiplicity will increase. However, SNVs that arise after the duplication will have a multiplicity 

of one. A distinction can thus be made between SNVs that occurred before and after a duplication based 

on their multiplicity (Figure 2). The number of mutations for each multiplicity can be utilized as a proxy 

for time passed before and after a duplication4. Somatic mutations accumulate linearly with age in adult 

tissues, but elevated mutation rates are observed before birth5. Mutational signature analysis shows 

that single base substitution signature 1 is better suited for the use as a mutational clock since the rate 

stays consistent throughout life and is present in all tissues5. Single base substitution signature 1 is 

thought to be the result of spontaneous or enzymatic deamination of 5-methylcytosine to thymine. The 

time a duplication occurred can be expressed as molecular time which is a relative time based on the 

total number of clonal mutations. Molecular time starts at 0 with the first cell division of the zygote. It 

ends at 1 with the creation of the most recent common ancestor (MRCA) cell of the tumour since 

mutations after that point will no longer be clonal. Recent studies successfully applied this concept to 

create a temporal ordering of driver events in cancer6–8. The currently available implementation in R 

named MutationTimeR provides a statistical model for inferring mutation timing using an expectation–

maximization algorithm9. However, it uses point estimates from external tools for certain input 

parameters which does not capture the uncertainty about these parameters. Here we present an 

updated implementation named PyroTimer which is built with the flexible and scalable probabilistic 

programming framework called Pyro10. It uses a Bayesian mixture model that captures the uncertainty 

of all parameters. With simulated data we evaluate the performance of two different Python libraries 

that use the Pyro framework and two different inference algorithms. Finally, we compare 

MutationTimeR and PyroTimer on PCAWG data. 

 

Figure 2: Identify mutations that occur before or after a duplication. A. A 
copy neutral loss of heterozygosity (CN-LOH) where one allele is duplicated 
and the other is lost. Mutations present before the duplication are also 
duplicated. Mutations that occur after the duplication accumulate on both 
alleles but only have one copy. B. A gain of a single allele. One allele is 
duplicated and the other allele remains. Mutations on the allele that 
duplicates will also duplicate. Mutations on the non-duplicated allele and 
mutations that occur after the duplication will only have a single copy. 
Figure take from 6 

  



The model 
We present a Bayesian inference model to estimate the molecular time T of a copy number gain. Each 

sequenced sample might contain multiple gains that can be timed. Each gain can contain 0 or more 

clonal SNVs that occurred before or after the gain. When we assume the mutation rate is constant 

throughout time and with the number of clonal SNVs as N that occurred per copy before and after the 

gain, we can calculate T as follows; T = Nbefore / (Nbefore + Nafter). To calculate T for specific a copy number 

gain configurations we use nm which is the number of clonal SNVs with the multiplicity m. The simplest 

copy number gain to time is copy neutral loss of heterozygosity (CN-LOH) where one allele is duplicated 

and the other is lost (Figure 2a). For CN-LOH, Nbefore is the number of clonal SNVs with a multiplicity of 2 

also written as n2. Nafter is the number of clonal SNVs with a multiplicity of 1 divided by number of alleles 

present after the CN-LOH also written as n1 / 2. A CN-LOH event can be timed as follows; T = n2 / (n2 + (n1 

/ 2)). Timing a single gain where there are 2 copies of the major allele and 1 copy of the minor allele is 

more complex to time (Figure 2b). Nbefore is still resented by n2. To calculate Nafter we must account for 

SNVs that were already present before the gain on the allele that was not duplicated and the number of 

alleles after duplication, it can be written as (n1 - n2) / 3. For a single gain T can be obtained as followed; 

T = n2 / (n2 + (n1 - n2) / 3). When the multiplicity of the clonal SNVs is known, calculating T is 

straightforward however this cannot be directly observed from the sequencing data. It is required to 

infer the multiplicity and whether the SNV is clonal or subclonal. This can be achieved by evaluating the 

observed VAF of the SNV against the expected VAF. The expected VAF depends on the number of alleles 

carrying the mutation and can be calculated as follows; E(VAF) = m*CCF*p / (N *(1-p) + C*p), in which p 

is the sample purity, N is the normal copy number, C is the tumour copy number. Copy number analysis 

data provides N and C. For each mutation three different states can be inferred by its VAF. For each 

state there is prior knowledge about the multiplicity and CCF. 

1. Subclonal state; CCF < 1. Multiplicity is one assuming no subclonal copy number changes. 

2. Early clonal state; CCF = 1. Multiplicity is two because of the duplication. 

3. Late clonal state; CCF = 1. Multiplicity is one since it occurred after the duplication. 

The model contains the following latent variables. For each sample a sample purity is estimated. Each 

sample might contain 0 or more subclones. The number of subclones is given by the tool DPClust11. For 

each clone the CCF and the proportion of mutations carried by that clone is estimated. A sample might 

contain one or more copy number gained segments to time. For each segment the molecular time T is 

estimated. For all parameters we start with a uniform prior. As observations we provide for each copy 

number gained segment the tumour copy number, normal copy number and for each SNV the alternate 

read count and coverage. The likelihood of all latent variables for each observation results in the final 

posterior distribution for each latent variable (Figure 3). The plate notation and steps of the mixture 

model can be seen in Figure 4. 



 

Figure 4: Plate notation of the PyroTimer Bayesian mixture model. Variables outside the plate are for all segments of that 
sample. Variables inside the plate are conditionally independent for each segment. First the proportion of mutations per state 
for the three above mentioned states is calculated. For the subclonal state it is the same as the proportion of mutations for the 
subclone. For the clonal clone the proportion of mutations is split into an early and a late clonal proportion based on the 
molecular time. Second, the expected VAF for each of the possible states is calculated using the CCF and purity parameter. Third, 
calculate the likelihood for the observations given the expected VAF and proportion of mutations for each state. Accounting for 
the proportion of mutations per state makes it a mixture model. 

Methods 

Model implementation 
The model is implemented in two different python libraries. 

The first implementation is in the probabilistic programming library Pyro which is uses PyTorch as a 

backend. It provides powerful high-level abstractions that make it fast to define a statistical model while 

remaining flexible. It supports computation on CPU as well as GPU for scalability with large datasets. 

The second implementation is with the Numpyro library which is a continuation of Pyro and contains 

Figure 3: A Bayesian statistical model. When estimating a parameter, you start with 
prior distribution which you can use to incorporate prior knowledge. Based on an 
observation you calculate the likelihood for that observation for each possible value of 
the parameter. By multiplying the prior and likelihood distribution you obtain the 
posterior distribution. The posterior distribution can be used as the prior distribution for 
the next observation to update the posterior distribution. Figure take from 13 



most of the same functionality. It supports the well-known NumPy API while using JAX to perform just in 

time compilation for the NumPy functions. This results in a massive performance increase overall and up 

to 100x for the Markov chain Monte Carlo algorithms (MCMC). To utilize just in time compilation care 

must be taken to ensure all functions in the model are compatible. This means array sizes must be 

known before runtime and only limited control flow is possible. Numpyro is also still in activate 

development. 

For the Pyro as well as the Numpyro implementation we applied two different inference algorithms on 

the model. The first being the Hamiltonian Monte Carlo (HMC) algorithm. Due to technical limitations in 

Numpyro the implementation is limited to timing a maximum of 20 copy number gained segments for a 

single sample. 

The second inference algorithm is stochastic variational inference (SVI) which approximates the 

posterior distribution and therefore scales better with large datasets that have many parameters. 

Additionally, SVI requires a guide function that is used to approximate the posterior distribution. The 

guide function can also be utilized to incorporate additional assumptions about the data. We set all 

latent variables as Beta distributions in the guide since this is a very flexible distribution. Due to 

technical issues with the enumeration of discrete latent variables in Numpyro there is only an SVI 

implementation for Pyro and not Numpyro. 

Data simulation 
In order to evaluate the performance of the different implementations of PyroTimer we simulated 

observations. By applying the functions used to calculate the molecular time in reverse with chosen 

values for the latent variables we can create realistic data where the true value of the parameters is 

known. Slight randomization was added by drawing the observed reads from a distribution using the 

simulated expected VAFs. This also creates the possibility to tweak individual parameters and observe 

the impact on the model’s performance. To quantify the performance of PyroTimer we calculate the 

Root Mean Squared Error (RMSE) using the posterior distribution of the latent variable and the known 

true parameter value used for the simulation (Figure 5). 

 

Figure 5: Example of Root Mean Squared Error (RMSE) to score a posterior distribution against a known true value. A. Example 
of a bad score, RMSE is higher. B. Example of a good score, RMSE is lower. Dotted line indicates true value of the parameter. 

First, we optimized the hyper parameters for both inference algorithms by simulating a combination of 

different parameter values. For the HMC algorithm we can optimize the number of warmup rounds. For 

the SVI algorithm we can optimize the step size, number of iterations, samples taken from the guide 



function. For each combination of parameters values we simulated 20 samples using the same set of 20 

random seeds. The second step was to evaluate the performance of the different PyroTimer 

implementations when variables of the simulated data change. We evaluated the impact of coverage, 

purity, copy number gain configurations, time of duplication, number of mutations per gained segment, 

different subclone compositions. To simulate realistic values, we used the samples from PCAWG to 

establish a realistic range of values (Sup. Figure 12). For each variable value we simulated 50 samples. 

PCAWG data 
Even when trying to create realistic data a simulation will never be able to capture the variation present 

in real world data. We selected 193 samples from the PCAWG dataset to evaluate with the different 

implementations of PyroTimer. These samples were selected to conform with the 20-segment 

restriction from the Numpyro HMC implementation.  We did not only perform comparisons for the 

different PyroTimer implementations but also compared against results from MutationTimeR. 

Results 

Hyper parameter optimalization  
To find the optimal hyper parameters for each inference algorithm we simulated 20 samples for 

changing parameters values (Figure 6). The ideal hyper parameter provides accurate timing of 

duplications, indicated by a low RMSE score for the timing parameter and runs quickly.  

 

 

Figure 6: Optimizing hyper parameters for HMC and SVI algorithms. A. Timing RMSE score for Numpyro HMC warmup rounds. 
Increasing warmup rounds does not increase the score which indicates the model quickly becomes stable. B. Timing RMSE score 



for SVI hyper parameters. A step size of 0.1 provides the best score for timing gains. Increasing the number of iterations and 
samples taken from the guide function slightly improves scoring. C. Runtime in seconds for different numbers of Numpyro HMC 
warmup rounds. Numpyro’s just in time compilation keeps the runtime low and consistent. D. Runtime in seconds for different 
Pyro SVI hyper parameter values. Increasing iterations and samples taken from the guide function increases runtime rapidly.  

Impact of data variables 
To evaluate the impact of changing variables in the simulated data and how the different 

implementations of PyroTimer perform we simulated 50 samples for each data configuration (Figure 7). 

We compare the different implementations based on their timing RMSE score, lower is better. Overall, 

the performance of the methods for timing gains is very similar. Single gains are more difficult to time 

than CN-LOH or biallelic gains. The timing accuracy increases if there are more mutations per segment 

due to the increased number of datapoints that can be used to estimate the time of the gain. 

 

Figure 7: Comparing PyroTimer implementations and the impact of changing data variables by using simulated data. RMSE 
score for timing of the gained segment, lower is better. A. Coverage has little impact on the timing. B. Purity has little impact on 
the timing. C. Timing score for different copy number configurations. 2,1 is a single gain and is slightly harder to time than 2,2 
which is a biallelic gain and 2,0 which is a CN-LOH. D. Timing score for different timings of the gain. Very early gains have larger 
spread in timing estimates. E. More mutations increase the timing score since there are more datapoints to use for the timing. F. 
Timing score for subclones with different CCF values. 



However, when examining the CCF parameter RMSE the SVI algorithm appears to outperform the HMC 

implementations when there are two subclones present but not where there is only one subclone 

(Figure 8A). One explanation for this observation might be a label switching problem in Bayesian mixture 

models that use MCMC 12. While the estimation of the CCF parameter appears to be impacted there is 

no difference in the timing accuracy between the SVI and HMC implementation in the case of two 

subclones (Figure 7F). 

 

Figure 8: Estimation of the subclone CCF. A. CCF parameter score for different subclone configuration, lower is better. SVI 
outperforms both HMC methods when estimating the CCF of 2 subclones. B. Posterior distributions of the CCF parameter of the 
50 samples. Redlines indicate the true CCF of the two clones. The Pyro HMC posterior distribution is divided between both 
correct values which might be the result of label switching that can occur for MCMC methods in Bayesian mixture models. 

While there might be little difference in the accuracy of timing the gain between the implementations 

there is a significant difference between the runtime and how well they scale with larger datasets 

(Figure 9). The speed increase from the just in time compilation make Numpyro HMC the fastest 

implementation and it scales extremely well since the majority of the runtime is the initial compilation. 

The SVI algorithm does indeed scale better with larger datasets as expected. 



  

Figure 9: Runtime of Pyro implementations when increasing number of gains timed per sample. The Numpyro HMC 
implementation performs the fastest and scales best when the dataset grows. The Pyro HMC implementation is the slowest and 
scales poorly. The Pyro SVI implementation outperforms the Pyro HMC implementation.  

 

PCAWG samples 
We selected 193 samples from the PCAWG dataset to compare the different PyroTimer 

implementations when applied to real world data. Due to technical limitations of the Numpyro HMC 

implementation only samples with 20 or less gained segments were selected. PyroTimer is only able to 

time simple gains, CN-LOH and biallelic gains. Segments with multiple duplications could not be timed. 

This resulted in 1898 segments that were timed by PyroTimer. Since the accuracy of the Pyro HMC and 

the Numpyro HMC implementation were nearly identical, we continued with the Numpyro HMC 

because of the fast runtimes. The timed segments show a fairly strong positive correlation between the 

Pyro SVI and Numpyro HMC implementation (Figure 10). However, for the segments where there is 

major disagreement about the timing there is also a strong disagreement about the estimated purity of 

the samples. If both implementations assume a different purity this would affect the expected VAF 

frequencies and cause disagreement about timing of gained segments. Unfortunately, unlike the 

simulated data it is not possible to say which method has the correct timing. 

 

Figure 10: Comparison between Pyro SVI and Numpyro HMC on PCWAG samples. A. Pearson correlation coefficient is 0.72. 
Segments where the timing does not correspond is also where the purity estimate does not correspond. B. Correlation of the 
sample purity estimate for the Pyro SVI and Numpyro HMC. Colour indicates the consensus purity that the R implementation 
used. Both implementations are sometimes in disagreement with the consensus purity. 



Besides comparing the different implementations of PyroTimer we also compared the estimated timings 

against the R implementation MutationTimeR. Again, there is a moderate positive correlation between 

the gained segments timing (Figure 11). The segments for which there is a major disagreement about 

the timing between MutationTimeR and PyroTimer are again from samples where there is also 

disagreement about sample purity. MutationTimeR does not estimate sample purity but uses a 

consensus purity generated by external tools. Other segments for which there is disagreement about 

the timing but not about the purity all have a low number of mutations, less than 5 mutations. The 

disagreement between the timing for MutationTimeR and PyroTimer seems to be caused by either the 

purity estimate or a too small amount of datapoints.  

 

Figure 11: Comparison between PyroTimer and MutationTimeR. A. Pearson correlation coefficient is 0.64. Where the segments 
disagree about the timing there is either a disagreement about the purity or only a small number of mutations on the segment. 
B. Pearson correlation coefficient is 0.67. Where the segments disagree about the timing there is either a disagreement about 
the purity or only a small number of mutations on the segment. 

Discussion 
Our study presents PyroTimer, a Bayesian mixture model to time copy number gains implemented in a 

flexible probabilistic programming library that scales well with large datasets. We observed the 

performance gains which can be obtained by utilizing just in time compilation. The SVI algorithm 

performed as well as the HMC algorithm while also being quicker. Using simulated data based on real 

world data we validate the accuracy of PyroTimer. Lastly, we compared PyroTimer against the current 

implementation MutationTimeR. 

While PyroTimer and MutationTimeR show a moderatly strong positive correlation between timing 

estimates, the purity estimate plays an important role in the disagreement between the methods. 

MutationTimeR uses a consensus purity that is estimated by external tools while PyroTimer estimates 

the purity along with the other latent variables. A possible compromise could be to use the consensus 

purity as a prior for the purity parameter. This would start PyroTimer of in the right direction but still 

maintain the benefit of not having a fixed value. 

It is clear that the Numpyro library can give a major performance boost compared to Pyro by using the 

just in time compilation. It also contains several quality-of-life features that create a smoother 

experience compared to Pyro. However, the fact that it is still under active development resulted in 

significant amounts of time spend trying to resolve technical limitations that Pyro does not have. 

The Numpyro HMC implementation is currently limited to a maximum of 20 copy number gains that can 

be timed per sample. PyroTimer is also still lacking some features compared to MutationTimeR like 

ordering SNVs in time and timing two single gains that happened at different timepoints. However, since 



Pyro allows for much easier modelling than R it could replace the R version in the future and become the 

new standard for mutation timing as an easier to maintain and expand tool with great performance. 
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Figure 12: Distribution of data variables for PCAWG samples. 
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