
PyroTimer is a performant tool to time
copy number gains

Yano Wilke

27-06-2022

Layman summary
Throughout our life mutations, small changes to our DNA, accumulate in each cell and are passed on to

the daughter cells. Most of these mutations will not have any impact on the functioning of the cell,

these are called passenger mutations. However, sometimes a mutation can be a driver mutation. Driver

mutations accelerate cell growth, division and cause cells to become cancer cells. A tumour starts from a

single cell that acquired one or more driver mutations. As the tumour grows new mutations will

continue to accumulate. These mutations will only be present in the descendent cells of cell where the

mutation happened. After some time, a tumour will consist of several different subpopulation of cells

with their own unique mutations. Understanding at what point in time driver mutations happen

provides valuable information on how cancers arise. However, this is a difficult challenge since the

sequencing data from a tissue sample taken at diagnosis shows all mutations currently present but does

not reveal when they happened. One approach is to take multiple samples from the tumour at different

points in time to keep track of new mutations. However, the limited number of samples also leads to a

limited resolution in timing mutations. Interestingly, recent studies have presented a new method to

time a specific type of mutations from only a single sample. This method works for a mutation where a

sizable genetic region gets duplicated, including all the small mutations that are present in that region.

The basic concept is as follows, when a small mutation occurs it is only present in once place in the

genome. If a duplication of a genetic region takes place all mutations already present will also be

duplicated and are now present at two locations in the genome. All mutations that occur after the

duplication will only be present in one place. It is possible to count how many mutations occurred

before and after the duplication. Mutations happen at a fairly stead rate over time and the number of

mutations that accumulated can thus be translated to how much time has passed. This creates the

opportunity to order driver mutations that initiated the cancer in time. To achieve this, we present a

statistical model to time duplications called PyroTimer. We implement the model in a powerful, flexible

and fast probabilistic programming framework called Pyro. We evaluate two different implementations

of the model and also evaluate two different inference algorithms. To evaluate the accuracy of the

model we simulate realistic data where we know the correct answer. We also compare the performance

on real world data and compare it to an already existing implementation for timing duplications. We

find that PyroTimer can accurately time duplications and runs quickly on large datasets. When used on

real world data it seems that the estimation of the sample purity can be off in some cases which affects

the ability to accurately time duplications.

Abstract
A tumour starts from a single precursor cell. During the evolution of the tumour, somatic SNVs and copy

number alterations accumulate. At the point of diagnosis, the tumour often consists of multiple cell

lineages with their own unique mutations these lineages are called subclones. A sample taken at

diagnosis provides a snapshot in time of the current state of a tumour. We can reconstruct the clonal

architecture of a tumour and express the size of the subclones as their cancer cell fraction (CCF). Besides

spatial information we can also infer the temporal ordering of SNVs and copy number gains. The

concept relies on identifying mutations that were present before the duplication and thus were also

duplicated. Mutations after the duplication will not be duplicated. Using clock-like mutational processes

we can time when a duplication occurred, from the very first cell division. Here we present PyroTimer, a

Bayesian mixture model to time copy number gains. We implement it with a flexible and scalable

probabilistic programming framework named Pyro. Using realistic simulated data, we validate the

performance of PyroTimer using Hamiltonian Monte Carlo and Stochastic Variational Inference as

inference algorithms. In the end we compare the results on real world data from PCAWG and provide a

comparison between the current MutationTimeR implementation in R. We show that PyroTimer is a

high performance and functional tool to time copy number gains.

Contents
Layman summary .. 1

Abstract ... 2

Introduction .. 3

The model ... 5

Methods .. 6

Model implementation ... 6

Data simulation ... 7

PCAWG data .. 8

Results ... 8

Hyper parameter optimalization .. 8

Impact of data variables ... 9

PCAWG samples .. 11

Discussion.. 12

Acknowledgements ... 13

Supplementary figures .. 13

References .. 14

Introduction
Somatic mutations accumulate in the human genome from the first cell division until death. These

mutations originate from endogenous as well as exogenous processes. The vast majority of mutations

will be selectively neutral passenger mutations. However, some will be driver mutations that increase

proliferation and lead to tumorigenesis.

Since a tumour originates from a single precursor cell, the somatic mutations from the precursor cell will

be present in all tumour cells. During the evolution of a tumour, single nucleotide variants (SNVs), copy

number alterations (CNAs) and other types of mutations constantly create new lineages. Through

somatic evolution some lineages will disappear while a lineage with a beneficial mutation will persist

and expand (Figure 1). In the end a tumour will contain multiple different lineages called subclones that

will carry mutations not shared with the other subclones. These subclonal mutations are only present in

a proportion of the tumour cells which is expressed as the cancer cell fraction (CCF).

Sequencing data from a biopsy taken at diagnosis provides a snapshot in time of a tumour. Due to the

limited sequencing depth with bulk sequencing approaches, mutations that are only present in a small

fraction of the cells cannot be detected. The lower bound of detection depending on the sensitivity of

the sequencing approach used. Therefore, only subclones with a higher CCF can be detected. Previous

research outlines how the clonal architecture of a tumour can be reconstructed by using SNVs1.

Figure 1. Evolution of a tumour. A driver mutation that increases proliferation forms a tumour precursor cell. Different cell
lineages emerge and disappear during the somatic evolution of the tumour. At some point in time a lineage will persist and
create a subclone. This subclonal expansion happens at the Most Recent Common Ancestor (MRCA) cell which is the last cell that
all tumour cells originate from. Mutation that occur before the subclonal expansion are present in all tumour cells, also called
clonal mutations. Subclones make up a fraction of the tumour cells expressed as the cancer cell fraction (CCF). Mutations with a
low CCF cannot be detected by bulk sequencing. Figure take from2

Besides spatial insight into tumours there is a great research interest in the temporal ordering of

mutations. Existing methods for temporal ordering of mutations relied on multiple samples taken from

an individual tumour at different points in time3. Nevertheless, the temporal resolution and range is

restricted by the limited number of samples. However recent studies present a new method to infer the

timing of duplications and provide temporal ordering for SNVs from a single sequencing sample. The

concept of timing duplications relies on establishing the multiplicity of a mutation with a statistical

model. The multiplicity of a mutation is the number of copies that are present in the genome.

The multiplicity of a de novo SNV is one but can be altered by copy number changes. When a duplication

of a genetic region occurs, all SNVs present in that region before the mutation will also be duplicated

and their multiplicity will increase. However, SNVs that arise after the duplication will have a multiplicity

of one. A distinction can thus be made between SNVs that occurred before and after a duplication based

on their multiplicity (Figure 2). The number of mutations for each multiplicity can be utilized as a proxy

for time passed before and after a duplication4. Somatic mutations accumulate linearly with age in adult

tissues, but elevated mutation rates are observed before birth5. Mutational signature analysis shows

that single base substitution signature 1 is better suited for the use as a mutational clock since the rate

stays consistent throughout life and is present in all tissues5. Single base substitution signature 1 is

thought to be the result of spontaneous or enzymatic deamination of 5-methylcytosine to thymine. The

time a duplication occurred can be expressed as molecular time which is a relative time based on the

total number of clonal mutations. Molecular time starts at 0 with the first cell division of the zygote. It

ends at 1 with the creation of the most recent common ancestor (MRCA) cell of the tumour since

mutations after that point will no longer be clonal. Recent studies successfully applied this concept to

create a temporal ordering of driver events in cancer6–8. The currently available implementation in R

named MutationTimeR provides a statistical model for inferring mutation timing using an expectation–

maximization algorithm9. However, it uses point estimates from external tools for certain input

parameters which does not capture the uncertainty about these parameters. Here we present an

updated implementation named PyroTimer which is built with the flexible and scalable probabilistic

programming framework called Pyro10. It uses a Bayesian mixture model that captures the uncertainty

of all parameters. With simulated data we evaluate the performance of two different Python libraries

that use the Pyro framework and two different inference algorithms. Finally, we compare

MutationTimeR and PyroTimer on PCAWG data.

Figure 2: Identify mutations that occur before or after a duplication. A. A
copy neutral loss of heterozygosity (CN-LOH) where one allele is duplicated
and the other is lost. Mutations present before the duplication are also
duplicated. Mutations that occur after the duplication accumulate on both
alleles but only have one copy. B. A gain of a single allele. One allele is
duplicated and the other allele remains. Mutations on the allele that
duplicates will also duplicate. Mutations on the non-duplicated allele and
mutations that occur after the duplication will only have a single copy.
Figure take from 6

The model
We present a Bayesian inference model to estimate the molecular time T of a copy number gain. Each

sequenced sample might contain multiple gains that can be timed. Each gain can contain 0 or more

clonal SNVs that occurred before or after the gain. When we assume the mutation rate is constant

throughout time and with the number of clonal SNVs as N that occurred per copy before and after the

gain, we can calculate T as follows; T = Nbefore / (Nbefore + Nafter). To calculate T for specific a copy number

gain configurations we use nm which is the number of clonal SNVs with the multiplicity m. The simplest

copy number gain to time is copy neutral loss of heterozygosity (CN-LOH) where one allele is duplicated

and the other is lost (Figure 2a). For CN-LOH, Nbefore is the number of clonal SNVs with a multiplicity of 2

also written as n2. Nafter is the number of clonal SNVs with a multiplicity of 1 divided by number of alleles

present after the CN-LOH also written as n1 / 2. A CN-LOH event can be timed as follows; T = n2 / (n2 + (n1

/ 2)). Timing a single gain where there are 2 copies of the major allele and 1 copy of the minor allele is

more complex to time (Figure 2b). Nbefore is still resented by n2. To calculate Nafter we must account for

SNVs that were already present before the gain on the allele that was not duplicated and the number of

alleles after duplication, it can be written as (n1 - n2) / 3. For a single gain T can be obtained as followed;

T = n2 / (n2 + (n1 - n2) / 3). When the multiplicity of the clonal SNVs is known, calculating T is

straightforward however this cannot be directly observed from the sequencing data. It is required to

infer the multiplicity and whether the SNV is clonal or subclonal. This can be achieved by evaluating the

observed VAF of the SNV against the expected VAF. The expected VAF depends on the number of alleles

carrying the mutation and can be calculated as follows; E(VAF) = m*CCF*p / (N *(1-p) + C*p), in which p

is the sample purity, N is the normal copy number, C is the tumour copy number. Copy number analysis

data provides N and C. For each mutation three different states can be inferred by its VAF. For each

state there is prior knowledge about the multiplicity and CCF.

1. Subclonal state; CCF < 1. Multiplicity is one assuming no subclonal copy number changes.

2. Early clonal state; CCF = 1. Multiplicity is two because of the duplication.

3. Late clonal state; CCF = 1. Multiplicity is one since it occurred after the duplication.

The model contains the following latent variables. For each sample a sample purity is estimated. Each

sample might contain 0 or more subclones. The number of subclones is given by the tool DPClust11. For

each clone the CCF and the proportion of mutations carried by that clone is estimated. A sample might

contain one or more copy number gained segments to time. For each segment the molecular time T is

estimated. For all parameters we start with a uniform prior. As observations we provide for each copy

number gained segment the tumour copy number, normal copy number and for each SNV the alternate

read count and coverage. The likelihood of all latent variables for each observation results in the final

posterior distribution for each latent variable (Figure 3). The plate notation and steps of the mixture

model can be seen in Figure 4.

Figure 4: Plate notation of the PyroTimer Bayesian mixture model. Variables outside the plate are for all segments of that
sample. Variables inside the plate are conditionally independent for each segment. First the proportion of mutations per state
for the three above mentioned states is calculated. For the subclonal state it is the same as the proportion of mutations for the
subclone. For the clonal clone the proportion of mutations is split into an early and a late clonal proportion based on the
molecular time. Second, the expected VAF for each of the possible states is calculated using the CCF and purity parameter. Third,
calculate the likelihood for the observations given the expected VAF and proportion of mutations for each state. Accounting for
the proportion of mutations per state makes it a mixture model.

Methods

Model implementation
The model is implemented in two different python libraries.

The first implementation is in the probabilistic programming library Pyro which is uses PyTorch as a

backend. It provides powerful high-level abstractions that make it fast to define a statistical model while

remaining flexible. It supports computation on CPU as well as GPU for scalability with large datasets.

The second implementation is with the Numpyro library which is a continuation of Pyro and contains

Figure 3: A Bayesian statistical model. When estimating a parameter, you start with
prior distribution which you can use to incorporate prior knowledge. Based on an
observation you calculate the likelihood for that observation for each possible value of
the parameter. By multiplying the prior and likelihood distribution you obtain the
posterior distribution. The posterior distribution can be used as the prior distribution for
the next observation to update the posterior distribution. Figure take from 13

most of the same functionality. It supports the well-known NumPy API while using JAX to perform just in

time compilation for the NumPy functions. This results in a massive performance increase overall and up

to 100x for the Markov chain Monte Carlo algorithms (MCMC). To utilize just in time compilation care

must be taken to ensure all functions in the model are compatible. This means array sizes must be

known before runtime and only limited control flow is possible. Numpyro is also still in activate

development.

For the Pyro as well as the Numpyro implementation we applied two different inference algorithms on

the model. The first being the Hamiltonian Monte Carlo (HMC) algorithm. Due to technical limitations in

Numpyro the implementation is limited to timing a maximum of 20 copy number gained segments for a

single sample.

The second inference algorithm is stochastic variational inference (SVI) which approximates the

posterior distribution and therefore scales better with large datasets that have many parameters.

Additionally, SVI requires a guide function that is used to approximate the posterior distribution. The

guide function can also be utilized to incorporate additional assumptions about the data. We set all

latent variables as Beta distributions in the guide since this is a very flexible distribution. Due to

technical issues with the enumeration of discrete latent variables in Numpyro there is only an SVI

implementation for Pyro and not Numpyro.

Data simulation
In order to evaluate the performance of the different implementations of PyroTimer we simulated

observations. By applying the functions used to calculate the molecular time in reverse with chosen

values for the latent variables we can create realistic data where the true value of the parameters is

known. Slight randomization was added by drawing the observed reads from a distribution using the

simulated expected VAFs. This also creates the possibility to tweak individual parameters and observe

the impact on the model’s performance. To quantify the performance of PyroTimer we calculate the

Root Mean Squared Error (RMSE) using the posterior distribution of the latent variable and the known

true parameter value used for the simulation (Figure 5).

Figure 5: Example of Root Mean Squared Error (RMSE) to score a posterior distribution against a known true value. A. Example
of a bad score, RMSE is higher. B. Example of a good score, RMSE is lower. Dotted line indicates true value of the parameter.

First, we optimized the hyper parameters for both inference algorithms by simulating a combination of

different parameter values. For the HMC algorithm we can optimize the number of warmup rounds. For

the SVI algorithm we can optimize the step size, number of iterations, samples taken from the guide

function. For each combination of parameters values we simulated 20 samples using the same set of 20

random seeds. The second step was to evaluate the performance of the different PyroTimer

implementations when variables of the simulated data change. We evaluated the impact of coverage,

purity, copy number gain configurations, time of duplication, number of mutations per gained segment,

different subclone compositions. To simulate realistic values, we used the samples from PCAWG to

establish a realistic range of values (Sup. Figure 12). For each variable value we simulated 50 samples.

PCAWG data
Even when trying to create realistic data a simulation will never be able to capture the variation present

in real world data. We selected 193 samples from the PCAWG dataset to evaluate with the different

implementations of PyroTimer. These samples were selected to conform with the 20-segment

restriction from the Numpyro HMC implementation. We did not only perform comparisons for the

different PyroTimer implementations but also compared against results from MutationTimeR.

Results

Hyper parameter optimalization
To find the optimal hyper parameters for each inference algorithm we simulated 20 samples for

changing parameters values (Figure 6). The ideal hyper parameter provides accurate timing of

duplications, indicated by a low RMSE score for the timing parameter and runs quickly.

Figure 6: Optimizing hyper parameters for HMC and SVI algorithms. A. Timing RMSE score for Numpyro HMC warmup rounds.
Increasing warmup rounds does not increase the score which indicates the model quickly becomes stable. B. Timing RMSE score

for SVI hyper parameters. A step size of 0.1 provides the best score for timing gains. Increasing the number of iterations and
samples taken from the guide function slightly improves scoring. C. Runtime in seconds for different numbers of Numpyro HMC
warmup rounds. Numpyro’s just in time compilation keeps the runtime low and consistent. D. Runtime in seconds for different
Pyro SVI hyper parameter values. Increasing iterations and samples taken from the guide function increases runtime rapidly.

Impact of data variables
To evaluate the impact of changing variables in the simulated data and how the different

implementations of PyroTimer perform we simulated 50 samples for each data configuration (Figure 7).

We compare the different implementations based on their timing RMSE score, lower is better. Overall,

the performance of the methods for timing gains is very similar. Single gains are more difficult to time

than CN-LOH or biallelic gains. The timing accuracy increases if there are more mutations per segment

due to the increased number of datapoints that can be used to estimate the time of the gain.

Figure 7: Comparing PyroTimer implementations and the impact of changing data variables by using simulated data. RMSE
score for timing of the gained segment, lower is better. A. Coverage has little impact on the timing. B. Purity has little impact on
the timing. C. Timing score for different copy number configurations. 2,1 is a single gain and is slightly harder to time than 2,2
which is a biallelic gain and 2,0 which is a CN-LOH. D. Timing score for different timings of the gain. Very early gains have larger
spread in timing estimates. E. More mutations increase the timing score since there are more datapoints to use for the timing. F.
Timing score for subclones with different CCF values.

However, when examining the CCF parameter RMSE the SVI algorithm appears to outperform the HMC

implementations when there are two subclones present but not where there is only one subclone

(Figure 8A). One explanation for this observation might be a label switching problem in Bayesian mixture

models that use MCMC 12. While the estimation of the CCF parameter appears to be impacted there is

no difference in the timing accuracy between the SVI and HMC implementation in the case of two

subclones (Figure 7F).

Figure 8: Estimation of the subclone CCF. A. CCF parameter score for different subclone configuration, lower is better. SVI
outperforms both HMC methods when estimating the CCF of 2 subclones. B. Posterior distributions of the CCF parameter of the
50 samples. Redlines indicate the true CCF of the two clones. The Pyro HMC posterior distribution is divided between both
correct values which might be the result of label switching that can occur for MCMC methods in Bayesian mixture models.

While there might be little difference in the accuracy of timing the gain between the implementations

there is a significant difference between the runtime and how well they scale with larger datasets

(Figure 9). The speed increase from the just in time compilation make Numpyro HMC the fastest

implementation and it scales extremely well since the majority of the runtime is the initial compilation.

The SVI algorithm does indeed scale better with larger datasets as expected.

Figure 9: Runtime of Pyro implementations when increasing number of gains timed per sample. The Numpyro HMC
implementation performs the fastest and scales best when the dataset grows. The Pyro HMC implementation is the slowest and
scales poorly. The Pyro SVI implementation outperforms the Pyro HMC implementation.

PCAWG samples
We selected 193 samples from the PCAWG dataset to compare the different PyroTimer

implementations when applied to real world data. Due to technical limitations of the Numpyro HMC

implementation only samples with 20 or less gained segments were selected. PyroTimer is only able to

time simple gains, CN-LOH and biallelic gains. Segments with multiple duplications could not be timed.

This resulted in 1898 segments that were timed by PyroTimer. Since the accuracy of the Pyro HMC and

the Numpyro HMC implementation were nearly identical, we continued with the Numpyro HMC

because of the fast runtimes. The timed segments show a fairly strong positive correlation between the

Pyro SVI and Numpyro HMC implementation (Figure 10). However, for the segments where there is

major disagreement about the timing there is also a strong disagreement about the estimated purity of

the samples. If both implementations assume a different purity this would affect the expected VAF

frequencies and cause disagreement about timing of gained segments. Unfortunately, unlike the

simulated data it is not possible to say which method has the correct timing.

Figure 10: Comparison between Pyro SVI and Numpyro HMC on PCWAG samples. A. Pearson correlation coefficient is 0.72.
Segments where the timing does not correspond is also where the purity estimate does not correspond. B. Correlation of the
sample purity estimate for the Pyro SVI and Numpyro HMC. Colour indicates the consensus purity that the R implementation
used. Both implementations are sometimes in disagreement with the consensus purity.

Besides comparing the different implementations of PyroTimer we also compared the estimated timings

against the R implementation MutationTimeR. Again, there is a moderate positive correlation between

the gained segments timing (Figure 11). The segments for which there is a major disagreement about

the timing between MutationTimeR and PyroTimer are again from samples where there is also

disagreement about sample purity. MutationTimeR does not estimate sample purity but uses a

consensus purity generated by external tools. Other segments for which there is disagreement about

the timing but not about the purity all have a low number of mutations, less than 5 mutations. The

disagreement between the timing for MutationTimeR and PyroTimer seems to be caused by either the

purity estimate or a too small amount of datapoints.

Figure 11: Comparison between PyroTimer and MutationTimeR. A. Pearson correlation coefficient is 0.64. Where the segments
disagree about the timing there is either a disagreement about the purity or only a small number of mutations on the segment.
B. Pearson correlation coefficient is 0.67. Where the segments disagree about the timing there is either a disagreement about
the purity or only a small number of mutations on the segment.

Discussion
Our study presents PyroTimer, a Bayesian mixture model to time copy number gains implemented in a

flexible probabilistic programming library that scales well with large datasets. We observed the

performance gains which can be obtained by utilizing just in time compilation. The SVI algorithm

performed as well as the HMC algorithm while also being quicker. Using simulated data based on real

world data we validate the accuracy of PyroTimer. Lastly, we compared PyroTimer against the current

implementation MutationTimeR.

While PyroTimer and MutationTimeR show a moderatly strong positive correlation between timing

estimates, the purity estimate plays an important role in the disagreement between the methods.

MutationTimeR uses a consensus purity that is estimated by external tools while PyroTimer estimates

the purity along with the other latent variables. A possible compromise could be to use the consensus

purity as a prior for the purity parameter. This would start PyroTimer of in the right direction but still

maintain the benefit of not having a fixed value.

It is clear that the Numpyro library can give a major performance boost compared to Pyro by using the

just in time compilation. It also contains several quality-of-life features that create a smoother

experience compared to Pyro. However, the fact that it is still under active development resulted in

significant amounts of time spend trying to resolve technical limitations that Pyro does not have.

The Numpyro HMC implementation is currently limited to a maximum of 20 copy number gains that can

be timed per sample. PyroTimer is also still lacking some features compared to MutationTimeR like

ordering SNVs in time and timing two single gains that happened at different timepoints. However, since

Pyro allows for much easier modelling than R it could replace the R version in the future and become the

new standard for mutation timing as an easier to maintain and expand tool with great performance.

Acknowledgements
I would like to thank the German Cancer research centre for hosting me. I am grateful that Moritz

Gerstung took me up in his group. I would like to thank Stefan Dentro for being my supervisor. I would

also like to thank Artem for his technical assistance.

Supplementary figures

Figure 12: Distribution of data variables for PCAWG samples.

References
1. Dentro, S. C., Wedge, D. C. & van Loo, P. Principles of Reconstructing the Subclonal Architecture

of Cancers. Cold Spring Harb Perspect Med 7, (2017).

2. González, S., Volkova, N., Beer, P. & Gerstung, M. Immuno-oncology from the perspective of

somatic evolution. Seminars in Cancer Biology 52, 75–85 (2018).

3. Werner, B. et al. Measuring single cell divisions in human tissues from multi-region sequencing

data. Nature Communications 11, 1035 (2020).

4. Greenman, C. D. et al. Estimation of rearrangement phylogeny for cancer genomes. Genome

Research 22, 346–361 (2012).

5. Manders, F., van Boxtel, R. & Middelkamp, S. The Dynamics of Somatic Mutagenesis During Life

in Humans. Frontiers in Aging 2, (2021).

6. Purdom, E. et al. Methods and challenges in timing chromosomal abnormalities within cancer

samples. Bioinformatics 29, 3113–3120 (2013).

7. Jolly, C. & van Loo, P. Timing somatic events in the evolution of cancer. Genome Biology 19, 1–9

(2018).

8. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

9. Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer

genomes. Cell 184, 2239-2254.e39 (2021).

10. Bingham, E. et al. Pyro: Deep Universal Probabilistic Programming. (2018).

11. Nik-Zainal, S. et al. DPClust. Cell 149, 994–1007 (2012).

12. Grün, B. & Leisch, F. Dealing with label switching in mixture models under genuine multimodality.

Journal of Multivariate Analysis 100, 851–861 (2009).

13. McElreath, R. Statistical Rethinking; A Bayesian Course with Examples in R and Stan; Second

Edition. https://www.crcpress.com/Chapman- doi:10.4324/9780429029608.

