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Abstract

We investigate the relationship between Hodge theory, a field of mathematics, and integrable systems,
a concept in physics. There are several reasons to believe the two notions are related and this suspicion
has been strengthened in two recent papers by Grimm and Monnee. There, the authors managed to
show that the Weil operator from Hodge theory provides a solution to both the 𝜆-model and the bi-
Yang-Baxter model, which are integrable systems. To be precise, they showed that for the bi-Yang-
Baxter model the SL(2)-approximation of the Weil operator, coming from the SL(2)-orbit theorem of
Hodge theory, provided a solution, whereas the full Weil operator solved the 𝜆-model. In this work
we try to build upon their construction to further strengthen the connection between Hodge theory
and integrable systems. In particular, we review the relevant mathematical and physical background, as
well as the construction of Grimm and Monnee. A concept deeply intertwined with integrable systems,
called Poisson-Lie T-duality, seems to play a role in the relation between Hodge theory and integrable
systems. We give a self-contained review of the duality and provide one of the necessary steps in the
case of SU(2). Moreover, we identify opportunities and difficulties regarding the interplay of Hodge
theory, integrable systems and Poisson-Lie T-duality.
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Introduction

T here have been many instances where fundamental physics and pure mathematics meet. For
example, in the theory of quarks introduced by Murray Gell-Mann, the irreducible representations
of SU(3) are foundational. Eventually, this was integrated in the formulation of the Standard

Model as a non-Abelian gauge theory, in which principal bundles play a key role. Moreover, Einstein
his theory of general relativity dictates that gravity is an emergent phenomena due to the curvature of
spacetime, a concept from (pseudo)-Riemannian geometry.

An area of theoretical physics where the description of the universe and abstract mathematics are
strongly intertwined is string theory. One of these connections is studied in this work. Within string
theory extended objects called strings are studied. The string vibrates and the different harmonics on
the string correspond to distinct particles. String theory attempts to solve the holy grail of high energy
physics: a consistent unification of gravity and quantum field theory. Over the last fifty years it received
much attention, due to the inherent existence of the graviton in the theory. This is the quantum particle
associated to gravity, making string theory into a theory of quantum gravity. The main question is whether
string theory is the theory of quantum gravity that describes our universe.

One major obstacle is that a consistent string theory that includes both bosons and fermions requires a
ten dimensional spacetime, while we only observe four (macroscopic) dimensions. To proceed, one can curl
up the superfluous six dimensions and make them small enough such that the resulting theory effectively
lives in a four-dimensional spacetime. This procedure is called compactification and it is one of the sources
of pure mathematics in string theory. Indeed, the extra six dimensions cannot be arbitrarily curled up.
Physical principles force them to constitute a special kind of complex manifold: a Calabi-Yau manifold.
Interestingly, the effective physics in four dimensions depends on geometry of the chosen Calabi-Yau
manifold in the compactification. To be precise, it depends on the isomorphism class of the Calabi-Yau
manifold.

This dependence leads to the concept of moduli space. Roughly speaking, in the context of string
theory, it is the collection of inequivalent Calabi-Yau structures on a complex manifold. The moduli space
is itself an interesting geometric space that is extensively studied. From this point of view, the effective
four dimensional theory depends on the point in moduli space corresponding to the chosen Calabi-Yau
manifold. We say the theory is moduli dependent. A special property of Calabi-Yau manifolds is that
their cohomology groups admit a particular decomposition. This is known as the Hodge decomposition. It
turns out, the effective four-dimensional theory also depends on this decomposition, beside the moduli
dependence. Moreover, the Hodge decomposition is moduli dependent as well.

Consequently, to understand the effective four-dimensional theory we need to understand the moduli
space and the dependence of the Hodge decomposition on this space. The latter leads to the concept
of a variation of Hodge structure first introduced by Griffiths in [Gri68a]. In his work, the properties of
the Hodge decomposition and its moduli dependence were axiomatized and shown to be equivalent to a
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Hodge Theory Integrable systems

Poisson-Lie T-duality

Figure 1: The areas and connections of interest in this work.

mapping

Φ ∶ ℳ → Γ\𝐷
called the period map. Here, ℳ denotes the moduli space and Γ\𝐷 the collection of all Hodge decom-
positions, called the classifying space1. Moreover, the period map satisfies two conditions: holomorphicity
and horizontality. The study of variation of Hodge structures is part of Hodge theory and they have found
many applications in string theory (see e.g. [GPV18; LLW22]). Especially, two main theorems in Hodge
theory have proven to be particularly useful: the nilpotent orbit theorem and SL(2)-orbit theorem. They give
approximations of the period map near the boundary of the moduli spaceℳ. However, the theory of vari-
ation of Hodge structures and the formulation of the orbit theorems is rather formal. A desire to rephrase
this formulation in physical terms leads to the driving motivation of this work. In special cases, the mod-
uli space ℳ can be viewed as a (singular) Riemann surface. Furthermore, it can be shown in general that
the classifying space is a homogeneous space, i.e. a quotient of Lie groups. Hence, the period map can
schematically be thought of as a map from a Riemann surface Σ to a Lie group 𝐺. Theories that describe
the dynamics of such maps are called non-linear sigma-models. The underlying question of this work is:

Is there a non-linear sigma-model whose equations of motion are precisely holomorphicity and hori-
zontality, i.e. has the period map as a solution?

However, the landscape of non-linear sigma-models is vast. So, where does one start when attempting to
answer this question?

There is a particular class of non-linear sigma-models that seems particularly suited. They have a prop-
erty called integrability, which is studied in the field of integrable systems. It has been suggested that Hodge
theory is related to integrable systems, see for example [DWS08]. This connection has been straightened
in two recent papers [GM22; GM23]. In an attempt to answer the main question above, these papers
considered two integrable non-linear sigma-models and constructed Hodge theoretic solutions to them.
Interestingly, it was not the period map that constituted the solution, but a different central object in
Hodge theory called the Weil operator. To be precise, in [GM23] they showed the SL(2)-approximation
of the Weil operator, coming from the SL(2)-orbit theorem, produced a solution. Then, a natural ques-
tion is whether the nilpotent approximation and full Weil operator also produce solutions. It was already
noted in [GM23] that the parameters of the integrable model need to be altered to answer this question.
Looking for these adjustments is one of the initial objectives of this work.

It was shown in [Kli15; Kli16] that the integrable models considered in [GM22; GM23] are related
via a duality called Poisson-Lie T-duality. Moreover, all known example of integrable non-linear sigma-
models have a symmetry associated to this duality called Poisson-Lie symmetry [DHT19]. This indicates

1To be precise,𝐷 is called the classifying space and Γ is a symmetry group that needs to be quotiented out to describe a variation
of Hodge structure. We elaborate more on this in Chapter 3.
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a relation between Poisson-Lie T-duality and integrable systems. Since integrable systems are seemingly
related to Hodge theory, there might be a connection between Poisson-Lie T-duality and Hodge theory.
Trying to get an inside in this relation is the second objective in this work. Consequently, understanding
the web of connections indicated in Figure 1 is the main focus of this thesis.

The outline of the thesis is as follows, in Chapter 1 we start with a general description of string theory
and compactifications. To illustrate the qualitative properties of string compactifications, we work out the
Kaluza-Klein example in reasonable detail. Furthermore, we argue why the superfluous six dimensions
must form a Calabi-Yau manifold. Finally, we discuss the moduli and Hodge decomposition dependence
of the effective theory.

Since the moduli space of Calabi-Yau manifolds plays such a central role in string theory, we discuss
its properties in Chapter 2. For this, we start with some preliminaries on Kähler geometry and (classi-
cal) Hodge theory. Afterwards, we consider deformations of complex manifolds and prove the classical
theorem on the obstructions to deformations by Kuranishi [Kur65]. Finally, we prove the Bogomolov-
Tian-Todorov [Bog78; Tia87; Tod89] theorem on the unobstructedness of deformations on Calabi-Yau
manifolds. We do this without the classical power series argument, but using global methods. We close
the chapter with a discussion about the global geometry of the Calabi-Yau moduli space.

In Chapter 3 we discuss the Hodge theory introduced by Griffiths. In particular, we give equivalent
definitions of Hodge structures and discuss properties of the classifying space. Furthermore, we describe
the concept of a variation of Hodge structure and its relation to the period map. Finally, we give the
statements of the celebrated nilpotent and SL(2)-orbit theorems. Along the way we try to clarify the
abstract concepts by means of explicit examples.

Subsequently, we discuss integrable systems in Chapter 4. We start with the notion of integrability
in classical mechanics. The Lax pair formulation is discussed and its constructive nature in proving inte-
grability is explained. The key role of the 𝑟-matrix in this and its properties are described. Afterwards,
we introduce the notion of integrability in field theory. We conclude the chapter with a discussion of the
non-linear sigma-models used in [GM22; GM23] and comment on their integrability. Moreover, we
discuss the Weil operator solutions of both sigma-models found in [GM22; GM23].

We conclude this work with an in-depth exhibition of Poisson-Lie T-duality in Chapter 5. We start
by introducing the concept of (Abelian) T-duality and discuss the non-Abelian generalization dictated
by Poisson-Lie T-duality. In particular, we give sufficient conditions to construct Poisson-Lie T-dual
models and derive Buscher-type rules. Furthermore, we discuss how Poisson-Lie T-duality produces
a map between solutions of dual models. Afterwards, the notion of an ℰ-model is introduced, which
enhances Poisson-Lie T-duality to a symmetry of a larger non-linear sigma-model. We describe how
Poisson-Lie T-dual models can be obtained from ℰ-models and show the models considered in [GM22;
GM23] fit in this framework. As an aside, a mathematical description of Poisson-Lie T-duality in terms
of Courant algebroids is presented as well. The chapter is concluded by stating the relationship of the two
models in [GM22; GM23] with Poisson-Lie T-duality and identifying a road map for the duality. Some
comments on performing the duality in the case of SU(2), as well as its possible connection to Hodge
theory, are made.





CHAPTER1
StringTheory

S ince the beginning of modern physics in the seventeenth century, physicists have tried to unravel
the fundamental structure of nature. In particular, the study of matter and its interactions through
forces are of interest. Throughout the centuries, massive progress has been booked and our under-

standing ranges from scales of order 10−19 m to 1027 m. These boundaries were reached by means of two
major breakthroughs in theoretical physics during the twentieth century: quantum mechanics and general
relativity. The former describes the processes at the microscopic scale, while general relativity talks about
gravity and therefore the large-scale structure of the universe. Both theories have separately been extremely
successful. Hence, for a more complete understanding of the fundamental laws of nature, a unification of
the two theories is necessary. Even though the precise form of this unification is still unknown, it already
has been named: Quantum Gravity.

However, the nature of the two theories is rather different. Where general relativity is completely de-
terministic, this is not that obvious for quantum mechanics due to its probabilistic characteristics. There-
fore, it is unclear how to unify both theories. Straightforward attempts coming from relativistic quantum
mechanics, called quantum field theory (QFT), are unsuccessful due to the emergence of uncontrollable
infinities. To be more precise, it can be shown that the quantization of gravity coming from QFT is not
renormalizable. Hence, one should look for novel methods to bring the two theories together. One of
those proposals originates from the sixties and will be the one relevant in this work: String Theory.

In a nutshell, string theory is based on fundamental one-dimensional objects called strings [BBS06].
This is in contrast with the description of QFT, where point-like particles are considered. Initially, string
theory was an attempt to describe the strong nuclear force. However, this was abandoned after the develop-
ment of quantum chromodynamics (QCD), which succeeded in capturing the strong force. Nevertheless,
people kept developing the theory and noticed it might be suited for the much more ambitious role: a
consistent theory of quantum gravity.

In this chapter we will give an introduction to string theory and state some of the challenges that
arise when trying to describe physical reality. For example, the theory predicts the possibility of more
dimensions. A way to make the connection with our four-dimensional reality is through a process called
compactification. We will discuss this notion in reasonable detail in this chapter, as it is the origin of the
considerations in this work.

1



2 StringTheory

1.1 Bosonic StringTheory

We will start with a discussion about the so-called bosonic string. This is the original version of string
theory from the 1960s. It is called ‘bosonic’ as it typically only describes bosons. Note, most of the matter
in our universe is made out of fermions. So, we already encounter a drawback of the theory. However,
it proves to be a valuable toy model that shares plenty of characteristics with other, more realistic, string
theories. For example, the generalization to super strings (see Section 1.2) is rather straightforward. We
would like to stress that we will merely give an overview of the topic and refer to [GSW12; BLT12; BBS06;
Ton12] for more details. These will also be the references throughout this chapter.

As mentioned before, the fundamental assumption of string theory is that particles are not point-like
but correspond to extended one-dimensional objects, called strings. There are two types of strings, namely
open and closed. It may seem a small abstraction, however it has huge consequences. For example, whereas
a particle traces out a worldline in spacetime, a string sweeps out a surface (see Figure 1.1). Hence, one
can view a string as an embedding

𝑋 ∶ Σ → 𝑀𝑑,

where Σ is the sweeped out surface and 𝑀𝑑 a Lorentzian spacetime. The space Σ is referred to as the
worldsheet and𝑀𝑑 the target space. Recall, in special relativity, the dynamics of a particle is given by the
action that computes the worldlength of its worldline. In string theory one considers the two dimensional
analog: the action computes the area of Σ with respect to pull-back of the metric on 𝑀𝑑.

This action is called the Nambu-Goto action and to state it we pick coordinates on both Σ and 𝑀𝑑.
On Σ we have coordinates 𝜎𝛼 = (𝜎, 𝜏), where 𝜏 is timelike 𝜎 spacelike. Depending on the type of string
(open or closed), we have either 𝜎 ∈ [0, 𝜋] or 𝜎 ∈ [0, 2𝜋). Moreover, using the coordinates on 𝑀𝑑, we
can view the map 𝑋 as a collection of 𝑑 scalars 𝑋𝜇(𝜏, 𝜎) on the worldsheet. Now, the Nambu-Goto action
is given by

𝑆𝑁𝐺 = −𝑇∫
Σ
𝑑2𝜎 √− det 𝛾.

Here, 𝛾 = 𝑋∗𝑔 with 𝑔 the metric on𝑀𝑑. Furthermore, 𝑇 is the tension of the string, which is often written
as 𝑇 = 1

2𝜋𝛼′
for historical reasons.

However, the Nambu-Goto action is difficult to work with, due to the square root. It turns out, one
can get rid of the square root at the cost of an auxiliary metric ℎ𝛼𝛽 on the worldsheet of signature (−,+)

time time

Figure 1.1: Depiction of how the worldline is replaced by a worldsheet for a closed string in string theory.



1.2. Superstrings 3

(cf. [BLT12, Sec. 2.3]). This new, equivalent, action is called the Polyakov action and is given by

𝑆𝑃 = −𝑇2 ∫Σ
𝑑2𝜎 √−ℎℎ𝛼𝛽𝛾𝛼𝛽, (1.1)

where ℎ = detℎ𝛼𝛽. In coordinates, the Polyakov action takes the form

𝑆𝑃 = −𝑇2 ∫Σ
𝑑2𝜎√−ℎℎ𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜈𝜂𝜇𝜈. (1.2)

One can now proceed and study the dynamics of this system.
When considering the quantized theory, one encounters the profound implications of our simple as-

sumption. Firstly, the only way to make the theory Lorentz invariant and sensible is by requiring the
dimension 𝑑 of the target space to be precisely equal to 26, called the critical dimension. Secondly, vibra-
tions on the string can be associated to particles in the target space, labeled by their mass and spin. As
the string has an infinite number of harmonics, since it is free to oscillate, there will be an infinite amount
of particle states [GSW12, Sec. 1.3]. Moreover, among the first excited states there is a massless spin-2
particle. It was shown by Feynman and Weinberg that any theory of interacting spin-2 particles must be
equivalent to Einstein gravity [Ton12, Ch. 2]. Hence, string theory inherently incorporates the quantum
particle corresponding to gravity, called the graviton, making it into a candidate for quantum gravity.

This is very exciting, however there are some caveats. The first of which we already encountered: the
theory does not contain fermions. Since most of the matter around us is mostly made out of fermions, a
reasonable theory should contain them. Secondly, the ground state of the theory corresponds to a particle
with negative mass-squared, called the tachyon. Because of this, the theory becomes unstable. One
possible way to circumvent both issues is by introducing supersymmetry. We will briefly discuss the matter
in the next section.

1.2 Superstrings

In an attempt to remedy one of the downfalls of bosonic string theory, the lack of fermions, one can do
the most straightforward thing and just add them on the worldsheet. From QFT we know the typical
fermionic terms in the Lagrangian and we can extend the action (1.2) accordingly. To be more precise, we
introduce additional internal degrees describing fermions 𝜓𝜇(𝜎, 𝜏) on the worldsheet, which will be vectors
in the target space [BBS06, Ch. 4]. Now, by adding the usual Dirac action for the fermions 𝜓𝜇(𝜎, 𝜏) to
(1.1), we find in conformal gauge

𝑆 = −𝑇2 ∫Σ
𝑑2𝜎 (𝜕𝛼𝑋𝜇𝜕𝛼𝑋𝜇 + ̄𝜓𝜇 /𝜕𝜓𝜇) . (1.3)

It turns out that the above action is invariant under infinitesimal transformations that interchange the
bosonic and fermionic fields [BBS06, Sec. 4.2]. This is known as supersymmetry (SUSY). To be more
precise, we have describedworldsheet supersymmetry and the string corresponding to (1.3) is often referred
to as the Ramond-Neveu-Schwarz (RNS) string. There is also the concept of spacetime supersymmetry.
However, we will not focus on this topic here and refer to [BBS06, Ch. 5] or [GSW12, Ch. 5]. Moreover,
as usual, one can construct a (conserved) charge corresponding to a symmetry, which in this case is called
the supercharge 𝑄. In fact, a theory can have multiple supercharges. The amount of supercharges is
denoted by 𝒩.

Now, one can proceed as in the bosonic case and one finds the theory is only sensible1 for a critical
dimension of 𝑑 = 10. However, the spectrum of the RNS string still has issues, such as the existence of a

1By this we mean no negative-norm states (ghosts) and Lorentz invariant.



4 StringTheory

tachyon. Hence, onemust resort to additional techniques. By projecting the spectrum in a very specific way,
the problems are resolved and a supersymmetric ten-dimensional spacetime theory is obtained [BBS06,
Sec. 4.6]. This projection is due to Gliozzi, Scherk and Olive and consequently is known as GSO projection.
Upon investigating the spectrum, after GSO projection, one sees the tachyon is no longer present. Hence,
the two main issues of bosonic string theory are solved by considering a supersymmetric string theory in
ten dimensions.

It is yet more restrictive, as one cannot write down any arbitrary ten dimensional theory. There are
only five consistent superstring theories:

Type I, Type IIA, Type IIB, Heterotic 𝑆𝑂(32), Heterotic 𝐸8 × 𝐸8

The differences lie in the construction, the ‘amount’ of supersymmetry and the possible existence of open
strings in these theories (see [BBS06]). It is not in the scope of this work to quantitatively discuss these
differences. However, we point them out to emphasise the restrictive nature of string theory. Moreover,
we would like to highlight their similarities: all consistent supersymmetric string theories live in ten di-
mensions. This is strengthened even further by the fact that these, seemingly very different, theories are
related to each other via various dualities2 (see [BLT12]). In later sections we will focus on one of the
theories, however our findings will typically hold in general.

1.3 EffectiveTheories

In the previous section we concluded there are five superstring theories. To get a grasp on the behaviour
of these theories and relate them to our usual description of particles in QFT, we need a workable frame-
work. One useful observation is that the massive states become very heavy for 𝛼′ → 0, i.e. for large string
tension. Hence, in this limit, which corresponds to the low-energy limit (cf. [BBS06, Ch. 8]), a good
approximation of the theory is given by the interactions of just the massless excitation. This approximation
is called a low-energy effective theory. Due to spacetime symmetries (e.g. coordinate invariance) and
supersymmetry, the possible effective theories are restricted. Furthermore, by additional requirements,
such as anomaly cancellations, the effective ten-dimensional theory is completely fixed, up to higher order
corrections (see [BLT12, Ch. 16]). They are given by so-called supergravity theories, which are super-
symmetric extensions of Einstein gravity. Using the corresponding effective ten-dimensional supergravity
action, one can obtain an effective four-dimensional theory through a process of ‘compactification’. We
will discuss this in Section 1.4. Hence, it is very helpful to obtain those effective actions. In this section
we will discuss the effective supergravity theory corresponding to type IIB.

To get there, we first need to discuss the massless spectrum of the type IIB superstring. We will not
derive this spectrum here, but refer to reader to [BBS06, Ch. 5]. In the fermionic part of the spectrum
there are two left-handed Majorana-Weyl gravitino’s (the supersymmetric partner of the graviton) and two
right-handed Majorana-Weyl dilatino’s. For the bosonic part, there are two sectors: the NS-NS and the
R-R sector. The former consists of the metric 𝑔, the two form 𝐵2 and the dilaton Φ. In the R-R sector
there are three 𝑝-form fields, namely 𝐶0, 𝐶2 and 𝐶4. The corresponding field strengths are

𝐻3 = 𝑑𝐵2, 𝐹𝑝+1 = 𝑑𝐶𝑝.

For further purposes, it is convenient to combine the fields as follows

𝜏 ∶= 𝐶0 + 𝑖𝑒−Φ, 𝐺3 ∶= 𝐹3 − 𝜏𝐻3, 𝐹5 ∶= 𝐹5 −
1
2𝐶2 ∧ 𝐻3 +

1
2𝐵2 ∧ 𝐹3.

2One of which in particular, or a generalization thereof, is of interest in this work (cf. Chapter 5).
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Then, the low-effective action that governs the interactions between the massless states of type IIB is given
by (cf. [Den08, Ch. 3])

𝑆IIB =
2𝜋
𝑙8𝑠
∫
ℳ10

ℛ ⋆ 1 − 1
2
𝑑𝜏 ∧ ⋆𝑑𝜏

Im 𝜏 + 𝐺3 ∧ ⋆𝐺3
Im 𝜏 + 1

2𝐹5 ∧ ⋆𝐹5 + 𝐶4 ∧ 𝐻3 ∧ 𝐹3. (1.4)

Here, 𝑙𝑠 is the string length3 and ℛ is the Ricci scalar corresponding to the metric 𝑔. Additionally, one
has to impose the self-duality constraint ⋆𝐹5 = 𝐹5 by hand, to reproduce the correct equations of motion.

Similar low-effective actions exist for the other types (see [BLT12, Ch. 16]) and they provide a way
to do explicit computations. However, there is still a clear hurdle to describe reality with this theory: it
is ten-dimensional. To be able to make predictions about nature we need to reduce the theory to a four-
dimensional one. There are multiple ways to do this, however the most common approach is to ‘curl up’
the additional dimensions. This leads to the concept of ‘compactification’, which is the main topic of the
next section. There we will see the effective four-dimensional theory associated to (1.4).

1.4 String Compactifications

As we have seen in Section 1.2, all consistent superstring theories predict spacetime to be ten-dimensional.
Yet, all our macroscopic observations seem to indicate that our universe has four macroscopic dimensions.
A proposed idea to deal with this issue is to take the additional dimensions and curl them up. Formally,
this is known as string compactification. The main idea is to assume that the ten-dimensional spacetime
is the product of a four-dimensional spacetime and a ‘internal’ manifold :

ℳ10 = ℳ4 × 𝑋6.

Typically,ℳ4 is assumed to be maximally symmetric, i.e., either Minkowski, de Sitter or anti-de Sitter (see
[BBS06, Sec. 9.4]). Furthermore, 𝑋6 inherits a genuine Riemannian metric fromℳ10, as all the negative
signatures are absorbed by the metric onℳ4. Moreover, the internal manifold is assumed to be ‘small’ and
compact. The terminology ‘small’ is somewhat ill-defined. Yet, if we assume the compact manifold to be
of size 𝑙𝑐, they should be observed at energy scales around 𝐸 ∼ 1/𝑙𝑐. Hence, by making 𝑋6 small enough,
the extra dimensions will be invisible to contemporary observations ([BBS06, p. 354]). A very interesting
property of string compactifications is that the geometry of the internal manifold effects the physics in the
four-dimensional spacetime. To illustrate this phenomenonwe first consider a classical example introduced
in the 1920’s by Kaluza ([Kal21]) and Klein ([Kle26]), in which they obtained general relativity combined
with electromagnetism from a higher dimensional gravity theory. Afterwards, in Section 1.4.2 we discuss
how certain requirements, such as residual supersymmetry, onℳ4 places vast restrictions on the geometry
of the internal manifold 𝑋6.

1.4.1 TheKaluza-Klein Example
The concept of compactifying additional dimensions dates back to the 1920’s. In 1921 and 1926 Kaluza
and Klein, respectively, proposed to start with a five-dimensional gravity theory and compactify on a circle.
This results in a gravity theory as well as electromagnetism in the remaining four-dimensional spacetime.
Even though their attempt turned out to be an incorrect description of reality, the techniques are still used
today in string compactifications. Therefore, we would like to present this example in this section. Before
we do this, we consider a simpler example of a free scalar field to highlight some of the important features.
Our main reference is [Li22].

3It is related to 𝛼′ by 𝑙𝑠 = 2𝜋√𝛼′.
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Consider the five-dimensional manifold ℳ5 = ℝ1,3 × 𝑆1𝑟 , where ℝ1,3 is Minkowski space and 𝑆1𝑟
denotes a circle of constant radius 𝑟 ≥ 0. Let 𝑥𝑀 = (𝑥𝜇, 𝑟𝜃) denote coordinates on ℳ5, where 𝑥𝜇 ∈ ℝ1,3

and 𝜃 denotes the parametrization of the circle. We identify 𝜃 ∼ 𝜃+2𝜋. Furthermore, we equipℳ5 with
the Minkowski metric given, in these coordinates, by 𝑑𝑠25 = 𝜂𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 + 𝑟2𝑑𝜃2. Now, consider a free
massless scalar ̂𝜙 with corresponding action

𝑆[ ̂𝜙] = − 1
2 ∫ℳ5

𝑑 ̂𝜙(𝑥𝜇, 𝜃) ∧ ⋆𝑑 ̂𝜙(𝑥𝜇, 𝜃)

= − 1
2 ∫ℳ5

𝑑5𝑥 𝜂𝑀𝑁𝜕𝑀 ̂𝜙𝜕𝑁 ̂𝜙

= − 1
2 ∫ℝ1,3×𝑆1

𝑑5𝑥 {𝜕𝜇 ̂𝜙𝜕𝜇 ̂𝜙 + 1
𝑟2 (𝜕𝜃

̂𝜙)2} . (1.5)

Then, the equation of motion of ̂𝜙 is given by

◻ ̂𝜙 = 0 ⟺ 𝜕𝜇𝜕𝜇 ̂𝜙 + 1
𝑟2 𝜕

2
𝜃 ̂𝜙 = 0. (1.6)

Since we identify 𝜃 ∼ 𝜃 + 2𝜋, we have ̂𝜙(𝑥𝜇, 𝜃 + 2𝜋) = ̂𝜙(𝑥𝜇, 𝜃). Hence, we can Fourier expand ̂𝜙 as

̂𝜙(𝑥𝜇, 𝜃) = 1
√2𝜋

∑
𝑛∈ℤ

𝜙𝑛(𝑥)𝑒𝑖𝑛𝜃.

The scalar field ̂𝜙 being real now translates to 𝜙𝑛 = 𝜙−𝑛. Inserting this expression into the action (1.5) we
obtain

𝑆[𝜙𝑛] = −12 ∑
𝑛∈ℤ

∫
ℝ1,3

𝑑4𝑥 {𝜕𝜇𝜙𝑛𝜕𝜇𝜙𝑛 +
𝑛2
𝑟2 𝜙𝑛𝜙𝑛} . (1.7)

Note, by varying the action above we obtain the equation of motion of 𝜙𝑛 for every 𝑛:

𝜕𝜇𝜕𝜇𝜙𝑛 −
𝑛2
𝑟2 𝜙𝑛 = 0.

Furthermore, these equations and the action (1.7) show that the 𝜙𝑛 are scalars in the four-dimensional
spacetime. Moreover, the 𝜙𝑛 are massive with a mass 𝑛/𝑟, for 𝑛 > 0. Hence, one massless scalar in the
five-dimensional theory yields a whole tower of massive four-dimensional scalar fields. Elements of this
tower are known as Kaluza-Klein (KK) modes. Remarkably, the masses depend on the radius 𝑟 of the circle.
This is the first instance of the dependence of the effective four-dimensional physics on the geometry of
the internal manifold. Notice, by making the radius 𝑟 very small, the massive modes 𝜙𝑛 for 𝑛 > 0 become
undetectable in the low energy effective theory. Yet, the massless mode 𝜙0 will always be present. Such
massless modes will appear more often as we will see and they play a key role in connecting string theory
with the standard model.

Let us now switch our attention to the five-dimensional gravity compactification. Again, let ℳ5 =
ℝ1,3 × 𝑆1𝑟 equipped with the same coordinates as above. Consider the following metric on ℳ5

𝑑 ̂𝑠2 = ̂𝑔𝑀𝑁𝑑𝑥𝑀𝑑𝑥𝑁 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 + 2𝑟2(𝑥)𝐴𝜇(𝑥)𝑑𝑥𝜇𝑑𝜃 + 𝑟2(𝑥)𝑑𝜃2, (1.8)
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which is the most general form. Note, we allow 𝑟 to vary over ℝ1,3. The action we want to consider is the
corresponding Einstein-Hilbert action in five dimensions:

̂𝑆𝐸𝐻 = 1
2𝜅25

∫
ℳ5

ℛ̂ ⋆ 1,

where 𝜅5 is the five-dimensional Einstein gravitational constant. We would like to proceed as before:
integrate over the circle to obtain the lower dimensional theory. For this we need to compute the five-
dimensional Ricci scalar ℛ̂. Due to the off-diagonal terms in (1.8), this is a tedious, yet straightforward,
computation which is done in [Li22, Sec. 1B]. One finds

ℛ̂ = ℛ − 2
𝑟∇

𝜇∇𝜇𝑟 −
𝑟2
4 𝐹

𝜇𝜈𝐹𝜇𝜈, (1.9)

whereℛ is the Ricci scalar associated to the four-dimensional metric 𝑔𝜇𝜈,∇𝜇 is the four-dimensional Levi-
Civita connection and 𝐹𝜇𝜈 is the usual field strength of 𝐴𝜇. Note, all the terms in (1.9) are independent of
𝜃 by assumption. Furthermore, the second term in (1.9) is a total derivative and thus will not contribute
to the action, as ℝ1,3 does not have a boundary. Substituting (1.9) in the action above and integrating over
the circle yields

1
2𝜅25

∫
ℳ5

ℛ̂ ⋆ 1 = 1
2𝜅25

∫
ℝ1,3

(ℛ − 𝑟2
4 𝐹

𝜇𝜈𝐹𝜇𝜈) ⋅ 2𝜋𝑟 ⋆ 1

= 2𝜋
2𝜅25

∫
ℝ1,3

𝑟ℛ ⋆ 1 − 𝑟3
2 𝐹 ∧ ⋆𝐹.

Up to this point we have been rather sloppy regarding dimensions. Let us first denote the ground state of
𝑟 by 𝑟0. In a way, 𝑟measures the deviation from the ground state radius. Because of this, the field 𝑟 is often
referred to as the breathing mode. Then, we can replace 𝜃 → 𝑟0𝜃 and 𝐴𝜇 → 𝜅4𝐴𝜇, where 𝜅4 is defined by

1
2𝜅4

= 2𝜋𝑟0
2𝜅25

.

In this manner, all fields have the appropriate mass dimension (cf. [Li22, p. 6]) and the four-dimensional
action is given by

𝑆4 =
1
2𝜅24

∫
ℝ1,3

𝑟ℛ ⋆ 1 − 𝜅24𝑟3
2 𝐹 ∧ ⋆𝐹.

Note, the first term looks like an Einstein-Hilbert term up to a factor of 𝑟. By Weyl rescaling the metric
𝑔𝜇𝜈 → ̃𝑔𝜇𝜈 = 𝑟𝑔𝜇𝜈 we can absorb the factor 𝑟. However, this affects the Ricci scalar in a particular manner4,
namely

ℛ̃ = 1
𝑟 (ℛ − 6△(12 log 𝑟) − 6𝜕𝜇(12 log 𝑟)𝜕𝜇(

1
2 log 𝑟)) .

Here, △ denotes the Laplacian, which is a total derivative and thus the second term will drop out of the
four-dimensional action as before. Using this we end up with

𝑆4 = ∫
ℝ1,3

1
2𝜅24

ℛ ⋆ 1 − 3
2𝜅24𝑟2

𝑑𝑟 ∧ ⋆𝑑𝑟 − 𝑟3
2 𝐹 ∧ ⋆𝐹.

4For this, see [Lee19, Thm. 7.30]. Note, we applied the formula for dimension four.
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Hence, the resulting four-dimensional theory contains an Einstein-Hilbert term, i.e. gravity, a𝑈(1)-gauge
field and a massless scalar field. Again, notice that the geometry, in the sense of the radius of the circle,
effects the physics in the effective theory.

Let us focus on the field 𝑟. First notice it depends on the point in ℝ1,3. Moreover, the field 𝑟 is
dynamical, meaning the radius is not constant. Combining these two observations tells us that to every
point in the four-dimensional spacetime there could be a circle with different radius. In other words, we
are not compactifying on “one” circle but on a whole family of circles and the field 𝑟 keeps track of the data,
associating to a point in ℝ1,3 the corresponding radius (see Figure 1.2). The field 𝑟 is the first example we
encounter of a modulus: a parameter that captures the geometry of the internal manifold.

In general string compactifications, numerousmoduli fields enter the effective four-dimensional theory,
parametrizing the ‘size’ and ‘shape’ of the internal manifold, intuitively. At a first glance, this seems very
hopeful as it could be used to reproduce the many degrees of freedom of the Standard Model. Yet, there
is a problem, which is already apparent in Kaluza-Klein example above. The field 𝑟 is massless, hence it
should be observed in experiments.

For general compactifications the situation is similar (cf. Section 1.4.2). Some moduli fields will be
massless and thus should be observed. However, such massless scalars have not been seen in experiments.
Moreover, their vacuum expectation values are not determined, meaning they do not predict specific values
for physical quantities, e.g. coupling constants. Giving these fields a vacuum expectation value is known
as moduli stabilization and is an active research area.

ℝ1,3

ℳ5

𝑟
Moduli space ℝ+

Figure 1.2: On the left we see the five-dimensional spacetime as a collection of circles fibered over ℝ1,3.
On the right we see a trivial family of circles fibered above the moduli space, which consists of the radii
𝑟 > 0 in ℝ+. The moduli field 𝑟(𝑥𝜇)maps a point in ℝ1,3 to the corresponding radius in the moduli space
of the internal circle. Note, the point 𝑟 = 0 is not in the moduli space as it does not correspond to a
regular 𝑆1. In other words, it constitutes the boundary of the moduli space. Such boundary points play an
important role in asymptotic Hodge theory. Inspiration from [Li22, Sec. 1.2].

1.4.2 General Compactification
We would like to extend the Kaluza-Klein approach in Section 1.4.1 to the ten-dimensional superstring
theories from Section 1.2. Furthermore, by imposing properties on the residual four-dimensional theory
we will see how the internal manifold is restricted. For example, we already saw 𝑋6 must be a Riemannian
manifold. Eventually, we will focus on type IIB and see moduli fields emerging that parameterize complex
structure deformations, which will be extensively studied in Chapter 2. As a reference, we used [BLT12,
Sec. 14.3].
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Geometry of InternalManifold

As before, we start we a ten-dimensional spacetime that is a product:

ℳ10 = ℳ4 × 𝑋6.

Moreover, we impose minimal supersymmetry, i.e. 𝒩 = 1, in the four-dimensional theory. The reason for
this is that supersymmetry is a tool that can solve incompletenesses in the Standard Model. Moreover, one
requires minimal supersymmetry to have chiral matter. Theories with too much supersymmetry cannot
have chiral matter. Since all the matter we observe is chiral, such theories are unrealistic.

Unbroken supersymmetry requires that the vacuum is preserved. This implies5 that the expectation
value of a generic field Φ, under the infinitesimal transformation, must vanish:

⟨𝛿Φ⟩ = 0.

A general feature from QFT is that the vacuum expectation value of any field other than a scalar must
vanish for the theory to be Lorentz invariant. In particular, if one considers a fermionic field Φ𝐹 , we must
have ⟨Φ𝐹⟩ = 0. Now, using supersymmetry, we see for a bosonic field Φ𝐵

⟨𝛿Φ𝐵⟩ ∼ ⟨Φ𝐹⟩ = 0.

Thus, the only non-trivial conditions can come from fermionic variations, as those could transform into
scalars under supersymmetry ([BBS06, Ch. 9]),

⟨𝛿Φ𝐹⟩ = 0. (1.10)

In particular, the above condition must hold for the gravitino 𝜓𝑀6. One can show it transforms as

𝛿𝜓𝑀 = ∇𝑀𝜖 + 𝜒,

with ⟨𝜒⟩ = 0. Here, the spinor 𝜖 is the infinitesimal parameter associated to the supersymmetry transfor-
mation. Furthermore, ∇ denotes the spin connection7 on ℳ10.

Now, condition (1.10) becomes

∇𝑀𝜖 ∶= ⟨∇𝑀𝜖⟩ = 0. (1.11)

Here, ∇ denotes the vacuum expectation value of the spin connection. Asℳ10 is a direct product, we can
decompose 𝜖 as follows

𝜖 = 𝜁 ⊗ 𝜂,

where 𝜁 and 𝜂 denote spinors on ℳ4 and 𝑋6, respectively. In particular, combining this with (1.11) yields

∇𝑚𝜂 = 0. (1.12)

Hence, the internal manifold 𝑋6 must have a global covariantly constant spinor. Such spinors are called
parallel spinors (or Killing spinors) and we have shown that their existence is a necessary condition for a
supersymmetric compactification.

5We leave out some details here, for a more complete argument we refer to [BLT12, Sec. 14.3].
6Here, capital letters are used for spacetime indices on ℳ10.
7This is the covariant derivative on spinors induced by the Levi-Civita connection. For more details see [Ham18, Sec. 6.10] or

[Joy00, Sec. 3.6.1].
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The existence of parallel spinors puts major restrictions on the type of manifolds we are allowed to pick
for 𝑋6. For example, it implies that 𝑋6 must be Ricci-flat (cf. [BLT12, Sec. 14.3]). Furthermore, to able
to talk about spinors in the first place, 𝑋6 must admit a so-called spin structure (see [Ham18, Sec. 6.9] for
details). This puts topological restrictions on 𝑋6. Indeed, the existence of a spin structure is equivalent to
𝑋6 being orientable and having a vanishing second Stiefel-Whitney class [Ham18, Thm. 6.9.7]. Moreover,
having a parallel spinor produces a differential condition. In particular, it constrains the holonomy group
of 𝑋6. For completeness, let us recall the definition of holonomy:

Definition 1.4.1.
Let 𝐸 → 𝑀 be a vector bundle equipped with a connection ∇. Then, the holonomy group Hol𝑥(∇) of
∇ based at 𝑥 is defined by

Hol𝑥(∇) ∶= {𝑃𝛾 ∣ 𝛾 piece-wise smooth loop based at 𝑥} ⊂ 𝐸𝑥.

Here 𝑃𝛾 ∶ 𝐸𝑥 → 𝐸𝑥 denotes the parallel transport along 𝛾.

When 𝑀 is connected, the holonomy groups at different base points are related through conjugation and
thus isomorphic [Joy00, Prop. 2.2.3]. Therefore, we omit the subscript and write Hol(∇) for the holonomy
group of ∇, in that case. Whenever, (𝑀, 𝑔) is a Riemannian manifold, we denote by Hol𝑥(𝑔) (or Hol(𝑔))
the holonomy group corresponding to the Levi-Civita connection on𝑀. The holonomy group is important
to determine parallel tensors, as can be seen in the following result ([Joy00, Prop. 2.5.2]):

Theorem 1.4.2 (Holonomy principle).
Let𝑀 be a connected manifold, 𝐸 → 𝑀 a vector bundle with connection ∇ and 𝑥 ∈ 𝑀. Then, there is a
one-to-one correspondence between

i) parallel sections of 𝐸

ii) Hol𝑥(∇)-invariant vectors in 𝐸𝑥
iii) sections of 𝐸, invariant under parallel transport

Now, we can apply this result to spinors on 𝑋6. As said before, 𝑋6 must admit a spin structure. This
implies the holonomy Hol𝑥(∇) of 𝑋6 is a subgroup of Spin(6). Here,∇ denotes the spin connection on 𝑋6
from (1.12). In six dimensions we have Spin(6) ≅ SU(4) and spinors have eight components. Moreover,
the spin representation decomposes into two irreducible representations of SU(4) of dimension four [Joy00,
Sec. 3.6.1], i.e.

8 = 4⊕ 4.

Here, 4 and 4 denote spinors of opposite chirality. Now, by the holonomy principle, a parallel spinor is
equivalent to a Hol𝑥(∇)-invariant spinor. The largest subgroup of SU(4) for which a spinor of definite
chirality can be invariant is SU(3) [BBS06, Sec. 9.4]. This is due to the fundamental representation 4 of
SU(4) decomposing under SU(3) as

4 = 3⊕ 1.

Here, 1 denotes a singlet and thus is invariant under SU(3). Hence, there exists a parallel spinor on
𝑋6 if and only if Hol𝑥(∇) ⊆ SU(3). In fact, having holonomy contained in SU(3) already implies the
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existence of a spin structure (cf. [Joy00, Cor. 3.6.3]). Therefore, we have residual supersymmetry upon
compactifying if and only if the holonomy of 𝑋6 is contained in SU(3).

It turns out we can take it one step further. If one assumes the holonomy to be strictly contained in
SU(3), i.e. Hol𝑥(∇) ⊆ SU(2), the resulting four-dimensional theories will not have minimal supersymme-
try [BLT12, Sec. 14.3]. Therefore, the internal manifold must have holonomy equal to SU(3). These are
particular complex manifolds8 known as Calabi-Yau manifolds and they play a big role in both geometry
as well as string theory. We will discuss the properties of Calabi-Yau manifolds in more detail in Chapter
2.

Effective Four-dimensionalTheory
We have seen that compactifying a ten-dimensional supersymmetric theory requires the internal manifold
to be a Calabi-Yau threefold. Now, we would like to proceed analogously to Section 1.4.1 and start with
an action and integrate out the internal manifold. For exhibition purposes, we restrict ourselves to the
effective type IIB theory given by (1.4). For this, we now assumeℳ10 = ℳ4×CY3 where CY3 denotes a
Calabi-Yau threefold. We will again see that the geometry of the internal manifold will enter the effective
four-dimensional theory. In this section we will only talk about some general features. For more details
we refer to [GL04].

Performing the compactification of type IIB results in a four-dimensional 𝒩 = 2 supergravity theory
[BBS06, Sec. 9.7]. Such theories have three types of supermultiplets: the gravity, vector and hypermulti-
plets. For our purposes, we focus on the gravity and vector multiplet sectors. Now, fixing the amount of
vector multiplets in the theory 𝑛𝑉 , the bosonic part of the four-dimensional 𝒩 = 2 supergravity is given
by [LV20]

𝑆 = ∫
ℳ4

1
2ℛ ⋆ 1 − 𝑔𝑖 ̄𝚥𝑑𝑧𝑖 ∧ ⋆𝑑 ̄𝑧 ̄𝚥 + 1

4 Im 𝒩𝐼𝐽𝐹𝐼 ∧ ⋆𝐹𝐽 +
1
4Re 𝒩𝐼𝐽𝐹𝐼 ∧ 𝐹𝐽 . (1.13)

Here, ⋆ denotes the Hodge star on ℳ4. Furthermore, 𝑧𝑖 with 𝑖 = 1,… , 𝑛𝑉 runs over the scalars in the
vector multiplet and 𝐹𝐼 with 𝐼 = 0,… , 𝑛𝑉 denote the field strengths of the gauge fields 𝐴𝐼 in the multiplet,
i.e. 𝐹𝐼 = 𝑑𝐴𝐼 . Moreover, the kinetic couplings 𝑔𝑖 ̄𝚥, Im 𝒩𝐼𝐽 and Re 𝒩𝐼𝐽 all depend on 𝑧𝑖, ̄𝑧𝑗 . The reason
why two of the couplings are related to a single kinetic matrix 𝒩𝐼𝐽 is important for string theory and is
related to ‘special geometry’ (see e.g. [Cra+97]). However, this goes beyond the scope of this work.

The important thing for us is how the action (1.13) is related to the geometry of the Calabi-Yau three-
fold. The dependence sits in the scalar fields 𝑧𝑖, ̄𝑧𝑗 . These fields are closely related to deformations of the
complex structure on CY3. Moreover, they are massless in the effective theory, as can be seen from (1.13).
Consequently, they are referred to as complex structure moduli. A change of complex structure may re-
sult in a different Calabi-Yau manifold. This is reminiscent of the fact we are not compactifying on a single
manifold, but on a family as seen in Section 1.4.1. The scalars 𝑧𝑖 span a space called the complex struc-
ture moduli space in which distinct points correspond to non-isomorphic Calabi-Yau manifolds. Hence,
understanding the complex structure moduli space of Calabi-Yau manifolds gives insight into the effective
four-dimensional physical theory. Describing this space is the topic of Chapter 2.

Besides motivating the study of the complex structure moduli space, some further remarks are in order.
Firstly, the number of vector multiplets 𝑛𝑉 is directly related to the topology of CY3, as 𝑛𝑉 = ℎ2,1.
Here ℎ2,1 denotes the dimension of the Dolbeault cohomology group 𝐻2,1(CY3). The appearance of this
particular cohomology group is not an coincidence, it is strongly related to the complex structure moduli

8We restricted ourselves to the three-dimensional case. In general it would be manifolds with holonomy equal to SU(𝑛). How-
ever, we would like to stress that multiple inequivalent definitions are used in the literature. See [Joy00, Sec. 6.1] for examples.
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space as we will discuss in the next chapter. Secondly, the kinetic couplings in (1.13) also have to do with
the geometric structure of CY3. They are related to so-called ‘periods’, which we will encounter later on.
For more background, see [GL04].

Finally, since the complex structure moduli are massless, the moduli stabilization problem is also rele-
vant in this case. In fact, this problem is a feature of generic Calabi-Yau string compactifications. One way
to produce a vacuum expectation value for the complex structure moduli is through flux compactification.
This is a procedure in which sources of stress-energy, called fluxes, are included in the compactification.
In this way, potentials for the moduli are obtained, making them massive. This is a very intricate subject,
which we will not discuss in detail here. We refer to [MQ23] for a nice review of the topic. Schematically,
the scalar potential coming from flux compactification has the following form

𝑉flux ∼ ∫
CY3

𝐺3 ∧ ⋆𝐺3
Im 𝜏 . (1.14)

Importantly, ⋆ here denotes the Hodge star on the internal manifold. Hence, the Hodge theory of CY3 is
important for the four-dimensional physics as well. Moreover, this Hodge structure on CY3 depends on
the complex structure. Thus, understanding how the Hodge structure varies, when deforming the complex
structure, is important for string compactifications. This is precisely what we will study in Chapter 3.



CHAPTER2
DeformationTheory

T ypically, in differential geometry people are interested in manifolds with additional (smooth)
geometric structures. Examples can be found in Riemannian geometry, symplectic geometry and
Poisson geometry. After defining the proper notion of a morphism in the appropriate setting a

natural question arises: which objects are isomorphic? Such a question of classification is studied in almost
all branches of mathematics.

Deformation theory tries to answer this classification question, at least locally, by starting with a par-
ticular geometric structure and trying to perturb it, while retaining the structure. Yet, many of the de-
formations could, in principle, be isomorphic. Hence, one should take the quotient under the action of
isomorphisms. The leads to the idea of a moduli space. Schematically, it is thus defined as

ℳ = Struc / Iso,

where Struc denotes the set of geometric structures of a particular type on a manifold. Moduli spaces
themselves are interesting geometric objects. For example, it was shown by Riemann himself that the set
of complex structures on a differentiable manifold admits a complex structure. A concept closely related
to moduli spaces is that of a Teichmüller space. It arises when the above quotient is restricted to the identity
component:

Teich = Struc / Iso0.

In a sense, one could view the Teichmüller space as the local moduli space. Consequently, studying the
Teichmüller space gives insights into the moduli space.

In this chapter we are interested in deformations of complex manifolds and the geometry of the cor-
responding Teichmüller/moduli space. Specifically, we prove the classical theorem of Kuranishi on ob-
structions to complex deformations. To do this, we first discuss some preliminaires on Hodge theory and
elliptic operator theory. Futhermore, we study the moduli space of a particular class of complex manifolds,
namely Calabi-Yau manifolds. In particular, we prove the Bogomolov-Tian-Todorov theorem that states
there are no obstructions to deformations on Calabi-Yau manifolds. We do this without the standard
power series argument, but with global methods following [LZ20].
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2.1 Mathematical Preliminaries

Motivated by string compactifications, we want to understand the structure of Calabi-Yau manifolds and
their deformations. To do this, we need to lay a mathematical foundation, which is done in this section.
First we introduce the appropriate notion of a complex manifold that lends itself nicely for deformations.
Then, we focus on properties of Kähler manifolds and in particular Calabi-Yau manifolds. One key prop-
erty of Kähler manifolds is the so-called Hodge decomposition theorem, which is at the heart of Hodge
theory. As this is such a fundamental theorem in this work, we will prove it in Section 2.1.4. For this we
need techniques from elliptic operator theory, which are introduced as well.

2.1.1 Complex Geometry
As mentioned above, Calabi-Yau manifolds are complex manifolds. Thus, it makes sense to first discuss
some properties of complex manifolds. However, we will be very brief in this section and only discuss the
relevant topics. For more background we refer to [Huy05], which is also our main reference.

Firstly, we would like to recall that a complex manifold is a differentiable manifold modelled on ℂ𝑛

such that the transition functions are holomorphic. Although this is a natural generalization from smooth
manifolds, it is not optimal for studying deformations. For, this we need a complex structure. To define it,
we first need the following concept:

Definition 2.1.1.
An almost complex structure on a smooth manifold 𝑋 is a bundle morphism

𝐽 ∶ 𝑇𝑋 → 𝑇𝑋, 𝐽2 = −id.

A manifold equipped with an almost complex structure is an almost complex manifold.

It is rather simple to see that every complex manifold carries an almost complex structure (cf. [Huy05,
Prop. 2.6.2]). However, the converse is not always true. To quantify this, we first need some machinery.

The existence of an almost complex structure 𝐽 on 𝑋 , induces a splitting of the complexification of the
tangent bundle 𝑇ℂ𝑋 = 𝑇𝑋 ⊗ ℂ:

𝑇ℂ𝑋 = 𝑇1,0𝑋 ⊕ 𝑇0,1𝑋, (2.1)

where 𝑇1,0𝑋 and 𝑇0,1𝑋 denote the +𝑖 and −𝑖 eigenspace of 𝐽, respectively1. Hence, we have

𝑇1,0𝑋 = 𝑇0,1𝑋. (2.2)

In the literature, 𝑇1,0𝑋 is referred to as the holomorphic tangent bundle. These subbundles yield an
equivalent definition of an almost complex structure, which is captured in the following proposition

Proposition 2.1.2.
An almost complex structure on a smooth manifold 𝑋 is completely determined by a subspace 𝐿 ⊂ 𝑇ℂ𝑋 such
that

𝑇ℂ𝑋 = 𝐿 + 𝐿, 𝐿 ∩ 𝐿 = 0.

1To be precise, we consider the ℂ-linear extension of 𝐽.
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Proof.— The proof is elementary linear algebra and is omitted here. ∎

One should think about the subbundle 𝐿 as the +𝑖-eigenspace of the almost complex structure. Note,
the space 𝐿 completely determines the almost complex structure, as well. Hence, there is an equivalent
proposition using 𝐿.

Moreover, the subbundles of 𝑇ℂ𝑋 appearing in (2.1) measure whether the almost complex structure
arises from complex coordinates on 𝑋 , meaning it is a complex manifold.

Definition 2.1.3.
We say an almost complex structure 𝐽 on𝑋 is integrable if it comes from complex coordinates. Furthermore,
we say an almost complex structure 𝐽 is infinitesimally integrable if 𝑇0,1𝑋 is involutive, i.e.

[𝑇0,1𝑋, 𝑇0,1𝑋] ⊂ 𝑇0,1𝑋.

Note, because of the relation stated in (2.2) we could equivalently have defined infinitesimal integrability
in terms of 𝑇1,0𝑋 .

The motivation for this definition lies in the fact that the distribution 𝑇0,1𝑋 is involutive when 𝑋
is complex (see [Cav22, Sec. 3.2]). However, involutivity is a infinitesimal condition and it is not clear
whether there are other obstructions for an almost complex structure to come from complex coordinates. It
turns out integrability is a necessary and sufficient condition, which is the result of the deep theorem:

Theorem 2.1.4 (Newlander-Nirenberg).
Any infinitesimally integrable almost complex structure is integrable.

Consequently, complex manifolds and infinitesimally integrable almost complex manifolds are the same
thing. From now on we fix a complex manifold 𝑋 with its induced integrable almost complex structure 𝐽,
which we call the complex structure.

The decomposition (2.2) induces a decomposition of complex differential forms into so-called (𝑝, 𝑞)-
forms

Ω𝑘
ℂ(𝑋) = ⨁

𝑝+𝑞=𝑘
Ω𝑝,𝑞(𝑋), (2.3)

where

Ω𝑝,𝑞(𝑋) = Γ(
𝑝

⋀(𝑇1,0𝑋)∗ ⊗ℂ

𝑞

⋀(𝑇0,1𝑋)∗).

The bundle on the right is usually denoted by

𝑝,𝑞

⋀𝑋 ∶=
𝑝

⋀(𝑇1,0𝑋)∗ ⊗ℂ

𝑞

⋀(𝑇0,1𝑋)∗.

The exterior derivative 𝑑 on 𝑋 behaves nicely with respect to the decomposition (2.3). Indeed, if we
define

𝜕 ∶= 𝜋𝑝+1,𝑞 ∘ 𝑑 ∶ Ω𝑝,𝑞(𝑋) → Ω𝑝+1,𝑞(𝑋), ̄𝜕 ∶= 𝜋𝑝,𝑞+1 ∘ 𝑑 ∶ Ω𝑝,𝑞(𝑋) → Ω𝑝,𝑞+1(𝑋)

we have the following properties
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Proposition 2.1.5.
Let 𝑋 be a complex manifold. Then, we have

i) 𝑑 = 𝜕 + ̄𝜕

ii) 𝜕2 = 0 and ̄𝜕2 = 0

iii) 𝜕 ̄𝜕 + ̄𝜕𝜕 = 0

Proof.— For the first property, we refer to [Huy05, Prop. 2.6.15]. The last two follow directly from 𝑑2 = 0
and property 𝑖):

0 = 𝑑2

= (𝜕 + ̄𝜕)(𝜕 + ̄𝜕)
= 𝜕2 + ̄𝜕2 + 𝜕 ̄𝜕 + ̄𝜕𝜕.

Since, 𝜕2, ̄𝜕2 and 𝜕 ̄𝜕 + ̄𝜕𝜕 all land in different spaces, they should individually vanish. This proves the
claim. ∎

By property 𝑖𝑖) in the above proposition, it makes sense to define the corresponding cohomology. Typically,
people are interested in the ̄𝜕-cohomology.

Definition 2.1.6.
The Dolbeault cohomology of a complex manifold 𝑋 is defined by

𝐻𝑝,𝑞(𝑋) = ker ( ̄𝜕 ∶ Ω𝑝,𝑞(𝑋) → Ω𝑝,𝑞+1(𝑋))
im ( ̄𝜕 ∶ Ω𝑝,𝑞−1(𝑋) → Ω𝑝,𝑞(𝑋))

.

The dimensions of the Dolbeault cohomology groups ℎ𝑝,𝑞 ∶= dim𝐻𝑝,𝑞(𝑋) are known asHodgenumbers.
Now, one could wonder whether the decomposition (2.3) descends to de Rham cohomology, where

the (𝑝, 𝑞)-forms are replaced by the corresponding classes in Dolbeault cohomology. It turns out this is
not true in general. However, for a special kind of (compact) complex manifolds, called Kähler manifolds,
it is true. The corresponding decomposition of de Rham cohomology is known as a Hodge structure and
these play a central role in this work.

2.1.2 Kähler Geometry
We already hinted towards special properties of particular manifolds, called Kähler manifolds. In this
section we define the notion of a Kähler manifold and work our way to the Hodge decomposition theorem.
Finally, we encounter our first example of a Hodge structure and make some remarks about Calabi-Yau
manifolds.

Kähler manifolds are right in the middle of the triple intersection between complex, Riemannian and
symplectic geometry. Hence, they found their way into many applications in different areas of geometry.
To define it, let us fix a complex manifold 𝑋 with complex structure 𝐽.



2.1. Mathematical Preliminaries 17

Definition 2.1.7.
A Riemannian metric 𝑔 on 𝑋 is called a Hermitian structure if the complex structure 𝐽 is an orthogo-
nal transformation with respect to 𝑔, i.e. 𝑔(𝐽⋅, 𝐽⋅) = 𝑔(⋅, ⋅). The triple (𝑋, 𝐽, 𝑔) then is referred to as a
Hermitian manifold. The induced real (1, 1)-form 𝜔 ∶= 𝑔(𝐽⋅, ⋅) is called the fundamental form.

A Kähler manifold is a Hermitian manifold (𝑋, 𝐽, 𝑔) such that the fundamental form is closed, i.e.
𝑑𝜔 = 0.

From this definition it is clear that a Kähler manifold is a complex, symplectic and Riemannian manifold.
Moreover, when (𝑋, 𝐽, 𝑔) is Kähler the fundamental form is referred to as the Kähler form and 𝑔 is called
the Kähler metric. Examples of Kähler manifolds are the complex Euclidean space ℂ𝑛, Riemann surfaces
and complex projective space.

However, the most important class of examples to us is one we already encountered: Calabi-Yau’s. At
this stage we can refine our previous definition from Section 1.4.2.

Definition 2.1.8.
A Calabi-Yau manfiold is a compact Kähler manifold (𝑀, 𝐽, 𝑔) with Hol(𝑋) ∶= Hol(𝑔) = SU(𝑛).

Furthermore, originally we defined a Calabi-Yau in terms of the holonomy of the spin connection. How-
ever, as SU(𝑛) is simply connected they yield the same holonomy [Joy00, Sec. 3.6.2]. We would like to
emphasize that the Kähler condition in the above definition is redundant. This is due to the fact that
SU(𝑛) ⊂ U(𝑛) and the holonomy group being contained in U(𝑛) implies admission of a Kähler structure
(cf. [Joy00, Prop. 4.4.2]). Moreover, the structure can be directly computed from the parallel spinor, as is
done in [BBS06, Sec. 9.4].

Once again, we stress that various (in-)equivalent definitions are used in the literature. Our definition
has some interesting implications that are very useful for our purposes:

Proposition 2.1.9.
Let 𝑋 be a Calabi-Yau 𝑛-fold. Then,

i) The canonical bundle 𝐾𝑋 ∶= ⋀𝑛,0 𝑇∗𝑋 of 𝑋 is trivial as a holomorphic line bundle

ii) 𝑋 admits a global non-vanishing holomorphic (𝑛, 0)-formΩ

iii) The first Chern class of 𝑋 vanishes, i.e. 𝑐1(𝑋) = 0

iv) 𝑋 admits a unique Ricci-flat Kähler metric

Proof.— Wewill sketch the idea of the proof following [Joy00, Sec. 6.1]. First, note the first two assertions
are equivalent. We will focus on the second one. Locally, one defines

Ω = 𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑛.

Note, this defines non-vanishing a (𝑛, 0)-form that, which furthermore is holomorphic. Now, the group
SU(𝑛) preserves Ω. Since Hol(𝑋) = SU(𝑛), we can extend Ω to a well-defined global form, through par-
allel transport. In this way,Ω will be non-vanishing and holomorphic everywhere. Hence, we constructed
a global holomoprhic non-vanishing (𝑛, 0)-form on 𝑋 . This proves assertions 𝑖) and 𝑖𝑖).

For the third assertion, recall that the first Chern class of a manifold is given by the first Chern class of
its tangent bundle. Furthermore, the first Chern class of a vector bundle is equal to that of its determinant
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bundle. Combining this, we find

𝑐1(𝑋) = 𝑐1(𝑇𝑋) = 𝑐1(det 𝑇𝑋) = 𝑐1(
𝑛,0

⋀𝑇𝑋) = 𝑐1(𝐾𝑋) = −𝑐1(𝐾𝑋).

We already showed 𝐾𝑋 to be trivial, meaning 𝑐1(𝐾𝑋) = 0. Hence, we conclude 𝑐1(𝑋) = 0.
Finally, the fourth condition is a direct consequence of the famous Yau’s theorem, which we do not

cover here. For more background, we refer to [Joy00, Ch. 5-6]. ∎

Now, we would like to work towards the Hodge decomposition theorem. For this, we introduce two
operators that will play an important role, using the structure present on a Kähler manifold2 (𝑋, 𝐽, 𝑔).
Firstly, the Lefschetz operator

𝐿 ∶ Ω𝑘(𝑋) → Ω𝑘+2(𝑋), 𝛼 ↦ 𝛼 ∧ 𝜔.

Secondly, using the natural orientation on 𝑋 together with the metric 𝑔, we get an induced Hodge ⋆-
operator

⋆ ∶ Ω𝑘(𝑋) → Ω2𝑛−𝑘(𝑋).

Here, 2𝑛 denotes the real dimension of 𝑋 .
In particular, when 𝑋 is compact we can define an 𝐿2-metric on the space of complex forms Ω𝑘

ℂ(𝑋),
using the Hodge star. It is given by (cf. [WG07, Sec. 5.2])

(𝛼, 𝛽)𝐿2 = ∫
𝑋
𝛼 ∧ ⋆𝛽. (2.4)

Given this inner product, we can look for formal adjoints of the differential operators 𝑑, 𝜕 and ̄𝜕. If we
restrict ourselves to the exterior derivative, by formal adjoint we mean an operator 𝑑∗ satisfying

(𝑑𝛼, 𝛽)𝐿2 = (𝛼, 𝑑∗𝛽)𝐿2 .

By integration by parts, one rather straightforwardly finds [Huy05, Lem. 3.2.3]

Proposition 2.1.10.
Let 𝑋 be a compact Kähler manifold. Then,

𝑑∗ = − ⋆ ∘ 𝑑 ∘ ⋆, 𝜕∗ = − ⋆ ∘ 𝜕 ∘ ⋆, ̄𝜕∗ = − ⋆ ∘ ̄𝜕 ∘ ⋆.

To arrive at the decomposition theorem, we need some machinery from analysis. In particular, we need
the theory of elliptic operators. We will introduce this subject and state the relevant results in the next
section.

2.1.3 Elliptic Operators
Within differential geometry, one encounters various differential operators such as the exterior derivative
and connections. A special kind of differential operators are those that are elliptic. They have very nice
properties that can be used in geometry, functional analysis and partial differential equations. In this

2Actually, one only needs a Hermitian manifold. Yet, we would like to restrict ourselves to Kähler manifolds.
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section we will introduce these operators and state the properties of interest. In particular, we will focus
on linear differential operators. Our exhibition will be quite dense, so for a more detailed description we
refer to [WG07, Ch. 4] or [Cav22, Ch. 9].

Before we give the definition, let us introduce some notation. Let 𝑋 be a compact 𝑛-dimensional
manifold. Then, a multi-index 𝛼 is a collection (𝛼1,… , 𝛼𝑛) ∈ ℕ𝑛. Furthermore, if 𝑥 = (𝑥1,… , 𝑥𝑛)
denote local coordinates on 𝑋 , we define 𝜕𝛼 = 𝜕𝛼1𝑥1 ⋯𝜕𝛼𝑛𝑥𝑛 with 𝛼 a multi-index. Now we can state the
definition.

Definition 2.1.11.
Let 𝐸, 𝐹 → 𝑋 be vector bundles of rank 𝑝, 𝑞, respectively. We say a map 𝐷 ∶ Γ(𝐸) → Γ(𝐹) is a linear
differential operator if for any choice of local coordinates and local trivializations there exists a linear
partial differential operator 𝐷, such that for 𝑠 = (𝑠1,… , 𝑠𝑝) ∈ Γ(𝐸|𝑈)

𝐷(𝑠)𝑖 =
𝑝
∑
𝑗=1,
|𝛼|≤𝑘

𝐶𝛼,𝑖𝑗(𝑥)𝜕𝛼𝑠𝑗 .

Adifferential operator is said to be of order𝑘 if there are no derivatives of order≥ 𝑘+1 in the local represen-
tation. We denote the space of linear differential operators Γ(𝐸) → Γ(𝐹) of order 𝑘 by Diff𝑘(𝐸, 𝐹).

Example 2.1.12.
Linear differential operators Γ(𝐸) → Γ(𝐹) of order zero are tensors. Furthermore, the operators
𝑑, 𝜕, ̄𝜕 are linear differential operators of order 1. ♦

Now, we would like a tool to classify differential operators. Note, the order of a differential operator is
defined by the highest degree derivative in its local expression. However, the explicit form of this highest
order term is highly dependent on the coordinates. Hence, we want to construct an invariant object. A
naive idea would be to consider differential operators of order precisely 𝑘, i.e. only derivatives of degree 𝑘
in the local expression. Unfortunately, these do not exist, as a change in coordinates may introduce lower
degree derivatives. This can be nicely seen when we consider the Laplacian △ on ℝ2 and rewrite it in
polar coordinates:

△= 𝜕2
𝜕𝑥2 +

𝜕2
𝜕𝑦2

polar
ÐÐÐÐÐ→
coordinates

𝜕2
𝜕𝑟2 +

1
𝑟2

𝜕2
𝜕𝜃2 +

1
𝑟
𝜕
𝜕𝑟 .

However, the degree two part on the right-hand-side is precisely how 𝜕2𝑥 + 𝜕2𝑦 would transform when
viewed as an element in Sym2𝑇ℝ2. Moreover, the highest degree part should send vectors from 𝐸 to 𝐹.
Hence, our invariant object corresponding to a differential operator 𝐷 of order 𝑘 is the associated element

𝜎(𝐷) ∈ Sym𝑘𝑇𝑋 ⊗Hom(𝐸, 𝐹).

Or equivalently, by Serre-Swan, as a symmetric map

𝜎(𝐷) ∶ Sym𝑘𝑇∗𝑋 → Hom(𝐸, 𝐹).

As symmetric maps are fully determined by their value on the diagonal, we may view 𝜎(𝐷) as a map
𝑇∗𝑋 → Hom(𝐸, 𝐹). This leads to the definition (cf. [Cav22, Def. 9.6]).
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Definition 2.1.13.
Let 𝐷 be a differential operator of order 𝑘. The principal symbol of 𝐷 is defined as

𝜎(𝐷) ∶ 𝑇∗𝑋 × 𝐸 → 𝐹, 𝜎(𝐷)|𝑥(𝜉, 𝑣) ∶= 𝐷(𝑓𝑘𝑠)|𝑥,

where 𝑓 ∈ 𝐶∞(𝑋) is any function such that 𝑓(𝑥) = 0 and (𝑑𝑓)𝑥 = 𝜉 and 𝑠 ∈ Γ(𝐸) any section such
that 𝑠(𝑥) = 𝑣.

It can easily be shown that the above definition is independent of choices. Moreover, the principal symbol
will reproduce the highest degree part of𝐷 because the only non-vanishing term at 𝑥 will be the one where
all the derivatives act on 𝑓, since 𝑓(𝑥) = 0.

The principal symbol allows us to define a particular class of differential operators.

Definition 2.1.14.
A linear differential operator of order 𝑘 𝐷 ∶ Γ(𝐸) → Γ(𝐹) is elliptic if for any 𝑥 ∈ 𝑋, 𝜉 ∈ 𝑇∗𝑥 𝑋 ⧵ {0},
the linear map

𝜎(𝐷)|𝑥(𝜉, ⋅) ∶ 𝐸𝑥 → 𝐹𝑥

is an isomorphism.

One could wonder about examples of elliptic operators. For this, we again consider the exterior derivative
𝑑. Its principal symbol can be easily computed and is given by 𝜎(𝑑)(𝜉, ⋅) = 𝜉 ∧ ⋅ (see [WG07, p. 117]).
However, this is typically not an isomorphism. Similar results hold true for 𝜕 and ̄𝜕, meaning that none
of them are elliptic.

To construct elliptic operators, we consider a family of differential operators. Let {𝐸𝑖} be a collection
of vector bundles over 𝑋 and {𝐷𝑖} a collection of linear differential operators of order 𝑘, that fit into the
following sequence

⋯→ Γ(𝐸𝑖−1)
𝐷𝑖−1ÐÐ→ Γ(𝐸𝑖)

𝐷𝑖Ð→ Γ(𝐸𝑖+1) → ⋯ . (2.5)

Associated to this sequence, we obtain for every 𝑥 ∈ 𝑋, 𝜉 ∈ 𝑇∗𝑥 𝑋 ⧵ {0} a symbol sequence

⋯→ 𝐸𝑖−1|𝑥
𝜎(𝐷𝑖−1)(𝜉,⋅)ÐÐÐÐÐÐ→ 𝐸𝑖|𝑥

𝜎(𝐷𝑖)(𝜉,⋅)ÐÐÐÐÐ→ 𝐸𝑖+1|𝑥 →⋯.

Definition 2.1.15.
The sequence (2.5) is called an elliptic complex if it is a complex, i.e. 𝐷𝑖 ∘ 𝐷𝑖−1 = 0, and the associated
symbol complex is exact.

If (2.5) is an elliptic complex, we can focus at 𝐸𝑖. At Γ(𝐸𝑖) we can define the self-adjoint operator

△𝐷 ∶= 𝐷∗
𝑖 𝐷𝑖 + 𝐷𝑖−1𝐷∗

𝑖−1, (2.6)

where 𝐷∗
𝑖 denotes the formal adjoint with respect to an 𝐿2-inner product similar to (2.4), denoted by (⋅, ⋅).

These Laplacians turn out to be elliptic [WG07, Sec. 4.5]:
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Proposition 2.1.16.
Let (2.5) be an elliptic complex of Hermitian vector bundles. Then, the operator△𝐷 is elliptic.

Proof.— To see △𝐷 is elliptic, we must compute its symbol. By the properties of the symbol, we have

𝜎(△𝐷) = 𝜎(𝐷∗
𝑖 ) ∘ 𝜎(𝐷𝑖) + 𝜎(𝐷𝑖−1) ∘ 𝜎(𝐷∗

𝑖−1) = 𝜎(𝐷𝑖)∗ ∘ 𝜎(𝐷𝑖) + 𝜎(𝐷𝑖−1) ∘ 𝜎(𝐷𝑖−1)∗.

As this should be pointwise an isomorphism, for △𝐷 to be elliptic, the problem reduces to linear algebra.
Suppose the following sequence between vector spaces of equal dimension

𝑉 𝑖−1
𝐴𝑖−1ÐÐ→ 𝑉 𝑖

𝐴𝑖Ð→ 𝑉 𝑖+1

is exact at 𝑉 𝑖 and let 𝑣 ∈ ker(𝐴∗
𝑖 𝐴𝑖 + 𝐴𝑖−1𝐴∗

𝑖−1). Then,

0 = ((𝐴∗
𝑖 𝐴𝑖 + 𝐴𝑖−1𝐴∗

𝑖−1)𝑣, 𝑣) = ‖𝐴𝑖𝑣‖2 + ‖𝐴∗
𝑖−1‖2. (2.7)

Thus,𝐴𝑖𝑣 = 0 and𝐴∗
𝑖−1𝑣 = 0. The former implies 𝑣 = 𝐴𝑖−1𝑤 for some𝑤 ∈ 𝐴𝑖−1, by exactness. Analogous

to (2.7), we see ‖𝐴𝑖𝑤‖ = ‖𝑣‖ = 0. This implies 𝑣 = 0, proving that 𝐴∗
𝑖 𝐴𝑖+𝐴𝑖−1𝐴∗

𝑖−1 is an isomorphism.∎

By this proposition, we obtain multiple elliptic operators.

Example 2.1.17.
i) Consider the de Rham complex

Ω0(𝑋) 𝑑
Ð→ Ω1(𝑋) 𝑑

Ð→ Ω2(𝑋) → ⋯ .

We mentioned the symbol is given by 𝜎(𝑑)(𝜉, ⋅) = 𝜉 ∧ ⋅. One can show, given this symbol, that
the associated symbol sequence is exact. Hence, the Laplacian △𝑑 = 𝑑∗𝑑 + 𝑑𝑑∗ is elliptic.

ii) Consider the Dolbeault complex

Ω𝑝,0(𝑋)
̄𝜕
Ð→ Ω𝑝,1(𝑋)

̄𝜕
Ð→ Ω𝑝,2(𝑋) → ⋯ .

Since ̄𝜕 is the projection onto the anti-holomorphic part, it is straightforward to see the symbol
is given by 𝜎( ̄𝜕)(𝜉, ⋅) = 𝜉0,1 ∧ ⋅. Again, it turns out the associated symbol sequence is exact,
meaning △ ̄𝜕 = ̄𝜕∗ ̄𝜕 + ̄𝜕 ̄𝜕∗ is elliptic. Completely analogous, it follows △𝜕 = 𝜕∗𝜕 + 𝜕𝜕∗ is
elliptic as well. ♦

Typically, people drop the subscripts on the differential operators in the elliptic complex (2.5) and replace
it with a single symbol 𝐷, like the example above. From the context it should be clear which operator to
apply. We will use this convention as well.

Elliptic operators associated to elliptic complexes are closely related to the cohomology of the complex.
Let us study this relation. For this, we consider an elliptic complex (2.5) of Hermitian vector bundles with
associated Laplacian (2.6). Letℋ𝐷 ∶= ker△𝐷 denote the space of harmonic sections. This space plays
a central role.
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Proposition 2.1.18.
Let (2.5) be an elliptic complex of Hermitian vector bundles on a compact manifold. Then,

i) A section 𝑠 ∈ Γ(𝐸𝑖) is harmonic if and only if 𝐷𝑠 = 0 and 𝐷∗𝑠 = 0

ii) The spacesℋ𝐷, im(𝐷) and im(𝐷)∗ are orthogonal w.r.t. (⋅, ⋅)

iii) ker(𝐷) is orthogonal to im(𝐷∗)

iv) ker(𝐷∗) is orthogonal to im(𝐷)

Proof.— i) Let 𝑠 ∈ Γ(𝐸𝑖) be a section. If 𝐷𝑠 = 0 and 𝐷∗𝑠 = 0, then
△𝐷𝑠 = (𝐷∗𝐷 + 𝐷𝐷∗)𝑠 = 0.

Therefore, 𝑠 ∈ ℋ𝐷. Conversely, if 𝑠 ∈ ℋ𝐷, we have

0 = (△𝐷𝑠, 𝑠) = ((𝐷∗𝐷 + 𝐷𝐷∗)𝑠, 𝑠) = ‖𝐷𝑠‖2 + ‖𝐷∗𝑠‖2.
Since the right-hand-side is positive, both norms should vanish independently. Consequently,𝐷𝑠 = 0
and 𝐷∗𝑠 = 0.

ii) For 𝑠 ∈ ℋ𝐷 and 𝐷𝑡 ∈ im(𝐷), we see using 𝑖)
(𝑠, 𝐷𝑡) = (𝐷∗𝑠, 𝑡) = 0.

Analogously, it follows that ℋ𝒟 ⟂ im(𝐷∗). Finally, for 𝐷∗𝑠 ∈ im(𝐷∗) and 𝐷𝑡 ∈ im(𝐷) we see

(𝐷∗𝑠, 𝐷𝑡) = (𝑠, 𝐷2𝑡) = 0.

iii) This follows directly from the properties of formal adjoints. Indeed, for 𝑠 ∈ ker(𝐷) and𝐷∗𝑡 ∈ im(𝐷∗)
we have

(𝑠, 𝐷∗𝑡) = (𝐷𝑠, 𝑡) = 0.

iv) Analogous to 𝑖𝑖𝑖). ∎

The main result in elliptic operator theory is the following [WG07, Thm. 4.4.12]

Theorem 2.1.19.
Let 𝐸 → 𝑀 be an Hermitian vector bundle and△ ∶ Γ(𝐸) → Γ(𝐸) a self-adjoint elliptic operator. Then,
there exists a linear mapping

𝐺 ∶ Γ(𝐸) → Γ(𝐸)

such that

i) 𝐺 is self-adjoint such that ker𝐺 = ker△,△𝐺 = 𝐺△ and

id =△𝐺 +ℍ = 𝐺△+ℍ,

where ℍ denotes the orthogonal projection ontoℋ△.

ii) There is an orthogonal decomposition Γ(𝐸) = ℋ△ ⊕ im(△)
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iii) dimℋ△ < ∞

Typically, the mapping 𝐺 is called Green’s operator. In the case of 𝑝-forms, the above theorem was first
proved by Hodge. It has some interesting consequences when applied to elliptic complexes (cf. [WG07,
Thm. 4.5.2], [Cav22, Cor. 9.18]).

Corollary 2.1.20.
Let

⋯ Ð→ Γ(𝐸𝑖−1)
𝐷
Ð→ Γ(𝐸𝑖)

𝐷
Ð→ Γ(𝐸𝑖+1) Ð→⋯

be an ellipic complex of Hermitian bundles. Then,

i) There is an orthogonal decomposition

Γ(𝐸𝑖) = ℋ△𝐷 ⊕ im(𝐷∗) ⊕ im(𝐷)

ii) 𝐷 and 𝐷∗ commute with 𝐺

iii) ker(𝐷) = im(𝐷) ⊕ℋ△𝐷 and the projection ker(𝐷) → ℋ△𝐷 induces an isomorphism

ℋ𝑘
△𝐷

≅ 𝐻𝑘
𝐷 = ker(𝐷 ∶ Γ(𝐸𝑘) → Γ(𝐸𝑘+1))

im(𝐷 ∶ Γ(𝐸𝑘−1) → Γ(𝐸𝑘))
.

In particular, 𝐻𝑘
𝐷 is finite-dimensional.

Proof.— i) Note, by Theorem 2.1.19 𝑖) we have

𝑠 = (△𝐺 + ℍ)𝑠 = ℍ𝑠 + 𝐷∗(𝐷𝐺𝑠) + 𝐷(𝐷∗𝐺𝑠).
Hence, we have

Γ(𝐸𝑖) = ℋ△𝐷 + im(𝐷∗) + im(𝐷).
In Proposition 2.1.18 we already showed these spaces to be orthogonal. This proves the first assertion.

ii) Let us show𝐷𝐺 = 𝐺𝐷, as the other claim is analogous. Note, both𝐷 and𝐺 vanish onℋ△𝐷 by 2.1.18
and 2.1.19, respectively. Hence, it suffices to show the claim on ℋ⟂

△𝐷
= im(△𝐷). For 𝑠 ∈ Γ(𝐸𝑖),

we see by 2.1.19 𝑖)
𝐷𝐺△𝐷𝑠 − 𝐺𝐷△𝐷𝑠 = 𝐷(id − ℍ)𝑠 − 𝐺𝐷𝐷∗𝐷𝑠

= 𝐷𝑠 − 𝐺𝐷𝐷∗𝐷𝑠
= 𝐷𝑠 − 𝐺△𝐷𝐷𝑠
= 𝐷𝑠 − (id − ℍ)𝐷𝑠
= 𝐷𝑠 − 𝐷𝑠
= 0.

Here, we usedℍ𝐷 = 0. Indeed, sinceℍ is an orthogonal projection in a Hilbert space it is self-adjoint,
thus

(ℍ𝐷𝑠, 𝑡) = (𝐷𝑠, ℍ𝑡) = 0
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for every 𝑠, 𝑡 ∈ Γ(𝐸𝑖). Here we applied the orthogonality from 2.1.18 𝑖𝑖).

iii) By Proposition 2.1.18 we know ker(𝐷) is orthogonal to im(𝐷∗) and thus must lie in ℋ△𝐷 ⊕ im(𝐷).
On the other hand, any element inℋ△𝐷 ⊕ im(𝐷) is annihilated by 𝐷, as 𝐷2 = 0 and by Proposition
2.1.18. Hence, ker(𝐷) = im(𝐷) ⊕ ℋ△𝐷 . Clearly, the projection 𝜋 ∶ ker(𝐷) → ℋ△𝐷 is surjective
and ker(𝜋) = im(𝐷). Hence in degree 𝑘, by the first isomorphism theorem, 𝜋 descends to a linear
isomorphism

𝜋 ∶ ker(𝐷)/ im(𝐷) = 𝐻𝑘
𝐷

∼
Ð→ℋ𝑘

△𝐷
. ∎

This concludes our discussion on elliptic operators. In the next section we will apply the above results to
the elliptic complexes corresponding to 𝑑 and ̄𝜕.

2.1.4 HodgeDecompositionTheorem
The machinery developed in the previous section on elliptic operator theory has deep consequences when
we apply them to compact Kähler manifolds. This is what we will do in this section. Recall, on a compact
Kähler we have three differential operators, namely 𝑑, 𝜕, ̄𝜕. In the previous section we discussed that their
corresponding complexes were elliptic, making the Laplacians △𝑑,△𝜕 and △ ̄𝜕 elliptic. It turns out it
is possible to connect these Laplacians on compact Kähler manifolds. Note, for 𝑑 and ̄𝜕 the cohomology
associated to the elliptic complexes are precisely the de Rham and Dolbeault cohomology, respectively.

The precise connection between the Laplacians is the content of Hodge’s theorem

Theorem 2.1.21 (Hodge).
Let (𝑋, 𝐽, 𝑔) be a compact Kähler manifold. Then,

△𝑑 = 2△𝜕 = 2△ ̄𝜕.

Moreover,△ commutes with ⋆, 𝜕, ̄𝜕, 𝜕∗, ̄𝜕∗, 𝐿.

Proof.— The proof relies on numerous identities between the operators at play and is not that insightful,
Consequently, we ommit it here and refer to [Huy05, Prop. 3.1.12]. ∎

A direct consequence of this result is our sought-after Hodge decomposition theorem

Corollary 2.1.22 (Hodge decomposition).
If (𝑋, 𝐽, 𝑔) is a compact Kähler manifold, we have

𝐻𝑘(𝑋, ℂ) = ⨁
𝑘=𝑝+𝑞

𝐻𝑝,𝑞(𝑋), 𝐻𝑝,𝑞(𝑋) = 𝐻𝑞,𝑝(𝑋).

Proof.— By Corollary 2.1.20 it suffices to show the decomposition at the level of harmonic forms:

ℋ𝑘
△𝑑

= ⨁
𝑝+𝑞=𝑘

ℋ𝑝,𝑞
△ ̄𝜕

.

Let 𝛼 be 𝑑-harmonic, i.e. △𝑑𝛼 = 0. By Hodge’s theorem we have △ ̄𝜕𝛼 = 0. By the decomposition of
forms (2.3), we can write 𝛼 = 𝛼𝑘,0 +⋯ + 𝛼0,𝑘. Since △ ̄𝜕 respects the (𝑝, 𝑞)-grading, we see △ ̄𝜕𝛼 = 0
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implies △ ̄𝜕𝛼𝑘,0 = ⋯ = △ ̄𝜕𝛼0,𝑘 = 0. This proves one inclusion. For the other inclusion, let 𝛼 =
𝛼𝑘,0 + ⋯ + 𝛼0,𝑘 be the sum of ̄𝜕-harmonic (𝑝, 𝑞)-forms such that 𝑝 + 𝑞 = 𝑘. In particular, △ ̄𝜕𝛼 = 0.
Now, again by Hodge’s theorem we see △𝑑𝛼 = 0, meaing 𝛼 is 𝑑-harmonic.

For the final claim, note Hodge’s theorem implies △ ̄𝜕 is a real operator, as △𝑑 is real. Combining
this with the fact that conjugation yields an isomorphism Ω𝑝,𝑞(𝑋) → Ω𝑞,𝑝(𝑋) completes the proof. ∎

The fact that de Rham cohomology of compact Kähler manifolds admit such a nice decomposition is very
useful and is the primary example of a pure Hodge structure. We will study those in more detail in Chapter
3. Interestingly, the Hodge decomposition does not depend on the Kähler structure [Huy05, Cor. 3.2.12].
Hence, it is solely connected to the complex structure. Moreover, the decomposition may vary whenever
the complex structure is deformed. This is known as variation of Hodge structure and we study this in
Section 3.3.

There is even more structure at the level of cohomology. To make it apparent, we should not work with
the full cohomology group 𝐻𝑘(𝑋, ℂ), as it is too large. This leads to the concept of primitive cohomology.
To define it, let us fix a compact Kähler manifold (𝑋, 𝐽, 𝑔) of complex dimension 𝑛 with Kähler form 𝜔.
Furthermore, recall the Lefschetz operator from Section 2.1.2. It descends to cohomology

𝐿 ∶ 𝐻𝑘(𝑋, ℂ) → 𝐻𝑘+2(𝑋, ℂ),
[𝛼] ↦ [𝛼 ∧ 𝜔].

Note, this only depends on the Kähler class [𝜔]. Now, the 𝑘th primitive cohomology group is defined by

𝐻𝑘
p (𝑋, ℂ) ∶= ker(𝐿𝑛−𝑘+1 ∶ 𝐻𝑘(𝑋, ℂ) → 𝐻2𝑛−𝑘+2(𝑋, ℂ)).

Since the primitive cohomology groups sit inside 𝐻𝑘(𝑋, ℂ), we get an induced decomposition

𝐻𝑘
p (𝑋, ℂ) = ⨁

𝑝+𝑞=𝑘
𝐻𝑝,𝑞

p (𝑋). (2.8)

Here, we defined𝐻𝑝,𝑞
p (𝑋) ∶= 𝐻𝑝,𝑞(𝑋)∩𝐻𝑘

p (𝑋, ℂ). However, the decomposition of primitive cohomology
groups comes with additional structure, absent in the original decomposition: it admits a polarization. This
is a bilinear form on 𝐻𝑘(𝑋, ℂ) given by (cf. [Voi02, Sec. 6.3.2])

𝑆([𝛼], [𝛽]) = (−1)
𝑘(𝑘−1)

2 ∫
𝑋
𝜔𝑛−𝑘 ∧ 𝛼 ∧ 𝛽 (2.9)

when restricted to 𝐻𝑘
p (𝑋, ℂ) satisfies [WG07, Thm. 5.6.3]

Proposition 2.1.23.
The bilinear form in (2.9) satisfies

i) 𝑆([𝛼], [𝛽]) = (−1)𝑘𝑆([𝛼], [𝛽])

ii) 𝑆(𝐻𝑝,𝑞
p , 𝐻𝑟,𝑠

p ) = 0 for (𝑝, 𝑞) ≠ (𝑠, 𝑟)

iii) 𝑖𝑝−𝑞𝑆(𝐻𝑝,𝑞
p , 𝐻𝑝,𝑞

p ) > 0

The decomposition (2.8) combined with the bilinear form (2.9) gives𝐻𝑝
p (𝑋, ℂ) a so-called polarized Hodge

structure. We will study those structures in more detail in Chapter 3. To make the structures we discussed
more concrete, let us consider the 2-torus.
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Example 2.1.24 (Torus).
Note, the 2-torus 𝕋2 is a compact Kähler manifold as it is a compact surface. Hence, by the Hodge
decomposition

𝐻1(𝕋2, ℂ) = 𝐻1,0(𝕋2) ⊕ 𝐻0,1(𝕋2), 𝐻1,0(𝕋2) = 𝐻0,1(𝕋2).

We know 𝐻1(𝕋2, ℂ) ≅ ℂ2. Furthermore, we have a unique (up to scalar multiples) non-vanishing
holomorphic (1, 0)-form Ω, that spans 𝐻1,0(𝕋2). Following [CMP17], let 𝛾∗, 𝛿∗ denote the basis
of 𝐻1(𝕋2, ℂ) Poincaré dual to the homology generators 𝛾, 𝛿 indicated in Figure 2.1. Then, we can
write

Ω = 𝐴𝛾∗ + 𝐵𝛿∗,

where

𝐴 = ∫
𝛾
Ω, 𝐵 = ∫

𝛿
Ω.

The coefficients𝐴, 𝐵 are known as periods and they combine into a so-called period vector 𝚷 = (𝐴, 𝐵).
Since 𝕋2 is a surface, we note that the Lefschetz operator vanishes on𝐻1(𝕋2, ℂ). Consequently,

(2.9) for 𝑛 = 𝑘 = 1 should define a polarization. Note, it satisfies

∫
𝕋2
Ω ∧Ω = 0, ∫

𝕋2
Ω ∧Ω = 0, 𝑖∫

𝕋2
Ω ∧Ω = Im(𝐵𝐴) > 0.

The third integral computes the volume of 𝕋2, hence the inequality. Note, these computations show
the properties in Proposition 2.1.23 are met. Furthermore, note that the period vector𝚷 determines
the polarizedHodge structure completely. This turns out to be a feature that holds inmore generality,
as we will see in Chapter 3. ♦

To conclude this section, we would like to make some remarks about the Hodge theory on Calabi-
Yau manifolds, in particular threefolds. By the existence of the (unique) holomorphic (𝑛, 0)-form Ω on a
Calabi-Yau 𝑛-fold, we know ℎ𝑛,0 = ℎ0,𝑛 = 1. Moreover, by conjugation and Hodge-⋆ duality we find
ℎ𝑝,𝑞 = ℎ𝑞,𝑝 = ℎ𝑛−𝑝,𝑛−𝑞 = ℎ𝑛−𝑞,𝑛−𝑝. This true for general compact Kähler manifold. However, on a
Calabi-Yau we have [Joy00, Prop. 6.2.6]

𝛾

𝛿

Figure 2.1: Graphical depiction of the 2-torus with its canonical 𝐻1(𝕋, ℤ) homology generators 𝛾, 𝛿.
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Figure 2.2: On the left we see the general Hodge diamond for an 𝑛-dimensional complex manifold. On
the right we see the Hodge diamond for a Calabi-Yau threefold, where we identified ℎ2,1 = ℎ1,2 and
ℎ2,2 = ℎ1,1.

Proposition 2.1.25.
Let (𝑋, 𝐽, 𝑔) be a Calabi-Yau 𝑛-fold, then ℎ𝑝,0 = 0 for 0 < 𝑝 < 𝑛.

Using this, we obtain the Hodge diamond for Calabi-Yau threefolds in Figure 2.2. Note, the Kähler form 𝜔
is of type (1, 1) and defines a non-trivial class3 in 𝐻1,1(𝑋), therefore ℎ1,1 ≥ 1. We see that for Calabi-Yau
threefolds, the only independent Hodge numbers are ℎ1,1 and ℎ2,1. Moreover, since ℎ3,2 = ℎ2,3 = 0
we see 𝐻3

p(𝑋, ℂ) = 𝐻𝑘(𝑋, ℂ). Consequently, the middle cohomology of a Calabi-Yau threefold carries a
polarized Hodge structure.

2.2 Deformations of Complex Structures

Now, having discussed the preliminaries, we can focus on the deformation theory of general complex man-
ifolds. This is an old idea that dates back to Bernhard Riemann himself, who studied complex structures
on Riemann surfaces. In his famous memoir ‘Theorie der Abel ’schen Functionen’ (Theory of Abelian func-
tions) from 1857, Riemann proved a formula that computed number of independent parameters on which
the deformation depended and called them ‘moduli’ [KS58a; KS58b]. In the years after Riemann, this
question received quite a lot of attention. However, the higher-dimensional counter-part, deformations
of complex manifolds of dimension at least two was not considered. Max Noether was the first to look
at such higher-dimensional deformations in 1888, yet he restricted himself to algebraic surfaces [KS58a].
The general description of deformation of complex structures began in the 1950s with papers by Kodaira,
Spencer, Frölich and Nijenhuis [KS57; FN57; KS58a; KS58b]. In [KS58a; KS58b], Kodaira and Spencer
give an in-depth discussion of infinitesimal, or first order, deformations of complex structures and multiple
stability theorems (including Kähler manifolds4) are proven in [KS60]. However, the question remained
which first order deformations could be ‘integrated’ to proper deformations (cf. [KS58b]). The first suffi-
cient conditions were proposed and proven in [KNS58]. Yet, they used a power series argument, which
requires a highly analytical proof of convergence. For a complete exhibition of their methods we refer to
[Kod86, Ch. 4-7].

In this section we want to discuss the existence of deformations of complex structures and possible
obstructions without a power series argument. For this we will follow the methods of Kuranishi [Kur65;
Kur62]. We will start by characterizing deformations of almost complex structures in terms of differential

3This is a general fact from symplectic geometry. The symplectic form on a compact manifold (without boundary) cannot be
exact.

4To be specific, they proved that small deformations of Kähler manifolds remain Kähler.



28 DeformationTheory

forms with values in a vector bundle. Additionally, we will prove a necessary and sufficient condition on
these differential forms such that they correspond to deformations of complex structures. Finally, we will
discuss the existence of the Kuranishi family which was the main result of [Kur65], that ensures that for
each compact complex manifold there exists a so-called ‘semiuniversal’ family of deformations.

2.2.1 Deforming Almost Complex Structures
Our starting point will be a compact smooth manifold 𝑋 of real dimension 2𝑛 equipped with a fixed almost
complex structure 𝐽. We will formulate the meaning of deforming an almost complex structure. This lays
the foundation for integrable deformations. Our main references are [Kur65], [Huy05, Ch. 6] and to
some extend [Gua04, Ch. 5].

Recall, an almost complex structure on 𝑋 is completely determined by its ±𝑖-eigenspace (cf. Proposi-
tion 2.1.2). Thus, one can construct a new almost complex structure that is ‘nearby’ by tilting 𝑇0,1𝑋 by a
small amount to a subspace 𝐾 ⊂ 𝑇ℂ𝑋 (see Figure 2.3). To be precise, this tilting is parameterized by a
bundle map

𝜖 ∶ 𝑇0,1𝑋 → 𝑇1,0𝑋, 𝜂 ↦ 𝜋1,0 ∘ (𝜋0,1||𝐾)
−1(𝜂)

so that 𝐾 = gr 𝜖. Note, the map 𝜋0,1||𝐾 does not have an inverse for too big tilts5. Furthermore, the
zero bundle map corresponds to the original almost complex structure. Hence, we have the following
equivalence6

{Almost complex structures
sufficiently close to 𝐽 }⟷ {Bundle maps 𝜖 ∶ 𝑇0,1𝑋 → 𝑇1,0𝑋

sufficiently close to the zero map } . (2.10)

Note, by the Serre-Swan theorem we may regard the bundle map 𝜖 as a section in Γ((𝑇0,1𝑋)∗ ⊗ 𝑇1,0𝑋),
i.e. 𝜖 ∈ Ω0,1(𝑋, 𝑇1,0𝑋).

Now, consider a continuous family of almost complex structures 𝐽(𝑡) such that 𝐽 = 𝐽(0). Similarly to
the above, we obtain a continuous splitting 𝑇ℂ𝑋 = 𝑇1,0𝑡 𝑋⊕𝑇0,1𝑡 𝑋 for every 𝑡. By the equivalence in (2.10)
above, we can encode the deformation 𝐽(𝑡), for small 𝑡 at least, by maps

𝜖(𝑡) ∶ 𝑇0,1𝑋 → 𝑇1,0𝑋, 𝜂 ↦ 𝜋1,0 ∘ (𝜋0,1||𝑇0,1
𝑡 𝑋)

−1(𝜂).

Again, so that 𝑇0,1𝑡 𝑋 = gr 𝜖(𝑡) = { 𝜖(𝑡)𝜂 + 𝜂 ∣ 𝜂 ∈ 𝑇0,1𝑋 }.

2.2.2 Integrability Condition and theMaurer-Cartan equation
Our initial interest was deformations of complex structures not of almost complex structures. However,
we know that every complex structure on 𝑋 induces an almost complex structure. Recall, such almost
complex structures were called integrable. Moreover, by the celebrated Newlander-Nirenberg theorem
2.1.4 we have a necessary and sufficient condition for an almost complex structure to be integrable, namely
the involutivity of the (anti-)holomorphic tangent bundle. Combining this result with equivalence (2.10)
of the previous section will give us a way to identify deformations corresponding to complex structures.

To do so, we fix a complex structure 𝐽 on 𝑋 and consider a continuous family of almost complex
structures 𝐽(𝑡) such that 𝐽 = 𝐽(0). We are looking for the 𝐽(𝑡) that are integrable, as they correspond to

5For example, if one crosses 𝑇1,0𝑋 , as the projection is identically zero in that case.
6The word ‘sufficiently’ in the equivalence can be made precise in the appropriate Whitney topology. However, this is not

necessary for our purposes.
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𝑇1,0𝑋

𝑇0,1𝑋𝑇ℂ𝑋
𝐾 = gr 𝜖

𝜖𝐾

Figure 2.3: Deformation of an almost complex structure by a bundle morphism 𝜖 ∶ 𝑇0,1𝑋 → 𝑇1,0𝑋 .

complex structures on 𝑋 . The Newlander-Nirenberg theorem says the almost complex structure 𝐽(𝑡) is
integrable if and only if the distribution 𝑇0,1𝑡 𝑋 is involutive, i.e.,

[𝑇0,1𝑡 𝑋, 𝑇0,1𝑡 𝑋] ⊂ 𝑇0,1𝑡 𝑋.

We would like to rewrite this condition in terms of the bundle maps 𝜖(𝑡). To do this, we first note there
exists a natural generalization of the ̄𝜕-operator that acts onΩ•(𝑋, 𝑇1,0𝑋) [Cav22, Ch. 5]. We will denote
this operator by ̄𝜕 as well. Furthermore, we need to define a ‘Lie bracket’ [Huy05, Sec. 6.1]

[⋅, ⋅] ∶ Ω0,𝑝(𝑋, 𝑇1,0𝑋) × Ω0,𝑞(𝑋, 𝑇1,0𝑋) → Ω0,𝑝+𝑞(𝑋, 𝑇1,0𝑋)

by taking the usual bracket in 𝑇1,0𝑋 and wedging on the form part. In local coordinates, for 𝛼 = ∑𝐼 𝑑 ̄𝑧𝐼⊗
𝑋𝐼 and 𝛽 = ∑𝐽 𝑑 ̄𝑧𝐽 ⊗ 𝑌 𝐽 , it is given by

[𝛼, 𝛽] = ∑𝑑 ̄𝑧𝐼 ∧ 𝑑 ̄𝑧𝐽 ⊗ [𝑋𝐼 , 𝑌 𝐽].

The bracket is well-defined and has the following properties [Kur65]

[𝛼, 𝛽] = (−1)𝑝𝑞+1[𝛽, 𝛼]
̄𝜕[𝛼, 𝛽] = [ ̄𝜕𝛼, 𝛽] + (−1)𝑝[𝛼, ̄𝜕𝛽]

(−1)𝑝𝑟[𝛼, [𝛽, 𝛾]] + (−1)𝑝𝑞[𝛽, [𝛾, 𝛼]] + (−1)𝑞𝑟[𝛾, [𝛼, 𝛽]] = 0,

for 𝛾 ∈ Ω0,𝑟(𝑋, 𝑇1,0𝑋).
Using this bracket, we can characterize which deformations stay integrable (cf. [KNS58]).
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Proposition 2.2.1.
The almost complex structure 𝐽(𝑡) is integrable if and only if the associated bundle morphism 𝜖(𝑡) satisfies
the Maurer-Cartan equation

̄𝜕𝜖(𝑡) + 1
2[𝜖(𝑡), 𝜖(𝑡)] = 0. (2.11)

Proof.— We follow the proof in [Huy05, Lem. 6.1.2]7. Note, it suffices to prove the statement locally.
In local coordinates8 of 𝑋 , we can write

𝜖(𝑡) = ∑
𝑘,𝑙
𝜖𝑘𝑙(𝑡)𝑑 ̄𝑧𝑘 ⊗

𝜕
𝜕𝑧𝑙

. (2.12)

Suppose, the almost complex structure 𝐽(𝑡) is integrable. Then, the distribution 𝑇0,1𝑡 𝑋 is involutive. Hence,

[ 𝜕𝜕 ̄𝑧𝑖
+ 𝜖(𝑡) ( 𝜕

𝜕 ̄𝑧𝑖
) , 𝜕
𝜕 ̄𝑧𝑗

+ 𝜖(𝑡) ( 𝜕
𝜕 ̄𝑧𝑗

)] ∈ 𝑇0,1𝑡 𝑋. (2.13)

Note,

[ 𝜕𝜕 ̄𝑧𝑖
, 𝜕
𝜕 ̄𝑧𝑗

] = 0,

as 𝐽 is integrable. Therefore, (2.13) is equivalent to

[ 𝜕𝜕 ̄𝑧𝑖
, 𝜖(𝑡) ( 𝜕

𝜕 ̄𝑧𝑗
)] + [𝜖(𝑡) ( 𝜕

𝜕 ̄𝑧𝑖
) , 𝜕
𝜕 ̄𝑧𝑗

] + [𝜖(𝑡) ( 𝜕
𝜕 ̄𝑧𝑖

) , 𝜖(𝑡) ( 𝜕
𝜕 ̄𝑧𝑗

)] ∈ 𝑇0,1𝑡 𝑋. (2.14)

We investigate the above terms separately. Using (2.12), we see the first term in (2.14) becomes9

[ 𝜕𝜕 ̄𝑧𝑖
, 𝜖(𝑡) ( 𝜕

𝜕 ̄𝑧𝑗
)] = ∑

𝑙
[ 𝜕𝜕 ̄𝑧𝑖

, 𝜖𝑗𝑙
𝜕
𝜕𝑧𝑙

]

= ∑
𝑙

𝜕𝜖𝑗𝑙
𝜕 ̄𝑧𝑖

𝜕
𝜕𝑧𝑙

.

Combining the first two terms in (2.14) then yields

[ 𝜕𝜕 ̄𝑧𝑖
, 𝜖(𝑡) ( 𝜕

𝜕 ̄𝑧𝑗
)] + [𝜖(𝑡) ( 𝜕

𝜕 ̄𝑧𝑖
) , 𝜕
𝜕 ̄𝑧𝑗

] = ∑
𝑙
(
𝜕𝜖𝑗𝑙
𝜕 ̄𝑧𝑖

− 𝜕𝜖𝑖𝑙
𝜕 ̄𝑧𝑗

) 𝜕
𝜕𝑧𝑙

= ( ̄𝜕𝜖)( 𝜕𝜕 ̄𝑧𝑖
, 𝜕
𝜕 ̄𝑧𝑗

).

For the third term in (2.14) we have,

[𝜖(𝑡) ( 𝜕
𝜕 ̄𝑧𝑖

) , 𝜖(𝑡) ( 𝜕
𝜕 ̄𝑧𝑗

)] = ∑
𝑙,𝑚
[𝜖𝑖𝑙

𝜕
𝜕𝑧𝑙

, 𝜖𝑗𝑚
𝜕

𝜕𝑧𝑚
]

7The statement there is missing the factor 1
2
.

8Note, these are holomorphic coordinates with respect to the fixed complex structure 𝐽.
9We suppressed the 𝑡-dependence for clarity.
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= 1
2 (∑𝑙,𝑚

∑
𝑝,𝑞

𝑑 ̄𝑧𝑙 ∧ 𝑑 ̄𝑧𝑝[𝜖𝑙𝑚
𝜕

𝜕𝑧𝑚
, 𝜖𝑝𝑞

𝜕
𝜕𝑧𝑞

]) ( 𝜕𝜕 ̄𝑧𝑖
, 𝜕
𝜕 ̄𝑧𝑗

)

= 1
2[𝜖, 𝜖](

𝜕
𝜕 ̄𝑧𝑖

, 𝜕
𝜕 ̄𝑧𝑗

).

We conclude that integrability of 𝐽(𝑡) implies

( ̄𝜕𝜖 + 1
2[𝜖, 𝜖]) (

𝜕
𝜕 ̄𝑧𝑖

, 𝜕
𝜕 ̄𝑧𝑗

) ∈ 𝑇0,1𝑡 𝑋.

Note, formally we have ̄𝜕𝜖 + 1
2
[𝜖, 𝜖] ∈ Ω0,2(𝑋, 𝑇1,0𝑋). Hence,

̄𝜕𝜖 + 1
2[𝜖, 𝜖] ∈ Ω0,2(𝑋, 𝑇1,0𝑋 ∩ 𝑇0,1𝑡 𝑋).

However, for small 𝑡 we have 𝑇1,0𝑋 ∩ 𝑇0,1𝑡 𝑋 = 0. Thus, 𝜖 satisfies the Maurer-Cartan equation.
Conversely, if 𝜖(𝑡) satisfies the Maurer-Cartan equation, the above computation shows that 𝑇0,1𝑡 𝑋 is

involutive in any local frame. Hence, it holds for all sections of 𝑇0,1𝑡 𝑋 . ∎

If one considers first order (or infinitesimal) deformations, Proposition 2.2.1 says that such deformations
must be ̄𝜕-closed, as the bracket yields a non-linear term. This is the first hint towards the infinitesimal
description of the moduli space of complex structures on a manifold. We want to emphasise that precisely
the non-linear behaviour of the bracket makes the existence of deformations non-trivial.

At this stage we have identified which nearby deformations are integrable. However, these integrable
almost complex structures could give rise to isomorphic complex structures. Hence, we would like to
identify such equivalent nearby deformations. We follow [Kur65] and say two deformations are equivalent
if they are related by a small diffeomorphism. Hence, one should consider the action of Diff0(𝑋), the
identity component of Diff(𝑋). So, technically we are describing Teich, which for our purposes is sufficient.
Note, for every element in Diff0(𝑋), there is a path to the identity. Hence, we should consider deformations
coming from one-parameter families 𝐹𝑡 ∶ 𝑋 → 𝑋 of diffeomorphisms. It is known that such families are
equivalent to flows of vector fields on 𝑋 . Heuristically, this can be seen by viewing Diff(𝑋) as an infinite
dimensional Lie group with Lie algebra𝔛(𝑋). Actually, this can be made precise in the language of Fréchet
Lie groups, see e.g. [Ham82, Sec. 4.6]. Consequenlty, it suffices to restrict our discussion to flows of vector
fields on 𝑋 .

Let 𝑉 ∈ 𝔛(𝑋) be a real vector field and denote its flow by 𝐹𝑡. Using the flow we obtain a new complex
structure on 𝑋

̃𝐽 ∶= 𝑑𝐹𝑡 ∘ 𝐽 ∘ (𝑑𝐹𝑡)−1 (2.15)

on 𝑋 . Moreover, it induces continuous family of complex structures. Our objective is to translate the fact
̃𝐽 comes from a diffeomorphism to a condition on the deformation 𝜖(𝑡).

Note, (2.15) implies the anti-holomorphic tangent 𝑇0,1𝑋 corresponding to ̃𝐽 is given by

𝑇0,1𝑋 = 𝑑𝐹𝑡(𝑇0,1𝑋). (2.16)

Hence, we should study the map 𝑑𝐹𝑡. Local holomorphic coordinates {𝑧𝑖} on 𝑋 yield 2𝑛 real coordinates
(𝑧, ̄𝑧). In these local coordinates, we can write

𝑑
𝑑𝑡
|||𝑡=0

𝐹𝑡 = 𝑉 = ∑
𝑖
𝑓𝑖(𝑧, ̄𝑧) 𝜕𝜕𝑧𝑖

+ 𝑓𝑖(𝑧, ̄𝑧) 𝜕𝜕 ̄𝑧𝑖
(2.17)
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The diffeomorphism 𝐹𝑡 yields new local coordinates ( ̃𝑧, ̄̃𝑧). Locally, this transformation can be described
by [Huy05, Ch. 6]

̃𝑧𝑖 = 𝑧𝑖 + 𝑡𝑓𝑖(𝑧, ̄𝑧) + 𝒪(𝑡2)
̄̃𝑧𝑖 = ̄𝑧𝑖 + 𝑡𝑓𝑖(𝑧, ̄𝑧) + 𝒪(𝑡2).

This can been seen by locally defining ̃𝑧𝑖 ∶= 𝐹𝑡(𝑧𝑖) and applying Taylor’s theorem at 𝑡 = 0 and similarly
for ̃𝑧𝑖. Moreover, in these coordinates we have

𝑑𝐹𝑡 =∑
𝑖
𝑑 ̃𝑧𝑖 ⊗

𝜕
𝜕𝑧𝑖

+ 𝑑 ̃𝑧𝑖 ⊗
𝜕
𝜕 ̄𝑧𝑖

=∑
𝑖,𝑗
(𝜕 ̃𝑧𝑖
𝜕𝑧𝑗

𝑑𝑧𝑗 ⊗
𝜕
𝜕𝑧𝑖

+ 𝜕 ̃𝑧𝑖
𝜕 ̄𝑧𝑗

𝑑 ̄𝑧𝑗 ⊗
𝜕
𝜕𝑧𝑖

+ 𝜕 ̃𝑧𝑖
𝜕𝑧𝑗

𝑑𝑧𝑗 ⊗
𝜕
𝜕 ̄𝑧𝑖

+ 𝜕 ̃𝑧𝑖
𝜕 ̄𝑧𝑗

𝑑 ̄𝑧𝑗 ⊗
𝜕
𝜕 ̄𝑧𝑖

)

=∑
𝑖
(𝑑𝑧𝑖 ⊗

𝜕
𝜕𝑧𝑖

+ 𝑑 ̄𝑧𝑖 ⊗
𝜕
𝜕 ̄𝑧𝑖

) + 𝑡∑
𝑖,𝑗
(𝜕𝑓𝑖𝜕𝑧𝑗

𝑑𝑧𝑗 ⊗
𝜕
𝜕𝑧𝑖

+ 𝜕𝑓𝑖
𝜕 ̄𝑧𝑗

𝑑 ̄𝑧𝑗 ⊗
𝜕
𝜕𝑧𝑖

+𝜕𝑓𝑖𝜕𝑧𝑗
𝑑𝑧𝑗 ⊗

𝜕
𝜕 ̄𝑧𝑖

+ 𝜕𝑓𝑖
𝜕 ̄𝑧𝑗

𝑑 ̄𝑧𝑗 ⊗
𝜕
𝜕 ̄𝑧𝑖

)

=id + 𝑡∑
𝑖,𝑗
(𝜕𝑓𝑖𝜕𝑧𝑗

𝑑𝑧𝑗 ⊗
𝜕
𝜕𝑧𝑖

+ 𝜕𝑓𝑖
𝜕 ̄𝑧𝑗

𝑑 ̄𝑧𝑗 ⊗
𝜕
𝜕𝑧𝑖

+ 𝜕𝑓𝑖
𝜕𝑧𝑗

𝑑𝑧𝑗 ⊗
𝜕
𝜕 ̄𝑧𝑖

+ 𝜕𝑓𝑖
𝜕 ̄𝑧𝑗

𝑑 ̄𝑧𝑗 ⊗
𝜕
𝜕 ̄𝑧𝑖

) .

When we consider the image of an element 𝜂 ∈ 𝑇0,1𝑋 under 𝑑𝐹𝑡 (cf. (2.16)) in these local coordinates,
we see

𝑑𝐹𝑡(𝜂) = 𝜂 + 𝑡∑
𝑖,𝑗

⎛
⎜
⎜
⎝

𝜕𝑓𝑖
𝜕𝑧𝑗

𝑑𝑧𝑗 ⊗
𝜕
𝜕𝑧𝑖⏟⎵⎵⎵⏟⎵⎵⎵⏟

=0 on 𝑇0,1𝑋

+𝜕𝑓𝑖𝜕 ̄𝑧𝑗
𝑑 ̄𝑧𝑗 ⊗

𝜕
𝜕𝑧𝑖

+ 𝜕𝑓𝑖
𝜕𝑧𝑗

𝑑𝑧𝑗 ⊗
𝜕
𝜕 ̄𝑧𝑖⏟⎵⎵⎵⏟⎵⎵⎵⏟

=0 on 𝑇0,1𝑋

+𝜕𝑓𝑖𝜕 ̄𝑧𝑗
𝑑 ̄𝑧𝑗 ⊗

𝜕
𝜕 ̄𝑧𝑖

⎞
⎟
⎟
⎠

𝜂

= 𝜂 +∑
𝑖,𝑗
(𝜕𝑓𝑖𝜕 ̄𝑧𝑗

𝑑 ̄𝑧𝑗 ⊗
𝜕
𝜕𝑧𝑖

+ 𝜕𝑓𝑖
𝜕 ̄𝑧𝑗

𝑑 ̄𝑧𝑗 ⊗
𝜕
𝜕 ̄𝑧𝑖

) 𝜂. (2.18)

Note, the third term in (2.18) maps 𝑇0,1𝑋 onto itself. Hence, from this computation we see 𝑇0,1𝑋 is the
graph of the bundle morphism

𝑇0,1𝑋 → 𝑇1,0𝑋, 𝜕
𝜕 ̄𝑧𝑗

↦∑
𝑖

𝜕𝑓𝑖
𝜕 ̄𝑧𝑗

𝜕
𝜕𝑧𝑖

. (2.19)

Note, using (2.17) we see (2.19) can be written in a coordinate-free way. Hence, we found (cf. [Huy05,
Lem. 6.1.4])
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Proposition 2.2.2.
First order deformations of 𝐽 induced by flows 𝐹𝑡 of vector fields on 𝑋 are given by

̃𝜖 ∶= ̄𝜕 (( 𝑑𝑑𝑡
|||𝑡=0

𝐹𝑡)
1,0
) ∶ 𝑇0,1𝑋 → 𝑇1,0𝑋.

Another way to interpret the above proposition is that, infinitesimally, the difference of two equivalent first
order deformations lies in the image of ̄𝜕, i.e. are ̄𝜕-exact. We previously saw that first order deformations
had to be ̄𝜕-closed, thus they define classes in cohomology. Consequently, we expect the tangent space to
the moduli space to lie in10 𝐻1(𝑋, 𝑇1,0𝑋).

2.2.3 TheKuranishi Family

We will show the deformation theorem due to Kuranishi [Kur65] that constructs a specific family of de-
formations for any complex manifold 𝑋 that is compact. The proof differentiates itself from earlier proofs
(e.g. [KS57; Kur62]) as it does not apply power series techniques. The argument relies on analysis and
elliptic operator theory. In particular, the operator △ ̄𝜕 is central. Consequently, the theory developed in
Section 2.1.3 will be important. Our main references are [Kur65] and [Gua04, Sec. 5.2]

Let us state the main theorem

Theorem 2.2.3 (Kuranishi).
Let (𝑋, 𝐽) be a complex manifold. There exists an open neighbourhood𝑈 ⊂ 𝐻1(𝑋, 𝑇1,0𝑋) containing zero,
a smooth family 𝒯 = {𝜖(𝑡) ∣ 𝑡 ∈ 𝑈, 𝜖(0) = 0} of almost complex deformations of 𝐽 and an obstruction
map Φ ∶ 𝑈 → 𝐻2(𝑋, 𝑇1,0𝑋), such that 𝒯 = {𝜖(𝑡) ∣ 𝑡 ∈ 𝒵 ∶= Φ−1(0)} are precisely the integrable
deformations. The space 𝒯 is called the Kuranishi family.

Proof.— For the proof we use some theory about Sobolev spaces, which we do not cover. For the relevant
material we refer to [WG07, Sec. 4.1].

Since we want to describe deformations modulo isomorphisms, i.e. a quotient, we should propose
a ‘gauge slice’ to parameterize this quotient. To motivate which slice to pick, note the set of integrable
deformations sit inside the vector space Ω0,1(𝑋, 𝑇1,0𝑋). Around an integrable deformation 𝜖, the set
of integrable deformations can be approximated by the vector space 𝑊 ∶= ker ̄𝜕 ∶ Ω0,1(𝑋, 𝑇1,0𝑋) →
Ω0,2(𝑋, 𝑇1,0𝑋) (see Figure 2.4). The orbit through 𝜖 can then be approximated by im ̄𝜕, by Proposition
2.2.2. As 𝑊 is a local model of the set of integrable deformations, the vectors in 𝑊 orthogonal to im ̄𝜕
will produce the desired slice. Note, (im ̄𝜕)⟂ = ker ̄𝜕∗ by Proposition 2.1.18. Hence, we expect a small
neighbourhood in

𝒢 ∶= {𝜖 ∈ Ω0,1(𝑋, 𝑇1,0𝑋) ∣ ̄𝜕𝜖 + 1
2[𝜖, 𝜖] = 0, ̄𝜕∗𝜖 = 0}

to be the desired family.
To see this, we apply elliptic operator theory. For, 𝜖 ∈ 𝒢 we have

△ ̄𝜕𝜖 = ( ̄𝜕∗ ̄𝜕 + ̄𝜕 ̄𝜕∗)𝜖 = ̄𝜕∗ ̄𝜕𝜖 = −12
̄𝜕∗[𝜖, 𝜖].

10Here, 𝐻1(𝑋,𝑇1,0𝑋) denotes the sheaf cohomology of the holomorphic tangent bundle. See [WG07, Ch. 2] for details.
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Hence, △ ̄𝜕𝜖 +
1
2
̄𝜕∗[𝜖, 𝜖] = 0. Applying Green’s operator from Theorem 2.1.19 to this equation yields

0 = 𝐺△ ̄𝜕𝜖 +
1
2𝐺

̄𝜕∗[𝜖, 𝜖]

= 𝜖 − ℍ𝜖 + 1
2𝐺

̄𝜕∗[𝜖, 𝜖]

= 𝜖 − ℍ𝜖 + 1
2𝑄[𝜖, 𝜖].

Here, we set 𝑄 ∶= 𝐺 ̄𝜕∗. Thus, every 𝜖 ∈ 𝒢 satisfies 𝜖 + 1
2
𝑄[𝜖, 𝜖] = ℍ𝜖. So, we showed 𝒢 is a subset of

ℱ ∶= {𝜖 ∈ Ω0,1(𝑋, 𝑇1,0𝑋) ∣ 𝜖 + 1
2𝑄[𝜖, 𝜖] ∈ ℋ1},

where ℋ1 denotes △ ̄𝜕-harmonic forms.
Now, consider the map

𝐹 ∶Ω0,1(𝑋, 𝑇1,0𝑋) → Ω0,1(𝑋, 𝑇1,0𝑋), 𝜖 ↦ 𝜖 + 1
2𝑄[𝜖, 𝜖].

The map 𝐹 extends to a continuous map between Hilbert spaces

𝐹 ∶ 𝑊 𝑘(𝑋, ℰ) → 𝑊 𝑘(𝑋, ℰ),

for sufficiently large 𝑘 [Pal68, Thm. 5.4]. Here, ℰ denotes the bundle⋀0,1 𝑇∗𝑋⊗𝑇1,0𝑋 and𝑊 𝑘(𝑋, ℰ) the
completion ofΩ0,1(𝑋, 𝑇1,0𝑋) with respect to the Sobolev inner product11 (⋅, ⋅)𝑘. The norm corresponding
to (⋅, ⋅)𝑘 is denoted by ‖⋅‖𝑘. Now, since𝑄 is linear and [⋅, ⋅] is bilinear, it follows that𝐹 is smooth. Moreover,
its differential at zero is the identity as 𝑄[𝜖, 𝜖] is quadratic in 𝜖. Hence, by the inverse function theorem
on Banach spaces, 𝐹−1 is a smooth map that sends a neighbourhood of the origin bijectively to a different
neighbourhood of zero. Consequently, for 𝛿 > 0 sufficiently small, the open set

𝑈 ∶= {𝑡 ∈ ℋ ∣ ‖𝑢‖𝑘 < 𝛿} ⊂ 𝑊 𝑘(𝑋, ℰ)

is diffeomorphically mapped by 𝐹−1 to

𝒯 ∶= {𝜖(𝑡) = 𝐹−1(𝑡) ∣ 𝑡 ∈ 𝑈}.
11This is a specific inner product that reduces to (2.4) for 𝑘 = 0. It is defined in [Kur65] as well.

𝑊

𝜖

Figure 2.4: Graphical depiction of procedure to find gauge slice. Here the area encapsulated by the dashed
line denotes the set of integrable deformations inside the vector space Ω0,1(𝑋, 𝑇1,0𝑋). Furthermore, the
arrow denotes a vector ̄𝜕𝑋1,0.
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Since,ℋ1 is a finite dimensional vector space (seeTheorem 2.1.19),𝑈 is a smoothmanifold. Consequently,
𝒯 the smooth (in fact, holomorphic) family. Left to check is that 𝜖(𝑡) defines an almost complex structure
deformation, i.e. are smooth sections of ℰ. To see this, note 𝜖(𝑡) ∈ 𝒯 satisfies 𝑡 = 𝐹(𝜖(𝑡)). Applying △ ̄𝜕
to both sides yields

0 = △ ̄𝜕 (𝜖(𝑡) +
1
2𝑄[𝜖(𝑡), 𝜖(𝑡)])

= △ ̄𝜕𝜖(𝑡) +
1
2△ ̄𝜕 ̄𝜕∗𝐺[𝜖(𝑡), 𝜖(𝑡)]

= △ ̄𝜕𝜖(𝑡) +
1
2
̄𝜕∗△ ̄𝜕𝐺[𝜖(𝑡), 𝜖(𝑡)]

= △ ̄𝜕𝜖(𝑡) +
1
2
̄𝜕∗(id − ℍ)[𝜖(𝑡), 𝜖(𝑡)]

= △ ̄𝜕𝜖(𝑡) +
1
2
̄𝜕∗[𝜖(𝑡), 𝜖(𝑡)]. (2.20)

By a standard result about elliptic PDEs [Mor+54], we can conclude solutions 𝜖(𝑡) to (2.20) are smooth.
Hence, 𝒯 sits insideΩ0,1(𝑋, 𝑇1,0) and thus is the desired family of almost complex deformations. Further-
more, the tangent space of𝒯 at the origin is equal to the tangent space of𝑈, which isℋ1 ≅ 𝐻1(𝑋, 𝑇1,0𝑋).

Our next task is to identify the integrable deformations in 𝒯, i.e. elements satisfying the Maurer-
Cartan equation (2.11). Let 𝜖(𝑡) ∈ 𝒯, then by construction 𝜖(𝑡) + 1

2
𝑄[𝜖(𝑡), 𝜖(𝑡)] = 𝑡. Note, as 𝑡 is

harmonic we have ̄𝜕𝑡 = 0, thus

̄𝜕𝜖(𝑡) = −12
̄𝜕𝑄[𝜖(𝑡), 𝜖(𝑡)]. (2.21)

We can rewrite id =△ ̄𝜕𝐺 + +ℍ using Corollary 2.1.20 as

id = ̄𝜕𝑄 + 𝑄 ̄𝜕 + ℍ.

Combining this with (2.21), we obtain

̄𝜕𝜖(𝑡) + 1
2[𝜖(𝑡), 𝜖(𝑡)] = −12

̄𝜕𝑄[𝜖(𝑡), 𝜖(𝑡)] + 1
2[𝜖(𝑡), 𝜖(𝑡)]

= −12𝑄
̄𝜕[𝜖(𝑡), 𝜖(𝑡)] − 1

2ℍ[𝜖(𝑡), 𝜖(𝑡)].

Note, the images of 𝑄 and ℍ are orthogonal by Corollary 2.1.20. Hence, 𝜖(𝑡) is integrable if and only if
𝑄 ̄𝜕[𝜖(𝑡), 𝜖(𝑡)] = ℍ[𝜖(𝑡), 𝜖(𝑡)] = 0. We claim ℍ[𝜖(𝑡), 𝜖(𝑡)] = 0 implies 𝑄 ̄𝜕[𝜖(𝑡), 𝜖(𝑡)] = 0. To see this, note

𝑄 ̄𝜕[𝜖(𝑡), 𝜖(𝑡)] = 2𝑄[ ̄𝜕𝜖(𝑡), 𝜖(𝑡)]
= −𝑄[ ̄𝜕𝑄[𝜖(𝑡), 𝜖(𝑡)], 𝜖(𝑡)]
= −𝑄[(id − 𝑄 ̄𝜕 − ℍ)[𝜖(𝑡), 𝜖(𝑡)], 𝜖(𝑡)].

Assuming ℍ[𝜖(𝑡), 𝜖(𝑡)] = 0 implies

𝑄 ̄𝜕[𝜖(𝑡), 𝜖(𝑡)] = 𝑄[𝑄 ̄𝜕[𝜖(𝑡), 𝜖(𝑡)], 𝜖(𝑡)].

Let us write 𝜉(𝑡) = 𝑄 ̄𝜕[𝜖(𝑡), 𝜖(𝑡)], then we found

𝜉(𝑡) = 𝑄[𝜉(𝑡), 𝜖(𝑡)].
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As explained in [Kur65], the map (𝛼, 𝛽) ↦ 𝑄[𝛼, 𝛽] satisfies ‖𝑄[𝛼, 𝛽]‖𝑘 < 𝑐‖𝛼‖𝑘‖𝛽‖𝑘 for sufficiently large
𝑘 and some 𝑐 > 0. Now, take 𝛿 small enough so that ‖𝜖(𝑡)‖𝑘 <

1
𝑐
holds. In that case, we find

‖𝜉(𝑡)‖𝑘 < 𝑐‖𝜉(𝑡)‖𝑘‖𝜖(𝑡)‖𝑘 < ‖𝜉(𝑡)‖𝑘.

Therefore, 𝜉(𝑡) = 0 proving our claim. Hence, 𝜖(𝑡) is integrable if and only if ℍ[𝜖(𝑡), 𝜖(𝑡)] = 0. Conse-
quently, we identified the space of integrable deformations

𝒯 = {𝜖(𝑡) ∣ 𝑡 ∈ 𝒵 = Φ−1(0)}

with holomorphic obstruction map

Φ ∶ 𝐻1(𝑋, 𝑇1,0𝑋) ⊃ 𝑈 → 𝐻2(𝑋, 𝑇1,0𝑋), 𝑡 ↦ ℍ[𝜖(𝑡), 𝜖(𝑡)].

This makes 𝒯 an analytic set.
To conclude the proof, we show our initial expectation. We claim 𝒯 is a neighbourhood of zero in 𝒢.

Clearly, 0 ∈ 𝒯. For 𝜖(𝑡) ∈ 𝒯 we have 𝑡 = 𝐹(𝜖(𝑡)) = 𝜖(𝑡) + 1
2
𝑄[𝜖(𝑡), 𝜖(𝑡)]. By rearranging and applying

̄𝜕∗, we find

̄𝜕∗𝜖(𝑡) = ̄𝜕∗𝑡 − 1
2
̄𝜕∗𝑄[𝜖(𝑡), 𝜖(𝑡)] = 0.

Thus, 𝒯 ⊂ 𝒢. Conversely, for 𝜖 ∈ 𝒢 we showed 𝐹(𝜖) = 𝜖 + 1
2
𝑄[𝜖, 𝜖] ∈ ℋ1. Hence, for 𝜖 sufficiently close

to 0 we have 𝐹(𝜖) ∈ 𝑈, i.e. 𝜖 ∈ 𝒯. ∎

If 𝜖(𝑡) ∈ 𝒯 is a complex structure deformation, let us denote the corresponding complex manifold by
𝑋𝑡.

Remark. In [Kur65] it is also shown that 𝒯 defines a holomorphic family, i.e. there is a holomor-
phic surjective submersion 𝜋 ∶ 𝒳 → 𝒯 such that𝒳 is a complex manifold and the fibers correspond
to 𝑋𝑡. The notion of holomorphic families will play a role in Chapter 3.

Kuranishi’s theorem tells us that the space of complex deformations 𝒯 has a smooth structure, if the
obstruction map vanishes. If that happens, we say the complex manifold 𝑋 is unobstructed. In that
case, one has 𝒯 = 𝒯. One trivial example is when 𝐻2(𝑋, 𝑇1,0𝑋) = 0. However, this was proven before
Kuranishi in [KNS58]

Corollary 2.2.4.
Let 𝑋 be a complex manifold. If 𝐻2(𝑋, 𝑇1,0𝑋) = 0, then 𝑋 is unobstructed.

Moreover, it turns out Calabi-Yaumanifolds are unobstructed as well. Wewill prove this in the next section.
On the other hand, we would like to stress that the complex structure moduli space, in general, is far from
smooth. This can be seen, for example, in [Ver15]. In this work it is shown particular complex manifolds,
such as certain complex tori and hyperkähler manifolds, admit so-called ergodic complex structures. These are
complex structures that have a dense orbit in Teich under the mapping class group Γ ∶= Diff(𝑋)/Diff0(𝑋).
Consequently, if CS denotes the space of complex structures, the moduli space

ℳ = CS/Diff = Teich/Γ
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will be highly convoluted. In particular, ℳ will be ‘co-Hausdorff ’, in the sense that any two open sets in
ℳ will have non-trivial intersection. In other words, ℳ is as far from being Hausdorff as it can be.

Finally, one might wonder whether all complex deformations of 𝐽 are contained in 𝒯, i.e. whether the
family 𝒯 is complete. It turns out locally this assertion is true: any sufficiently small deformation 𝜖 of 𝐽 is
equivalent to at least one element of 𝒯 [Gua04, Thm. 5.4]. We say 𝒯 is semiuniversal12. Thus, we have
the result

Theorem 2.2.5.
The Kuranishi family 𝒯 is semiuniversal.

Proof.— The proof is rather technical and we omit it here. We refer to [Kur65] or [Gua04, Thm. 5.2].
The latter is on deformations of generalized complex structures. However, the argument is completely
analogous. Moreover, our statement is a corollary of the theorem for generalized complex structures, as
complex structures are naturally generalized complex structures. ∎

2.3 TheCalabi-YauModuli Space

In chapter 1 we argued that the moduli space of Calabi-Yau manifolds is strongly connected to the four-
dimensional effective theory. In particular, the complex structuremoduli space is of interest to us. It suffices
for our purposes to restrict ourselves to Teich and apply Kuranishi’s theorem from the previous section.
Within this section we study the local structure of the Calabi-Yau moduli space. We will see the local
moduli space splits into two parts: complex structure deformations and Kähler deformations. Furthermore,
we will prove a classical result due to Tian [Tia87] and Todorov [Tod89] which states that Calabi-Yau
manifolds are unobstructed. This result was first announced by Bogomolov in [Bog78] and is therefore
known as the Bogomolov-Tian-Todorov theorem. The original arguments by Tian and Todorov both
relied on power series arguments. In this work we use global techniques to prove the theorem, following
[LZ20].

Let us start with the unobstructedness of Calabi-Yau manifolds. Let (𝑋, 𝐽, 𝑔) be a Calabi-Yau manifold
and let Ω denote its nonvanishing holomorphic (𝑛, 0)-form. It induces an isomorphism

𝑝

⋀𝑇1,0𝑋 →
𝑛−𝑝,0

⋀ 𝑋, 𝑉1 ∧⋯ ∧ 𝑉𝑝 ↦ 𝑖𝑉1 ⋯𝑖𝑉𝑝Ω

by contraction. Therefore,

𝑝

⋀𝑇1,0𝑋 ⊗
0,𝑞

⋀𝑋 ≅
𝑛−𝑝,0

⋀ 𝑋 ⊗
0,𝑞

⋀𝑋 ≅
𝑛−𝑝,𝑞

⋀ 𝑋.

Thus, contraction with Ω induces an isomorphism

𝜂 ∶ Ω0,𝑞(𝑋,
𝑝

⋀𝑇1,0𝑋) → Ω𝑛−𝑝,𝑞(𝑋).

Moreover, 𝜂 induces an isomorphism 𝐻𝑞(𝑋,⋀𝑝 𝑇1,0𝑋) ≅ 𝐻𝑛−𝑝,𝑞(𝑋). Using this map, we can construct
a differential operator

Δ ∶ Ω0,𝑞(𝑋,
𝑝

⋀𝑇1,0𝑋) 𝜂
Ð→ Ω𝑛−𝑝,𝑞(𝑋) 𝜕

Ð→ Ω𝑛−𝑝+1,𝑞(𝑋) 𝜂−1
ÐÐ→ Ω0,𝑞(𝑋,

𝑝−1

⋀𝑇1,0𝑋).
12Semiuniversal deformations are also called miniversal. Moreover, versal and universal deformations also exist. For a nice review

see [Man05].
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This map is crucial for the unobstructedness, as it satisfies

Lemma 2.3.1 (Tian-Todorov).
For 𝛼 ∈ Ω0,𝑝(𝑋, 𝑇1,0𝑋) and 𝛽 ∈ Ω0,𝑞(𝑋, 𝑇1,0𝑋) we have

(−1)𝑝[𝛼, 𝛽] = Δ(𝛼 ∧ 𝛽) − Δ(𝛼) ∧ 𝛽 − (−1)𝑝+1𝛼 ∧ Δ(𝛽)

Proof.— In the proof they first argue why it is sufficient to check the 𝑝 = 𝑞 = 0 case. Afterwards, it is a
long yet straightforward computation. Hence, we omit it here and refer to [Huy05, Lem. 6.1.9] ∎

At this point, the operator Δ and the Tian-Todorov lemma feel like merely technical tools. However, it
turns out they fit in a more general framework, which makes it very apparent which algebraic structures are
necessary for the unobstructedness of Calabi-Yau manifolds. The appropriate setting is that of differential
Gerstenhaber-Batalin-Vilkovisky (dGBV) algebras and their deformations. However, we will not discuss
these structures here. For more background we refer to [Man99].

With the above machinery at hand, we state the main result

Theorem 2.3.2 (Bogomolov-Tian-Todorov).
For a Calabi-Yau manifold, its deformation is unobstructed.

Proof.— Let us assume the above setting. Furthermore, let 𝑈 denote the open from Kuranishi’s theorem.
If we use the Kähler metric 𝑔, 𝜂 will be an isomorphism between the Hodge theories on Ω0,𝑘(𝑋, 𝑇1,0𝑋)
and Ω𝑛−1,𝑘(𝑋) [Huy05, Rmk. 6.1.12]. Hence, for 𝑡 ∈ 𝑈

Φ(𝑡) = ℍ[𝜖(𝑡), 𝜖(𝑡)] = 0 ⟺ ℍ(𝜂([𝜖(𝑡), 𝜖(𝑡)])) = 0.

Then, by the Tian-Todorov lemma

𝜂([𝜖(𝑡), 𝜖(𝑡)]) = −𝜂(Δ(𝜖(𝑡) ∧ 𝜖(𝑡)) − Δ(𝜖(𝑡)) ∧ 𝜖(𝑡) − 𝜖(𝑡) ∧ Δ(𝜖(𝑡)))
= −𝜕𝜂(𝜖(𝑡) ∧ 𝜖(𝑡)) + 2𝜂(𝜖(𝑡) ∧ Δ(𝜖(𝑡)))
= −𝜕(𝑖𝜖(𝑡)𝑖𝜖(𝑡)Ω) + 2𝑖𝜖(𝑡)𝜂(Δ(𝜖(𝑡)))
= −𝜕(𝑖𝜖(𝑡)𝑖𝜖(𝑡)Ω) + 2𝑖𝜖(𝑡)𝜕(𝑖𝜖(𝑡)Ω).

Since ℍ𝜕 = 0, it suffices to show

𝜕(𝑖𝜖(𝑡)Ω) = 𝜕(𝜂(𝜖(𝑡))) = 0.

Recall, we had 𝜖(𝑡) = 𝑡 − 1
2
𝑄[𝜖(𝑡), 𝜖(𝑡)]. Applying 𝜂 to this equation yields

𝜂(𝜖(𝑡)) = 𝜂(𝑡) − 𝜂 (12𝑄[𝜖(𝑡), 𝜖(𝑡)])

= 𝜂(𝑡) − 1
2𝑄𝜂([𝜖(𝑡), 𝜖(𝑡)])

= 𝜂(𝑡) − 𝑄(𝑖𝜖(𝑡)𝜕(𝑖𝜖(𝑡)Ω)) +
1
2𝑄𝜕(𝑖𝜖(𝑡)𝑖𝜖(𝑡)Ω).

Here we used that 𝜂 and 𝑄 commute, as they act on different spaces. Define Ψ ∶= 𝜂(𝜖(𝑡)). Then,

Ψ = 𝜂(𝑡) − 𝑄(𝑖𝜖(𝑡)𝜕Ψ) +
1
2𝜕𝑄(𝑖𝜖(𝑡)𝑖𝜖(𝑡)Ω).
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Since 𝑡 is ̄𝜕-harmonic, 𝜂(𝑡) is ̄𝜕-harmonic as well, implying that 𝜂(𝑡) is 𝜕-harmonic by Hodge’s theorem.
Therefore, 𝜕𝜂(𝑡) = 0 and we see

𝜕Ψ = −𝜕𝑄(𝑖𝜖(𝑡)𝜕Ψ).

Similarly to the proof of Kuranishi’s theorem, we have [LZ20, Thm. 3.7]

‖𝜕Ψ‖𝑘 < 𝑐‖𝜖(𝑡)‖𝑘‖𝜕Ψ‖𝑘 < ‖𝜕Ψ‖𝑘
for 𝑡 ∈ 𝑈. Hence, ‖𝜕Ψ‖ = 0, meaning 𝜕Ψ = 0. This concludes the proof. ∎

From this result, we conclude the local complex structure moduli space of a Calabi-Yau manifold to be
smooth, in fact complex. This is an important result which we will use in the next chapter.

Now, we would like to discuss the Kähler deformations. However, these are not our main interest.
Therefore, the discussion will be less in depth. Firstly, if we fix a Calabi-Yau manifold (𝑋, 𝐽, 𝑔) we have
the following result [Joy00, Thm. 6.2.1]

Theorem 2.3.3.
The Ricci-flat Kähler metrics on 𝑋 form a smooth family of dimension ℎ1,1, isomorphic to the Kähler cone

𝒦 ∶= {[𝜔] ∣ 𝜔 is the Kähler class of a Kähler metric on 𝑋} ⊆ 𝐻1,1(𝑋) ∩ 𝐻2(𝑋, ℝ).

It is straightforward to show that 𝒦 is an open convex cone, hence the name. For details, see [Joy00,
Sec. 4.7].

Theorem 2.3.3 gives of the Kähler moduli space for a fixed complex structure 𝐽. We wonder what
happens when we deform 𝐽. By a classical stability result due to Kodaira and Spencer [KS60] we have

Theorem 2.3.4.
There is an open neighbourhood 𝒱 of zero in 𝒯 such that 𝑋𝑡 is Kähler for all 𝜖(𝑡) ∈ 𝒱.

The proof of this theorem is beyond the scope of this work. For the interested reader, we refer to [Voi02,
Thm. 9.23]. Moreover, the Hodge numbers are well-behaved with respect to the deformation. If ℎ𝑝,𝑞𝑡
denote the Hodge numbers on 𝑋𝑡, we have [Voi02, Prop. 9.20]

Proposition 2.3.5.
Let 𝑋 be a compact Kähler manifold. Then, for 𝜖(𝑡) near 0 in 𝒯 we have ℎ𝑝,𝑞𝑡 = ℎ𝑝,𝑞.

Hence, upon possibly shrinking 𝒱, the Hodge numbers are constant. Finally, 𝑋𝑡 and 𝑋 are isomorphic as
smooth manifolds. Therefore, 𝑐1(𝑋𝑡) = 𝑐1(𝑋) = 0, as the first Chern class is a topological invariant. Now,
if we restrict to 𝒱, 𝑋𝑡 is a compact Kähler manifold with vanishing first Chern class. This is equivalent
to Hol(𝑋𝑡) ⊆ SU(𝑛) (cf. [BLT12, Sec. 14.5]). However, holonomy is lower semicontinuous [Mül22],
meaning that the holonomy of the deformation can only increase. In other words, SU(𝑛) ⊆ Hol(𝑋𝑡) and
thus Hol(𝑋𝑡) = SU(𝑛). Hence, 𝑋𝑡 is Calabi-Yau. Combining this with Theorem 2.3.3 and Theorem 2.3.2
we obtain the following result [Joy00, Cor. 6.8.2]
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Theorem 2.3.6.
Let (𝑋, 𝐽, 𝑔) be a Calabi-Yau 𝑛-fold. Then, the local moduli space of deformations of the Calabi-Yau struc-
ture of 𝑋 is a smooth manifold of dimension ℎ1,1 + 2ℎ𝑛−1,1.

Up to now, we restricted ourselves to local deformation theory, i.e. equivalence up to isomorphism
connected to identity. However, much is known about the geometry of the genuine moduli space of Calabi-
Yau manifolds. To conclude this chapter, we would like to state some of its main properties. Firstly, we
need to impose some technical conditions on the Calabi-Yau for the construction to work. We say a Calabi-
Yau manifold 𝑋 is polarized if its Kähler class [𝜔] is integral. This is a technical condition, irrelevant to our
discussion, closely related to the existence of a polarization. See [Voi02, Sec. 7.1.3] for more background.
Then, we have the following result [LS04, Thm. 2.20] due to Viehweg [Vie95, Thm. 1.13]

Theorem 2.3.7.
Themoduli spaceℳ of polarized Calabi-Yaumanifolds is a quasi-projective variety. Moreover, there exists
a compact projective varietyℳ such thatℳ ⊂ℳ is a subvariety.

A projective variety is a particular (algebraic) subset of projective space. The precise definition is not of
interest to us and we refer to [Har77]. Furthermore, a quasi-projective variety is an open subset of a pro-
jective variety. We do not wish to prove the above theorem, as the proof is highly technical. Furthermore,
it uses a lot of algebraic geometry, which we did not introduce here, as already displayed. An important
remark is that in general a quasi-projective variety may have singularities, i.e. is not smooth. However,
by a classical theorem by Hironaka [Hir64], these singularities can be resolved, making ℳ into a smooth
manifold. Moreover, ℳ is called the compactification of the moduli space and can be made smooth by
the same theorem.

Finally, the existence of ℳ is important to us in the next chapter. There, we are interested in the
asymptotic behaviour of Hodge structures near the boundary ℳsing ∶= ℳ ⧵ ℳ of ‘singular’ points13.
Consequently,ℳsing is also called the singular locus. The behaviour near the singular locus is of particular
interest to string theorists, asmany swampland conjecturesmake statements about structures thatmay appear
near the boundary (see e.g. [GPV18; LLW22; GLV20; Hei22; Li22]). In the swampland program, people
try to make general statements, i.e. conjectures, about arbitrary theories of quantum gravity. In a nutshell,
the aim is to narrow down the amount possibilities for the theory of quantum gravity. This motivates the
study of singular points in the moduli space. It turns out they admit a useful local description [LS04,
Cor. 2.21], namely ℳsing is a divisor of normal crossing. In practice, this means for 𝑥 ∈ ℳsing there is a
neighbourhood such that we can write ℳ as

(Δ∗)𝑙 × Δ𝑚−𝑙,

where Δ (Δ∗) denotes the open (punctured) unit disc and 𝑚 is the complex dimension of ℳ. We will
exploit this local expression in Section 3.5.

13The terminology comes from the fact that often one can assign singular manifolds to these boundary points.



CHAPTER3
Asymptotic HodgeTheory

I n the first chapter we argued the dependence of the four-dimensional effective action (1.13) as well
as the flux potential on the complex structure moduli and objects from Hodge theory of the internal
manifold, such as the Hodge star. Recall, in the compactification procedure, we consider a family of

internal manifolds. Because of this we studied the moduli space in the previous chapter. It turns out the
relevant objects in effective theory are strongly related to the way the cohomology of the internal mani-
fold decomposes in the Hodge decomposition theorem. Moreover, we have seen that this decomposition
depends on the complex structure, i.e. on the complex structure moduli. Therefore, as the internal mani-
fold deforms, the Hodge decomposition will change, altering the objects appearing in the effective theory.
Hence, we want to understand the change in the Hodge decomposition as we deform the internal manifold.
This leads to the concept of variation of Hodge structure, which is central in this work.

To do this, we formalize the concepts appearing in the decomposition theorem and argue abstractly.
In doing so, we unravel interesting differential- and algebraic-geometric structures. In particular, we will
see variation of Hodge structures are completely determined by a holomorphic map

Φ ∶ ℳ → Γ\𝐷

called the period map. One should think of ℳ as the complex structure moduli space of a Calabi-Yau
manifold. Moreover, Γ\𝐷 denotes the set of inequivalent Hodge decompositions on the underlying man-
ifold 𝑋 , called the classifying space. As the period map determines the variation of Hodge structure, the
behaviour of the Hodge structure near ℳsing is equivalent to the asymptotic form of Φ. These asymptotic
forms are captured by two main theorems: the nilpotent orbit theorem and the SL(2)-orbit theorem. We
will state those theorems and discuss their relation.

To already make the connection with the subsequent chapter, if a Calabi-Yau has only one complex
structure modulus,ℳ has complex dimension one. Hence, in a way, it can be seen as a (singular) Riemann
surface, i.e. a worldsheet. Furthermore, we will see that 𝐷 is a homogeneous space. Therefore, we can
schematically view the period map as a string embedding into a Lie group, i.e. a non-linear sigma-model.
Now, the period map satisfies certain equations, as we will see. Then, the main question is: can we find an
action such that the period map solves its equations of motion, i.e. produces variation of Hodge structures.
This is the central question in this work, as mentioned before.

41
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3.1 Hodge Structures

At this point we have seen how the de Rham cohomology groups of a compact Kähler manifold decompose
into so-called (𝑝, 𝑞)-forms. As is typical in mathematics, we now try to isolate the structure at play and
generalize it. The abstract object we are interested in in this section is a so-called Hodge structure. In this
section we will define and develop the theory of Hodge structures. Throughout this section one should
constantly compare the results with those from Section 2.1.2. We use [CKS86] and [Sch73] as main
references.

As mentioned above, the remarkable conclusion of the Hodge decomposition theorem was that the
vector space 𝐻𝑘(𝑋; ℂ) splits into subspaces, satisfying a certain property. This is what we want to capture
in the definition of a Hodge structure.

Definition 3.1.1.
A (pure)Hodge structure ofweight k is a finite dimensional real vector space𝐻ℝ whose complexification
𝐻ℂ = 𝐻ℝ ⊗ℂ carries a decomposition

𝐻 ∶= 𝐻ℂ = ⨁
𝑝+𝑞=𝑘

𝐻𝑝,𝑞

into a finite amount of subspaces 𝐻𝑝,𝑞, such that 𝐻𝑝,𝑞 = 𝐻𝑞,𝑝. The dimension of these subspaces ℎ𝑝,𝑞 ∶=
dim𝐻𝑝,𝑞 are called the Hodge numbers.

For clarity, even though 𝑝, 𝑞 and 𝑘 were non-negative integers in the Hodge decomposition theorem, this
is not necessary in the above definition. They are merely labels. Yet, for the purposes of this thesis it
suffices to solely consider non-negative integer values for 𝑝, 𝑞 and 𝑘, as we will be interested in the middle
cohomology of particular complex manifolds.

Definition 3.1.1 is a nice abstraction of the results we encountered before. Yet, it has some downsides
which are not apparent at this point. We will comeback to these disadvantages in Section 3.3. Luckily,
there is an equivalent definition of a Hodge structure that circumvents these issues. Namely, through the
Hodge filtration. In this language, a Hodge structure of weight 𝑘 is a pair (𝐻ℝ, 𝐹), with 𝐻ℝ a real vector
space as above and 𝐹 a finite decreasing filtration

⋯ ⊇ 𝐹𝑝 ⊇ 𝐹𝑝+1 ⊇ ⋯ , 𝑝 ∈ ℤ

of subspaces of 𝐻 = 𝐻ℂ, satisfying

𝐻 = 𝐹𝑝 ⊕ 𝐹𝑘−𝑝+1 (3.1)

for every 𝑝 ∈ ℤ.

Proposition 3.1.2.
There is a one-to-one correspondence between Hodge decompositions of weight 𝑘 as in Definition 3.1.1 and
Hodge filtrations described above. The correspondence is given by equations (3.2) and (3.3) below.

Proof.— From a Hodge decomposition one easily constructs a Hodge filtration by setting

𝐹𝑝 ∶=⨁
𝑖≥𝑝

𝐻𝑖,𝑘−𝑖. (3.2)



3.1. Hodge Structures 43

We then see

𝐹𝑝 ⊕ 𝐹𝑘−𝑝+1 =⨁
𝑖≥𝑝

𝐻𝑖,𝑘−𝑖 ⊕ ⨁
𝑗≥𝑘−𝑝+1

𝐻𝑗,𝑘−𝑗

=⨁
𝑖≥𝑝

𝐻𝑖,𝑘−𝑖 ⊕ ⨁
𝑗≥𝑘−𝑝+1

𝐻𝑘−𝑗,𝑗

= (⋯⊕𝐻𝑝+1,𝑘−𝑝−1 ⊕𝐻𝑝,𝑘−𝑝) ⊕ (𝐻𝑝−1,𝑘−𝑝+1 ⊕𝐻𝑝−2,𝑘−𝑝+2 ⊕…)
= ⨁

𝑝+𝑞=𝑘
𝐻𝑝,𝑞

= 𝐻.

Hence, the filtration in (3.2) defines a Hodge filtration. On the other hand, given a Hodge filtration, we
can recover the Hodge decomposition by setting

𝐻𝑝,𝑞 = 𝐹𝑝 ∩ 𝐹𝑞. (3.3)

Then, one readily sees that 𝐻𝑞,𝑝 = 𝐻𝑝,𝑞 holds. Furthermore1,

⨁
𝑝+𝑞=𝑘

𝐻𝑝,𝑞 = ⨁
𝑝+𝑞=𝑘

𝐹𝑝 ∩ 𝐹𝑞

= (𝐹𝑘 ∩ 𝐹0) ⊕ (𝐹𝑘−1 ∩ 𝐹1) ⊕⋯⊕ (𝐹1 ∩ 𝐹𝑘−1) ⊕ (𝐹0 ∩ 𝐹𝑘)
= 𝐹𝑘 ⊕ (𝐹𝑘−1 ∩ 𝐹1) ⊕⋯⊕ (𝐹1 ∩ 𝐹𝑘−1) ⊕ 𝐹𝑘

= (𝐹𝑘−1 ∩ (𝐹𝑘 ⊕ 𝐹1)) ⊕⋯⊕ ((𝐹1 ⊕ 𝐹𝑘) ∩ 𝐹𝑘−1)
= (𝐹𝑘−1 ∩ 𝐻) ⊕ (𝐹𝑘−2 ∩ 𝐹2) ⊕⋯⊕ (𝐹2 ∩ 𝐹𝑘−2) ⊕ (𝐻 ∩ 𝐹𝑘−1)
⋮

=
⎧
⎨
⎩

𝐹
𝑘
2 ⊕ 𝐹

𝑘
2+1, 𝑘 even

𝐹
𝑘+1
2 ⊕ 𝐹

𝑘+1
2 , 𝑘 odd

= 𝐻.

In this computation we repeatedly used the identity 𝐹𝑝 ⊕ (𝐹𝑝−1 ∩ 𝐹𝑘−𝑝+1) = (𝐹𝑝 ⊕ 𝐹𝑘−𝑝+1) ∩ 𝐹𝑝−1
and the condition 𝐹𝑝 ⊕ 𝐹𝑘−𝑝+1 = 𝐻. We conclude that Hodge structures and Hodge filtrations are in
bijection. ∎

Because of the equivalence established in the above proposition, we use both formulations interchangeably.
Now that we have generalized some of the findings from before, it makes sense to wonder which

objects can translated from Section 2.1.2 to this new language. One object that will be important for us
later is the generalization of the Hodge star, the so-called Weil operator. Given a Hodge structure of 𝐻,
it is defined as a linear map 𝐶 ∶ 𝐻 → 𝐻 such that

𝐶𝑣 = 𝑖𝑝−𝑞𝑣, 𝑣 ∈ 𝐻𝑝,𝑞.

1For simplicity, we assume 𝑝, 𝑞, 𝑘 to be non-negative integers.
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The Weil operator will be a pivotal object in our discussion in Chapter 4. Therefore, we investigate how it
interacts with Hodge structures. Firstly, we can define an operator 𝑄 ∶ 𝐻 → 𝐻 that measures the Hodge
decomposition of 𝐻 by

𝑄𝑣 ∶= (𝑝 − 𝑘/2)𝑣, for 𝑣 ∈ 𝐻𝑝,𝑞.

It is called the charge operator and it can be used to compute the Weil operator via

𝐶 = 𝑒𝑖𝜋𝑄 = (−1)𝑄.

Notice, it satisfies 𝑄 = −𝑄, i.e. it is purely imaginary. Secondly, inspiration is found in Section 2.1.2,
where we saw that the 𝑘-th cohomology group carried a bilinear form that, combined with the Hodge star,
defined a positive definite Hermitian form compatible with the Hodge decomposition. This leads to the
notion of a polarization:

Definition 3.1.3.
A polarization for a Hodge structure (𝐻ℝ, 𝐹) of weight 𝑘 is is a bilinear form 𝑆 defined overℝ, such that

𝑆(𝑣, 𝑤) = (−1)𝑘𝑆(𝑤, 𝑣) 𝑣, 𝑤 ∈ 𝐻
𝑆(𝐹𝑝, 𝐹𝑘−𝑝+1) = 0, for every 𝑝
𝑆(𝐶𝑣, 𝑣) > 0, for 𝑣 ∈ 𝐻 ⧵ {0}.

The triple (𝐻ℝ, 𝐹, 𝑆) is called a polarizedHodge structure.

In terms of the Hodge decomposition of 𝐻, the second property in the definition above becomes

𝑆(𝐻𝑝,𝑞, 𝐻𝑟,𝑠) = 0, if (𝑝, 𝑞) ≠ (𝑠, 𝑟), (3.4)

which is called the first bilinear relation. Moreover, the third condition in the definition above is often
referred to as the second bilinear relation.

Note, the primitive cohomology on a compact Kähler manifold equipped with the bilinear form (2.9)
is an example of a polarized Hodge structure. This proves existence of such structures. However, given
a complex vector space 𝐻, one could ask how many inequivalent (polarized) Hodge structures it enjoys.
This is the central question of the next section.

3.2 TheClassifying Space of Hodge Structures

We have seen that the primitive cohomology groups on compact Kähler produce examples of polarized
Hodge structures. However, given such a cohomology group, one might wonder whether there exist mul-
tiples Hodge structures. This leads to the concept of the classifying space, which was first introduced by
Griffiths in [Gri68a]. Initially, it was known under the name of period domain and is denoted by 𝐷. The
idea is that every point in the classifying space corresponds to a (polarized) Hodge structure. In this sec-
tion will we discuss the geometry and properties of this space. One of the main results, that is particularly
interesting for our purposes, is the fact that the classifying space is a homogeneous space. In this section
our main references are [Sch73; Voi02; CMP17].

Before we can start our discussion, we need some initial data. To describe the classifying space we fix
(see [Sch73, Sec. 3])

• a real vector space 𝐻ℝ with complexification 𝐻 ∶= 𝐻ℂ,
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• a weight 𝑘 and a collection of Hodge numbers {ℎ𝑝,𝑞}𝑘=𝑝+𝑞 ⊂ ℕ, such that ℎ𝑝,𝑞 = ℎ𝑞,𝑝 and∑ℎ𝑝,𝑞 =
dim𝐻ℝ.

Keeping the equivalent description through filtrations in mind (cf. Prop. 3.1.2), we define

𝑓𝑝 ∶= ∑
𝑖≥𝑝

ℎ𝑖,𝑘−𝑖.

Now, let ̂ℱ denote the set of all decreasing filtrations of 𝐻 such that dim𝐹𝑝 = 𝑓𝑝. Note, elements of ̂ℱ
will not necessarily be Hodge filtrations, however they naturally sit inside ̂ℱ. Therefore, we take a closer
look at the geometry of ̂ℱ.

First, note that an element in ̂ℱ corresponds to a collection of subspaces of𝐻ℂ of particular dimensions,
namely 𝑓𝑝. Hence, we can view ̂ℱ as a subset of a product of Grassmannians2. To be more concrete,

̂ℱ ⊂ Grass(𝑓0, 𝐻) ×⋯ ×Grass(𝑓𝑘, 𝐻).

It is known that the Grassmannian is a compact complex manifold (see [Voi02, Sec. 10.1.1]) and the
above embedding defines a complex submanifold of Grass(𝑓0, 𝐻) × ⋯ × Grass(𝑓𝑘, 𝐻) (cf. [Voi02, Sec.
10.1.3]). This suggests that ̂ℱ has the structure of a complex manifold. This turns out to be the case, as
̂ℱ admits a transitive and holomorphic action of GL(𝐻) [Sch73, Sec. 3]. For completeness, the action is

given by rotating all the subspaces in the filtration by 𝑔 ∈ GL(𝐻), i.e.

(𝑔 ⋅ 𝐹)𝑝 ∶= 𝑔(𝐹𝑝) (3.5)

for 𝐹 ∈ ℱ.
Using this description, we can denote the set of Hodge filtrations by

ℱ = {𝐹 ∈ ̂ℱ ∣ 𝐻 = 𝐹𝑝 ⊕ 𝐹𝑘−𝑝+1 for each 𝑝} ⊂ ̂ℱ.

Note, the condition (3.1) is open. Hence, ℱ is an open subset of ̂ℱ and therefore inherits a complex
manifold structure. Moreover, by Proposition 3.1.2, we see ℱ parameterizes Hodge structures on 𝐻 of
weight 𝑘 with Hodge numbers ℎ𝑝,𝑞, i.e. it is the unpolarized classifying space.

Let us now look into polarized Hodge structures. For this, we additionally fix a bilinear form 𝑆 defined
over ℝ on 𝐻, such that 𝑆(𝑣, 𝑤) = (−1)𝑘𝑆(𝑤, 𝑣). Recall, a polarized Hodge structure is a Hodge structure
satisfying two conditions regarding the polarization 𝑆 (cf. Definition 3.1.3). With this in mind, we define

𝐷̂ ∶= {𝐹 ∈ ̂ℱ ∣ 𝑆(𝐹𝑝, 𝐹𝑘−𝑝+1) = 0 for all 𝑝} .

Moreover, in view of Definition 3.1.3, it also makes sense to define

𝐷 ∶= {𝐹 ∈ 𝐷̂ ∣ 𝑆(𝐶𝑣, 𝑣) > 0 for 𝑣 ∈ 𝐻 ⧵ {0}} . (3.6)

We have suggestively denote this subset of 𝐷̂ by 𝐷, as it precisely is the classifying space for polarized
Hodge structures of weight 𝑘, with Hodge numbers {ℎ𝑝,𝑞}. Indeed, for 𝐹 ∈ 𝐷, one readily sees that
dim𝐹𝑝 + dim𝐹𝑘−𝑝+1 = 𝑓𝑝 + 𝑓𝑘−𝑝+1 = dim𝐻 and that 𝐹𝑝 ∩ 𝐹𝑘−𝑝+1 = 0. Hence, every 𝐹 ∈ 𝐷 satisfies
condition (3.1), meaning it defines a Hodge structure.

Consequently, to understand the geometry of𝐷, one can first study 𝐷̂. First of all, note that the defining
property in (3.6) is an open condition, meaning that 𝐷 is an open set inside 𝐷̂. Furthermore, interesting

2Even more so, as elements are decreasing filtrations, one can view ̂ℱ as a flag space.
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features of the latter were noticed in [Gri68a]. To state these, we need to consider the orthogonal group
of the form 𝑆, i.e.

𝐺ℂ ∶= {𝑔 ∈ GL(𝐻) ∣ 𝑔∗𝑆 = 𝑆}.

Note, as elements of 𝐺ℂ preserve the polarization, the first bilinear relation is left invariant by the action
of 𝐺ℂ. Hence, the group 𝐺ℂ acts naturally on 𝐷̂ via (3.5). This action allows us to probe the geometry of
𝐷̂, as can be seen by the following result, first shown by Griffiths in [Gri68a].

Proposition 3.2.1.
The group 𝐺ℂ acts transitively on 𝐷̂.

The proof of the above proposition relies on elementary, yet tedious, arguments from linear algebra. For
our purposes, it is not very enlightening and thus we omit it here. However, it has interesting conse-
quences:

Corollary 3.2.2.
The space 𝐷̂ is a complex manifold.

Proof.— From Proposition 3.2.1 it follows that 𝐷̂ is a so-called nonsingular variety3. It is a known fact
from algebraic geometry that a nonsingular variety can be made into a complex manifold (see e.g. [Ara12,
Cor. 2.5.16]). ∎

From Corollary 3.2.2 we directly conclude that 𝐷 inherits the structure of a complex manifold, as it is an
open subset of 𝐷̂. Even more so, a result similar to Proposition 3.2.1 holds true. To see this, we consider
the real elements in 𝐺ℂ:

𝐺ℝ ∶= {𝑔 ∈ GL(𝐻ℝ) ∣ 𝑔∗𝑆|𝐻ℝ
= 𝑆|𝐻ℝ

} .

Note, 𝐺ℝ defines a Lie group since it is a closed subgroup of GL(𝐻ℝ). Furthermore, as 𝐺ℝ consists of real
elements, it preserves the third condition in Definition 3.1.3. Hence, 𝐺ℝ defines an action on 𝐷. Again,
using linear algebra, one can show (cf. [Gri68a]):

Proposition 3.2.3.
The group 𝐺ℝ acts transitively on 𝐷.

Propositions 3.2.1 and 3.2.3 show 𝐷̂ and 𝐷 are homogeneous spaces, meaning they can be realized as
quotients of 𝐺ℂ and 𝐺ℝ, respectively. To make this manifest, we fix a reference Hodge filtration 𝐹0 ∈ 𝐷.
Using this reference structure, we can define the following isotropy groups, corresponding to the action
(3.5),

𝐵 ∶= {𝑔 ∈ 𝐺ℂ ∣ 𝑔 ⋅ 𝐹0 = 𝐹0} , 𝑉 = 𝐺ℝ ∩ 𝐵.

Now, we can identify

𝐷̂ ≅ 𝐺ℂ/𝐵, 𝐷 ≅ 𝐺ℝ/𝑉.
3This is a concept from algebraic geometry, which is not particularly crucial to us. Hence, we omit the details here. For more

background, we refer to [Har77].
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For later reference, let 𝔤ℂ, 𝔤ℝ, 𝔟, 𝔳 denote the Lie algebras of 𝐺ℂ, 𝐺ℝ, 𝐵 and 𝑉 , respectively. Note, one
readily sees that 𝑆(𝑄⋅, ⋅) + 𝑆(⋅, 𝑄⋅) = 0, meaning 𝑄 ∈ 𝔤ℂ. Consequently, as 𝑄 is purely imaginary and
𝐶 = exp(𝜋𝑖𝑄), we see 𝐶 ∈ 𝐺ℝ.

The isotropy 𝑉 is particularly nice, as it easily follows that [Sch73, Sec. 3]

Proposition 3.2.4.
The isotropy group 𝑉 is compact.

A direct consequence of this is that any discrete subgroup Γ of 𝐺ℝ acts properly discontinuous4 on 𝐷.
Consequently, the complex structure on𝐷makes the quotient Γ\𝐷 ∶= 𝐷/Γ into a complex analytic variety
[Sch73]. This does not mean that Γ\𝐷 is smooth, however its singularities are well-behaved. This is the key
difference between 𝐷 and 𝐷̂, as the analogous statement for 𝐷̂ is false. This is one of the main motivations
of considering polarized Hodge structures.

One could wonder which homogeneous spaces could realize the classifying space of (polarized) Hodge
structures. This depends on the weight 𝑘 and can be deduced through elementary linear algebra consider-
ations. This is done in [CMP17, Ch. 4]. Moreover, if one restricts itself to polarized Hodge structures, a
complete classification of 𝐷 is known (see [CMP17, Prop. 4.4.4])

Proposition 3.2.5.
Let 𝐷 = 𝐺ℝ/𝑉 be the classifying space of a weight 𝑘 polarized Hodge structure (𝐻ℝ, 𝐹, 𝑆) with Hodge
numbers {ℎ𝑝,𝑞} and dim𝐻 = 2𝑛. Then,

i) For odd weight 𝑘 = 2𝑚 + 1, we have

𝐺ℝ ≅ Sp(2𝑛, ℝ), 𝑉 ≅ ∏
𝑝≤𝑚

U(ℎ𝑝,𝑞).

In this situation, 𝐷 = 𝐺ℝ/𝑉 is connected and non-compact

ii) For even weight 𝑘 = 2𝑚, we have

𝐺ℝ ≅ SO(𝑠, 𝑡), 𝑉 ≅ ∏
𝑝<𝑚

U(ℎ𝑝,𝑞) × SO(ℎ𝑚,𝑚),

where 𝑠 = ∑𝑝 even ℎ𝑝,𝑞 and 𝑡 = ∑𝑝 odd ℎ𝑝,𝑞. In this situation, 𝐷 = 𝐺ℝ/𝑉 is compact and connected
if either 𝑠 = 0 or 𝑡 = 0, otherwise it consists of two isomorphic connected components.

Example 3.2.6 (Period domain torus).
Recall, on the 2-torus 𝕋2, the Hodge decomposition is completely determined by the period vector
𝚷 = (𝐴, 𝐵). This fixed the holomorphic (1, 0)-form Ω. However, scalar multiples of 𝚷 produce
the same Hodge decomposition. Hence, we may set 𝐴 = 1. In that case, we know from Example
2.1.24

Im(𝐵) > 0.

Moreover, we say that any Hodge structure was automatically polarized. Hence, the classifying

4This means every element of 𝐷 has a neighbourhood 𝑈 such that 𝛾 ⋅ 𝑈 ∩𝑈 = ∅ for every 𝛾 ∈ Γ ⧵ {𝑒}.
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space of a weight one polarized Hodge structure on 𝕋2 is given by 𝐷 = ℍ, the upper half-plane.
This agrees with the proposition above, as Sp(2, ℝ) = SL(2, ℝ) and ℍ = SL(2, ℝ)/U(1). ♦

3.3 Variation of Hodge Structure

In Section 1.4 we saw that the effective four dimensional theory depends on the moduli parameters of
the internal Calabi-Yau threefold. Moreover, the flux potential (1.14) depends heavily on objects coming
from the Hodge structure on the middle cohomology of the threefold. However, the decomposition of the
middle cohomology is not constant in the complex structure moduli. Therefore, we need to understand
how the Hodge structure changes when we deform the internal manifold. This is captured in the notion
of a variation of Hodge structure. In this section we will define and describe features of such a variation,
mostly from an abstract point of view. Our main references are [CKS86; Sch73; Voi02; CMP17].

If we started with the abstract definition of a variation of Hodge structure directly, it would feel rather
arbitrary. Therefore, we would like to motivate the definition by first considering the compact Kähler case
and extrapolate the properties. Hence, we consider a family of compact Kähler manifolds. Up to now we
have been rather informal with the term ‘family’. Let us define it properly

Definition 3.3.1.
A family of complex manifolds is a proper holomorphic surjective submersion 𝜋 ∶ 𝒳 → ℳ between
connected complex manifolds.

Given a family, it follows the fibers 𝑋𝑡 ∶= 𝜋−1(𝑡) are compact complex submanifold of 𝒳. If we pick a
reference point 𝑡0 ∈ ℳ and set 𝑋 ∶= 𝑋𝑡0 , we can view ℳ as the space parameterizing deformations of 𝑋 .
For example, ℳ could correspond to the complex structure moduli space of a Calabi-Yau threefold. This
is justified by the following result5 [Voi02, Prop. 9.5]

Theorem 3.3.2 (Ehresmann).
Let𝜋 ∶ 𝒳 → ℳ be a family of complex manifolds with reference point 𝑡0 ∈ ℳ. Then, in a neighbourhood
𝑈 of 𝑡0 there exists a trivialization

𝑇 = (𝑇0, 𝜋) ∶ 𝒳
≅
Ð→ 𝑋 ×𝑈

overℳ, such that the fibers of 𝑇0 are complex submanifolds of𝒳.

Note, the map 𝑇0 induces a diffeomorphism 𝑋𝑡 ≅ 𝑋 for every 𝑡 ∈ 𝑈. However, in general 𝑇0 is not
holomorphic as the fibers will typically not be isomorphic as complex manifolds. Yet, we can use this
diffeomorphism to transport the complex structure on 𝑋𝑡 to 𝑋 , meaning the family describes a complex
structure deformation. Since the fibers of 𝑇0 are complex submanifolds, it follows that the family of
complex structures parameterized by𝑈 ⊂ ℳ varies holomorphically with 𝑡 ∈ 𝑈. We already encountered
examples of families in Chapter 2, namely the Kuranishi family of compact manifolds and compact Kähler
manifolds. The latter is of particular interested this section. By Theorem 2.3.4, upon shrinkingℳ we may
assume all fibers 𝑋𝑡 are compact Kähler manifolds.

Now, fix a family 𝜋 ∶ 𝒳 → ℳ of compact Kähler manifolds. By the Hodge decomposition theo-
rem, the 𝑘th cohomology group of the fibers 𝑋𝑡 decompose into (𝑝, 𝑞)-forms. However, since 𝑋𝑡 ≅ 𝑋

5To be precise, Ehresmann’s theorem is about smooth manifolds, see [Voi02, Thm. 9.3]. However, we only need the more precise
result for complex manifolds.
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as smooth manifolds, 𝑇0 induces an isomorphism 𝐻𝑘(𝑋𝑡, ℂ) ≅ 𝐻𝑘(𝑋, ℂ). Meaning we can transport the
decomposition on 𝐻𝑘(𝑋𝑡, ℂ) to 𝐻𝑘(𝑋, ℂ). Thus, we can view H𝑝,𝑞 ∶= {𝐻𝑝,𝑞(𝑋𝑡, ℂ)} as a family or ‘varia-
tion’ of Hodge structures on the fixed vector space 𝐻𝑘(𝑋, ℂ), parameterized by 𝑡 ∈ ℳ. Furthermore, we
can assemble the 𝐻𝑘(𝑋𝑡, ℂ) together into a holomorphic vector bundle [CMP17, Sec. 4.3]

H𝑘 ∶= {𝐻𝑘(𝑋𝑡, ℂ)}𝑡∈ℳ →ℳ

over ℳ. By restricting to cohomology with values in ℝ and ℤ, we obtain a subbundle H𝑘
ℝ and lattice

bundle H𝑘
ℤ in H𝑘. Furthermore, since the Hodge numbers are locally constant (cf. Proposition 2.3.5), the

H𝑝,𝑞 define smooth subbundles of H𝑘 (again, possibly after shrinkingℳ). Note, intuitively, the geometry
of the subbundles H𝑝,𝑞 dictate the variation of the Hodge structure on 𝐻𝑘(𝑋, ℂ). Thus we will study its
geometric structure.

Firstly, it turns out the bundles H𝑝,𝑞 do not define holomorphic vector bundles, i.e. the fibers to do not
vary holomorphically over the base ℳ. However, we can define the filtration

F𝑝 ∶=⨁
𝑖≥𝑝

H𝑖,𝑘−𝑖

analogous to (3.2), which will behave more nicely. As the Hodge numbers are locally constant, so are 𝑓𝑝,
making F𝑝 into smooth subbundles. Note, the geometry of H𝑝,𝑞 is encoded in the geometry of the F𝑝.
Hence, we study the latter.

To vector bundle H𝑘 comes equipped with a flat connection. To see this, note

H𝑘 = H𝑘
ℤ ⊗𝒪(ℳ),

where 𝒪(ℳ) denotes the sheaf of holomorphic functions6. For completeness, this means we can identify
H𝑘

ℤ with a local system (cf. [Voi02, Sec. 9.2.1]). Then, the connection

∇ ∶ Γ(H𝑘) → Ω1(ℳ,H𝑘), ∇𝜎 = ∑
𝑖
𝜎𝑖 ⊗ 𝑑𝛼𝑖,

where 𝜎 = ∑𝑖 𝛼𝑖𝜎𝑖 in a local trivialization, is well-defined and flat. This is a generic feature of local systems.
This connection is called the Gauss-Manin connection.

It is now possible to state one of the fundamental theorems of variations of Hodge structures, which
is due to Griffiths [Gri68a]

Theorem 3.3.3 (Transversality).
The subbundles F𝑝 ⊂ H𝑘 are holomorphic subbundles. Furthermore, for each 𝑝 they satisfy

∇Γ(F𝑝) ⊂ Ω1(ℳ,F𝑝−1). (3.7)

The fact F𝑝 are holomorphic subbundles as opposed to H𝑝,𝑞, make them the preferred objects to study.
This was the property we were hinting at in Section 3.1. Moreover, property (3.7) is referred to as Griffiths
transversality and implies that the bundles F𝑝 can not change arbitrarily.

From the discussion above, we extrapolate the following definition

6One should think of this space as the set {𝑓 ∶ 𝑈 → ℂ ∣ 𝑈 ⊂ℳ open, 𝑓 holomorphic}.
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Definition 3.3.4.
A variation of Hodge structure is a flat real vector bundle (Hℝ, ∇) over a connected complex manifold
ℳ such thatH ∶= Hℝ ⊗ℂ comes together with a filtration by holomorophic subbundles

⋯ ⊃ F𝑝 ⊃ F𝑝−1 ⊃ ⋯

defining a Hodge structure on every fiber such that

∇Γ(F𝑝) ⊂ Ω1(ℳ,F𝑝−1). (3.8)

Note, the rank of H determines the weight of the Hodge structures on the fibers. Furthermore, in the
discussion above there also was a flat latticeHℤ. One could replace the connection by a local systemHℤ in
the definition above such that ∇ becomes the Gauss-Manin connection, as is done in [Sch73]. However,
for our purposes the above definition is sufficient. Moreover, we will denote a variation of Hodge structure
by the data (ℳ,H, ∇,Hℝ,F•). Finally, condition (3.8) is also referred to as horizontality and is frequently
denoted by [CMP17, Ch. 4]

𝜕F𝑝
𝜕𝑧 ⊂ F𝑝−1.

Finally, one can repeat the discussion above for polarized Hodge structures. Since it is completely
analogous, we omit it here. In the end, the relevant structure is captured in the following definition

Definition 3.3.5.
A variationof polarizedHodge structure consists of a variation of Hodge structure (ℳ,H, ∇,Hℝ,F•)
together with a bilinear form S ∈ Γ(H∗ ⊗H∗) defined over ℝ such that

i) S induces a polarization on every fiber 𝐻𝑡

ii) S is flat, meaning

𝑑S(𝜎, 𝜎′) = S(∇𝜎, 𝜎′) + S(𝜎, ∇𝜎′),

for 𝜎, 𝜎′ ∈ Γ(H).

Example 3.3.6 (Calabi-Yau threefolds).
To illustrate the usefulness of the horizontality condition (3.8), let us consider a family of Calabi-
Yau threefolds 𝑌3(𝑡). Here 𝑡 denotes the complex structure modulus. Then, the Hodge structure on
the middle cohomology is given by

𝐹3(𝑡) ⊂ 𝐹2(𝑡) ⊂ 𝐹1(𝑡) ⊂ 𝐹0(𝑡) = ℂ2(ℎ2,1+1),

where 𝐹3(𝑡) is spanned by the holomorphic (3, 0)-form Ω(𝑡) on 𝑌3(𝑡). Analogously to Example
(2.1.24), we pick an integral homology basis Γ𝑖 ∈ 𝐻3(𝑌3, ℤ). Then, we can expand Ω(𝑡) in the dual
basis 𝛾𝑖 ∈ 𝐻3(𝑌3, ℤ)

Ω(𝑡) = Π𝑖(𝑡)𝛾𝑖, Π𝑖(𝑡) = ∫
Γ𝑖
Ω(𝑡).
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Now, in the Calabi-Yau threefold case, horizontality yields a completeness principle [Gri68b]: the
Hodge filtration is completely determined by the period vector 𝚷(𝑡). To be precise, we have

𝐹𝑝(𝑡) = span {𝜕𝑖1 ⋯𝜕𝑖𝑚𝚷(𝑡) ∣ 0 ≤ 𝑚 ≤ 3 − 𝑝} .

Consequently, the period vector contains all the information about the variation of Hodge structure
for Calabi-Yau threefolds. ♦

3.4 The PeriodMap

The intuitive idea behind a variation of Hodge structure is to assign a (polarized) Hodge structure on a
fixed vector space 𝐻 to every 𝑡 in a parameter space ℳ in a holomorphic fashion. If we restrict ourselves
to polarized Hodge structures, this hints to a map ℳ → 𝐷. This map is central in this section and its
well-definedness depends on the topology of ℳ.

Indeed, given a variation of polarized Hodge structure (ℳ,H, ∇,Hℝ,F•,S), one can transfer the data
on a typical fiber 𝐻 ∶= H𝑡0 to different fiber H𝑡 via parallel transport. Since ∇ is flat, this only depends
on the homotopy class of the path connecting 𝑡0 and 𝑡 in ℳ. In particular, one can consider loops based
at 𝑡0. In general, the transported data along a loop is not equal to the original. This failure is captured by
the monodromy representation

𝜌 ∶𝜋1(ℳ, 𝑡0) → GL(𝐻), [𝛾] → 𝑃𝛾.
Therefore, if the topology of ℳ is non-trivial there might exist a loop 𝛾 based at 𝑡0 such that

F𝑝𝑡0 ≠ 𝑃𝛾(F𝑝𝑡0).
Thus, to every 𝑡 ∈ ℳ we can assign a polarized Hodge structure up to monodromy. To make this precise,
let Γ ∶= 𝜌(𝜋1(ℳ, 𝑡0)). Then, we have a well-defined map

Φ ∶ ℳ → Γ\𝐷,
called the periodmap. Here, Γ\𝐷 denotes the quotient of𝐷 under the monodromy action described above.
As 𝐷 already is a quotient, the notation Γ\𝐷 is introduced for the quotient.

The period map was introduced by Griffiths and its properties were studied in [Gri68b]. We want
to state some of those properties. For this, note Γ is discrete and Γ ⊂ 𝐺ℝ. The latter follows from the
flatness of S. Hence, Γ\𝐷 is a complex analytic variety (cf. Section 3.2). Practically, this means a notion
of holomorphicity exists. Therefore, the following statement is sensible.

Theorem 3.4.1 (Griffiths).
The period map Φ ∶ ℳ → Γ\𝐷 is holomorphic.

For a proof we refer to [Voi02, Thm. 10.9]. In the literature, the holomorphicity is often written as
𝜕F𝑝
𝜕 ̄𝑧 ⊂ F𝑝.

Upon locally lifting to the universal covering ℳ̃ of ℳ, we obtain a holomorphic map Φ̃ ∶ ℳ̃ → 𝐷
such that

ℳ̃ 𝐷

ℳ Γ\𝐷Φ

Φ̃
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commutes. In other words,

Φ̃([𝛾] ⋅ 𝑧) = 𝜌([𝛾]) ⋅ Φ̃(𝑧), 𝑧 ∈ ℳ̃, [𝛾] ∈ 𝜋1(ℳ).

One can use this lift to translate the horizontality condition (3.8) in terms of Φ. It turns out that the
holomorphic tangent bundle 𝑇1,0𝐷 of 𝐷 may be viewed as a subbundle of ⨁𝑝 Hom(F𝑝,H/F𝑝) [Sch73].
By intersecting 𝑇1,0𝐷 with Hom(F𝑝,F𝑝−1/F𝑝) one obtains a holomorphic subbundle 𝑇1,0ℎ 𝐷, called the
horizontal tangent bundle. The horizontality condition then becomes

𝑑Φ̃(𝑇1,0ℳ) ⊂ 𝑇1,0ℎ 𝐷. (3.9)

We say Φ is locally liftable and its local lifts satisfy the horizontality condition.
Conversely, given a locally liftable holomorphic map ℳ → Γ\𝐷 who local lifts are horizontal, i.e.

satisfy (3.9), the variation of Hodge structure is completely determined. Hence, we found an alternative
description of variation of Hodge structures.

3.5 Asymptotic Behaviour

With the concepts developed so far, we are able to describe the behaviour of Hodge structures near the
boundary of the moduli space. There, the Hodge decomposition theorem could in principle fail and we
are interested in the structures that may arise. By the previous section, we know these structures are
captured by the form of the period map Φ near ℳsing. Furthermore, by Theorem 2.3.7 and the discussion
afterwards, we may assume that ℳ is Zariski-open in a compact complex manifold ℳ [CKS86]. Now, if
the codimension of ℳsing is at least two, it turns out Φ has a holomorphic, locally liftable continuation to
ℳ [Sch73]. Hence, we may restrict ourselves to the codimension-one case, in which we can takeℳsing to
be a divisor of normal crossing. Finally, in the compact Kähler case one can show the local monodromy to
be quasi-unipotent. Hence, we may assume this as well. Before we can state the celebrated orbit theorems,
we need to introduce the setup.

We are interested in the local study of the singularities of the period map. Hence, we may view Φ as a
map (Δ∗)𝑙 × Δ𝑚−𝑙 → Γ\𝐷 (cf. Section 2.3). The associated monodromy group Γ is Abelian, as 𝜋1(Δ∗) is.
Let 𝛾1,… , 𝛾𝑙 denote a set of commuting generators. Here 𝛾𝑗 ⋅ 𝑣 denotes the clockwise parallel transport
of 𝑣 around the 𝑗th puncture. Note, the universal cover of the punctured disc Δ∗ is given by the upper-half
planeℍ via the exponential map 𝑡 ↦ 𝑒2𝜋𝑖𝑡 = 𝑧. In this case the singularity at 𝑧 = 0 corresponds to 𝑡 → 𝑖∞
(see Figure 3.1). Furthermore, encircling the puncture in Δ∗ corresponds to 𝑡 ↦ 𝑡+1 in ℍ. Consequently,
the lift of Φ is a mapping

Φ̃ ∶ ℍ𝑙 × Δ𝑚−𝑙 → 𝐷,

satisfying

Φ̃(𝑡1,… , 𝑡𝑗 + 1,… , 𝑡𝑙, 𝑤𝑙+1,… ,𝑤𝑚) = 𝛾𝑗 ⋅ Φ̃(𝑡1,… , 𝑡𝑙, 𝑤𝑙+1,…𝑤𝑚).

Here, we dropped the representation 𝜌 from the notation. By assumption, the monodromy generators 𝛾𝑗
are quasi-unipotency, meaning there exist positive integers 𝑠𝑗 , 𝑛𝑗 such that

(𝛾𝑠𝑗𝑗 − 1)𝑛𝑗 = 0.

By the coordinate transformation 𝑧 → 𝑧𝑘 on the base, for some 𝑘, it follows that one can set 𝑠𝑗 = 1, for
all 𝑗. Consequently, we may assume the 𝛾𝑗 to be unipotent.
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𝑖∞

𝛾

ℳ

Figure 3.1: An example of a non-trivial monodromy generator 𝛾 looping around a point on the boundary
of the moduli space ℳ, corresponding to 𝑡 → 𝑖∞.

Then, we may define

𝑁𝑗 ∶= log(𝛾𝑗) =
∞
∑
𝑘=1

(−1)𝑘+1 1𝑘(𝛾𝑗 − 1)𝑘

These transformations are known as monodromy logarithms or log-monodromy transformations. Since
Γ ⊂ 𝐺ℝ, we see 𝑁𝑗 ∈ 𝔤ℝ. Moreover, from their definition we readily see that the 𝑁𝑗 are nilpotent.

Using the monodromy logarithms, we can construct a holomorphic map

Ψ̃ ∶ ℍ𝑙 × Δ𝑚−𝑙 → 𝐷̂, Ψ̃(𝑡, 𝑤) = exp(−
𝑙
∑
𝑗=1

𝑡𝑗𝑁𝑗) ⋅ Φ̃(𝑡, 𝑤).

Some remarks are in order. Firstly, the target has been enlarged. Indeed, in general the element ∑𝑡𝑗𝑁𝑗
is complex and thus lies in 𝔤ℂ. Furthermore, from their construction we see 𝐺ℂ ⋅ 𝐷 = 𝐷̂. Therefore, Ψ̃
maps into 𝐷̂. Secondly, even though the definition of Ψ̃ looks complicated, it is a simpler map regarding
monodromy. Note, Ψ̃ is invariant under 𝑡𝑗 ↦ 𝑡𝑗 + 1. Intuitively, the exponent in Ψ̃ precisely undoes the
monodromy of Ψ̃. Consequently, Ψ̃ descends to a holomorphic map

Ψ ∶ (Δ∗)𝑙 × Δ𝑚−𝑙 → 𝐷̂.

Now, the nilpotent orbit theorem states that this map captures the asymptotic behaviour of the period map.
Let us focus on the precise statement in the next section.

3.5.1 Nilpotent OrbitTheorem
At this stage we can state the first main theorem in asymptotic Hodge theory due to Schmid [Sch73]: the
nilpotent orbit theorem. Let us start with the definition of a nilpotent orbit following [CKS86]. For this,



54 Asymptotic HodgeTheory

let us write 𝑡𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 ∈ ℍ𝑙. Moreover, any 𝐹 ∈ 𝐷̂ defines a decreasing filtration on 𝔤ℂ by

𝐹𝑝𝔤ℂ ∶= {𝑋 ∈ 𝔤ℂ ∣ 𝑋(𝐹𝑟) ⊂ 𝐹𝑟+𝑝}.

In particular, the space 𝐹−1𝔤ℂ corresponds to elements of 𝔤ℂ whose flow are horizontal near the origin.
Consequently, they are called horizontal at 𝐹.

Then we say

Definition 3.5.1.
A nilpotent orbit is a map 𝜃 ∶ ℂ𝑙 → 𝐷̂ of the form

𝜃(𝑡) = exp(
𝑙
∑
𝑗=1

𝑡𝑗𝑁𝑗) ⋅ 𝐹,

where

i) 𝐹 ∈ 𝐷̂

ii) {𝑁𝑗}𝑙𝑗=1 is a set of commuting nilpotent elements of 𝔤ℝ, horizontal at 𝐹

iii) There exists 𝛼 ∈ ℝ such that 𝜃(𝑡) ∈ 𝐷 for 𝑦𝑗 > 𝛼, 1 ≤ 𝑗 ≤ 𝑙.

Note, from horizontality of the nilpotent elements 𝑁𝑗 , it follows that 𝜃 is a horizontal map. Moreover, 𝜃
describes an orbit of 𝐹 in 𝐷̂ under elements in 𝐺ℂ corresponding to nilpotent elements of 𝔤ℝ, hence the
name.

Finally, we state the main result

Theorem 3.5.2 (Nilpotent orbit theorem).
i) The map Ψ extends holomorphically to Δ𝑚

ii) Let 𝐹lim(𝑤) = Ψ(0, 𝑤) and

𝜃𝑤(𝑡) = exp(
𝑙
∑
𝑗=1

𝑡𝑗𝑁𝑗) ⋅ 𝐹lim(𝑤),

where 𝑁𝑗 are the monodromy logarithms. Then, 𝜃𝑤(𝑧) is a nilpotent orbit for every 𝑤 ∈ Δ𝑚

iii) Moreover, for any 𝐺ℝ-invariant distance 𝑑 on 𝐷, there exist constants 𝛼, 𝛽, 𝐾 ≥ 0 such that under
the restrictions

𝑦𝑗 ≥ 𝛼, 1 ≤ 𝑗 ≤ 𝑙

we have

𝜃𝑤(𝑡) ∈ 𝐷,

𝑑(Φ̃(𝑡, 𝑤), 𝜃𝑤(𝑡)) ≤ 𝐾
𝑙
∑
𝑗=1

(𝑦𝑗)𝛽 exp(−2𝜋𝑦𝑗). (3.10)
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The above phrasing of the nilpotent orbit theorem can be found in [CKS86]. The original statement in
[Sch73] contained a different distance estimate. The one presented here was observed by Deligne and is
stronger. As it is necessary in the proof of the multi-variable SL(2)-orbit theorem in [CKS86], we state
the nilpotent orbit theorem as above. Furthermore, the proof of the above theorem is highly non-trivial
and will not be presented here.

The limiting filtration 𝐹lim(𝑤) can be obtained from the nilpotent orbit as follows:

𝐹lim(𝑤) = lim
𝑡→𝑖∞

exp(−
𝑙
∑
𝑗=1

𝑡𝑗𝑁𝑗) ⋅ 𝜃𝑤(𝑡). (3.11)

Furthermore, by the distance estimate, the limiting filtration is the asymptotic value of Ψ̃(𝑡, 𝑤) in 𝐷̂. In-
deed, we have

lim
𝑡→𝑖∞

Ψ̃(𝑡, 𝑤) = lim
𝑡→𝑖∞

exp(−
𝑙
∑
𝑗=1

𝑡𝑗𝑁𝑗) ⋅ Φ̃(𝑡, 𝑤) = lim
𝑡→𝑖∞

exp(−
𝑙
∑
𝑗=1

𝑡𝑗𝑁𝑗) ⋅ 𝜃𝑤(𝑡) = 𝐹lim(𝑤).

In particular, the limiting filtration may not correspond to a Hodge structure. A priori, it is an arbitrary
element in 𝐷̂. It turns out, there is additional structure: the combined data (𝐹lim, 𝑁1,…𝑁 𝑙) of the limiting
filtration and monodromy logarithms describes a mixed Hodge structure. This is a (non-trivial) consequence
of the second main theorem in asymptotic Hodge theory: the SL(2)-orbit theorem. In the next section
we will discuss its content.

From the physics point of view, we are interested in a family of Calabi-Yau threefolds. From Example
3.3.6 we know the period vector 𝚷(𝑡, 𝑤) completely determines the variation of Hodge structure. There-
fore, we expect the nilpotent orbit theorem to yield an approximation for the period vector, as well. Indeed,
the period vector𝚷(𝑡, 𝑤) is just the 𝐹3(𝑡, 𝑤) part of the period map. Then, sufficiently close to the singular
locus, the nilpotent orbit theorem tells us

𝚷(𝑡, 𝑤) = exp(
𝑙
∑
𝑗=1

𝑡𝑗𝑁𝑗)𝐀(𝑡, 𝑤),

with 𝐀 holomorphic in both 𝑡 and 𝑤. Moreover, 𝐀 accounts for the exponential corrections coming from
(3.10), as well. Hence, this is not yet an approximation. Now, consider an expansion in 𝑡

𝐀(𝑡, 𝑤) = 𝐚0(𝑤) +
𝑙
∑
𝑗=1

𝐚𝑗(𝑤)𝑒2𝜋𝑖𝑡𝑗 +
𝑙
∑
𝑗,𝑘=1

𝐚𝑗𝑘(𝑤)𝑒2𝜋𝑖𝑡𝑗 𝑒2𝜋𝑖𝑡𝑘 +… .

Then, the nilpotent orbit theorem asserts

𝚷nil(𝑡, 𝑤) = exp(
𝑙
∑
𝑗=1

𝑡𝑗𝑁𝑗) 𝐚0(𝑤) + 𝒪(𝑒2𝜋𝑖𝑡𝑗 ) (3.12)

is a good approximation of the period vector 𝚷(𝑡, 𝑤) near the singular locus. However, we would like to
stress that in practice the exponential corrections in (3.12) are important and cannot be neglected. Note,
from (3.11) it follows that 𝐚𝟎(𝑤) ∈ 𝐹lim(𝑤). It is this approximation, alongside the SL(2)-orbit approx-
imation, that has turned out useful in string theory, in particular in the swampland program. See for
instance [GLP19; LLW22; GLV20].
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Example 3.5.3 (Nilpotent orbit theorem).
Let us conclude this section by considering an example of the behaviour dictated by the nilpotent
orbit theorem near a particular singular point. Namely, we will consider a variation of polarized
Hodge structure near a so-called large complex structure (LCS) limit of a Calabi-Yau threefold 𝑌3.
For simplicity, we assume ℎ2,1 = 1, i.e. 𝑌3 has only one complex structure modulus 𝑡. Moreover, it
is chosen in such a way that the LCS limit corresponds to 𝑡 → 𝑖∞.

It is known the period vector takes the form

𝚷(𝑡) =
⎛
⎜
⎜
⎜
⎝

1
𝑡
1
2
𝑡2

1
6
𝑡3 + 𝑖𝜒

⎞
⎟
⎟
⎟
⎠

+ 𝒪(𝑒2𝜋𝑖𝑡) (3.13)

near the LSC limit (see [GMH22]). Here, 𝜒 ∈ ℝ denotes some constant that is related to the
Euler characteristic of 𝑌3. Now, using the completeness principle from Example 3.3.6, we find (in
leading order) the Hodge filtration

𝐹(𝑡) =
⎛
⎜
⎜
⎜
⎝

1 0 0 0
𝑡 1 0 0
1
2
𝑡2 𝑡 1 0

1
6
𝑡3 + 𝑖𝜒 1

2
𝑡2 𝑡 1

⎞
⎟
⎟
⎟
⎠

. (3.14)

By this notation we mean 𝐹𝑝(𝑡) is the ℂ-linear span of the first 4 − 𝑝 columns of the above matrix.
Now, we want to study the nilpotent approximation𝚷nil of the period vector. A special property

of the LCS limit is that we can write

𝚷nil(𝑡) = 𝑒𝑡𝑁𝐚0

for some log-monodromy matrix 𝑁. In other words, the exponential corrections can be neglected
and we only consider the leading term in (3.12). Thus, we have

𝑒𝑡𝑁𝐚0 = (1 + 𝑡𝑁 + 1
2𝑡

2𝑁2 + 1
6𝑡

3𝑁3 +…)𝐚0.

Comparing this to the leading term in (3.13), we must have 𝑁4 = 0 as there is no 𝑡4 term. Thus, 𝑁
is nilpotent, as expected. Consequently,

⎛
⎜
⎜
⎜
⎝

1
𝑡
1
2
𝑡2

1
6
𝑡3 + 𝑖𝜒

⎞
⎟
⎟
⎟
⎠

= 𝑒𝑡𝑁𝐚0 = 𝐚0 + 𝑡𝑁𝐚0 +
1
2𝑡

2𝑁2𝐚0 +
1
6𝑡

3𝑁3𝐚0.
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Hence, as 𝐚0 is independent of 𝑡 we must have

𝐚0 =
⎛
⎜
⎜
⎝

1
0
0
𝑖𝜒

⎞
⎟
⎟
⎠
, 𝑁 =

⎛
⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟
⎟
⎠
. (3.15)

Finally, we will show the Hodge filtration can be written, in leading order, as

𝐹(𝑡) = 𝑒𝑡𝑁𝐹lim.

This precisely is the nilpotent orbit approximation. Note,

𝐹3(𝑡) = span {𝑒𝑡𝑁𝐚0}
𝐹2(𝑡) = span {𝑒𝑡𝑁𝐚0, 𝑒𝑡𝑁𝑁𝐚0}
𝐹1(𝑡) = span {𝑒𝑡𝑁𝐚0, 𝑒𝑡𝑁𝑁𝐚0, 𝑒𝑡𝑁𝑁2𝐚0}
𝐹0(𝑡) = span {𝑒𝑡𝑁𝐚0, 𝑒𝑡𝑁𝑁𝐚0, 𝑒𝑡𝑁𝑁2𝐚0, 𝑒𝑡𝑁𝑁3𝐚0} .

Hence, from this we see 𝐹(𝑡) = 𝑒𝑡𝑁𝐹lim with 𝐹𝑝lim = span{𝑁𝑖𝐚0 ∣ 0 ≤ 𝑖 ≤ 3 − 𝑝}. In the notation
used above, this is

𝐹lim =
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
𝑖𝜒 0 0 1

⎞
⎟
⎟
⎠
.

This does not define a Hodge filtration as

𝐹2lim ⊕ 𝐹2lim = span
⎧⎪
⎨⎪
⎩

⎛
⎜
⎜
⎝

1
0
0
𝑖𝜒

⎞
⎟
⎟
⎠
,
⎛
⎜
⎜
⎝

0
1
0
0

⎞
⎟
⎟
⎠
,
⎛
⎜
⎜
⎝

1
0
0
−𝑖𝜒

⎞
⎟
⎟
⎠

⎫⎪
⎬⎪
⎭

≠ ℂ4 = 𝐻3(𝑌3, ℂ). (3.16)

Hence, we have an explicit example where the limiting filtration does not lie in 𝐷. We build upon
this example in Example 3.5.10. ♦

3.5.2 The SL(2)-orbitTheorem

The nilpotent orbit theorem singles out the leading order of the period map of a variation of Hodge
structure near the singular locus. Now, the structure and asymptotic behaviour of nilpotent orbits is the
content of the second main theorem: the SL(2)-orbit theorem. The one variable (𝑙 = 1) version of the
theoremwas proved by Schmid in [Sch73]. However, its generalization to several variables was only proven
over a decade later in [CKS86], reflecting its highly non-trivial nature. In this work we will solely focus
on the one-variable case. To state this theorem, we need to introduce some necessary notions. We follow
[CKS86].
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Filtrations andGradings

In example 3.5.3 we saw the limiting filtration 𝐹lim did not contain sufficient data to define a Hodge
structure. This has to do with the fact that the information contained in the log-monodromy transforma-
tions is removed from 𝐹lim (cf. (3.11)). Therefore, we need to use the monodromy logarithms to find the
underlying structure. The crucial concept is the monodromy weight filtration.

To define it, let𝐻 be a finite dimensional complex vector space of complex dimension𝐷 and𝑊 a finite
increasing filtration

⋯ ⊂ 𝑊 𝑙 ⊂ 𝑊 𝑙+1 ⊂ ⋯ ⊂ 𝐻.

From this, a natural filtration arises on 𝔤𝔩(𝐻) given by

𝑊𝔤𝔩
𝑟 ∶= {𝑋 ∈ 𝔤𝔩(𝐻)} ∣ 𝑋(𝑊 𝑙) ⊂ 𝑊 𝑙+𝑟}. (3.17)

Elements of 𝑊𝔤𝔩
𝑟 are called 𝑟-morphisms. Furthermore, to every filtration 𝑊 as above we can associated

graded spaces given by Gr𝑊𝑙 ∶= 𝑊 𝑙/𝑊 𝑙−1.
Now, given a nilpotent endomorphism 𝑁 of 𝐻, the weight filtration of 𝑁 is the unique increasing

filtration 𝑊 = 𝑊(𝑁) given by [CKS86]

𝑊−1 ∶= 0 ⊂ 𝑊0 ⊂ 𝑊1 ⊂ ⋯ ⊂ 𝑊2𝐷−1 ⊂ 𝑊2𝐷 = 𝐻

such that

𝑁 ∈ 𝑊𝔤𝔩
−2 , i.e. 𝑁𝑊 𝑙 ⊂ 𝑊 𝑙−2,

𝑁𝑗 ∶ Gr𝑊𝐷+𝑗 → Gr𝑊𝐷−𝑗 is an isomorphism for 𝑗 ≥ 0.

In the case of Calabi-Yau 𝐷-folds7, it is explicitly given by (cf. [GLP19])

𝑊 𝑙 = ∑
𝑗≥max(−1,𝑙−𝐷)

ker𝑁𝑗+1 ∩ im𝑁𝑗−𝑙+𝐷. (3.18)

Note, by construction we have 𝑁𝑊 𝑙 ⊂ 𝑊 𝑙−2. Finally, when 𝑁 corresponds to log-monodromy transfor-
mation corresponding to a variation of Hodge structure on𝐻 we call the filtration𝑊(𝑁) the monodromy
weight filtration. We will refer to this as the geometric setting.

MixedHodge Structures and Splittings

Let us assume there exist a real vector space 𝐻ℝ such that 𝐻 = 𝐻ℝ ⊗ ℂ. Then, using the concepts
introduced above we can define

Definition 3.5.4.
A (real)mixedHodge structure (MHS) on 𝐻ℝ is a pair of filtrations (𝑊, 𝐹) of 𝐻

⋯ ⊂ 𝑊 𝑙 ⊂ 𝑊 𝑙+1 ⊂ ⋯ (the weight filtration)
⋯ ⊂ 𝐹𝑝 ⊂ 𝐹𝑝−1 ⊂ ⋯ (the Hodge filtration)

such that

7It probably holds in general, as only uses abstract properties of the objects are used in the proof. However, for our purposes it
suffices to restrict ourselves to Calabi-Yau 𝐷-folds.
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i) 𝑊 is defined over ℝ

ii) For any 𝑙, the filtration 𝐹(Gr𝑊𝑙 ) given by

𝐹𝑝(Gr𝑊𝑙 ) ∶= (𝐹𝑝 ∩𝑊 𝑙)/(𝐹𝑝 ∩𝑊 𝑙−1)

is a pure Hodge structure of weight 𝑙 on Gr𝑊𝑙 .

An important example of a mixed Hodge structure is due to Schmid (cf. [Sch73, Thm. 6.16]). If we
consider a one-parameter nilpotent orbit

𝑡 ↦ exp(𝑡𝑁) ⋅ 𝐹lim (3.19)

we have

Theorem 3.5.5.
The pair (𝑊(𝑁), 𝐹lim) is a mixed Hodge structure.

If the one-parameter nilpotent orbit is the approximation of a variation of Hodge structure coming from
geometry, the above statement can be shown geometrically [Ste76]. In general, it follows from the SL(2)-
orbit theorem, showing its power.

Note, as 𝑡 ↦ exp(𝑡𝑁) ⋅ 𝐹lim is a nilpotent orbit, we have 𝑁𝐹𝑝lim ⊂ 𝐹𝑝−1lim by horizontality. Furthermore,
we already argued 𝑁𝑊 𝑙 ⊂ 𝑊 𝑙−2 for the monodromy weight filtration. Finally, 𝑁 is a real operator, thus
defines an element in

𝑊𝔤𝔩
2𝑟 ∩ 𝐹𝑟𝔤𝔩 ∩ 𝔤𝔩(𝐻ℝ) (3.20)

for 𝑟 = −1. Here 𝐹𝑟𝔤𝔩 is defined analogous to 𝑊𝔤𝔩
𝑙 (cf. (3.17)). In general, elements in (3.20) are called

(𝑟, 𝑟)-morphisms. Thus, 𝑁 is a (−1, −1)-morphism. Furthermore, if 𝐻ℝ admits a polarization 𝑆, we can
define

Definition 3.5.6.
A polarizedmixedHodge structure is a mixed Hodge structure (𝑊, 𝐹) on𝐻ℝ and a nilpotent element
𝑁 ∈ 𝔤ℝ such that

i) 𝑊 = 𝑊(𝑁)

ii) 𝑆(𝐹𝑝, 𝐹𝑘−𝑝+1) = 0

iii) 𝑁𝐹𝑝 ⊂ 𝐹𝑝−1

iv) The Hodge structure on the primitive part 𝑃𝑙 ∶ ker (𝑁𝑙−𝐷+1 ∶ Gr𝑊𝑙 → Gr𝑊2𝐷−𝑙−2) is polarized by
𝑆(⋅, 𝑁𝑙⋅).

In the geometric setting one can explicitly check that (𝑊(𝑁), 𝐹, 𝑁) defines a polarized mixed Hodge
structure, using Theorem 3.5.5. Therefore, we have the following consequence
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Corollary 3.5.7.
If a nilpotent orbit 𝑡 ↦ exp(𝑡𝑁) ⋅ 𝐹lim approximates a variation of polarized Hodge structure, the triple
(𝑊(𝑁), 𝐹lim, 𝑁) defines a polarized mixed Hodge structure.

The definition of a (polarized) mixed Hodge structure stated above is rather convoluted. However,
there is a more workable concept which contains the same data. To define it, we need the following
concept

Definition 3.5.8.
A splitting of a mixed Hodge structure (𝑊, 𝐹) is a bigrading 𝐻 = ⊕𝐽𝑝,𝑞 such that

𝑊 𝑙 = ⨁
𝑝+𝑞≤𝑙

𝐽𝑝,𝑞, 𝐹𝑝 =⨁
𝑠
⨁
𝑟≥𝑝

𝐽𝑟,𝑠.

When the mixed Hodge structure is polarized, there is an extra compatibility requirement for the splitting
with the polarization. This is not crucial for our purposes and for details we refer to [CKS86]. In both
cases, there is one particular splitting with very useful properties.

Theorem 3.5.9.
Given a mixed Hodge structure (𝑊, 𝐹), the Deligne splitting is the unique splitting given by

𝐼𝑝,𝑞 ∶= 𝐹𝑝 ∩𝑊𝑝+𝑞 ∩ (𝐹𝑞 ∩𝑊𝑝+𝑞 + ∑
𝑗≥1

𝐹𝑞−𝑗 ∩𝑊𝑝+𝑞−𝑗−1)

satisfying

𝐼𝑝,𝑞 = 𝐼𝑞,𝑝 mod ⨁
𝑟<𝑝,𝑠<𝑞

𝐼𝑟,𝑠. (3.21)

In particular, mixed Hodge structures are in one-to-one correspondence to bigradings satisfying (3.21).

Note, the graded spaces can be recovered from the Deligne splitting, as

Gr𝑊𝑙 = ⨁
𝑝+𝑞=𝑙

𝐼𝑝,𝑞.

To be precise, the above equality is formally an isomorphism. However, the graded space can be identified
with subspaces of 𝐻. Under this identification, the above equality holds. Then, condition (3.21) tells us
that Deligne splitting gives a Hodge structure on Gr𝑊𝑙 , up to lower-degree terms. From this, we already
see that 𝐼𝑝,𝑞 = 𝐼𝑞,𝑝 is an interesting property. Whenever the Deligne splitting satisfies this condition, we
say it is ℝ-split. We will see later on that every splitting can be made ℝ-split. Note, as 𝑁 is a (−1, −1)-
morphism in the geometric setting, it follows from the definition that in that case 𝑁 respects the Deligne
splitting: 𝑁𝐼𝑝,𝑞 ⊂ 𝐼𝑝−1,𝑞−1

Analogous to the Hodge diamond, we can set 𝑖𝑝,𝑞 ∶= dimℂ 𝐼𝑝,𝑞 and group them together in the
Hodge-Deligne diamond (see Figure 3.2). Recall, one should think about 𝐻 as the middle cohomology
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ℎ0,0
ℎ0,1ℎ1,0

ℎ2,0 ℎ1,1 ℎ0,2
ℎ1,2ℎ2,1ℎ3,0 ℎ0,3

ℎ1,3ℎ2,2ℎ3,1
ℎ3,2 ℎ2,3

ℎ3,3

𝑖0,0
𝑖0,1𝑖1,0

𝑖2,0 𝑖1,1 𝑖0,2
𝑖1,2𝑖2,1𝑖3,0 𝑖0,3

𝑖1,3𝑖2,2𝑖3,1
𝑖3,2 𝑖2,3

𝑖3,3

Figure 3.2: On the right we see a general Hodge-Deligne diamond corresponding to a mixed Hodge
structure on a real vector space 𝐻ℝ of dimension three. In the geometric setting this corresponds to a
limiting filtration of a variation of Hodge structure on Calabi-Yau threefolds. Moreover, we indicate that
the Hodge-Deligne splitting yields a finer decomposition of the middle cohomology of the threefold. In
particular, we indicate how ℎ2,1 decomposes according to (3.22).

of a Calabi-Yau threefold. Consequently, the Deligne splitting can be viewed as a finer decomposition of
this middle cohomology. Moreover, we can decompose the Hodge numbers as follows [KPR19]

ℎ𝑝,𝐷−𝑝 =
𝐷
∑
𝑞=0

𝑖𝑝,𝑞. (3.22)

In the geometric setting, the Hodge-Deligne numbers satisfy

𝑖𝑝,𝑞 = 𝑖𝑞,𝑝 = 𝑖𝑛−𝑝,𝑛−𝑞, for all 𝑝, 𝑞
𝑖𝑝−1,𝑞−1 ≤ 𝑖𝑝,𝑞, for 𝑝 + 𝑞 ≤ 𝐷.

The first equality follows from (3.21) and the second is a consequence of 𝑁𝑝+𝑞−𝐷 ∶ 𝐼𝑝,𝑞 → 𝐼𝐷−𝑝,𝐷−𝑞
being an isomorphism. Moreover, it is related to 𝑁𝐼𝑝,𝑞 ⊂ 𝐼𝑝−1,𝑞−1.

Interestingly, in the Calabi-Yau threefolds case, the Hodge-Deligne diamond can be used to classify
the singularities occurring at the singular locus (see [GLP19; GRH21]). To get an insight into this, let
us focus on Calabi-Yau threefolds. In that case, there is a huge restriction posed by the fact that ℎ3,0 = 1.
Indeed, (3.22) implies 𝑖3,𝑑 = 1 for precisely one 𝑑 = 0, 1, 2, 3, while the others vanish. Consequently, every
limiting mixed Hodge structure must be one of those four types. The four different types are denoted by
I,II,III and IV corresponding to 𝑑 = 0, 1, 2, 3, respectively. Moreover, due to the symmetries of theHodge-
Deligne, the only independent ones are 𝑖2,1 and 𝑖2,2. The LCS limit point from Example 3.5.3 is a type
IV singularity and its Hodge-Deligne diamond is depicted in Figure 3.3.

Example 3.5.10 (MixedHodge structure).
Let us return to the LCS limit of Calabi-Yau threefolds from Example 3.5.3. There we found the
limiting filtration and byTheorem 3.5.5 we know it defines amixedHodge structure when combined
with the monodromy weight filtration. Here we want to explicitly compute this weight filtration
and show it defines a mixed Hodge structure. Furthermore, we will compute the corresponding
Hodge-Deligne diamond. In particular, we will see it corresponds to a type IV singularity.

Let us start by computing the monodromy Hodge filtration 𝑊 = 𝑊(𝑁). By (3.18) we see

𝑊0 = ∑
𝑗≥max(−1,−3)

ker𝑁𝑗+1 ∩ im𝑁𝑗+3
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1
00

0 𝑖2,2 0
𝑖2,1𝑖2,10 0

0𝑖2,20
0 0

1

≅

𝑁

𝑑

𝑑
𝑑′ 𝑑′

Figure 3.3: The Hodge-Deligne diamond corresponding to a type IV singularity that geometrically corre-
sponds to the LCS limit. Here 𝑑 = 𝑖2,2 and 𝑑′ = 𝑖2,1. Furthermore, the action of the nilpotent operator
𝑁 is depicted.

= ker𝑁0 ∩ im𝑁2 + ker𝑁 ∩ im𝑁3 + ker𝑁2 ∩ im𝑁4

= ker𝑁 ∩ im𝑁3

Recall, 𝑁 was given in (3.15). If we let 𝑒1, 𝑒2, 𝑒3, 𝑒4 denote the standard basis of ℂ, we deduce from
this that 𝑊0 = ℂ𝑒4. Repeating the same computation multiple times yields

𝑊1 = ℂ𝑒4, 𝑊2 = ℂ𝑒3 ⊕ℂ𝑒4, 𝑊3 = ℂ𝑒3 ⊕ℂ𝑒4,
𝑊4 = ℂ𝑒2 ⊕ℂ𝑒3 ⊕ℂ𝑒4 𝑊5 = ℂ𝑒2 ⊕ℂ𝑒3 ⊕ℂ𝑒4 𝑊6 = ℂ4.

From this, we directly compute the graded spaces

Gr𝑊0 = ℂ𝑒4, Gr𝑊1 = 0, Gr𝑊2 = ℂ𝑒3,
Gr𝑊3 = 0, Gr𝑊4 = ℂ𝑒2, Gr𝑊5 = 0, Gr𝑊6 = ℂ𝑒1.

One can check the defining properties are satisfied. For example,

𝑁𝑊4 = ℂ𝑁𝑒2 ⊕ℂ𝑁𝑒3 ⊕ℂ𝑁𝑒4 = ℂ𝑁𝑒3 ⊕ℂ𝑁𝑒4 = 𝑊2.

Therefore, 𝑁𝑊4 ⊂ 𝑊4−2 and 𝑁 ∶ 𝑊4 →𝑊2 is an isomorphism.
Now, let us check 𝐹•lim(Gr𝑊2 ) defines a pure Hodge structure of weight 2 on Gr𝑊2 . Using its

form (3.16), a straightforward computation shows

𝐹1lim ∩𝑊2 = ℂ𝑒3, 𝐹1lim ∩𝑊1 = 0, 𝐹2lim ∩𝑊2 = 0, 𝐹2lim ∩𝑊1 = 0.

Therefore, we obtain the following filtration on Gr𝑊2

𝐹2lim(Gr𝑊2 ) ⊂ 𝐹1lim(Gr𝑊2 ) ⊂ 𝐹0lim(Gr𝑊2 ).
0 ℂ𝑒3 ℂ𝑒3

The corresponding Hodge decomposition is then given by

𝐻2,0
Gr 𝐻1,1

Gr 𝐻0,2
Gr ,



3.5. Asymptotic Behaviour 63

0 ℂ𝑒3 0

which clear defines a pure Hodge structure of weight 2 on Gr𝑊2 . The other filtrations can be checked
in a similar fashion, proving that (𝑊(𝑁), 𝐹) defines a mixed Hodge structure.

Finally, we discuss the Deligne splitting corresponding to (𝑊(𝑁), 𝐹). Using the above data, we
see

𝐼3,3 = 𝐹3lim ∩𝑊6 ∩ (𝐹3lim ∩𝑊6 + 𝐹2lim ∩𝑊4 + 𝐹1lim ∩𝑊3 + 𝐹0lim ∩𝑊2)

= 𝐹3lim ∩ (𝐹3lim + ℂ𝑒3 + ℂ𝑒3 ⊕ℂ𝑒4)

= 𝐹3lim

= ℂ
⎛
⎜
⎜
⎝

1
0
0
𝑖𝜒

⎞
⎟
⎟
⎠
.

From this we conclude 𝑖3,3 = 1 and thus the singularity is type IV, as expected. Furthermore, the
Deligne splitting is not ℝ-split, as 𝐼3,3 ≠ 𝐼3,3. Analogously, one can compute the other independent
Deligne spaces. In the end one finds 𝐼2,2 = ℂ𝑒2 and 𝐼2,1 = 0. Hence, the corresponding Deligne
diamond is given by:

1
00

0 1 0
000 0

010
0 0

1

We continue this example in 3.5.12. ♦

As mentioned before, a splitting being ℝ-split seems like a desirable property. Luckily, there is a
procedure8 introduced by Deligne that associates an ℝ-split splitting to an arbitrary one. To describe the
algorithm, let us fix a mixed Hodge structure (𝑊, 𝐹) on𝐻ℝ. Then, we can define the nilpotent Lie algebra

𝔫−1,−1 = 𝔫−1,−1(𝑊, 𝐹) ∶= {𝑋 ∈ 𝔤𝔩(𝐻) ∣ 𝑋(𝐼𝑝,𝑞) ⊂ ⨁
𝑟≤𝑝−1,𝑠≤𝑞−1

𝐼𝑟,𝑠} .

Here, 𝐼𝑝,𝑞 is the Deligne splitting associated to (𝑊, 𝐹). Furthermore, we define

𝔫−1,−1ℝ ∶= 𝔤𝔩(𝐻ℝ) ∩ 𝔫−1,−1.

8Actually, there are several natural ways to do this. However, the method we discuss works nicely with the Deligne splitting.
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Proposition 3.5.11.
Given a mixed Hodge structure (𝑊, 𝐹), there is a unique 𝛿 ∈ 𝔫−1,−1ℝ such that (𝑊, 𝑒−𝑖𝛿 ⋅ 𝐹) is a mixed
Hodge structure that is ℝ-split. Moreover, every morphism of (𝑊, 𝐹) commutes with 𝛿. In particular, if
(𝑊, 𝐹, 𝑁) is a polarized Hodge structure, then 𝛿 ∈ 𝔤ℝ ∩ 𝔫−1,−1ℝ and [𝛿, 𝑁] = 0.

In the present form, it may appear that the above statement is not constructive. However, one can make
it more explicit, as is done in [Hei22] in the Calabi-Yau threefold case. To get an insight in its structure,
let us define a grading operator

𝑌𝑣 = (𝑝 + 𝑞 − 𝐷)𝑣, 𝑣 ∈ 𝐼𝑝,𝑞.
Note, 𝑌 ∈ 𝔤ℂ for a polarized mixed Hodge structure. Moreover, if 𝐼𝑝,𝑞 is not ℝ-split, 𝑌 cannot be a real
operator, as 𝐼𝑝,𝑞 and 𝐼𝑞,𝑝 lie in the same eigenspace for 𝑌 . However, 𝑌 and its complex conjugate 𝑌 are
related by some ‘rotation’. It is precisely the operator 𝛿 that performs the rotation,

𝑌 = 𝑒−2𝑖𝛿𝑌𝑒2𝑖𝛿.
From this point of view, 𝛿 must be the reason for the ‘mod’ part in (3.21). Concretely, it satisfies

𝛿(𝐼𝑝,𝑞) ⊂ ⨁
𝑟<𝑝,𝑠<𝑞

𝐼𝑟,𝑠.

Due to this, we can decompose

𝛿 = ∑
𝑝,𝑞>0

𝛿−𝑝,−𝑞,

where

𝛿−𝑝,−𝑞(𝐼𝑟,𝑠) ⊂ 𝐼𝑟−𝑝,𝑠−𝑞.
The operator 𝛿 is crucial for the SL(2)-orbit theorem, for which we now have all the ingredients.

Example 3.5.12 (ℝ-split).
Let us continue the large complex structure limit example (cf. Example 3.5.10). We explicitly
compute 𝛿 and show (𝑊, 𝑒−𝑖𝛿 ⋅𝐹lim) defines anℝ-split mixed Hodge structure. Let us write 𝐹lim ∶=
𝑒−𝑖𝛿𝐹lim. Previously, we saw 𝐼3,3 ≠ 𝐼3,3. One can verify this is the only Deligne space that fails to
be ℝ-split. Recall,

𝐼3,3 = ℂ
⎛
⎜
⎜
⎝

1
0
0
𝑖𝜒

⎞
⎟
⎟
⎠
= 𝐹3lim.

As the other spaces in the filtration 𝐹3lim are spanned by 𝑒2, 𝑒3, 𝑒4, it seems reasonable to seek for an
element 𝛿 ∈ 𝔤ℝ such that

𝑒−𝑖𝛿
⎛
⎜
⎜
⎝

1
0
0
𝑖𝜒

⎞
⎟
⎟
⎠
= 𝑒1, 𝑒−𝑖𝛿𝑒2 = 𝑒2, 𝑒−𝑖𝛿𝑒3 = 𝑒3, 𝑒−𝑖𝛿𝑒4 = 𝑒4.



3.5. Asymptotic Behaviour 65

From this, we find

𝑒−𝑖𝛿 =
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
−𝑖𝜒 0 0 1

⎞
⎟
⎟
⎠

meaning

𝛿 =
⎛
⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
𝜒 0 0 0

⎞
⎟
⎟
⎠
.

Note, 𝛿 ∈ 𝔰𝔭(4, ℝ) and

𝐹lim =
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎠
.

Now, by repeating the arguments in Example (3.5.10) one verifiesa (𝑊, 𝐹) defines a mixed Hodge
structure, which is clearly ℝ-split. We use these computations in Example 3.5.16. ♦

aIt basically amounts to the same computation as in Example 3.5.10 but for 𝜒 = 0.

TheStatement

To state the SL(2)-orbit theorem, let us fix a polarized mixed Hodge structure (𝑊, 𝐹, 𝑁) associated to a
nilpotent orbit

𝑡 ↦ exp(𝑡𝑁) ⋅ 𝐹.

Then, by Proposition 3.5.11 we obtain an ℝ-split mixed Hodge structure (𝑊, 𝐹), where 𝐹 = 𝑒−𝑖𝛿 ⋅ 𝐹. As
𝑁 commutes with 𝛿, we see 𝑁 is a (−1, −1)-morphism of (𝑊, 𝐹) as well. Let { ̃𝐼𝑝,𝑞} denote the ℝ-split
Deligne splitting associated to (𝑊, 𝐹) and consider the grading operator

𝑌𝑣 = (𝑝 + 𝑞 − 𝐷)𝑣, 𝑣 ∈ ̃𝐼𝑝,𝑞.

Note, the crucial difference between the grading operator 𝑌 from before is that 𝑌 is a real transformation,
i.e. 𝑌 ∈ 𝔤ℝ, because (𝑊, 𝐹) is ℝ-split. Using the fact 𝑁( ̃𝐼𝑝,𝑞) ⊂ ̃𝐼𝑝−1,𝑞−1, we see for 𝑣 ∈ ̃𝐼𝑝,𝑞

[𝑌 , 𝑁]𝑣 = 𝑌𝑁𝑣 − 𝑁𝑌𝑣
= (𝑝 − 1 + 𝑞 − 1 − 𝐷)𝑁𝑣 − 𝑁(𝑝 + 𝑞 − 𝐷)𝑣
= −2𝑁𝑣.

In other words, [𝑌 , 𝑁] = −2𝑁. There is a natural way to construct a unique element 𝑁+ ∈ 𝔤ℝ such that
{𝑁+, 𝑌 , 𝑁} is an 𝔰𝔩2-triple [CKS86]. It is completely determined by {𝑁, 𝑌} and the 𝔰𝔩2-commutation
relations. It follows directly from those commutation relations that 𝑁+ is a (1, 1)-morphism for (𝑊, 𝐹).
Similar to 𝑁, it satisfies 𝑁+( ̃𝐼𝑝,𝑞) ⊂ ̃𝐼𝑝+1,𝑞+1. Note, for a non-ℝ-split mixed Hodge structure, 𝑁+ would
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in general be complex. Hence, moving to the ℝ-split case is crucial for the existence of a real 𝔰𝔩2-triple.
The existence of such an 𝔰𝔩2-triple is, in its own right, crucial for the SL(2)-orbit theorem, as we will see
below.

We started with a nilpotent orbit and had to rotate the Hodge filtration 𝐹 to make the splittingℝ-split.
Then, one might wonder whether rotated orbit 𝑡 ↦ exp(𝑡𝑁) ⋅ 𝐹 constitutes a nilpotent orbit. It turns out
this is the case and it follows from the existence of an 𝔰𝔩2-triple [CKS86, Lem. 3.12]

Lemma 3.5.13.
The map 𝑡 ↦ exp(𝑡𝑁) ⋅ 𝐹 is a nilpotent orbit such that, for 𝑦 = im 𝑡 > 0 it holds exp(𝑡𝑁) ⋅ 𝐹 ∈ 𝐷.
Furthermore, at 𝑡 = 𝑖∞ it agrees to first order with the original nilpotent orbit and

exp(𝑖𝑦𝑁) ⋅ 𝐹 = exp(−12 log(𝑦)𝑌)𝑒𝑖𝑁 ⋅ 𝐹. (3.23)

Proof.— We only present the proof of the first assertion and refer to [CKS86] for the rest. The existence
of the 𝔰𝔩(2)-triple {𝑁+, 𝑌 , 𝑁} yields a representation

𝜌 ∶ 𝔰𝔩(2, ℝ) → 𝐻.

Hence, we can decompose 𝐻 into irreducibles. Note, as 𝑁, 𝑌, 𝑁+ are morphisms of the mixed Hodge
structure (𝑊, 𝐹) they preserve the splitting ̃𝐼𝑝,𝑞. Consequently, any irreducible subspace of 𝐻 is the direct
sum of ̃𝐼𝑝,𝑞’s. From representation theory we know that any (non-trivial) irreducible representation of
𝔰𝔩(2, ℝ) is isomorphic to tensor products of the standard representation and its dual. As mixed Hodge
structures are compatible with those operators, it suffices to check the claim on three the basic types of
ℝ-split polarized mixed Hodge structure (see Figure 3.4):

i)

𝐻 = ℂ = 𝐼1,1, 𝑁 = 0,

equipped with the standard symmetric bilinear form [CKS86]. This corresponds to the trivial repre-
sentation 𝜌 = 0 and defines a weight one ℝ-split mixed polarized Hodge structure. In fact, as 𝑁 = 0
it defines a genuine polarized Hodge structure. Hence, 𝐹 ∈ 𝐷 and 𝑡 ↦ exp(𝑡𝑁) ⋅ 𝐹 = 𝐹 trivially
defines a nilpotent orbit.

ii)

𝐻 = ℂ𝑣1,0 ⊕ℂ𝑣0,1, 𝐼𝑝,𝑞 = ℂ𝑣𝑝,𝑞
𝑆(𝑣1,0, 𝑣0,1) = 1, 𝑁 = 0.

𝑁

i) ii) iii)

Figure 3.4: The three basic types of ℝ-split polarized mixed Hodge structures we consider in the proof.
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This case corresponds to the fundamental representation of 𝔰𝔩(2, ℝ) and defines to anℝ-split polarized
mixed Hodge structure. Again, as 𝑁 = 0 it defines a genuine polarized Hodge structure and 𝑡 ↦
exp(𝑡𝑁) ⋅ 𝐹 = 𝐹 trivially defines a nilpotent orbit.

iii)

𝐻 = ℂ𝑣0,0 ⊕ℂ𝑣1,1, 𝐼𝑝,𝑞 = ℂ𝑣𝑝,𝑞
𝑆(𝑣1,1, 𝑣0,0) = 1, 𝑁𝑣1,1 = 𝑣0,0.

This case corresponds to the fundamental representation, as well. Note, we have

𝑊0 = ℂ𝑣0,0, 𝑊1 = 𝑊0, 𝑊2 = 𝐻, 𝐹1 = ℂ𝑣1,1, 𝐹0 = 𝐻.

It is straightforward to see𝑊 = 𝑊(𝑁) and that (𝑊, 𝐹, 𝑁) defines an ℝ-split polarized mixed Hodge
structure. Moreover, as 𝑁2 = 0, we have

𝜃1(𝑡) ∶= exp(𝑡𝑁) ⋅ 𝐹1 = (1 + 𝑡𝑁)ℂ𝑣1,1 = ℂ𝑣1,1 + 𝑡ℂ𝑣0,0 = 𝐻

for im 𝑡 > 0. Similarly,

𝜃0(𝑡) ∶= exp(𝑡𝑁) ⋅ 𝐹0 = (1 + 𝑡𝑁)(ℂ𝑣1,1 + ℂ𝑣0,0) = ℂ𝑣1,1 + 𝑡ℂ𝑣0,0 + ℂ𝑣0,0 = 𝐻

for any 𝑡. Thus, we see 𝜃(𝑡) defines the trivial polarized Hodge structure of weight one, i.e. 𝜃(𝑡) ∈ 𝐷
for im 𝑡 > 0. As 𝑁 is horizontal for 𝐹, it is for 𝜃(𝑡) as well. Hence, 𝜃(𝑡) defines a nilpotent orbit,
completing the proof. ∎

A consequence of the lemma above is that for 𝑡 = 𝑖, exp(𝑡𝑁) ⋅ 𝐹 = 𝑒𝑖𝑁 ⋅ 𝐹 defines a Hodge structure. For
later purposes we denote this Hodge structure by 𝐹∞ and the corresponding Hodge decomposition by𝐻𝑝,𝑞

∞ .
In the physics literature, it is referred to as the Hodge structure ‘at the boundary’. Yet, this nomenclature
is a bit misleading as it does not sit above a point in ℳsing.

Furthermore, we already saw that a nilpotent orbit produces a polarized mixed Hodge structure, by the
SL(2)-orbit theorem. However, what about the converse? With the above lemma at hand, one can show
that the converse it true as well

Corollary 3.5.14.
If (𝑊, 𝐹, 𝑁) is a polarized Hodge structure, then the map 𝑡 ↦ exp(𝑡𝑁) ⋅ 𝐹 is a nilpotent orbit.

Moreover, as 𝑁 is part of a 𝔰𝔩2-triple, the nilpotent orbit 𝑡 ↦ exp(𝑡𝑁) ⋅𝐹 is actually an orbit by an element
in SL(2, ℝ). Consequently, we refer to it as the SL(2)-orbit. The content of the SL(2)-orbit theorem is
about the relationship between the SL(2)-orbit and the original nilpotent orbit.

If im 𝑡 > max(0, 𝛼), then exp(𝑡𝑁) ⋅ 𝐹 and exp(𝑡𝑁) ⋅ 𝐹 both lie in 𝐷. As 𝐺ℝ act transitively on 𝐷, there
is a 𝑔𝑡 ∈ 𝐺ℝ such that

exp(𝑡𝑁) ⋅ 𝐹 = 𝑔𝑡 exp(𝑡𝑁) ⋅ 𝐹.

In general, 𝑔𝑡 is far from unique. However, we will construct a natural one. Note, if 𝑡 = 𝑥+𝑖𝑦, the operator
exp(𝑥𝑁) is real and thus in 𝐺ℝ. Hence, we can absorb the factors exp(±𝑥𝑁) into 𝑔𝑡. To be precise, the
above equation can be written as

exp(𝑖𝑦𝑁) ⋅ 𝐹 = exp(−𝑥𝑁)𝑔𝑡 exp(𝑥𝑁)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑔(𝑦)

exp(𝑖𝑦𝑁) ⋅ 𝐹
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= ̃𝑔(𝑦) exp(𝑖𝑦𝑁) ⋅ 𝐹.

By Lemma 3.5.13, this is equivalent to

exp(𝑖𝑦𝑁) ⋅ 𝐹 = ̃𝑔(𝑦) exp(−12 log(𝑦)𝑌)𝑒𝑖𝑁 ⋅ 𝐹

= ℎ̃(𝑦)𝑒𝑖𝑁 ⋅ 𝐹
= ℎ̃(𝑦) ⋅ 𝐹∞ (3.24)

with ℎ̃(𝑦) ∶= ̃𝑔(𝑦) exp(− 1
2
log(𝑦)𝑌). Note, 𝐹∞ = 𝑒𝑖𝑁 ⋅ 𝐹 is just (3.23) evaluated at 𝑦 = 1, as mentioned

before. Therefore, by Lemma 3.5.13 we have 𝑒𝑖𝑁 ⋅ 𝐹 ∈ 𝐷. Hence, the connection between the original
nilpotent orbit and the SL(2)-orbit is captured by the map ℎ̃ (or equivalently ̃𝑔). To see its properties, let
us recall

𝐷 ≅ 𝐺ℝ/𝑉.

Without loss of generality, we may assume 𝑉 is the isotropy group at 𝑒𝑖𝑁 ⋅𝐹. Furthermore, 𝑉 is compact (cf.
Proposition 3.2.4) and therefore the Killing form of 𝔤ℝ is negative-definite on 𝔳 = Lie(𝑉). Consequently,
we have a decomposition

𝔤ℝ = 𝔳 ⊕ 𝔳⟂.

By left (or right) translating the above decomposition, we obtain a horizontal bundle of the principal
bundle

𝑉 ↪ 𝐺ℝ → 𝐺ℝ/𝑉 ≅ 𝐷,

which is equivalent to a connection. Therefore, the real analytic curve 𝑦 ↦ exp(𝑖𝑦𝑁) ⋅ 𝐹 in 𝐷 can be lifted
to a horizontal real analytic curve 𝑦 ↦ ℎ̃(𝑦) in 𝐺ℝ, meaning it satisfies the following differential equation:

ℎ̃(𝑦)−1𝜕𝑦ℎ̃(𝑦) ∈ 𝔳⟂. (3.25)

From this, a condition on ̃𝑔(𝑦) is derived. This is the sought-after natural element relating exp(𝑖𝑦𝑁) ⋅ 𝐹
and exp(𝑖𝑦𝑁) ⋅ 𝐹:

Theorem 3.5.15 (SL(2)-orbit theorem).
There exists a unique real analytic, 𝐺ℝ-valued function ̃𝑔(𝑦) defined for 𝑦 > max(0, 𝛼), such that

i) ̃𝑔(𝑦) has a convergent Taylor series around 𝑦 = ∞,

̃𝑔(𝑦) = ̃𝑔(∞)(1 + ̃𝑔1𝑦−1 + ̃𝑔2𝑦−2 +…)

ii) ̃𝑔(∞) ∈ exp(𝐿−1,−1ℝ ∩ ker ad𝑁)

iii) (ad𝑁)𝑘+1 ̃𝑔𝑘 = 0

iv) exp(𝑖𝑦𝑁) ⋅ 𝐹 = ℎ̃(𝑦)𝑒𝑖𝑁 ⋅ 𝐹

v) ℎ̃(𝑦)−1𝜕𝑦ℎ̃(𝑦) ∈ 𝔳
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Furthermore, ̃𝑔(𝑦) also has an inverted series

̃𝑔(𝑦)−1 = (1 + 𝑓1𝑦−1 + 𝑓2𝑦−2 +…) ̃𝑔(∞)−1

such that

vi) (ad𝑁)𝑘+1𝑓𝑘 = 0.

By the second property, we can write ̃𝑔(∞) = 𝑒𝜁 for some 𝜁 ∈ 𝐿−1,−1𝑅 ∩ ker ad𝑁. Furthermore, the
operator 𝜁 is strongly related to 𝛿 (see [CKS86, Lem. 6.60]) and can be expressed in terms of the 𝛿−𝑝,−𝑞’s
(cf. [GLP19, Appx. B]). Moreover, by restricting to the first term in the Taylor series of ̃𝑔(𝑦) and we
construct another filtration

̂𝐹 = 𝑒𝜁 ⋅ 𝐹 = 𝑒𝜁𝑒−𝑖𝛿 ⋅ 𝐹.

This filtration is known as the SL(2)-split. Again, it is obtained by performing a rotation and (𝑊, ̂𝐹, 𝑁)
defines an ℝ-split polarized mixed Hodge structure. This follows from the fact that 𝜁 is real and com-
mutes with 𝑁. The SL(2)-splitting is particularly important in the multi-variable setting, as it produces
commuting splittings [CKS86].

The interesting part of the SL(2)-orbit theorem is that it describes a way to get from the SL(2)-orbit
to the nilpotent orbit. Moreover, the proof is constructive: [CKS86] provides recursion relations for the
the Taylor series coefficients of ̃𝑔(𝑦). However, solving these relations is rather non-trivial, but it has been
done in specific cases (see e.g. [GMH22]).

Furthermore, in view of (3.24), objects from the boundary Hodge structure 𝐹∞ can be transported
to the nilpotent orbit living in the ‘bulk’ of moduli space. This is precisely the idea of [Gri21], where a
holographic perspective on the moduli space is presented. In particular, the Weil operator is given by

𝐶(𝑡) = ℎ̃(𝑡)𝐶∞ℎ̃(𝑡)−1, (3.26)

where ℎ̃(𝑡) = 𝑒𝑥𝑁 ℎ̃(𝑦) and 𝐶∞ the Weil operator of the boundary Hodge structure 𝐹∞. Furthermore, we
can write 𝐶∞ = (−1)𝑄∞ , where 𝑄∞ is the boundary charge operator. Finally, when looking at first order
we have ℎ̃(𝑡) = 𝑒𝑥𝑁 exp(− 1

2
log(𝑦)𝑌). The corresponding Weil operator

𝐶SL(2)(𝑡) = 𝑒𝑥𝑁𝑦−
1
2𝑌𝐶∞𝑦

1
2𝑌𝑒−𝑥𝑁 (3.27)

is what we will call the SL(2)-orbit approximation of the Weil operator. Finally, one can explicitly check
that the boundary charge operator and the 𝔰𝔩(2)-triple {𝑁+, 𝑌 , 𝑁} satisfy (cf. [GMH22])

[𝑄∞, 𝑌] = 𝑖(𝑁+ + 𝑁), [𝑄∞, 𝑁+] = − 𝑖
2𝑁

0, [𝑄∞, 𝑁] = − 𝑖
2𝑁

0. (3.28)

Formally, the rotation by 𝑒𝜉 should be incorporated as well. However, this will just result in a rotated
𝔰𝔩(2)-triple, which is qualitatively equivalent. Consequently, we ignore it here.

To summarize: we started with a nilpotent orbit. To this, we were able to associate anℝ-split polarized
mixed Hodge structure, which gave us the SL(2)-orbit. Then, the SL(2)-orbit theorem gave us a way to
retrieve the original nilpotent orbit. This procedure is schematically depicted in Figure 3.5.

In [CKS86] the SL(2)-orbit theorem is generalized to several variables. We want to emphasize that
this generalization is highly non-trivial, which is indicated by the fact it took thirteen years, after the one-
variable case in [Sch73], to prove it. This is due to the fact that multiple moduli can be sent to infinity in
different orders. We do not discuss the multi-variable setting here and refer to [CKS86] for more details.
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exp(𝑡𝑁) ⋅ 𝐹
nilpotent orbit

(𝑊, 𝐹, 𝑁)
pol. MHS

(𝑊, 𝐹, 𝑁)
ℝ-split

exp(𝑡𝑁) ⋅ 𝐹
SL(2)-orbit

𝛿SL(2)-orbit
theorem

Figure 3.5: Schematic depiction of steps leading up to the SL(2)-orbit theorem.

Example 3.5.16 (SL(2)-orbit theorem).
In Example 3.5.12 we computed the ℝ-split polarized mixed Hodge structure (𝑊, 𝐹lim, 𝑁). Here
we want to build upon this example and go through the steps of the SL(2)-orbit theorem. First, we
compute the grading operator 𝑌 . For this, let us denote 𝑣𝑝,𝑞 ∈ ̃𝐼𝑝,𝑞. We saw in Example 3.5.12
that ̃𝐼𝑝,𝑞 = 0 for 𝑝 ≠ 𝑞. Furthermore,

𝑌𝑣3,3 = (6 − 3)𝑣3,3 = 3𝑣3,3, 𝑌𝑣2,2 = (4 − 3)𝑣2,2 = 𝑣2,2,
𝑌𝑣1,1 = (2 − 3)𝑣1,1 = −𝑣1,1, 𝑌𝑣0,0 = (0 − 3)𝑣0,0 = −3𝑣0,0.

As 𝑣3,3, 𝑣2,2, 𝑣1,1, 𝑣0,0 coincides with the standard basis of ℂ4, we can write

𝑌 =
⎛
⎜
⎜
⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟
⎟
⎠
.

The matrix for 𝑁 was given in Example 3.5.3 and one can verify that [𝑌 , 𝑁] = −2𝑁. By assuming
a general matrix form for 𝑁+ and imposing the 𝔰𝔩2-commutation relations, we find

𝑁+ =
⎛
⎜
⎜
⎝

0 3 0 0
0 0 4 0
0 0 0 3
0 0 0 0

⎞
⎟
⎟
⎠
.

Note, 𝑁𝑖𝑣3,3, for 0 ≤ 𝑖 ≤ 3, generate 𝐻3(𝑌3, ℂ). Hence, 𝐻3(𝑌3, ℂ) is an irreducible representation
of 𝔰𝔩(2, ℝ) (cf. proof of Lemma 3.5.13). Finally, we compute the SL(2)-orbit

𝐹SL(2) = 𝑒𝑡𝑁 ⋅ 𝐹lim.

By our matrix definition of the filtration 𝐹lim, the computation above amounts to matrix multiplica-
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tion:

𝐹SL(2) =
⎛
⎜
⎜
⎜
⎝

1 0 0 0
𝑡 1 0 0
1
2
𝑡2 𝑡 1 0

1
6
𝑡3 1

2
𝑡2 𝑡 1

⎞
⎟
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎜
⎝

1 0 0 0
𝑡 1 0 0
1
2
𝑡2 𝑡 1 0

1
6
𝑡3 1

2
𝑡2 𝑡 1

⎞
⎟
⎟
⎟
⎠

.

The original nilpotent orbit is given in (3.14). The difference between the two is a factor 𝑖𝜒 in the
bottom left corner. The SL(2)-orbit theorem gives us a way to construct an analytic map ̃𝑔(𝑦) such
that

𝑒𝑖𝑦𝑁 ⋅ 𝐹lim = ̃𝑔(𝑦)𝐹SL(2).

In [GMH22] the algorithm is performed and, adapted to our conventions, it is given by

̃𝑔(𝑦) = 1

√1 − 3𝜒
2𝑦3

⎛
⎜
⎜
⎝

̃𝑔1,1 0 ̃𝑔1,3 0
0 ̃𝑔2,2 0 ̃𝑔2,4
̃𝑔3,1 0 ̃𝑔3,3 0
0 ̃𝑔4,2 0 ̃𝑔4,4

⎞
⎟
⎟
⎠
,

where

̃𝑔1,1 =
1
4
(1 + 3𝛽(𝑦)−1) , ̃𝑔1,3 =

3
2𝑦2

(−1 + 𝛽(𝑦)−1) ,
̃𝑔2,2 =

3
4
(1 + 1

3
𝛽(𝑦)) , ̃𝑔2,4 =

3
2𝑦2

(−1 + 𝛽(𝑦)),

̃𝑔3,1 = −𝑦2

8
(1 − 𝛾(𝑦)

𝛽(𝑦)
) , ̃𝑔3,3 =

3
4
(1 + 𝛾(𝑦)

3𝛽(𝑦)
) ,

̃𝑔4,2 = −𝑦2

8
(𝛾(𝑦) − 𝛽(𝑦)), ̃𝑔4,4 =

1
4
(𝛾(𝑦) + 3𝛽(𝑦)),

and

𝛽(𝑦) =
√
1 + 3𝜒

𝑦3 , 𝛾(𝑦) = 1 − 6𝜒
𝑦3 . ♦





CHAPTER4
Integrable systems

H odge theory has proven to be very useful within string theory, as we have mentioned multiples times
already. In the previous chapter we saw that the main object of interest is the period map. Yet, its

description and properties are quite abstract. However, in the single-complex modulus case, one can view
the period map, or its lifting to be precise, as a mapping

Σ → 𝐺,

where Σ is a Riemann surface, i.e a worldsheet, and 𝐺 a Lie group. In physics, a theory describing such
maps is called a non-linear sigma-model. The main objective is to find a non-linear sigma-model for which
the period map solves the equations of motion.

A first step is made in [GM22] and [GM23], where a connection between two particular non-linear
𝜎-models and objects from Hodge theory has been found. Interestingly, in bothmodels, it is not the period
map, but the Weil operator that provides a solution. To be precise, they consider a 𝜆-deformedWZWmodel
and a bi-Yang-Baxter model. These are specific examples of integrable systems. This is a manifestation of
the general idea that Hodge theory and integrable systems are closely related (see e.g. [DWS08; Fre99;
Her03]).

Motivated by this connection, we study integrable systems in this chapter. The field of integrable
systems has its origins in classical mechanics. At the time people tried to find exact solutions to Newton’s
equations of motion. This turned out to be a difficult task, as in about two centuries only a handful instances
were found [BBT03]. A systematic approach was needed. This eventually came in the nineteenth century,
when Liouville developed a framework in which sufficient conditions were described for the equations of
motion to be exactly solvable. The procedure was called “solvable by quadratures”. The systems previously
found all fell into this category. Nowadays, systems that satisfy Liouville’s conditions are dubbed to be
integrable and will be of interest in this chapter.

Specifically, we will generalize the notion of integrability to field theory. This formalism is used in
various fields of physics, such as fluid mechanics (e.g. the Korteweg-De Vries model), condensed matter
(the Sine-Gordon model) and also turns out to be relevant for string theory [Dri22]. Furthermore, we
will consider the two specific non-linear sigma-models from above, namely deformed WZW models and
bi-Yang-Baxter models and discuss their integrability.

73
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4.1 Classical Integrability

Integrability is a powerful tool in solving dynamical systems. A key feature of integrable systems is that
they have a lot of symmetry. This, heuristically speaking, gives a way to rewrite the equations of motion,
which are typically differential equations, into algebraic equations that are easier to solve, in principle. One
should think about inverting algebraic relationships between variables, for example. Note, this can still be
highly non-trivial, hence the wording ‘in principle’.

For our purposes, we will need to extend the definitions to the field theory setting. Our focus will
be on classical integrability and we will mainly follow [Dri22; Hoa22; BBT03; Aru19]. Consequently,
we will not touch upon quantum integrability. However, this is a very interesting subject and could be a
direction for further research. For an introduction in this topic we refer to [Bom+16; Ret22].

4.1.1 Liouville Integrability
Let us first introduce the concept of integrability in the setting of classical mechanics. Recall, in the Hamil-
tonian formalism the dynamics are captured in generalized coordinates 𝑞𝑖 and their conjugate momenta
𝑝𝑖, which satisfy the Hamilton equations

̇𝑞𝑖 = 𝜕𝐻
𝜕𝑝𝑖

, ̇𝑝𝑖 = −𝜕𝐻𝜕𝑞𝑖 .

Mathematically, this data is captured in a symplectic manifold (𝑃, 𝜔) (see e.g. [MS17, Ch. 1]). Here,
𝑃 can be viewed as the phase space of the system. The amount of degrees of freedom is now captured by
the half dimension of the manifold 𝑃, which coincides with the number of generalized positions {𝑞𝑖}. To
completely describe a classical dynamical system, one also needs to specify the Hamiltonian 𝐻. Thus, the
required data is a triple (𝑃, 𝜔,𝐻).

Using the symplectic structure, one can obtain a (non-degenerate) Poisson bracket {⋅, ⋅} by ‘inverting’
the symplectic form. In local coordinates the bracket is given by

{𝑓, 𝑔} = 𝜕𝑓
𝜕𝑝𝑖

𝜕𝑔
𝜕𝑞𝑖 −

𝜕𝑔
𝜕𝑝𝑖

𝜕𝑓
𝜕𝑞𝑖 .

As usual, the Einstein summation convention is assumed. From this definition, one readily sees

𝑑
𝑑𝑡𝑓 = {𝑓,𝐻},

given that the coordinates (𝑞𝑖, 𝑝𝑖) satisfy the Hamilton equations. Hence, a function 𝑓 ∈ 𝐶∞(𝑃) is
constant in time if and only if it Poisson commutes with the Hamiltonian. We say such functions are
conserved quantities or conserved charges.

Now, Liouville integrability is defined in terms of the Poisson bracket ([Dri22, Sec. 2.2]):

Definition 4.1.1.
A classical dynamical system (𝑃, 𝜔,𝐻) is said to be Liouville integrable if

i) It has 𝑛 = 1
2
dim𝑃 conserved quantities 𝐹𝑖 ∈ 𝐶∞(𝑃).

ii) The conserved quantities are in involution, i.e. they mutually Poisson commute

{𝐹𝑖, 𝐹𝑗} = 0.
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iii) The conserved quantities are independent. By this we mean that the one forms 𝑑𝐹𝑖 are pointwise
linearly independent.

Examples of Liouville integrable classical systems are the (multi-dimensional) harmonic oscillator [Aru19,
Ch. 1] and the Kepler problem [Tor16, Sec. 2]. The reason Liouville integrable systems are of interest is
because they are exactly solvable. One can find specific canonical coordinates in terms of the conserved
quantities. In this new basis, the equations of motion decouple and their solutions are linear in time [Dri22,
Sec. 2.2]. Consequently, the equations of motion can be exactly or completely solved by computing and
solving finitely many definite integrals and algebraic equations, respectively. This is known as solvable
by quadratures. Since Liouville integrable systems are, in principle, completely solvable, they are also
referred to as completely integrable systems [Aru19, Ch. 1].

The statement above (and more) is captured in the Arnold-Liouville theorem:

Theorem 4.1.2 (Liouville).
Given a Liouville integrable system (𝑃, 𝜔,𝐻)with conserved quantities {𝐹𝑖}, there exists a canonical trans-
formation (𝑞𝑖, 𝑝𝑖) → (Ψ𝑖, 𝐹𝑖) for which the equations of motion can be obtained by “quadrature”.

The proof requires a bit of symplectic geometry and the canonical transformation is difficult to compute in
practice. We refer to [BBT03, Ch. 2] for details. In view of Liouville’s theorem, we conclude that Liouville
integrability is very powerful: a maximal set of independent Poisson commuting conserved quantities
guarantees complete solvability of the dynamical system in terms of simple linear solutions.

However, there is an evident complication: one has to find Poisson commuting conserved quantities.
Given a dynamical system, this in practice is a rather non-trivial task, as there is no systematic way to
compute these quantities [Dri22, Sec. 2.5]. Therefore, it is in general very difficult to determine whether
a dynamical system is integrable. Moreover, it is unclear from this formulation of integrability how one
would generalize to field theories. Specifically, having as many conserved quantities as degrees of freedom
(first requirement in Definition 4.1.1) is not meaningful in a field theory, as such theories typically have an
infinite amount of degrees of freedom. To solve these problems we need a different framework: the Lax
pair formulation of integrability. We will expand on this in the next subsection.

4.1.2 Lax Pair Formulation
As indicated in the previous section, we need a systematic way to construct conserved charges and a defini-
tion of integrability for which the generalization to field theories is apparent. This is done in the Lax pair
formulation. The approach will consist of two steps: constructing conserved charges and then finding
sufficient conditions for them to be in involution. Let us start with the former.

Conserved Charges

To construct conserved charges we will put a constraint on the dynamical system. Let us suppose that the
equations of motion of our system can be written as1

𝜕𝜏𝐿 = [𝑀, 𝐿], (4.1)

where 𝐿,𝑀 are non-singular phase-space valued square matrices [Dri22, Sec. 2.5]. In other words, 𝐿 and
𝑀 could be viewed as maps 𝑃 → 𝔤, where 𝔤 is a Lie algebra and 𝑃 the phase space. Typically, we have

1We write 𝜏 instead of 𝑡 for the time derivative, as we want to interpret it as the 𝜏 coordinate on the worldsheet later on.
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𝔤 = 𝔤𝔩(𝑘) for some 𝑘, yet we would like to think about it abstractly. The pair (𝐿,𝑀) is called a Lax pair.
Note, a Lax pair is not unique. One can perform, for instance, a gauge transformation 𝐿 → 𝑔𝐿𝑔−1 and
𝑀 → 𝑔𝑀𝑔−1 + 𝜕𝜏𝑔𝑔−1. A small computation shows that such a transformation leaves (4.1) invariant.

Given a Lax pair, the construction of conserved charges is straightforward. They are encoded in traces
of powers of 𝐿. Indeed, for every 𝑚 ≥ 0

𝜕𝜏 Tr(𝐿𝑚) = 𝑚Tr([𝑀, 𝐿𝑚]) = 0.

Hence, we have found a tower of conserved charges

𝐹𝑚 ∶= Tr(𝐿𝑚),

which do not necessarily need to be independent [Dri22, Sec. 2.5]. Equivalently, one can show that the
eigenvalues of 𝐿 are conserved. Indeed, write 𝐿 = 𝑈Λ𝑈−1 with Λ diagonal. Then, by using the gauge
symmetry of (4.1), (Λ, 𝑀̃) with 𝑀̃ = 𝑈−1𝑀𝑈 + 𝜕𝜏(𝑈−1)𝑈 is a Lax pair. Equation (4.1) then becomes

𝜕𝜏Λ = [𝑀̃, Λ].

However, the right-hand side does not contain diagonal terms as it is skew-symmetric. Therefore, we have
𝜕𝜏Λ𝑖 = 0. The next step is to see when these charges are in involution.

Involution of Charges

Now that we found a way to construct conserved quantities we would like to know when the charges are
in involution, i.e. Poisson commute. For this, we will construct a Poisson-type bracket on the level of the
Lax pair and come to a necessary and sufficient form of this bracket to ensure involution of the charges.

Suppose (𝐿,𝑀) form a Lax pair and 𝐿 can be diagonalized

𝐿 = 𝑈Λ𝑈−1.

As seen above, the diagonal elements ofΛ are the conserved charges. Furthermore, let 𝐸𝑖𝑗 be the canonical
basis of 𝑛 × 𝑛 matrices, (𝐸𝑖𝑗)𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙 [BBT03, Sec. 2.5]. Then, we can write

𝐿 = ∑
𝑖𝑗
𝐿𝑖𝑗𝐸𝑖𝑗 ,

where 𝐿𝑖𝑗 are functions on the phase-space. Hence, the Poisson bracket {𝐿𝑖𝑗 , 𝐿𝑘𝑙} makes sense. Now, let

𝐿1 ∶= 𝐿 ⊗ 1 = ∑
𝑖𝑗
𝐿𝑖𝑗𝐸𝑖𝑗 ⊗ 1 ∈ 𝔤 ⊗ 𝔤, 𝐿2 ∶= 1 ⊗ 𝐿 = ∑

𝑖𝑗
𝐿𝑖𝑗1 ⊗ 𝐸𝑖𝑗 ∈ 𝔤 ⊗ 𝔤.

If we considermore copies of 𝔤, we write 𝐿𝑛 for the embedding of 𝐿 at position 𝑛, e.g 𝐿3 = 1⊗1⊗𝐿⊗1⊗⋯.
For a general element 𝑇 ∈ 𝔤 ⊗ 𝔤, we write

𝑇12 ∶= 𝑇 = ∑
𝑖𝑗,𝑘𝑙

𝑇𝑖𝑗,𝑘𝑙𝐸𝑖𝑗 ⊗ 𝐸𝑘𝑙, 𝑇21 ∶= ∑
𝑖𝑗,𝑘𝑙

𝑇𝑖𝑗,𝑘𝑙𝐸𝑘𝑙 ⊗ 𝐸𝑖𝑗

Using the definition above we construct a new Poisson-type bracket as follows

{𝐿1, 𝐿2} ∶= ∑
𝑖𝑗,𝑘𝑙

{𝐿𝑖𝑗 , 𝐿𝑘𝑙}𝐸𝑖𝑗 ⊗ 𝐸𝑘𝑙, (4.2)

i.e. as the matrix of Poisson brackets of elements of 𝐿 [BBT03, Sec. 2.5]. The involutivity of the charges
is captured in this bracket:
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Theorem 4.1.3.
The eigenvalues, i.e. conserved charges, of 𝐿 are in involution if and only if there exists a function
𝑟 ∶ 𝑃 → 𝔤 ⊗ 𝔤 such that the bracket (4.2) takes the form

{𝐿1, 𝐿2} = [𝑟12, 𝐿1] − [𝑟21, 𝐿2]. (4.3)

The object 𝑟 is called the r-matrix.

We would like to emphasize that the proof is constructive and refer to [BBT03, Sec. 2.5] for the argument.
To summarize: given a dynamical system, if one provides a Lax pair and an r-matrix such that equation (4.3)
holds, a set of mutually Poisson commuting conserved charges can be constructed. Hence, we succeeded
in providing a systematic way to show Liouville integrability. However, finding a Lax pair and an 𝑟-matrix
is highly non-trivial. Moreover, the classification of integrable systems in the Lax pair formulation, i.e.
the setting of Theorem 4.1.3, is still an open problem [Dri22].

However, we can simplify the situation by imposing restrictions on the 𝑟-matrix. For instance, note
that the bracket (4.2) is skew-symmetric and satisfies the Leibniz identity by construction. Therefore, it
defines a Poisson bracket if it satisfies the Jacobi identity. By imposing the Jacobi identity2 we find [BBT03,
Sec. 2.5]

[𝐿1, [𝑟12, 𝑟13] + [𝑟12, 𝑟23] + [𝑟32, 𝑟13] + {𝐿2, 𝑟13} − {𝐿3, 𝑟12}] + cyc. perm. = 0. (4.4)

Now, if we assume 𝑟 to be constant, the last two terms vanish. Hence, a sufficient condition for (4.2) to
define a Poisson bracket is

[𝑟12, 𝑟13] + [𝑟12, 𝑟23] + [𝑟32, 𝑟13] = 0. (4.5)

When the 𝑟-matrix is antisymmetric, i.e. 𝑟12 = −𝑟21, the above equation is referred to as the classical
Yang-Baxter equation (CYBE). The CYBE and its modifications play an important role in this work.
Therefore, we like to understand its structure. We discuss this in the next section.

4.1.3 Algebraic Structure of Classical Yang-Baxter Equation
The current description of the 𝑟-matrix is not optimal for our discussion later on. Furthermore, the relevant
structures at play are not manifest. In this section we build the appropriate framework for the 𝑟-matrices
and discuss its relation to integrable systems. We will see certain algebraic structures appearing, which are
important in Chapter 5.

For this, let us consider a Lie algebra 𝔤 equipped with a non-degenerate ad-invariant bilinear form
(⋅, ⋅) and a Lax pair 𝐿,𝑀 that satisfies Theorem 4.1.3. As before, we have 𝑟 ∈ 𝔤 ⊗ 𝔤. However, using
the non-degenerate paring, we could view it as a mapping 𝑅 ∶ 𝔤 → 𝔤. Indeed, by pairing we can identify
𝔤 ≅ 𝔤∗, meaning 𝑟 ∈ 𝔤 ⊗ 𝔤∗. As usual, this canonically corresponds to a map 𝑅 ∶ 𝔤 → 𝔤. Concretely, if
we pick a basis and write 𝑟 = 𝑟12 = ∑𝑖𝑗 𝑟𝑖𝑗𝑇𝑖 ⊗ 𝑇𝑗 , then

𝑅𝑋 = ∑
𝑖𝑗
𝑟𝑖𝑗(𝑇𝑗 , 𝑋)𝑇𝑖.

In terms of the map 𝑅, the compatibility condition (4.3) becomes

{(𝐿, 𝑋), (𝐿, 𝑌)} = (𝐿, [𝑋, 𝑌]𝑅), (4.6)
2For this, we naturally extend to 𝔤⊗ 𝔤⊗ 𝔤.
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where

[𝑋, 𝑌]𝑅 ∶= [𝑅𝑋, 𝑌] + [𝑋, 𝑅𝑌].

The bracket [⋅, ⋅]𝑅 is called the 𝑅-bracket. To see (4.6), take (4.3) and contract with 𝑋 ⊗ 𝑌 :

({𝐿1, 𝐿2}, 𝑋 ⊗ 𝑌) = ([𝑟12, 𝐿1], 𝑋 ⊗ 𝑌) − ([𝑟21, 𝐿2], 𝑋 ⊗ 𝑌)
{(𝐿, 𝑋), (𝐿, 𝑌)} = ([𝑅𝑌, 𝐿], 𝑋) − ([𝑅𝑋, 𝐿], 𝑌)

= −(𝐿, [𝑅𝑌, 𝑋]) + (𝐿, [𝑅𝑋, 𝑌])
= (𝐿, [𝑋, 𝑌]𝑅).

Here, we applied the ad-invariance in the third step. Furthermore, one could write down (4.4) in terms of
𝑅. One finds [BBT03, Sec. 4.1]

(𝐿, [𝑋, {(𝐿, 𝑌), 𝑅𝑍} − {(𝐿, 𝑍), 𝑅𝑌} + [𝑅𝑌, 𝑅𝑍] − 𝑅[𝑌, 𝑍]𝑅] + cyc. perm.) = 0

As before, if we assume 𝑅 be constant, it reduces to

(𝐿, [𝑋, [𝑅𝑌, 𝑅𝑍] − 𝑅[𝑌, 𝑍]𝑅] + cyc. perm.) = 0. (4.7)

A sufficient condition to fulfill this equation is

[𝑅𝑋, 𝑅𝑌] − 𝑅([𝑅𝑋, 𝑌] + [𝑋, 𝑅𝑌]) = −𝑐2[𝑋, 𝑌]. (4.8)

In that way, (4.7) reduces to the Jacobi identity of [⋅, ⋅]. An operator 𝑅 ∶ 𝔤 → 𝔤 satisfying (4.8) is called an
𝑅-matrix or Yang-Baxter operator. Equation (4.8) is called the modified classical Yang-Baxter equation
(mCYBE).

The mCYBE (4.8) is related to the CYBE (4.5). To make this apparent, one can write (4.5) in terms
of 𝑅 [BBT03, Sec. 4.1]:

[𝑅𝑋, 𝑅𝑌] − 𝑅([𝑋, 𝑅𝑌] − [𝑅𝑡𝑋, 𝑌]) = 0,

where 𝑅𝑡 denotes the transpose of 𝑅 with respect to the pairing. Now, (4.8) agrees with the above equality
when 𝑐 = 0 and 𝑅𝑡 = −𝑅. The latter translates to 𝑟12 = −𝑟21, which was precisely the condition for the
CYBE. Consequently, one can view (4.8) as a generalization of the CYBE (4.5). Note, by a real rescaling of
𝑅 we may restrict to 𝑐 ∈ {0, 1, 𝑖}. In the literature, 𝑐 = 0 is known as the homogeneous case. Furthermore,
𝑐 = 1 and 𝑐 = 𝑖 are referred to as the split and non-split inhomogeneous case, respectively. We will mostly
be interested in the non-split case.

The existence of an operator 𝑅 ∶ 𝔤 → 𝔤 on a Lie algebra satisfying the mCYBE yields an interesting
algebraic structure.

Proposition 4.1.4.
If 𝑅 is a solution of the mCYBE, then the 𝑅-bracket [⋅, ⋅]𝑅 defines a Lie bracket on 𝔤. Furthermore, the
operator 𝑅 ± 𝑐 satisfies

(𝑅 ± 𝑐)([𝑋, 𝑌]𝑅) = [(𝑅 ± 𝑐)𝑋, (𝑅 ± 𝑐)𝑌]. (4.9)

Proof.— The skew-symmetry is obvious. The proof of the Jacobi identity is straightforward, yet tedious
and not insightful. Thus we omit it. In the end it relies on (4.8) and the Jacobi identity for [⋅, ⋅]. For the
final claim, using the mCYBE we see

(𝑅 ± 𝑐)([𝑋, 𝑌]𝑅) = 𝑅[𝑋, 𝑌]𝑅 ± 𝑐[𝑋, 𝑌]𝑅
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= [𝑅𝑋, 𝑅𝑌] + 𝑐2[𝑋, 𝑌] ± 𝑐[𝑅𝑋, 𝑌] ± 𝑐[𝑋, 𝑅𝑌]
= [(𝑅 ± 𝑐)𝑋, (𝑅 ± 𝑐)𝑌]. ∎

Let us denote the Lie algebra (𝔤, [⋅, ⋅]𝑅) by 𝔤𝑅. This Lie algebra will play an important role in Chapter
5. Property (4.9) suggests the operator 𝑅 ± 𝑐 is a Lie algebra homomorphism between appropriate Lie
algebras. This will be discussed in Chapter 5 as well. Furthermore, it is a central object in the classification
theorems of solutions to the (modified) CYBE by Belavin-Drinfel’d [BD82] and Semenov-Tian-Shansky
[Sem83].

Since the Lie algebra 𝔤𝑅 will play such an important role, let us end this section by studying its structure.
Following [Vic15], we consider both inhomogeneous cases separately. Firstly, we consider the non-split
case 𝑐 = 𝑖. Let (⋅, ⋅) be an ad-invariant non-degenerate symmetric pairing on 𝔤. Then, solutions to the
mCYBE are related to subalgebras of 𝔤ℂ, the complexification of 𝔤 seen as a real Lie algebra:

Proposition 4.1.5.
The map 𝑅 ↦ 𝔤𝑅 defines a one-to-one correspondence between solutions of the non-split mCYBE on 𝔤
and Lie subalgebras of 𝔤ℂ complementary to 𝔤. Moreover, 𝔤, 𝔤𝑅 ⊂ 𝔤ℂ are Lagrangian with respect to
ad-invariant non-degenerate pairing on 𝔤ℂ

⟨𝑍1, 𝑍2⟩ ∶= −𝑖(𝑍1, 𝑍2) + 𝑖(𝑍1, 𝑍2), (4.10)

where (⋅, ⋅) is the complex linear extension, if and only if 𝑅 is skew-symmetric.

Proof.— If 𝑅 is a solution to the mCYBE, 𝔤𝑅 is a Lie algebra by Proposition 4.1.4. We claim 𝔤ℂ = 𝔤⊕𝔤𝑅.
To see this, note 𝑅−𝑖 ∶ 𝔤𝑅 → 𝔤ℂ is an injective Lie algebra homomorphism. Indeed, suppose (𝑅−𝑖)𝑋 = 0
for 𝑋 ∈ 𝔤. Then, by complex conjugation, we have 𝑅𝑋+𝑖𝑋 = 0. Here we used that 𝔤 and 𝑅 are real. From
this we deduce𝑋 = 0. Furthermore, it is a Lie algebra homomorphism by Proposition 4.1.4. Consequently,
we may view 𝔤𝑅 as a Lie subalgebra of 𝔤ℂ by identifying it with the image (𝑅− 𝑖)(𝔤𝑅). On the other hand,
consider the map

𝜌 ∶ 𝔤ℂ → 𝔤, 𝜌(𝑍) ∶= 1
2𝑖 (𝑍 − 𝑍)

Clearly, 𝜌 is surjective and ker 𝜌 = 𝔤 ⊂ 𝔤ℂ. Furthermore, restricted to 𝔤𝑅 (seen as the image (𝑅 − 𝑖)(𝔤𝑅)),
we have

𝜌(𝑅𝑋 − 𝑖𝑋) = 𝜌(𝑅𝑋) − 𝜌(𝑖𝑋) = −𝑋.

Consequently, 𝜌 is an isomorphism restricted to 𝔤𝑅. As ker 𝜌 = 𝔤, we obtain the desired direct sum
decomposition 𝔤𝐶 = 𝔤 ⊕ 𝔤𝑅.

Conversely, let 𝔭 ⊂ 𝔤ℂ be subalgebra complementary to 𝔤. Then, the restriction of 𝜌 to 𝔭 yields an
isomorphism 𝔭 ≅ 𝔤. In particular, for every 𝑋 ∈ 𝔤 there is a unique 𝑌 ∈ 𝔭 such that 𝑋 = 𝜌(𝑌). Then,
define

𝑅𝔭 ∶ 𝔤 → 𝔤, 𝑅𝔭𝑋 ∶= 1
2(𝑌 + 𝑌).

By a straightforward computation, it can be verified (4.8) is satisfied for 𝑐 = 𝑖. Moreover, the maps 𝑅 ↦ 𝔤𝑅
and 𝔭 ↦ 𝑅𝔭 are inverses [Vic15].
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Note, 𝔤 is isotropic with respect to the pairing and has dimension 1
2
dim 𝔤ℂ, thus is Lagrangian. For

𝔤𝑅, we see

⟨(𝑅 − 𝑖)𝑋, (𝑅 − 𝑖)𝑌⟩ = −𝑖(𝑅𝑋 − 𝑖𝑋, 𝑅𝑌 − 𝑖𝑌) + 𝑖(𝑅𝑋 − 𝑖𝑋, 𝑅𝑌 − 𝑖𝑌)
= −2((𝑅𝑋, 𝑌) + (𝑋, 𝑅𝑌)).

Thus, 𝔤𝑅 is isotropic if and only if 𝑅 is skew-symmetric. As 𝔤𝑅 is complementary to 𝔤 it also has dimension
1
2
dim 𝔤ℂ and thus is Lagrangian. ∎

A similar reasoning is valid for the split case 𝑐 = 1, however then the role of 𝔤ℂ is played by 𝔡 = 𝔤⊕𝔤.
Let 𝔤𝛿 ∶= {(𝑋, 𝑋) ∣ 𝑋 ∈ 𝔤} denote the diagonal subalgebra in 𝔡. Then, we have (cf. [Vic15])

Proposition 4.1.6.
The map 𝑅 ↦ 𝔤𝑅 defines a one-to-one correspondence between solutions of the split mCYBE on 𝔤 and
Lie subalgebras of 𝔡 complementary to 𝔤. Moreover, 𝔤𝛿 and 𝔤𝑅 ⊂ 𝔡 are Lagrangian with respect to the
ad-invariant non-degenerate pairing on 𝔡

⟨(𝑋, 𝑌), (𝑋 ′, 𝑌 ′)⟩ ∶= (𝑋, 𝑋 ′) − (𝑌, 𝑌 ′),

if and only if 𝑅 is skew-symmetric.

The upshot is that skew-symmetric 𝑅-matrices correspond to Lie algebras that admit a decomposition into
Lagrangian subalgebras. This data is known as a Manin triple and we will discuss them in Chapter 5.

4.2 Integrability in FieldTheory

As mentioned before, a direct generalization of Liouville integrability to field theory is ambiguous as the
number of degrees of freedom is typically infinite. However, the Lax pair formulation turns out to be more
suitable, as we will see in this section. For our purposes, we restrict ourselves to (1 + 1)-dimensional field
theories, as those are relevant in string theory contexts. Our main references are [Dri22; BBT03].

Consider a general (1+1)-dimensional field theory on a spacetime Σ. In our discussion, we will either
have Σ = ℝ1,1 or Σ = ℝ×𝑆1. Furthermore, let us denote the time-direction by 𝜏 and the spatial-direction
by 𝜎. Similar to the Lax pair formulation, let us assume the dynamics of the theory can be captured into two
𝔤-valued maps3 ℒ𝜎(𝜏, 𝜎; 𝜇) = ℒ𝜎(𝜇) and ℒ𝜏(𝜏, 𝜎; 𝜇) = ℒ𝜏(𝜇), depending on a free spectral parameter
𝜇 ∈ ℂ, such that

𝜕𝜏ℒ𝜎(𝜇) − 𝜕𝜎ℒ𝜏(𝜇) + [ℒ𝜏(𝜇), ℒ𝜎(𝜇)] = 0, ∀𝜇 ∈ ℂ. (4.11)

Some remarks are in place. The motivation for the above assumption lies in the structure of the Lax
equation. It turns out the Lax matrix can be interpreted as an element on a coadjoint orbit in 𝔤 and Lax
equation a flow on this orbit (cf. [BBT03, Sec. 3.3]). If one extends this idea to field theory one ends up
with the equation above (see [BBT03, Sec. 3.7]). Furthermore, the dependence on the spectral parameter
𝜇 is a technicality needed to find the proper infinite set of conserved quantities. To be precise, when
incorporating the spectral parameter, ℒ𝜎 and ℒ𝜏 take values in 𝔤 ⊗ ℂ.

3Intuitively, one should think about them as matrices, i.e. 𝔤 = 𝔤𝔩(𝑛).
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Requirement (4.11) is called the zero-curvature condition. To motivate this, we introduce a one-form
on Σ

ℒ(𝜇) ∶= ℒ𝜏(𝜇)𝑑𝜏 + ℒ𝜎(𝜇)𝑑𝜎,

called the Lax connection. It can be viewed as a connection on a principal 𝐺-bundle over Σ, where 𝐺 is a
Lie group integrating 𝔤, motivating the name. Then, (4.11) means the Lax connection is flat,

𝑑ℒ(𝜇) + ℒ(𝜇) ∧ ℒ(𝜇) = 0, 𝜇 ∈ ℂ.

Following [Dri22], we will say a field theory is weakly (classically) integrable4 if its equations of motion are
captured by a flat Lax connection ℒ(𝜇), for every 𝜇 ∈ ℂ. If the set of conserved charges are in involution,
we say the system is strongly (classically) integrable. Analogous to Section 4.1.2, we will find a condition
on the Poisson brackets of the Lax matrices that ensures strong integrability.

Conserved charges

Let us focus on constructing an infinite set of conserved charges from a Lax connection. For this, let us
introduces an auxiliary field Ψ(𝜏, 𝜎; 𝜇) = Ψ(𝜇) that satisfies

(𝜕𝜎 − ℒ𝜎(𝜇))Ψ(𝜇) = 0, (𝜕𝜏 − ℒ𝜏(𝜇))Ψ(𝜇) = 0. (4.12)

The field Ψ is completely fixed by the above systems if we require Ψ(0, 0; 𝜇) = 1. Due to its resemblance
to the time-dependent Schrödinger equation, Ψ is referred to as the wave function. Now, the flatness of
the lax connection is equivalent to the compatibility condition

𝜕𝜎𝜕𝜏Ψ(𝜇) = 𝜕𝜏𝜕𝜎Ψ(𝜇)

on the wave function.
The system (4.12) can be solved by parallel transporting from the origin to a point (𝜏, 𝜎) along a path

𝛾 in Σ,

Ψ(𝜏, 𝜎; 𝜇) = 𝑃 exp (−∫
𝛾
ℒ(𝜇)) . (4.13)

Here, 𝑃 exp denotes the path-ordered exponential, which is defined on a fixed time slice by

𝑃 exp (∫
𝜎

0
𝑑𝜎′ 𝐴(𝜎′)) =

∞
∑
𝑛=0

1
𝑛! ∫

𝜎

0
⋯∫

𝜎

0
𝑑𝜎′1⋯𝑑𝜎′𝑛 ⃖𝑃{𝐴(𝜎′1)⋯𝐴(𝜎′𝑛)}

=
∞
∑
𝑛=0

∫
𝜎

0
𝑑𝜎′𝑛∫

𝜎′𝑛

0
𝑑𝜎′𝑛−1⋯∫

𝜎′2

0
𝑑𝜎′1 𝐴(𝜎′𝑛)⋯𝐴(𝜎′1).

Note, (4.13) only depends the homotopy class of 𝛾, as ℒ(𝜇) is flat.
To obtain an infinite set of conserved charges, we consider a path at a fixed time slice 𝜏. Then, we

define the transport matrix

𝑇(𝑏, 𝑎; 𝜇) ∶ = Ψ(𝜏, 𝑏; 𝜇)Ψ(𝜏, 𝑎; 𝜇)−1

4We want to mention that this is no universal definition in the literature.
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= 𝑃 exp (−∫
𝑏

𝑎
𝑑𝜎 ℒ𝜎(𝜇)) .

Now, using flatness of the Lax connection, we find (cf. [BBT03, Sec. 3.7])

𝜕𝜏𝑇(𝑏, 𝑎; 𝜇) = 𝑇(𝑏, 𝑎; 𝜇)ℒ𝜏(𝜏, 𝑎; 𝜇) − ℒ𝜏(𝜏, 𝑏; 𝜇)𝑇(𝑏, 𝑎; 𝜇). (4.14)

Depending on the type of worldsheet, we have two cases:

i) When Σ = ℝ1,1, we impose ℒ(𝜇) → 0 (𝜎 → ±∞). Then, any power of the monodromy matrix
𝑇(∞,−∞; 𝑧) is conserved by (4.14), i.e.

𝜕𝜏(𝑇(∞,−∞; 𝜇)𝑛) = 0

for any 𝑛 ∈ ℕ and 𝜇 ∈ ℂ.

ii) When Σ = ℝ × 𝑆1 we identify 𝜎 ∼ 𝜎 + 2𝜋. Then, the monodromymatrix 𝑇(2𝜋, 0; 𝜇) satisfies

𝜕𝜏𝑇(2𝜋, 0; 𝜇) = [𝑇(2𝜋, 0; 𝜇), ℒ𝜏(𝜏, 0; 𝜇)]

by (4.14). Consequently, the trace of any power of 𝑇(2𝜋, 0; 𝜇) is conserved, i.e.

𝜕𝜏 Tr (𝑇(2𝜋, 0; 𝜇)𝑛) = 0

for any 𝑛 ∈ ℕ, 𝑧 ∈ ℂ. Note, the monodromy matrix plays the role of the Lax matrix in the field
theory context.

Let us for simplicity denote both 𝑇(∞,−∞; 𝜇) and Tr𝑇(2𝜋, 0; 𝜇) by 𝑇(𝜇), which we call the transfer
matrix. It will be clear from the context which one is considered. Interestingly, even more conserved
charges can constructed upon Taylor expanding 𝑇(𝜇) around values of 𝜇 for which 𝑇(𝜇) is analytic. For
example, if 𝑇(𝜇) is analytic around 𝜇 = 0, we can write

𝑇(𝜇) = ∑
𝑛
𝑄𝑛𝜇𝑛.

The conservation of the transfer matrix implies the conservation of the coefficients, i.e. 𝜕𝜏𝑄𝑛 = 0 for
every 𝑛 ∈ ℕ. Consequently, there are multiple infinite sets of conserved charges that have different
properties. We will not focus on these conserved charges in this work and refer to [BBT03; Dri22] for
more background.

Charges in Involution

Similar to the classical case, the existence of a tower of conserved charges is not enough for strong inte-
grability. We would like to establish a sufficient condition, similar to Theorem 4.1.3, that ensures strong
integrability. For this we consider the spatial Lax componentℒ𝜎(𝜇) and its Poisson commutation relations.
However, in the field theory context the ‘if and only if ’ equivalence is lost and only sufficient conditions
can be deduced. Moreover, there are multiple conditions that ensure strong integrability. Here, we will
focus on two.

For the first condition, let us assume the Poisson bracket of spatial Lax components satisfies

{ℒ𝜎,1(𝜎; 𝜇), ℒ𝜎,2(𝜎′; 𝜇′)} = [ℒ𝜎,1(𝜎; 𝜇) + ℒ𝜎,2(𝜎′; 𝜇′), 𝑟12(𝜇, 𝜇′)]𝛿(𝜎 − 𝜎′) (4.15)
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at equal times for some 𝑟-matrix. Here we use the same notation as in 4.1.2. As only delta functions and
not their derivatives appear in the bracket above, we say it is ultralocal. To ensure involutivity, we assume
𝑟 to be non-dynamical, skew-symmetric and satisfies the CYBE

[𝑟12(𝜇1, 𝜇2), 𝑟13(𝜇1, 𝜇3)] + [𝑟12(𝜇1, 𝜇2), 𝑟23(𝜇2, 𝜇3)] + [𝑟32(𝜇3, 𝜇2), 𝑟13(𝜇1, 𝜇3)] = 0 (4.16)

for all spectral parameters. Using these assumptions, it can be shown the transport matrices satisfy [BBT03,
Sec. 3.9]

{𝑇1(𝑏, 𝑎; 𝜇), 𝑇2(𝑏, 𝑎; 𝜇′)} = [𝑟12(𝜇, 𝜇′), 𝑇1(𝑏, 𝑎; 𝜇)𝑇2(𝑏, 𝑎; 𝜇)]. (4.17)

Equation (4.17) is known as the Sklyanin exchange relation and it implies

Proposition 4.2.1.
If the Sklyanin exchange relation holds, we have

{Tr1 (𝑇1(𝑏, 𝑎; 𝜇)𝑛),Tr2 (𝑇2(𝑏, 𝑎; 𝜇′)𝑚)} = 0

for any 𝑛,𝑚 ∈ ℤ. Consequently, the theory is strongly integrable.

Proof.— Using the relation Tr12(𝐴 ⊗ 𝐵) = Tr(𝐴)Tr(𝐵), we have

{Tr1 𝑇1(𝑏, 𝑎; 𝜇),Tr2 𝑇2(𝑏, 𝑎; 𝜇)} = Tr12{𝑇1(𝑏, 𝑎; 𝜇), 𝑇2(𝑏, 𝑎; 𝜇′)}
= Tr12[𝑟12(𝜇, 𝜇′), 𝑇1(𝑏, 𝑎; 𝜇)𝑇2(𝑏, 𝑎; 𝜇)]
= 0.

Now, by the cyclic property of the trace and the Leibniz rule for the Poisson bracket, this generalizes to
higher powers. ∎

To above condition proves to be important when trying to quantize the field theory [Skl82]. However,
the integrable field theories we are interested in do not possess the Sklyanin exchange relation. This is
because the Poisson bracket of their spatial Lax components contain non-ultralocal terms, i.e. parts
proportional to 𝜕𝜎𝛿(𝜎 − 𝜎′) (or higher derivatives). Hence, we need to generalize the Sklyanin exchange
relation. One possibility that is relevant to us is the 𝑟/𝑠Maillet form of the Poisson bracket. The Maillet
bracket is given by

{ℒ𝜎,1(𝜎; 𝜇), ℒ𝜎,2(𝜎′; 𝜇′)} =[𝑟12(𝜇, 𝜇′), ℒ𝜎,1(𝜎; 𝜇)]𝛿(𝜎 − 𝜎′)−
[𝑟21(𝜇′, 𝜇), ℒ𝜎,2(𝜎; 𝜇′)]𝛿(𝜎 − 𝜎′)−
𝑠12(𝜇′, 𝜇′)𝜕𝜎𝛿(𝜎 − 𝜎′), (4.18)

where 𝑠12(𝜇, 𝜇′) = 𝑟12(𝜇, 𝜇′) + 𝑟21(𝜇′, 𝜇). One can show the CYBE (4.16) implies the Jacobi identity of
the Maillet bracket5. The non-ultralocal term in the Maillet bracket produces an ambiguity in the Poisson
brackets of the transport matrices. This issue can be solved through a regularization procedure due to
Maillet in [Mai86]. The result reads,

{𝑇1(𝑏, 𝑎; 𝜇), 𝑇2(𝑏, 𝑎; 𝜇′)} =[𝑟(𝜇, 𝜇′), 𝑇1(𝑏, 𝑎; 𝜇)𝑇2(𝑏, 𝑎; 𝜇′)]−
𝑇2(𝑏, 𝑎; 𝜇′)𝑠(𝜇, 𝜇′)𝑇1(𝑏, 𝑎; 𝜇)+

5Actually, there is a more general mixed Yang-Baxter equation that already ensures Jacobi. See [Mai86] for more details.
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𝑇1(𝑏, 𝑎; 𝜇)𝑠(𝜇, 𝜇′)𝑇2(𝑏, 𝑎; 𝜇), (4.19)

where

𝑟(𝜇, 𝜇′) ∶= 𝑟21(𝜇′, 𝜇) − 𝑟12(𝜇, 𝜇′)
2 ,

𝑠(𝜇, 𝜇′) ∶= 𝑟21(𝜇′, 𝜇) + 𝑟12(𝜇, 𝜇′)
2 .

Hence, by the same reasoning as in Proposition 4.2.1 we obtain

Proposition 4.2.2.
If Poisson bracket of the spatial Lax components is in the 𝑟/𝑠Maillet form (4.18), then

{Tr1 (𝑇1(𝑏, 𝑎; 𝜇)𝑛),Tr2 (𝑇2(𝑏, 𝑎; 𝜇′)𝑚)} = 0

with 𝑛,𝑚 ∈ ℤ. In other words, the theory is strongly integrable.

Proof.— By (4.19) and the cyclic property of the trace we see

{Tr1 𝑇1(𝑏, 𝑎; 𝜇),Tr2 𝑇2(𝑏, 𝑎; 𝜇′)} = Tr12{𝑇1(𝑏, 𝑎; 𝜇), 𝑇2(𝑏, 𝑎; 𝜇′)}
= Tr12 ( − 𝑇2(𝑏, 𝑎; 𝜇′)𝑠(𝜇, 𝜇′)𝑇1(𝑏, 𝑎; 𝜇) + 𝑇1(𝑏, 𝑎; 𝜇)𝑠(𝜇, 𝜇′)𝑇2(𝑏, 𝑎; 𝜇))
= Tr12 ( − 𝑇2(𝑏, 𝑎; 𝜇′)𝑠(𝜇, 𝜇′)𝑇1(𝑏, 𝑎; 𝜇) + 𝑇2(𝑏, 𝑎; 𝜇′)𝑠(𝜇, 𝜇′)𝑇1(𝑏, 𝑎; 𝜇))
= 0.

As before, the general statement follows from the Leibniz rule and the cyclic property. ∎

Note, equations (4.18), (4.19) are generalizations of (4.15), (4.17) that coincide for a skew-symmetric
𝑟-matrix6, i.e. 𝑟12(𝜇, 𝜇′) = −𝑟21(𝜇′, 𝜇). It is the 𝑟/𝑠 Maillet form that will ensure the strong integrability
of the models of interest in this work. We will introduce these models in the next section.

4.3 Non-linear Sigma-models

In this section we will discuss the deformed WZW model and the bi-Yang-Baxter model and discuss
their integrability. However, these models are of special type. Namely, they are examples of non-linear
sigma-models. These are theories that describe the dynamics of mappings between between a (pseudo)-
Riemannian manifold and a general target manifold. For us, the target manifold will be a Lie group. The
terminology originates from the sixties, where Gell-Mann and Lévy named it after the 𝜎-meson they
encountered in [GL60]. As both models fit in this framework, let us first describe non-linear sigma-
models.

Two-dimensional non-linear sigma-models are of particular interest to us, as they appear as string
worldsheet theories. In Section 1.1 we described strings propagating in flat Minkowski space, where the
dynamics was captured in the Polyakov action (cf. (1.2)). A natural generalization is to consider string
embeddings into a curved target space7 𝑀. Moreover, one can couple the string to the other massless

6To be precise, they coincide after redefining 𝑟 → −𝑟.
7Mathematically, the target space becomes a general (pseudo)-Riemmanian manifold.
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excitations. To be specific, the Kalb-Ramon field 𝐵 and the dilaton Φ. Following [Ton12, Ch. 7], the
resulting string action is in general given by

𝑆 = 𝑇
2 ∫Σ

𝑑2𝜎 √ℎ (ℎ𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜈𝐺𝜇𝜈(𝑋) + 𝜖𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜈𝐵𝜇𝜈(𝑋) + 𝛼′Φ(𝑋)ℛ(2)) .

Here, ℛ(2) denotes the worldsheet Ricci scalar. This is the type of non-linear sigma-model we will be
interested in. However, we do not need the dilaton field in our discussion, so we omit it from now on.
Furthermore, when working in the conformal gauge ℎ𝛼𝛽 = 𝜂𝛼𝛽, we can write the action as

𝑆 = 𝑇
2 ∫𝑑2𝜎 (𝐺𝜇𝜈(𝑋) + 𝐵𝜇𝜈(𝑋)) 𝜕+𝑋𝜇𝜕−𝑋𝜈 (4.20)

in light-cone coordinates. Here, we impose the skew-symmetry of 𝐵 by hand. Typically, we define 𝐸 ∶=
𝐺 + 𝐵 and write

𝑆 = 𝑇
2 ∫𝑑2𝜎 𝐸𝜇𝜈(𝑋)𝜕+𝑋𝜇𝜕−𝑋𝜈.

This point of viewwill be important in Chapter 5. Note, in general𝐺 ∈ Γ(Sym2𝑇∗𝑀) and 𝐵 ∈ Γ(∧2𝑇∗𝑀).
Therefore, 𝐸 ∈ Γ(𝑇∗𝑀 ⊗ 𝑇∗𝑀).

As mentioned before, we will consider the target space to be a Lie group. It turns out several such non-
linear sigma-models are integrable. In the field of integrable systems, people are interested in mapping
out the landscape of integrable models. One approach is to start with such a model and deform it, while
retaining integrability. This is called an integrable deformation. This approach has been very fruitful
in discovering new integrable systems, e.g. [Sfe14; DMV13]. There is one worldsheet sigma-model, in
particular, whose deformations have received particular interest: the principal chiral model. The bi-Yang-
Baxter model and deformed WZW model are examples of such deformations. Therefore, we first describe
the principal chiral model.

4.3.1 Principal ChiralModel
Let us introduce the principal chiral model (PCM). We will use [Hoa22] as main reference and will follow
the notation used in [GM23]. The field content of the PCM consists of a group-valued field

𝑔 ∶ Σ → 𝐺,

where 𝐺 is a simple Lie group with Lie algebra 𝔤. As 𝐺 is simple there exists a (up to scaling) unique
ad-invariant symmetric bilinear form on 𝔤, which we will denote by

(⋅, ⋅) ∶ 𝔤 × 𝔤 → ℝ.

Furthermore, we introduce the pull-back of Maurer-Cartan form

𝑗 = 𝑔−1𝑑𝑔 ∈ Ω1(Σ, 𝔤).

Now, the PCM action is given by

𝑆PCM[𝑔] =
𝑘
4𝜋 ∫

Σ
𝑑2𝜎 (𝑔−1𝜕+𝑔, 𝑔−1𝜕−𝑔) , (4.21)
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where we work in light-cone coordinates. Furthermore, 𝑔−1𝜕±𝑔 should be understood as the light-cone
components of 𝑗. In the literature, people write Tr(𝑋𝑌) ∶= (𝑋, 𝑌), due to the connection of the Killing
form with the trace. By naturally extending this to Lie algebra-valued forms, we can rewrite

𝑆PCM[𝑔] =
𝑘
8𝜋 ∫

Σ
Tr (𝑔−1𝑑𝑔 ∧ ⋆𝑔−1𝑑𝑔). (4.22)

Note, the principal chiral model enjoys a global 𝐺 × 𝐺 symmetry

𝑔 ↦ 𝑔𝐿 ⋅ 𝑔 ⋅ 𝑔−1𝑅 , (𝑔𝐿, 𝑔𝑅) ∈ 𝐺 × 𝐺,

by the ad-invariance of the pairing. Furthermore, the variation of the action yields the equation of motion
𝜕𝜇𝑗𝜇 = 0, or

𝜕+𝑗− + 𝜕−𝑗+ = 0

in light-cone coordinates (see [Hoa22, Sec. 2.1]).
The principal chiral model is a non-linear sigma-model and can be put into the standard form (4.20)

explicitly. This is done in [Hoa22] and the result is the target space 𝐺 equipped with the bi-invariant
metric8 and vanishing 𝐵-field. Furthermore, the principal chiral model is strongly integrable. Firstly, we
consider the Lax connection

ℒ±(𝜇) =
𝑗±

1 ∓ 𝜇.

Or equivalently,

ℒ(𝜇) = 𝑗 + 𝜇 ⋆ 𝑗
1 − 𝜇2 . (4.23)

A straightforward computation shows the curvature of the Lax connection to be

𝜕+ℒ− − 𝜕−ℒ+ + [ℒ+, ℒ−] =
1

1 − 𝜇2 (𝜕+𝑗− − 𝜕−𝑗+ + [𝑗+, 𝑗−] − 𝜇(𝜕+𝑗− + 𝜕−𝑗+)).

Hence, the flatness of the Lax connection is equivalent to 𝑗 being flat and conserved. Note, 𝑗 being con-
served is equivalent to ⋆𝑗 being closed, or more generally, ⋆𝑗 being flat when 𝔤 is equipped with the
trivial bracket. This is closely related to a hidden symmetry of the PCM: Poisson-Lie symmetry [Kli09;
Sfe14; DMV15; Šev17b], which turns out to be a feature shared by several well-known integrable defor-
mations. In fact, all known examples of two dimensional sigma-models which are classically integrable
have Poisson-Lie symmetry [DHT19]. We discuss Poisson-Lie symmetry in more detail in Chapter 5.
Moreover, the specific form of the Lax connection (4.23) generalizes to other deformations as well [Dri22,
Sec. 4.5].

As the Maurer-Cartan form is flat and conserved, the Lax connection is flat, meaning the PCM is
weakly integrable. To ensure strong integrability, a direct computation of Lax connection Poisson brackets
is necessary. This is done in [Dri22, Sec. 4.4], where it is shown the Poisson bracket can be put into 𝑟/𝑠
Maillet form. This concludes our discussion about the PCM and we will consider a particular integrable
deformation in the next section.

8To be precise, it is the left- (or right-) translated Killing form on 𝐺.
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4.3.2 DeformedWZWModel
In this section we will extend the PCM by a topological term to arrive at the famous Wess-Zumino-
Witten (WZW) model. It was introduced by Witten in [Wit84] and generalizes the ideas of Wess and
Zumino to two-dimensional non-linear sigma-models. Interestingly, the WZW model is a conformal
field theory when quantized, in contrast to the PCM. Hence, it received a lot of attention. The WZW
model enjoys a symmetry that can be gauged, yielding a gaugedWZWmodel. These can be deformed,
yielding the 𝜆-deformations. These will be relevant for our discussion. We use [GM22; Hoa22; DMS96]
as main references.

TheWZWModel

Via a conformal transformation, we may regard the worldsheet as the complex plane. Then, by a one-point
compactification, we obtain the PCM on the Riemann sphere. Consequently, the field 𝑔 in the PCM is a
map 𝑆2 → 𝐺. We extend the PCM action (4.22) by adding the Wess-Zumino (WZ) term

𝑆WZ[𝑔] =
𝑘

12𝜋𝑖 ∫𝐵
Tr (𝑔−1𝑑𝑔 ∧ 𝑔−1𝑑𝑔 ∧ 𝑔−1𝑑𝑔). (4.24)

Here 𝐵 denotes the filled three-dimensional ball whose boundary is 𝑆2. Furthermore, the field 𝑔 now
denotes an extension of the original field to a map 𝐵 → 𝐺. This can always be done as the second
homotopy group 𝜋2(𝐺) of a Lie group is trivial9. However, at this stage it is unclear whether (4.24) is
independent of the extension. Suppose we consider two homotopic extensions, i.e. small deformations.
Then, one can verify the variation of (4.24) under this transformation is given by [DMS96]

𝛿𝑆WZ ∼ ∫
𝑆2

Tr (𝑔−1𝛿𝑔 𝑑(𝑔−1𝑑𝑔)).

We assume the two extensions agree on 𝑆2, thus 𝛿𝑔|𝑆2 = 0. Consequently, 𝑆WZ is invariant under small
deformations.

However, not every two extensions are related via continuous deformations. Note, two topological
distinct extensions can be glued together to yield a map

̃𝑔 ∶ (𝐵 ⊔ 𝐵)/𝜕𝐵 ≅ 𝑆3 → 𝐺.

Such maps are characterized by the third homotopy group 𝜋3(𝐺), which equals ℤ for compact simple Lie
groups. Therefore, the WZ term is multi-valued, strictly speaking. For the classical theory this is not
a problem as the equations of motion can still be obtained through varying the action. However, it has
consequences for the quantized theory. Indeed, if 𝑔 and 𝑔′ denote two topological in-equivalent extensions,
one can show

Δ𝑆WZ = 𝑆WZ[𝑔′] − 𝑆WZ[𝑔] = 2𝜋𝑖𝑘.

Consequently, path integrals of the form

⟨𝒪⟩ = ∫𝒟𝑔 𝒪[𝑔]𝑒−𝑆WZ[𝑔]

are only well-defined if 𝑘 ∈ ℤ for compact groups. The integer 𝑘 is called the level of the WZ term.
9This is not a trivial fact and follows from Morse theory [MSW69, Ch. 24], for example.
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Now, the WZW model is given by the following particular combination of (4.22) and (4.24)

𝑆WZW[𝑔] =
𝑘
8𝜋 ∫

Σ
Tr (𝑔−1𝑑𝑔 ∧ ⋆𝑔−1𝑑𝑔) + 𝑘

12𝜋𝑖 ∫𝐵
Tr (𝑔−1𝑑𝑔 ∧ 𝑔−1𝑑𝑔 ∧ 𝑔−1𝑑𝑔). (4.25)

Note, the WZW model has the same global 𝐺 × 𝐺 symmetry as the principal chiral model.

The 𝜆-model

We are ready to introduce the 𝜆-deformation. For this we introduce complex coordinates 𝑡, 𝑡 on Σ. The
action is given by [GSS20]

𝑆𝜆[𝑔] = 𝑆WZW[𝑔] +
𝜆𝑘
𝜋 ∫

Σ
𝑑2𝑡 Tr (𝑔−1𝜕𝑔

Ad𝑔
1 − 𝜆Ad𝑔

𝑔−1 ̄𝜕𝑔) . (4.26)

By the quotient in the expression above, we mean the inverse operator. This is a different formulation than
in the original paper [Sfe14] and the one used in [GM22]. There, they use a gauging procedure, which
leads to an action including gauge fields. However, on-shell the two actions agree, as is shown in Appendix
C of [GM22]. Since we are interested in solutions of the model, it does not matter which action is used.
For our purposes in Chapter 5 we need the action in light-cone coordinates, which is given by

𝑆𝜆[𝑔] = 𝑆WZW[𝑔] +
𝜆𝑘
𝜋 ∫

Σ
𝑑2𝜎 (𝑔−1𝜕−𝑔,

Ad𝑔
1 − 𝜆Ad𝑔

𝑔−1𝜕+𝑔) . (4.27)

Integrability

Similar to the PCM, the equations of motion of (4.26) can be written in terms of a connection one-form
A ∈ Ω1(Σ, 𝔤). In coordinates, they can be written as

𝜕𝐴 + ̄𝜕𝐴 = 0, 𝜕𝐴 = − 1
1 + 𝜆[𝐴, 𝐴],

where

A = 𝐴𝑑𝑡 + 𝐴𝑑𝑡.

Note, the first equation means ⋆𝐴 is closed. This is completely analogous to the PCM. The one-form A
is directly related to the gauging procedure we mentioned above.

Inspired by the Lax connection (4.23), we consider

ℒ(𝜇) = 2
1 + 𝜆

A + 𝜇 ⋆ A
1 − 𝜇2 . (4.28)

The prefactor containing 𝜆 comes from the fact A satisfies a re-scaled flatness condition:

𝑑A + 1
1 + 𝜆[A,A] = 0.

It follows that (4.28) captures the equations of motion and thus defines a Lax connection. This establishes
the weak integrability of the 𝜆-model. The strong integrability is established in [GSS20] by proving that
the Poisson brackets of spatial Lax connection are in 𝑟/𝑠 Maillet form.
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Hodge-theoretic Solutions

There is a particular class of solutions to the 𝜆-model found in [GM22] corresponding to objects in varia-
tion of Hodge structures from Chapter 3. We will describe them here. Their starting point is the charge
operator 𝑄. For a general variation of Hodge structure, it depends on the moduli: 𝑄(𝑡, 𝑡). Picking a
reference Hodge structure 𝐹ref, one can put the coordinate dependence in a map ℎ ∶ ℳ → 𝐷 by

𝑄(𝑡, 𝑡) = ℎ𝑄refℎ−1,

where 𝑄ref is the charge operator on 𝐹ref. In this formulation, the map ℎ is just the (local) period map Φ
from Chapter 3. Therefore, we identify ℳ with Σ from now on. Now, the horizontality condition on the
period map, translates to a condition on 𝑄:

[𝑄, 𝜕𝑄] = −𝜕𝑄, [𝑄, ̄𝜕𝑄] = ̄𝜕𝑄, (4.29)

as is explained in [GM22]. Actually, this condition on 𝑄 is equivalent to the horizontality of ℎ, i.e. the
period map.

Suppose a Lie algebra 𝔤 of a Lie group 𝐺 admits a charge operator10 𝑄 ∈ 𝔤ℂ such that (4.29) holds.
Then, there is a natural group-valued field one can write down, namely

𝑔 = 𝑒𝑖𝛽𝑄.

One of the main results of [GM22] is that the above constitutes a solution to the 𝜆-model for ||𝑒𝑖𝛽|| = 1
and |𝜆| = 1. In particular, for 𝛽 = 𝜋, the map (−1)𝑄 is a solution. Consequently, any variation of Hodge
structure produces a solution to the 𝜆-model, namely the Weil operator, as it carries a canonical charge
operator (cf. Chapter 3). In the next section we will discuss a different integrable model, for which the
Weil operator is related to a solution as well.

4.3.3 Bi-Yang-BaxterModel
TheAction

The second integrable deformation of the principal chiral model we want to discuss is the bi-Yang-Baxter
model, first introduced by Klimčík in [Kli09]. It is a two parameter deformation of the PCM, extending
the so-called Yang-Baxter model. The latter was defined in [Kli02] and to define it one needs the skew-
symmetric operator 𝑅 ∶ 𝔤 → 𝔤 from Section 4.1.3 satisfying (4.8). Recall, such an operator is called a
Yang-Baxter operator, hence the name.

In the notation of Section 4.3.1, the action of the bi-Yang-Baxter model is given by

𝑆𝜂,𝜁[𝑔] = ∫
Σ
𝑑2𝜎 (𝑔−1𝜕+𝑔,

1
1 − 𝜂𝑅 − 𝜁𝑅𝑔 𝑔

−1𝜕−𝑔) . (4.30)

Here 𝜂, 𝜁 are constants parametrizing the deformation and

𝑅𝑔 ∶= Ad𝑔−1 ∘𝑅 ∘Ad𝑔 .

Note, when 𝜂 = 𝜁 = 0 we recover the principal chiral model. Furthermore, for 𝜁 = 0 we obtain the Yang-
Baxter model. Since the Yang-Baxter deformation is parametrized by 𝜂 it is often called the 𝜂-model.

10By this we mean an element 𝑄 such that 𝑄 = −𝑄 and ad(𝑄) has integral spectrum.
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Symmetries

In the PCM there was a global 𝐺 ×𝐺 symmetry. For the Yang-Baxter model, i.e 𝜁 = 0, the global 𝐺 ×𝐺
symmetry is broken and one only left 𝐺-symmetry remains. Furthermore, for the bi-Yang-Baxter model,
both the left and right𝐺-symmetry is broken. Interestingly, when 𝜂 = 𝜁 the symmetry is enhanced and the
action is invariant under 𝑔 ↦ 𝑔−1. We refer to this as the critical line, following [ST21]. Many interesting
physical phenomena happen on the critical line. For example, for 𝐺 = SU(2), the bi-Yang-Baxter model
on the critical line is equivalent to a Yang-Baxter model on 𝑆3 viewed as coset SO(4)/SO(3) [DMV14;
Hoa15]. This is interesting as it is related to deformations of the AdS5×𝑆5 string, which plays a role in the
AdS/CFT correspondence. Furthermore, the Weil operator constitutes a solution to the bi-Yang-Baxter
model on the critical line [GM23].

Equations ofMotion

To describe the equations of motion of the bi-Yang-Baxter model, it is convenient to define

𝐽± ∶= ∓ 1
1 ± 𝜂𝑅 ± 𝜁𝑅𝑔 𝑔

−1𝜕±𝑔.

Then, the field equations become [Kli14]

𝜕+𝐽− − 𝜕−𝐽+ + 𝜂[𝐽−, 𝐽+]𝑅 = 0.

In other words, 𝐽 is a flat 𝔤𝑅-valued one-form on 𝐺, up to a rescaling of the 𝑅-bracket by 𝜂. Similar to
the principal chiral model, the fact the equations of motion constitute a flat connection on a different Lie
algebra is reminiscent of the hidden Poisson-Lie symmetry of the bi-Yang-Baxter model. We elaborate
more on this in Chapter 5.

Integrability

The bi-Yang-Baxter model is integrable. The weak integrability was shown by Klimčík in [Kli14]. He
found the following Lax connection

ℒ±(𝜇) = (𝜂(𝑅 − 𝑖) + 2𝑖𝜂 ± (1 − 𝜂2 + 𝜁2)
1 ± 𝜇 ) 𝐽±.

It is crucial in the argument that 𝑅 is a skew-symmetric solution to the CYBE. Furthermore, in [Del+16]
it was shown the Poisson brackets of the Lax connection can be put into 𝑟/𝑠 Maillet form, proving its
strong integrability.

Drinfel’d-Jimbo Solution

An important remark is that a Yang-Baxter operator 𝑅 should be fixed before one can speak about solu-
tions of the bi-Yang-Baxter model. Hence, we should specify which Yang-Baxter operator leads to the
Weil operator solution. There is a standard construction due to Drinfel’d [Dri85] and Jimbo [Jim85] that
produces a solution to the modified CYBE. It is fittingly called the Drinfel’d-Jimbo solution. To define
it, we consider the complexification 𝔤ℂ of 𝔤 and pick a Cartan subalgebra 𝔥 of 𝔤ℂ. Then, we have the root
space decomposition

𝔤ℂ = 𝔥 ⊕⨁
𝛼
𝔤𝛼,
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where 𝛼 ∈ 𝔥∗ runs over all the roots of 𝔤ℂ and 𝔤𝛼 denotes the corresponding root space11. Choosing a
base for the roots fixes the notion of positive roots. Then, let {𝐻𝑖, 𝐸±𝛼} be the Cartan-Weyl basis of 𝔤ℂ.
Here, 𝛼 exhausts all the positive roots. The Cartan-Weyl basis satisfies

[𝐻𝑖, 𝐻𝑗] = 0, [𝐻𝑖, 𝐸±𝛼] = ±𝛼(𝐻𝑖)𝐸±𝛼.

The Drinfel’d-Jimbo solutions is then defined as

𝑅𝐻𝑖 = 0, 𝑅𝐸±𝛼 = ∓𝑐𝐸±𝛼. (4.31)

One can explicitly show it solves (4.8), as is done in [Hoa22, Sec. 4.2], and verify it is skew-symmetric.
Note, in general, theDrinfel’d-Jimbo solution defined on 𝔤ℂ. Therefore, it is not guaranteed that𝑅 restricts
to an endomorphism of a real form12 𝔤. This depends on the choice of real form and constant 𝑐.

The SU(2)Case

An interesting case of the bi-Yang-Baxter is when 𝐺 = SU(2). Then, there is a particular class of solutions
called unitons. They were constructed by Uhlenbeck for the SU(𝑛) principal chiral model in [Uhl89],
which were extended to the bi-Yang-Baxter model for 𝑛 = 2 in [ST21]. Interestingly, these unitons
satisfy 𝑔2 = −1 just like the Weil operator of an odd weight Hodge structure. This resemblance was the
first hint in [GM23] to expect the Weil operator to be a solution.

As mentioned before, we should first fix a Yang-Baxter operator. For 𝔰𝔲(2), the Drinfel’d-Jimbo
solution is essentially the only solution to the modified CYBE. Note, 𝔰𝔲(2)ℂ = 𝔰𝔩(2, ℂ) which has the
standard Cartan-Weyl basis

𝑁0 ∶= 𝐻 = (1 0
0 −1) , 𝑁+ ∶= 𝐸+ = (0 1

0 0) , 𝑁− ∶= 𝐸− = (0 0
1 0) ,

satisfying

[𝑁0, 𝑁±] = ±2𝑁±.

Then, (4.31) yields a solution 𝑅 to the modified CYBE. However, this solution is at the level of 𝔰𝔩(2, ℂ).
To see for which 𝑐 the Yang-Baxter operator restricts to a real operator on 𝔰𝔲(2), we let 𝑇𝑗 = 𝑖𝜎𝑗 be the
basis of 𝔰𝔲(2). Here 𝜎𝑗 denote the Pauli matrices. Then, a direct computation shows

𝑅𝑇1 = −𝑖𝑐𝑇2, 𝑅𝑇2 = 𝑖𝑐𝑇1, 𝑅𝑇3 = 0.

Hence, we need 𝑐 = 𝑖 for 𝑅 to be a real endomorphism. With respect to this basis, we may write

𝑅 = (
0 −1 0
1 0 0
0 0 0

) . (4.32)

The non-linear sigma-model structure of the SU(2) bi-Yang-Baxter model and a discussion of the uniton
solutions is nicely described in [GM23]. The next step is to consider the Weil operator in the simplest
case: the torus.

11We refer to [Hum72] for the relevant background in Lie theory.
12By this we mean a real Lie algebra 𝔤 whose complexification is 𝑔ℂ.
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TheWeil Operator

Similar to the 𝜆-model, there is a special role to play for the Weil operator. Below we will show that the
Weil operator for the torus produces a solution. Following [GM23], we conveniently write

𝕋2 = ℂ/(ℤ + 𝜏ℤ),

where 𝜏 denotes the usual Teichmüller parameter, which takes values in the upper half-plane13 ℍ. To write
down the Weil operator, we choose two defining periodic coordinates 𝜉1, 𝜉2 with 𝜉𝑖 ∼ 𝜉𝑖 + 1 on the torus.
The normalized metric on the torus is given by

𝑑𝑠2 = |𝑑𝜉1 + 𝜏𝑑𝜉2|
2

im 𝜏 .

From the metric we deduce the Hodge star

⋆ 𝑑𝜉1 =
re 𝜏
im 𝜏𝑑𝜉1 +

|𝜏|2
im 𝜏𝑑𝜉2, ⋆ 𝑑𝜉2 = − 1

im 𝜏𝑑𝜉1 −
re 𝜏
im 𝜏𝑑𝜉2.

The Weil 𝐶 operator is now obtained by viewing the above Hodge star relations as an operation on the
middle cohomology of the torus. If we write 𝜏 = 𝑥 + 𝑖𝑦, we can represent this action as the following
matrix

𝐶(𝑥, 𝑦) = 1
𝑦 (

𝑥 −1
𝑥2 + 𝑦2 −𝑥) , (4.33)

in the basis {[𝑑𝜉1], [𝑑𝜉2]} of 𝐻1(𝕋2, ℂ).
One can explicitly check that 𝐶2 = −1. In that sense, it resembles a uniton. However, note that 𝐶 is

an element of SL(2, ℝ) not SU(2). This is expected as we saw 𝐶 ∈ 𝐺ℝ in Section 3.2 and 𝐺ℝ ≅ SL(2, ℝ),
by Proposition 3.2.5. To relate the Weil operator to the unitons we apply a two-step procedure that relates
SL(2, ℝ) and SU(2). First we relate SL(2, ℝ) to SU(1, 1) using the Cayley transformation

Ad𝜌 ∶ SL(2, ℝ) → SU(1, 1),

where

𝜌 = 1
√2

(1 𝑖
𝑖 1) .

The Cayley transformation is an isomorphism of real Lie groups. Note, 𝜌 is an element of SL(2, ℂ). The
second step is to relate SU(1, 1) to SU(2) via an analytical continuation. Concretely, a general element of
SU(1, 1) has the following form

( cosh 𝜃 𝑒𝑖𝜙1 sinh 𝜃 𝑒𝑖𝜙2
sinh 𝜃 𝑒−𝑖𝜙2 cosh 𝜃 𝑒−𝑖𝜙1) . (4.34)

Now, using the properties cosh(𝑖𝜃) = cos 𝜃 and sinh(𝑖𝜃) = 𝑖 sin 𝜃, we see 𝜃 ↦ 𝑖𝜃 maps (4.34) to

( cos 𝜃 𝑒𝑖𝜙1 𝑖 sin 𝜃 𝑒𝑖𝜙2
𝑖 sin 𝜃 𝑒−𝑖𝜙2 cos 𝜃 𝑒−𝑖𝜙1) .

13To be precise, to get all the inequivalent tori, i.e. the moduli space, one should quotient by the modular group as is explained
in [BLT12, Sec. 6.2].
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This is a general element of SU(2). In this way, we constructed a map 𝛼 ∶ SU(1, 1) → SU(2). However,
this is not an isomorphism of Lie groups. Moreover, this cannot be expected as SU(2) is compact while
SU(1, 1) is not. Post-composing the Cayley transform of 𝐶 with 𝛼 yields an element of SU(2) and it was
shown in [GM23] that it constitutes a solution to the bi-Yang-Baxter model with 𝑅-matrix (4.32).

We would like to emphasise that the described mapping from SL(2, ℝ) to SU(2) is quite convoluted
to do in practice. For example, the Cayley transformation of 𝐶 is straightforward

Ad𝜌(𝐶) =
1
2𝑦 (

(1 + 𝑥2 + 𝑦2)𝑖 𝑥2 + 𝑦2 − 1 − 2𝑖𝑥
𝑥2 + 𝑦2 − 1 + 2𝑖𝑥 −(1 + 𝑥2 + 𝑦2)𝑖 ) .

However, finding the corresponding parametrization (4.34) is cumbersome. Luckily, this was done in
[GM23] and the result is

𝜙1 =
𝜋
2 , 𝜙2 = 𝜋 + 𝑖

2 log (𝑓
𝑓
) , 𝜃 = 𝜋

2 + 𝑖 arctan [12 (|𝑓| +
1
|𝑓|)] . (4.35)

Here 𝑓(𝑧) is the holomorphic function

𝑓(𝑧) = 𝑧 − 𝑖
𝑧 + 𝑖 , 𝑧 = 𝑥 + 𝑖𝑦,

where we identified the Teichmüller parameter 𝜏 with the worldsheet coordinate 𝑧. As explained in
[GM23], (4.35) defines a uniton solution on the critical line.

The SL(2)-approximation

A natural question is whether one can generalize the solution of the previous section to arbitrary groups.
This is addressed in [GM23] and the answer is affirmative, given the group admits at least one horizontal
𝔰𝔩(2)-triple. We will define this notation below. However, the motivation for this can already be seen in
the solution (4.33). Notice, one can write

𝐶(𝑥, 𝑦) = ℎ(𝑥, 𝑦)𝐶∞ℎ(𝑥, 𝑦)−1, (4.36)

where

ℎ(𝑥, 𝑦) = 1
√𝑦

(1 0
𝑥 𝑦) , 𝐶∞ = ( 0 1

−1 0) .

Moreover, in terms of the Cartan-Weyl basis we have

ℎ(𝑥, 𝑦) = 𝑒𝑥𝑁−𝑦−
1
2𝑁

0
, 𝐶∞ = (−1)𝑄∞ ,

where we introduced

𝑄∞ = 𝑖
2 (

0 −1
1 0 ) .

This is precisely the SL(2)-orbit approximation (3.27) of the Weil operator. Now, in the case of the torus,
the SL(2)-orbit, nilpotent-orbit and the actual variation of Hodge structure coincide. Hence, the full Weil
operator equals its SL(2)-orbit approximation.



94 Integrable systems

It is this SL(2)-approximation that made the generalization to arbitrary groups possible. Notice, the
relevant data was an 𝔰𝔩(2)-triple {𝑁+, 𝑁0, 𝑁−} and a charge operator 𝑄∞. From Chapter 3 we know
𝑄∞ = −𝑄∞ and

[𝑄∞, 𝑁0] = 𝑖(𝑁+ + 𝑁−), [𝑄∞, 𝑁±] = − 𝑖
2𝑁

0, (4.37)

whenever they arise from a variation of Hodge structure. Furthermore, it can be explicitly checked that in
that case ad(𝑄∞) has integral eigenvalues. A charge operator combined with an 𝔰𝔩(2)-triple satisfying the
above properties is called a horizontal𝔰𝔩(2)-triple. Condition (4.37) precisely is the SL(2)-approximation
of (4.29).

It was shown in [GM23] that Lie groups 𝐺 whose Lie algebra 𝔤 admit a horizontal 𝔰𝔩(2)-triple a
solution analogous to (4.36). For the Yang-Baxter operator they again choose the Drinfel’d-Jimbo solution.
Then, they proceed to show that the field

𝑔(𝑥, 𝑦) = ℎ(𝑥, 𝑦)(−1)𝑄∞ℎ(𝑥, 𝑦)−1,

with

ℎ(𝑥, 𝑦) = 𝑒𝑥𝑁−𝑦−
1
2𝑁

0
,

provides a solution to the bi-Yang-Baxter model on 𝐺. Consequently, for every variation of Hodge struc-
ture, the SL(2)-orbit theorem provides a solution to the bi-Yang-Baxter model on 𝐺ℝ. Indeed, the pro-
cedure described in Section 3.5.2 yields a horizontal 𝔰𝔩(2)-triple and the SL(2)-orbit theorem gives the
map ℎ. In that case, 𝑔(𝑥, 𝑦) can be interpret as the SL(2)-orbit approximation of the Weil operator.

In view of the SL(2)-orbit theorem one might wonder whether the nilpotent orbit approximation
constitutes a solution as well, as the theorem provides a way to go back. However, in [GM23] it was
found that this does not hold. At least, for the same Yang-Baxter operator 𝑅. Ideally, the Yang-Baxter
operator can be modified using objects from Hodge theory so that the nilpotent approximation becomes a
solution. However, it is not clear at this stage how to do this, if even possible. As mentioned in [GM23],
the connection should be in the map 𝛿 from Section 3.5.2. This is because the map 𝛿 contains information
about the higher order corrections in ̃𝑔(𝑦) from the SL(2)-orbit theorem (cf. Theorem 3.5.15). This can
also be seen explicitly in Example 3.5.16. The first guess would be to conjugate 𝑅 with Ad(𝑒𝛿). This does
define a new skew-symmetric Yang-Baxter operator. However, the solutions are conjugated as well, but
with Ad(𝑒−𝛿). Since the nilpotent and SL(2)-orbit approximation are not related via a conjugation, this
method is not successful. It would be interesting to see whether such a connection between 𝑅 and 𝛿 exists.

Up this point, we have discussed two integrable systems for which the Weil operator is a solution. This
confirms the belief in a connection between Hodge theory and integrable systems even further. Interest-
ingly, the bi-Yang-Baxter model is related to the (generalized) 𝜆-model via a duality called Poisson-Lie
T-duality [Kli15; Kli16]. As this duality is closely related to the Poisson-Lie symmetry of the PCM
and bi-Yang-Baxter model [Šev17b], this seems a natural place to further investigate the relation between
Hodge theory and integrability. This is what we will do in the next chapter.



CHAPTER5
Poisson-Lie T-duality

D ualities play an important role in physics and string theory, in particular. They connect seem-
ingly different theories and give ways to do computations. In string theory, there is a particular
duality discovered in the 1980s called T-duality. It produces an equivalence between physical

theories. Concretely, in the case of a circle compactification of the bosonic string, T-duality changes the
geometry of the internal manifold by sending the radius 𝑅 to 1/𝑅, while the spectrum is unchanged. More-
over, it is more than a symmetry, as relates the two distinct type II theories. This can be straightforwardly
generalized to toroidal compactifications.

The next step would be to extend the notion of T-duality to non-Abelian groups. The first attempt
came, under the fitting name non-Abelian T-duality, in 1993 and was due to de la Ossa and Quevedo
[dQ93]. However, naming it a ‘duality’ was a bit optimistic, as the (non-Abelian) isometry group of the
dual is always smaller. This is not desirable, when trying to construct a duality. Furthermore, there was no
obvious way to get back to the original theory.

A remedy to both issues was introduced in 1995 by Klimčík and Ševera in [KŠ95], under the name
Poisson-Lie T-duality. They provide sufficient conditions for the existence of a Poisson-Lie T-dual. The
group 𝐺 and the ‘dual’ group 𝐺 should sit in a particular bigger group 𝐷, called the Drinfel ’d double. From
the perspective of the double, Poisson-Lie T-duality can be made into a manifest symmetry, using a so-
called ℰ-model. Moreover, in [KŠ96c] a procedure is described to generate Poisson-Lie T-dual theories,
using the double. We describe these various perspectives on Poisson-Lie T-duality in this chapter. In
particular, we will relate the Poisson-Lie T-dual of the Yang-Baxter model to the 𝜆-model, following
[Kli15]. This approach then directly generalizes to the bi-Yang-Baxter model.

In its purest form, Poisson-Lie T-duality is a statement about equivalent dynamical systems (see e.g.
[Šev16]). Hence, a solution to one model can be transfered to a solution of the dual model. However,
in the literature, the focus is more on the target space perspective. Therefore, this map between solutions
might be obscured in the literature. Our aim is to provide a clear road map in obtaining a solution to the
dual model. Moreover, we try to apply this to the Weil operator in the bi-Yang-Baxter model from the
previous chapter. Finally, Abelian T-duality can be naturally written in the language of Courant algebroids
[CG11]. It is expected that the same holds true for Poisson-Lie T-duality, as it is a generalization of
Abelian T-duality. This is the case and we discuss the connection with Courant algebroids in this chapter.

95
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5.1 Abelian T-duality

As Poisson-Lie T-duality is a generalization of (Abelian) T-duality, let us first discuss this concept. Abelian
T-duality, or just T-duality, is an example of a string duality, which we mentioned in Section 1.2. It re-
lates physical properties of theories with large spacetime radius to quantities in theories of small spacetime
radius [AAL95]. For example, in one of the first observations of T-duality [Sat87], the bosonic string is
considered with one of the spatial dimensions compactified to a circle with radius 𝑅. Then, all physical
observable quantities are left unchanged under the transformation 𝑅 → 𝛼′/𝑅, provided the string wind-
ing number is exchanged with the so-called Kaluza-Klein excitation number. The latter is related to the
momentum of the string, see [BBS06, Ch. 6] for details. Consequently, the circle compactifications with
radii 𝑅 and 𝛼′/𝑅 are physically indistinguishable.

The construction can be generalized to toroidal compactifications and even to non-flat conformal back-
grounds, as done in [Bus87; RV92]. A key ingredient in the argument was the existence of an isometry of
the metric on the target that is a symmetry of the action. In that case, explicit formulas for the metric, 𝐵-
field and dilaton on an equivalent dual sigma-model can be found. These are known as the Buscher rules.
See [AAL95] for a good review. Interestingly, the Buscher rules may lead to very different geometries and
could even lead to different topologies. Therefore, T-duality relates seemingly distinct theories. However,
a necessary condition to construct the dual sigma model is that its isometry group must be Abelian [Kli96].
This is the origin of the nomenclature ‘Abelian T-duality’.

The restriction on the isometry group excludes many physically relevant string sigma-models. There-
fore, a generalization of the duality to non-Abelian isometries is desirable. As mentioned before, the
first attempt came in [dQ93], which built upon the ideas of [RV92]. However, it fundamentally lacks a
way to produce the original model from the dual, a wanted property for a duality. This issue is solved by
Poisson-Lie T-duality. Its description is the theme of the subsequent section.

5.2 Non-Abelian Generalization

5.2.1 General Features
To discuss Poisson-Lie T-duality, we will adapt the sigma-model point of view, following [KŠ95; Kli96;
Kli09]. We consider a two-dimensional sigma-model on a target manifold 𝑀 equipped with a metric 𝑔
and a two-form 𝐵. We write 𝐸𝜇𝜈 = 𝑔𝜇𝜈 + 𝐵𝜇𝜈. Then, the action is (cf. Section 4.3)

𝑆[𝑋] = ∫
Σ
𝑑2𝜎 𝐸𝜇𝜈(𝑋)𝜕+𝑋𝜇𝜕+𝑋𝜈.

We suppose 𝑀 admits a free (right) action by a Lie group 𝐺. This induces a Lie algebra action 𝔞 ∶ 𝔤 →
𝔛(𝑀). Then, in a basis {𝑇𝐴} of 𝔤, the action gives us (left-)invariant vector fields 𝑉𝐴 ∶= 𝔞(𝑇𝐴) on 𝑀. In
local coordinates, we can write them as 𝑉𝐴 = 𝑉𝜇

𝐴 𝜕𝜇. Now, let us consider the variation of the action above
with respect to the 𝐺-action, parametrized by a worldsheet dependent parameters 𝜖𝐴(𝜏, 𝜎)

𝛿𝑆 = 𝑆[𝑋 + 𝜖𝐴𝑉𝐴] − 𝑆[𝑋]

= ∫
Σ
𝑑2𝜎 𝐸𝜇𝜈(𝑋 + 𝜖𝐴𝑉𝐴)𝜕+(𝑋𝜇 + 𝜖𝐴𝑉𝜇

𝐴 )𝜕−(𝑋𝜈 + 𝜖𝐴𝑉𝜈
𝐴 ) − 𝑆[𝑋]

= ∫
Σ
𝑑2𝜎 (𝐸𝜇𝜈(𝑋) + 𝜖𝐴ℒ𝑉𝐴(𝐸𝜇𝜈)) 𝜕+(𝑋𝜇 + 𝜖𝐴𝑉𝜇

𝐴 )𝜕−(𝑋𝜈 + 𝜖𝐴𝑉𝜈
𝐴 ) − 𝑆[𝑋]

= ∫
Σ
𝑑2𝜎 𝜖𝐴ℒ𝑉𝐴(𝐸𝜇𝜈)𝜕+𝑋𝜇𝜕−𝑋𝜈 +∫

Σ
𝑑2𝜎 𝐸𝜇𝜈𝑉𝜇

𝐴 𝜕−𝑋𝜈𝜕+𝜖𝐴 + 𝐸𝜇𝜈𝑉𝜈
𝐴 𝜕+𝑋𝜇𝜕−𝜖𝐴
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= ∫
Σ
𝑑2𝜎 𝜖𝐴ℒ𝑉𝐴(𝐸𝜇𝜈)𝜕+𝑋𝜇𝜕−𝑋𝜈 +∫

Σ
𝐽𝐴 ∧ 𝑑𝜖𝐴,

where

𝐽𝐴 = 𝐸𝜇𝜈𝜕+𝑋𝜇𝑉𝜈
𝐴 𝑑𝜎+ − 𝐸𝜈𝜇𝜕−𝑋𝜇𝑉𝜈

𝐴 𝑑𝜎−. (5.1)

If the Lie derivativesℒ𝑉𝐴(𝐸𝜇𝜈) vanish, we obtain on-shell closed one-forms 𝐽𝐴. This happens, for example,
when 𝐺 acts by isometries, i.e. is a symmetry. Then, the appearance of the closed one-forms is no surprise:
it is Noether’s theorem.

Now, suppose they are not closed but satisfy the following zero curvature condition on shell [Kli96]

𝑑𝐽𝐴 = −12 ̃𝑐𝐴𝐵𝐶𝐽𝐵 ∧ 𝐽𝐶 , (5.2)

where ̃𝑐𝐵𝐶𝐴 denote the structure constants of some Lie algebra ̃𝔤. We call ̃𝔤 the dual Lie algebra. Then, we
say the sigma-model has𝐺-Poisson-Lie symmetrywith respect to𝐺, the integration of ̃𝔤. The conditions
(5.2) are part of the field equations and they are exhaustive when the groups action is transitive. This is
precisely what happened in the principal chiral model and bi-Yang-Baxter model (cf. Section 4.3).

Using (5.1), we can compute the right-hand-side of (5.2). We find we should require

ℒ𝑉𝐴(𝐸𝜇𝜈) = ̃𝑐𝐴𝐵𝐶𝐸𝜇𝛼𝐸𝛽𝜈𝑉𝛼
𝐵 𝑉

𝛽
𝐶 (5.3)

for (5.2) to hold [Kli96]. The property

ℒ[𝑉𝐴,𝑉𝐵] = [ℒ𝑉𝐴 , ℒ𝑉𝐵 ]

leads to a condition on the structure constants of 𝔤 and ̃𝔤. Indeed, one finds [KŠ95]

̃𝑐𝐴𝐵𝐶𝑐𝐸𝐴𝐷 − ̃𝑐𝐴𝐵𝐷𝑐𝐸𝐵𝐶 − ̃𝑐𝐸𝐵𝐶𝑐𝐴𝐵𝐷 + ̃𝑐𝐸𝐵𝐷𝑐𝐴𝐵𝐶 − ̃𝑐𝐵𝐷𝐶𝑐𝐸𝐴𝐵 = 0. (5.4)

Interestingly, this is precisely the condition for (𝔤, ̃𝔤) to be a Lie bialgebra. This is a concept introduced
by Drinfel’d in [Dri83]. Formally, it is defined as

Definition 5.2.1.
A Lie bialgebra (𝔤, 𝛿) is a Lie algebra 𝔤 equipped with a linear map 𝛿 ∶ 𝔤 → 𝔤 ⊗ 𝔤 such that

i) 𝛿∗ ∶ 𝔤∗ ⊗ 𝔤∗ → 𝔤∗ is a Lie bracket on 𝔤∗

ii) For all 𝑋, 𝑌 ∈ 𝔤, we have

ad(2)𝑋 𝛿(𝑌) − ad(2)𝑌 𝛿(𝑋) − 𝛿([𝑋, 𝑌]) = 0, (5.5)

where ad(2)𝑋 = ad𝑋 ⊗1 + 1 ⊗ ad𝑋 .

Condition (5.5) reduces to (5.4) when applied to a basis (see [Dri83; ARH17]). Furthermore, (5.5) is
called the cocycle condition, as it is related to Lie algebra cohomology (cf. [Kos04]). To give some more
context, the dual of a Lie algebra is typically not a Lie algebra, but it is a Poisson manifold1. A Lie bialgebra

1We do not wish to discuss the details of Poisson geometry and we refer the reader to [CFM21] for an excellent introduction.
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is then a Lie algebra for which its dual is a Lie algebra, in a compatible manner. Lie bialgebras naturally
arise when studying 𝑟-matrices, as is discussed in [Kos04].

Any Lie algebra can be integrated to a Lie group. One might wonder what the integration of a Lie
bialgebra is. Intuitively, a Lie bialgebra structure on 𝔤 makes it into both a Lie algebra and a Poisson
manifold, in some compatible fashion by (5.5). This carries over to the integration𝐺, making it a Lie group
with a compatible Poisson structure. This is known as a Poisson-Lie group and is defined by [LW90]

Definition 5.2.2.
A Poisson-Lie group is a Lie group 𝐺 equipped with a Poisson structure, such that the multiplication
map 𝜇 ∶ 𝐺 × 𝐺 → 𝐺 is a Poisson map, where 𝐺 × 𝐺 is equipped with the product Poisson structure.

So, for a sigma-model to have Poisson-Lie symmetry, 𝔤 must be a Lie bialgebra by (5.4). Hence, the
original group 𝐺, being an integration of 𝔤, is a Poisson-Lie group. This is the origin of the name Poisson-
Lie T-duality.

Let us get back to the duality. First note, (5.4) is manifestly dual under 𝑐 ↔ ̃𝑐. Therefore, a dual sigma-
model for which the roles of 𝔤 and ̃𝔤 is expected [KŠ95]. To see this, let us restrict ourselves to transitive
group actions. In that case, the target 𝑀 can be identified with the Lie group 𝐺 itself and (5.3) can be
solved using a particular Lie bialgebra, namely aManin triple. The general case is covered in [Kli96].

Definition 5.2.3.
A Manin triple is a triple (𝔡, 𝔤, ̃𝔤), where 𝔡 is a Lie algebra with a non-degenerate invariant symmetric
form ⟨⋅, ⋅⟩ such that 𝔤, ̃𝔤 are complementary Lagrangian subalgebras of 𝔡, i.e. 𝔡 = 𝔤⊕ ̃𝔤, dim 𝔤 = dim ̃𝔤 =
1
2
dim 𝔡 and ⟨𝔤, 𝔤⟩ = 0 = ⟨ ̃𝔤, ̃𝔤⟩. The Lie algebra 𝔡 is called the Drinfel’d double.

The integration 𝐷 of 𝔡 is also called the Drinfel’d double and contains both groups 𝐺 and 𝐺 as subgroups.
As manifolds, one has 𝐷 ≅ 𝐺 × 𝐺. However, this isomorphism does not respect the group structure, at
least globally. Locally, the map (𝑔, ̃𝑔) ↦ 𝑔 ̃𝑔 is a Lie group isomorphism (cf. [LW90, Thm. 3.12]). Here
𝑔 ̃𝑔 is to be understood as the multiplication in 𝐷. We like to emphasise that Abelian T-duality fits in this
framework. Indeed, given two sigma models with toroidal targets 𝕋𝑘, 𝕋̃𝑘. Then, the 2𝑘-torus 𝕋2𝑘 forms a
Drinfel’d double when its Lie algebra is equipped with the following pairing:

⟨𝑇𝐴, 𝑇𝐵⟩ = ⟨𝑇𝐴, 𝑇𝐵⟩ = 0, ⟨𝑇𝐴, 𝑇𝐵⟩ = 𝛿𝐴𝐵.

Here, 𝑇𝐴, 𝑇𝐵 denote generators of 𝔱𝑘 and ̃𝔱𝑘, respectively. The ad-invariance of the pairing follows from
the fact the torus is Abelian.

Note, using the pairing ⟨⋅, ⋅⟩, the subalgebra ̃𝔤 can be identified with 𝔤∗. In this way, we see that a
Manin triple defines a Lie bialgebra. In fact, the converse is also true [Kos04, Sec. 1.6]

Theorem 5.2.4.
There is a one-to-one correspondence between finite dimensional Lie bialgebras and finite dimensional
Manin triples.

5.2.2 Constructing Poisson-Lie SymmetricModels
To construct sigma-models with manifest Poisson-Lie symmetry (5.2), we start with a Manin triple
(𝔡, 𝔤, ̃𝔤), following [Kli96]. Let 2𝑛 = dim 𝔡 and consider an 𝑛-dimensional linear subspace 𝑉+ of 𝔡, such
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that 𝔡 = 𝑉+ ⊕ 𝑉− and ⟨⋅, ⋅⟩ restricted to 𝑉+ is positive definite. Here 𝑉− ∶= 𝑉⟂
+ denotes the orthogonal

complement with respect to the pairing. The space 𝑉+ is a so-called generalized metric and plays an impor-
tant role in generalized geometry. We elaborate more on this in Section 5.4. Furthermore, we consider
fields 𝑙 ∶ Σ → 𝐷 satisfying

⟨𝜕∓𝑙𝑙−1, 𝑉±⟩ = 0. (5.6)

In other words, the field equations are given by 𝜕±𝑙𝑙−1 ∈ 𝑉±. Using this initial data, we will construct a
sigma-model with 𝐺-Poisson-Lie symmetry with respect to 𝐺 and the corresponding dual sigma-model.

As mentioned before, we can decompose 𝑙 (at least locally) as 𝑙 = 𝑔 ̃𝑔, where 𝑔 ∶ Σ → 𝐺 and ̃𝑔 ∶ Σ → 𝐺.
Inserting this into (5.6) yields

0 = ⟨𝜕∓𝑙𝑙−1, 𝑉±⟩
= ⟨𝜕∓𝑔𝑔−1 +Ad𝑔(𝜕∓ ̃𝑔 ̃𝑔−1), 𝑉±⟩
= ⟨𝑔−1𝜕∓𝑔 + 𝜕∓ ̃𝑔 ̃𝑔−1,Ad𝑔−1 𝑉±⟩. (5.7)

By the properties of 𝑉+ and 𝔤, it follows that Ad𝑔−1 𝑉+∩𝔤 = 0. The same statement is true for ̃𝔤. Therefore,
we can find a linear map 𝐸(𝑔) ∶ 𝔤 → ̃𝔤 such that

Ad𝑔−1 𝑉+ = gr𝐸(𝑔) = {𝑋 + 𝐸(𝑔)𝑋 ∣ 𝑋 ∈ 𝔤}.

From this we immediately see

Ad𝑔−1 𝑉− = {𝑋 − 𝐸(𝑔)𝑇𝑋 ∣ 𝑋 ∈ 𝔤},

where 𝐸(𝑔)𝑇 denotes the adjoint with respect to the pairing, i.e. the operator such that (𝐸⋅, ⋅) = (⋅, 𝐸(𝑔)𝑇 ⋅).
To be more concrete, let {𝑇𝐴} be a basis of 𝔤 and {𝑇𝐴} the dual basis of ̃𝔤, i.e.

⟨𝑇𝐴, 𝑇𝐵⟩ = 𝛿𝐵𝐴 .

Then, we can write

𝐸(𝑔)𝑇𝐴 = 𝐸𝐴𝐵(𝑔)𝑇𝐵

where

𝐸𝐴𝐵(𝑔) = ⟨𝑇𝐵, 𝐸(𝑔)𝑇𝐴⟩.

Consequently,

Ad𝑔−1 𝑉+ = span {𝑇𝐴 + 𝐸𝐴𝐵(𝑔)𝑇𝐵} (5.8)
Ad𝑔−1 𝑉− = span {𝑇𝐴 − 𝐸𝐵𝐴(𝑔)𝑇𝐵} .

Using this and the fact 𝔤 and ̃𝔤 are isotropic, (5.7) becomes

𝐽−, 𝐴 ∶= −(𝜕− ̃𝑔 ̃𝑔−1)𝐴 = 𝐸𝐴𝐵(𝑔)(𝑔−1𝜕−𝑔)𝐵 (5.9)
𝐽+, 𝐴 ∶= −(𝜕+ ̃𝑔 ̃𝑔−1)𝐴 = −𝐸𝐵𝐴(𝑔)(𝑔−1𝜕+𝑔)𝐵. (5.10)

In a basis independent way, we can write 𝐽 = 𝑑 ̃𝑔 ̃𝑔−1 and thus 𝐽 ∈ Ω1(Σ, ̃𝔤). Consequently, it satisfies the
zero curvature condition in ̃𝔤

𝑑𝐽 + 1
2[𝐽, 𝐽]𝔤̃ = 0, (5.11)
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as it is the right-invariant Maurer-Cartan form. Moreover, we can explicitly write 𝐽 in terms of 𝐸(𝑔),

𝐽+ = −𝐸(𝑔)𝑔−1𝜕+𝑔, 𝐽− = 𝐸(𝑔)𝑇𝑔−1𝜕−𝑔. (5.12)

Hence, we have constructed a current satisfying (5.2).
In fact, 𝐽 defines the Poisson-Lie symmetry current of the sigma-model

𝑆[𝑔] = ∫
Σ
𝑑2𝜎 𝐸𝐴𝐵(𝑔)(𝑔−1𝜕+𝑔)𝐴(𝑔−1𝜕−𝑔)𝐵 (5.13)

= ∫
Σ
𝑑2𝜎 (𝑔−1𝜕+𝑔)𝐴(𝑔−1𝜕−𝑔)𝐵 ⟨𝑇𝐵, 𝐸(𝑔)𝑇𝐴⟩

= ∫
Σ
𝑑2𝜎 ⟨𝑔−1𝜕−𝑔, 𝐸(𝑔)𝑔−1𝜕+𝑔⟩ , (5.14)

as (5.11) are its field equations [Kli96]. Note, (5.13) is precisely the standard sigma-model action (4.20),
written in left-invariant coordinates on the target Lie group𝐺. Consequently, we succeeded in constructing
a sigma-model with 𝐺-Poisson-Lie symmetry with respect to 𝐺. The required initial data was (𝔡, 𝑉+) and
the field equations (5.6).

5.2.3 Buscher-type Rules
Note, our discussion above is completely dual in 𝔤 and ̃𝔤. For example, one could have started with the
decomposition 𝑙 = ℎ̃ℎ. Then, the discussion above can be repeated to obtain the dual sigma-model

̃𝑆[ℎ̃] = ∫
Σ
𝑑2𝜎 𝐸𝐴𝐵(ℎ̃)(ℎ̃−1𝜕+ℎ̃)𝐴(ℎ̃−1𝜕−ℎ̃)𝐵

= ∫
Σ
𝑑2𝜎 ⟨ℎ̃−1𝜕−ℎ̃, 𝐸(ℎ̃)ℎ̃−1𝜕+ℎ̃⟩ .

Moreover, the background 𝐸𝐴𝐵(ℎ̃) can be written in terms of 𝐸𝐴𝐵(𝑔). To see this, first note at the unit
we have

0 = ⟨𝑇𝐴 + 𝐸𝐴𝐵(𝑒)𝑇𝐵, 𝑇𝐶 − 𝐸𝐷𝐶( ̃𝑒)𝑇𝐷⟩
= 𝛿𝐶𝐴 − 𝐸𝐴𝐵(𝑒)𝐸𝐷𝐶( ̃𝑒)𝛿𝐵𝐷
= 𝛿𝐶𝐴 − 𝐸𝐴𝐵(𝑒)𝐸𝐵𝐶( ̃𝑒).

A similar computation can be done where the roles of 𝐸 and 𝐸 are reversed. This results in

𝐸( ̃𝑒)𝐸(𝑒) = 𝐸(𝑒)𝐸( ̃𝑒) = 1. (5.15)

This is analogous to the 𝑅 → 1/𝑅 symmetry in Abelian T-duality. In fact, in the Abelian case, (5.15) holds
for every 𝑔 as the Adjoint is trivial (cf. (5.8)). In this way, the Buscher rules are recovered [KŠ96c]. To get
a general expression for 𝐸(𝑔), we write

Ad𝑔−1 𝑇𝐴 = 𝑎(𝑔)𝐵𝐴𝑇𝐵, Ad𝑔−1 𝑇𝐴 = 𝑏(𝑔)𝐴𝐵𝑇𝐵 + 𝑑(𝑔)𝐴𝐵𝑇𝐵.

Using this, (5.8) becomes

Ad𝑔−1 𝑉+ = span {Ad𝑔−1(𝑇𝐴 + 𝐸𝐴𝐵(𝑒)𝑇𝐵)}
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= span {(𝑎(𝑔)𝐶𝐴 + 𝐸𝐴𝐵(𝑒)𝑏(𝑔)𝐵𝐶)𝑇𝐶 + 𝐸𝐴𝐵(𝑒)𝑑(𝑔)𝐵𝐶𝑇𝐶}
= span {𝑇𝐶 + (𝑎(𝑔)𝐶𝐴 + 𝐸𝐴𝐵(𝑒)𝑏(𝑔)𝐵𝐶)−1𝐸𝐴𝐵(𝑒)𝑑(𝑔)𝐵𝐶𝑇𝐶}
= gr ((𝑎(𝑔) + 𝐸(𝑒)𝑏(𝑔))−1𝐸(𝑒)𝑑(𝑔)) .

Hence,

𝐸(𝑔) = (𝑎(𝑔) + 𝐸(𝑒)𝑏(𝑔))−1𝐸(𝑒)𝑑(𝑔).

For the dual sigma-model, we obtain an analogous expression

𝐸(ℎ̃) = ( ̃𝑎(ℎ̃) + 𝐸( ̃𝑒) ̃𝑏(ℎ̃))−1𝐸( ̃𝑒)𝑑(ℎ̃).

In view of (5.15), we obtain Buscher-type rules for background of the dual sigma-model

𝐸(ℎ̃) = ( ̃𝑎(ℎ̃) + 𝐸(𝑒)−1 ̃𝑏(ℎ̃))−1𝐸(𝑒)−1𝑑(ℎ̃). (5.16)

5.2.4 Equivalence of Hamiltonian Systems
Up to now, we have realized a sigma-model with Poisson-Lie symmetry in (5.13) and found Buscher-type
rules (5.16) to construct the dual sigma-model. Furthermore, the above establishes that solving the sigma-
model 𝑆[𝑔] (or ̃𝑆[ℎ̃]) is equivalent to having a lift 𝑙 that satisfies (5.6). As the latter is independent of the
decomposition of 𝑙 in𝐺𝐺 or𝐺𝐺, we get an equivalence between the sigma-models. In fact, the main result
of [KŠ95; KŠ96c] is that the sigma-model 𝑆[𝑔] and its dual ̃𝑆[ℎ̃] are isomorphic as Hamiltonian systems.
In other words, there is a Hamiltonian preserving symplectomorphism between the phase spaces. This is
called Poisson-Lie T-duality. In particular, the duality implies that any solution to 𝑆[𝑔] can be mapped
to a solution of ̃𝑆[ℎ̃]. Let us make this mapping precise.

Let 𝑆[𝑔] be a sigma-model that is 𝐺-Poisson-Lie symmetric with respect to 𝐺 such as (5.13). Then
given a solution 𝑔, there is an associated flat connection one-form 𝐽 ∈ Ω1(Σ, ̃𝔤). Then, we can find a field
̃𝑔 ∶ Σ → 𝐺 such that (5.9) holds by

̃𝑔 = 𝑃 exp (−∫
𝛾
𝐽) ,

which only depends on the homotopy class of 𝛾, by the flatness of 𝐽. Moreover, by the periodicity ̃𝑔(𝜏, 𝜎 +
2𝜋) = ̃𝑔(𝜏, 𝜎) we obtain a non-local constraint:

𝑃 exp (−∫
𝑎2
𝐽) = ̃𝑒, (5.17)

where 𝑎 denotes the generator of 𝜋1(Σ). This is called the unit monodromy constraint [KŠ96c; KŠ96b].
In other words, we make (5.17) single-valued and can be computed by choosing 𝛾 = 𝑎.

The generalized metric 𝑉+ is obtained from the sigma-model via (5.8). By construction, the element
𝑙 = 𝑔 ̃𝑔 ∈ 𝐷 satisfies the field equations (5.6). We also have the decomposition 𝑙 = ℎ̃ℎ. By the construction
above, ℎ̃ will be a solution of ̃𝑆[ℎ̃], as 𝑙 satisfies (5.6). Moreover, ℎ will induce the dual flat connection
one-form via

̃𝐽 = −𝑑ℎℎ−1.

Thus, the mapping between solutions is given by 𝑔 ↦ ℎ̃.
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Even though the discussion above is rather elegant, given a sigma-model, it is hard to see whether it
has Poisson-Lie symmetry and what the dual would be. This is due to the fact that the Drinfel’d double 𝐷
is part of the initial data. However, a priori it is unclear which Drinfel’d double to pick, as it is not unique.
Therefore, we would like to have a more systematic way to produce Poisson-Lie T-dual sigma-models.
This is done using ℰ-models and we will discuss them in the next section. An ℰ-model is a sigma-model
on the Drinfel’d double 𝐷, whose equations of motion are precisely (5.6). Moreover, it makes Poisson-Lie
T-duality into a manifest symmetry. This is closely related to how double field theory makes Abelian T-
duality manifest [HZ09; DHT19]. Before we move on, let us end this section with two examples of the
construction above.

Example 5.2.5 (Principal ChiralModel).
In Section 4.3.1 we mentioned that the principal chiral model has Poisson-Lie symmetry. Indeed,
the Drinfel’d double is given by 𝔡 = 𝔤 ⊕ 𝔤, where we equip the second factor with the trivial Lie
bracket. Furthermore, the action has the form (5.14) with 𝐸(𝑔) ∶ 𝔤 → ̃𝔤 = 𝔤 is the identity (cf.
(4.21)). Consequently, the connection one-form 𝐽 ∈ Ω1(Σ, 𝔤) can be computed using (5.12):

𝐽 = −𝑔−1𝜕+𝑔 + 𝑔−1𝜕−𝑔 = − ⋆ 𝑗.

Note, as the second factor of 𝔡 is equipped with the trivial bracket, the flatness of 𝐽 is just

𝑑𝐽 = −𝑑 ⋆ 𝑗 = (𝜕+𝑗− + 𝜕−𝑗+)𝑑𝜎− ∧ 𝑑𝜎+ = 0.

Consequently, 𝜕+𝑗− + 𝜕−𝑗+ = 0. This is precisely the equation of motion for the PCM. Now, one
can obtain the dual sigma-model using (5.16). This is done in [Kli96]. Actually, this ‘semi-Abelian’
double, where one of the factors is Abelian is precisely the setting of the original non-Abelian T-
duality by de la Ossa and Quevedo [dQ93]. ♦

Example 5.2.6 (Bi-Yang-BaxterModel).
As a second example, we consider the bi-Yang-Baxter model of Section 4.3.3. To define the model
we needed a skew-symmetric 𝑅-matrix. In particular, for the Weil operator solution, we considered
the non-split case. In view of Proposition 4.1.5, the Drinfel’d double is given by 𝔤ℂ = 𝔤⊕ 𝔤𝑅. The
action (4.30) of the bi-Yang-Baxter model is of the form (5.14) with

𝐸(𝑔)𝑇 = 1
1 − 𝜂𝑅 − 𝜁𝑅𝑔 .

To find 𝐸(𝑔), note we can expand

1
1 − 𝜂𝑅 − 𝜁𝑅𝑔 =

∞
∑
𝑘=0

(𝜂𝑅 + 𝜁𝑅𝑔)𝑘.

In first order we have, for 𝑋, 𝑌 ∈ 𝔤

(𝑋, (𝜂𝑅 + 𝜁𝑅𝑔)𝑌) = (𝑋, 𝜂𝑅𝑌) + (𝑋, 𝜁𝑅𝑔𝑌)
= −(𝜂𝑅𝑋, 𝑌) + 𝜁(𝑋,Ad𝑔−1 𝑅Ad𝑔 𝑌)
= −(𝜂𝑅𝑋, 𝑌) − (𝜁𝑅𝑔𝑋, 𝑌)
= ((−𝜂𝑅 − 𝜁𝑅𝑔)𝑋, 𝑌) .
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This generalizes to higher orders and we obtain

𝐸(𝑔) = 1
1 + 𝜂𝑅 + 𝜁𝑅𝑔 .

Then, by (5.12) we find

𝐽± = ∓ 1
1 ± 𝜂𝑅 ± 𝜁𝑅𝑔 𝑔

−1𝜕±𝑔.

This is precisely the object we defined in Section (4.3.3) to conveniently write the equation of motion.
Moreover, this equation of motion is precisely the flatness of 𝐽 viewed as an element in Ω1(Σ, 𝔤𝑅).
In Section 5.5 we will relate the Poisson-Lie T-dual of the bi-Yang-Baxter model to the 𝜆-model.♦

5.3 ℰ-models

In the previous section we discussed sufficient conditions for constructing Poisson-Lie T-dual sigma-
models. The crucial ingredients were the Drinfel’d double 𝐷, a generalized metric 𝑉+ and the field equa-
tions (5.6). Motivated by this, we will construct a sigma-model on the Drinfel’d double that produces
the field equations (5.6) called the ℰ-model. Furthermore, we discuss how to extract Poisson-Lie T-dual
sigma-models from the ℰ-model. Our main references are [Kli15; DHT19].

The ℰ-model was first constructed by Klimčík and Ševera in [KŠ96c] and the necessary components
are

• An even dimensional Lie group 𝐷, whose Lie algebra 𝔡 admits an ad-invariant non-degenerate
pairing ⟨⋅, ⋅⟩ of split signature. The group 𝐷 will play the role of the Drinfel’d double.

• At least one subgroup 𝐺 ⊂ 𝐷 such that its Lie algebra ̃𝔤 ⊂ 𝔡 is Lagragian with respect to ⟨⋅, ⋅⟩.
• A self-adjoint operator ℰ ∶ 𝔡 → 𝔡 such that ℰ2 = id and ⟨⋅, ℰ⋅⟩ is positive-definite2.

As the operator ℰ is idempotent, i.e. ℰ2 = id, it has eigenvalues ±1. A generalized metric can be obtained
from ℰ by defining 𝑉+ to be the+1-eigenspace. Now, to capture the dynamics of the ℰ-model we consider
the following Hamiltonian

𝐻ℰ =
1
2 ∫𝑑𝜎 ⟨𝑗(𝜎), ℰ𝑗(𝜎)⟩,

where 𝑗(𝜎) = 𝜕𝜎𝑙𝑙−1 for 𝑙 ∶ Σ → 𝐷. To completely fix the dynamics of the ℰ-model, we need the Poisson
brackets. For this, let 𝑡𝐴 = {𝑇𝐴, 𝑇𝐴} be a basis of 𝔡. Here, 𝑇𝐴 denote the generators of ̃𝔤 and 𝑇𝐴 the
remaining generators. Typically, 𝑇𝐴 will be the generators of the dual Lie algebra 𝔤. Then, the Poisson
brackets of the components 𝑗𝐴(𝜎) ∶= ⟨𝑡𝐴, 𝑗(𝜎)⟩ are given by

{𝑗𝐴(𝜎), 𝑗𝐵(𝜎′)} = 𝐹𝐴𝐵𝐶𝑗𝐶(𝜎)𝛿(𝜎 − 𝜎′) + 𝜂𝐴𝐵𝜕𝜎𝛿(𝜎 − 𝜎′),

where 𝐹𝐴𝐵𝐶 denote the structure constants on 𝔡 and 𝜂𝐴𝐵 = ⟨𝑡𝐴, 𝑡𝐵⟩. Using the Poisson brackets one sees
the equations of motion are given by3 [Kli15]

𝜕𝜏𝑗(𝜎) = {𝐻ℰ, 𝑗(𝜎)} = 𝜕𝜎(ℰ𝑗(𝜎)) + [ℰ𝑗(𝜎), 𝑗(𝜎)]. (5.18)
2In [DHT19] this last condition is dropped. By doing this one has to impose 𝑉+ ∩ 𝔤 = 0 by hand for the corresponding

generalized metric 𝑉+.
3For this, we assume ℰ does not depend on the worldsheet coordinates. In [DHT19] the condition is relaxed.
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We claim these equations of motion are equivalent to the field equations (5.6). Indeed,

Proposition 5.3.1.
Let 𝑙 ∶ Σ → 𝐷. Then, 𝑙 satisfies (5.6) if and only if 𝑗(𝜎) ∶= 𝜕𝜎𝑙𝑙−1 solves the equations of motion (5.18)
of the ℰ-model.

Proof.— On the one hand, suppose 𝑙 satisfies 𝜕±𝑙𝑙−1 ∈ 𝑉±. Here 𝑉± denote the ±1-eigenspaces of ℰ.
Then, in light-cone coordinates 𝜎± = 𝜏 ± 𝜎, we have

𝑑𝑙𝑙−1 = 𝜕+𝑙𝑙−1𝑑𝜎+ + 𝜕−𝑙𝑙−1𝑑𝜎−
= (𝜕+𝑙𝑙−1 − 𝜕−𝑙𝑙−1)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝜕𝜎𝑙𝑙−1
𝑑𝜎 + (𝜕+𝑙𝑙−1 + 𝜕−𝑙𝑙−1)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝜕𝜏𝑙𝑙−1
𝑑𝜏. (5.19)

Since ℰ(𝜕±𝑙𝑙−1) = ±𝜕±𝑙𝑙−1, we see from (5.19)

𝜕𝜏𝑙𝑙−1 = ℰ(𝜕𝜎𝑙𝑙−1). (5.20)

Hence, for 𝑗(𝜎) = 𝜕𝜎𝑙𝑙−1 we have

𝜕𝜏𝑗(𝜎) = 𝜕𝜏(𝜕𝜎𝑙𝑙−1)
= 𝜕𝜏𝜕𝜎𝑙𝑙−1 + 𝜕𝜎𝑙𝜕𝜏(𝑙−1)
= 𝜕𝜏𝜕𝜎𝑙𝑙−1 − 𝜕𝜎𝑙𝑙−1𝜕𝜏𝑙𝑙−1
= 𝜕𝜎𝜕𝜏𝑙𝑙−1 − 𝜕𝜏𝑙𝑙−1𝜕𝜎𝑙𝑙−1 + [𝜕𝜏𝑙𝑙−1, 𝜕𝜎𝑙𝑙−1]
= 𝜕𝜎(ℰ𝑗(𝜎)) + [ℰ𝑗(𝜎), 𝑗(𝜎)].

On the other hand, given a current 𝑗(𝜎) = 𝜕𝜎𝑙𝑙−1 that satisfies (5.18), the above computation shows 𝑙
satisfies (5.20). Then, using the properties of ℰ, we directly see

ℰ(𝜕+𝑙𝑙−1) =
1
2ℰ(𝜕𝜏𝑙𝑙

−1 + 𝜕𝜎𝑙𝑙−1) =
1
2ℰ(ℰ(𝜕𝜎𝑙𝑙

−1) + 𝜕𝜎𝑙𝑙−1) =
1
2(𝜕𝜎𝑙𝑙

−1 + ℰ(𝜕𝜎𝑙𝑙−1)) = 𝜕+𝑙𝑙−1

ℰ(𝜕−𝑙𝑙−1) =
1
2ℰ(𝜕𝜏𝑙𝑙

−1 − 𝜕𝜎𝑙𝑙−1) =
1
2ℰ(ℰ(𝜕𝜎𝑙𝑙

−1) − 𝜕𝜎𝑙𝑙−1) =
1
2(𝜕𝜎𝑙𝑙

−1 − ℰ(𝜕𝜎𝑙𝑙−1)) = −𝜕−𝑙𝑙−1.

Hence, 𝜕±𝑙𝑙−1 ∈ 𝑉±. This completes the proof. ∎

The above proposition shows that the ℰ-model precisely captures the initial data needed in Section 5.2.
Remarkably, ℰ-models also play an important role in integrability, even though a priori they seem unrelated.
For a discussion about this relation, see [DHT19; Kli21].

To make contact with sigma-models, one can perform a Legendre transform to obtain the following
action [KŠ96c; DHT19]

𝑆[𝑙] = 1
2 ∫Σ

𝑑2𝜎 ⟨𝜕𝜎𝑙𝑙−1, 𝜕𝜏𝑙𝑙−1⟩ +
1
12 ∫𝐵

⟨𝑑𝑙𝑙−1, [𝑑𝑙𝑙−1, 𝑑𝑙𝑙−1]⟩ −∫𝑑𝜏 𝐻ℰ. (5.21)

Note, the first two terms define a WZW model on 𝐷4. Following [KŠ96b], we split the element 𝑙 as
follows

𝑙(𝜏, 𝜎) = 𝑓(𝜏, 𝜎) ̃𝑔(𝜏, 𝜎).
4We are aware the coefficients in (5.21) do not match those stated in (4.25). This is due to the usage of different conventions in

[KŠ96c; Kli15]. To keep contact with the relevant literature we will use their conventions from now on.



5.4. Courant Algebroids and Poisson-Lie T-duality 105

ℰ-model on 𝐷

𝜎-model on 𝐷/𝐺1 𝜎-model on 𝐷/𝐺2 ⋯ 𝜎-model on 𝐷/𝐺𝑛

Poisson-Lie
T-duality

Poisson-Lie
T-duality

Figure 5.1: Schematic depiction of obtaining Poisson-Lie T-dual sigma-models from an ℰ-model on the
double 𝐷. Inspired by [DHT19].

Here, ̃𝑔 ∈ 𝐺 and 𝑓 ∈ 𝐷 parametrizes elements in the coset 𝐷/𝐺. Evaluating (5.21) using the decomposi-
tion above and integrating out the 𝐺-valued terms5 we obtain [KŠ96b; Kli15]

𝑆ℰ[𝑓] = 𝑆WZW,𝐷[𝑓] −∫
Σ
𝑑2𝜎 ⟨𝒫𝑓(ℰ)𝑓−1𝜕+𝑓, 𝑓−1𝜕−𝑓⟩, (5.22)

where

𝑆WZW,𝐷[𝑓] =
1
2 ∫Σ

𝑑2𝜎 ⟨𝑓−1𝜕+𝑓, 𝑓−1𝜕−𝑓⟩ +
1
12 ∫𝐵

⟨𝑓−1𝑑𝑓, [𝑓−1𝑑𝑓, 𝑓−1𝑑𝑓]⟩.

Furthermore, 𝒫𝑓(ℰ) ∶ 𝔡 → ̃𝔤 is the projection operator defined by the relations

im𝒫𝑓(ℰ)𝔡 = ̃𝔤, ker𝒫𝑓(ℰ) = (id +Ad𝑓−1 ℰAd𝑓) ̃𝔤. (5.23)

We will use these expressions in Section 5.5 to see that the 𝜆-model and bi-Yang-Baxter model can be
obtained from ℰ-models.

Poisson-Lie T-duality from the ℰ-model point of view is the following: given another subgroup𝐺 ⊂ 𝐷
for which its Lie algebra is Lagrangian, the two resulting sigma-models (5.22) on 𝐷/𝐺 and 𝐷/𝐺, respec-
tively, are isomorphic as Hamiltonian systems [KŠ96b; KŠ96c]. Schematically, this is depicted in Figure
5.1. In particular, any sigma-model coming from an ℰ-model via (5.22) admits Poisson-Lie T-duals. That
is, if 𝐷 admits two subgroups with Lagrangian Lie algebras. In the special case that 𝐷 = 𝐺𝐺, we recover
our discussion in Section 5.2.

Up to this point, we have described two point of views on Poisson-Lie T-duality: the one from Section
5.2 and using ℰ-models. Both perspectives are from the worldsheet point of view. In the next section
we discuss a mathematical framework for a target space formulation of Poisson-Lie T-duality in terms
of Courant algebroids. However, this description is not necessary for Section 5.5 and can therefore be
skipped.

5.4 Courant Algebroids and Poisson-Lie T-duality

The main feature of Poisson-Lie T-duality is the fact it is a non-Abelian generalization of Abelian T-
duality. It has been noted in [CG11] that Abelian T-duality can be captured in terms of generalized

5This can be done as those terms will be quadratic in 𝜕𝜎𝑔𝑔−1 [KŠ96c], by the properties of 𝐺.
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geometry. In particular, in the language of Courant algebroids. Consequently, we expect the same to be
true for Poisson-Lie T-duality. The answer turns out to be affirmative, as was first recognized in the famous
letters [Šev17a]. Further relationship was established in [Šev15; Šev16; JV18; ŠV20] among others, with
several applications in physics. In this section we discuss this relationship and conclude Poisson-Lie T-
duality can be interpreted as a Courant relation, which is a generalization of morphism, following [Vys20].

5.4.1 Definitions and Examples
Let us start by introducing Courant algebroids. The history behind the development of Courant algebroids
is rather fascinating and we refer to [Kos13] for a review. The modern definition of Courant algebroids is
due to Roytenberg [Roy99] and Weinstein and Ševera [ŠW02].

Definition 5.4.1.
ACourant algebroid (CA) is a vector bundle𝐸 → 𝑀 equippedwith a non-degenerate symmetric bilinear
form ⟨⋅, ⋅⟩ on the fibers of the bundle, an ℝ-linear bracket [⋅, ⋅] ∶ Γ(𝐸) × Γ(𝐸) → Γ(𝐸) on the space of
section of 𝐸 and a vector bundle map ( the anchor) 𝜌 ∶ 𝐸 → 𝑇𝑀 such that

i) For any 𝑠, 𝑡, 𝑢 ∈ Γ(𝐸),

[𝑠, [𝑡, 𝑢]] = [[𝑠, 𝑡], 𝑢] + [𝑡, [𝑠, 𝑢]]

ii) For any 𝑠, 𝑡 ∈ Γ(𝐸),

𝜌([𝑠, 𝑡]) = [𝜌(𝑠), 𝜌(𝑡)]

iii) For any 𝑠, 𝑡 ∈ Γ(𝐸), 𝑓 ∈ 𝐶∞(𝑀),

[𝑠, 𝑓𝑡] = 𝑓[𝑠, 𝑡] + ℒ𝜌(𝑠)(𝑓)𝑡

iv) For any 𝑠, 𝑡, 𝑢 ∈ Γ(𝐸),

𝜌(𝑠)⟨𝑡, 𝑢⟩ = ⟨[𝑠, 𝑡], 𝑢⟩ + ⟨𝑡, [𝑠, 𝑢]⟩

v) for any 𝑠 ∈ Γ(𝐸),

[𝑠, 𝑠] = 𝒟⟨𝑠, 𝑠⟩,

where 𝒟 ∶ 𝐶∞(𝑀) → Γ(𝐸) is defined as 𝒟 = 1
2
𝛽−1𝜌∗𝑑. Here 𝛽 ∶ 𝐸 → 𝐸∗ denotes the

isomorphism induced by the pairing ⟨⋅, ⋅⟩.

Alternatively, one can implicitly define the operator 𝒟 via

⟨𝒟𝑓, 𝑠⟩ = 1
2ℒ𝜌(𝑠)(𝑓),

for any 𝑠 ∈ Γ(𝐸). Note, from property 𝑣) we see that the bracket [⋅, ⋅] typically is not skew-symmetric, it
satisfies

[𝑠, 𝑡] + [𝑡, 𝑠] = 2𝒟⟨𝑠, 𝑠⟩.
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Therefore, it does not define a Lie bracket. Furthermore, let us denote 𝜌𝑡 ∶= 𝛽−1𝜌∗ ∶ 𝑇∗𝑀 → 𝐸, which
we call the transpose of 𝜌. Now, since any covector 𝜉 ∈ 𝑇∗𝑀 can locally be described as the differential
of a function of the form ⟨𝑠, 𝑠⟩ for some 𝑠 ∈ Γ(𝐸), we have that

0 Ð→ 𝑇∗𝑀 𝜌𝑡
Ð→ 𝐸 𝜌

Ð→ 𝑇𝑀 Ð→ 0 (5.24)

defines a chain complex, i.e. 𝜌 ∘ 𝜌𝑡 = 0 (cf. [Šev15]).

Definition 5.4.2.
We say a Courant algebroid 𝐸 → 𝑀 is

i) transitive if 𝜌 is surjective

ii) exact if the sequence (5.24) is exact

A trivial example of Courant algebroids is provided by Lie algebras.

Example 5.4.3 (Quadratic Lie algebras).
A quadratic Lie algebra (𝔤, ⟨⋅, ⋅⟩), i.e. a Lie algebra equipped with an ad-invariant inner product
⟨⋅, ⋅⟩, is a Courant algebroid over a point. Here, the anchor is the trivial map and thus (𝔤, ⟨⋅, ⋅⟩) is an
example of a transitive CA. ♦

Note, theDrinfel’d double 𝔡 of aManin triple thus is an example of a Courant algebroid. This is closely tied
to its role in Poisson-Lie T-duality, as we will see below. A second example is provided by the generalized
tangent bundle 𝕋𝑀 ∶= 𝑇𝑀 ⊕ 𝑇∗𝑀, the central object in generalized geometry.

Example 5.4.4 (Generalized tangent bundle).
Given a manifold 𝑀, we equip the generalized tangent bundle 𝕋𝑀 with the pairing

⟨𝑋 + 𝜉, 𝑌 + 𝜂⟩ = 1
2(𝜂(𝑋) + 𝜉(𝑌)) (5.25)

and the Dorfman bracket

[𝑋 + 𝜉, 𝑌 + 𝜂] ∶= [𝑋, 𝑌] + ℒ𝑋𝜂 − 𝑖𝑌𝑑𝜉.

Combining this with the anchor 𝜌 ∶ 𝕋𝑀 → 𝑇𝑀 given by the projection onto the first factor,
(𝕋𝑀, 𝜌, ⟨⋅, ⋅⟩, [⋅, ⋅]) defines a Courant algebroid. In fact, one can verify that the sequence (5.24) is
exact, making it into an exact CA. In the literature, it is referred to as the standard CA over𝑀
[Šev15]. ♦

Interestingly, we can obtain a whole class of exact Courant algebroids by twisting the Dorfman bracket.
Indeed, for a closed 3-form 𝐻 ∈ Ω3(𝑀) we define the twisted Dorfman bracket as

[𝑋 + 𝜉, 𝑌 + 𝜂]𝐻 ∶= [𝑋, 𝑌] + ℒ𝑋𝜂 − 𝑖𝑌𝑑𝜉 + 𝑖𝑌 𝑖𝑋𝐻.

Then, (𝕋𝑀, 𝜌, ⟨⋅, ⋅⟩, [⋅, ⋅]𝐻) is an exact CA, as well [ŠW02]. In fact, all exact CAs are exhausted in this
way. This follows from the classification theorem for exact Courant algebroids due to Ševera. For this, we
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need the notion of 𝐵-field transforms. Let 𝐵 ∈ Ω2(𝑀) and view it as a map 𝐵 ∶ 𝑇𝑀 → 𝑇∗𝑀. From
this we obtain an invertible bundle map via exponentiating

𝑒𝐵 ∶ 𝕋𝑀 → 𝕋𝑀, 𝑋 + 𝜉 ↦ 𝑋 + 𝜉 + 𝑖𝑋𝐵.

It is orthogonal with respect to (5.25) and relates the 𝐻-twisted Dorfman bracket to the 𝐻 + 𝑑𝐵-twisted
Dorfman bracket [BCG07]:

[𝑒𝐵⋅, 𝑒𝐵⋅]𝐻 = 𝑒𝐵[⋅, ⋅]𝐻+𝑑𝐵. (5.26)

Theorem 5.4.5.
Exact Courant algebroids 𝐸 over𝑀, up to 𝐵-field transforms, are classified by 𝐻3(𝑀).

Proof.— We give a sketch of the proof, following [BCG07]. Given an exact CA 𝐸 → 𝑀, we can choose
a right splitting 𝜎 ∶ 𝑇𝑀 → 𝐸 of the sequence (5.24) such that 𝐿 ∶= 𝜎(𝑇𝑀) is isotropic. To this splitting
we associate a closed curvature 3-form via

𝐻(𝑋, 𝑌, 𝑍) ∶= ⟨[𝜎(𝑋), 𝜎(𝑌)], 𝜎(𝑍)⟩.

Using the bundle isomorphism 𝜎 ⊕ 1
2
𝜌𝑡 ∶ 𝕋𝑀 → 𝐸, we may transport the Courant structure of 𝐸 to

𝕋𝑀. A straightforward computation shows the pairing becomes (5.25) and the bracket is the 𝐻-twisted
Dorfman bracket.

If we choose a different isotropic splitting 𝜎′ ∶ 𝑇𝑀 → 𝐸, the difference 𝐵 ∶= 𝜎 − 𝜎′ defines an
element in Ω2(𝑀). Consequently, a different splitting amounts to mapping 𝑋 ↦ 𝑋 + 𝑖𝑋𝐵 on 𝑇𝑀, i.e. a
𝐵-field transform on 𝕋𝑀. We know from (5.26) that 𝐻 is mapped to 𝐻+𝑑𝐵 under the 𝐵-field transform.
Consequently, the class [𝐻] ∈ 𝐻3(𝑀) is independent of isotropic splitting and defines the exact Courant
algebroid 𝐸 completely. ∎

Exact Courant algebroids are particularly important for our purposes, as they can be related to non-
linear sigma-models [Šev15; Šev16; DMS23]. To see this, we need the notion of a generalized metric
[Vys20]:

Definition 5.4.6.
A generalizedmetric on a Courant algebroid 𝐸 → 𝑀 is a vector bundle morphism 𝒢 ∶ 𝐸 → 𝐸 such that
𝒢2 = id and ⟨𝒢⋅, ⋅⟩ is positive definite.

Equivalently, a generalized metric is given by a maximal positive-definite subbundle 𝑉+ ⊂ 𝐸 which corre-
sponds to the +1-eigenspace of 𝒢. For our purposes, 𝑉+ will be a half-rank subbundle of 𝐸. Note, then
the notion of a generalized metric coincides with the object considered in Sections 5.2 and 5.3. There,
the map ℰ played the role of 𝒢 in the definition above. Furthermore, we saw the geometric data to define
Poisson-Lie T-duality between worldsheet theories was a Drinfel’d double 𝔡, i.e. a Courant algebroid, and
a generalized metric 𝑉+.

Something similar happens for exact Courant algebroids. Given an exact Courant algebroid 𝐸 → 𝑀
with a generalized metric 𝑉+. By Theorem 5.4.5, we may identify 𝐸 ≅ 𝕋𝑀 equipped with the 𝐻′-twisted
Dorfman bracket, for some closed 𝐻′ ∈ Ω3(𝑀). Under this identification, the subbundles 𝑇𝑀, 𝑇∗𝑀 are
Lagrangian. As the pairing is positive definite on 𝑉+, we have 𝑉+ ∩𝑇𝑀 = 𝑉+ ∩𝑇∗𝑀 = 0. Consequently,
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𝑉+ is the graph of a bundle map 𝐸 ∶ 𝑇𝑀 → 𝑇∗𝑀. Using the pairing, we can view 𝐸 ∈ Γ(𝑇∗𝑀 ⊗ 𝑇∗𝑀).
Furthermore, we can write 𝐸 = 𝑔 + 𝐵 with 𝑔 the symmetric and 𝐵 the anti-symmetric part of 𝐸. This is
analogous to what we did in Section 4.3. In view of Theorem 5.4.5, we should consider 𝐸 up to 𝐵-field
transformations. Therefore, we may assume 𝐸 = 𝑔, after performing the 𝐵-field transform 𝑒−𝐵. We define
𝐻 ∶= 𝐻 − 𝑑𝐵. Consequently, the data (𝐸, 𝑉+) gives us a pair (𝑔, 𝐻), consisting of a metric and closed
3-form on𝑀. Using the latter, we can construct a 𝜎-model, describing the dynamics of a field 𝑋 ∶ Σ → 𝑀.
Here Σ denotes a Riemann surface. The action is given by

𝑆[𝑋] = ∫
Σ
𝑔(𝜕𝑋, ̄𝜕𝑋) +∫

𝐵
𝑋∗𝐻.

Here, 𝐵 is a three dimensional manifold such that 𝜕𝐵 = Σ, completely analogous to the WZW model
from Section 4.3.2.

5.4.2 Courant Relations
One of the main results of [CG11] is that T-duality can be viewed as an isomorphism of Courant alge-
broids. To be precise, they produce a vector bundle isomorphism𝜑 ∶ 𝐸1 → 𝐸2 betweenCourant algebroids
over a common base, satisfying

⟨𝜑(𝑠), 𝜑(𝑡)⟩2 = ⟨𝑠, 𝑡⟩1, [𝜑(𝑠), 𝜑(𝑡)]2 = 𝜑([𝑠, 𝑡]1). (5.27)

We wish to produce a similar statement for Poisson-Lie T-duality. Motivated by the above, it is natural
to assume the statement will be about morphisms of Courant algebroids.

Definingmorphisms betweenCourant algebrois over a common base, or diffeomorphic bases, is straight-
forward, as done above. However, defining CA morphisms over arbitrary smooth maps is more subtle. The
reason for this is similar to the case of symplectic manifolds. Given a smooth map 𝜑 ∶ 𝑀1 → 𝑀2 between
symplectic manifolds (𝑀1, 𝜔1) and (𝑀2, 𝜔2), one would say 𝜑 is symplectic if 𝜑∗𝜔2 = 𝜔1. This forces
𝜑 to be an immersion. Moreover, if we require 𝜑∗ ∶ 𝐶∞(𝑀2) → 𝐶∞(𝑀1) to intertwine the induced
Poisson brackets, 𝜑 must be a diffeomorphism [Vys20]. Consequently, the notion of morphism in the
symplectic category is too restrictive. It is said the symplectic category ‘has too few arrows’. Therefore, it
was suggested in [Wei82] to weaken the notion of morphism to enlarge the amount of arrow, resulting in
the symplectic ‘category’. Here, an arrow is given by a Lagrangian submanifold 𝐿 ⊂ 𝑀1 × 𝑀2, where 𝑀2
denotes the symplectic manifold (𝑀2, −𝜔2).

As Courant algebroids can be viewed as graded symplectic manifolds [Roy02; Šev01], we take the
same approach. This leads to the concept of Courant relations. In this section we give the definition and
discuss when two CA relations are composable, following [Vys20]. As mentioned there, the signature of
⟨⋅, ⋅⟩ on a CA 𝐸 can be general. However, for our purposes, we consider split signature as the main example.
Let (𝐸, 𝜌, ⟨⋅, ⋅⟩, [⋅, ⋅]) be a Courant algebroid.

Definition 5.4.7.
A subset 𝐿 ⊂ 𝐸 is said to be supported on a submanifold 𝑆 ⊂ 𝑀, if it is a subbundle of the restricted
vector bundle 𝐸|𝑆.

The pairing ⟨⋅, ⋅⟩ restricts to 𝐸|𝑆. Consequently, 𝐿⟂ is well-defined and the notion of (co)isotropic ex-
ists.
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Definition 5.4.8.
Let 𝐿 ⊂ 𝐸 be a subbundle supported on 𝑆. We say 𝐿 is compatible with the anchor if 𝜌(𝐿) ⊂ 𝑇𝑆.

Finally, we define the compatibility with the third structure of a CA: the bracket. For this we denote

Γ(𝐸; 𝐿) ∶= {𝑠 ∈ Γ(𝐸) ∣ 𝑠|𝑆 ∈ Γ(𝐿)},

for 𝐿 ⊂ 𝐸 a subbundle supported on 𝑆.

Definition 5.4.9.
A subbundle 𝐿 supported on 𝑆 is said to be involutive if for 𝑠, 𝑡 ∈ Γ(𝐸; 𝐿) we have [𝑠, 𝑡] ∈ Γ(𝐸; 𝐿).

Combining the above compatibility’s leads to the concept of an ivolutive structure.

Definition 5.4.10.
We say a subbundle 𝐿 supported on 𝑆 is an involutive structure if

i) 𝐿 is involutive

ii) 𝐿 is isotropic

iii) 𝐿⟂ is compatible with the anchor.

If 𝐿 is maximally isotropic, we call 𝐿 a Dirac structure supported on 𝑆.

In the case 𝐿 is maximally isotropic, the third condition can be replaced with 𝐿 being compatible with the
anchor [Vys20, Rmk. 2.19]. One might wonder why we do not restrict ourselves to maximally isotropic
subbundles. This is because their composition might fail to be maximally isotropic [Vys20, Ex. 4.33].

Let 𝐸1 → 𝑀1 and 𝐸2 → 𝑀2 be Courant algebroids. By 𝐸2 we denote the Courant algebroid
(𝐸2, 𝜌2, −⟨⋅, ⋅⟩2, [⋅, ⋅]2). Furthermore, the product 𝐸1 × 𝐸2 comes with a canonical Courant algebroid
structure given by

𝜌(𝑠1, 𝑠2) ∶= 𝜌1(𝑠1) + 𝜌2(𝑠2),
⟨(𝑠1, 𝑠2), (𝑡1, 𝑡2)⟩ ∶= ⟨𝑠1, 𝑡1⟩1 − ⟨𝑠2, 𝑡2⟩2,
[(𝑠1, 𝑠2), (𝑡1, 𝑡2)] ∶= ([𝑠1, 𝑡1], [𝑠2, 𝑡2]).

Using this, we can define Courant algebroid relations.

Definition 5.4.11.
A Courant algebroid relation from 𝐸1 to 𝐸2 is an involutive structure 𝑅 ⊂ 𝐸1 × 𝐸2 supported on a
submanifold 𝑆 ⊂ 𝑀1 ×𝑀2. We denote it by 𝑅 ∶ 𝐸1 ⇢ 𝐸2.

If 𝑆 = gr𝜑, for 𝜑 ∶ 𝑀1 → 𝑀2 smooth, we say 𝑅 is aCourant algebroidmorphism from 𝐸1 to 𝐸2
over 𝜑. We denote this by 𝑅 ∶ 𝐸1 ↣ 𝐸2.

A trivial example of a CA relation, is the diagonal Δ(𝐸) ⊂ 𝐸 × 𝐸. An important example for Poisson-Lie
T-duality is the transpose of a CA relation.
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Lemma 5.4.12.
Given a Courant algebroid relation 𝑅 ∶ 𝐸1 ⇢ 𝐸2 supported on 𝑆 ⊂ 𝑀1 × 𝑀2, the transpose relation
defined by

𝑅𝑇 ∶= {(𝑠2, 𝑠1) ∈ 𝐸2 × 𝐸1 ∣ (𝑠1, 𝑠2) ∈ 𝑅}

is a Courant algebroid relation 𝑅𝑇 ∶ 𝐸2 ⇢ 𝐸1 supported on 𝑆𝑇 , where 𝑆𝑇 is defined analogous to 𝑅𝑇 .
Moreover, the transpose of a Courant algebroid morphism over 𝜑 is a Courant algebroid morphism, if and
only if 𝜑 is a diffeomorphism.

The proof is a straightforward computation and we omit it here.
A natural question is whether Courant algebroid relations compose. After all, their purpose was to

enlarge the set of arrows. The answer is sometimes. A transversality condition must be satisfied for the
relations to be composable [Vys20, Prop. 3.14]. This is themain result of [Vys20]. As a set, the composition
of two CA relations 𝑅 ∶ 𝐸1 ⇢ 𝐸2 and 𝑅′ ∶ 𝐸2 ⇢ 𝐸3 supported on 𝑆 and 𝑆′, respectively, is defined by

𝑅′ ∘ 𝑅 = {(𝑒1, 𝑒3) ∈ 𝐸1 × 𝐸3 ∣ ∃𝑒2 ∶ (𝑒1, 𝑒2) ∈ 𝑅, (𝑒2, 𝑒3) ∈ 𝑅′}. (5.28)

In general, 𝑅′ ∘ 𝑅 fail to be a smooth subbundle of 𝐸1 ×𝐸3. By assuming topological conditions on 𝑆 × 𝑆′
and 𝑆′ ∘𝑆, defined analogous to (5.28), it can be assured 𝑅′ ∘𝑅 is a smooth subbundle of 𝐸1×𝐸3 supported
on 𝑆′ ∘ 𝑆 (cf. [Vys20, Prop. 3.15]). In that case, we say 𝑅 and 𝑅′ compose cleanly. It can be checked
𝑅′ ∘ 𝑅 defines an involutive structure, when 𝑅, 𝑅′ are CA relations [Vys20, Thm. 3.18]. Hence, we have
the following result

Theorem 5.4.13.
Let 𝑅 ∶ 𝐸1 ⇢ 𝐸2 and 𝑅′ ∶ 𝐸2 ⇢ 𝐸3 be Courant algebroid relations that compose cleanly. Then, the
composition is a Courant algebroid relation 𝑅′ ∘ 𝑅 ∶ 𝐸1 ⇢ 𝐸3 supported on 𝑆′ ∘ 𝑆.

5.4.3 Poisson-Lie T-duality as Courant Relation
At this point we are in the position to describe Poisson-Lie T-duality as a Courant algebroid relation.
Moreover, we will see Poisson-Lie T-duality is a special kind of CA relation, namely a generalized isometry.
To do this, we need a reference Courant algebroid, that plays the role of the Drinfel’d double, from which
the dual Courant algebroids can be obtained. They are obtained via the reduction of Courant algebroids
procedure from [BCG07]. We will restrict ourselves to exact Courant algebroids in this section, however
some of the statements hold in more generality. For more details we refer to [Vys20, Ch. 4], which is also
our main reference.

Let 𝜛 ∶ 𝑃 → 𝐵 be a principal 𝐷-bundle, for some connected Lie group 𝐷.

Definition 5.4.14.
Let 𝐸 → 𝑃 be an exact Courant algebroid. We say 𝐸 is a 𝐷-equivariant Courant algebroid if there is a
linear mapℜ ∶ 𝔡 → Γ(𝐸) satisfying

i) 𝜌 ∘ ℜ = 𝔞, where 𝔞 ∶ 𝔡 → 𝔛(𝑃) denotes the infinitesimal action corresponding to the right action of
𝐷 on 𝑃

ii) ℜ([𝑋, 𝑌]𝔡) = [ℜ(𝑋),ℜ(𝑌)]
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Figure 5.2: Schematic depiction of Poisson-Lie T-duality seen as a Courant algebroid relation 𝑅𝐺,𝐺. The
two upper dashed arrows correspond to reduction of Courant algebroids, which defines a CA morphism
(cf. [Vys20, Prop. 4.21]).

iii) The induced Lie algebra action on 𝐸 defined by 𝑋 ⋅ 𝑠 ∶= [ℜ(𝑋), 𝑠] integrates to a Lie group action
𝐺↺ 𝐸, making 𝐸 into a 𝐺-equivariant bundle.

Given a 𝐷-equivariant CA 𝐸 over 𝑃, we may view ℜ as a map 𝑃 × 𝔡 → 𝐸. Note, this map in injective by
the first condition. It yields two 𝐺-invariant subbundles of 𝐸, namely 𝐾 ∶= ℜ(𝑃 × 𝔡) and its orthogonal
complement 𝐾⟂. It was shown in [BCG07] that the vector bundle

𝐸′ ∶= 𝐾⟂/𝐷
(𝐾 ∩ 𝐾⟂)/𝐷 (5.29)

inherits a Courant algebroid structure from 𝐸, making it into a CA over 𝑃/𝐷 = 𝐵. It is called the reduced
Courant algebroid. Furthermore, 𝐸′ is exact when 𝐾 is isotropic.

For Poisson-Lie T-duality, we now assume 𝐸 is a𝐷-equivariant CA over 𝑃 that admits a𝐺-equivariant
isotropic splitting 𝜎 ∶ 𝑇𝑃 → 𝐸. Furthermore, we assume the pairing on 𝔡 defined by

⟨𝑋, 𝑌⟩𝔡 = ⟨ℜ(𝑋),ℜ(𝑌)⟩

to be ad-invariant, non-degenerate and of split-signature (cf. [Vys20, Ex. 4.31]). This makes 𝔡 into a
quadratic Lie algebra. Note, the ad-invariance already follows from the properties of an equivariant CA.
In that case we have 𝐾∩𝐾⟂ = 0, which simplifies 𝐸′. Moreover, let 𝐺 ⊂ 𝐷 be a subgroup such that its Lie
algebra 𝔤 ⊂ 𝔡 is a Lagrangian subalgebra. By restricting the mapℜ to 𝔤, to obtain a mapℜ1 ∶ 𝑃 ×𝔤 → 𝐸,
we see that (𝐸,ℜ1) defines a 𝐺-equivariant CA. Consequently, we can consider the 𝐺-reduced Courant
algebroid 𝐸′1 over 𝑀1 ∶= 𝑃/𝐺. Note, 𝐾1 ∶= ℜ1(𝑃 × 𝔤) is isotropic as 𝔤 is Lagragian. Thus, 𝐸′1 is an exact
Courant algebroid. If 𝜑1 ∶ 𝑀1 → 𝐵 denotes the canonical map, it is shown in [Vys20, Sec. 4.4] that there
is bundle morphism Ψ𝐺 ∶ 𝐸′1 → 𝐸′, such that 𝑅(𝐺) ∶= gr(Ψ𝐺) is a Courant algebroid morphism from
𝐸′1 to 𝐸′ over 𝜑1.

Given a second subgroup 𝐺 ⊂ 𝐷 for which the Lie algebra 𝔤 ⊂ 𝔡 is Lagrangian, the procedure can
be repeated, resulting in a Courant algebroid morphism 𝑅(𝐺) = gr(Ψ𝐺) ∶ 𝐸′2 ↣ 𝐸′ over 𝜑2. Here, 𝐸′2
denotes the 𝐺-reduced exact CA over 𝑀2 ∶= 𝑃/𝐺. Furthermore, in [Vys20, Ex. 4.31] it is shown that
𝑅(𝐺) and 𝑅(𝐺)𝑇 compose cleanly. Hence, the composition 𝑅𝐺,𝐺 ∶= 𝑅(𝐺) ∘ 𝑅(𝐺) defines a Courant
algebroid relation 𝑅𝐺,𝐺 ∶ 𝐸′1 ⇢ 𝐸′2 supported on gr(𝜑2)𝑇 ∘ gr(𝜑1), by Theorem 5.4.13. This relation is
Poisson-Lie T-duality. Note, gr(𝜑2)𝑇 ∘gr(𝜑1) is precisely the fiber product𝑀1×𝐵𝑀2, or the correspondence
space of [CG11]. The above discussion is schematically depicted in Figure 5.2.
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Note, our setting of Section 5.2 fits in this framework. Given a Drinfel’d double 𝐷, its generalized
tangent bundle 𝕋𝐷 is an exact 𝐷-equivariant Courant algebroid under right-multiplication. When we
identify 𝕋𝐷 ≅ 𝐷 × 𝔡 ⊕ 𝔡∗, we have ℜ = id. Then, the reduction by 𝐷 yields 𝐸′ = 𝔡, seen as CA over a
point. Furthermore, when restricting to the action of 𝐺, we find 𝐾1 = 𝐷 × 𝔤. Note, 𝐾⟂

1 = 𝐷 × ̃𝔤 ⊕ ̃𝔤∗, as
𝔤 is isotropic. From this we see 𝐾1 ∩𝐾⟂

1 = 0. Consequently, 𝐸′1 = 𝐷/𝐺× ̃𝑔⊕ ̃𝑔∗ ≅ 𝐺× ̃𝑔⊕ ̃𝑔∗ ≅ 𝕋𝐺 as a
CA over 𝐺. Similarly, reducing with respect to 𝐺, we find 𝐸′2 = 𝕋𝐺. The Courant algebroids 𝕋𝐺 and 𝕋𝐺
are precisely the one associated to the Poisson-Lie T-dual sigma-models from Section 5.2.

By our discussion at the end of Section 5.4.1, to make the connection to sigma-models we need to
incorporate generalized metrics. Let 𝒢1 and 𝒢2 be generalized metrics on Courant algebroids 𝐸1 and 𝐸2.
Then, 𝒢 ∶= 𝒢1 × 𝒢2 defines a generalized metric on 𝐸1 × 𝐸2, as can be easily verified. The CA relations
that work nicely with generalized metrics are called generalized isometries.

Definition 5.4.15.
Let 𝑅 ∶ 𝐸1 ⇢ 𝐸2 be a Courant algebroid relation and 𝒢 as above. We call 𝑅 a generalized isometry
with respect to 𝒢1 and 𝒢2 if 𝒢(𝑅) = 𝑅.

The Poisson-Lie T-duality as described above can be viewed as a generalized isometry. To see this, let 𝒢′ be
any generalized metric on 𝐸′. Then, there are unique generalized metrics 𝒢1, 𝒢2 on 𝐸′1 and 𝐸′2, respectively,
making 𝑅(𝐺) and 𝑅(𝐺) into a generalized isometries [Vys20, Ex. 5.8]. From this, it is not difficult to see
that 𝑅(𝐺)𝑇 and the composition of generalized isometries define generalized isometries, with respect to
the appropriate generalized metrics, as well [Vys20, Prop. 5.7]. Consequently, the Poisson-Lie T-duality
Courant algebroid relation 𝑅𝐺,𝐺 ∶ 𝐸′1 ⇢ 𝐸′2 is a generalized isometry with respect to 𝒢1 and 𝒢2.

5.5 Explicit ℰ-models and Poisson-Lie T-duality

After our digression about Poisson-Lie T-duality in the context of generalized geometry, let us shift our
focus again to the sigma-models introduced in Section 4.3. In [Vic15; SST15; HT15] a possible relation
between 𝜆-models and (bi)-Yang-Baxter models via Poisson-Lie T-duality was first observed. Vicedo
[Vic15] focussed on non-compact targets, while [SST15; HT15] restricted themselves to the compact
SU(2) case. In this section, we want to describe the relationship for a general compact target space 𝐺,
following [Kli15; Kli16]. As the discussion for the bi-Yang-Baxter model is an extension of the Yang-
Baxter case, we first focus on the latter. We will show that both 𝜆-models and Yang-Baxter models can
be obtained from ℰ-models, proving their Poisson-Lie T-dualizability. Furthermore, we will relate the
Poisson-Lie T-dual of the Yang-Baxter model to the 𝜆-model via an ‘analytical continuation’ [Kli15].
Finally, we generalize this to the bi-Yang-Baxter model, as is done in [Kli16].

Consider a simple compact Lie group 𝐺 with Lie algebra 𝔤. Then, let 𝔡𝜖 be a one-parameter family of
Lie algebras defined as a vector space as

𝔡𝜖 = 𝔤 ⊕ 𝔤.

The bracket [⋅, ⋅]𝜖 on 𝔡𝜖 is given by

[(𝑋1, 𝑋2), (𝑌1, 𝑌2)]𝜖 ∶= ([𝑋1, 𝑌1] + 𝜖[𝑋2, 𝑌2], [𝑋1, 𝑌2] + [𝑋2, 𝑌1]) ,

where [⋅, ⋅] denotes the bracket on 𝔤. Finally, we equip 𝔡𝜖 with the ad-invariant non-degenerate pairing

⟨(𝑋1, 𝑋2), (𝑌1, 𝑌2)⟩𝜖 ∶= (𝑋1, 𝑌2) + (𝑋2, 𝑌1), (5.30)
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where (⋅, ⋅) is minus the Killing form on 𝔤, so that (𝑋, 𝑋) is positive definite. Note, 𝔤 can be viewed as a
subalgebra of 𝔡𝜖 using the identification 𝔤 ≅ 𝔤⊕0. Then, from (5.30) we see 𝔤 is a Lagrangian subalgebra
for every 𝜖. Consequently, every 𝔡𝜖 defines a Drinfel’d double of 𝔤. To obtain the corresponding ℰ-model,
we define

ℰ ∶ 𝔡𝜖 → 𝔡𝜖, ℰ(𝑋, 𝑌) ∶= (𝑌, 𝑋).

Note, ℰ is clear self-adjoint and idempotent. Furthermore, ⟨⋅, ℰ⋅⟩𝜖 is positive definite, as 𝔤 is a compact Lie
algebra. Hence, we obtain a family of ℰ-models on 𝐷𝜖, the integration of 𝔡𝜖 (cf. Section 5.3). Note, the
generalized metric, i.e. +1-eigenspace of ℰ, is given by the diagonal subgroup 𝑉+ = 𝔤𝛿 = {(𝑋, 𝑋) ∣ 𝑋 ∈ 𝔤}.

5.5.1 The Lambda-model
The first result of [Kli15] is that the 𝜆-model can be obtained from the above ℰ-model for 𝜖 > 0. We
want to reproduce this result as it is an explicit example of the procedure in Section 5.3. Furthermore, we
provide more in-depth computations than the original work and make the connection with Proposition
4.1.6. The precise statement is

Proposition 5.5.1.
The ℰ-model described above, for 𝜖 > 0, can be identified with the 𝜆-model (4.27) on 𝐺 with

𝜆 = 1 − 𝜖1/2
1 + 𝜖1/2 . (5.31)

Proof.— First we identify 𝔡𝜖 with a differentDrinfel’d double. Consider the double 𝔤⊕𝔤 fromProposition
4.1.6, i.e. with pairing

⟨(𝑋1, 𝑋2), (𝑌1, 𝑌2)⟩ = (𝑋1, 𝑌1) − (𝑋2, 𝑌2).

Then, the map

Φ𝜖 ∶ 𝔡𝜖 → 𝔤⊕ 𝔤, (𝑋, 𝑌) ↦ (𝑋 + 𝜖1/2𝑌, 𝑋 − 𝜖1/2𝑌)

defines a Lie algebra isomorphism. Furthermore, up to a factor, it preserves the pairing6

⟨Φ𝜖(𝑋1, 𝑋2), Φ𝜖(𝑌1, 𝑌2)⟩ = 2𝜖1/2⟨(𝑋1, 𝑋2), (𝑌1, 𝑌2)⟩𝜖.

Consequently, we can transport the data to the double 𝔤 ⊕ 𝔤. Firstly, the Lagrangian subalgebra 𝔤 ⊕ 0 is
taken to Φ𝜖(𝔤 ⊕ 0) = 𝔤𝛿. Furthermore, corresponding generalized metric is given by

𝑊+ ∶= Φ𝜖(𝑉+) = {𝑋 + 𝜖1/2𝑋 ∣ 𝑋 ∈ 𝔤}.

As expected, it can be verified that 𝑊+ is the +1-eigenspace of the transported operator

ℰ𝜆 ∶ 𝔤 ⊕ 𝔤 → 𝔤⊕ 𝔤, (𝑋, 𝑌) ↦ 1
2(𝜖

1/2 + 𝜖−1/2)(𝑋, −𝑌) + 1
2(𝜖

1/2 − 𝜖−1/2)(𝑌, −𝑋)

defined by ℰ𝜆 ∘ Φ𝜖 = Φ𝜖 ∘ ℰ.
Following our discussion from Section 5.3, the even dimensional Lie group 𝐷 corresponding to the

double 𝔤 ⊕ 𝔤 is clearly given by 𝐺 × 𝐺. We saw that the diagonal subalgebra 𝔤𝛿 plays the role of the
6In view of Section 5.4, by rescaling Φ𝜖 appropriately, it defines a classical Courant algebroid isomorphism.
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Lagrangian subalgebra and its integration is given by the diagonal subgroup 𝐺𝛿 ⊂ 𝐺 × 𝐺. To compute
the action (5.22) on the target 𝐷/𝐺𝛿, we need two components: a parametrization 𝑓 of the coset space
𝐷/𝐺𝛿 and the operator 𝒫𝑓(ℰ𝜆). For the former, note two elements (𝑔1, 𝑔2), (ℎ1, ℎ2) ∈ 𝐷 define the same
class in 𝐷/𝐺𝛿 if there is 𝜉 ∈ 𝐺 such that (𝑔1, 𝑔2) = (𝜉ℎ1, 𝜉ℎ2). Consequently, every class in 𝐷/𝐺𝛿 has
a representative of the form 𝑓 = (𝑔, 𝑒). This is the parametrization we choose and from this we also see
𝐷/𝐺𝛿 ≅ 𝐺.

For the linear projector 𝒫(𝑔,𝑒)(ℰ𝜆) we can write 𝒫(𝑔,𝑒)(ℰ𝜆) = (𝒫1, 𝒫2), where 𝒫𝑖 ∶ 𝔤 ⊕ 𝔤 → 𝔤. Its first
defining property states (cf. (5.23))

im𝒫(𝑔,𝑒)(ℰ𝜆)(𝔤 ⊕ 𝔤) = 𝔤𝛿

and thus 𝒫1 = 𝒫2. In general, we can write 𝒫1(𝑋, 𝑌) = 𝐴𝑋 + 𝐵𝑌 , for 𝐴, 𝐵 ∶ 𝔤 → 𝔤 linear. The second
defining property tells us

0 =𝒫1 ∘ (id +Ad(𝑔−1,𝑒) ℰ𝜆 Ad(𝑔,𝑒)) (𝑋, 𝑋)

= (𝐴 + 1
2(𝜖

1/2 + 𝜖−1/2)𝐴 + 1
2(𝜖

1/2 − 𝜖−1/2)𝐴 ∘Ad𝑔−1 +

𝐵 − 1
2(𝜖

1/2 + 𝜖−1/2)𝐵 − 1
2(𝜖

1/2 − 𝜖−1/2)𝐵 ∘Ad𝑔) 𝑋.

As this holds for any 𝑋 ∈ 𝔤, we find

𝐴 + 𝐵 + 1
2(𝜖

1/2 + 𝜖−1/2)(𝐴 − 𝐵) + 1
2(𝜖

1/2 − 𝜖−1/2)(𝐴 ∘Ad𝑔−1 −𝐵 ∘Ad𝑔) = 0. (5.32)

Using (5.31), we can rewrite (5.32) as

2 (𝜆𝐵(𝜆 −Ad𝑔) + 𝐴(𝜆Ad𝑔−1 −1))
𝜆2 − 1 = 0. (5.33)

Hence, the numerator must vanish. Furthermore, as 𝒫1 is a projector, it satisfies 𝒫2
1 = 𝒫1. This implies

𝐴 + 𝐵 = id, if we assume 𝐴 and 𝐵 to be invertible. Combining this with (5.33) yields

𝐴 =
𝜆Ad𝑔

𝜆Ad𝑔 −1
= 𝜆
𝜆 −Ad𝑔−1

, 𝐵 = 1
1 − 𝜆Ad𝑔

.

Note, 𝑓−1𝜕±𝑓 = (𝑔−1𝜕±𝑔, 0). Then, the first term in (5.22) becomes

𝑆WZW,𝐺×𝐺[𝑓] =
1
2 ∫Σ

𝑑2𝜎 ⟨(𝑔−1𝜕+𝑔, 0), (𝑔−1𝜕−𝑔, 0)⟩ +
1
12 ∫𝐵

⟨(𝑔−1𝑑𝑔, 0), [(𝑔−1𝑑𝑔, 0), (𝑔−1𝑑𝑔, 0)]⟩

= 1
2 ∫Σ

(𝑔−1𝜕+𝑔, 𝑔−1𝜕−𝑔) +
1
12 ∫𝐵

(𝑔−1𝑑𝑔, [𝑔−1𝑑𝑔, 𝑔−1𝑑𝑔])

= 𝑆WZW[𝑔].
Furthermore,

𝐼 = −∫
Σ
𝑑2𝜎 ⟨𝒫𝑓(ℰ𝜆)𝑓−1𝜕+𝑓, 𝑓−1𝜕−𝑓⟩

= −∫
Σ
𝑑2𝜎 ⟨(

𝜆Ad𝑔
𝜆Ad𝑔 −1

𝑔−1𝜕+𝑔,
𝜆Ad𝑔

𝜆Ad𝑔 −1
𝑔−1𝜕+𝑔), (𝑔−1𝜕−𝑔, 0)⟩

= ∫
Σ
𝑑2𝜎 (

𝜆Ad𝑔
1 − 𝜆Ad𝑔

𝑔−1𝜕+𝑔, 𝑔−1𝜕−𝑔) .

Hence, (5.22) precisely becomes the action (4.27) of the 𝜆-model, up to an overall factor of 𝑘/𝜋. ∎
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5.5.2 The Yang-BaxterModel
Now, one could wonder what happens for 𝜖 < 0. It turns out, in that case the ℰ-model can be identified
with the Yang-Baxter model, as was first shown in [Kli02]. However, a different double is considered: the
complexification 𝐺ℂ. A key property of the complexification of a compact group is that it admits a specific
decomposition:

Theorem 5.5.2 (Iwasawa decomposition).
Let 𝐺ℂ be the complexification of a compact Lie group 𝐺. Then, its Lie algebra decomposes as

𝔤ℂ = 𝔤 ⊕ 𝔞⊕ 𝔫.

Here, 𝔞 is abelian, 𝔫 nilpotent and 𝔞 ⊕ 𝔫 solvable Lie subalgebra of 𝔤ℂ. Furthermore, if 𝐴 and 𝑁 denote
integrations of 𝔞 and 𝔫, respectively, the multiplication map 𝐺 × 𝐴 × 𝑁 → 𝐺ℂ, (𝑔, 𝑎, 𝑛) ↦ 𝑔𝑎𝑛 is a
diffeomorphism.

The statement of the theorem is more general, as is discussed in [Kna13, Sec. 6.4]. In particular, if 𝐺ℂ is
embedded in GL(𝑛, ℂ), then 𝐺 is contained in 𝑈(𝑛), 𝑁 consists of upper triangular matrices with ones on
the diagonal and 𝐴 is the group diagonal matrices with positive real entries [Bum13, Ch. 26].

Proposition 5.5.3.
For 𝜖 < 0, the above ℰ-model can be identified with the Yang-Baxter model for 𝜂 = √|𝜖|.

Proof.— As hinted before, we consider 𝔤ℂ. On the complexification, we have the following ad-invariant
non-degenerate pairing (cf. Proposition 4.1.5)

⟨𝑍1, 𝑍2⟩ ∶= −𝑖(𝑍1, 𝑍2) + 𝑖(𝑍1, 𝑍2).

Here, (⋅, ⋅) is ℂ-linearly extended to 𝔤ℂ. Consider the map

Ψ𝜖 ∶ 𝔡𝜖 → 𝔤ℂ, (𝑋, 𝑌) ↦ 𝑋 + 𝑖𝜂𝑌.

Here we defined 𝜂 ∶= √|𝜖|. By a straightforward computation, one can show Ψ𝜖 is a Lie algebra isomor-
phism satisfying

⟨Ψ𝜖(𝑋1, 𝑋2), Ψ𝜖(𝑌1, 𝑌2)⟩ = 2𝜂⟨(𝑋1, 𝑋2), (𝑌1, 𝑌2)⟩𝜖.

Under this mapping, the Lagrangian subalgebra 𝔤 ⊕ 0 is mapped to the real elements of 𝔤ℂ, i.e. 𝔤 ⊂
𝔤 ⊕ 𝑖𝔤 = 𝔤ℂ. Furthermore, the generalized metric is taken to

𝑊+ = Ψ𝜖(𝑉+) = {𝑋 + 𝑖𝜂𝑋 ∣ 𝑋 ∈ 𝔤}.

It corresponds to the +1-eigenspace of the operator ℰ𝜂 = Ψ𝜖 ∘ ℰ ∘ Ψ−1
𝜖 , which is explicitly given by7

ℰ𝜂(𝑍) =
𝑖
2(𝜂 − 𝜂−1)𝑍 + 𝑖

2(𝜂 + 𝜂−1)𝑍. (5.34)

The corresponding Drinfel’d double is clearly given by 𝐺ℂ. Using the Iwasawa decomposition 𝐺ℂ ≅
𝐺𝐴𝑁, we obtain a sigma-model with target 𝐺, by reducing the ℰ-model on 𝐺 = 𝐴𝑁. Its Lie algebra

7In [Kli15] there is a minus sign in front of the second term. We suspect this is a typo.
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̃𝔤 = 𝔞⊕𝔫 is Lagrangian. To see this, let us assume 𝐺ℂ is embedded8 in GL(𝑛, ℂ). Then, 𝔞 consists of real
diagonal matrices and 𝔫 is given by strictly upper triangular matrices. Furthermore, (⋅, ⋅) is proportional
to taking the trace of the matrix product. From this it follows that ̃𝔤 is Lagrangian. Moreover, the coset
space 𝐺ℂ/𝐺 can be identified with 𝐺. So, we may choose the parametrization 𝑓 = 𝑔 for 𝑔 ∈ 𝐺.

Finally, we need to the projector 𝒫𝑔(ℰ𝜂). For this, we note that ℰ𝜂 commutes with Ad𝑔. Consequently,
𝒫𝑔(ℰ𝜂) is independent of 𝑔. Furthermore, (𝔤ℂ, 𝔤, ̃𝔤) forms a Manin triple. Hence, by Proposition 4.1.5
there exists a non-split skew-symmetric 𝑅-matrix such that 𝔤𝑅 is identified with ̃𝔤 via the map 𝑅 − 𝑖. It
turns out, the 𝑅-matrix is precisely the Drinfel’d-Jimbo solution from Section 4.3.3, as is discussed in
[Kli09]. Using the fact that every element of ̃𝔤 is of the form (𝑅 − 𝑖)𝑋 for some9 𝑋 ∈ 𝔤, we find10

𝒫𝑔(ℰ𝜂)𝑍 = 1
2
𝑅 − 𝑖
1 + 𝜂𝑅((𝑖 + 𝜂)𝑍 − (𝑖 − 𝜂)𝑍).

It can be verified this defines a projection operator satisfying the defining properties (5.23).
Finally, we compute the action (5.22). For this, note the 𝑆WZW,𝐺ℂ term vanishes, since 𝔤 is isotropic.

Hence, we see

𝑆ℰ𝜂[𝑓] = −∫
Σ
𝑑2𝜎 ⟨𝒫𝑔(ℰ𝜂)𝑔−1𝜕+𝑔, 𝑔−1𝜕−𝑔⟩

= −𝜂∫
Σ
𝑑2𝜎 ⟨ 𝑅 − 𝑖

1 + 𝜂𝑅𝑔
−1𝜕+𝑔, 𝑔−1𝜕−𝑔⟩

= 2𝜂∫
Σ
𝑑2𝜎 (𝑔−1𝜕+𝑔,

1
1 − 𝜂𝑅𝑔

−1𝜕−𝑔) . (5.35)

This is precisely the action 𝑆𝜂 of the Yang-Baxter model (cf. (4.30) for 𝜁 = 0). ∎

Let us make some comments about the proof above. Firstly, the 𝑅-matrix appearing in the final action
(5.35) is not an arbitrary skew-symmetric solution to the non-split mCYBE, it is the Drinfel’d-Jimbo
solution. The reasoning generalizes to 𝑅-matrices for which 𝐺ℂ = 𝐺𝐺𝑅 holds globally. However, the
relationship between the 𝜆-model and the Poisson-Lie T-dual of the Yang-Baxter model relies on the
Iwasawa decomposition, i.e. the Drinfel’d-Jimbo solution. This is interesting as the Drinfel’d-Jimbo so-
lution was also necessary to the Weil operator solution in Section 4.3.3. Consequently, if Poisson-Lie
symmetry is related to the Hodge theoretic solutions, our initial idea of altering the 𝑅-matrix (cf. Section
4.3.3) might not be the most natural operation.

5.5.3 Poisson-Lie T-dual of (bi)-Yang-BaxterModel
From the proof of Proposition 5.5.3 we can find a Poisson-Lie T-dual of the Yang-Baxter model. We
consider the same ℰ-model, however we choose 𝐺 = 𝐺. Consequently, we obtain a sigma-model with
target 𝐺ℂ/𝐺 ≅ 𝐴𝑁. Therefore, we can parametrize the coset 𝐺ℂ/𝐺 by 𝑓 = 𝑏 ∈ 𝐴𝑁, as before. Moreover,
we have 𝑆WZW,𝐺ℂ(𝑏) = 0, since 𝐴𝑁 is isotropic. Then, analogous to (5.35) we find the dual action has the
following form [Kli15]

̃𝑆𝜂[𝑏] =
1
2 ∫Σ

𝑑2𝜎 ⟨𝜕+𝑏𝑏−1, 𝑂−1(𝑏)𝜕−𝑏𝑏−1⟩.

8It is true in general, but for our purposes this setting suffices.
9To be precise, for some 𝑋 ∈ 𝔤𝑅 . However, recall the underlying vector space of 𝔤𝑅 is just 𝔤.

10Again, there is a sign difference with the expression in [Kli15]. This is the same sign difference as before.
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An explicit expression for 𝑂(𝑏) can be found in [Kli02, Eq. (40)]. Yet, it dependence on 𝑏 is rather
complicated. Luckily, there is a different parametrization of the coset 𝐺ℂ/𝐺 that is more workable. Using
this parametrization, we will show ̃𝑆𝜂 can be related to the 𝜆-model. The parametrization is based on
the polar decomposition: any element of 𝐺ℂ can uniquely written as the product of a positive definite
Hermitian element and a unitary one. For this, we assume 𝐺ℂ to be embedded in GL(𝑛, ℂ). In particular,
there is a diffeomorphism between 𝐴𝑁 and the vector space 𝑃 of positive definite Hermitian elements
given by

Υ ∶ 𝐴𝑁 → 𝑃, 𝑏 ↦ √𝑏𝑏†.

Note, 𝑏† makes sense, as we have embedded the group in GL(𝑛, ℂ). Then, the main result is [Kli15]

Theorem 5.5.4.
The Poisson-Lie T-dual of the Yang-Baxter model and the 𝜆-model are related via

̃𝑆𝜂[𝑏] = −𝑖𝑆𝜆[𝑏𝑏†], 𝜆 = 1 − 𝑖𝜂
1 + 𝑖𝜂 . (5.36)

Proof.— We consider the same operator ℰ𝜂 as in the proof of Proposition 5.5.3 and use 𝑓 = Υ(𝑏) as the
parametrization of the coset 𝐺ℂ/𝐺. The corresponding projector is stated in [Kli15]:

𝒫Υ(𝑏)(ℰ𝜂)𝑍 = (𝜂 − 𝑖 + (𝜂 + 𝑖)Ad𝑏𝑏† )
−1
((𝜂 + 𝑖)Ad𝑏𝑏† 𝑍 − (𝜂 − 𝑖)𝑍†)

= (𝜆Ad𝑏𝑏† −1)
−1
(𝜆Ad𝑏𝑏† 𝑍 + 𝑍†),

where we used the definition of 𝜆 in (5.36). Using this, the corresponding action (5.22) becomes

𝑆ℰ𝜂[Υ(𝑏)] = −2𝑖𝑆WZW[Υ(𝑏)]+

2𝑖∫
Σ
𝑑2𝜎 (

𝑖 + (𝑖 + 𝜂)AdΥ(𝑏)
(𝑖 + 𝜂)AdΥ(𝑏) −(𝑖 − 𝜂)AdΥ(𝑏)−1

Υ(𝑏)−1𝜕+Υ(𝑏), Υ(𝑏)−1𝜕−Υ(𝑏)) .

Here, 𝑆WZW(Υ(𝑏)) is with respect to (⋅, ⋅), not ⟨⋅, ⋅⟩. By applying the Polyakov-Wiegmann formula
[PW83]

𝑆WZW[𝑏𝑏†] = 𝑆WZW[Υ(𝑏)2] = 2𝑆WZW[Υ(𝑏)] +∫
Σ
𝑑2𝜎 (AdΥ(𝑏) Υ(𝑏)−1𝜕+Υ(𝑏), Υ(𝑏)−1𝜕−Υ(𝑔))

and the identity

(𝑏𝑏†)−1𝜕±(𝑏𝑏†) = AdΥ(𝑏)−1 (Υ(𝑏)−1𝜕±Υ(𝑏)) + Υ(𝑏)−1𝜕±Υ(𝑏),

we can rewrite 𝑆ℰ𝜂 as

𝑆ℰ𝜂[Υ(𝑏)] = −𝑖𝑆WZW[𝑏] − 𝑖∫
Σ
𝑑2𝜎 ( 𝜆Ad𝑏𝑏†

1 − 𝜆Ad𝑏𝑏†
(𝑏𝑏†)−1𝜕+(𝑏𝑏†), (𝑏𝑏†)−1𝜕−(𝑏𝑏†))

= −𝑖𝑆𝜆[𝑏𝑏†].

Finally, note that ̃𝑆𝜂[𝑏] = 𝑆ℰ𝜂[Υ(𝑏)], as Υ is just a change of coordinates. That proves the statement. ∎
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The statement of Theorem 5.5.4 is often phrased as: the 𝜆-model is obtained from the Poisson-Lie T-dual
of the Yang-Baxter model via analytical continuation [SST15; Kli15; Kli16]. Indeed, elements 𝑔 ∈ 𝐺 and
𝑏𝑏† ∈ 𝑃 can be written as

𝑔 = ℎ𝑡ℎ−1, 𝑏 = ℎ𝑎ℎ−1,

for ℎ ∈ 𝐺, 𝑡 ∈ 𝑇 and 𝑎 ∈ 𝐴. Here, 𝑇 denotes a maximal torus in 𝐺 and 𝐴 is the one from the Iwasawa
decomposition. Their Lie algebras are related via 𝔞 = 𝑖𝔱. Consequently, replacing 𝑔 by 𝑏𝑏† in the 𝜆-model
(4.27) can be viewed as an analytical continuation.

Interestingly, the value for 𝜆 for which Theorem 5.5.4 holds satisfies |𝜆| = 1. Recall, this was precisely
the condition we needed in Section 4.3.2 to obtainHodge theoretic solutions to the 𝜆-model. Furthermore,
as mentioned before for 𝐺 = SU(2), the bi-Yang-Baxter model on the critical line can be viewed as a Yang-
Baxter model on 𝑆3 viewed as the coset space SO(4)/SO(3). Then, Theorem 5.5.4 suggests there is a way
to map the Hodge theoretic solutions of the latter to solutions of the 𝜆-model. It would be interesting
to compare these to the full Weil operator solution in the 𝜆-model. This is one way of using Poisson-Lie
T-duality to study the connection between Hodge theory and integrable systems.

Furthermore, [Kli16] shows the bi-Yang-Baxter on a simple compact target𝐺 can be obtained from an
ℰ-model, as well. Moreover, it is a straightforward generalization of the ℰ-model described in Proposition
5.5.3. Again, the Drinfel’d double is 𝐺ℂ, while the operator (5.34) is deformed as follows

ℰ𝜂,𝜁𝑍 = −𝑍 + 1 + 𝑖𝜂 + 𝜁𝑅
2𝑖𝜂 ((1 + 𝑖𝜂 − 𝜁𝑅)𝑍 + (1 − 𝑖𝜂 − 𝜁𝑅)𝑍).

Here, 𝑅 denotes the non-split Drinfel’d-Jimbo solution, as before. In [Kli16], the steps of Proposition 5.5.3
are repeated and the bi-Yang-Baxter action (4.30) is obtained. Furthermore, the reasoning of Theorem
5.5.4 can be extended, relating the Poisson-Lie T-dual of the bi-Yang-Baxter model ̃𝑆𝜂,𝜁[𝑏] to the so-
called generalized 𝜆-model, after an analytical continuation. The generalized 𝜆-model was introduced in
[SST15] and is given by

𝑆gen. 𝜆[𝑔] = 𝑆WZW[𝑔] +∫
Σ
𝑑2𝜎 ((1 + 𝛼 + 𝜌𝑅

1 − 𝛼 + 𝜌𝑅 −Ad𝑔)
−1

Ad𝑔(𝑔−1𝜕+𝑔), 𝑔−1𝜕−𝑔) .

Here we used the conventions of [Kli16]. Furthermore, in [SST15] the generalized 𝜆-model was shown
to be weakly integrable and for 𝜌 = 0, we obtain the 𝜆-model when identifying

𝜆 = 1 − 𝛼
1 + 𝛼.

Analogous to Theorem 5.5.4, the precise statement of the relationship is

̃𝑆𝜂,𝜁[𝑏] = −𝑖𝑆gen. 𝜆[𝑏𝑏†],

with 𝛼 = 𝑖𝜂 and 𝜌 = 𝜁. This produces a second option to map the Weil operator solution to other
integrable models. At this point it is unknown whether the generalized 𝜆-model admits Hodge theoretic
solutions. This would be an interesting starting point for future work.

5.5.4 Roadmap for Poisson-Lie T-duality
We saw that performing the duality followed by an analytical continuation is a promising strategy to inves-
tigate the connection between Hodge theory and integrability. However, the procedure might be obscured
at this stage. Therefore, we present a road map clearly indicating the required steps:
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1. Consider a Drinfel’d double 𝐷 = 𝐺𝐺 and a sigma-model 𝑆[𝑔] with 𝐺-Poisson-Lie symmetry with
respect to 𝐺.

2. Find a solution 𝑔 of 𝑆[𝑔].

3. Compute the corresponding Poisson-Lie current 𝐽, using e.g. (5.12).

4. Evaluate the on-shell current, i.e. the one corresponding to the solution 𝑔.

5. Find the dual element ̃𝑔, using 𝐽 = −𝑑 ̃𝑔 ̃𝑔 or

̃𝑔 = 𝑃 exp (−∫
𝛾
𝐽) .

Here 𝐽 denotes the on-shell current from the previous step.

6. Find the ‘flipping’ diffeomorphism 𝜑 ∶ 𝐷 → 𝐷 that maps 𝐺𝐺 to 𝐺𝐺.

7. Compute 𝑙 = 𝑔 ̃𝑔 and find the other decomposition 𝑙 = ℎ̃ℎ ∈ 𝐺𝐺 using 𝜑, where 𝑔 and ̃𝑔 denote the
solution and dual element from step 2 and 5, respectively. Then, the field ℎ̃ ∶ Σ → 𝐺 is a solution
to the dual sigma-model.

8. In the case of the (bi-)Yang-Baxter model and 𝐷 = 𝐺ℂ = 𝐺𝐴𝑁, by the Iwasawa decomposition,
denote 𝑏 = ℎ̃ and compute 𝑏𝑏†. In view of Theorem 5.5.4 and the discussion afterwards, 𝑏𝑏† is a
solution of the (generalized) 𝜆-model.

For a general Drinfel’d double 𝐷, the above recipe is hard to perform explicitly, especially steps 5 and 6.
Furthermore, Theorem 5.5.4 can only be applied for compact targets 𝐷, while the classifying space for a
weight three variation of Hodge structure is non-compact (cf. Proposition 3.2.5).

However, in Section 4.3.3 we saw that, for the torus, the classifying space SL(2, ℂ) could be mapped
to SU(2) via the Cayley transform and an analytical continuation. Therefore, the SU(2) bi-Yang-Baxter
model should first be examined. In that case, a Drinfel’d double is SL(2, ℂ) with 𝐺 = SU(2) and 𝐺 = 𝐴𝑁,
by the Iwasawa decomposition. In Example 5.2.6, we argued that the bi-Yang-Baxter model has SU(2)-
Poisson-Lie symmetry with respect to 𝐴𝑁. This concludes step 1. In step 2, we pick the SL(2)-orbit
approximation 𝐶SL(2) of the Weil operator. The Poisson-Lie current of step 3 was computed in Example
5.2.6. Then on-shell current, corresponding to the Weil operator, is computed in [GM23]. Yet, its explicit
form in the SU(2) case still has to be extracted. Step 5 is the hardest and still open step for the SU(2)
bi-Yang-Baxter model. For SU(2), steps 6 and 7 can be done for the Iwasawa decomposition. Indeed,
then 𝐺ℂ = SL(2, ℂ) = SU(2)𝐴𝑁, where we use the parametrization

SU(2) = {( 𝛼 𝛽
−𝛽 𝛼)

|
|
|
𝛼, 𝛽 ∈ ℂ, |𝛼|2 + |𝛽|2 = 1} , 𝐴 = {(

𝑟 0
0 1

𝑟
)
|
|
|
𝑟 ∈ ℝ} , 𝑁 = {(1 𝑧

0 1)
|
|
|
𝑟 ∈ ℝ} .

Then, given a general element of SL(2, ℂ)

𝑀 = (𝑎 𝑏
𝑐 𝑑) ,

the elements

ℎ̃ = (
̃𝑟 0
0 1

̃𝑟
) (1 ̃𝑧
0 1) ∈ 𝐴𝑁, ℎ = (

𝛼 𝛽
−𝛽 𝛼

) ∈ SU(2)
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such that 𝑀 = ℎ̃ℎ are obtained by setting

̃𝑟 = 1

√|𝑐|2 + |𝑑|2
, 𝛼 = ̃𝑟𝑑, 𝛽 = − ̃𝑟𝑐, ̃𝑧 = 𝑎 − ̃𝑟2𝑑

̃𝑟2𝑐 . (5.37)

Now, by first applying the multiplication (𝑔, 𝑎, 𝑛) ↦ 𝑔𝑎𝑛 and then using the relations (5.37), we find the
element ℎ̃ ∈ 𝐴𝑁 from step 7 is defined by

̃𝑟 = 1

√𝑟2|𝛽|2 + 𝑟2|𝑧|2|𝛽|2 + 1
𝑟2
|𝛼|2 − 𝛼𝛽𝑧 − 𝛼𝛽𝑧

̃𝑧 = − 𝛼
𝛽 ̃𝑟2

+ 𝛼 − 𝑟2𝛽𝑧
𝑟𝛽

. (5.38)

These expression are quite involved, yet they might simplify in the case of the Weil operator. Further
research is needed to verify this. Finally, having done all the previous steps, step 8 is straightforward.

To summarize, to apply the above road map to 𝐶SL(2) for the SU(2) bi-Yang-Baxter model, the ex-
plicit form of the associated Poisson-Lie current should first be extracted from [GM23]. This should be
manageable. Afterwards, the path-ordered exponential must be solved. It is expected this is subtle. If one
manages to do so, the rest of the steps can be performed using (5.38) and the resulting solution can be
studied. We leave these open problems for future work.





Discussion andOutlook

I n this work we studied the connection betweenHodge theory and integrable systems. In particular, we
focused on the recently discovered Hodge theoretic solutions to the 𝜆-model and the bi-Yang-Baxter
model of [GM22; GM23]. We started with an overview of string theory and compactifications, high-

lighting the dependence on moduli and the Hodge structure. Afterwards, we discussed elliptic operator
theory to prove the Hodge decomposition theorem, which provided the first example of a Hodge struc-
ture. Furthermore, we discussed deformations of complex manifolds and proved Kuranishi’s deformation
theorem (cf. Theorem 2.2.3). In particular, for Calabi-Yau manifolds we proved the classical Bogomolov-
Tian-Todorov theorem without the typical power series argument and discussed its global geometry. In
Chapter 3 we developed the theory of Hodge structures and its variations. The nilpotent and SL(2)-
orbit theorem were of particular interest. Subsequently, we introduced the notion of integrability in both
classical mechanics as well as field theory. We highlighted the importance of the 𝑟-matrix and Poisson-
Lie symmetry. Finally, we reviewed Poisson-Lie T-duality from multiple perspectives and discussed how
(generalized) 𝜆-models and (bi)-Yang-Baxter models are related via this duality. In particular, we obtained
explicit workable formulas to compute the Poisson-Lie current (cf. (5.12)). Furthermore, we identified
the ‘flipping’ diffeomorphism in the case of SU(2). Moreover, throughout this work we have seen multi-
ple similarities between Hodge theory, integrable systems and Poisson-Lie T-duality and opportunities to
relate them.

Firstly, an interesting observation is that the relationship between the Poisson-Lie T-dual of the (bi)-
Yang-Baxter model and the (generalized) 𝜆-model relies on the choice of the non-split Drinfel’d-Jimbo
solution as Yang-Baxter operator (cf. Theorem 5.5.4). Recall, this is precisely the 𝑅-matrix used in the bi-
Yang-Baxter model to obtain the SL(2)-approximation of the Weil operator as a solution. This strengthens
the idea that Poisson-Lie T-duality might play a role in the fact Hodge theoretic solutions can be found
in these models. Furthermore, from this point of view, altering the 𝑅-matrix to obtain a nilpotent Weil
operator solution might not be the most natural way to proceed. Moreover, the required deformation of
the 𝑅-matrix must be non-trivial, as we established that a simple conjugation does not suffice. At this
stage, it is unclear how objects from Hodge theory can be naturally used to achieve this deformation. In
view of Propositions 4.1.5 and 4.1.6, one should look for a Lie bialgebra structure on 𝔤ℝ (cf. Section 3.2).
Note, the dimension of a Lie bialgebra is even. Consequently, finding a bialgebra structure on 𝔤ℝ seems
difficult, if possible at all, as its dimension depends on the weight of the Hodge structure.

Secondly, the resemblance of horizontality of the period map and field equations (5.6) on the Drinfel’d
double. In particular, (3.25) is very reminiscent of (5.6). The reason behind this might be simple: they
both describe lifting problems. The map ℎ̃ in (3.25) is a horizontal lift of ̃𝑔, while 𝑙 is a lift of a solution
𝑔 to the double. It is unclear at this point whether this is a coincidence or the reason the Hodge theoretic
solutions are obtained. Interestingly, ℎ̃ is basically (the SL(2)-approximation of ) the period map. Hence,
it might be horizontality of the period map that makes the Weil operator into a solution. This seems even
more plausible in view of (3.27). To check this, one should extract field equations for ℎ̃ from the equations
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of motion of 𝐶SL(2). We leave this for further research.
The most natural next step would be to solve the path-ordered exponential and do step 5 of the road

map in Section 5.5.3, in the case of SU(2). For this, the on-shell Poisson-Lie current can be extracted from
[GM23]. Afterwards, the duality and analytical continuation can, in principle, be performed to 𝐶SL(2).
This would yield a solution to the generalized 𝜆-model. It would be interesting to see whether another
Weil operator or other Hodge theoretic objects can be recognized. Furthermore, it would be natural to
look for Hodge theoretic solutions to the generalized 𝜆-model.

A different approach would be to identify the SU(2) bi-Yang-Baxter model on the critical line with
the Yang-Baxter model on SO(4)/SO(3) (cf. Section 4.3.3) and apply the above road map. This can then
be compared to the Weil operator solutions of the 𝜆-model from [GM22]. However, the fact the Yang-
Baxter model is defined on a coset might be a problem regarding Poisson-Lie T-duality. For this, dressing
cosets might be needed [KŠ96a; Kli22; Kli19].

Finally, the Hitchin system might be an interesting integrable system to study (see [BBT03, Sec. 7.11]).
This is because it is closely related to so-called Higgs bundles, which in turn are closely related to Hodge
theory [Bec19; DWS08; Pea00; Sim91]. Perhaps, this is the integrable system that solves our main ques-
tion and reproduces variation of Hodge structures as solutions. This is for further research to decide.
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