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Urinary tract infections (UTIs) are one of the most common bacterial in-
fections and can be caused by a diverse range of bacterial species. Here
we studied the relatedness and changes in gene presence and absence pro-
files of five species with uropathogenic potential, Escherichia coli, Klebsiella
pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylo-
coccus haemolyticus, in UTI and healthy states. Relatedness was analysed
using k -mer-based, 16s and core genome phylogenies, showing no indication
of relatedness between these species in the urinary tract. To analyse the
potential functional changes in bacteria isolated from the urinary tract, we
constructed a pan-genome for each species, revealing gene clusters unique
to urine-derived strains. These unique gene clusters are involved in path-
ways known to increase bacterial virulence in the urinary tract as well as
genes attributed to antibiotic resistance. In addition to individual genes
and metabolic pathways, we analysed potential functional changes in gene
clusters predicted to encode metabolites that are non essential for bacterial
growth. While no clusters were found to be unique to urine-derived strains,
several were enriched for their presence in urine-derived strains and were
predicted to facilitate competition between bacteria in the urinary tract.
Preliminary analysis of the presence and absence of metabolites before and
after bacterial growth revealed a potential for nutrient competition for amino
acids. Together, these findings show unique adaptations of bacteria living
within the urinary tract, with functions influencing virulence and antibiotic
resistance.

Layman’s summary

Urinary tract infections are common infections that are often caused by bacteria and
can be treated with antibiotics. These bacteria are present not only when the urinary
tract is infected but also in healthy individuals. Urine can be a difficult environment for
bacteria to live in, as the conditions in urine can vary greatly between people but also
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within the same person over time. In addition to this variation, many substances that
are essential for bacterial growth are absent or in limited supply in urine, making urine
a unique environment, thereby leading to the question if bacteria adapt their genome to
these environmental circumstances. This study first looks into the question of whether
this unique environment influences the relatedness of the bacterial species that can live
in the urinary tract and can cause infection, making their genomes more similar, but
finds no relatedness. This absence of relatedness does not have to indicate an absence of
genetic adaptations to live in urine. Therefore, we also analysed if there are changes in
presence and absences of genes and their functions. This was done using a pan-genome,
which is an overview of all genes present in a set of members of one species for all different
environments in this set. Here, several genes were found that could help these species
cause disease and live in the environment of urine by making it easier for them to get
nutrients that are scarce in urine, resisting antibiotics that are often used to treat urinary
tract infections and adjusting to how the immune system of the host reacts. Bacteria
in the urinary tract often do not live alone but form a community with other species
where they can communicate and help or harm each other. One way bacteria within
these communities can facilitate communication is by excreting secondary metabolites,
small molecules not needed to survive but whose production can provide a competitive
advantage when living in a community. Here, no predicted secondary metabolites were
unique to the urine environment, but some were more present in bacteria isolated from
urine than would be randomly expected. These are predicted to mediate competitive
interactions between species, and for one species provided protection against the strong
osmotic pressure present in urine. An additional method by which bacteria can compete
within a community is through the consumption of nutrients. This was analysed using
mass spectrometry analysis, measuring the presence of molecules in the medium before
and after bacterial growth. From this analysis we identified the overlap of consumed
and excreted molecules for each species. This showed that one amino acid, lysine, was
consumed by all species studied here, which could indicate that these species compete
for this nutrient when living in the urinary tract. In conclusion, this study shows that
even though no evidence of relatedness between strains isolated from urine was found,
bacteria in the urinary tract do adapt their genomes to the urine environment and
compete with other members of their bacterial community.

Introduction

Urine was thought to be sterile up until a decade ago, however, new techniques have
revealed hundreds of bacterial species to reside within the urinary tract1–6. Bacterial
infections of the urinary tract, also known as urinary tract infections (UTIs), are one
of the most common bacterial infections, with more than half of women and up to 12%
of men experiencing a UTI in their lifetime and affecting approximately 150 million
people worldwide7,8. UTIs are commonly treated with antibiotics, even in absence of
true infections, which could increase antibiotic resistance in bacterial populations of the
urinary tract9,10.
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A range of both gram-positive and gram-negative bacterial pathogens have been im-
plicated in UTIs, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aerugi-
nosa, Enterococcus faecalis and Staphylococcus haemolyticus, which are studied here11–18.
E. coli has been the most studied uropathogen as it is the cause of up to 80% of UTIs,
in addition to being the model bacterium in molecular biology19,20. As polymicrobial
infections are common in the elderly as well as in patients with underlying risk factors
for UTIs, and uropathogens can inhabit the urinary tract in absence of infection, a study
of a broader scope of possible uropathogens is warranted20–22. The urinary microbiome
is hypothesised to originate from the gut, the change from an intestinal to a urinary
environment requires quick adaptations, as environmental factors such as pH and nu-
trient availability vary greatly between the two environments2,23. Understanding the
adaptations required for bacterial fitness and survival in the urinary tract is essential to
our understanding of UTIs and the healthy urinary microbiome.
The aim of this study is to better understand the interspecies variation and common-

alities of five potentially pathogenic species living in the urinary tract by studying the
relatedness and functional changes of these microbes in relation to their host environ-
ment. Changes hypothesised to be present as urine is a harsh environment where several
essential nutrients are limited and pH and chemical diversity can vary greatly from host
to host as well as within one host over time24,25. Moreover, the urinary environment is
iron-limited, moderately oxygenated and has high osmolarity, in addition to containing
mostly amino acids and small peptides but low carbohydrate availability23,26–32. Due to
these environmental features, we hypothesise that a selective pressure is exerted on the
microbes living in the urinary tract, resulting in phylogenetic relatedness between the
microbes isolated from the urinary environment as well as potential functional changes.
In this study, five potentially uropathogenic species with roles in UTIs were studied14.
Phylogenetic analysis revealed no signal of relatedness between urine-derived strains.
To analyse potential functional changes, a pan-genome approach was taken, where gene
clusters contributing to virulence and antimicrobial resistance (AMR) were found to be
unique to strains isolated from urine. In addition to functional changes, a preliminary
analysis of potential interactions showed a role for newly excreted metabolites and amino
acid nutrient competition between species.

Results and Discussion

Dataset

After initial filtering as described in Methods section Dataset, the dataset for S. haemolyti-
cus was deemed too small for analysis. It contained 17 genomes in total, with two of
a urinary origin of isolation. To increase the dataset size and number of urine genomes
therein, incomplete genomes for which Prokka annotated a minimum number of 2000
genes were added to the dataset to use in the current analysis. A second alteration
to the initial filtering was applied for K. pneumoniae, where several long outliers were
trimmed from the tree produced by the k -mer-based analysis, removing an additional

3



Table 1: Dataset sizes for all species after filtering on genome length, GC content,
average nucleotide identity > 95% to reference, genome quality, known origin
of isolation and CheckM genome completeness and contamination. Numbers
of genomes with urine and UTI origins of isolation are a subset of total genome
counts.

Species
Entries
PATRIC

No. genomes
after filtering

No. urine
isolated genomes

filtered set

No. UTI
isolated genomes

filtered set
S. haemolyticus 656 31 3 1
P. aeruginosa 8573 401 30 1
E. faecalis 2966 119 7 1
E. coli 45869 1642 142 20
K. pneumoniae 20027 793 110 3

19 genomes from the dataset (Figure S1, Table S1). No additional filtering steps were
applied to the datasets of the other species. Final numbers of genomes are shown in
Table 1.
Given the low number of urine and UTI genomes for each species, genomes with

either annotation were combined and labelled as “urine” in further analysis. Moreover,
the labelling as urine origin of isolation does not exclude the presence of UTI in these
subjects. Given the low number of genomes, analysing the two groups separately might
not yield meaningful results. Only for E. coli all metadata and associated papers, if
available, were analysed to make a distinction between genomes isolated from healthy
urine and UTIs, facilitating a preliminary analysis into the differences between healthy
and UTI states.
No distinction was made between hosts, allowing for a comprehensive analysis of the

urinary environment as a whole. The results of this study are therefore not specific to
the human host and must be interpreted with caution in relation to specific hosts.

All pan-genomes are open

The pan-genome is considered to be the collection of all gene clusters or orthologous
groups (OGs) found to be present in a set of genomes, here the filtered dataset for each
species33–35. A second subsection of the pan-genome is the dispensable genome, divided
in the OGs shared between two or more strains, but not all strains, and the OGs unique
to one strain, named the accessory and unique genome respectively33–35. Pan-genomes
were constructed with the filtered datasets for each species using Roary (Table 2).
The data from Table 2 shows that the number of strains included in the analysis has a

great influence on the total number of OGs. This trend is not linear, which is expected
as genome sizes and genetic diversities between species differ. Given the different num-
ber of strains for the species direct comparison of genetic diversity is difficult, as the
lower number of genomes can indicate undersampling of the possible environments for
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Table 2: Pan-genome results as constructed by Roary

Species
No.

genomes
No.

total OGs
No.

core OGs
No.

accessory OGs
No.

unique OGs
S. haemolyticus 31 7522 1448 (19%) 2967 (39%) 3107 (41%)
P. aeruginosa 401 46275 1150 (3%) 29301 (63%) 15824 (34%)
E. faecalis 119 11044 1557 (14%) 6381 (58%) 3106 (28%)
E. coli 1642 104684 100 (0.1%) 67292 (64%) 37292 (36%)
K. pneumoniae 793 50735 869 (2%) 32991 (65%) 16875 (33%)

these species. Sub-sampling of the datasets could help in assessing the genetic diversity
between species. In this study, we attempted to construct pan-genomes as comprehen-
sively as possible to find all potential genetic adaptations to the urinary environment.
The genetic diversity was therefore not assessed in depth here.
A noticeable difference between the species is the number of core genes as a percentage

of the total number of OGs. The pan-genome of E. coli contains a core genome of only
100 OGs, this number is significantly lower than expected based on previous literature,
where a pan-genome of 2247 E. coli strains yielded a core of over 1500 genes36. These
results were obtained using a different pan-genome construction approach, applying only
CD-HIT and a lower identity (70%) to determine OGs. Where the usage of CD-HIT
alone will increase the number of OGs, the lower identity will lead to the grouping of
not-true orthologs in one OG, decreasing the number of OGs37. It is therefore important
to compare pan-genome sizes between pan-genomes constructed in a similar manner. A
second study on the pan-genome in E. coli using Roary reported similar results as found
here on a set of more than 1300 genomes of this species, finding 104 core OGs and 223
when using highly similar strains38. These numbers are significantly smaller than the
core genomes of the other species analysed here. It is unlikely that the pan-genome
construction approach here is the cause of the small core genome for E. coli, as the core
genomes found for the other four species are in line with previous literature39–42. One
possible reason for this small core genome of E. coli could be the inclusion of genomes
from the Shigella species mistakenly annotated as E. coli. Shigellae are phylogenetically
E. coli, having been initially classified as part of the same species but later recognised as
separate species and sharing 80%-90% nucleotide similarity43–45. This potential inclusion
would increase the diversity within the dataset for this species and thereby reduce the
core genome size.
As discussed previously, the pan-genome construction method and parameters are of

influence on the OGs found. Moreover, Prokka annotations of a high number of genomes
could lead to an increased number of annotation errors, leading to an inflated accessory
genome and a reduced core genome46,47. Therefore, a second pan-genome construction
strategy utilising a graph-based approach with the ability to correct for some of the
false positive and negative annotation sources was applied using Panaroo. Panaroo
utilises gene re-finding where the amino acid sequences of re-found genes are not easily
accessible. Moreover, the construction of the pan-genomes for the larger datasets of E.
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Figure 1: Pan-genome plots for all five species, with the number of genomes used for
pan-genome construction on the x-axis and the the number of identified or-
thologous groups on the y-axis. A line was fitted using the formula of Heaps
law, n = kNγ, fitted γ values indicate all open pan-genomes. r2 values indi-
cate goodness of fit.

coli and K. pneumoniae was estimated to last more than 400 days. The pan-genome
results of this tool were therefore not used in further analysis.
After pan-genome construction, the openness of the pan-genome for each species was

calculated using Heaps law, n = kNγ.48. Here n represents the number of orthologous
groups found, N the number of genomes analysed and k and γ represent parameters to fit
the function, where γ is a measure of pan-genome openness48. Fitting Heaps law to the
pan-genome collection graphs resulted in a γ value for each species above 0, indicating
an open pan-genome. Sequencing additional strains will therefore increase the number
of OGs found, as well as potentially including OGs from the unique genome into the
accessory genome and reducing the core48.
The open pan-genomes are in line with expectations, as the strains analysed here

were isolated from a broad range of environments, an indication that these species are
generalists and therefore have open pan-genomes49. Furthermore, previous literature
on the pan-genomes of these species has shown open pan-genomes with comparable γ
values, except for S. haemolyticus, where no reference values were available38,41,50–52.
The calculated γ value for E. faecalis was lower than for the other species, 0.27 versus
0.36, 0.37, 0.36 and 0.32 for S. haemolyticus, P. aeruginosa, E. coli and K. pneumoniae
respectively, which is an indication of lower genetic diversity within this species.

Annotation uniformity validates orthologous gene clusters

Choosing the right parameters is of importance for the correct clustering of genes in
orthologous groups within the pan-genome. To verify if the gene clusters as identified
by Roary contain true orthologs, the uniformity of the COG annotations of the sequences
within each group was analysed for the gene clusters identified as urine unique (Figure
2A). This analysis was performed on the urine unique gene clusters only due to the
computational time required to annotate every sequence within the pan-genome with
EggNOG. COG annotations were used as this was the most common annotation type
for the sequences. Results show a general COG annotation uniformity within OGs, with
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Figure 2: (A) Uniformity and (B) uniqueness of the Orthologous group (OG) annota-
tions, (A) based on number of COG annotations within one group or (B) the
number of occurrences of the COG of the OGs containing one annotation.

at most two annotations per gene cluster, as well as a low percentage of gene clusters
with more than one annotation or none for S. haemolyticus and E. faecalis. This result
indicates that the gene clusters mostly contain true orthologs and that any sequence
within a cluster could be chosen as representative of its cluster.
Alongside uniformity of annotation within one group, the uniqueness of each COG

assigned to one OG was tested for all annotated OGs (Figure 2B). These results showed
that several OGs had been split, with the majority of OG COG annotations being
unique within each species. The most erroneously split gene clusters were present in the
P. aeruginosa pan-genome, where 19% of the annotations were shared between two or
more gene clusters and a further 7% between three or more clusters, indicating that the
sequence identity for OG clustering was possibly set too high at 95% for this species.
Future studies could analyse the optimal sequence identity for the grouping of gene
sequences into clusters. These more fragmented clusters could increase the number of
OGs found for P. aeruginosa in comparison to the other species and relative to the
number of urine genomes within the dataset, making additional analysis of duplicate or
closely related annotations warranted. In conclusion, most groups contain true orthologs
and a representative sequence can reliably be chosen from one group. For the purpose
of this study, duplicate KEGG KO annotations were treated as a single entry due to the
splitting of OGs. The settings for pan-genome construction might have to be altered in
future analyses to prevent this splitting.
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Figure 3: Phylogenetic relationship of five species of interest, colors indicate location of
genomes with a urinary origin of isolation for each species. (A) Phylogenies
of the longest predicted 16s gene for each strain, identifying one outlier for
the species P. aeruginosa, E. coli and K. pneumoniae that was kept in the
analysis dataset, showing no clustering of genomes isolated from urine. (B)
k -mer and (C) core genome phylogenetic analysis showed no clustering of
urine genomes for all species.

No strong phylogenetic signal for the urine origin of isolation

The general relatedness between the strains was analysed using the predicted 16s gene
from each strain, if one was available (Figure 3A). For E. faecalis, E. coli, K. pneumo-
niae and P. aeruginosa similar results were observed, a tree containing short branches
and bootstrap values as low as 1%, indicating little signal and differences between these
clades. For E. coli, K. pneumoniae and P. aeruginosa one outlier was observed in the
16s tree that was not trimmed at the filtering step, as the FastANI calculations of the
Average Nucleotide Identity (ANI) showed ANI above 95% between almost all genomes
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within the dataset and the found outlier (Figure S2). Moreover, predicted 16s sequences
were not available for all genomes, these outliers might therefore not be true outliers but
merely an indication of missing surrounding clades. Results for S. haemolyticus showed
a slightly altered pattern (Figure 3A). Distinct clades are observed and two strains iso-
lated from urine group together in one clade, however, with a bootstrap value of 9%,
no strong conclusions can be drawn from this tree. To quantify potential clustering of
16s genes from urine-derived strains, a permutation test of all 16s phylogenies was per-
formed53,54. No significant clustering of the metadata was found in the 16s phylogenies
for E. faecalis and S. haemolyticus (p = 0.001, permutations = 10 000). Significant clus-
tering was observed for the other three species, however, cluster purities were low (0.22
- 0.34) and no clusters unique to urine were observed, as well as the absence of clusters
containing the majority of 16s genes with a urinary isolation origin. In conclusion, the
resulting 16s phylogenies showed no visual or statistical clustering of the 16s genes from
strains isolated from urine, indicating that the urine environment does not influence the
relatedness of the 16s gene within these species (Figure 3A).
Subsequently, the hypothesis of potential clustering of urine-derived strains was tested

using a k -mer-based approach. MashTree was used to create an overview of the general
relationship between strains and analyse if the potential relatedness of urine-derived
strains is detectable on genome level in a fast manner55. Visual and permutation test
analysis of the clustering of urine strains on the Mashtrees shows no urine unique clades,
only clades where urine is absent (Figure 3B). One of these clades for E. coli was in-
vestigated in more detail, as this clade was the largest clade where urine was absent,
thereby increasing the numbers for analysis. The majority of isolation origins within
this clade were faeces or faecal-related sites, the most prevalent isolation origins in the
dataset for this species. Other isolation sites, such as cattle or food, were also present
within this clade. Additionally, host or environmental isolation, genome length and GC
content were analysed and no apparent bias was found between this clade on GC content
or host association isolation (Figure S3). Genomes within this clade were found to be
on average 450 kb longer than genomes in the rest of the tree (p < 0.0001), which could
indicate the presence of genes that are lost in strains isolated from urine.
It should be noted that the MashTree approach, although fast, does not result in a tree

of high accuracy. MashTree is a k -mer-based approach that uses a Bloom filter to filter
the top k -mers to use in the MinHash algorithm55. Thereby not taking into account all
genomic information as well as the fact that a Bloom filter does allow for false positives,
reducing the accuracy of the resulting tree. Moreover, Mashtree does not infer phylogeny.
Therefore, more accurate analysis of the possible clustering is warranted.
As no apparent clustering signal was found with a k -mer-based approach as well

as on the conserved 16s genes, the core genes of all species were analysed. Hereto the
construction of a maximum likelihood phylogeny using IQtree was attempted and proved
to be unsuccessful for the species, P. aeruginosa, E. coli and K. pneumoniae, due to
unknown reasons. Therefore, after careful consideration, this attempt was halted and
a less accurate approach was taken using Fasttree56. All resulting phylogenies show no
clustering of genomes isolated from urine, for both the visual as well as the permutation
test analysis (Figure 3C). For future analysis with different alignments or species, IQtree
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Table 3: Number of urine related orthologous groups (OGs) identified by
Scoary (p < 0.05) split in under- and overrepesented groups

Species
No.

Overrepresented OGs /
(Urine Unique)

No.
Underrepresented OGs /

(Absent urine)
S. haemolyticus 4 / (3) 29 / (2)
P. aeruginosa 583 / (388) 2173 / (53)
E. faecalis 68 / (23) 227 / (4)
E. coli 629 / (339) 11350 / (1592)
K. pneumoniae 1165 / (1067) 3152 / (113)

will be preferred, as it has been shown that IQtree yields more accurate phylogenies56.
Moreover, FastTree is not the optimal method for alignments of closely related sequences,
as present in this set, due to the fact that FastTree does not account for recombination
or gene conversion and the absence of traditional bootstrapping using the Shimodaira-
Hasegawa test to assess the reliability of the tree topology in each split56,57. In conclusion,
the phylogenetic analysis on 16s genes and core genome phylogenies as well as the k -
mer-based analysis does not show relatedness between urine-derived strains.

Accessory genome analysis suggests niche adaptation in urinary
bacterial strains

The absence of a strong phylogenetic signal does not exclude the possibility of a genetic
relation between strains and the urine environment. It can therefore be hypothesised
that there are genes over- or underrepresented in bacterial strains isolated from the urine
environment. The accessory genome is the part of the pan-genome shared between a
subset of two or more strains33,35. Here, we study the functions encoded by the genes
in this set, as they are known to be involved in non-essential processes that can give a
selective advantage, such as niche adaptations and antibiotic resistance34.
We used the feature selection method Scoary, a microbial pan-GWAS approach iden-

tifying over- and underrepresented OGs within the presence-absence profile of the acces-
sory genome. Splitting the identified OGs in these groups showed more underrepresented
OGs in strains isolated from urine than overrepresented OGs (Table 3). This could be
due to the absence of several nutrients in urine, such as most proteins and often glu-
cose25. Possessing genes facilitating the catabolism of these nutrients will therefore most
likely not increase fitness when growing within the urinary environment. Additionally,
the group of underrepresented OGs is likely to contain genes important for growth or
fitness in other environments present within the dataset. This together with the finding
of longer genomes in one clade where urine strains were absent for the k -mer-based tree
of E. coli (Figure S3), the larger number of underrepresented OGs could point to a role
for reductive evolution of strains living in the urinary tract. It could therefore be hypoth-
esised that due to the nutrient-limited environment, bacteria living in the urinary tract

10



adapt by reductive evolution as excess genes have a fitness cost to the bacterium, enhanc-
ing positive selection for gene loss58. Studies have found that reductive evolution might
play a role in the change of uropathogenic E. coli to a commensal lifestyle59,60. However,
here we made no distinction between strains isolated from healthy urine and UTIs, and
positive selection is reported to mostly occur in bacteria living in stable nutrient-rich
environments58. Future studies investigating the role of reductive evolution of urinary
tract-based strains can highlight the underlying evolutionary changes.

Protein-Protein interaction networks show genetic adaptations to
urine host environment

Potential urinary tract bacteria-specific protein-protein interactions of urine-unique OGs
were predicted using STRING61. S. haemolyticus showed no connections within STRING.
Gene annotation revealed two unnamed proteins and a third gene annotated as Uracil-
DNA glycosylase (udg), a DNA repair enzyme initiating the uracil base excision repair
pathway62. Loss of udg increases mutation rate in E. coli while growth is unaffected, only
reducing growth in bacterial species with high CG content under conditions of increased
reactive nitrogen intermediates production63,64. Increased production and availability of
reactive nitrogen intermediates is known to be a part of the host defence during UTI,
as well as within macrophages that are present in urine during infection65,66. It could
therefore be hypothesised that udg plays a role in pathogenicity of S. haemolyticus in
urine. As no previous studies have investigated the Staphylococcus genus, future studies
should investigate this novel finding. Moreover, udg’s potential role in S. haemolyticus
living in urine is based on four genomes in a set where not all genomes are complete.
This, combined with S. haemolyticus’ open pan-genome, could alter the finding of urine
uniqueness for udg.
For the subsequently analysed species, E. faecalis, 17 of the 23 urine unique OGs were

identified by STRING, forming two clusters (Figure 4A). The genes of the first cluster
play a role in the uptake of β-glucosides, an alternative carbon source for glycolysis, an
important mechanism as glucose is scarce in urine (Figure 4A (yellow))67. The second
cluster contains genes, in addition to two unconnected genes, that are reported to be
functionally enriched for the WxL domain and LPXTG cell wall anchor motif (4 out of 8
present in this network) (Figure 4A (dark blue)). The WxL domain is the characteristic
domain of a family of cell surface proteins, of which one of its members has been identified
to contribute to E. faecalis pathogenicity in UTI68–70. Together these adaptations may
increase the fitness and pathogenicity of E. faecalis in the urinary tract, however, as the
WxL domain family has many members future studies are warranted.
Two clusters with annotated functions were identified in the STRING network for P.

aeruginosa (Figure 4B). The first cluster was densely interconnected and functionally
enriched for conjugation, a type of horizontal gene transfer (HGT) that requires bacterial
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Figure 4: STRING networks of genes uniquely present in urine. (A) E. fae-
calis, alternative carbon source acquisition (yellow), WxL domain containing
proteins (dark blue). (B) P. aeruginosa showing clusters for conjugation
(orange) and mercury resistance (blue). (C) Network clusters for K. pneu-
moniae where 272 non connected nodes are hidden. The network shows
distinct clusters with phage related proteins (pink), a cluster representing
conjugation (orange) and clusters indicating biofilm formation (light blue),
iron acquisition (green), amino acid transport (purple) and antimicrobial re-
sistance (red). Interaction score > 0.007.
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contact (Figure 4B (orange)). This bacterial contact in urine can be facilitated by
biofilm formation, which is reported to be a hotspot for HGT in bacteria, amongst which
P. aeruginosa71–75. HGT might play a role in the transfer of virulence and antibiotic
resistance genes in P. aeruginosa and could be the origin of the second cluster (Figure
4B (blue))76–78.
This second cluster’s genes play a role in the response to mercury, a response less

expected to be present in urinary tract bacteria as the urinary mercury concentration
is low in healthy individuals79. A genetic linkage has been reported between mercury
resistance and AMR, a resistance more expected in urinary tract bacteria as UTIs are
commonly treated with antibiotics. The reported rise in AMR genes when bacteria are
subjected to high mercury environments could therefore be bidirectional, mercury resis-
tance could co-arise with AMR genes in an environment under antibiotic treatment80.
Additionally, a plasmid carrying mercury and antimicrobial resistance genes has been
identified, pointing to HGT as a possible origin of these genes81. This hypothesis needs
further investigation as no clusters for antimicrobial resistance or biofilm formation were
found for P. aeruginosa in the urine unique set nor by a preliminary analysis of the over-
represented set.
Where datasets for E. faecalis and S. haemolyticus were small for analysis, the dataset

for K. pneumoniae was the largest, where 48% of sequences mapped to a reference in
STRING. Several clusters with distinct functionalities can be identified within this net-
work, one being a cluster pointing to the presence of phage-related genes within urinary
K. pneumoniae, indicating previously reported phage infections (Figure 4C (pink))82.
Similar to P. aeruginosa, a conjugation cluster, here in addition to a biofilm formation
cluster, was observed (Figure 4C (orange) and (light blue)), supporting the hypothe-
sis that biofilms are a hotspot for HGT among urinary tract bacteria. In addition to
facilitating HGT, biofilms increase antimicrobial tolerance for bacteria residing within
them, as antibiotics poorly penetrate the biofilm. The subinhibitory dose of antibiotics
could further increase antibiotic resistance, as selection for resistant bacteria can occur
at concentrations several hundred folds below the lethal concentrations12,83,84. This hy-
pothesis of an increase in AMR is strengthened by a cluster containing genes implicated
in resistances against a commonly used antibiotic treatment, β-lactam and antimicrobial
defence by the host, Cationic Antimicrobial Peptides (Figure 4C (red))85,86.
The largest cluster present corresponds to amino acid uptake and could be hypothe-

sised to improve fitness, as several branched amino acids are scarce in urine and improved
uptake can aid in competition, however, this has not been studied to date87. It has been
reported that several components of amino acid transport could increase virulence in
K. pneumoniae, and amino acid transport is upregulated in uropathogenic E. coli28,88.
Pointing to the relevance of further testing this hypothesis.
The last cluster to point out for K. pneumoniae corresponds to iron acquisition (Fig-

ure 4C (green)). Iron is an essential nutrient for all life, known to be highly sequestered
by the host to fight bacterial infection, bacteria colonising the urinary tract therefore
need acquisition strategies to be successful pathogens89,90. Moreover, iron is an impor-
tant nutrient in nutrient competition between E. coli and K. pneumoniae in a urinary
biofilm91.
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Figure 5: STRING networks of genes uniquely present E. coli strains iso-
lated from urine. (A) E. coli STRING network of unique genes urine and
UTI strains combined with clusters corresponding to phage infection (pink).
Additionally clusters corresponding to iron acquisition (green) and acetate
transport (yellow). Analysis for E. coli in healthy urine samples (B) and
UTI samples (C), both analysis contain antimicrobial resistance genes (red).
Additionally in strains isolated from healthy urine show clusters for acetate
transport; yellow and mazEF toxin system: dark green. Iron acquisition was
only observed in UTI strains ((C); green). Interaction score > 0.007.
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Therefore unsurprisingly, a cluster corresponding to iron acquisition was also observed
in the network for E. coli (Figure 5A (green)). In this species successful iron acquisition
is reported to promote virulence and to be upregulated during UTIs. Moreover, iron
acquisition strategies evading iron sequestering by the host are more frequently identified
in uropathogenic E. coli than in faecal commensal E. coli, indicating a role for iron
acquisition in pathogenic bacteria in urine92,93.
The organism most often studied in UTIs or related infections is E. coli. It is therefore

surprising that here only 20% of sequences could be mapped to a reference in STRING.
The low number of mapped sequences is likely due to the absence of these genes in
the reference strain rather than false positives in gene predictions by Prokka. This is
supported by the findings that the trend for the number of genes per genome and gene
lengths does not notably differ for E. coli in comparison to the other four species studied
(Figure S4), as well as 55% of OGs being annotated by STRING in the absent in urine
group for E. coli.
Multiple clusters corresponding to phage infections are present in the network for E.

coli (Figure 5A (pink)). Phages have been proposed as a novel therapeutic strategy
to treat multi-drug-resistant uropathogenic bacteria94,95. Identifying phages infecting
uropathogenic bacteria could aid the development of this therapeutic strategy. Alongside
these phage-related clusters, a cluster unique to urinary E. coli was detected. This clus-
ter corresponded to acetate transport, a compound whose concentrations are increased
in urine after antibiotic treatment, as well as increasing virulence of uropathogenic E.
coli96,97. In conclusion, this STRING analysis shows that bacteria isolated from the
urinary tract show genetic adaptations increasing virulence and pathogenicity as well as
adaptations enhancing AMR and HGT.

Indication for antibiotic resistance in healthy urine strains of E. coli

To establish which traits can be unique to pathogens isolated from UTIs in comparison to
healthy urine, E. coli strains isolated from urine and UTI were analysed separately. This
analysis showed that iron acquisition genes were uniquely present in UTI-isolated E. coli
(Figure 5C (green)). This does not indicate that strains isolated from other sources do
not contain genes for iron acquisition, but rather that more unique genetic components
for iron acquisition are present in strains isolated from UTI over other isolation sites.
This is in correspondence with the findings that evasion of iron sequestration by the
host increases virulence and pathogenicity92,93. Additionally, one new cluster unique
to strains isolated from healthy urine was observed corresponding to the MazEF toxin-
antitoxin system, a system mediating growth arrest and persister cell formation during
antibiotic treatment, thereby increasing bacterial survival (Figure 5B (dark green)). This
might suggest that the E. coli in healthy urine samples have been previously exposed to
antibiotics, which could also account for the presence of the four non-clustered antibiotic
resistance genes detected in these strains (Urine; Figure 5B (red), UTI; Figure 5C (red)).
This hypothesis could be supported by the finding of the acetate transporter cluster in
strains isolated from healthy urine.
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Figure 6: Graphical overview of the calculation of pathway completeness and connec-
tivity from KEGG KGML files and the KOs of interest.

Urine unique genes are present in pathways promoting virulence
and antibiotic resistance

STRING analysis shows protein-protein interactions, however, genes and their encoded
proteins can be part of larger pathways. Analysing these could highlight metabolic
pathways and functions enriched or underrepresented in bacterial strains isolated from
urine. Hereto the urine unique OGs were annotated with KEGG KO numbers and
mapped to their respective pathways (Table S3). Subsequently, the percentage of urine
unique genes in each pathway was analysed, showing no pathways unique to the urinary
lifestyle, only pathways containing urine unique genes (Figure 6; Figure 7A).
No pathways with urine unique genes were shared by all five species, suggesting a

species-specific urinary host adaption profile. For the species with the smallest dataset,
S. haemolyticus, only one gene mapped to a pathway, the previously identified udg map-
ping to base excision repair. One urine unique KO for one other species, K. pneumoniae,
was present in this pathway. Where a possible role of udg in infection was discussed
previously, the urine unique gene of K. pneumoniae, nei, was not implicated in changes
of phenotype for this species and was, by contrast, uniquely absent from E. coli isolated
from urine. Since the base excision repair pathway is the principal pathway for repairing
small base lesions in DNA, it is unlikely that the interspecies differences within this
pathway are indicative of any urine unique function.
Protein-protein interactions pointed to the urine unique alternative carbon source

uptake of β-glucoside by E. faecalis. This pathway analysis shows that the β-glucoside
transporter found in E. faecalis is part of the phosphotransferase system (PTS), a system
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Figure 7: KEGG pathways with genes uniquely present in bacteria isolated from the
urinary tract. (A) Pathway completeness defined as KOs uniquely present in
urine-isolated bacteria as a percentage of total KOs present in the complete
pathway. (B) Connectivity of genes uniquely present in urine-isolated bacte-
ria, in size of connected components defines as number of KOs connected in
pathway, dot size indicates number of connected components of given size.
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where urine unique genes of K. pneumoniae were also mapped to (Figure 7A). The
genes of the latter species form a complete complex that facilitates cellobiose uptake,
a sugar compound known to be present in urine, and can be metabolised to glucose98.
One component of this complex was found to be unique to E. faecalis strains isolated
from urine and the other complex components were found to be present within the core
genome of this species.
Alongside uniquely present genes for cellobiose uptake, one component of the cellobiose

transport complex was absent in E. coli strains isolated from the urinary tract, indicating
that this species does not use this carbon source to grow in the urinary tract. Together,
these results point to a role for cellobiose as carbon source for some bacterial species
growing in the urinary tract, and possible nutrient competition between E. faecalis and
K. pneumoniae, but not for E. coli. Additionally, the presence of one of the components
of the cellobiose transport complex, celB, has been reported to increase virulence and
aid biofilm formation in K. pneumoniae, making cellobiose possibly more than just a
carbon source99.
In addition to nutrient consumption, analysis revealed two species with urine unique

genes mapping to the pathway for cellular motility mediated by flagella, which is known
to increase fitness in uropathogenic E. coli100,101. For both E. coli and K. pneumo-
niae, one urine unique gene was annotated, being flgN and fliY, respectively. The FlgN
protein regulates flagellar assembly, which needs tight regulation as flagella are down-
regulated in chronic E. coli infection and biofilms but are needed for bacterial ascension
from the bladder to the kidneys28,102,103. Moreover, flagella play a role in E. coli ’s ability
to form intracellular bacterial communities within bladder epithelial cells104–106. Bacte-
ria residing within these intracellular communities are shielded from antibiotics, washing
out and the host immune system, establishing a quiescent reservoir of pathogenic cells,
thereby contributing to infection recurrence and possibly to resistance to antimicrobial
treatments107,108. When comparing urine and UTI-isolated E. coli strains, the role of
flagella in uropathogenicity becomes more apparent as urine unique genes within the
flagellar assembly pathway were only found in strains isolated from UTIs (Figure 8A).
The finding of a gene regulating flagellar assembly in K. pneumoniae is surprising,

as this species is considered to be a non-motile and non-flagellated bacterium109. A
recent study found flagella in a strain isolated from a neonatal sepsis patient, suggest-
ing that flagella-mediated motility may be a novel way for K. pneumoniae to increase
virulence110,111. This possible role for flagella in this species for life in the urinary tract
remains to be studied further as the fliY gene also functions as a transporter component
facilitating cystine uptake.
Solely interpreting pathway completeness and drawing conclusions on this metric only

would yield a biased result, as reactions are often catalysed by several alternative en-
zymes. Moreover, urine unique enzymes scattered over a metabolic pathway with alter-
native routes might have less weight than a urine unique connected component. Hereto
the connected component sizes of urine unique genes were calculated for each species
(Figure 6; Figure 7B). This analysis shows that for many pathways the urine unique
genes do not form a connected component of a size larger than one, meaning no urine
unique connection of subsequent reactions, thereby possibly decreasing the urine unique
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Figure 8: KEGG pathways with genes uniquely present in E. coli isolated from the uri-
nary tract in healthy and urinary tract infections (UTI). (A) Pathway com-
pleteness defined as KOs uniquely present in urine-isolated of UTI-isolated
E. coli as a percentage of total KOs present in the complete pathway. (B)
Connectivity of genes uniquely present in urine-isolated of UTI-isolated E.
coli, in size of connected components defines as number of KOs connected in
pathway, dot size indicates number of connected components of given size.

effect on the bacterial metabolism.
One pathway with a connected component of a size larger than one is folate biosyn-

thesis. Bacteria require folate to synthesise nucleic acids, however most bacteria cannot
transport folic acid across their cell walls, making it an essential pathway112,113. Urine
unique genes were identified for K. pneumomiae, E. coli and P. aeruginosa, all unable
to transport folate. P. aeruginosa and K. pneumomiae formed a connected component
with the sul1 gene, a target for the sulfonamide class of antibiotics, often used in the
treatment of UTIs114,115. However, sul1 is a mutated form of the original target pro-
viding resistance against sulfonamide treatment116. The second connected component
within this pathway was formed by the enzyme catalysing the conversion reactions be-
tween folate, di- and tetrahydrofolate and was uniquely present in urine for E. coli and
K. pneumoniae. This conversion too is a target for a class of antibiotics often used in
the treatment of UTI, here trimethoprim. However, only the urine unique gene for E.
coli is a known AMR gene, while annotation for K. pneumoniae was unclear. When
analysing if the AMR gene was present in urine- or UTI-derived E. coli strains, the gene
was found to be unique to strains isolated from healthy urine. Indicating that AMR is
also found in non-pathogenic E. coli populations.
Atrazine degradation is a pathway implicated in recurrent UTIs by facilitating the

formation of urinary stones, urolithiasis, by means of the urease enzyme117. The urease
gene is present in the core genome of P. aeruginosa, indicating possible urolithiasis
when P. aeruginosa is present in the urine microbiome. Two urine unique genes were
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Table 4: Percentage of KEGG KO annotations with antimicrobial resistance.

Species
AMR

overrepresented
AMR

underrepresented
S. haemolyticus 0 0
P. aeruginosa 9.4% 7.5%
E. faecalis 0 4.4%
E. coli 14.7% 2.6%
K. pneumoniae 7.8% 5.9%

identified in K. pneumoniae facilitating urolithiasis in an alternative two-step process.
The presence of urinary stones within the urinary tract allows for bacteria to migrate into
these stones where they are shielded from washing out as well as from host defences and
antibiotic treatment, forming a quiescent reservoir of pathogenic cells118,119. After initial
antibiotic treatment bacteria can recede into the urine environment, now containing a
subinhibitory dose of antibiotics, thereby possibly selecting for AMR83,84,120.
Several previously identified results point to a role for AMR in urinary tract bacteria.

Further indication in this direction is the presence of urine unique genes in the β-lactam
resistance pathway. Separate analysis between urine and UTI-derived E. coli strains
reveals that β-lactamases are present in both conditions. To determine if AMR genes
were overrepresented in urine-derived strains, the number of AMR KOs in the over-
and underrepresented groups were analysed, showing a higher percentage of AMR genes
in OGs overrepresented in urine-derived strains for three of the five species (Table 4).
For S. haemolyticus no AMR genes were detected in either group, however the number
of annotated KOs in each group was small, so no conclusions can be drawn on the
overrepresentation of AMR for this species (Table 3). The trend of overrepresentation
of AMR genes was also not followed for E. faecalis, where no AMR genes were identified
within the overrepresented group but were in the underrepresented group. This could
again be due to the low number of KOs in the overrepresented group or the low number
of urine-derived strains. An alternative hypothesis could be that these results are due
to the fact that E. faecalis and S. haemolyticus are gram-positive bacteria whereas the
other three species are gram-negative, or due to species differences, as E. faecalis is
naturally resistant to several antibiotics commonly used in UTI121.
In conclusion, pathway analysis showed the presence of urine unique genes in pathways

promoting virulence, adaptations to the host environment as well as an increase in AMR
genes in strains isolated from urine. It should however be noted that the urine unique
genes are often present in only a small number of genomes (2-5 genomes), making further
investigation into these findings warranted.
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Competitive interactions in the urinary tract mediated by secondary
metabolites

Bacteria in the urinary tract live in communities, and interactions between community
members can alter infection severity and complicate treatment122–124. Interbacterial
interactions can, among other strategies, be mediated by the excretion of secondary
metabolites, which are biologically active small molecules that are not required for via-
bility within the host environment but can provide a competitive advantage125,126. The
genes regulating assembly and transport of secondary metabolites are often grouped on
the bacterial genome, forming biosynthetic gene clusters (BGCs)127. Here BGCs were
clustered into Gene Cluster Families (GCFs) and classes to identify GCFs enriched for
urine, as no GCFs or classes were unique to the urine origin of isolation.
Urine enrichment analysis at the BGC class level revealed two classes with significant

changes in the number of BGCs of urinary origin. The first class, the ribosomally
synthesised and post-translationally modified peptides (RiPPs) (p = 0.02), was found
for E. coli and had an equal number of GCFs with more or less urinary BGCs. One
GCF of this class was enriched for urinary BGCs (7 urine, 25 total, 2 expected) and
predicted as agrD-like cyclic lactone autoinducer peptide, a class of peptides of which
about one third are known virulence factors and might play a role in the switching from
an adhesive commensal to a pathogenic lifestyle128,129. Interestingly, GCFs of another
class predicted to encode siderophores were found to contain more as well as less urinary-
related clusters than anticipated. This finding can be explained by the fact that E. coli
can possess many redundant iron acquisition strategies, with none being essential for
virulence, suggesting a greater role for some siderophores in urinary E. coli89,90,130–134.
The second class showing significant changes was the not type 1 polyketide syntesases

(PKS Other) class for P. aeruginosa (p = 0.03), however no GCF showed an altered
number of urinary-related clusters. Thus, the relationship between this class and the
urine environment requires further investigation. Another BGC class for P. aeruginosa
contained a GCF predicted as N-acetylglutaminylglutamine amide (NAGGN) (3 urine, 9
total, 0.6 expected). NAGGN protects against osmotic stress, which is beneficial for sur-
vival in urine as urinary osmolarity can fluctuate, protection could therefore potentially
improve fitness135–137.
S. haemolyticus was the only species with the BGC class of Terpenes, containing

two GCFs of which one was enriched for urinary BGCs. Terpenes are a large class of
compounds known to have antimicrobial properties138,139. A whole pan-genome pathway
analysis pointed to possible synthesis of the terpene geraniol, a known antimicrobial
against E. coli, P. aeruginosa, K. pneumoniae and E. faecalis140,141. The excretion of
a geraniol by S. haemolyticus might explain the observed negative interactions in the
study by de Vos et al. (2017) (Figure S7)14.
Another species where a predicted secondary metabolite was found to potentially

influence interspecies competition was E. faecalis. Here one of the RiPPs class’s GCFs
was enriched for the urine origin of isolation and predicted to be regulating a class II
lanthipeptide (4 urine, 20 total, 1 expected), a metabolite with antimicrobial properties
against gram-positive bacteria with greater effectiveness against those closely related
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to the producing organism, thereby potentially eliminating competition from bacteria
within the same genus142,143. This could be a beneficial strategy in the nutrient-limited
urinary environment, as resource overlap is believed to be a major contributor to intra-
genus competition144.
In conclusion, the predicted secondary metabolites that are found to potentially play

a role for urinary tract bacteria might explain the interactions between members of
the microbial community, as well as indicating strategies by which the species studied
here might improve their fitness in the hostile urinary environment. However, genomic
analysis does not directly correlate with environmental presence of secondary metabo-
lite. Bacteria live in microbial communities, which can greatly affect their metabolic
behaviour and thereby the secondary metabolites in the environment145. Caution when
generalising results is therefore warranted.

Indication of resource competition among urinary microbial
communities

To identify commonly and uniquely consumed and excreted compounds and thereby infer
potential interactions, the changes in metabolites in media before and after growth were
measured using DART metabolomics. Filtering on m/z accuracy and relative intensities
revealed a different number of peaks in the artificial urine medium (AUM) measurements
before culturing between the species (Table S5). This is possibly caused by residual noise
in the measurements. Hereto only peaks common in all reference AUM measurements
were analysed, and changes in relative intensities were calculated for these peaks. This
resulted in 249 peaks for each measurement mode, positive and negative, for four species.
Subsequently, common peaks were used to identify commonly consumed and excreted
peaks.
Analysis of commonly consumed metabolites revealed two compounds, indicating pos-

sible resource competition (Figure 9A). One peak was identified as lysine, the second
as possibly N6-Acetyl-L-lysine, an intermediate in lysine degradation. This corresponds
with findings for E. coli indicating that small peptides and amino acids are the main
carbon source for strains living in the urinary tract146,147. Given that lysine is shared
between all species here, this could indicate that a similar carbon metabolism is used
in S. haemolyticus, P. aeruginosa and E. faecalis. A transcriptomics analysis of these
species similar to the one by Paudel et al. (2021) could confirm this148. The largest
overlap in consumed metabolites was observed between P. aeruginosa, E. coli and S.
haemolyticus, followed by the overlap between P. aeruginosa and E. coli (Figure 9A).
This could indicate that resource competition is strongest between these species, and
that E. faecalis is least impacted. However, in this analysis, E. faecalis was reported to
consume only 11 metabolites, whereas the other species were found to consume upwards
of 100 metabolites. This could have been caused by the smaller changes in relative in-
tensities of consumed peaks for E. faecalis, thereby possibly falling below the selection
limit of three standard deviations. Alternatively, this difference could be explained by
E. faecalis ’ poor growth in AUM, thus requiring less nutrients.
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Figure 9: Overview of commonly metabolites present in the reference media as mea-
sured by DART-MS for (A) consumed and (B) excreted metabolites. (C)
Possible cross-feeding interactions between species of measured metabolites
present in reference media.

Analyses of excreted metabolites and their interspecies overlaps showed a different
pattern where E. faecalis excreted most metabolites and E. coli the least, the difference
was however less prominent, with 85 versus 31 respectively (Figure 9B). Of the two
peaks identified as commonly excreted, one remains unannotated as none of the anno-
tation strategies yielded a plausible result. Identification of the second peak yielded two
potential candidates, one being 2,4-Diaminobutyric acid, a di-aminated form of butyric
acid that is produced by bacteria in the catabolism of aspartate, an amino acid with a
broad range of concentrations in urine25. The excretion of this compound could further
point to amino acids as a carbon source for urinary tract bacteria. Alternatively, the
peak could be identified as homo-cystëıne, a metabolite occurring as a side product of
cellular cystine import. Upon import of cystine, cystine can transfer its disulfide bonds
to proteins in the cytoplasm, altering their functionality. To avoid this, the imported
cystine is rapidly reduced to cysteine or homo-cystëıne, which can be exported from the
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cell149.
After identifying potential commonly consumed and excreted peaks the cooperative

strategy of cross-feeding was analysed (Figure 9C). Results show that E. coli could
benefit most from cross-feeding, while E. faecalis would benefit the least but help others
the most. These results contradict the interaction reported by de Vos et al. (2017),
where E. faecalis was found to benefit the most from others without returning the
favour14 (Figure S7). This could be due to the fact that newly excreted compounds
are excluded from this analysis. Additionally, the metabolomics measured here are
obtained from monocultures, and E. faecalis is known to grow poorly in monoculture in
AUM, improving growth when cultured on spent media, pointing to a potential role for
newly excreted compounds. In conclusion, these results point to a resource competition
between P. aeruginosa, E. coli and S. haemolyticus and point to an important role for
newly excreted metabolites in interspecies interactions in the urinary tract community.
Where DART has many benefits, as it is a rapid mass spectrometry (MS) technique

that can be used at atmospheric pressure, the metabolomics analysis as performed here
has several caveats150. Firstly, the range of m/z values that can be detected by DART is
limited to 60 - 990, however after filtering only values between 100 - 400 remained. This
excludes analysis of larger proteins such as enterobactin or other siderophores, as well
as smaller molecules including urea and sulphate. Thus, future metabolomics analysis
could use alternative measurement approaches such as ICP-MS to identify metal uptake,
as iron and other heavy metals like copper are known to contribute to bacterial virulence,
and NMR to identify urea and other small molecules89,90,151–154. For larger proteins a
method such as MALDI or LESA could be used155.
A second caveat is that peak picking was done manually, limiting accuracy. Peak

picking is necessary as one metabolite can result in multiple peaks. Many different peak
picking algorithms are in use, but none are optimised for DART raw data, and all have
their own biases. Making peak picking for DART data not optimal, however necessary.
Additionally, the use of molecular networking tools to identify classes of products, such
as GNPS, are not suitable for DART data156. All combined complicating analysis and
thereby potentially reducing accuracy of the drawn conclusions.
Thirdly, when using DART data for quantitative analysis, the use of a reference with

known metabolite concentrations is common practice157,158. The absence hereof in this
study complicates analysis. In addition to quantification, identification of peaks is com-
plicated by the fact that not all metabolites in the reference are known due to the
presence of yeast extract in the AUM.
Lastly, DART raw data can only be processed using FreeStyle (v1.8 sp2, Thermo

Fisher Scientific), a software package only available on Windows. Recompiling this for
MacOS resulted in the loss of several functionalities. Identification of peaks also led
to erroneous annotations as non-existent molecules, complicating peak annotations for
peaks with no prior knowledge, hence only peaks common in the reference were taken
into account. For future studies processing the data on a Windows operating system
might aid this analysis, as a complete range of functionalities will be available, and might
prevent the erroneous annotations of nonexistent molecules.
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Conclusion

In this study of five potential uropathogens no signal of selective pressure in the urinary
host environment was reported, as no clustering of urine-derived strains was observed.
This study does find functional changes in bacteria living in the urinary tract to adapt
to the unique urine environment. The urine unique gene clusters mediate functions such
as increasing virulence, alternative nutrient uptake as well as antibiotic resistance genes.
The presence of urine unique antibiotic resistance genes and the reported overrepresen-
tation thereof in gram-negative bacteria might indicate that antibiotic treatment has an
important role in shaping the urine environment and could be interpreted as a warning
against over use of antibiotics in UTI treatment. It should however be noted that the
urine unique genes were only present in a low number of genomes, these finding must
therefore be validated in future studies.

Method

Dataset

Five new isolates of the species Staphylococcus haemolyticus, Pseudomonas aeruginosa,
Enterococcus faecalis, Escherichia coli and Klebsiella pneumoniae, with respective iden-
tifiers 36, 9, 18, 20 and 1, were sequenced from hosts with polymicrobial UTI’s in a
pairwise interaction study14. To verify the correct annotations of the species, the aver-
age nucleotide identity (ANI) percentage for the newly sequenced genomes in comparison
to NCBI reference genomes isolated from urine, were calculated using OrthoANI and
genomes were only accepted as the indicated species if the ANI percentage was 95% or
above159. To increase the dataset size for analysis, all available genome metadata for all
genomes of each individual species were downloaded on April 19th 2022 via the PATRIC
API160.
To ensure quality of the genomes for future analysis, several filtering steps were con-

ducted. Firstly, all genomes for which the genome quality was annotated as “Poor”
were removed from the dataset. Secondly, the genome length of each genome was
checked against the expected range for the species in the NCBI database and Genomes
with a genome length outside the expected range were subsequently removed from the
dataset161. Thereafter, if no CheckM completeness and contamination scores were avail-
able in the metadata, these score were calculated using CheckM (v1.2.0) in batches to
increase processing speed162. Genomes with a CheckM completeness < 90% or contami-
nation > 10% were excluded from further analysis162. Subsequently, all genomes except
those from urine with a GC content outside of the normal distribution (3 * z-score)
were removed from the analysis. Lastly, all genomes with an unknown or “other” origin
of isolation or that were not marked by PATRIC as “Complete” were excluded from
analysis.
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Gene predictions

Before further analysis, all genomes were annotated using Prokka (v1.14.6) with genus
and species tags corresponding to the species being annotated, for all other options
default settings were used163. Prokka was chosen over the PATRIC GFF3 annotations
as the RAST GFF3 annotation format provided by PATRIC resulted in discrepancy
between manually curated and non-curated annotations between strains.

Pan-genome construction and analysis

The pangenome was created using Roary (v3.13.0) with 95% identity164. The maximum
number of clusters was increased for E. coli and K. pneumoniae to 100.000 and 90.000
respectively, for all other species the default number of 50.000 clusters was used. Along-
side the construction of a pan-genome, Roary was used to create a core gene alignments
using MAFFT165.
Prokka annotations of a high number of genomes could lead to a higher number of

annotation errors, either false positive or negative annotations, leading to an inflated
accessory genome and a reduced core genome46,47. Therefore a second pan-genome con-
struction strategy, utilizing a graph-based approach with the ability to correct for some of
the false positive and negative annotation sources was applied using Panaroo (v1.2.10)166.
Panaroo was run using the GFF3 files created by Prokka on a strict threshold, a core
sample threshold of 0.95, removing all invalid genes, and setting the proportion of an
accessory gene that must be found in order to consider it a match to 0.75 with a 1000
bp search radius.
After pan-genome construction, the openness of the pan-genome for each species was

calculated using Heaps law, n = kNγ48. Heaps law was fit to the number of orthologous
groups identified when adding each genome individually by Roary, both k and γ were
set as free parameters without constraints.

Phylogenetic analysis

Three different phylogenetic strategies were attempted to identify the role of the urine
environment on genome evolution for each individual species. All methods resulted in
a Newick tree that was visualized using iTol (v6) and rooted at mid point167. Firstly,
Mashtree (v1.2.0) was utilised to create a neighbour-joining tree, using Mash distances
on all genomic FASTA files for each species55. Mashtree was run using accuracy mode,
thereby ignoring rare and singleton k -mers, increasing the accuracy of the resulting tree.
The second phylogenetic strategy was based on the evolutionary conserved bacterial

16S RNA. The 16S RNA sequences were predicted from each genomic sequence using
Barrnap (v0.9), if more than one 16S sequence was predicted the longest sequence was
kept for further analysis168. For each species the selected 16S sequences were aligned us-
ing ssu-align (v0.1.1) to account for RNA 3D structure and transformed from Stockholm
to FASTA file format using ssu-mask169. A maximum likelihood tree was inferred from
the ssu multiple sequence alignment using IQ-tree (v2.2.0.3) with 1000 bootstrap itera-
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tions, 1000 replicates for SH approximate likelihood ratio test and utilizing ModelFinder
for optimal model selection, other settings were set to default170,171.
The last phylogenetic method attempted was focused on the multiple sequence core

gene alignment produced by Roary. The core multiple sequence alignment was trimmed
using ClipKIT (v1.3.0) and used to infer a maximum likelihood phylogeny using IQ-
tree with the same setting previously described172. Additionally a maximum likelihood
phylogeny approximation was inferred using Fasttree (v2.1) using the clipped core gene
nucleotide alignments for all species57.

Clustering of genomes

To analyse the effect of origins of isolation on possible clustering of the genomes, a
permutation test of the metadata on the phylogenies is applied using the Clustering
significance test script by Y. Wijesekara53,54. Here a p-value of 0.01 was set with 10000
permutation replicates for all species for the 16s, core and Mash phylogenies. Origins of
isolation were counted for each cluster proven significant after permutation.

Feature selection

The presence and absence patterns of the orthologous groups of the accessory pan-
genome as identified for each species by Roary, were associated to the origin of isolation
using Scoary (v1.6.16) (p < 0.05), a bacterial pan-GWAS approach173. The origins of
isolation were grouped, to reduce the number of singleton isolation origins, and for the
per species analysis the urine and UTI origins of isolation were both labeled as urine for
all species. In a secondary analysis of the urine and UTI origins of isolation in E. coli
the two origins of isolation were separately annotated where all other annotations and
settings remained unchanged.
Hereafter the orthologous groups that were identified as being associated with the

urine or UTI origin of isolation, were further filtered for presence rather than absence
in these isolation sources. Hereto the final Scoary results for urine were sub-selected
for a specificity of 100, resulting in orthologous groups only present in urine, creating a
set of urine unique orthologous groups. Additionally the urinary associated orthologous
groups were split in two groups, being overrepresented and underrepresented in urine or
UTI. Hereto the presence-absence profile of the urinary associated orthologous groups
were grouped on origin of isolation and the number of occurrences was divided by to
the number of genomes with the origin of isolation, resulting in a relative occurrence
for each origin of isolation. Subsequently, the relative occurrences were normalized from
0 and 1 per orthologous group. Orthologous groups with normalized values above 0,5
were classified as overrepresented in urine, groups with values below 0,5 were classified as
underrepresented. Both filtering strategies were applied to the Scoary results associating
urine and UTI separately in E. coli.
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Functional annotations

To map the filtered orthologous groups to KEGG pathways, three annotation methods
were applied. Firstly, one representative sequence was selected from each filtered orthol-
ogous group and concatenated in one FASTA file per species. These files were uploaded
to the BlastKOALA and KofamKOALA servers for annotation of KEGG KO identi-
fiers174,175. For BlastKOALA annotations taxonomy ID’s in accordance with the NCBI
Taxonomy browser were used for each species and the “species prokaryotic” KEGG genes
database was searched. Of the resulting annotations only the first annotated KO for
each sequence was used in further analysis. KofamKOALA annotations were run using
the default E-value of 0.01.
Lastly, all sequences from the filtered urine unique, overrepresented and core orthol-

ogous group were annotated with EggNOG (v2.1.9) using HMMER searches, with the
database for bacteria, taxID 2, for each species176–178. A KEGG KO, CAZy and TC
identifier was appointed to each orthologous group, if available, based on a majority
voting system. In cases where two or more KO, TC or CAZy identifiers had an iden-
tical number of votes, these identifiers were both kept and the double annotation was
stored in a separate file. For orthologous groups filtered as underrepresented in urine
one representative sequence of each group was annotated with the same settings.
Additionally EggNOG annotations were used to analyse the grouping of sequences

within the orthologous groups, by analysing the uniformity of the annotations within
one orthologous group. Hereto the number of unique COG annotations for each group
were counted. Alongside the uniformity of the orthologous groups, splitting of the or-
thologous groups was also analysed. Hereto the occurrences of each COG assigned to
one orthologous group were analysed, if two or more COGs were present within one
orthologous group, the occurrences for all COGs was analysed.

Protein-protein interactions using STRING

The selected representative sequence from each filtered orthologous group per species
were loaded into STRING for each species and the full species name was selected as Or-
ganism61. When multiple strains of the organism were present as reference in STRING,
the organism with the highest number of matches was chosen. Chosen reference strains
were Staphylococcus haemolyticus JCSC1435, Enterococcus faecalis V583, Pseudomonas
aeruginosa, Klebseilla pneumoniae, Escherichia coli CFT073, the resulting networks
were manually analysed. To avoid bias between analyses the Escherichia coli O157H7
strain was selected as reference for the urine vs UTI analysis, albeit not being top rated
for UTI. The minimum required interaction score was set as high (0.700) for all analyses.

KEGG pathway analysis

The by EggNOG KO annotated core and urine specific orthologous groups for each
species were mapped to KEGG pathways and modules using the KEGG API179–181.
The KOs, pathways and modules for the urine specific orthologous groups were then
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analysed on uniqueness and overlap between species. Additionally, completeness of the
urine specific pathways and modules was calculated, for each species separately, with
complete pathway and module data from the KEGG API.
Alongside pathway completeness, the connectivity of the urine specific KOs within

the pathways was analysed. Hereto for each pathway the KGML was downloaded via
the KEGG API, all compounds were extracted and loaded as nodes in a graph. There-
after, the KO annotations for all reactions were extracted from the KGML file and only
reactions with KO annotations present in the annotated orthologous groups were placed
as edges in the graph, resulting in a graph with only urine specific reactions. To analyse
the urine specific graph connectivity, the size and number of connected components was
calculated for each graph.
With the core orthologous groups being present in all genomes of one species the

connectivity of the core for each species was also analysed. All KOs of the orthologous
groups of the core that had a KO annotation were added to the urine specific graphs of
the corresponding pathways as edges. If no urine specific graph was present a new graph
for this pathway was initialized as before. Graph connectivity was then reanalysed,
recalculating the size and number of the connected components for each pathway.

Biosynthetic gene clusters

To not only study the individual genes and pathways, the Biosyntethic Gene Clusters
(BGC) were analysed. Hereto the GBK files for all genomes as annotated by Prokka
were used as input files for antiSMASH (v6.1.0), using the settings “–cb-general”, “–cb-
knownclusters” and “–cb-subclusters” to compare identified clusters against a database
of antiSMASH clusters, against known subclusters responsible for synthesising precursors
and the MIBiG database respectively182. Additionaly the options “–asf”, to run active
site finder analysis, “–pfam2go”, to use Pfam to Gene Ontology mapping module and
“–genefinding-tool none”, were used.
Predicted BGC gbk files were grouped into Gene Cluster Families (GCF) and classes

using BiG-SCAPE (v1.1.5) with settings to include analysis for mixing all classes, in-
cluding singleton BGCs and including BGCs from MIBiG database and mode set to
auto, all other default settings were used183. To analyse the BGCs per annotated class
and family number, the total number of clusters and the number of clusters with a urine
isolation origin per family number were counted. If the number of clusters in one family
was the same as the number of clusters with a urine origin of isolation this cluster was
labeled as urine specific.
Subsequently, the expected number of urine-related clusters in a given family was

calculated. Firstly, the percentage of clusters identified in urine genomes in the total
number of identified clusters from all isolation origins was calculated for each species.
Secondly, this percentage was used as an expected urine percentage for all GCF and BGC
classes for the specific species, giving the expected number of urine-related clusters of
that family or class. A Mann Whitney U test was used to test statistical differences
between the actual number and the expected number of clusters with urinary origin for
class of BGCs present per species.
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Additionally, families within each BGC class per species that exhibited an overrepre-
sentation of urinary related clusters, but were not exclusive to urine, were selected by
applying a threshold of a 50% increase of the actual number of clusters with urinary
origin compared to the expected number of urine-related clusters. Predicted products
for all families within one class were analysed and potential products were inferred in
correspondence with the whole pan-genome mapped to KEGG179,181.

Metabolomics

DART measurements

To measure the changes in metabolites when the five species grow in AUM, reference and
spent media, after 48h of bacterial growth, were measured using direct analysis in real
time (DART). AUM and spent media were obtained for S. haemolyticus, P. aeruginosa,
E. faecalis, E. coli and K. pneumoniae, with respective identifiers 36, 9, 18, 20 and 1, as
described in a previous study14. For each species, fresh AUM was measured as a reference
in positive and negative mode, whereafter the spent medium was twice measured in
negative mode succeeded by two measurements in positive mode. Measurement times
are shown in Table 5. No timestamps were noted for K. pneumoniae AUM reference
measurements and positive mode spent medium measurements, K. pneumoniae was
therefore excluded from further metabolomics analysis.

Table 5: Times of DARTmeasurements in fractions of minutes for the measured species.

Species
Positive
AUM

Negative
AUM

Negative
spent

medium
1

Negative
spent

medium
2

Positive
spent

medium
1

Positive
spent

medium
2

S. haemolyticus 0.56 2.6 4.5 6.1 8.55 10.8
P. aeruginosa 1.03 2.7 4.4 6.2 8.0 10.15
E. faecalis 0.66 3.5 5.6 7.5 10.9 12.9
E. coli 1.03 4.9 5.7 6.2 9.7 11.6

DART data analysis

The by DART produced .RAW files were analysed using FreeStyle (v1.8 sp2, Thermo
Fisher Scientific). Firstly, an average spectrum was created of an interval of 0.15 minute
fractions, corresponding to 33 scans, for each measurement, and peak lists of these
average spectra were created and saved as csv files.
Secondly, the average spectrum data were filtered on mass accuracy, all m/z values

with relative intensity 100 were rounded from 12 to 0 decimals, calculating the standard
deviation between the m/z values at each number of decimals. The m/z values for
all measurements were rounded to 3 decimals, as the standard deviation between the
maximum relative intensity peaks at this m/z accuracy was zero. When two peaks with
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the same rounded m/z value were present, the highest relative intensity was assigned
to the m/z value. Analysis of these maximum relative intensity peaks revealed that
the m/z values at relative intensity 100 for two E. coli measurements were different
from all other measurements, these measurements, being “Negative spent medium 2”
and “Positive spent medium 1”, where therefore excluded from further analysis. Average
spectra of spent media of one mode for each species were joined on m/z values and relative
intensity was averaged if m/z value was detected in both measurements, otherwise the
once measured intensity value was assigned to m/z value.
Alongside the m/z accuracy filtering, peaks were filtered on relative intensity values

to reduce noise. Histograms of the m/z filtered peaks of the reference AUM spectra were
plotted and showed a drop in peak count after relative intensity 0.006 except for E. coli.
Thus, the assumption was made that the noise level was 0.006 in most measurements of
this experiment and therefore, all peaks were filtered with a relative intensity threshold
of 0.006 (Figure S6).
The resulting reference peaks were further filtered by selection of peaks with m/z

values common in all species’ positive and negative mode reference measurements sepa-
rately. Subsequently the difference in relative intensities between average spent medium
and common reference peaks was calculated for each mode individually, if no peak in
spent medium was detected at specific m/z value and mode, the spent medium relative
intensity was assumed to be 0, and the compound was assumed to be depleted. Similarly
if no reference peak was detected at specific m/z value and mode the reference relative
intensity was assumed to be 0, and the compound was assumed to be newly excreted.
Per measurement mode and per species the differences were sub-selected between -0.2
and 0.2 to exclude long tails from the distribution and the standard deviations were
calculated. Changes were labeled as consumed when the relative intensity difference of
average spent medium minus the reference were below minus 3 times the calculated stan-
dard deviation, and labeled as excreted when this difference was greater than 3 standard
deviations. Common and unique peaks for each species were identified, for the depleted,
consumed, excreted and newly excreted category and mode separately.

DART peak identification

Three methods were applied to identify the compounds represented by the peaks in
the spectra. Firstly, all compounds known to be present in AUM as described in the
original methods were attempted to be linked to a m/z peak, using their known chemical
structure, the mode by which they were detected and a conversion table to convert the
known masses to possible m/z values, M −H conversions were used for negative mode,
M +H and M +NH4

27,184.
Secondly, for peaks left unannotated by the first strategy, an additional annotation

method was attempted. This method utilises the “Elemental Composition” function of
FreeStyle to predict possible molecular formulas for each peak. The peak m/z value was
entered in the Mass tab, using a mass tolerance of 5 ppm, a charge of 1 and selecting
the top 5 predicted candidates. Candidate molecular formulas were then based on their
ranking checked and against PubChem. PubChem structures and annotations were
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reviewed based on likeliness to be present in yeast extract and only molecular formulas
consisting of covalent bound molecules were allowed161.
In parallel to this second method a third method was utilized, here all unannotated

m/z peak values were converted to possible masses using the previously used conver-
sion based on their mode and the assumption was made that most unannotated peaks
originated from yeast extract present in the AUM. The predicted monoisotopic masses
were checked against the The Yeast Metabolome Database (YMDB), unless they were
common in E. coli then matching metabolites were searched in the E. coli Metabolome
Database (ECMDB) as this second database specifies compounds present in E. coli,
reducing false positive or erroneous annotations185–188. the converted mass values were
entered as a mass search query for the monoisotopic mass, allowing a mass change of 1%.
These possible yeast metabolites were cross-referenced against the molecular formulas
as predicted by FreeStyle.

Data and Code availability

Code to reproduce the results and PATRIC genome identifiers are available at https:
//gitlab.com/LMSpekking/uti_project.git
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R. First Steps in the Analysis of Prokaryotic Pan-Genomes. Bioinformatics and
Biology Insights 14, 1–9 (2020).

34



38. Yang, T. & Gao, F. High-quality pan-genome of Escherichia coli generated by
excluding confounding and highly similar strains reveals an association between
unique gene clusters and genomic islands. Briefings in Bioinformatics 23, bbac283
(2022).

39. Hesse, C. et al. Genome-based evolutionary history of Pseudomonas spp. Envi-
ronmental Microbiology 20. issn: 1462-2912 (2018).

40. He, Q. et al. Comparative genomic analysis of Enterococcus faecalis: insights into
their environmental adaptations. BMC Genomics 19, 527. issn: 1471-2164 (2018).

41. Pain, M., Hjerde, E., Klingenberg, C. & Cavanagh, J. P. Comparative Genomic
Analysis of Staphylococcus haemolyticus Reveals Key to Hospital Adaptation and
Pathogenicity. Frontiers in Microbiology 10 (2019).

42. Flores-Valdez, M. et al. Whole Genome Sequencing of Pediatric Klebsiella pneu-
moniae Strains Reveals Important Insights Into Their Virulence-Associated Traits.
Frontiers in Microbiology 12. issn: 1664-302X (2021).

43. Connor, T. R. et al. Species-wide whole genome sequencing reveals historical
global spread and recent local persistence in Shigella flexneri. eLife 4, e07335.
issn: 2050-084X (2015).

44. Brenner, D. J., Fanning, G. R., Steigerwalt, A. G., Ørskov, I. & Ørskov, F. Polynu-
cleotide Sequence Relatedness Among Three Groups of Pathogenic Escherichia coli
Strains. Infection and Immunity 6, 308–315. issn: 0019-9567 (1972).

45. Khot, Prasanna D. & Fisher, Mark A. Novel Approach for Differentiating Shigella
Species and Escherichia coli by Matrix-Assisted Laser Desorption Ionization–Time
of Flight Mass Spectrometry. Journal of Clinical Microbiology 51, 3711–3716
(2013).

46. Denton, J. F. et al. Extensive error in the number of genes inferred from draft
genome assemblies. PLoS computational biology 10, e1003998 (2014).

47. Salzberg, S. L. Next-generation genome annotation: we still struggle to get it right.
Genome Biology 20, 92 (2019).

48. Heaps, H. S. Information retrieval, computational and theoretical aspects isbn:
978-0-12-335750-2 (Academic Press, New York, 1978).

49. Von Meijenfeldt, F. A. B., Hogeweg, P. & Dutilh, B. E. A social niche breadth
score reveals niche range strategies of generalists and specialists. Nature Ecology
& Evolution (2023).

50. Tantoso, E. et al. To kill or to be killed: pangenome analysis of Escherichia coli
strains reveals a tailocin specific for pandemic ST131. BMC Biology 20, 146
(2022).

51. Park, S.-C., Lee, K., Kim, Y. O., Won, S. & Chun, J. Large-Scale Genomics
Reveals the Genetic Characteristics of Seven Species and Importance of Phylo-
genetic Distance for Estimating Pan-Genome Size. Frontiers in Microbiology 10,
834 (2019).

35



52. Wyres, K. L. et al. Distinct evolutionary dynamics of horizontal gene transfer in
drug resistant and virulent clones of Klebsiella pneumoniae. Pros Genetics 15,
e1008114 (2019).

53. Wijesekara, Y. Clustering-significance-test July 2023. https://github.com/
Yasas1994/Clustering-significance-test (2023).

54. Balaban, Metin, Moshiri, Niema, Mai, Uyen, Jia, Xingfan & Mirarab, Siavash.
TreeCluster: Clustering biological sequences using phylogenetic trees. PLoS ONE
14, e0221068 (2019).

55. Katz, L. S. et al. Mashtree: a rapid comparison of whole genome sequence files.
Journal of open source software 4, 10.21105/joss.01762 (2019).

56. Zhou, X., Shen, X.-X., Hittinger, C. T. & Rokas, A. Evaluating Fast Maximum
Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data
Sets. Molecular Biology and Evolution 35, 486–503 (2018).

57. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-
Likelihood Trees for Large Alignments. PLoS ONE 5, e9490 (2010).

58. D’Souza, G. et al. Less Is More: Selective Advantages Can Explain the Prevalent
Loss of Biosynthetic Genes in Bacteria. Evolution 68, 2559–2570 (2014).

59. Zdziarski, J., Svanborg, C., Wullt, B., Hacker, J. & Dobrindt, U. Molecular Basis
of Commensalism in the Urinary Tract: Low Virulence or Virulence Attenuation?
Infection and Immunity 76, 695–703 (2008).

60. Zdziarski, J. et al. Host Imprints on Bacterial Genomes—Rapid, Divergent Evo-
lution in Individual Patients. PLoS Pathogens 6, e1001078 (2010).

61. Szklarczyk, D. et al. The STRING database in 2023: protein–protein association
networks and functional enrichment analyses for any sequenced genome of interest.
Nucleic Acids Research 51, D638–D646 (2022).

62. Lindahl, T. An N-Glycosidase from Escherichia coli That Releases Free Uracil from
DNA Containing Deaminated Cytosine Residues. PNAS 71, 3649–3653 (1974).

63. Venkatesh, J., Kumar, P., Krishna, P. S. M., Manjunath, R. & Varshney, U. Impor-
tance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium
smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified ni-
trite, and endurance in mouse macrophages. The Journal of Biological Chemistry
278, 24350–24358 (2003).

64. Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in
DNA. Nature 287, 560–561 (1980).

65. Fang, F. C. & Vázquez-Torres, A. Reactive Nitrogen Species in Host-Bacterial
Interactions. Current opinion in immunology 60, 96–102 (2019).

66. Lacerda Mariano, L. et al. Functionally distinct resident macrophage subsets
differentially shape responses to infection in the bladder. Science Advances 6,
eabc5739 (2020).

36



67. Lund, G. S. & Wolf, C. G. L. The Glucose Content of Normal Urine. Biochemical
Journal 19, 538–540 (1925).

68. Brinster, S., Furlan, S. & Serror, P. C-Terminal WxL Domain Mediates Cell Wall
Binding in Enterococcus faecalis and Other Gram-Positive Bacteria. Journal of
Bacteriology 189, 1244–1253 (2007).

69. Brinster, S. et al. Enterococcal Leucine-Rich Repeat-Containing Protein Involved
in Virulence and Host Inflammatory Response. Infection and Immunity 75, 4463–
4471 (2007).

70. Jamet, A. et al. The Enterococcus faecalis virulence factor ElrA interacts with
the human Four-and-a-Half LIM Domains Protein 2. Scientific Reports 7, 1–13
(2017).

71. Katongole, P., Nalubega, F., Florence, N. C., Asiimwe, B. & Andia, I. Biofilm
formation, antimicrobial susceptibility and virulence genes of Uropathogenic Es-
cherichia coli isolated from clinical isolates in Uganda. BMC Infectious Diseases
20, 453 (2020).

72. Ballash, G. A. et al. Pathogenomics and clinical recurrence influence biofilm ca-
pacity of Escherichia coli isolated from canine urinary tract infections. PLoS ONE
17, e0270461 (2022).

73. Soto, S. M. et al. Implication of biofilm formation in the persistence of urinary
tract infection caused by uropathogenic Escherichia coli. Clinical Microbiology and
Infection 12, 1034–1036 (2006).

74. Madsen, J. S., Burmølle, M., Hansen, L. H. & Sørensen, S. J. The interconnection
between biofilm formation and horizontal gene transfer. FEMS immunology and
medical microbiology 65, 183–195 (2012).

75. Niveditha, S., Pramodhini, S., Umadevi, S., Kumar, S. & Stephen, S. The Isola-
tion and the Biofilm Formation of Uropathogens in the Patients with Catheter
Associated Urinary Tract Infections (UTIs). Journal of Clinical and Diagnostic
Research 6, 1478–1482 (2012).

76. Juhas, M. Horizontal gene transfer in human pathogens. Critical Reviews in Mi-
crobiology 41, 101–108 (2015).

77. Van der Zee, A. et al. Spread of Carbapenem Resistance by Transposition and
Conjugation Among Pseudomonas aeruginosa. Frontiers in Microbiology 9, 2057
(2018).

78. Wozniak, R. A. F. & Waldor, M. K. Integrative and conjugative elements: mo-
saic mobile genetic elements enabling dynamic lateral gene flow. Nature Reviews.
Microbiology 8, 552–563 (2010).

79. Nuttall, K. L. Interpreting Mercury in Blood and Urine of Individual Patients.
Annals of Clinical & Laboratory Science 34, 235–250 (2004).

37



80. Yazdankhah, S., Skjerve, E. & Wasteson, Y. Antimicrobial resistance due to the
content of potentially toxic metals in soil and fertilizing products. Microbial Ecol-
ogy in Health and Disease 29, 1548248 (2018).
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Results

Additional filtering of Klebsiella pneumoniae

Pan-genomes construction of Klebsiella pneumoniae initially yielded no core genomes,
indicating large genetic variation between strains. To remove the strains with the largest
variation from analysis a Mashtree was used to remove all outliers from the dataset
(Figure S1). Removed PATRIC gene ids are displayed in Table S1.

Table S1: PATRIC gene ids removed from analysis for K. pneumoniae

Ids
573.4104 573.5649
573.4033 573.2003
573.4035 573.12495
573.4132 507522.9
573.2314 72407.164
573.4193 72407.165
573.4107 72407.166
573.27692 72407.83
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Figure S1: Mashtree as visualised by iTOL (v5.0) of all Klebsiella pneumoniae genomes
annotated as complete in PATRIC. Strains indicated with red circle were
removed from analysis.
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Phylogenetic analysis

Figure S2: Distribution of ANI scores for outlier genomes as identified by 16s phy-
logeny. Showing distributions with only incidental outliers below 95%.
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Figure S3: Distribution metadata for kmer based phylogeny of E. coli produced by
Mashtree. Showing no bias for GC content and host/environmental isola-
tion, and longer genomes for clade where the urine origin of isolation in
absent.

Gene annotations

Three annotation strategies were tested, Prokka, Prodigal (v2.6.3) and the RAST anno-
tations as available on the PATRIC server, analysing the annotated gene numbers and
lengths [1, 2, 3, 4]. Distributions of gene counts per genome showed a general trend
where Prodigal predicted the smallest number of genes per genome, followed by Prokka
(Figure S4a). This result could be explained by Prokka’s gene finding method where
Prodigal is used for prediction of coding genes, with the possibility of adding more non-
coding genes at further annotation steps [3]. Most genes per genome were annotated in
the GFF3 files as downloaded from PATRIC, mostly annotated with RAST. This would
make these predicted gene files the preferred data source for further analysis, however
gene predictions from PATRIC can be manually curated for some genomes, creating a
disparity between the predicted genes. Moreover, GFF3 and GBK files were not avail-
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able for all strains, further increasing the disparity between annotations by adding new
gene predictions for the unannotated genomes. Gene lengths of the predicted genes
all had approximately the same distribution, indicating that all three predictions have
approximately the same bias on length of predicted genes. Given the disparity created
by the use of PATRIC supplied gene annotation files and Prokka predicting coding and
non-coding genes, Prokka was chosen as a gene prediction tool.

(a) Gene counts

(b) Gene lengths

Figure S4: Distribution of (A) gene counts and (B) gene lengths of genes predicted for
all genomes of each species in the dataset. Prodigal (blue), Prokka (orange)
and RAST (green)
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Annotations

To map the gene clusters of the pan-genome that are overrepresented or unique to urine
to KEGG pathways and modules, KEGG K0 annotations were needed for each gene
cluster. Hereto three annotation methods were compared, BlastKOALA, KofamKOALA
and EggNOG for the urine unique gene clusters (Table S2, Figure S6). Annotations for
comparison were preformed on urine unique gene clusters only to reduce computational
time of annotations for analysis.

Total numbers of unique K0 annotations show that EggNOG annotated the most
gene clusters with a unique KO for all species except E. coli, where KofamKOALA
annotated most unique KOs. Analysing the overlaps although there is an overlap in
KO annotations, the different tools almost always annotate unique KOs as well, the
annotation method chosen will therefore be of influence on the final result. Here EggNOG
was chosen as annotation method as EggNOG can be run locally, thereby facilitating
the annotation of all sequencers within one gene cluster in an more efficient manner and
resulted in the most annotation for all species except E. coli.
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Figure S5: Overlaps of K0 annotations of urine unique sets for blastKOALA, ko-
famKOALA and eggNOG. Showing most unique and common annotated
K0s by eggNOG.

Table S2: KEGG K0 annotations per annotation tool

Species BlastKOALA KofamKOALA EggNOG
S. haemolyticus 1 2 2
P. aeruginosa 68 70 79
E. faecalis 9 7 11
E. coli 47 59 58
K. pneumoniae 284 301 346
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Table S3: KEGG K0 annotations by eggNOG, total and mapped to a pathway

Species KEGG K0 K0 in
Pathway

S. haemolyticus 2 1
P. aeruginosa 79 34
E. faecalis 11 4
E. coli 58 20
K. pneumoniae 364 169

KEGG pathway analysis

Several KEGG pathways were excluded from analysis as these pathways are know to
be absent in bacteria or are non functional within the urinary tract, thereby having no
additive value to the analysis. List of excluded KEGG pathways are displayed in Table
S4

Table S4: KEGG pathways excluded from analysis

KEGG pathway id Pathway name

map00603 Glycosphingolipid biosynthesis - globo and isoglobo series
map00710 Carbon fixation in photosynthetic organisms
map00980 Metabolism of xenobiotics by cytochrome P450
map00981 Insect hormone biosynthesis
map00982 Drug metabolism - cytochrome P450
map00999 Biosynthesis of various plant secondary metabolites
map01524 Platinum drug resistance
map03250 Viral life cycle - HIV-1
map04011 MAPK signaling pathway - yeast
map04013 MAPK signaling pathway - fly
map04016 MAPK signaling pathway - plant
map04066 HIF-1 signaling pathway
map04080 Neuroactive ligand-receptor interaction
map04113 Meiosis - yeast
map04141 Protein processing in endoplasmic reticulum
map04211 Longevity regulating pathway
map04212 Longevity regulating pathway - worm
map04213 Longevity regulating pathway - multiple species
map04214 Apoptosis - fly
map04217 Necroptosis
map04361 Axon regeneration
map04626 Plant-pathogen interaction

( To be continued)
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KEGG pathway id Pathway name

map04727 GABAergic synapse
map04940 Type I diabetes mellitus
map04970 Salivary secretion
map04972 Pancreatic secretion
map04973 Carbohydrate digestion and absorption
map04975 Fat digestion and absorption
map05010 Alzheimer disease
map05012 Parkinson disease
map05014 Amyotrophic lateral sclerosis
map05016 Huntington disease
map05017 Spinocerebellar ataxia
map05020 Prion disease
map05022 Pathways of neurodegeneration - multiple diseases
map05030 Cocaine addiction
map05031 Amphetamine addiction
map05131 Shigellosis
map05134 Legionellosis
map05146 Amoebiasis
map05166 Human T-cell leukemia virus 1 infection
map05200 Pathways in cancer
map05204 Chemical carcinogenesis - DNA adducts
map05206 MicroRNAs in cancer
map05207 Chemical carcinogenesis - receptor activation
map05208 Chemical carcinogenesis - reactive oxygen species
map05225 Hepatocellular carcinoma
map05230 Central carbon metabolism in cancer
map05231 Choline metabolism in cancer
map05340 Primary immunodeficiency
map05415 Diabetic cardiomyopathy
map05418 Fluid shear stress and atherosclerosis

Metabolomics

Table S5: Number of m/z values in reference measurements after filtering at a relative
intensity of 0.006

Species Positive mode Negative mode
S. haemolyticus 351 397
P. aeruginosa 391 489
E. faecalis 402 671
E. coli 990 1518
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Figure S6: Histograms of relative intensities of reference measurements in positive and
negative by DART. Red line indicated filtering threshold of 0.006, gray
shaded was removed from analysis.10



Figure S7: Pairwise interaction matrix depicting the interactions in yield (maximum
OD600 ) of 5 UTI isolates of which metabolomics were measured in condi-
tioned medium prepared from these same isolates. The interaction measure,
-2 indicates positive interaction (blue), 2 negative interactions (red). The
acceptor strains (columns) are grown in the conditioned medium of the
donor strains (rows). The upper left to lower right diagonal represents the
self-interactions. Modified from [5].
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