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Abstract

This thesis investigates the application of multi-critic reinforcement learning to
taxonomy construction. Using multiple critics in complicated environments has been
shown to improve overall performance on a plethora of reinforcement learning tasks.
Guiding the learning process of the critic by explicitly constraining it to a small sub-
set of the task is an effective way to speed up learning and ensure stability during
training. Combining several of these constrained critics into a centralized critic out-
performs single critic methods on a variety of different tasks. Multi-critic algorithms
are especially effective when there is an underlying structure of the task with clearly
defined sub-tasks that can be evaluated independently. In this work, we introduce a
multi-critic algorithm for taxonomy construction, where we use two critics to evaluate
the choice of the parent and child words at each step. Through a series of experiments,
we demonstrate that the critics have learned to effectively identify the source of error
in incorrect actions, which was not possible with previous methods. We also demon-
strate the robustness of our model by analyzing the consistency of the structure of its
generated taxonomies.
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1 Introduction

The taxonomy of a domain presents a categorization of the most important concepts
and terms within the domain by organizing them according to their “is-a” relations
[Brachman, 1983]. P is-a Q holds for two terms P and Q if P in a given context is a
subclass (or a more specific instance) of Q. In this context, P is called the hyponym,
while Q is the hypernym. For example, if we take the domain of our taxonomy to
be vehicles, the relation Ferrari “is-a” car holds as a Ferrari is a type of car. A full
taxonomy of a domain is an acyclic graph where nodes represent terms, and directed
edges between them represent “is-a” relations.

Animal

Herbivore Carnivore

Deer Koala Lion Anteater

Figure 1: An example (partial) taxonomy.

A well-known use of taxonomies is in biology, where it is used to represent the re-
lations of different species (an example is shown in Figure 1). It is a powerful tool to
summarize knowledge and present it in an easy-to-understand way, and as such, it is
of great practical importance in its own right. Additionally, it is often used by down-
stream processes that rely on a background resource for their task. For example, some
question-answering methods make use of domain-specific taxonomies for query under-
standing.

It is, however, not a trivial task to construct high-quality taxonomies from text, es-
pecially for domains with a huge number of terms and concepts that need to be incor-
porated. Manual construction of taxonomies requires a lot of time and manpower and
needs to be created by experts in the field to be of tangible value. There have been efforts
to hand-craft large taxonomies for a variety of domains, such as WordNet [Miller, 1995].
Even so, it still does not cover every topic that might be of interest.

Because of the challenges of manual taxonomy construction, automating the process
has received a lot of attention from researchers. The goal of automatic taxonomy induc-
tion is to infer an accurate taxonomy graph from a set of background resources, such
as, in the case of biology, a set of articles about different living creatures.

Reinforcement learning has only been applied to taxonomy construction in a limited
number of cases [Mao et al., 2018], [Han et al., 2021], and without its full potential.
Most notably, there have been no efforts to employ a multi-critic algorithm that can take
advantage of the hierarchical nature of the task. The goal of this thesis is to investigate
the viability of multi-critic agents and demonstrate that there is potential to improve
upon existing models by improved credit assignment.

In Section 2, we give an overview of the current state of the field of taxonomy
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construction, as well as introduce some relevant reinforcement learning concepts and
present a literature overview of multi-critic methods. In Section 3, we analyze and give
a formal definition of the problem. In Section 4, we motivate and define our solution to
the proposed problem. Section 5 showcases the experiments and results of our model.
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2 Background and related work

In this section, we give an overview of the current state of taxonomy induction, as well
as introduce basic concepts of reinforcement learning, followed by an explanation of
actor-critic methods.

2.1 Taxonomy construction

In this section, we present an overview of different approaches and methods to taxonomy
construction. The task is usually divided into two subtasks [Wang et al., 2017] that are
performed independently.

• Determining “is-a” relations The first task is determining “is-a” relations be-
tween pairs of terms. Different combinations of candidate words are tested to de-
termine the relations between them. This process might be aided by a background
corpus. A background corpus is a large collection of texts with the same domain as
the taxonomy. This allows the model to look for domain-specific relations between
different terms. For example, if we are making a taxonomy of cooking ingredients,
ginger might fall under the category condiment. However, if we are cataloging living
organisms, it would be a type of plant (yet there is no is-a relation between plants
and condiments). As the example above illustrates, the specific domain has a great
influence on what relations might be considered valid.

• Hierarchy construction The second subtask is equally challenging: It is con-
cerned with assembling a valid taxonomy from the pairs of terms found during
phase one. The difficulty of this task does not only come from the fact that the
generated nodes and edges need to respect the transitive property (if a “is-a” b and
b “is-a” c then also a “is-a” c ), but it is also important to make sure that the final
graph is acyclic and has a single root node that is reachable from all nodes of the
graph. To correctly predict the structure of the target taxonomy, it is again impor-
tant to have access to a background corpus which dependencies between words
can be extracted from.

In the remainder of this section, we present an organized overview of methods for
both of these subtasks, briefly discussing their strengths and weaknesses.

2.1.1 Term-pair extraction

Methods of term-pair extraction (finding pairs of words related by “is-a” relation) can
generally be divided into two groups based on their approach: Pattern-based and sta-
tistical methods.

Pattern-based methods Pattern-based methods rely on matching a large number of
hand-crafted syntax-level patterns to extract word relations from text. The first pattern-
based method made use of the Hearst patterns [Hearst, 1992], which is a collection of
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lexico-syntactic patterns for recognizing hyponymy relations in text. An example of such
a pattern is

NP0 such as {NP1, NP2, ...(and|or)}NPn

This pattern describes the syntax of an expression. Here NP0 is the hypernym (NP
stands for noun phrase, which is either a noun, or a phrase that has the same gram-
matical role as a noun, for example the red dog), and NP1 to NPn are its hyponyms.
The pattern asserts that if in the source text there is a sequence of a noun phrase fol-
lowed by “such as”, and then a list of other noun phrases, possibly with an “and” or
an “or” before the last one, we conclude that the noun phrase at the beginning is the
hypernym of all the other phrases. For example, the sentence “Trees such as oak and
pine...” matches this pattern. With a large collection of these patterns, it is possible to
mine “is-a” relations from background corpora. Hearst patterns have been successfully
used to construct taxonomies from websites, such as Probase [Wu et al., 2012], which
extracts term pairs from web texts.

Pattern-based approaches are, however, extremely inefficient at finding hypernym
relations while also being time-consuming. Since the patterns are fully syntactic, they
only produce results if there is a perfect syntax level match. Due to the versatile and
hard-to-capture nature of human languages, most of the sentences semantically ex-
pressing “is-a” relations have different syntactic forms, resulting in a low recall [Wu et al., 2012]
due to missing out on a lot of valid relations just because they happened to not have the
exact form prescribed by the patterns. An additional drawback of the purely pattern-
based approaches is that it takes a lot of time and manpower to manually create the
patterns.

Over the years, there have been several attempts at mitigating the drawbacks of
pattern-based methods by making them more general and less reliant on syntax-level
features. [Luu et al., 2014] enables the identification of term pair relations based on the
context of the words, allowing for the detection of pairs that do not appear in the same
sentence and, as such, would not have been picked up by traditional pattern matching.
[Snow et al., 2004] enriches the patterns with dependency path information between
the two terms. In their method, the model starts with a number of known hypernym
pairs, which are used to extract dependency paths from the background text, and then
applies these when detecting new, unknown pairs.

Statistical methods The second class of methods for term pair extraction is statistical-
based. Instead of manually specifying the syntactical properties of such relations, those
are derived from the statistics of the background text instead.

A simple statistical-based approach is to train a classifier on a set of candidate
hypernym-hyponym pairs, for which it is known whether the relation holds. After train-
ing, the classifier is able to generalize and can be used to find pairs among previously
unseen words. In the most basic case, the feature representation of the two terms is the
word vector, such as GloVe [Pennington et al., 2014], or Word2vec [Mikolov et al., 2013].
In some variations, the vector difference of the embeddings is used instead to abstract
away from the actual words and focus more on how they relate to each other instead.
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A different approach for finding hypernym/hyponym pairs is to look at the context
in which the words occur and infer relations based on how similar those contexts are
[Geffet and Dagan, 2005]. The underlying assumption here is that a hyponym appears
in a subset of the context of the hypernym, while the hypernym appears in all contexts
of the hyponym (e.g., the hypernym is more general). Similar methods have also been
developed where not only the context words are included but also their syntactic relation
[Lin et al., 1998].

[Fu et al., 2014] rely explicitly on the spatial properties of pre-trained word embed-
dings. Dense word embedding such as Word2vec or GloVe have been shown to retain
semantic relations of words in the vector space [Church, 2017]. The authors try to take
advantage of this to find hypernym/hyponym relations by learning a projection matrix
from hyponyms to hypernyms. Not all pairs share the same linear relationship, but
they generally tend to cluster. As such, a separate projection matrix is learned for each
cluster.

2.1.2 Taxonomy induction

The second phase of taxonomy construction is building up the graph from a set of given
hypernym/hyponym pairs. This can either mean fully constructing a taxonomy from
scratch or extending an already existing taxonomy with new terms.

Iterative construction The iterative approach is by far the most popular method that
is used almost exclusively in prior work. The general framework starts from some seed
taxonomy, which can be either an empty or some pre-existing taxonomy, then iteratively
extends it, appending new child terms to its nodes where applicable. When inserting
new terms, those, of course, need to be related to a term that is already in the taxonomy.
In other words, a pair (w1, w2) from the set of hypernym/hyponym pairs (which is the
input data for the second phase) needs to have either w1 or w2 in the taxonomy already
in order to be applicable. Since the hypernym relation is not symmetrical, it leads
to two possibilities: Either the parent (hypernym) node is already in the taxonomy,
in which case its pair can be added as a child node, or the hyponym (child) node is
already contained within the taxonomy, in which case its parent need to be added. The
second case, however, is a lot more complicated to handle due to the graph structure
of the taxonomy. As it is a tree with a single root, all nodes that are part of the tree
by definition already have a parent node, making it not trivial how a new parent node
can be added for an arbitrary child node. Because of this limitation, most methods only
allow for the insertion of a child node into an existing parent node and not the other
way around. Revisiting the previous example from above, Figure 2 shows how such an
extension step is done on a partial taxonomy.

Other than direct “is-a” relations, other kinds of indirect relations can also be used
to determine whether a given term can be inserted into a taxonomy. [Snow et al., 2006]
iteratively extend WordNet taxonomies by considering both “is-a” and cousin relations.
Two terms w1 and w2 are (n,m)-cousins if their closest common ancestor is within n and
m edges, respectively. For example, if Lion were to be added as a child to Carnivore,
Koala and Lion would be (2, 2) cousins, as their closest common ancestor (Animal)
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Animal

Herbivore Carnivore

Deer

Animal

Herbivore Carnivore

Koala Deer

Figure 2: Iterative taxonomy extension. Left: The partial taxonomy at arbitrary time
step t during the construction process. Right: The taxonomy is extended by first se-
lecting a parent node (red), then adding a child node from the term set (yellow). The
taxonomy at time step t+ 1 will look like the second taxonomy on the figure.

is 2 edges away from both. By not only considering 1-step relations but also longer
dependencies, their method helps to keep the overall structure of the taxonomy more
consistent.

For certain more specific domains, it might be difficult to find a suitable root taxon-
omy to extend, either because the quality is not up to standards or because no taxonomy
has been constructed yet. In such cases, construction from scratch is the only option.
[Kozareva and Hovy, 2010] start induction from a single root concept, which is a gen-
eral, high-level concept of the given field that gets iteratively expanded into sub-concepts
as the taxonomy is being built up.

2.2 Reinforcement learning

In this section, we introduce the preliminaries of reinforcement learning techniques, as
well as several classical types of reinforcement learning algorithms.

2.2.1 Preliminaries

Reinforcement learning (RL) [Sutton and Barto, 2018] is a field of machine learning
studying the sequential decision-making of an agent in an environment that may be
altered by the actions of the agent. A reinforcement learning task can be formally
described as a Markov decision process (MDP) [Bellman, 1957]. An MDP is a tuple
(S,A,R, P ) where S is a set of possible states, A is the set of possible actions, R :
S × A × S −→ R is the expected immediate reward when transitioning from state s to
state s′ when taking action a. P described the dynamics of the environment, with
P : S × A × S −→ R specifying the probability of transitioning from state s to state s′

when taking action a. For example, p(s′, r|s, a) denotes the probability of transitioning to
state s′ and receiving reward r after taking action a in state s.

The interaction between the agent and the environment is as follows: At each time
step, the agent is presented with the current state s ∈ S, based on which an action a ∈ A
is chosen. Then the next state s′ ∈ S is sampled according to the internal dynamics of
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the environment P (s′|s, a), along with a reward for the last time step r ∈ R. There are
two fundamentally different flavors of environments. If there is a final time step, after
which no action can be chosen, the task is said to be episodic. If there is no final state,
and the agent can continue indefinitely, the environment is said to be continuing.

A policy is a (possibly probabilistic) mapping from state to action: π(a|s) is the proba-
bility of taking action a in state s under policy π. The goal of the learning algorithm is to
find the optimal policy π∗ that maximizes the (discounted) cumulative reward. Since the
cumulative reward might be infinite in the case of a continuing task, a discount factor
(commonly denoted as γ) is applied to make sure it is bounded [Sutton and Barto, 2018].

2.2.2 Tabular methods

To learn the optimal policy, value-based methods estimate the expected cumulative
reward for each action in all states. The optimal policy will then be to pick the highest-
value action in each state. The problem then effectively becomes learning expected
return values for each possible state-action pair. The value q(s, a) of action a in state s
is the expected discounted return Rt+1 + γRt+2 + γ2Rt+3 + ... where Rt is the expected
reward after time step t. It can be rewritten in a recursive form, where the value of an
action in a state is expressed as the intermediate reward and the discounted expected
reward of the remaining steps.

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)(r + γ
∑
a′

π(a′|s)qπ(s′, a′)) (1)

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)(r + γmax
a′

q∗(s
′, a′)) (2)

q(s, a) is the action-value function, and Equation 1 is called the Bellman estimation
equation, and it describes the value of an action under policy π in a recursive fashion.
Equation 2 is the Bellman optimality equation [Bellman, 1957]. It describes the value
of an action under the optimal policy [Sutton and Barto, 2018].

One of the most popular algorithms that take advantage of this relationship is q-
learning [Watkins and Dayan, 1992]. The agent approximates the optimal action-value
function by using Equation 3 as an update rule:

qt(s, a) = qt−1(s, a) + α(rt + γmax
a′

[qt(s
′, a′)]− qt−1(s, a)) (3)

Updating the action-value estimates at each time step using this rule eventually
converges to the true values. Hence acting greedily with respect to Q is the optimal
policy.

2.2.3 Value function approximation

There are some practical problems with q-learning, however. Most notably, it needs
to maintain an estimation for each state-action pair separately, increasing memory re-
quirements. In fact, most real-life environments are way too large to be learned this

11



way. Another problem with this approach is that there is no generalization between
states. Each state has to be learned independently, resulting in slow learning as the
state space gets bigger. In practice it is often the case that the action-values of similar
states are highly correlated. For example, if the goal is for the robot to move to a target
location, then displacing it one millimeter will most likely have only a minor effect on
its optimal behavior, yet q-learning would need to learn the optimal action for the new
state from scratch.

To mitigate the problems outlined above, a technique called value function approxi-
mation is used. Instead of maintaining the estimated action values for each state inde-
pendently, a function is learned that produces those values. This simultaneously solves
the memory problem (the value function tends to have a lot fewer parameters than there
are state-action pairs) and also enables generalization between similar states. The gen-
eral form of the action-value function is qµ(s, a), which returns the value of action a in
state s with learnable parameters µ. The most popular choice of function approximators
is neural networks.

DQN Deep q-learning (DQN) [Mnih et al., 2015] is an extension of q-learning where
instead of storing the values of each state-action pair individually, the lookup table is
approximated by a neural network. The value of action a in state s under a function
with parameters µ is denoted as

qµ(s, a) (4)

A pseudo-code of this algorithm is shown on Algorithm 1.

Algorithm 1: DQN

Initialize µ randomly;
Set the learning rate α to an appropriate value;
for each episode in epoch do

for each step in episode do
Choose action a based on values of qµ;
Observe next state s′, get reward r;
target value ← r + γmaxa′ [qµ(s

′, a′)];
L← (target value− qµ(s, a))

2; /* Calculate loss */
µ← µ+ α∇µL; /* Update the parameters */

end
end

2.2.4 Policy gradient methods

While the previously discussed methods obtain their policy by learning the action value
function, there is also a different family of algorithms called the policy gradient (PG)
methods [Sutton et al., 1999]. The main idea of policy gradient methods is that it is
possible to represent and thus learn the policy explicitly instead of implicitly deriving it
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from the action values. While value-based methods learn to evaluate each action, then
choose the one with the highest value, PG methods learn a policy function that outputs
probabilities for each action.

π(s) is a probability distribution over all possible actions in state s

π(a|s) denotes the probability of choosing action a in state s
(5)

One advantage of this approach is that, in practice, it is often easier to learn a good
policy than it is to learn an accurate value function. For example, if an agent is learning
to play pacman, learning to go left when there is a ghost on the right might be easier to
understand for the model than calculating the exact score in case it decides to go in that
direction. Another benefit of representing a policy directly instead of implicitly choosing
actions based on value estimates is that it makes it possible to represent stochastic
policies. In some cases, it might not be beneficial to deterministically choose actions.
For example, a deterministic policy would not work very well for playing rock-paper-
scissors, where the optimal policy is, in fact, stochastic.

Neural networks are a popular choice for policy functions, as they are universal func-
tion approximators [Hornik et al., 1989]. If a policy is expressed by a neural network
with learnable parameters θ, the probability of action a in state s is denoted as

πθ(a|s) (6)

REINFORCE REINFORCE [Williams, 1992] is the most simplistic policy gradient algo-
rithm. During training, it simulates an episode to the end (this method is only applicable
for episodic environments) and stores all the transitions ((s, a, r, s′) (state, action, reward,
new state) tuples) in a buffer. The training takes place after the episode finishes. During
training, for the transition at time step t, it calculates vt, which is the discounted return
starting from t.

vt = rt + γrt+1 + γ2rt+2...

Then for each step, the policy parameters θ are updated in proportion to the log value
of the network output for the state-action pair times vt.

θt+1 = θt + α∇θlogπθ(st, at)vt (7)

This is a robust but slow learning algorithm, not commonly used in practice because
of its low speed of convergence.

Actor-Critic While REINFORCE is a stable algorithm that is guaranteed to converge, it
is, in most cases, not applicable to real-world scenarios because it is extremely sample
inefficient and takes an excessive amount of time and data to train. The reason for
this is that the return values vt that are used at each time step have an extremely high
variance. In more complex environments where episodes last several hundreds or even
thousands of time steps, the sample returns can vary significantly between runs. This
high variance causes the algorithm to converge very slowly. A solution to this problem
is actor-critic methods [Konda and Tsitsiklis, 1999]. An actor-critic algorithm combines
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the ideas of function approximation and policy gradients. Instead of training the policy
towards an empirical sample of the returns, a function approximator is used to learn the
expected value of each action. Using this estimated value instead of the true returns
reduces variance significantly (because the value of an action does not vary for each
run), which leads to much quicker convergence compared to algorithms that do not
take advantage of value function approximation, such as REINFORCE.

An actor-critic agent consists of two parts: the policy network (the actor) π param-
eterized by θ and an action value network (the critic) q parameterized by µ. These are
trained in parallel. The training process is illustrated by Algorithm 2.

Algorithm 2: Actor-Critic

Initialize θ and µ randomly;
Set the learning rates of the actor (αa) and critic (αc) to an appropriate value;
for each episode in epoch do

for each step in episode do
Sample action a ∼ πθ(a|s);
Observe next state s′, get reward r;
Sample action a′ ∼ πθ(a

′|s′);
Lc = (r + γqµ(s

′, a′)− qµ(s, a))
2;

La = ln(πθ(s, a))qµ(s, a);
µ← µ+ αc∇µLc;
θ ← θ + αa∇θLa;

end
end

Multi-critic algorithms In complicated environments, it can be difficult for a single
critic to quickly and effectively learn to estimate action values. In these cases, it can
be beneficial to introduce multiple critics and split up the responsibilities between them
[Martinez-Piazuelo et al., 2020], [Yang et al., 2018], [Mysore et al., 2021]. Introducing a
smaller area of focus eases the load on any individual critics.

The family of multi-critic algorithms is a diverse collection of algorithms centered
around the idea of introducing some kind of structure into the learning procedure to
help guide the attention of critics toward certain parts of the feature space. There
are multiple ways explored for structuring the critics. [Mysore et al., 2021] propose
the use of different critics for different tasks in the same environment. Sometimes an
agent needs to be able to behave in different ways in one environment depending on its
instructions. In their example, there is a modified pong game, where the paddle can
also be rotated in addition to moving up and down. In this environment, the agent is
tasked with learning two different styles of play. It can play either aggressively, trying
to hit the ball with as much power as possible, or defensively, where it slows the ball
down. Their results demonstrate that using 2 distinct critics for the different tasks
outperforms the use of a single critic that has to be able to tell which mode the agent is
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in. This result demonstrates that splitting up the responsibilities of critics is an effective
way to improve overall performance.

FACMAC [Peng et al., 2021] is a multi-agent actor-critic system that introduces fac-
torized critics, with their output being combined into a single final value by a centralized
critic. The contribution of their work is that combining the critics allows for a centralized
policy update rather than having to optimize the policy of each agent independently. As a
result, policies where the individual agents effectively work together are more emergent
compared to when the update happened in isolation. [Peng et al., 2021] demonstrate
that having a potentially large number of independent critics can still lead to overall
improvement.

[Wu et al., 2018] analyze the strengths and weakness of DDPG[Lillicrap et al., 2015],
and conclude that the method suffers from a sensitive critic, which harms its learning
capabilities. To solve this problem, they propose using multiple independent critics and
averaging their outputs to obtain a more stable score. This application of multiple critics
is different from the previous ones in that the critics do not have distinct roles.

[Martinez-Piazuelo et al., 2020] explore the multi-critic idea for controlling multi-
tank water systems. They propose the partitioning of the loss function. If the loss
is linearly separable, it can be broken down into several loss partitions, where each
partition represents some well-defined part of the cost. For example, a cost partition
might be responsible for keeping the temperature of water in a given tank within some
defined range. Another partition might pay attention to large switches in control input
and gives a penalty if the values of certain inputs change too rapidly. Combining all
these different cost partitions results in the final cost. They show that using multiple
critics where each critic is assigned to a cost partition leads to a better performance on
the task than using only a single critic.

Integrating multiple critics into the algorithm is a powerful tool that can lead to sub-
stantial improvements on a variety of different tasks with different model architectures.
Taking advantage of the natural structure of the task in a way to limit the scope of
a critic leads to more efficient learning on the simpler task. [Peng et al., 2021] also
demonstrated that this performance gain is not lost in cases where the final value is a
combination of a large number of individual critics. Multi-critic learning is a versatile
and powerful paradigm that can benefit an array of different tasks.

2.3 Reinforcement learning for taxonomy construction

There is very limited work in applying reinforcement learning for taxonomy construction.
In this section, we describe 2 reinforcement learning agents that managed to achieve a
competitive performance on the benchmarks, TaxoRL [Mao et al., 2018] and built upon
it DTaxa [Han et al., 2021].

Most algorithms for taxonomy induction see the task as a two-phase process: Find-
ing related term pairs is handled separately from building up a tree from those pairs.
The idea behind TaxoRL is that this setup is inherently suboptimal, as it results in a
one-directional information flow between these two stages. While during phase 2, the
algorithm is able to rely on the result of the first phase, it is not the case the other way
around. This means that term pairs are identified independently from the (preliminary)
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structure of the taxonomy, which leads to worse performance. The main contribution
of the paper by [Mao et al., 2018] is to introduce a method that unifies the two distinct
phases into a single one, allowing for hypernym/hyponym pairs to be found with a
preliminary taxonomy in mind.

The algorithm starts out with an empty taxonomy containing only a root node. Then
at each time step, a word is chosen from the provided term set and is attached to one of
the nodes in the taxonomy as a child. When choosing the word to add at time t+ 1, the
current taxonomy at time t is available to aid decision-making. A reinforcement learning
agent is trained to learn to choose the optimal words and parents at each time step.

More formally, the state representation contains the current taxonomy, as well as
the set of remaining words that still need to be added. Taking an action at time t
involves selecting a node from the taxonomy at time t − 1 and a new term to append
from the set of remaining words. Therefore an action is a tuple (parent, children) with
(|TAXONOMYt−1| × |REMAINING WORDSt−1|) number of actions at time t (meaning that the
number of actions differs at each time step). An illustration of this process is shown in
Figure 3.

Animal

Herbivore Carnivore

Koala

Deer Lion Anteater

Carnivore Lion

Take action

Animal

Herbivore Carnivore

Koala

Deer

Lion

Anteater

Remaining terms Remaining terms

Figure 3: An illustrated example of taking an action. Left: The taxonomy at time step t,
along with the set of terms that are not yet included (in red). The action is a tuple of a
word from the taxonomy (yellow), and a word from the set of remaining terms. Middle:
The chosen action in this case is the tuple (Carnivore, Lion). The first word will be used
as the parent node of the second. Right: The updated taxonomy at time t + 1, with the
word from the action attached to its chosen parent node.

During training, the goal of the RL agent is to reproduce the golden taxonomy. Such
a binary condition, however (where the reward is 1 for successfully completing the task
and 0 otherwise), is generally bad for learning, as it can take a very long time until the
agent happens to precisely reconstruct the exact target taxonomy for the first time. To
mitigate this, a smooth metric of policy quality is employed in the form of the Edge-F1
score. It is the F1-score of the “is-a” relations that are present in the taxonomy. It
is calculated much like the traditional F1-score, except using edge precision and edge
recall where edge precision is the number of edges correctly predicted divided by the
number of total predicted edges, and recall is the number of edges correctly predicted
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divided by the number of total correct edges. To measure improvement at each time
step, the reward at time t is defined as the difference in F1 score between the previous
and the current time step: Rt = F1t−1 − F1t

Using the state, action, and reward definitions mentioned above, TaxoRL trained a
REINFORCE agent. The first task it was evaluated on is end-to-end taxonomy construc-
tion, with the dataset containing over 700 examples extracted from WordNet [Bansal et al., 2014].
TaxoRL outperforms the current state of the art on this benchmark. The second experi-
ment is about hypernym organization, using the SemEval-2016 task 13 dataset. TaxoRL
significantly outperforms the previous state-of-the-art method on this task.

DTaxa takes the idea of using a reinforcement learning agent to unify the two phases
of taxonomy construction one step further. They propose replacing the REINFORCE
agent of TaxoRL with a variant of the DDPG agent [Lillicrap et al., 2015], which reduces
the variance under training, and leads to faster learning and a better policy.

3 Problem statement

In this section, we describe and analyze the problem statement and give a motivation
for the choice of the proposed algorithm.

3.1 Problem analysis

A weakness of the methods discussed in Section 2, a characteristic shared by both
TaxoRL and DTaxa, is the structure of their action representations. To elaborate, when
an action is made, it is decided which term from the remaining term set shall be added
to the taxonomy and also at which position. In essence, an action consists of choosing
2 nodes to create an edge between them. Such an action is built up from 2 inherently
different parts, yet it is handled as a single action by both models. We hypothesize that
performance improvements can be achieved by modifying the way actions are handled
to better match the structure and semantics of the underlying problem.

In order for a single action to be correct, or at least to make sense to an extent
where meaningful learning is possible, the two parts of the action (the newly chosen
child, as well as the parent node) need to be simultaneously correct. The action can
either be correct or not as a whole, regardless of individual components. In some cases,
however, one of the sub-actions (we refer to the choice of either one of the terms as a
’sub-action’, while the complete action refers to the choice of both the child and parent
terms) might be correct considering the context of the taxonomy being built. This leads
us to the problem of credit assignment. Credit assignment refers to the process of
identifying the cause of a certain outcome [Minsky, 1961]. For example, if the chosen
action is incorrect, we can pinpoint the exact component of the system or model that
the error originates from. Without proper credit assignment, the model is left in the
dark about what exactly went wrong. With proper credit assignment, however, the root
cause of errors can be found and corrected more quickly. This, in turn leads to faster
learning and better final performance. To illustrate how credit assignment is relevant
for our case, we refer to Figure 4. A small hypothetical taxonomy on the domain of
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Living

Plant Animal

Carnivore Herbivore

Tree

Apple Tree

Rabbit

Horse

Figure 4: Example taxonomy construction task. The already constructed taxonomy
(green) and the elements of the remaining term set (red).

biology is shown, with 5 nodes being already included in the taxonomy (in green) and
the set of remaining 4 terms that need to be added in subsequent time steps (in red).
We illustrate the problems related to the lack of proper credit assignment by discussing
two possible actions chosen at this time step. In Figure 5, one of the potential actions

Living

Plant Animal

Carnivore Herbivore

Tree

Apple Tree

Rabbit

Horse

Figure 5: Example of action (horse, carnivore)

(horse, carnivore) is shown, with the relevant nodes shaded darker. Of course, the given
action is incorrect, as horses are not carnivores, so it is safe to mark the action as a
whole wrong. However, without proper credit assignment, the model will not be able to
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tell the difference between the effect of each of the nodes on the outcome of the action as
a whole. Where does the error come from? Is it caused primarily by choosing the wrong
parent, or by choosing the wrong child, or maybe both? By inspecting the taxonomy and
the term set of the example, we can see that among the four possible child nodes there
are two that belong in the category plant and another two that belong in the category
herbivore, that there is no possible child node for the category carnivore. Based on this
insight, it can be concluded that the choice of parent (carnivore) is part of the action that
should take the blame for the incorrect action, as there are no candidate child nodes
that result in a correct action with that parent node. The child choice, however is not
necessarily incorrect, as there is a node in the taxonomy that can act as its parent.
Another example is shown in Figure 6, where the two sub-actions are plant and horse

Living

Plant Animal

Carnivore Herbivore

Tree

Apple Tree

Rabbit

Horse

Figure 6: Example of action (horse, plant)

instead. In this particular case, the blame cannot be assigned exclusively to a single
party, as both sub-actions could make sense in theory, in combination with a matching
node selection for other sub-action.

A major drawback of previous designs, including TaxoRL and DTaxa, is that there is
no proper distinction between the different ways actions can be incorrect. Conversely, it
is also possible that from the remaining term set, such a child node is chosen for which
the parent is not yet added to the taxonomy tree, therefore making all possible parent
choices incorrect. Figure 7 depicts such a situation. Here the choice of apple tree as the
child should get most of the blame, as its parent, tree, can not be chosen.

The parent choice of plant was in fact not even a bad decision considering the possi-
bilities, yet without proper credit assignment, both parts of the action would be seen as
equally bad.
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Figure 7: Example of action (apple tree, plant)

3.2 Problem formalization

In this section, we formalize the taxonomy construction task as a reinforcement learning
problem. To this end, we first give a high-level description of the iterative taxonomy
construction process, followed by a detailed definition of the corresponding MDP.

Given a set of terms to be organized, the goal is to create a taxonomy containing
words from the term set that matches the golden taxonomy, which is the ground truth,
a taxonomy that is known to be correct. The model is provided with a large background
corpus that can be used to extract information about the relations of words and incor-
porate that information as features in its action representation.

We take an iterative approach to taxonomy construction, where at time t0 we start
with a taxonomy tree containing only a single term, that we then iteratively extend at
each time step by appending a word from the term set as a child to one of its nodes until
all the terms are added. Below we give a formal definition of the MDP.

Action At each time step tn, there is a set of words that are nodes in the taxonomy
tree Ut, a set of remaining terms that are not yet part of the tree Vt and a set of edge E
where the edges connect two nodes in the taxonomy: Et : {(V × V )}. Furthermore, there
is a root node ROOTt ∈ U , which is the root of the taxonomy tree.

To give a concrete example of the taxonomy shown in Figure 7, we have the following
values:

Ut = {Living, Plant, Animal, Carnivore, Herbivore}
Vt = {Tree, Rabbit, Apple Tree, Horse}
Et = {(Plant, Living), (Animal, Living), (Carnivore, Animal), (Herbivore, Animal)}

ROOTt = Living

(8)
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An action can be one of two types:

• Adding a new node as a child In this case the action at has the form (v, u) ∈
(Vt×Ut). The new root v is added to the taxonomy as a child node to u. The update
to the taxonomy at time step t+ 1 is given by

Ut+1 = Ut ∪ {v}
Vt+1 = Vt \ {v}
Et+1 = Et ∪ {(v, u)}

ROOTt+1 = ROOTt

(9)

• Adding a new node as root It is also possible to choose the current root as the
child and append a new term as its parent (with it becoming the new root). This
action at has the form (ROOTt, v) where v ∈ Vt. The update to the taxonomy at time
step t+ 1 is given by

Ut+1 = Ut ∪ {v}
Vt+1 = Vt \ {v}
Et+1 = Et ∪ {(ROOTt, v)}

ROOTt+1 = v

(10)

Combining those two action possibilities, an action has the following form:

at ∈ (Vt × Ut) ∪ ({ROOTt} × Vt) (11)

State For this MDP, the state st at any time step t represents the taxonomy at time
t. A taxonomy tree in this task is represented as a collection of edges, as well as the
remaining term set V . Note that there is no need to explicitly include the terms that
are already part of the tree (the nodes) as they are implicitly given by the edges. The
definition of the state is given below:

st = (Et, Vt) (12)

To give a concrete example of the notion of a state, we refer to Figure 7. The current
state of the taxonomy is given by

E = {(Plant, Living), (Animal, Living), (Carnivore, Animal), (Herbivore, Animal)}
V = {Tree, Rabbit, Apple Tree, Horse}
s = (E, V )

(13)

Reward Similarly to [Mao et al., 2018] and [Han et al., 2021], we use the difference in
Edge-F1 at each time step as the reward signal. Edge-F1 is defined as
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P =
|E ∩ E∗|
|E|

R =
|E ∩ E∗|
|E∗|

F1 =
2 · P ·R
P +R

(14)

where E∗ is the set of edges present in the golden taxonomy and E is the set of edges
predicted by the model. The reward at time step t is then F t

1 − F t−1
1 .
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4 Methodology

Our proposed solution to mitigate the lack of proper credit assignment in previous meth-
ods is to introduce a multi-critic algorithm that separately evaluates both sub-actions.
Instead of having a single critic to predict the value of an action, in this thesis we pro-
pose an algorithm that makes use of 2 different critics, one for each sub-action. This
approach allows for assigning blame to sub-actions independent from each other, lead-
ing to better credit assignment.

In our design, we aim to integrate the idea of using multiple critics into the domain
of taxonomy construction. In our model, there are 2 sub-critics, each looking at only a
part of the features, with their output being combined by a top-level critic into a single
estimate. More specifically, one of the critics is responsible for rating the choice of the
parent node independently of the child node, while the other rates the choice of the
child node independently of the parent node. This design allows for the sub-critics to
be independent and makes it possible to easily optimize the model by backpropagating
only a single time from the final value of the combined critic. The actor, on the other
hand, is not split similarly but is represented by a single network that works on the
whole feature vector. An overview of the whole model is shown in Figure 8.

Actor
2 layer fully connected

feed-forward

π(v, u)

Critic 1
2 layer fully connected

feed-forward

Critic 2
2 layer fully connected

feed-forward

Mixing layer
single layer fully connected

feed forward

q(v, u)

fa(v, u)
fc1(v, u) fc2(v, u)

Figure 8: An overview of the model. fa and fc are the actor and critic feature vectors
respectively, defined in Section 4.1.1 and 4.2.1. Left is the actor, a 2-layer fully con-
nected feed-forward neural network that takes the state and action encodings as input
and outputs the log probability of taking the action. Right is the design of the critic
network, with 2 sub-critics and a mixing layer. One of the critics evaluates the child
choice, while the other the parent choice of the action. The mixing layer combines those
results and produces the final action value.
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In the following section, we describe the design of both the actor and the critic com-
ponent in more detail.

4.1 Actor

The policy network is a fully-connected feed-forward neural network. One of the chal-
lenges of designing the actor architecture for the taxonomy construction task is that it
has to be able to handle a dynamic actions space. Agents that are trained to play Atari
games [Mnih et al., 2015] or to control a robot arm [Franceschetti et al., 2021] have one
key property in common: The number of actions remains unchanged throughout the
completion of their task. This is, however, not the case for taxonomy construction. The
actions are defined by how many terms there are left to be added to the tree, as well
as how many nodes there are currently in the taxonomy. These are dynamic quantities
that change for each time step. Because of this, the standard architecture where the
input to the network is the state representation and the output is a probability distribu-
tion over the possible actions is not possible. Instead, the input will be the state and the
action, and the output is the probability of taking that action in that state. This way,
the network can be used for an arbitrary number of actions.

In addition to this, there is also the challenge of change in action semantics between
different episodes, which is normally not the case in most domains. For example, if a
robot is trained to walk by rotating its joints by some degree, then each action has a
constant role across multiple episodes. If the action corresponding to the first output
value of the network rotates a certain joint in the leg in one episode, it will also rotate the
same joint in the next run. For the domain of taxonomy construction, this consistency
does not apply. If we first build a taxonomy for the animal kingdom, then another one
for different kinds of mining equipment, all the actions would have a completely different
semantic meaning, even if the size of the action space is the same. In other words, the
action corresponding to the first output value will probably have an entirely different
meaning in taxonomy a than in taxonomy b. Therefore the actions themselves need to
be explicitly encoded; it is no longer enough to rely on the fact that positions remain
constant. By using a network that takes in action embeddings, the semantic meaning
of each action can be clearly communicated.

4.1.1 Feature representation

In Section 3.2, we defined the action as a tuple (v, u) of 2 words, where the first word
will be assigned as a child to the second word. To give the action as an input to the
policy network, it needs to be represented by an action embedding. In this section, we
describe how an action embedding is created.

In our algorithm, the policy network takes the state and an action representation as
input and outputs the log probability of taking the action in the given state. The critic
network takes the state and the action representation and outputs the value of that
action. Both states and actions are defined as tuples of words. For the networks to be
able to work with them, they must be converted into a suitable feature vector. In this
section, we discuss how to obtain the feature representations of states and actions.
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For every possible action (v, u), a feature vector is constructed, consisting of the
following parts:

• Word embeddings The word embeddings of v and u. For our algorithm, we used
GloVe [Pennington et al., 2014] embeddings.

• Dependency path embedding A dependency path represents information about
how the two words occur in relation to each other in the background corpus. To
obtain the dependency path of two words in a sentence, we first need the parse
tree of the sentence. The shortest path between the two terms is the dependency
path, which is represented as a sequence of edges starting from the first word to
the second. The action representation of (v, u) contains all the dependency paths
between v and u in the background corpus. To obtain a fixed-size representation, a
path LSTM is used. It is a single-layer LSTM network with a hidden size of 60 that
takes a sequence of paths and reduces them to a single vector of dimensionality
60. This LSTM is trained in conjunction with the rest of the model.

• Syntax level features The last part of the action feature representation includes
a number of different syntax level features. These features are purely derived from
the way the two words are written and do not include any additional statistics from
the background corpus. Below we provide an overview of the syntax-level features.
All these features are concatenated together to form the final vector.

1. Capitalization: Whether any (or both) of the words are capitalized.

2. Endswith: if the second word ends with the first word (for example, for the
pair (bear, polar bear), this would fire.)

3. Contains: If the second word contains the first word.

4. Suffix match: The number of matching trailing letters.

5. LCS: The length of the longest continuous substring contained by both words.

6. LD: Length difference between the words. 10 ∗ |w1|−|w2|
|w1|+|w2|

7. Normalized frequency difference The ratio between the frequency of pair
(v, u) and the the most frequent parent of v, u′: freq(v,u)

maxu′ freq(v,u′) .

8. Generality difference The generality g(v) of term v is the logarithm of the
number of its distinct hyponyms. The generality difference of the pair (v, u) is
defined as g(u)− g(v).

We used the same feature representation as DTaxa. More details can be found in
Section 2.2 of [Mao et al., 2018]. For an overview of a constructed feature vector for
action (v, u), see Figure 9.

As outlined in Section 3.2, a state of the MDP has the form (E, V ). However, includ-
ing the remaining term set V as part of the state feature is not necessary, as the action
encoding already contains this information. Therefore we truncate the state represen-
tation to only E. Notice that the edges of a taxonomy at time t correspond to actions
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Figure 9: An overview of the feature vector representation of action (v, u). It is a concate-
nation of word embeddings of the 2 terms, the dependency path of these terms based
on the background corpus, and their syntax level features into a single vector.

taken up to time t, as each action effectively adds a new edge to the tree. The state at
time step t, therefore, is the sequence of actions taken up to t:

st = (a1, at, ..., at−1) (15)

Its representation is obtained by feeding all the action embeddings (a1, a2, ..., at−1) to a
single layer LSTM network that combines those values into a fixed-size vector of length
60. This LSTM layer is trained in conjunction with the rest of the model. As the model
is fully differentiable, it is possible to simply backpropagate into the LSTM parameters.

4.1.2 Network architecture

The architecture of the policy network is shown in Figure 10.

Fully connected
60 units

π(v, u)

Embedding v Embedding u
Dependency

path
Syntax level

features
State

embedding

ReLU

Fully connected
1 unit

Figure 10: The architecture of the policy network. π(v, u) gives the log probability of
action (v, u).

The policy network is a simple, 2-layer feed-forward, fully connected neural network.
Its input is the action encoding for action (v, u) and the state representation concate-
nated into a single vector of size 230. The first layer has 60 neurons, followed by a ReLU
activation. Its second and final layer only has a single node with no activation. The out-
put is a real-valued scalar that represents the log probability of choosing action (v, u).
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During the construction of a taxonomy, all possible action pairs are fed through the net-
work, with the outputs being concatenated to a vector that contains the log probability
for each action. A Softmax is applied to this vector to convert the values into a valid
probability distribution over the action space. We then sample from this distribution to
obtain the action to take.

4.2 Critic

For our model, the critic is divided into two distinct sub-critics. Each of these critics can
only observe a part of the feature space and, as such, are responsible for rating different
components of the action. The output of these sub-critics is then combined with a single
feed-forward layer neural network to obtain the final value estimate that can be used for
training the actor. As the action is expressed as the edge (u, v) that is to be added to the
taxonomy graph, it can be split naturally into two sub-actions. One part of the action,
u, denotes the new term that shall be added to the taxonomy as a child node, while v
denotes the parent node to connect the child node to. This clear division between the
two parts of the action allows us to employ two distinct critics for rating each sub-action
independently. Both critics use a slightly different feature vector, depending on which
part of the action they focus on.

4.2.1 Feature representation

Both critics use a different feature vector, however those two vectors are similar, essen-
tially the mirrors of each other. The motivation is that when evaluating one sub-action,
no assumptions are to be made about the other part of the action. This leads to two
changes in feature representation with respect to the one used by the actor:

• Word embeddings The word vector of one of the terms is left out, as for the sub-
critic there is no information available about it. This means that one of the actors
only uses the word vector vv while the other only uses the word vector vu.

• Relational features Another difference is that the dependency path and syntax
level features can no longer be used, as they rely on knowing both words of the
action. Instead of leaving those features out, they are modified in a way to not
require knowledge of both terms, only a single one of them. This is achieved by
taking a summary of the relations of the known word with all its possible pairs.
As an example, let’s say that the action chosen by the policy network is the tuple
(vi, uj). Then the critic responsible for the choice of the child node would take the
relations of vi with every possible u and average them to obtain an approximation.
This averaged feature is called the average shared feature of critic 1. The average
shared feature of critic 2 is constructed in a similar way, except the choice of uj

is known, and the average is taken over all possible choices of v. This process is
illustrated in Figures 11 and 12 for both sub-critics.

More formally, the shared features for the sub-critics are defined as:
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Figure 11: Shared feature summary of sub-critic 1. This sub-critic is only aware of the
choice of the child term. To obtain the dependency path and syntax level features, it
takes the features with all possible parent terms, then averages them.
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Figure 12: Shared feature summary of sub-critic 2. This sub-critic is only aware of the
choice of the parent term. To obtain the dependency path and syntax level features, it
takes the features with all possible child terms, then averages them.

f(v, u) : dependency path and syntax features of the term pair (v, u)

fc1(v) : The average shared feature of critic 1, where the child is v.

The mean is taken of all feature vectors with v as child.

fc2(u) : The average shared feature of critic 2, where the parent is u.

The mean is taken of all feature vectors with u as parent.

fc1(v) =

∑
u∈U f(v, u)

|U |

fc2(u) =

∑
v∈V f(v, u)

|V |

(16)
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4.2.2 Network architecture

Fully connected
60 units

ReLU

Fully connected
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q(v, u)

Critic1 Critic2
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Figure 13: The architecture of the critic. q(v, u) is the action-value of the action (v, u),
and q(ai) is the value of sub-action i

The value network is built up of 3 distinct parts. This is illustrated in Figure 13.
There is one network for both critics. Those share the same architecture, with two fully
connected layers and a ReLU in between. The input vector contains a word embedding
(the embedding of v in the case of critic1 and the embedding of u in the case of critic2),
the appropriate average shared features, and the state representation. The input size
is 140. The first fully connected layer consists of 64 neurons, while the second layer
is just a single neuron. The output is interpreted as the value of the sub-action. The
last part of the critic is the mixing layer. It is a simple, single-layer feed-forward neural
network that takes the 2 sub-action values and combines them into the final action
value. We experimented with different mixing functions, most notably a QMIX-like ar-
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chitecture [Rashid et al., 2020], but we found a simple fully-connected layer to be more
performant.

4.3 Training

The two critic networks and the policy network are trained jointly in our model. Algo-
rithm 3 describes the joint training process of the agent in detail. The two critics are
trained jointly, with the gradient being distributed by the mixing function. The loss is
calculated based on the output of the mixing function, that combines the output values
of both sub-critics. In the pseudo-code below we refer to the entire value network (both
sub-critics and the mixing layer) as combined critic.

5 Experiments

To assess the performance of our model and compare it with previous methods, we set
up several experiments. Our goal is to gain an insight into the characteristics, strengths
and weaknesses of the algorithms by not only looking at the final performance, but also
perform qualitative analysis on the structure of the constructed taxonomy. Below we
provide a brief overview of our experiments:

1. Ablation analysis and hyperparameter optimization Before arriving at the final
model structure, we performed a series of experiments to find the optimal network
parameters, hyperparameters, and feature representation.

2. Model performance In this experiment, we tested the performance of our final
model, as well as two of the baseline models (TaxoRL and DTaxa), on a set of
taxonomy construction problems and compared their results.

3. Robustness analysis In this qualitative analysis, we looked at the structures of
the constructed taxonomies by each model. Whether the outputs of a network are
robust (the final structure generated remains constant across multiple runs with
different starting words) or it generates completely different taxonomies for each
run has a large effect on its applicability in practice. In this analysis, we focus on
examining the robustness of each of the methods.

4. Credit assignment One of the motivations for choosing a multi-critic approach
for our model was, as explained in Section 4, to improve credit assignment in the
critic. In this qualitative analysis, we showcase how our critics have effectively
learned the behavior patterns we outlined above.

5.1 Experiment setup

In this section, we describe our experimental setup in detail. Some parts of the setup re-
main the same for all 4 of the experiment, such as the model structure, training dataset,
and hardware specifications. Different baselines and evaluation metrics, however, might
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Algorithm 3: Joint training of the actor and the combined critic

DEFINITIONS;
D : Training dataset;
αc, αa : Critic and actor learning rate;
γ : Rewards discount rate;
τ : Target update rate;
µ : Actor parameters;
θ, θ′ : Combined critic and combined critic target parameters;
π, q : Policy and value functions;
s, r : State and reward representations;
buff: Replay buffer;
INITIALIZATION;
buff← ∅;
Initialize θ, µ randomly;
θ′ ← θ;
for (V,U,E) ∈ D; /* For each taxonomy in the training set. */
do

while |V | > 0; /* Repeat until the remaining term set is empty */
do

A = (V × U) ∪ ({ROOT} × V ); /* ’A’ is the set of all actions. */
LP ← {πµ(s, a) for all a ∈ A}; /* ’LP’ is the vector of log
probabilities of all actions. */
(v, u)← sample(Softmax(LP)); /* Sample action */
V ← V \ {v}; /* Update the taxonomy with the selected action */
U ← U ∪ {v};
E ← E ∪ {(v, u)};
buff.add(s, (v, u), r, s′); /* Add (state, action, reward, next state)
to buffer */

end
; /* After the episode ends train on all transitions. */
for (s, a, r, s′) ∈ buff; /* For each transition in buffer */
do

target = r + γqθ′(s′, a); /* Calculate the critic target */
Lc = (target− qθ(s, a))

2; /* Combined critic loss */
La = ln(πµ(s, a)) · qθ(s, a); /* Actor loss */
θ ← θ + αc ∗ ∇θLc; /* Updating the parameters */
µ← µ+ αa ∗ ∇µLa;

end
θ′ ← τ · θ + (1− τ) · θ′; /* Updating target params */
buff← ∅;

end
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be used for the different experiments. In the following, we explicitly mention any exper-
imental setting that is only relevant for a subset of the experiments, while everything
else implicitly holds for all experiments.

5.1.1 Baselines

Throughout the experiments, we compare the results of our method with two baseline
models: TaxoRL [Mao et al., 2018] and DTaxa [Han et al., 2021] are the best-performing
reinforcement learning algorithms on taxonomy construction. TaxoRL was the first pa-
per to employ reinforcement learning to the task, significantly improving the state of
the art, while DTaxa was a later iteration on it, replacing the REINFORCE training al-
gorithm with an actor-critic architecture. Both of these methods were evaluated on the
same dataset and also used the same background data to generate the feature vectors
for the actions. This makes it straightforward to compare their results, which otherwise
would be quite difficult, as, for example, using feature vectors extracted from a different
background corpus could substantially influence the performance of the model.

TaxoRL The authors of TaxoRL made all their data (along with their code) publicly
available. However, after running their training code with the default parameters (some
of the hyperparameters were not specified in the paper), we discovered that the results
do not correspond to those claimed in their paper. In particular, we discovered that the
model generalizes very little to the evaluation set, with most of the improvements being
visible on the training set. First, we tried several runs with different parameter settings
in hopes of attaining a better performance comparable to their original claims. After
we failed to do so, we tried contacting the authors for clarification. We reached out to
the corresponding authors and the rest of the team and even raised an issue on their
GitHub page. Regrettably, our efforts yielded no response from any of these attempts.
For this reason, we decided to do our analysis on the training results, as those seem to
improve significantly during training, while for the sake of completeness, we also report
the evaluation results for all models. Our set of experiments analyzes the stability of
the model during training, as well as the output structure of the fully trained model. As
such, simply taking the final performance numbers reported in the TaxoRL paper is not
sufficient for our purposes. Therefore we decided to proceed with the code provided and
take that as the TaxoRL baseline. In order to match the setting of our model, TaxoRL
was trained with a rollout of 2, meaning that it simulates each episode twice before
moving on to the next episode.

DTaxa* We also reached out to the authors of the DTaxa paper, as they did not provide
a publicly available link to their code. Unfortunately, we did not hear anything back
from them either. For the sake of the experiments, we reproduced their model to the
best of our abilities based on the limited description that was provided in the paper. We
will refer to this reconstructed model as DTaxa*.

DTaxa* is an actor-critic algorithm with a single critic. For the policy network, we
used the same architecture as TaxoRL, a two-layer fully connected neural network with

32



Fully connected
60 units

Scalar output
Log probability of

action (v, u)

Embedding v Embedding u
Dependency

path
Syntax level

features
State

embedding

ReLU

Fully connected
1 unit

Figure 14: The architecture of the policy network in DTaxa*

60 neurons in the first layer and a single neuron in the second layer, with a ReLU
activation in between. The network structure is shown in Figure 14. The length of
the feature vector is 230. The input to the policy network has the same structure as
our model described in Section 4: The first 50 nodes represent the word embedding of
word1, the next 50 represent the embedding of word2. The path embedding of the 2
words has dimensionality 60, and the syntax level features (detailed in Section 3) 70. In
total, the size of the input vector adds up to 230. The output of the network is a scalar
that represents the log probability of choosing the action (word1, word2). After passing
each possible (word1, word2) action pair through the network and obtaining their log
probabilities, all outputs are arranged in a single vector and fed into a Softmax layer.
The output of the Softmax is a probability distribution over the possible actions that will
be sampled from during training, and the maximum will be taken during evaluation.
The architecture of the policy network is illustrated in Figure 14.

The critic network has the same architecture as the policy network outlined above.
The input feature vector is the same for both networks. The main difference lies in the
interpretation of the output node. While for the actor, the output represents the log
probability of the action, the output of the critic gives the value of the action, which is
the expected return after taking said action. The architecture of the critic network is
illustrated in Figure 15.

5.1.2 Dataset

For the experiments we use the WordNet taxonomy dataset[Bansal et al., 2014], which
was also used by TaxoRL and DTaxa. It contains a set of 761 taxonomies sampled from
WordNet [Miller, 1995], each with a depth of 3, built up from 10-50 nodes. This data set
only provides the set of words and the corresponding target taxonomies but leaves the
background corpus unspecified. The performance of the agent on the benchmark is, of
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Figure 15: The architecture of the critic network in DTaxa*

course, largely dependent on the background corpus, as it is used to extract statisti-
cal information about relations of different terms, which would be used as part of the
feature representation during training. In order to make the comparison with previous
methods meaningful, we decided to use the same background text as TaxoRL, which is
an aggregation of Wikipedia dump, the UMBC web-based corpus [Han et al., 2013] and
the One Billion Language Modelling Benchmark [Chelba et al., 2013].

5.1.3 Experimental environment

In our experiments, we train our model, TaxoRL and DTaxa*, on the dataset outlined
above. The ablation analysis and performance analysis experiments focus on how the
performance changes during training, while the qualitative analysis (robustness analy-
sis and credit assignment) will be conducted on the already trained models.

Each model in the experiments is trained for 300 epochs. The weights are then
saved and later used in the qualitative analysis. During an epoch, a single training
episode is run for each of the taxonomies in the training set. In our training set there
are 533 taxonomies, therefore each epoch is 533 episodes long. An episode comprises
of a construction of a single taxonomy. At the start of each episode, a set of terms
are provided, and the goal is to build up a taxonomy from said terms that match the
target golden taxonomy as close as possible. The golden taxonomy is the correct solution
provided as part of the dataset, similar to a label in the case of supervised learning.

The agent’s action interface only allows for the extending of an already existing tax-
onomy, but not for creating a new taxonomy from scratch, as the output action is a
tuple of (child, parent). Practically speaking, this restriction requires at least one node
(the root) to already be present at the start of construction. Providing the correct root at
the start of each construction can have a major effect on the performance. To mitigate
that, similarly to TaxoRL, we chose to start each episode with a randomly selected root
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node. The agent can then attach a new root node on top of it by selecting the node to
be added as parent and the current node as child. Starting with a randomly chosen
root node also makes the algorithm more robust, as it cannot simply overfit to a simple
construction sequence for each taxonomy, but has to adapt to each possible starting
point.

5.1.4 Metrics

At the end of the episode (when all terms are added to the taxonomy tree), the final
construction is evaluated against the gold taxonomy. The measure we use is the edge
F1 score:

Set of edges present in the constructed taxonomy: Epred

Set of edges present in the gold taxonomy: Egold

Edge precision: Pe =
|Epred ∩ Egold|
|Epred|

Edge recall: Re =
|Epred ∩ Egold|
|Egold|

Edge F1: F1e = 2 · Pe ·Re

Pe +Re

(17)

5.1.5 Hyperparameter setting

All the hyperparameter values used in later experiments are based on the results of our
ablation analysis and hyperparameters experiments. In those experiments we investi-
gate the effect of different learning rates of both the actor and the critic, different layer
sizes, and feature representations (for more details, see Section 5.2.1).

The architecture of our actor and critic networks can be found in Section 4. Both
critic networks and the policy net are two-layer feed-forward neural networks with a
ReLU activation after the first layer. The input size of the actor is 230, the first layer
consists of 60 neurons, while the output is a single node. Both sub-critic networks
have the same architecture with a two-layer feed-forward neural network, with a ReLU
activation between those 2 layers. The critic input size is 180, with the first layer having
64 neurons and the second layer consisting of a single neuron. The results of the two
sub-critics are combined in a final, single-layer neural network that takes the two values
from each sub-critic as input, and outputs a single final value for the action.

For the training of both the actor and the critic network, Adam optimizer[Kingma and Ba, 2014]
was used, with a learning rate of 0.0005 for the actor and 0.0001 for the critic.

5.1.6 Hardware usage

All the experiments were run on a Linux virtual machine running Ubuntu 18.04 with
an Intel Xeon Platinum CPU with 2 cores and 32 GB ram. With this setup, running a

35



single epoch took 50-60 minutes on average. Running the full experiment up to 300
epochs took over 11 days.

5.2 Results

In this section, we present the results of all 4 of our experiments. We conducted the
overall performance and robustness experiments for both TaxoRL and DTaxa* as well
to compare the results and learn about differences between the models.

5.2.1 Ablation analysis and hyperparameter optimization

In this section, we present the results of our preliminary experiments. The aim of these
experiments is to find the best-performing feature representations and hyperparameter
settings.

To assess the importance of different parts of the feature space used to represent
the taxonomy and the actions to be taken, we run a series of experiments with different
subsets of the feature space masked out. Particularly we tested the effect of 2 features,
sibling embeddings and using history. Node m is a sibling of node n if they share the
same parent, that is, there exists a node k such that (m, k) ∈ E and (n, k) ∈ E. When
sibling embeddings are used, the feature vector of an action (v, u) gets modified by
adding the average embeddings of the siblings of v to it. The history feature refers to
including the summary of past actions in the feature vector.

The results of this analysis can be seen in Table 1. For this analysis, we focused
on testing the effect of leaving out parts of the feature representation. Interestingly, we
found that leaving out the history representation actually improves the overall perfor-
mance. We tested this on TaxoRL, where we observed similar behavior. Making use of
sibling embeddings, on the other hand, positively impacts the performance. Based on
this analysis, we decided to leave out the history representation from both our model
and TaxoRL for the main experiment. Note that this analysis was run with an earlier
version of the model before it was fully optimized, therefore the results are slightly lower
than in the final experiment.

Model use history use sibling edge-F1 after
150 epochs

edge-F1 after
200 epochs

Ours No No 0.3233 0.3328
Ours No Yes 0.3301 0.3434
Ours Yes No 0.1649 0.1724
Ours Yes Yes 0.2506 0.2596

Table 1: The performance of our model when some of the features are not utilized.

In addition to finding the best feature representation, we also looked at the effect
of other hyperparameters. We run experiments to select the learning rate pairs for the
actor and critic networks. The results of this analysis can be seen in Table 2.
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Model Actor
learning rate

Critic
learning rate

Edge F1
at 150 epochs

Ours 0.001 0.001 0.2816
Ours 0.005 0.001 0.3301
Ours 0.01 0.001 0.2041

Table 2: The analysis of different learning rate ratios between the actor and the critic
network

In this experiment, we found the best-performing learning rates, however, these are
not the same that were used in later experiments. During the preliminary experiments,
the model had a slightly different update rule, which meant it was updated much less
frequently, but with more stable gradients. To counteract the effects of a slightly less
stable gradient in the final version, both learning rates have been multiplied by 1

10 . This
did not result in slower convergence as the training steps happened more frequently.

The path LSTM is an important part of the model, as it is responsible for summarizing
the information about the relation of two words into a fixed-size representation. The size
of this LSTM layer has a significant impact on the final performance. To find the optimal
value, we run an experiment, the results of which can be found in Table 3.

Model path LSTM
dimension

Edge F1
at 150 epochs

Edge F1
at 200 epochs

Ours 60 0.3301 0.3434
Ours 128 0.3353 0.3354
Ours 256 0.3208 0.3303

Table 3: Performance of our model with different path LSTM dimensionality.

In this section, we described 3 preliminary experiments with the goal of optimizing
different aspects of our model. The final model structure is constructed based on these
experiments.

5.2.2 Model performance

For this experiment, we trained our model, as well as TaxoRL and DTaxa*, for 300
epochs on the dataset described in Section 5.1.2. The training results are shown in Fig-
ure 16. For the training procedure, we followed the pseudo-code given by Algorithm 3.
The graph shows that despite its initial slow start, our method eventually outperforms
TaxoRL in the experiment. The slower convergence at the beginning shows a character-
istic difference between the two algorithms. TaxoRL starts training the policy network
towards the sampled returns at each transition, which provides a noisy but unbiased
estimate of the true return. At the same time, our agent updates its policy network to-
ward the output of the critic. The critic network is initialized randomly at the beginning
of training, which means that its output is also random. Therefore during the first part
of the training, there is no meaningful learning going on in the policy. However, after the

37



0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of epochs

E
d
ge

F
1

Our model
TaxoRL
DTaxa*

Figure 16: The training graph of TaxoRL, our model and DTaxa. The darker line in the
middle shows the average performance, while the lighter lines on the top and bottom
give the minimum and maximum values over the runs.

critic is sufficiently trained to provide reasonable estimates for action values, the speed
of convergence of the policy picks up and even surpasses that of TaxoRL, because it is
now training towards stable targets with low variance (the output of the critic), while
TaxoRL works with high-variance empirical return. The graph also shows that DTaxa*
significantly outperforms both other methods.

To assess the stability of algorithms, we run each algorithm 3 times and average
their results. The dark-colored lines in Figure 16 indicate the median value of each
model, while in lighter color around it is the highest and lowest value shown. The graph
shows that all 3 models are stable across different training runs, with a low variance in
performance.

Table 4 shows the results of all discussed methods after a certain number of epochs.
Table 5 shows the evaluation results, which are similar across the algorithms. For the
trained models we also report the precision and recall results. For those results see
Table 6.
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Model 100 epochs 150 epochs 200 epochs 250 epochs 300 epochs
TaxoRL 0.386 0.400 0.413 0.426 0.443
DTaxa* 0.571 0.616 0.643 0.66 0.664
Ours 0.349 0.399 0.421 0.443 0.459

Table 4: The Edge-F1 score on the training set performance of the algorithms after
given number of epochs. DTaxa* refers to our DTaxa implementation based on the
limited information in their publication.

Model 100 epochs 150 epochs 200 epochs 250 epochs 300 epochs
TaxoRL 0.063 0.066 0.069 0.068 0.065
DTaxa 0.065 0.063 0.067 0.068 0.053
Ours 0.063 0.062 0.062 0.067 0.058

Table 5: The Edge-F1 score on the evaluation set performance of the algorithms after
given number of epochs. DTaxa* refers to our DTaxa implementation based on the
limited information in their publication.

5.2.3 Robustness analysis

Another important characteristic of a model is its robustness across several runs on
the same domain. In addition to the performance, in practical applications, it is often
crucial that the produced taxonomies are consistent. To investigate the robustness
of our method, we analyze the final constructed structure in a series of runs on the
example taxonomy (Figure 18) with different initial root words. The goal of this analysis
is to show to what degree our model is able to arrive at the correct final structure
regardless of the starting point.

We let the model run with 5 different starting words. Our first observation is that the
correct root (bedroom) is correctly identified in 3 out of the 5 cases. In the remaining 2
cases, dormitory and guestroom were chosen as roots. Out of the 55 total edges of the
5 runs, 31 were identified correctly (it was present both in the predicted as well as the
gold taxonomy), while 24 were incorrect. Among the incorrect edges a pattern can be ob-
served. 11 of the 24 wrong edges go to guestroom as their parent, suggesting that there
is a systematical bias in the model, rather than missing completely arbitrarily. This
makes it easier to mitigate its flaws in a practical use case, where after construction, a
domain expert can quickly check only parts of the final taxonomy that are most likely to

Model Edge
Precision

Edge
Recall

Edge
F1

TaxoRL 0.23 0.427 0.299
DTaxa* 0.55 0.662 0.601
Ours 0.321 0.443 0.372

Table 6: The final precision, recall and F1 scores after training.
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contain errors instead of having to check the entire tree. This is especially useful in the
case of much larger trees in more complicated domains, but for the sake of readability,
we chose to showcase it on a smaller example. The 5 generated structures are shown in
Figure 17.
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Figure 17: The trees generated by our model. The red arrows indicate the wrong edges.
The black edges are correctly found.

The same experiment was also conducted with the benchmark models. We used the
same taxonomy for all methods, with 5 runs using a randomly generated starting word
for each. DTaxa* had a similar performance in terms of overall correctness, with 29
correct and 26 incorrect edges predicted. The main difference was the ability to identify
the root node. DTaxa* failed to find the correct root node in all 5 runs. After manually
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inspecting the generated structures, we observed that similarly to our model, DTaxa*
also seems to have a bias towards a single term, connecting room, which frequently has
a lot of children assigned, despite being a leaf node in the golden taxonomy. 11 of the
26 incorrect edges have connecting room as their parent. TaxoRL identified 29 edges
incorrectly and 26 correctly, which is the weakest performance of the 3 models. How-
ever, interestingly it managed to identify the correct root in all 5 cases. The generated
taxonomies can be found in Section B.

5.2.4 Credit assignment

One of the motivations for the use of a multi-critic architecture as described in Section
4 would improve convergence speed by enabling credit assignment by the critic. This
idea was illustrated with a hypothetical example that showed that in certain scenarios
an incorrect action (p, c) might be blamed entirely on one of the sub-actions, while the
other might be an objectively good choice. To demonstrate that our model possesses
this property we analyzed the construction process of a small example taxonomy.

bedroom
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boudoir

guestroom

master bedroom dormitory

hotel room

nursery

day nursery

connecting room adjoining room

Figure 18: The example taxonomy.

The example taxonomy, which is a golden taxonomy from the dataset, is shown
on Figure 18. It is a simple hierarchy of bedrooms. To show the desired properties,
we will consider it in a partially built state, where a number of terms still need to be
assigned. Figure 19 shows the state of the tree at the point of interest. All the first and
second level nodes (in yellow and blue) are already added to the tree, while the green
and red nodes are in the remaining term set (their target position is marked on the
figure to make it easier to see where each node belongs, but they are not part of the
taxonomy at this point in time). For this analysis we will look at the output values of
the sub-critics for all possible actions with the partially constructed taxonomy. Since
V = {nursery, day nursery, connecting room, adjoining room} the valid actions at this
time step are the following: Each of these nodes in V can be either attached as a child
node to any node already in the taxonomy (yellow and blue), or alternatively any of the
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Figure 19: The example taxonomy after all the yellow and blue nodes have been correctly
added to the tree. The green and red nodes are still in the remaining term set, with there
target position marked on the figure.

terms in V can be used as a new node, by making it a parent of the current root node
bedroom.

To analyze whether our approach can correctly learn to assign credit for two sub-
actions, we investigate the intermediate output values from two critics. Especially, in
the given example, we print the average output of the child critic (which determines the
estimated value for selecting each possible v in V as the child node).

In this example, choosing either one of the blue terms as child is a good choice,
without further information about the parent, as for each of these terms there exists a
node in the tree that is its correct parent. However for the red node day nursery there
is no such parent present. Intuitively, we would expect that the sub-critic responsible
for the choice of the child node would give a lower value to actions that choose day
nursery as the child node compared to others. To test whether our model is able to
learn to effectively assign blame in these situations, we investigate the intermediate
values assigned to every possible actions by the critic responsible for the choice of the
term. For each of the child candidate terms there are in total 8 possible parents. Table 7
shows the average action value for each candidate child. As we can see, the value of day
nursery is the lowest with -5.14, while the average of the green terms (the ones which
have a valid parent in the current tree) is -4.32, meaning that our critic prefers the
choice of any of the green nodes above the red one as a new child, which is in line with
the expectations. day nursery can not be correctly attached as a child to any current
nodes in the tree, therefore it is rated lower by the critic.

A similar analysis can be done on the choice of the parent node as well. After looking
at Figure 19, we find that only the choice of one of the blue nodes (child’s room, hotel
room) as parents leads to a correct action, because none of the yellow terms is a parent
to any of the possible children. Therefore we expect the blue terms to have a higher
action value than the yellow ones. Table 8 shows the values of the parent candidates.
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nursery connecting room adjoining room day nursery
Action value -3.72 -4.76 -4.47 -5.14

Table 7: This table shows the inverse actions values of choosing each of the nodes as a
child

The average value of the incorrect parents (yellow) is -6.92, while the average value of
the correct parent choices (blue) is -4.04. Again we can see the same phenomenon as
previously, the sub-critic has successfully learned to prioritize those choices that make
sense in isolation, even without further information about the other part of the action
(the choice of child in this case).

bedroom boudoir motel room guestroom
Action value -5.76 -4.87 -5.87 -5.24

master bedroom dormetry child’s room hotel room
Action value -9.00 -10.76 -4.71 -3.37

Table 8: This table shows the inverse actions values of choosing each of the nodes as
the parent

This analysis demonstrates that our multi-critic algorithm learned to correctly assign
the blame in cases where one sub-action is clearly responsible for the choice of incorrect
action and does not penalize sub-actions that are in principle correct, and only fail
because of the wrong choice of the other. This property can help during training to keep
the action value estimates consistent, thus leading to faster convergence.

6 Discussion and future work

In this thesis, we explored the viability of using a multi-critic reinforcement learning
algorithm for taxonomy construction. Our original motivation for this choice was that
we saw an inherent structure in the action space of the task that was not taken advan-
tage of with previous methods. With the success of the different types of multi-critic
algorithms, applying it to a structured problem such as taxonomy construction was
a natural idea. The results seem to suggest that it is indeed a promising direction,
however, more research is needed to unlock the full potential of this method. One of
the key characteristics that we expected from our model, based on the results of pre-
vious work on multi-critic agents, is that the critics would easily adapt to their more
constrained role and would be able to work together efficiently. Our credit assignment
analysis shows that this happened according to expectations, as both the critics were
able to recognize correct and incorrect sub-actions. This is a promising sign, however,
it largely failed to shine through in the overall performance. While our model outper-
formed TaxoRL, its performance was significantly weaker than DTaxa*, a method with
a single critic. This is a surprising result considering the 2 sub-critics performed as
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intended. Trying to pinpoint the reasons behind this performance deficit might be an
interesting follow-up research. We believe it is worth investigating the effects of using a
different mixing function to effectively combine the insights from both sub-critics into
the final value. Another point of interest is the robustness of the algorithm, that is,
how reliable it is when constructing the taxonomies. Our experiments showed that the
robustness of our method was similar to that of DTaxa*, despite the overall performance
deficit. This is another sign that suggests it might be worth it to continue research on
this topic. If the performance of the model improves, there is a chance the robustness
will get even better, yielding an algorithm that is superior to DTaxa* in practice by virtue
of being more stable. In conclusion, we think that our method showcases an interesting
idea, and it is a good foundation for further research in a promising direction, with the
potential of improving current state-of-the-art results.

7 Conclusion

In our thesis, we demonstrated the advantages of using a multi-critic algorithm for
taxonomy construction. Previous methods treat all actions as independent, meaning
that adding the edge (rabbit, animal) or (tree, animal) are seen as completely different
actions despite the fact that in both cases the parent node is the same (animal). In this
thesis, we showed the benefits of decoupling the action into 2 sub-parts, and assigning
a critic for each of those parts, instead of employing a single, centralized critic. We
demonstrated that this method leads to better credit assignment, because the critics
are able to effectively assign blame to the part of the action that is responsible for it
being incorrect. While our method did not outperform DTaxa*, the improved credit
assignment, together with its overall robustness, suggests that multi-critic approaches
for taxonomy construction are viable. With future research, there is the potential for
such methods to outperform previous models that do not take advantage of the action
structure of the task and are not explicitly designed for proper credit assignment.
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A DTaxa* robustness

Figure 20 shows the taxonomy trees generated by DTaxa* during the robustness analy-
sis. Only 3 different trees were generated, 2 of the trees occurring twice each.
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Figure 20: The trees generated by DTaxa* in 5 tries. Two of the trees were created twice.
The red arrows indicate wrong edges. The black edges are correctly found.
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B TaxoRL robustness

Figure 21 shows the taxonomy trees generated by TaxoRL during the robustness anal-
ysis. Only 3 different trees were generated, with the first one occurring 3 times.
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Figure 21: The trees generated by TaxoRL in 5 tries. The first tree occurred 3 times.
The red arrows indicate wrong edges. The black edges are correctly found.
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