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Abstract

This research delves into gender bias and its mitigation in NLP models for
violence risk assessment within the psychiatric care domain. A comparison be-
tween transformer-based monolingual and multilingual models is made, as well as
a comparison between transformer-based models and a classical machine learning
algorithm. First, the dataset is analyzed to gain insights into class balance and
gender distribution. Then, the NLP models are trained on the dataset, and their
performance and fairness metrics are evaluated. After that, a data augmentation
technique is used on the data before running another training round. Finally, the
Reject Option Classification method is used in post-processing to optimize perfor-
mance and fairness. The most important findings are that the monolingual models
outperform the multilingual ones, but there is little difference between domain-
specific and general models. As with previous work on this topic, the classical
machine learning model SVM outperforms the transformer-based models. Further-
more, bias mitigation methods should be carefully chosen, based on the desired
metrics to improve, since they often come with trade-offs. Data augmentation led
to increased counterfactual fairness for most models, but not for all. However, for
some models, this came at the cost of predictive parity fairness, whereas in others
this increased. Reject Option Classification showed mixed results as well, improv-
ing counterfactual fairness or predictive parity for some models but decreasing it in
others. Understanding these trade-offs is the key to successful bias mitigation. This
research contributes valuable insights into gender bias mitigation within psychiatric
care and offers a thoughtful consideration of trade-offs in adopting bias mitigation
strategies. The findings offer a perspective on the dynamics of transformer-based
models and classical machine learning algorithms, contributing to the ongoing dis-
course on responsible and effective AI deployment in mental healthcare contexts.

Keywords: Bias mitigation, NLP, mental healthcare, word embeddings, trans-
former models, SVM, predictive parity, counterfactual fairness
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1 Introduction

The recent advances in machine learning have paved the way for a plethora of new imple-
mentations. These advancements hold immense potential for improving decision-making,
automating complex tasks, and enhancing overall efficiency. However, alongside these
advancements, concerns regarding fairness and bias have arisen regarding the ethical de-
ployment of machine learning systems. Fairness refers to the concept that decisions made
by machine learning models should be fair, impartial, and unbiased towards any specific
group or individual based on their inherent or acquired characteristics (Mehrabi et al.,
2021). These characteristics may include race, gender, religion, or socioeconomic status,
among others. The aim is to prevent any form of discrimination or bias in algorithmic
decision-making processes, promoting fairness and equal opportunities for all individuals.

However, implementing fairness is a challenge since it often requires trade-offs between
fairness and other criteria such as efficiency and accuracy, and it is context and use-case
specific, meaning that there is no one-size-fits-all solution. As such, it is difficult to achieve
fairness without compromising. As such, this has become an area that has gained research
popularity.

Despite the growing popularity of machine learning applications in domains such as
mental healthcare and risk assessment, research on fairness and bias within these ap-
plications remains relatively limited. For instance, predictive models for depression and
anxiety have shown promising results in leveraging sensor and usage data from personal
digital devices to infer psychological outcomes (Hatton et al., 2019), but the examination
of bias and fairness in such models has often been overlooked. Similarly, violence risk
assessment models based on natural language processing (NLP) of clinical notes have
demonstrated the potential to predict future violent incidents in psychiatric care settings
(Mosteiro et al., 2022). Yet, the presence of bias remains unexplored.

This thesis aims to address these gaps in research by focusing on bias and fairness
within the Dutch language context. Specifically, it will investigate the bias present in
Dutch pre-trained word embeddings for the violence domain, analyzing the potential
implications and consequences of such biases in downstream tasks. Furthermore, the
thesis will evaluate the fairness of a violence risk assessment model using data from the
UMC Utrecht, assessing whether the model exhibits biases against certain groups based
on gender, race, or other factors. In doing so, this research seeks to contribute to the
understanding of bias in NLP models within the Dutch language and propose suitable
mitigation strategies to enhance fairness in algorithmic decision-making processes.

1.1 Research Questions

The main research question is Do pre-trained Dutch word embeddings carry bias towards
protected groups (e.g. gender, race) for the violence risk assessment domain? To answer
this question, the following sub-questions should be answered.

• SQ1: What is the main source of bias in word embeddings?

SQ1.1 Is bias introduced during pre-training?

SQ1.2 Is bias introduced during fine-tuning?

1
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• SQ2: How does this bias impact the downstream task of violence risk assessment?

• SQ3: Is there a difference in terms of the magnitude of bias that pre-trained em-
beddings have?

SQ3.1 Is there a difference between pre-trained Dutch embeddings compared to
multilingual embeddings?

SQ3.2 Is there a difference between pre-trained embeddings on general data
compared to domain-specific data?

• SQ4: Which bias mitigation methods are most efficient to minimize the bias?

Since bias can be caused by multiple different things, and can be introduced at different
stages, SQ1 will be answered by analyzing the violence risk assessment ML application
and the NLP techniques which are used, its predictions, and the dataset it is trained on.
We will first analyze whether the dataset has sampling bias, e.g. the number of male vs
female patients in the dataset. Furthermore, we plan to analyze the dataset properties in
order to understand the difficulty of the problem, such as the average number of unique
words per note, and the readability score of the notes. Then, we will evaluate the bias of
contextualized word embeddings, namely BERTje and MBERT, by using available mea-
sures in the literature. Related works use measures such as demographic parity, equality of
opportunity for the positive class, equality of opportunity for the negative class, WEAT,
and log probability score (Zhang et al., 2020; Kurita et al., 2019). To achieve this, we need
to craft a dictionary consisting of words/terms in the violence domain. Related literature
will be consulted to retrieve suitable bias detection methods. SQ2 will be answered by
analyzing the application and its predictions. SQ3 will be answered by analyzing and
comparing the NLP techniques, more specifically the multilingual word embeddings from
MBERT and the Dutch word embeddings from BERTje. Finally, the results of the pre-
vious sub-questions, combined with the results of the literature review on bias mitigation
methods, will allow us to answer SQ4 and propose a suitable bias mitigation strategy for
the application. Specifically, we plan on using the AIFarness360 library for bias mitigation
methods, which includes pre-, in-, and post-processing algorithms.

1.2 Relevance

Currently, most research in this area is focused on English word embeddings Caliskan et
al. (2017); May et al. (2019); Bartl et al. (2020). However, very little has actually been re-
searched with regard to lower resource languages, such as Dutch. As such, the main contri-
bution of this work is to provide insights into the bias of Dutch word embeddings, focused
on the violence risk assessment domain. The performance of the language-specific Dutch
word embeddings from BERTje will be compared to the multilingual version MBERT.
Furthermore, many publications regarding NLP use in the mental health care domain ei-
ther gloss over the topic of bias, or completely omit it, even though it is a relevant topic.
Addressing this for an existing application, such as the one used in the case study, is a
step in the right direction.
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1.3 Research outline

The research outline for this is visualized in Figure 1 and will be further explained here.
First, we perform an initial literature study to extract relevant literature topics. These
topics are then used to perform a systematic literature study. This will result in a number
of bias measures that can be used to quantify bias, and a list of bias mitigation methods
that can be used to mitigate bias. Then, using the bias measures, the bias of the UMC
dataset, BERT-based models, and the Doc2Vec SVM model (which will all be further
explained in the background chapter) is quantified. Based on the bias measurements,
a suitable bias mitigation method from the literature study is selected, applied, and
tested. Then, the results are reported. This process is repeated for all the bias mitigation
methods that were selected from the literature. Depending on the performance of the
bias mitigation method, the result can either be positive or negative. The method should
reduce bias to an acceptable level, while not having a drastically negative impact on other
performance metrics.
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Figure 1: PDD of research outline



2 Background

This chapter delves into the background topics that build a framework for the rest of the
research. First, we will discuss word embeddings and their variants, followed by bias in
NLP models, bias measures to minimize said bias, and finally violence risk assessment.

2.1 Word embeddings

A word embedding is a vector that represents information about a word, such as its
semantic and syntactic properties as found in a text or corpus. Word embeddings are
successful at the semantic representation of words, but can potentially exhibit bias due to
the dataset on which they are trained. This, in turn, can cause harm in downstream ap-
plications that use these embeddings (Sogancioglu et al., 2022). Word embeddings can be
grouped into two categories: contextual word embeddings and context-independent word
embeddings. Contextual word embeddings look at the context of a word, e.g. the sur-
rounding words or the entire sentence. As such, the embedding of a single word can differ
depending on the context in which it is used. On the contrary, contextual-independent
word embeddings only look at the words on a global level, and as such the embedding of
a single word is always the same, regardless of the context (Miaschi & Dell’Orletta, 2020).
One of the most well-known contextual embeddings is Paragraph2Vec. This model asso-
ciates a unique vector representation to each paragraph or document in a corpus. This
vector is learned during a training phase, in which the paragraph vector is refined so that
it captures the semantic meaning of the paragraph in the context of the training data.
After training, the paragraph vectors can be used in various downstream tasks like text
classification (Le & Mikolov, 2014).

There are multiple ways to train models for word embeddings. With supervised learn-
ing, the training data is labeled. This means that the classifier is ’told’ what a certain
feature of the data means, and what the desired output is based on the input, and over
time the model learns. On the other side, there is unsupervised learning, in which un-
labeled data is used for the training data. These algorithms discover hidden patterns,
similarities, differences, and hidden groupings in the data, without the need for labels,
and thus human intervention. Finally, there is the possibility of semi-supervised learning,
which combines both methods. Here, the training data consists of a small amount of
labeled data, and a large amount of unlabeled data (Zhu, 2005).

2.1.1 Pre-trained word embeddings

Pre-trained word embeddings are word embeddings that have been trained by the authors
on large datasets. These embeddings are very useful in cases where the dataset that is to
be analyzed is too small to be used as training data. However, there is a trade-off: the
pre-trained embeddings might not be the best fit for the domain at hand (Rezaeinia et
al., 2019).

There are two approaches for applying pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. With the feature-based approach, task-
specific architectures are used that include pre-trained representations as additional fea-
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tures. For the fine-tuning approach, minimal task-specific parameters are introduced,
and the training on the downstream tasks is done by simply fine-tuning all pre-trained
parameters (Devlin et al., 2018).

2.1.1.1 BERT

One of the most well-known and best-performing pre-trained language models is the
Bidirectional Encoder Representations from Transformers (BERT) model, developed by
Google. BERT is designed to pre-train deep bidirectional representations from unlabeled
text by jointly conditioning on both left and right context in all layers. There are two
steps in the BERT framework, pre-training and fine-tuning. During pre-training, the
model is trained on unlabeled data over different pre-training tasks. For the fine-tuning
part, the BERT model is first initialized with pre-trained parameters. All parameters are
then fine-tuned based on labeled data from the downstream tasks. Each downstream task
has separate fine-tuning models, but the initialization is done with the same pre-trained
parameters. However, the difference between the pre-trained architecture and the final
downstream architecture of the model is minimal (Devlin et al., 2018).

The BERT model architecture uses a multi-layer bidirectional transformer encoder,
based on the Transformer architecture depicted in Figure 2, which is a neural network
architecture that uses self-attention mechanisms to process input sequences Vaswani et
al. (2017). BERT uses a variant of the Transformer architecture that has two main
components: the encoder and the output layer. The encoder generates contextualized
representations of the input sequence. It is composed of a stack of N identical layers,
where N is a hyperparameter that determines the depth of the model. Each layer contains
two sub-layers, a multi-head self-attention mechanism, and a position-wise feedforward
network. An attention function maps a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is a weighted sum
of the values, where the weight that has been assigned to each value is computed by a
compatibility function of the query with the corresponding key. Because the attention
mechanism is multi-headed, the model can attend to different parts of the input sequence
simultaneously.

In addition to this, each of the layers in the encoder and decoder contains a fully
connected feed-forward network. The position-wise feed-forward network consists of two
linear transformations with a rectified linear unit (ReLU) activation in between. Each
layer uses different parameters. Learned embeddings are used to convert the input tokens
and output tokens to vectors. The learned linear transformation and softmax function
convert the decoder output to predicted next-token probabilities. Positional encodings
are added to the input embeddings at the bottoms of the encoder and decoder stacks in
order to have information about the position of the tokens in the sequence (Vaswani et
al., 2017). BERT makes use of WordPiece embeddings. The first token is always a special
classification token, [CLS]. Additionally, a separation token [SEP] is introduced. During
training, BERT uses a masked language modeling (MLM) objective, where a random
subset of tokens in the input sequence are masked and the model is trained to predict
the original tokens. This objective encourages the model to learn contextual relationships
between words in the input sequence. Additionally, BERT uses a next-sentence prediction
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(NSP) task that pre-trains text-pair representations. This allows the model to capture
the relationship between two sentences (Devlin et al., 2018).

Figure 2: Transformer architecture that BERT is based on, image adapted from Vaswani
et al. (2017)

It is possible to train BERT for specific domains, such as ClinicalBERT (Alsentzer et
al., 2019) for clinical text, and BioBERT (Lee et al., 2020) for biomedical text. These
domain-specific models yield performance improvements for a number of NLP tasks com-
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pared to the standard nonspecific embeddings.

2.1.1.2 MBERT

Shortly after the release of BERT, a multilingual version of BERT (MBERT) was released.
Whereas the original was only trained on the English language, this version was trained
on 104 different languages. The training data consists of all the Wikipedia pages in these
languages, which is a smaller dataset than the original BERT model used. Additionally,
not every language has the sameWikipedia size. To counteract this, the data was weighted
during pre-training. Other than that, the MBERT model works the same as the original
BERT model for most languages (Devlin, 2018; Devlin et al., 2018).

2.1.1.3 BERTje

The release of the open-source BERT and MBERT models lead to the creation of several
language-specific models that are based on BERT. The one of interest for this research
is the Dutch version called BERTje (De Vries et al., 2019). BERTje is based on a larger
and more diverse dataset than MBERT. It is trained on a collection of books, TwNC (a
Multifaceted Dutch News Corpus), SoNaR-500 (a multi-genre reference corpus), almost 5
years of publications of web news from 4 different Dutch news websites, and Wikipedia,
totaling approximately 2.4 billion tokens, whereas the MBERT model is only based on the
Dutch Wikipedia pages. As such, BERTje is able to outperform MBERT on numerous
downstream NLP tasks (De Vries et al., 2019).

2.1.1.4 MedRoBERTaNL

There is also the Dutch MedRoBERTaNL, which is trained on Dutch electronic health
records. Since medical terms are often scarcely used in the training data of general models,
a domain-specific model for the medical field can provide better results for certain tasks
in this domain (Verkijk & Vossen, 2021). This model is based on RoBERTa, an optimized
BERT pre-training approach (Liu et al., 2019).

2.1.2 Classical machine learning approaches

It is also possible to use word embeddings as input for classical machine learning ap-
proaches like Support Vector Machines (SVM). The idea here is that the learned vectors,
e.g. from a Paragraph2Vec model, are used as features for an SVM model. After training
the word embeddings, they are fed to an SVM model together with the labels, which the
SVM uses to separate the feature vectors into different classes based on the training data
(Burges, 1998; Stein et al., 2019).

2.2 Bias in NLP models

Algorithmic bias can be defined as the outputs of an algorithm benefit or disadvantage
certain individuals or groups more than others without a justified reason for such unequal
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impacts (Kordzadeh & Ghasemaghaei, 2022). This can lead to misinformed decisions and
negative consequences for individuals, organizations, and society.

The recent progress that has been made with regard to NLP models has led to signif-
icant improvements for a wide variety of NLP tasks. However, success on certain criteria
such as accuracy does not always mean that the model is performing satisfactorily on
other important criteria such as fairness, robustness, and safety. Failures in fairness are
often attributed to lack of transparency of modern AI tools. The reasoning behind this
is that if biased predictions are caused by incorrect reasoning that is learned from biased
data, transparency can assist to detect and understand this incorrect reasoning (Balkir
et al., 2022).

Bias can be integrated into an algorithm in different stages. Fairness interventions to
address these biases can be categorized in three categories: pre-processing, in-processing,
and post-processing (Caton & Haas, 2020).

Figure 3: High-level illustration of fairness intervention stages, adapted from Caton &
Haas (2020)

2.2.1 Pre-processing

Pre-processing bias stems from problems with the training data. An example of this is
that if the training dataset is contaminated by the social biases that are present in or-
ganizations or society, those biased might be reflected in the output of the algorithm.
For example, if mortgage applications have historically been approved more often for men
than women, while important factors such as debt and income were similar, the algorithm
might conclude that gender is an important criterion for risk assessment and approval of
an application. If unaddressed, this algorithm will then reinforce the gender bias that
was present in the training data. Another source of bias in the pre-processing stage is
non-representative data. This can be caused by poor data selection, where data is not
representative of the diversity of the population and certain groups are underrepresented
(Favaretto et al., 2019). Pre-processing problems can also occur in word embeddings. For
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example, word embeddings that have been trained on co-occurrence in bodies of text can
serve as a dictionary for NLP tasks. This makes it possible to infer the meaning of words.
Given the question ’man is to king as woman is to X’, simple arithmetic of the embedding
vectors finds the word ’queen’ for X. However, using the same question structure for the
question ’man is to computer programmer as woman is to X’ gives the word ’homemaker’
for X. This shows a tremendous gender bias towards certain words, which is problematic
(Bolukbasi et al., 2016a). One way to reduce pre-processing bias is by using strategic
sampling for the training data. This approach makes the data look balanced with regard
to the class-domain frequencies. Rare examples are sampled more often during training.
However, there are also drawbacks to this method. With exact copies of the same exam-
ple in the training data, overfitting becomes more likely. Additionally, learning time is
increased, because additional training examples are introduced that do not contain new
information (Wang et al., 2020).

Research has shown that pre-trained word embeddings inherit the biases that are
present in the corpora on which they are trained. Even the embeddings that use a
vast amount of training data from multiple sources suffer from the societal and cultural
stereotypes that are present in the training data (Caliskan et al., 2017).

2.2.2 In-processing

In-processing interventions, also known as enforcing fairness during model training, con-
cern direct changes to the model. As such, it is highly effective. However, it has many
practical limitations. This method requires training a model from scratch. With the re-
lease of powerful and publicly available pre-trained models such as BERT and its deriva-
tives (e.g. MBERT or BERTje), and given the computational resources that are required,
creating a model from scratch has become less common (Petersen et al., 2021).

2.2.3 Post-processing

Post-processing approaches recognize that the output of an ML model may be unfair
towards one or more protected variables, and as such tend to apply transformations to
the output of the model to improve the fairness of predictions. This approach only
needs access to the predictions and sensitive attribute information, and not to the actual
algorithms and models, and as such is one of the most flexible approaches (Caton & Haas,
2020).

2.3 Bias measures

Bias metrics in NLP models are used to measure and quantify the presence of bias in
the model’s outputs. Bias in NLP models can manifest in different ways, such as under-
representation or over-representation of certain groups or demographics, leading to unfair
or discriminatory results. Bias metrics can help to identify and mitigate these issues.

Most of these metrics can be categorized in the following categories(Caton & Haas,
2020):
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• Statistical parity: each group should receive an equal fraction of the possible decision
outcome.

• Demographic parity: This metric measures the extent to which the model’s predic-
tions are consistent across different demographic groups, such as gender or race, or
if there is a disparate impact. If the model’s predictions show significant differences
between these groups, that could indicate that the model is biased (Feldman et al.,
2015).

• Equal opportunity: A model is considered to be fair and under equal opportunity
if the model’s true positive rate (TPR) is consistent across different demographic
groups. If there is a significant difference in the TPR across these groups, it could
indicate bias in the model (Hardt et al., 2016).

• Calibration: False positive rates across groups should be similar. If a certain group
has significantly more false positive hits, this could indicate bias.

• Counterfactual fairness: This metric measures the extent to which the model’s pre-
dictions for an individual would change if certain sensitive variables were changed. If
the predictions change significantly, it could indicate bias in the model with regards
to these variables (Chiappa, 2019).

Specific metrics will be further discussed in Section 3.

2.4 Violence risk assessment

In the domain of acute psychiatric care, violence from patients directed at staff is prevalent
in almost any treatment facility. In a systematic review Iozzino et al. (2015) found that
17% of patients committed at least one act of violence. This can have many adverse
effects, not only for potential injuries to patients and staff, but also because of the counter-
therapeutic effects of both violence and the measures that are taken to prevent violence.
As such, it is important to be able to assess the risk of a patient becoming violent. Violence
risk assessment is the process of evaluating the likelihood that an individual will engage in
violent behavior in the future, and is a well studied topic (Douglas & Skeem, 2005; Skeem
& Monahan, 2011). This type of assessment is typically conducted by mental health
professionals, law enforcement officials, or other professionals who have been trained in
assessing and managing risk. The goal of a violence risk assessment is to determine the
level of risk that an individual poses to themselves or others and to develop a plan to
manage that risk. This involves evaluating a range of factors, including the individual’s
history of violence, mental health status, substance abuse, and social and environmental
factors that may contribute to violent behavior (Douglas & Skeem, 2005). There are
different types of violence risk assessment tools and approaches used, including clinical
interviews, structured risk assessment instruments, and actuarial risk assessment methods.
These methods typically involve gathering information from multiple sources, including
interviews with the individual, family members, and other professionals involved in their
care. The results of these assessments can be used to guide decisions about the individual’s
treatment, management, and supervision. This may involve developing a safety plan,
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recommending appropriate treatment and medication, and monitoring the individual’s
behavior over time to assess their ongoing risk of violence. A common approach is the
Brøset Violence Checklist (BVC) (Almvik et al., 2000). This is a questionnaire used by
nurses and psychiatrists to evaluate the risk of a patient becoming involved in a violent
incident. However, filling out this form is a time-consuming process, and moreover, it is
highly subjective. It is important to note that violence risk assessment is not a perfect
science, and there are limitations and potential biases associated with these assessments.
However, when conducted by trained professionals using evidence-based methods, violence
risk assessment can be a useful tool for reducing the risk of violent behavior and improving
public safety (Skeem & Monahan, 2011).



3 Related work

This chapter delves into the related works in areas that are relevant for our research.
First, we discuss other works on fairness of NLP models in mental healthcare, followed
by works on specific bias measurement methods, finishing with specific bias mitigation
methods that proved successful in other works.

3.1 Fairness of NLP models in mental healthcare

Adamou et al. (2018) describe the use of NLP on medical notes for suicide risk assessment.
They use the Just-Add-Data (JAD) Bio tool for classification analyses, which is an auto-
mated multivariate statistical analysis pipeline comprising of a complete set of learning
steps that lead to the production of the final predictive model. JAD Bio performs the
pre-processing of the data, feature selection, training of predictive models, automated se-
lection of the best configuration (fine-tuning), construction of the final predictive model,
and performance estimation. Even though the dataset contains numerous demographic
variables (including date of birth, gender, marital status, ethnicity, religion, and post-
code), the only type of bias reduction that is mentioned is a feature of JAD that uses
a bootstrap-based method called Bootstrap Bias Corrected Cross Validation (BBC-CV)
(Tsamardinos et al., 2018). The main idea is to bootstrap the whole process of selecting
the best-performing configuration on the out-of-sample predictions of each configuration,
without additional training of models, which corrects for bias.

Chen et al. (2018) describe the use of NLP on Twitter posts to identify depression.
The data that is used is collected from public Twitter posts. The system parses the text
and classifies part-of-speech tags through a NLP pipeline, which is not further specified.
The influences of certain attributes, such as personality, age, and gender on the disclosure
of mental health problems were also examined. This was then used to create a control
group to reduce the bias for the analysis. Additionally, the authors claim that the applied
feature set provides reliable, unbiased measures. Similarly, Yazdavar et al. (2017) ana-
lyzes Twitter posts to monitor clinical depressive symptoms. They use a semi-supervised
approach. First, a random selection of user profiles was manually examined. Then, an
unsupervised text mining method called Latent Dirichlet Allocation (LDA) was used to
extract topics. However, these topics were not specific enough to correspond to depressive
symptoms. So, supervision was added to the LDA in order to arrive at specific topics.
They mention that their sample might be biased because of the nature of the data, e.g.
more severely depressed people being more likely to express their depression, but this is
listed as a limitation so no solutions are discussed.

Gaur et al. (2018) discuss contextualized classification of Reddit posts in order to map
a certain subreddit or community within the platform to the best matching DSM-5 (Di-
agnostic and Statistical Manual of Mental Disorders - 5th edition) category. The baseline
approach resulted in the model being biased towards certain DSM-5 categories, since
these were over-represented in the training and testing data. An oversampling procedure
was tested, which reduced the false accurate rate, but also reduced the true positive rate.
Additionally, an existing implementation bootstraps the process of oversampling by ran-
domly drawing samples from the majority class. This resulted in a significant reduction
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of the false positive rate.
Park et al. (2018) employ text mining on three online mental health communities

from Reddit, namely anxiety, depression, and PTSD. The mined data was pre-processed
and then represented in vector spaces. The results were then clustered based on topic
similarity. The authors mention that the dataset is representative of the user base of the
platform, which consists predominantly of younger males. As such, the dataset shows
bias toward a younger, male audience. There is no mention of a solution or correction for
this, only a direction for future work.

Nobles et al. (2018) describe the use of NLP on text messages to identify imminent
suicide risk among young adults. They tried to identify unique patterns of communication
that occur in advance of a suicide attempt, by using a deep neural network classifier.

Ray et al. (2019) use a multi-level attention network to predict depression, using text,
audio, and video data. They used the pre-trained Universal Sentence Encoder (Cer et
al., 2018) for the text classification. As a direction for future work, they mention getting
rid of inductive bias from classes of data with more training samples and using few-shot
learning techniques that can help with compensating for classes with fewer data.

Nikfarjam et al. (2015) describe the use of NLP techniques to extract mentions of
adverse drug reactions (ADR) from informal text in social media. To form an exhaustive
list of ADR concepts, a semi-supervised learning approach was used. First, a subset of user
posts was annotated, which was then used for supervised learning. Then, the remaining
set of user posts was used for unsupervised learning. To represent the individual tokens,
they used the Word2Vec tool, which uses contextualized word embeddings. These word
embeddings were then clustered, which was used to define features. However, this work
does not mention bias or fairness.

Similarly, L. Ma et al. (2017) use Word2Vec on a dataset consisting of posts of numerous
social media sites in order to extract depression symptoms. First, the word frequency is
calculated. Then, using Word2Vec, the relationships among words in the documents are
learned. The resulting vectors are then used to cluster the word embeddings. To reduce
bias, the data is pre-processed.

3.2 Measuring bias

Caliskan et al. (2017) introduce the Word-Embedding Association Test (WEAT). This
is based on the Implicit Association Test (IAT), which documents known human biases.
WEAT uses the distance between a pair of vectors. In principle, the idea is that there
are two sets of target words (e.g. programmer, engineer, scientists; and nurse, teacher,
librarian) and two sets of attribute words (e.g. man, male; and woman, female). The
null hypothesis is that there is no difference between the two sets of target groups with
regard to the relative similarity to the two sets of attribute words. Then, permutations
are tested to measure the likelihood of the null hypothesis by computing the probability
that a random permutation of the attribute words would produce a difference in sample
means. However, WEAT is only tested on non-contextual word embeddings. May et al.
(2019) propose a simple generalization of WEAT, the Sentence Encoder Association Test
(SEAT). SEAT is applied to sentences generated by inserting individual words from the
tests in Caliskan et al. (2017) into simple templates such as ’This is a [word]. In addition
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to being tested on non-contextual word embeddings, SEAT was also tested on BERT.
Bartl et al. (2020) propose a technique to measure and mitigate BERT’s gender bias.

They do this by first applying Name-Based Counterfactual Data Substitution (CDS), in
which the gender of words denoting persons in a training corpus is swapped in place
in order to counterbalance bias. Then, BERT is fine-tuned on the GAP corpus, which
was developed as a benchmark for measuring gender bias in co-reference resolution sys-
tems. GAP contains 8908 ambiguous pronoun-name pairs in 4454 contexts sampled from
Wikipedia.

Zhang et al. (2020) quantify bias in BERT-based embeddings by evaluating classifiers
on three definitions of fairness:

• Demographic parity, defined as:
P (Ŷ = y) = P (Ŷ = ŷ|Z = z),∀z ∈ Z

• Equality of opportunity for the positive class, defined as:
P (Ŷ = 1|Y = 1) = P (Ŷ = 1|Y = 1, Z = z),∀z ∈ Z

• Equality of opportunity for the negative class, defined as:
P (Ŷ = 0|Y = 0) = P (Ŷ = 0|Y = 0, Z = z),∀z ∈ Z

3.3 Bias mitigation methods

P. Ma et al. (2020) propose MT-NLP, a framework to identify and mitigate unfair pre-
dictions of NLP models. This framework is based on a well-established software testing
scheme named metamorphic testing (MT). MT first uses arbitrary inputs to generate a
set of mutations, and then checks whether a given metaphoric relation still holds with
relation to the mutated inputs. MT-NLP is designed as a pipeline. First, advanced NLP
techniques are used on arbitrary natural language sentences to systematically explore
sub-populations within sensitive attributes. Sentences are then perturbed regarding the
sensitive attributes that were identified, and MT is performed on NLP models to detect
fairness violations. Finally, model fairness is formalized and unfair predictions are miti-
gated accordingly. Since this framework does not concern any implementation details of
a specific model, the authors claim it can be used on any NLP task. As such, it can be
classified as a post-processing bias mitigation method.

Bolukbasi et al. (2016a) describe a method for specifically debiasing word embeddings.
The first step is called Identify gender subspace. Here, a direction, or subspace, is identi-
fied that captures the bias of the embedding. For the second step, there are two options:
Neutralize and Equalize, or Soften. Neutralize ensures that gender-neutral words are zero
in the gender subspace. Equalize then equalizes sets of words outside the subspace, thus
enforcing the property that any neutral word has the same distance to all words in each
equality set. This can be utilized for applications where a word pair should not display
any bias with respect to neutral words. However, the disadvantage is that Equalize re-
moves certain distinctions that are valuable for certain applications. The Soften algorithm
reduces the differences between sets while maintaining as much similarity to the original
embedding as possible. This trade-off is controlled by a parameter.
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Brunet et al. (2019) propose a method to eliminate bias in word embeddings at the
source: the training data. Given a word embedding that has been trained on a certain
corpus and a bias evaluation metric, the proposed method approximates how removing
a small part of the training corpus would affect the resulting bias. The method provides
a highly efficient way of understanding the impact that every document in the training
dataset has on the overall bias of a word embedding. As such, it becomes possible to
identify the most bias-inducing documents in the training corpus. The test data can then
be pruned selectively to manipulate the word embedding’s bias, or the results can be used
to identify particularly biased subsets of the training data.

Bolukbasi et al. (2016b) propose two methods to systematically quantify the gender
bias of word embeddings. First, it is quantified how words corresponding to professions
are distributed along the direction between embeddings of he and she. Second, the authors
have designed an algorithm that generates analogy pairs from an embedding given two
seed words. Crowdworkers were used to quantify whether the embedding analogies reflect
stereotypes. Using this, the authors proposed an approach that can reduce the amount
of bias that is present in an embedding, given an embedding and only a handful of words,
without a significant performance reduction.

Dev et al. (2020) argue that existing bias discovery methods often suffer from two
problems. First, there is a mismatch between what is measured, e.g. vector distances
or similarities, and how the embeddings are actually utilized for the downstream tasks.
Second, many tests are designed for word types, and not word tokens. Given that contex-
tualized word embeddings that are currently performing the best, e.g. BERT, use word
tokens, this is also a mismatch. As such, the authors have designed probes that measure
the effect of specific biases, and defined aggregate measures that quantify bias effects over
a large number of predictions. Furthermore, the authors show that simple mechanisms for
removing bias on static word embeddings work. For contextualized word representations,
these mechanisms only work on the non-contextual part of the representation and can
reduce gender bias, but not bias related to religion or nationality.



4 Methodology

This chapter will detail the methodology that is used during the research.

4.1 Data analysis

First, the dataset is analyzed to gain relevant insights. We analyze the gender distribution
and class balance, and class distribution per gender, to get a better understanding of the
domain. The gender distribution analysis identifies the ratio of male to female patients,
while the class balance examination delves into the distribution of violent incidents and
non-incidents within the dataset. Additionally, we also look at the length of the texts.
Lastly, we make a list of all the gendered language that is used in the text. The insights
gained from the data analysis will be used to select relevant pre-processing steps and
evaluation metrics. For instance, in a highly imbalanced dataset, a metric like overall
accuracy does not provide valuable insight into performance. In this case, unweighted F1
and AUC provide a more robust insight into model performance.

4.2 Violence risk assessment models

This section will explain the application of the VRA models. First, the necessary pre-
processing steps are discussed. Then, the training process for the BERT-based and SVM
models is detailed. Lastly, we will discuss the evaluation and model analysis steps.

4.2.1 Pre-processing

To standardize and simplify the text for processing, the input text is cleaned by removing
single quotes and replacing sequences of non-alphanumeric characters with a single space.
Since BERT-based models provide contextual embeddings over the entire input text, this
pre-processing method alters the text as little as possible. For Doc2Vec, additional pre-
processing steps are applied. First, the text is converted to lowercase. Then, diacritics
(e.g. accents, umlauts, etc.), special characters, obsolete periods, whitespace, and tabs
are removed. After cleaning, the text is tokenized into a list of words. Finally, stopwords
are filtered, words are stemmed, and periods are filtered out.

After cleaning the text, the dataset is split into training, testing, and validation sets.
The training data has the same class distribution of the outcome variable for males and
females. This is done to ensure that differences in class distribution do not cause any
potential gender bias. Then, the remaining data is evenly divided between the validation
and test set.

A known issue with most transformer-based models is that the maximum input size is
512 tokens, which is roughly 500 words. Longer sequences are disproportionally expen-
sive because the necessary computational resources scale quadratically with the sequence
length (Devlin et al., 2018). There are a few ways to handle this problem. One option
that works in some cases is to just use the first or last 512 tokens and discard the rest of
the text (Sun et al., 2019). The drawback of this method for longer sequences is that a
lot of potentially important information is lost. Another option is to split each sequence
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into multiple chunks of max 512 tokens each, and then recombine the results to get a
prediction for the entire sample (Ivgi et al., 2023). The drawback here is that not every
chunk contains relevant information for the prediction. There are also some models avail-
able that can handle larger input sizes, like Longformer (Beltagy et al., 2020). However,
these models are less complex and as such, the contextual representations might not be as
good. In summary, there are different approaches to handle the maximum input size, but
there is no perfect solution. Therefore, all the methods listed above will be tried initially
to see what works best, and then we will continue with the best-performing method.

4.2.2 Training

After pre-processing, the training data is used to train four different models: BERTje,
MedRoBERTaNL, MBERT, and an SVM model using Doc2Vec embeddings. BERTje,
MedRoBERTaNL, and MBERT are pre-trained models, which need to be fine-tuned on
a task-specific dataset. In this case, the objective is text classification. As such, the
fine-tuning we do on these models initializes the classification layer of the models. As for
the SVM model, we first train a paragraph-to-vector model called Doc2Vec on the entire
dataset to get the document embeddings. This Doc2Vec model is then used to create the
embeddings of the training data, which is used as input for the SVM model. Each different
model is trained 5 times using different train/test/validation splits as cross-validation to
reduce the effect of variability. The validation sets are used to tune hyper-parameters to
get the best results.

4.2.3 Evaluation

After training, each model is evaluated on multiple metrics. We look at the performance
and fairness of the original test set as well as the augmented test set, which is the original
test set augmented with the same data but with all gendered words swapped. This is done
to reduce the effect of the gender of individual examples, by feeding the model the exact
same example with a different gender. After evaluating the different models we compare
the performance and fairness scores of the different models to see how model behavior
differs. We try to gain insights into model behavior, understand decision boundaries, and
look for potential areas of improvement. This helps us interpret the results better and
shows the strengths and weaknesses of each model.

4.2.3.1 Performance measures

The unweighted F1 score and unweighted AUC score are the most important for per-
formance metrics. The unweighted score is the unweighted average of the scores for the
positive class and the negative class, which is useful for imbalanced datasets since poor
performance for the minority class is reflected better. Furthermore, overall accuracy is
reported, and precision, recall, and F1-score are reported separately for the positive and
negative classes.
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4.2.3.2 Fairness measures

For fairness measures, we use the true positive rate ratio (the ratio of male true positives
compared to female true positives), false positive rate ratio (the ratio of male false positives
compared to female false positives), AUC score ratio (AUC score for male compared to
AUC score for female), and mismatch ratio (the number of examples where the prediction
changes if the gendered words are swapped).

4.3 Bias mitigation

For bias mitigation, we use two different methods. The first method is a pre-processing
method called data augmentation. Like with the augmented test data, the training data
will be augmented with the same data with the gendered words swapped, e.g. ‘she’
becomes ‘he’ or ‘woman’ becomes ‘man’. The full list of gendered words from female to
male is:

• ‘zij’: ‘hij’

• ‘ze’: ‘hij’

• ‘haar’: ‘hem’

• ‘mw’: ‘dhr’

• ‘vrouw’: ‘man’

• ‘patiente’: ‘patient’

• ‘mevrouw’: ‘meneer’

• ‘mevr’: ‘mr’

• ‘meisje’: ‘jongen’

• ‘dame’: ‘heer’

For male to female, this is the reverse. This way, the gender bias that is introduced
during fine-tuning/model training is reduced and counterfactual fairness is improved. Fur-
thermore, it serves to improve the model’s ability to generalize across different gendered
examples.

Furthermore, a post-processing method called Reject Option based Classification (ROC)
is used, which uses the low confidence region of a classifier in order to reduce discrim-
ination (Kamiran et al., 2012). By adjusting decision thresholds in the low confidence
region, the ROC method contributes to enhancing equal opportunity fairness in model
predictions. ROC allows for the selection of different fairness metrics to improve. Since
we are looking to improve both the true positive rate and false positive rate between both
genders, we will use ’Average Odds Difference’. This metric computes the average dif-
ference in these rates across all possible classification thresholds. It is possible to specify
multiple parameters, like the upper and lower classification bounds and the number of



4 METHODOLOGY 20

thresholds that will be tried. This influences the outcome and computing time, so multi-
ple configurations will be tried on the validation set to find the best parameters. These
will then be used on the test set to get the new results. Furthermore, the ROC needs a
protected attribute, in our case gender, and a privileged and unprivileged group. This
depends on the results of the models. The method also needs a favorable label and an
unfavorable label. Since the task is violence risk assessment, the favorable label is debat-
able. We decided that positive would be the favorable label since ultimately the goal is
to provide the proper care for a patient. They will not face any negative consequences for
being labeled as positive, but might not get the proper care if falsely labeled negative.

Additionally, all models are trained on a neutralized dataset, where all gendered words
are replaced by gender-neutral terms e.g. ’she’ becomes ’they’ or ’man’ becomes ’person’.
This allows us to gain insights into bias that is introduced during pre-training of the
BERT-based models, since the models will not make any new gender associations. The
full list of gender-neutral replacement terms is:

• ‘hij’: ‘diegene’

• ‘hem’: ‘diegene’

• ‘zijn’: ‘diens’

• ‘dhr’: ‘persoon’

• ‘man’: ‘persoon’

• ‘meneer’: ‘persoon’

• ‘mr’: ‘persoon’

• ‘jongen’: ‘persoon’

• ‘heer’: ‘persoon’

• ‘zij’: ‘diegene’

• ‘ze’: ‘diegene’

• ‘haar’: ‘diens’

• ‘mw’: ‘persoon’

• ‘vrouw’: ‘persoon’

• ‘patiente’: ‘patient’

• ‘mevrouw’: ‘persoon’

• ‘mevr’: ‘persoon’

• ‘meisje’: ‘persoon’

• ‘dame’: ‘persoon’

• ‘hr’: ‘persoon’



5 University Medical Center Utrecht Psychiatry de-

partment dataset

This chapter elaborates on the details of the dataset that we use to make our predictions.
First, an overview of the source of the dataset and the general contents of the texts
is provided to facilitate a better understanding of the texts that need to be classified.
After that, we will provide an analysis of the demographics of the dataset with regard to
class balance and gender distribution. Finally, an overview of the training, testing, and
validation split is shown.

5.1 Dataset source

The dataset for predicting violence incidents was acquired from the Psychiatry Depart-
ment at the University Medical Center Utrecht (UMCU) in the Netherlands. This depart-
ment comprises six inpatient units that admit patients with diverse medical backgrounds,
each focusing on specific patient populations, diagnoses, and treatments. The department
provides secondary care to patients with severe but general psychiatric symptoms, and
tertiary care for patients with complex symptomatology or comorbidities, which ensures
a diverse population. The psychiatry units mandated the reporting of violence incidents
by healthcare professionals, typically involving verbal and physical aggression from pa-
tients directed at staff or other patients. The prediction objective is to anticipate violence
incidents between the first and 28th day, based on clinical texts written up to and in-
cluding the first day of admission. The prediction task excludes violence incidents on
the admission day due to insufficient data available at that point, particularly in acute
admissions. This interval ensures specificity in prediction, with a high inclusion rate of
incidents (Menger et al., 2018; Mosteiro et al., 2022).

Most of the clinically relevant information was entered into the Electronic Health
Record (EHR) in free text format by psychiatrists and nurses, with entries typically
containing between 100 and 500 words. These are respectively referred to as ’doctor
notes’ and ’nurse notes’. Doctor notes mainly contain information about patient history,
current treatment details (e.g. types of medication and therapy), and changes therein.
Nurse notes typically contain details about the patient’s current well-being and activities.
These notes are written three times a day by trained nurses. All notes were de-identified
using the De-identification Method for Dutch Medical Text (DEDUCE) before any other
processing took place (Menger et al., 2018).

A patient may undergo multiple admissions to the psychiatry ward, and during each
admission, they might spend time in different sub-wards. These are referred to as ad-
mission periods, and are the data points for this study. All notes collected between 28
days before and 1 day after the beginning of the admission period are concatenated and
considered a single period note for each admission period. The outcome variable is deter-
mined based on the occurrence of a violence incident within 1 to 28 days after the start
of the admission period. If such an incident occurs, the outcome is recorded as violent
(positive), otherwise it is noted as non-violent (negative) (Mosteiro et al., 2022).

To summarize, the relevant columns in the dataset are:
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• Text: this column contains the period notes.

• Outcome: no violent incident (0) or violent incident (1) within 1 to 28 days after
the start of the admission period.

• Gender: female (0) or male (1).

5.2 Demographics

The dataset is highly imbalanced with regard to the outcome variable. Of the total 4280
datapoints, 3855 (90%) are negative, where there was no violent incident, and 425 (10%)
are positive, where there was a violent incident. This is depicted in Figure 4.

Figure 4: Amount of violent incidents

The gender distribution is better balanced. There are 2199 (51%) female patients and
2081 (49%) male patients, as depicted in Figure 5.
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Figure 5: Gender distribution

There is also an imbalance with regard to the distribution of violent incidents per
gender. For females, there are 166 violence incidents out of 2199 patients, which is 7.55%.
For males, there are 259 violence incidents out of 2081 patients, which is 12.45%. This is
shown in 6.
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Figure 6: Incident and gender distribution

5.3 Training, testing, and validation splits

Table 1 shows the distribution of the data between the training, testing, and validation
sets. To minimize the gender bias that is introduced during training, the ratio of positive
and negative examples in the training set is the same for males and females. The remaining
data is then evenly split between the testing and validation sets.

Train Test Val
Total

0 1 T 0 1 T 0 1 T
M 1260 140 1400 281 59 340 281 59 340 2080
F 1260 140 1400 386 13 399 386 13 399 2198
T 2520 280 2800 667 72 739 667 72 739 4278

Table 1: Train, test, and validation split per gender, 0 is no incident, 1 is violence incident



6 Experimental results

This chapter delves into the experimental results of our research. We show the most im-
portant findings regarding counterfactual fairness and performance first, which have been
obtained by testing on the augmented test set. Then, we visualize the results regarding
predictive parity and performance, which we obtained from testing on the original test
set. Both the counterfactual fairness and predictive parity results are shown in a single
table, to allow for easier comparison. Finally, we show the overall scores regarding the
performance and fairness of all models in a complete overview per model.

6.1 Counterfactual fairness evaluation

Table 2 shows the results concerning counterfactual fairness and the performance of the
different models on the augmented test set. The augmented set is the original test set
combined with the same test set with all gendered words swapped. As such, the model
classifies each test text twice, but with different genders, which can be used to gain insights
into counterfactual fairness. Furthermore, each model is trained in three different ways:
on the original training set, the neutralized training set, and the augmented training set.
Additionally, the ROC method was applied to the results of each model from the original
setting. This is shown in the ’setting’ column. The mismatch ratio shows how often the
model has a different outcome for a pair of gender-swapped examples, where a lower score
means a fairer performance. The true positive rate ratio (TPRR) is the ratio of true
positives for males compared to females. The bias direction is shown by the F (female)
or M (male) next to the number, meaning that if the TPR for one gender is higher, it is
biased towards this gender. Here, a higher score means a fairer performance. This is the
same for the false positive rate ratio (FPRR) and area under curve ratio (AUC-ratio).
The last two columns show the F1-score and overall AUC respectively, where a higher
score means a better performance. Scores that show a significant increase compared to
the original setting are highlighted in dark green, while scores that show a significant
decrease are highlighted in dark red, to provide a clearer overview of the biggest changes.
Scores that show a small improvement are highlighted in light green, while scores that
show a small decrease are highlighted in light red.

6.1.1 Original setting

BERTje and MedRoBERTaNL perform similarly in the original setting, with BERTje
scoring slightly better on counterfactual fairness. The bias direction of both models is
towards females. MBERT scores significantly worse performance-wise but does better
for counterfactual fairness, with a slight bias towards males. The SVM model does sig-
nificantly better regarding performance than all other models, and shows slightly worse
counterfactual fairness than MBERT but better than BERTje and MedRoBERTaNL, with
the bias direction being mainly towards males.
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6.1.2 Neutralized setting

For the neutralized setting, BERTje shows a minor performance increase and a signifi-
cant counterfactual fairness increase with a lower mismatch ratio and higher TPRR and
FPRR. MedRoBERTaNL shows a slight performance decrease, but a significant counter-
factual fairness increase as well. MBERT shows a slight performance increase, but a slight
counterfactual fairness decrease because of a lower FPRR. SVM scores slightly worse on
performance, but shows a significant decrease in fairness with a lower TPRR and FPRR
as well as a slightly higher mismatch ratio.

6.1.3 Bias mitigation: data augmentation

Compared to the original setting, for the augmented setting BERTje shows a worse per-
formance, but a significant increase in counterfactual fairness with improvements on all
metrics. MedRoBERTaNL also performs worse but shows significantly increased coun-
terfactual fairness with improvements on all metrics. MBERT shows a large performance
improvement, with a minor counterfactual fairness decrease. For the SVM model, the
performance improves marginally, and the counterfactual fairness improves mainly on
FPRR.

6.1.4 Bias mitigation: Reject Option Classification

Compared to the original setting, BERTje shows very small changes after applying the
ROC method. MedRoBERTaNL shows an improvement in both performance and coun-
terfactual fairness, though the mismatch ratio is higher. MBERT shows much better
performance after the ROC is applied, and fairness increases in TPRR but decreases in
both mismatch ratio and FPRR. Finally, the SVM model shows significant improvements
in both performance and fairness, except for the higher mismatch ratio.
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Setting
Counterfactual Fairness Performance
Mismatch
Ratio%↓ TPRR ↑ FPRR↑ AUC-

Ratio↑ F1%↑ AUC%↑

BERTje
orig. 2.62 0.90F 0.79F 0.98F 63.78 64.08
neutr. 1.78 0.99F 1.00 0.99M 63.99 64.59
BM: aug. 1.41 0.95M 0.98M 0.99M 62.14 60.95
BM: ROC 2.95 0.91F 0.79F 0.99F 62.83 63.60

MedRoBERTaNL
orig. 2.86 0.79F 0.70F 0.96F 64.01 63.47
neutr. 0.92 0.94F 0.97M 0.98F 62.59 62.04
BM: aug. 0.54 1.00 0.98M 1.00 62.03 60.83
BM: ROC 3.92 0.97F 0.85F 0.97F 64.19 66.35

MBERT
orig. 0.46 0.86M 1.00 0.99M 55.47 54.31
neutr. 0.62 0.88M 0.83M 0.99M 58.53 56.62
BM: aug. 1.43 0.96M 0.94M 0.99M 62.06 60.51
BM: ROC 2.66 0.99F 0.93F 1.00 61.86 64.95

Doc2Vec SVM
orig. 0.46 0.98F 0.78M 0.99F 78.02 72.05
neutr. 0.70 0.89M 0.67M 0.97M 75.79 69.64
BM: aug. 0.27 0.99M 0.96M 1.00 78.22 72.59
BM: ROC 2.19 0.98F 0.95M 0.98M 78.82 86.82

Table 2: Counterfactual fairness in violence risk assessment from clinical notes: compar-
ison of fairness measures of different models that are evaluated on counterfactual pairs.
BM: bias mitigation, orig.: original, aug.: augmentation, neutr.: neutralization, ROC:
Reject Option Classification, M: bias towards males (higher score for males), F: biased
towards females, ↑: higher score is better, ↓: lower score is better, colors indicate scores
compared to orig setting, dark green: significant improvement, light green: small im-
provement, light red: small decrease, dark red: significant decrease.

6.2 Equalized odds evaluation

Table 3 shows the predictive parity and performance results on the original test dataset
without augmentation. This table has the same columns as 2, except that the mismatch
ratio is not included since this cannot be calculated on just the original set. Because this
is only on the original set, this table shows the predictive parity.

6.2.1 Original setting

As with the augmented test results, MBERT scores the worst performance-wise. How-
ever, MBERT also scores very low on predictive parity with a very low TPRR. BERTje
has slightly higher performance scores than MedRoBERTaNL, but scores worse on pre-
dictive parity. Lastly, the SVM model has the best performance scores, but slightly worse
predictive parity results across all metrics than MedRoBERTaNL.
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6.2.2 Neutralized setting

In the neutralized setting, BERTje shows a small performance improvement, but a signif-
icant predictive parity increase. MedRoBERTaNL shows a minor performance decrease
and a decrease in TPRR, but good improvements in FPRR. MBERT performs slightly
better, and shows a slightly higher TPRR. Finally, the SVM model shows fairness im-
provements in all categories at the cost of a slight performance decrease.

6.2.3 Bias mitigation: data augmentation

BERTje performs slightly worse in the augmented setting compared to the original setting
regarding performance, but the overall fairness stays roughly the same with a decrease in
TPRR but an increase in FPRR. MedRoBERTaNL shows a small increase in fairness at
the cost of a small decrease in performance, but no significant changes. MBERT shows
significant improvements in both performance and fairness, scoring similarly to BERTje
and MedRoBERTaNL performance-wise, and sharply increases in both TPRR and FPRR.
Again, the SVM model performs best but shows no significant fairness increase and a
marginal performance increase.

6.2.4 Bias mitigation: Reject Option Classification

After applying the ROC, BERTje scores largely the same as in the original setting.
MedRoBERTaNL shows a performance increase and a small decrease in FPRR. MBERT
shows a large improvement in both performance and fairness with a much higher TPRR.
Finally, the SVM model performs best and shows an increase in fairness because of a
higher FPRR and a sizeable performance increase in AUC.
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Setting
Fairness - Predictive parity Performance

TPRR ↑ FPRR↑ AUC-
Ratio↑ F1%↑ AUC%↑

BERTje
orig 0.64M 0.80F 0.89M 62.77 63.11
neutr. 0.69M 0.95M 0.91M 63.46 64.02
BM:aug. 0.45M 0.98F 0.86M 62.41 61.27
BM:ROC 0.58M 0.83F 0.87M 62.09 62.94

MedRoBERTaNL
orig 0.97F 0.77F 0.99M 62.51 61.82
neutr. 0.83M 1.00 0.96M 62.00 61.34
BM:aug. 0.97F 0.84F 1.00 62.03 60.83
BM:ROC 0.97F 0.72F 0.99M 62.74 64.66

MBERT
orig 0.27M 0.73F 0.92M 56.03 54.65
neutr. 0.35M 0.76M 0.90M 58.76 56.95
BM:aug. 0.79M 0.99F 0.95M 62.49 60.84
BM:ROC 0.77M 0.77F 0.90M 61.77 64.98

Doc2Vec SVM
orig 0.89F 0.69F 0.96F 77.96 72.05
neutr. 0.94M 0.83M 0.98M 76.23 70.01
BM:aug. 0.86F 0.73F 0.95F 78.28 72.66
BM:ROC 0.90F 0.85F 0.96F 78.15 86.55

Table 3: fairness in violence risk assessment from clinical notes: comparison of fairness
measures of different models that are evaluated on the original test set. BM: bias miti-
gation, orig. : original, aug. : augmentation, neutr. : neutralization, M: bias towards
males (higher score for males), F: biased towards females, ↑: higher score is better, ↓:
lower score is better, colors indicate scores compared to orig setting, dark green: signif-
icant improvement, light green: small improvement, light red: small decrease, dark red:
significant decrease.

6.3 Complete performance overview

6.3.1 BERTje

Table 4 shows the average performance of BERTje in all settings, on both the augmented
and original test sets. Precision, recall, and F1 are split between the positive class and
the negative class. AUC, TPR, and FPR are split between males and females. Lastly,
the number of mismatches is shown. Overall, the model performs significantly worse in
correctly classifying positive examples compared to negative examples. In the neutralized
setting, there are slight performance improvements, and the differences between males
and females become slightly smaller. The amount of mismatches decreases as well. For
the augmented setting, there is a performance decrease overall, but the performance for
males and females becomes almost the same, and the amount of mismatches decreases.
The impact of the ROC is quite insignificant, with a small decrease in performance overall,
no significant improvement in performance differences between males and females, and
a slightly higher number of mismatches. Overall, the model performs slightly better on
the augmented test set. The differences between males and females are also larger on the
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original test set in all settings.

Setting Orig. Neutr. Aug. ROC
Test set Aug. Orig. Aug. Orig. Aug. Orig. Aug. Orig.

Accuracy 0.87 0.87 0.87 0.87 0.88 0.88 0.86 0.86
Precision pos. 0.34 0.33 0.34 0.34 0.36 0.36 0.32 0.30
Recall pos. 0.36 0.34 0.37 0.36 0.27 0.28 0.36 0.34
F1 score pos. 0.35 0.33 0.35 0.34 0.31 0.31 0.33 0.32
Precision neg. 0.93 0.93 0.93 0.93 0.92 0.92 0.93 0.93
Recall neg. 0.93 0.92 0.92 0.92 0.95 0.95 0.92 0.91
F1 score neg. 0.93 0.93 0.93 0.93 0.94 0.94 0.92 0.92
F1 unweighted 0.64 0.63 0.64 0.63 0.62 0.62 0.63 0.62
AUC 0.64 0.63 0.64 0.64 0.61 0.61 0.64 0.63
AUC male 0.64 0.65 0.64 0.65 0.61 0.63 0.63 0.65
AUC female 0.65 0.57 0.64 0.59 0.61 0.54 0.64 0.56
TPR male 0.34 0.36 0.36 0.38 0.28 0.31 0.34 0.37
TPR female 0.38 0.23 0.37 0.26 0.26 0.14 0.37 0.22
FPR male 0.07 0.07 0.08 0.08 0.05 0.05 0.07 0.08
FPR female 0.08 0.08 0.08 0.08 0.05 0.05 0.09 0.09
Mismatches 19.4 - 13.2 - 10.4 - 21.8 -

Table 4: Average performance of BERTje in all settings on the augmented and origi-
nal test sets, colors indicate scores compared to the original setting, green: significant
improvement, red: significant decrease.

6.3.2 MedRoBERTaNL

Table 5 shows the average performance of MedRoBERTaNL on both the augmented and
original test sets. Overall, the performance is in line with BERTje. This model also
performs significantly worse regarding the positive class. In the original setting, there are
also differences in performance between males and females, with better performance for
females, as well as overall more positive predictions for females as shown with the higher
TPR and FPR. These differences become smaller in the other settings. The biggest change
for the neutralized and augmented settings is the lower number of mismatches and the
smaller differences between male and female performance. Applying the ROC method
increases the recall for the positive class significantly, at the cost of a small decrease in
precision for the positive class. Also, the TPR for both genders increases significantly,
at the cost of a smaller increase in FPR for both genders. However, the amount of
mismatches also increases.
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Setting Orig. Neutr. Aug. ROC
Test set Aug. Orig. Aug. Orig. Aug. Orig. Aug. Orig.

Accuracy 0.88 0.87 0.87 0.87 0.88 0.88 0.86 0.85
Precision pos. 0.37 0.35 0.35 0.34 0.36 0.36 0.33 0.31
Recall pos. 0.33 0.30 0.30 0.29 0.27 0.27 0.42 0.39
F1 score pos. 0.35 0.32 0.32 0.31 0.31 0.31 0.36 0.34
Precision neg. 0.93 0.93 0.93 0.92 0.92 0.92 0.94 0.93
Recall neg. 0.94 0.94 0.94 0.94 0.95 0.95 0.91 0.90
F1 score neg. 0.93 0.93 0.93 0.93 0.94 0.94 0.92 0.92
F1 unweighted 0.64 0.63 0.63 0.62 0.62 0.62 0.64 0.63
AUC 0.63 0.62 0.62 0.61 0.61 0.61 0.66 0.65
AUC male 0.62 0.62 0.61 0.62 0.61 0.61 0.65 0.65
AUC female 0.65 0.62 0.63 0.59 0.61 0.61 0.67 0.65
TPR male 0.29 0.30 0.29 0.30 0.27 0.27 0.39 0.39
TPR female 0.37 0.31 0.31 0.25 0.27 0.28 0.46 0.40
FPR male 0.05 0.05 0.06 0.06 0.05 0.05 0.08 0.08
FPR female 0.08 0.07 0.06 0.06 0.05 0.06 0.11 0.11
Mismatches 21.2 - 6.8 - 4.0 - 29.0 -

Table 5: Average performance of MedRoBERTaNL in all settings on the augmented and
original test sets, colors indicate scores compared to the original setting, green: significant
improvement, red: significant decrease.

6.3.3 MBERT

MBERT performs the worst of all models in the original setting, especially for the positive
class. For the augmented test set, the performance difference between both genders is very
small. In the neutralized setting, performance improves slightly, but the overall perfor-
mance is still low. The augmented setting shows a large improvement in performance in
most metrics, except for a decrease in precision for the positive class and a larger amount
of mismatches. Applying the ROC increases the recall and F1-score for the positive class,
at the cost of precision for the positive class. Overall accuracy and recall for the negative
class also decreased. There is a sharp increase in AUC and TPR for both genders and
unweighted F1, but also in FPR and mismatches.
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Setting Orig. Neutr. Aug. ROC
Test set Aug. Orig. Aug. Orig. Aug. Orig. Aug. Orig.

Accuracy 0.91 0.91 0.90 0.90 0.89 0.89 0.84 0.84
Precision pos. 0.62 0.63 0.50 0.51 0.39 0.41 0.28 0.28
Recall pos. 0.09 0.10 0.15 0.16 0.26 0.26 0.42 0.42
F1 score pos. 0.16 0.17 0.22 0.23 0.30 0.31 0.33 0.33
Precision neg. 0.91 0.91 0.91 0.92 0.92 0.92 0.93 0.93
Recall neg. 0.99 0.99 0.99 0.98 0.95 0.96 0.88 0.88
F1 score neg. 0.95 0.95 0.95 0.95 0.94 0.94 0.91 0.91
F1 unweighted 0.55 0.56 0.59 0.59 0.62 0.62 0.62 0.62
AUC 0.54 0.55 0.57 0.57 0.61 0.61 0.65 0.65
AUC male 0.55 0.55 0.57 0.58 0.61 0.61 0.65 0.67
AUC female 0.54 0.51 0.56 0.52 0.60 0.59 0.65 0.60
TPR male 0.10 0.12 0.16 0.18 0.26 0.27 0.41 0.44
TPR female 0.09 0.03 0.14 0.06 0.25 0.22 0.42 0.34
FPR male 0.01 0.01 0.02 0.02 0.05 0.04 0.11 0.12
FPR female 0.01 0.01 0.01 0.01 0.04 0.04 0.10 0.13
Mismatches 3.4 - 4.6 - 10.6 - 19.8 -

Table 6: Average performance of MBERT in all settings on the augmented and origi-
nal test sets, colors indicate scores compared to the original setting, green: significant
improvement, red: significant decrease.

6.3.4 SVM

The SVM model performs best in all settings compared to the other models. Neutraliza-
tion has a rather small impact. Overall, the performance is slightly worse, mainly with
a decrease in TPR for females and an increase in mismatches. Augmentation also has
limited effects, with the biggest change being a lower number of mismatches. The biggest
changes are seen after applying ROC. For the positive class, recall is increased at the cost
of a precision decrease. For the negative class, this is the opposite. A large increase in
AUC for both genders can be seen as well. Furthermore, the TPR for both genders shows
large increases, at the cost of a higher FPR. Finally, the amount of mismatches increases
significantly.
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Setting Orig. Neutr. Aug. ROC
Test set Aug. Orig. Aug. Orig. Aug. Orig. Aug. Orig.

Accuracy 0.94 0.94 0.94 0.94 0.94 0.94 0.90 0.90
Precision pos. 0.89 0.89 0.91 0.91 0.87 0.87 0.51 0.50
Recall pos. 0.45 0.45 0.40 0.41 0.46 0.46 0.83 0.82
F1 score pos. 0.59 0.59 0.55 0.56 0.60 0.60 0.63 0.62
Precision neg. 0.94 0.94 0.94 0.94 0.94 0.94 0.98 0.98
Recall neg. 0.99 0.99 1.00 1.00 0.99 0.99 0.85 0.91
F1 score neg. 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.94
F1 unweighted 0.78 0.78 0.76 0.76 0.78 0.78 0.79 0.78
AUC 0.72 0.72 0.70 0.70 0.73 0.73 0.87 0.87
AUC male 0.72 0.72 0.71 0.70 0.73 0.72 0.89 0.86
AUC female 0.72 0.74 0.69 0.69 0.73 0.76 0.87 0.90
TPR male 0.44 0.44 0.42 0.41 0.46 0.45 0.82 0.81
TPR female 0.45 0.49 0.38 0.38 0.46 0.52 0.84 0.89
FPR male 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.09
FPR female 0.01 0.01 0.00 0.00 0.01 0.01 0.08 0.10
Mismatches 3.4 - 5.2 - 2.0 - 16.2 -

Table 7: Average performance of SVM model in all settings on the augmented and orig-
inal test sets, colors indicate scores compared to the original setting, green: significant
improvement, red: significant decrease.



7 Discussion

This chapter will analyze the results that are shown in the results section. We will further
explore model performance, fairness considerations, bias mitigation techniques, as well as
limitations.

7.1 Model performance

In evaluating model performance, notable distinctions emerge among the monolingual
BERTje and MedRoBERTaNL, multilingual MBERT, and the SVM model. BERTje and
MedRoBERTaNL performed much better than MBERT in both the original and neu-
tralized settings, but MBERT showed significant improvement in the augmented setting.
It seems that MBERT benefits from a larger fine-tuning dataset size. This holds true
for both the original as well as the augmented test results. That said, the SVM model
performed significantly better than the BERT-based models, likely due to its capability
to handle large input sizes without significant trade-offs. For the BERT-based models,
the only technique that showed promising results was chunking the texts to comply with
the maximum input size. Using only the first or last part of the texts proved to lose too
much relevant information, and using Longformer which allowed for longer input sizes
gave a fine-tuned model with extremely low predictive power. However, the trade-off
with chunking is that the models treated certain parts of the texts that are potentially
irrelevant to the outcome the same as critical sections, which can lead to unwanted model
behavior. These nuances show the complexity of the task and emphasize the need for
tailored strategies to balance input size constraints with the preservation of essential in-
formation. Further exploration of techniques or model architectures may offer insights
into optimizing the performance of BERT-based models for this specific domain.

7.2 Fairness

BERTje and MedRoBERTaNL show similar counterfactual fairness in the original set-
ting, including the bias direction. In the neutralized setting, BERTje shows almost no
bias regarding counterfactual fairness, while MedRoBERTaNL shows a slight bias. The
neutralized setting is used to see if the pre-training introduces bias. For BERTje, this
does not seem to be the case. For MedRoBERTaNL, a slight amount of bias can be at-
tributed to pre-training. As for MBERT, there is also counterfactual fairness bias in the
neutralized setting, which can be attributed to pre-training, though it is difficult to make
strong conclusions since the model performance is bad overall. Since the original settings
for the BERTje and MedRoBERTaNL show more counterfactual fairness bias than the
neutralized settings, it can be concluded that bias is also introduced during model train-
ing, with the models being more likely to predict a positive outcome for females than
for males. As for the SVM model, the input here is a Doc2Vec model that is trained on
the entire dataset. As such, counterfactual fairness bias in the neutralized setting can
be attributed to bias that is present in the dataset. Interestingly, this model is more
likely to predict a positive outcome for males. This makes sense, given that in the entire
dataset, the violent incident rate for males is higher than for females. However, both
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BERTje and MedRoBERTaNL have a higher propensity to predict a positive outcome for
females, while for MBERT it is the opposite, though slightly. The counterfactual fairness
becomes much better in both the neutralized and augmented settings for BERTje and
MedRoBERTaNL. As such, it seems that the bias regarding counterfactual fairness is
introduced during fine-tuning.

As for predictive parity, BERTje shows slightly more bias in the original setting than
in the neutralized setting, though the bias in the neutralized setting is quite high. So, it
can be concluded that predictive parity bias is mostly introduced during pre-training for
BERTje, with a slight bias introduced during fine-tuning. Interestingly, the bias direction
is mainly towards males. For MedRoBERTaNL, the bias direction in the original setting
is toward females, while in the neutralized setting it is toward males. As such, it can
be concluded that the bias towards males is introduced by the pre-training and the bias
towards females during fine-tuning. As for MBERT, the bias towards males is mainly
caused by the pre-training, and a bias towards females is introduced during fine-tuning.
As for the SVM model, a bias towards males can be seen in the neutralized setting, which
can be attributed to the Word2Vec embeddings. However, a bias towards females can be
seen in the original setting. This seems to be caused during the SVM model training.
Combining these findings from all models, the UMCU dataset seems to have a predictive
parity bias towards females, whereas pre-training bias is mostly towards males.

7.2.1 Source of bias and bias magnitude

Overall, to answer sub-research question one ‘What is the main source of bias’, it can be
concluded that there is no single source of bias. Bias is introduced during pre-training and
fine-tuning for the BERT-based models, and during the Doc2Vec as well as SVM training.
However, counterfactual fairness bias towards females is mostly introduced during fine-
tuning, whereas predictive parity bias towards males is introduced during pre-training
and towards females during fine-tuning.

Considering sub-research question 3, ‘Is there a difference in terms of the magni-
tude of bias that pre-trained embeddings have’, the multilingual MBERT seems to have
less pre-training counterfactual fairness bias than both monolingual models BERTje and
MedRoBERTaNL. For predictive parity, this is the other way around, with MBERT show-
ing significantly more bias. Comparing the general BERTje with the domain-specific pre-
trained MedRoBERTaNL, we observe a slightly higher amount of counterfactual fairness
bias. However, BERTje shows more predictive parity bias. Overall, all the pre-trained
models show a form of bias, but it differs per model how severe this bias is, and also what
kind of bias is most prevalent.

7.2.2 Impact on downstream task

To answer sub-research question two ‘How does this bias impact the downstream task of
violence risk assessment’, the results on the original test set reflect the real-world situation
the best. BERTje and MBERT both predict males to be involved in a violent incident
more often, whereas MedRoBERTaNL and SVM predict females to be involved more
often.
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7.3 Bias mitigation methods

Overall, data augmentation worked well in mitigating counterfactual fairness bias for both
BERTje and MedRoBERTaNL. Both models performed almost the same for both genders,
with BERTje being slightly less fair. However, it did mean a slight trade-off regarding
performance, with both models showing a decrease in F1-score and AUC. As for predictive
parity, data augmentation for BERTje led to mixed results, with overall fairness staying
roughly the same, while for MedRoBERTaNL there was a slight predictive parity increase.
For MBERT, data augmentation showed mixed results regarding counterfactual fairness.
Certain aspects improved while others decreased. However, the performance increased
quite significantly. This might be attributable to the larger amount of data that was used
for fine-tuning. Since MBERT is a larger model than BERTje and MedRoBERTaNL, it
is possible that it needs more data before it can generalize well enough to make good
predictions. Predictive parity also improved significantly. As for the SVM model, data
augmentation led to an increase in counterfactual fairness, while also showing a minor
performance increase. However, predictive parity stayed largely the same.

As for the Reject Option Classification method, for BERTje the effects were minimal.
Predictive parity got slightly worse, but the other changes are negligible. MedRoBER-
TaNL saw an increase in counterfactual fairness, but a slight decrease in predictive par-
ity, with the performance improving slightly. As for MBERT, the counterfactual fairness
decreased, but the predictive parity increased. Also, the performance scores improved
significantly. For the SVM model, counterfactual fairness and predictive parity improved
slightly because of an FPRR increase, but the mismatch ratio also got significantly higher.
Additionally, the AUC score increased significantly.

It is interesting to note that for all models, the mismatch ratio increased after applying
ROC, and mostly decreased because of data augmentation. The results show differences
per model, where certain models react differently to the bias mitigation methods. Fur-
thermore, a fairness improvement in one category can lead to a decrease in another. This
shows that it is important to carefully consider which metrics to focus on.

7.4 Limitations

While the results show promising insights into gender bias and gender bias mitigation,
there are also some limitations to this research that should be considered when interpreting
the findings.

7.4.1 Generalizability

First, it is difficult to generalize the results. What proves efficient for psychiatric notes
and violence risk assessment might not work for other domains or datasets. From our
experimental results, we see that the different models already have different outcomes on
the same task. As such, it would be even more difficult to generalize these results for
other domains. Furthermore, dataset characteristics should also be taken into account.
For example, our dataset has a large class imbalance, which means certain techniques
might work better than others. Finally, violence risk assessment is a complex task. What
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might work for the psychiatric domain, might not work for other domains where violence
risk assessment is used, such as law enforcement.

7.4.2 Domain-specific model limitations

Furthermore, the use of the domain-specific MedRoBERTaNL model, pre-trained on a
broader medical dataset, introduces a nuanced limitation. While the goal was to leverage
its enhanced understanding of medical terms, the difference between the training domain
(general medical data) and the target domain (psychiatry) poses challenges. Given that
the training domain and the target domain are not exactly the same, it is difficult to
make strong conclusions about domain-specific models. However, the training domain of
MedRoBERTaNL was the closest to our target domain for pre-trained Dutch language
models. That said, an interesting part of our findings is that MedRoBERTaNL is pre-
trained on a significantly smaller dataset than BERTje, yet it performs largely the same
for our task.

7.4.3 Manual selection of gendered terms

For both the augmentation and neutralization, we used a list of gendered terms. This
list was constructed by carefully going over the individual text entries. However, this was
a manual task, and therefore it is possible that certain terms were missed. This means
that it is possible that the augmented and neutralized datasets contain wrongly gendered
words, which in turn can affect gender bias.

7.5 Ethical considerations

Given that we used a classified dataset with sensitive patient data, and that the classifi-
cation objective is violence risk assessment, some ethical considerations should be taken
into account. First off, data security and anonymization are important. The dataset
that we used had been anonymized already before we did any data processing in order to
minimize personally identifiable data. Furthermore, ethical approval had been gained for
the overarching project this research fits into. Finally, if the classification we discussed
in this research were to actually be implemented for real-world usage, further consider-
ations should be made. There is potential stigmatization associated with being labeled
as likely to commit a violent incident, though the overall goal is to provide better care.
Transparency is an important requirement if this solution were to be implemented.



8 Conclusion

In concluding this research, we reflect on an exploration into gender bias and bias mitiga-
tion in the context of violence risk assessment models. Our research shows the complex
dynamics involved in the use of NLP models in the mental healthcare domain. The most
important findings of this research are that monolingual BERT-based models perform
better than multilingual ones, and that domain-specific pre-trained models perform on
par with general pre-trained models. Our research also concludes that the classical ma-
chine learning model SVM is more suited for the task at hand, which corroborates earlier
works on this topic. This is caused by the fact that the SVM model can handle larger
input sizes, whereas the BERT-based models need an additional step where the input
is chunked, which compromises the model performance significantly. However, all these
models showed bias in some form. For the BERT-based models, this was partly intro-
duced during pre-training and further increased during fine-tuning on our dataset. For
the SVM model, the bias was entirely caused by the dataset. In conclusion, both pre-
training, fine-tuning, and model training introduce bias. However, there are methods to
deal with these biases. Data augmentation works well to reduce counterfactual fairness
bias and to a lesser extent predictive parity bias. However, for certain models, this comes
at the cost of performance, but for others, it increases performance. Furthermore, the
post-processing technique Reject Option Classification can also be used for some models
to improve counterfactual fairness and predictive parity, but for others, it will decrease
this. The same holds for performance measures; in certain situations, these improve, while
in others they decrease.

In summary, bias mitigation is a delicate issue. It is important to decide what metrics to
optimize for since improvements in certain areas often come with trade-offs in others. This
is domain-specific, so there is no one-size-fits-all solution. Careful consideration should be
put into deciding what is most important. While the study’s findings highlight the results
for violence risk assessment in psychiatric care, we caution against broad generalizations
to other domains or datasets. The task-specific nature of the study necessitates careful
consideration of the context in interpreting and applying the results.

8.1 Future work

As for future research, looking into fairness and bias mitigation for other classical machine
learning approaches for this domain is an interesting topic. Since the SVM model outper-
formed the BERT-based models, and it is possible to reduce its bias as well, it would be
interesting to see how other methods would perform. Furthermore, similar research could
be done on other domains to look into the generalizability of the findings. Furthermore,
while MedRoBERTaNL’s training domain is not the exact same as our target domain, it
did perform on par with BERTje. This highlights the potential of domain-specific models,
and their usage could be of interest in future research, even if the domain is not an exact
fit.

Additionally, an interesting approach would feature extraction. In this approach, the
word embeddings, or features, are extracted from the BERT-based models, and used as
input for another machine learning approach, e.g. SVM. This can either be done directly
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after pre-training or after first fine-tuning the embeddings on the task-specific dataset,
but fine-tuning on the task-specific data is the most promising method. This would work
similarly to the Doc2Vec embeddings we use as input for the SVM model. However,
for long sequences, the outputs of different chunks should be pooled together to get the
representation of the entire text.

Furthermore, given the sensitive subject, transparency is an important factor that
should be considered. It would be interesting to research what the key factors are for a
positive or negative classification. We did touch on this subject with the data augmenta-
tion, but a further analysis could provide more insights.
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A APPENDIX A: CODE VI

A Appendix A: Code

All the code that has been used for this project is uploaded to a GitHub repository:
https://github.com/JoppeKo/VRAThesisJoppe

https://github.com/JoppeKo/VRAThesisJoppe
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