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Abstract 

Urban green spaces provide numerous benefits, including augmenting the aesthetic appeal 

of urban landscapes and improving mental wellbeing. While diverse methods have been used to 

evaluate greenery, the assessment of green visibility using street-view level images is frequently 

recommended due to its greater compatibility with human perception. Although many existing 

studies predominantly rely on Google Street View data, the usage restrictions and lack of 

alignment with FAIR (Findability, Accessibility, Interoperability and Reusability) principles 

presents challenges. Therefore, the incorporation of Volunteered Street View Imagery (VSVI) 

platforms, such as Mapillary, is emerging as a promising alternative. This research presents a 

scalable and reproducible framework for assessing the Green View Index (GVI) using Mapillary 

data in diverse global urban contexts. By documenting a step-by-step procedure encompassing 

data acquisition, image segmentation, and GVI calculation, this study ensures the accuracy and 

consistency of future analyses. To address the research questions, the study examines the variations 

in image availability and usability of Mapillary data for green view assessments across different 

cities worldwide. The findings reveal significant disparities in open-source image availability, 

highlighting cities with high image availability in the USA and Europe, as well as cities with 

limited availability located in Africa and South Asia. Furthermore, the study evaluates the 

suitability of using Normalised Difference Vegetation Index (NDVI) values to fill in missing data 

points in GVI assessments. The analysis demonstrates that the NDVI can effectively calibrate a 

Linear Regression model to estimate GVI values, even in regions where street-view imagery is 

limited. Additionally, the analysis reveals notable disparities in GVI across cities, particularly in 

high-density, lower-income cities in Africa and South Asia compared to low-density, high-income 

cities in the USA and Europe.
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1. Introduction 

Green spaces play a crucial role in urban environments, offering a wide array of social, 

environmental, and ecological benefits (Bain et al., 2012; Gómez-Baggethun & Barton, 2013; 

Ordóñez et al., 2023; Saw et al., 2015). As the urban population is projected to increase by 60% 

by 2050 (United Nations, 2018), sustainable development becomes imperative in addressing 

pressing issues including climate change mitigation and improving the quality of life for urban 

residents (Savo et al., 2023). Urban green spaces provide multifunctionality to enhancing the 

environmental quality within cities. They effectively mitigate the heat island effect (Keeley, 2011; 

Lafortezza et al., 2009), improve air quality by reducing pollutants (Akbari et al., 2001; Jim & 

Chen, 2008),  reduce noise pollution (Attal et al., 2021; Wong et al., 2010), and minimise 

stormwater runoff (Armson et al., 2013; Berland et al., 2017). Moreover, the visual perception of 

street greenery is recognised as a vital sensory function that positively influences individuals’ 

experiences in urban settings (Lu et al., 2018; Wolf, 2005). Urban greenery serves as a protective 

barrier against visual intrusion (Li, Zhang, Li, Kuzovkina, et al., 2015). Furthermore, the presence 

of vegetation in urban landscapes often leads to higher aesthetic ratings of streetscapes 

(Lindemann-Matthies & Brieger, 2016), promoting physical activities (Zijlema et al., 2020) and 

fostering social cohesion among residents (Root et al., 2017). From a health perspective, visual 

contact with greenery evokes positive emotions, reduces stress, and facilitates the recovery of 

mental fatigue (Kaplan, 1995; Ulrich, 1984; Wang et al., 2022). 

Different assessment methods have been employed to measure and evaluate urban 

greenery, including surveys, interviews, and audits, to gain insights into people’s opinions and 

attitudes towards street-level views of urban greenery (Falfán et al., 2018; Li, Zhang, Li, Ricard, 

et al., 2015). However, each of these methods have its advantages and limitations. Surveys using 

questionnaires may be more reflective of people’s personal experience on the ground but may be 

affected by response bias. (Downs & Stea, 1977). Additionally, audits require skilled evaluators 

and specific criteria to assess visual aesthetic quality (Ellaway et al., 2005; Tang & Long, 2019). 

Such approaches may involve physically transporting evaluators to real locations for direct 

evaluation of environmental attributes, which can be time-consuming, expensive, and subjective 

to each participant (Gupta et al., 2012; Meitner, 2004; Yao et al., 2012). In contrast to interview 

approaches, recent computational advances (e.g., Deep learning image analysis) along with high-
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resolution data from multiple sources such as geospatial data and street view image data allowed 

computational modelling of eye-level greenery at scales. 

One example is the geospatial viewshed model using high-resolution light detection and 

ranging (LiDAR) based data, which has been extensively employed to map and quantify vegetation 

cover in urban areas, benefiting from their advantages in terms of repeatability, synoptic view, and 

wide area coverage (Li, Zhang, Li, Ricard, et al., 2015). These methods involve three-dimensional 

data sets derived from high-resolution remotely sensed images and LiDAR, enabling the detection 

of tree species and the vertical dimensions of urban trees (Alonzo et al., 2014; Edson & Wing, 

2011; Shrestha & Wynne, 2012). According to Yu et al. (2016), these approaches offer several 

advantages, such as the capacity to adjust the relative height of the observer to simulate different 

vertical horizons and the potential to model artificial buildings to simulate future landscapes. 

Nevertheless, the results depend on the original resolution and accuracy of the utilised datasets 

(Labib et al., 2021), and there is a risk of information loss when compressing point cloud data into 

a two-dimensional raster surface (Yang et al., 2020). Additionally, high-resolution LiDAR data 

and digital elevation raster surfaces are mostly unavailable in most cities or countries worldwide, 

making it difficult to use such models in diverse geographic contexts (Labib et al., 2020, 2021). 

Furthermore, this data may not fully capture the visibility and perception of street tree canopies 

from the viewpoint of pedestrians. The disparity between the profile view and overhead view 

becomes evident, for example, when comparing observations for urban forests and green walls (Li, 

Zhang, Li, Ricard, et al., 2015; Lu, 2019; Yang et al., 2009). 

In contrast to the viewshed based approach, Li et al. (2015) made significant advances in 

this field by utilising automatically extracted Google Street View (GSV) images and employing 

image segmentation techniques for automating the greenery calculation process. This 

breakthrough has led to the emergence of several innovative computational approaches that have 

demonstrated a high level of agreement with human perception (Aikoh et al., 2023; 

Suppakittpaisarn et al., 2022; Torkko et al., 2023), offering several benefits such as reduced 

research time and workloads, increased accessibility, and the ability to study urban greenery 

without the need for physical visits to field sites (Lu et al., 2023; Rangel et al., 2022). 
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One widely adopted approach is computational image segmentation, which is categorised 

into colour-segmentation and semantic-segmentation. Colour-segmentation method classifies 

images according to colour values of individual pixels, effectively identifying and delineating 

areas with green vegetation (J. Chen et al., 2020; Dong et al., 2018; Larkin & Hystad, 2019; Long 

& Liu, 2017). On the other hand, semantic-segmentation is a machine learning-based approach 

that leverages contextual information to understand and segment images (Xia et al., 2021). By 

assigning semantic levels to individual pixels, this method allows to comprehend the image 

content, facilitating precise identification and mapping of green vegetation (Cai et al., 2018; 

Helbich et al., 2019; Ki & Lee, 2021; Kido et al., 2021; Xia et al., 2021; Ye et al., 2019). Recently,  

Torkko et al. (2023) investigated different eye-level greenery extraction methods and found that 

the image segmentation approach better aligns with human perception than colour-based 

segmentation. The colour-based segmentation approach is sensitive to lighting conditions, 

resulting in unquantified greenery when faced with dimly lit or brightly lit environments (Batlle et 

al., 2000; Pietikainen et al., 1996). Additionally, this approach tends to misclassify green paint as 

greenery, leading to overestimation of green areas (Larkin & Hystad, 2019; Li, Zhang, Li, Ricard, 

et al., 2015). 

Numerous recent studies employing image segmentation for vegetation analysis heavily 

rely on data from GSV (Cai et al., 2018; S. Chen & Biljecki, 2023; Jimenez et al., 2022; 

Rzotkiewicz et al., 2018). However, it is crucial to acknowledge the barriers and limitations 

surrounding data access and usage (Inoue et al., 2022; Zheng & Amemiya, 2023). In particular, 

GSV imposes restriction on the use of imagery, including limitations on data analysis and 

extraction (Google, 2018b, 2020). As stated by Rundle et al. (2022), the restriction on certain uses 

of Google Maps is not grounded in copyright law, which would potentially allow researchers to 

invoke FAIR (Findable, Accessible, Interoperable and Reusable) use principles. Rather, these 

limitations are based on the contractual agreement that users must adhere to when accessing 

Google Maps (Google, 2018a). The enforceability of such contracts is currently subject to ongoing 

legal disputes, making it uncertain. Consequently, researchers engaging in this type of research 

and the journals publishing the resulting papers assume some legal risk as long as the legal status 

remains unsettled (Rundle et al., 2022; Stringam et al., 2023). In addition, using such data might 

hinder the adoption of FAIR data principles in scientific research (Wilkinson et al., 2016). GSV is 

often easy to find, and interoperable with other data (e.g., provided by Google). However, it is not 
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widely accessible due restrictions to number of free downloads, there is a limit to the quantity of 

data that can be obtained without incurring charges (Google, 2023; Zheng & Amemiya, 2023). 

Meaning, researchers who require a considerable amount of GSV data may encounter financial 

barriers to accessing them. This inaccessibility also results in lack of reusability of such data by 

others. As whole GSV data mostly does not meet the FAIR data principles.  

To overcome GSV limitations, integrating Volunteered Street View Imagery (VSVI) 

platforms, such as Mapillary and Open Street Cam, has been developed over the years (Alvarez 

Leon & Quinn, 2019; X. Yu et al., 2019; Zheng & Amemiya, 2023). Mapillary, in particular, stands 

out as the largest crowdsourcing-based street view platform, boasting a community of over 20,000 

users who contribute street-level photos using GPS-enabled cameras or smartphones (Ma et al., 

2020). Notably, Mapillary adopts an open data approach by realising imagery under the Creative 

Commons Attribution-ShareAlike 4.0 International license (Alvarez Leon & Quinn, 2019). This 

open data policy enables researchers to utilise the imagery more freely, including for commercial 

purposes, fostering innovation and collaboration in studying urban greenery and related 

phenomena (Alvarez Leon & Quinn, 2019). 

While Mapillary provides an alternative solution through its open data approach, 

researches are aware of its limitations, as these can affect the reliability and accuracy of the data 

(Antequera et al., 2020; D’Andrimont et al., 2018; Juhász & Hochmair, 2016; Krylov & Dahyot, 

2019). Firstly, the quality of the imagery contributed by users on Mapillary may vary significantly 

due to differences in camera properties, including various camera models and settings used by 

contributors (Antequera et al., 2020). These variations can result in differences in resolution, 

blurring, restricted field of view, and reduced visibility (D’Andrimont et al., 2018). Secondly, 

Mapillary primarily relies on forward-facing cameras mounted on vehicles driven on roads, 

resulting in linear motion without rotation, limiting the perspectives captured in the imagery and 

potentially limiting the comprehensive understanding of the surrounding (Antequera et al., 2020; 

Krylov & Dahyot, 2019). Finally, the level of engagement and participation from users can vary 

across different regions and communities, leading to disparities in data availability (D’Andrimont 

et al., 2018; Nielsen, 2006). As a result, researchers relying solely on Mapillary may encounter 

gaps in the coverage of specific locations or road segments that can limit the ability to obtain a 

complete and representative sample of the desired study area (Juhász & Hochmair, 2016). 
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In contrast to missing street view image in certain locations, satellite-derived top-down 

measures of greenery, such as the Normalised Difference Vegetation Index (NDVI), is globally 

available at any place and often widely used in measuring greenness modelling (Martinez & Labib, 

2023). It can be argued that for situations where there is insufficient street image data to determine 

the GVI, an alternative approach is to utilise the NDVI to estimate GVI using statistical models. 

Although NDVI is a top-down measure and may not fully capture the actual visibility of greenery 

(Labib et al., 2021), it represents available vegetation, thus it can be assumed that a model can 

learn from the relation between known GVI and NDVI within a certain distance zone to impute 

GVI for unknown locations. In this regard, Torkko et al. (2023) indicated that mean NDVI values 

within smaller distances (e.g. 50 m) from observation points might produce accurate 

representations of perceived visible greenery. In a different research, O’Regan et al. (2022) 

demonstrated a methodology to estimate air pollution, incorporating GVI, NDVI, and other 

variables. Thus, using NDVI to estimate GVI can be a potential solution to fill the street view data 

gaps for modelling greenness visibility. 

A few studies have demonstrated the potential of utilising Mapillary’s images for 

evaluating and quantifying urban greenness visibility (Liang et al., 2022; Yap et al., 2022), and 

numerous studies have used NDVI to measure the presence of greenery (Martinez & Labib, 2023). 

Despite these promising findings regarding the potential use of the data source, there remains an 

absence of systematic evaluation regarding the usability of Mapillary data in different urban 

contexts for estimating greenness visibility and the potential of using NDVI to estimate greenness 

visibility in missing locations. Additionally, there is a lack of complete methodological workflow 

to use Mapillary data in different places and reproduce these analyses, hindering the usage of such 

open-source and FAIR data in modelling greenness visibility in diverse geographic contexts. 

To address the methodological limitations and existing research gaps noted above, this 

study aims to provide a scalable, reproducible methodological framework for utilising Mapillary 

data for greenness visibility modelling as well as evaluate the completeness and usefulness of such 

data in diverse geographical contexts. The primary objective is to establish a robust and replicable 

methodology that can be applied for greenness visibility modelling at any locations. Additionally, 

the secondary objective of this study is to evaluate the use of NDVI to estimate GVI in locations 
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where street view images are unavailable. To achieve these objectives, this study will examine the 

following research questions: 

RQ1) How does the image availability and usability of Mapillary data for green view 

assessments change across different cities worldwide? 

RQ2) To what extent is the Normalised Difference Vegetation Index (NDVI) suitable for 

filling in missing data points in the Green View Index (GVI) assessment? 

RQ3) Are there differences in street level greenness visibility between cities located in 

different geographic contexts? 

To answer these questions, we will conduct a comparative analysis of the GVI across 

different cities worldwide, allowing to assess the quality and completeness of the data available 

through Mapillary. This comparative approach will provide insights into the reliability and 

applicability of the platform for green view assessments in different parts of the world.  

The development of this methodology aims to democratise the analysis of urban greenness, 

making it FAIR to researchers, urban planners, and policymakers interested in assessing and 

monitoring the visibility of green spaces in their cities. By establishing a methodology, our project 

seeks to fostering a better understanding of the relationship between urban environments and 

human well-being. 

 

2. Methodology 

2.1 Study area 

Our study examines a diverse range of cities across diverse geographic, demographic, and 

socioeconomic contexts and located in multiple countries and continents. The cities included in 

our research are City of Melbourne, Australia; Amsterdam, Netherlands; Kampala, Uganda; Tel 

Aviv, Israel; Seattle, USA; Mexico City, Mexico; and Dhaka, Bangladesh. City of Melbourne, 

Amsterdam, Seattle, and Tel Aviv are known for their advanced urban planning and commitment 
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to environmental sustainability initiatives (Bush et al., 2021; Dierwechter, 2017; Herscovici et al., 

2022; Mora & Bolici, 2017). These cities, situated in developed nations, have been able to invest 

significantly in their infrastructure, incorporating technology and innovation to enhance their 

urban environments (Bush et al., 2021; Dierwechter, 2017; Herscovici et al., 2022; Mora & Bolici, 

2017). In contrast, Kampala, Dhaka, and Mexico City, located in developing regions, face unique 

challenges related to rapid urbanization (Abebe, 2013; Aguilar & Lopez, 2018; Mortoja & 

Yigitcanlar, 2022). These cities experience high population growth and are often facing with issues 

of limited resources, both in terms of infrastructure and public services (Abebe, 2013; Aguilar & 

Lopez, 2018; Mortoja & Yigitcanlar, 2022). Their inclusion in the study provides a contrasting 

perspective on urban development and the role of Volunteered Street View Imagery (VSVI), such 

as Mapillary, in such dynamic and resource-constrained contexts. Since one of our aims is to 

evaluate the quality and completeness of the data available through Mapillary, we assume that 

these diverse cities will provide valuable insights into the reliability and applicability of the 

platform for assessing green views in different parts of the world. It will also allow to identifying 

variations or limitations in the data that may exist between cities. 

2.2 Data Sources 

The data sources for this study primarily consisted of open-source platforms, which 

provided access to a wide range of geospatial data. Three major data sets were utilised in this 

research, namely: the Street Network with OSMnx, the VSVI with Mapillary, and the Satellite-

Derived NDVI. 

2.2.1 Street Network with OSMnx 

Street network data was retrieved using OSMnx, an open-source Python library specifically 

developed for working with Open Street Map (Boeing, 2017). OSMnx provides a convenient set 

of functions and methods for downloading and processing street network graphs for specific 

regions (Boeing, 2017). Our research employed this library to extract simplified street network 

data, with a specific focus on obtaining edges information. 
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2.2.2 VSVI with Mapillary 

The VSVI data was obtained by using the Mapillary API (Mapillary, 2021). The API 

provides access to vector tiles endpoints that contains information such as the position of images 

and sequences with their original geometries. Within the coverage tiles endpoint, three layers are 

available: overview, sequence, and image. For our research, we focused on the image layer, which 

contains details such as the compass angle of the image, the timestamp of image capture, the image 

ID, and a flag indicating whether it is a panoramic image. 

2.2.3 Satellite-Derived Normalised Difference Vegetation Index 

The Satellite-Derived NDVI data were used in our study to determine the GVI on points in 

areas where images were unavailable. Specifically, the NDVI data was derived from Sentinel-2 

satellite imagery, which offers a resolution of 10 metres (Satellite Imaging Corporation, 2022). To 

ensure the quality and reliability of the NDVI data, certain criteria were applied to selecting 

satellite imagery. Firstly, the chosen imagery had a cloud cover of less than 10% to mitigate the 

potential distortion caused by clouds, which can obstruct the accurate assessment of vegetation 

indices (Meraner et al., 2020). Secondly, the selected satellite imagery was collected considering 

the best pixel over the course of the year 2020. This approach involved selecting the image with 

the most favourable conditions for vegetation analysis within the given time frame, maximising 

the accuracy and representativeness of the NDVI data for the analysis (Corbane et al., 2020). We 

used estimate NDVI Google Earth Engine (GEE) to identify images within the period spanning 

the first and last day of 2020, from which a composite image was generated. The composite image 

consisted of pixels with the median value across all identified pixels based on the criteria noted 

above. The NDVI values range from -1 to +1, where a value of -1 represents water, values around 

0.2 suggest vegetation coverage, and higher values indicate denser forest coverage. To ensure that 

only image pixels potentially containing vegetation were considered, values below 0 were removed 

from the analysis. 
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2.3 Modelling GVI using open source data 

Step 1. Retrieve Street Road Network and Generate Sample Points  

Figure 1 shows an overview of our methodology. First, the simplified street network data, 

represented as a graph object with nodes and edges, was obtained from OSMnx by indicating the 

name of the city to be analysed (e.g., “Amsterdam, Netherlands”). It is worth noting that 

bidirectional streets are represented as two separate overlapping roads, with the starting and ending 

nodes inverted. To avoid analysing the same road twice, we implemented a filtering strategy to 

retain only one of the duplicate roads.  

 
Figure 1: Methodology overview, which is openly accessible in GitHub. 
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Once the street network data was projected, we proceeded to conduct point sampling at 

regular intervals of 50 metres along the roads. These sampled points serve as reference locations 

for selecting the corresponding images from Mapillary, which were then used to analyse the GVI. 

Step 2. Assign Images to Each Sample Point Based on Proximity 

To access the VSVI data, requests need to be made to the Mapillary API using the tile 

coordinates and zoom level of 14 (Mapbox, 2023). Therefore, to implement the data retrieval, we 

divided the area covered by the obtained road network into tiles. For each tile, we accessed the 

metadata of all the available images within it. Subsequently, we assigned one image to each sample 

point in the road network based on their proximity using the cKDTree algorithm provided by the 

SciPy library (SciPy, 2022). This algorithm constructs a k-dimensional tree structure that 

facilitates efficient querying of nearest neighbours. In our case, the tree was queried to identify the 

closest neighbour within a maximum distance of 25 metres from each sample point. This distance 

was chosen based on the spacing of the sample points, which are 50 meters apart. By using this 

distance, we can ensure that no two points will be assigned the same image. 

Once we had determined the image ID of the closest image to each sample point, we were 

able to access the corresponding image by using the URL provided by the image endpoint 

(Mapillary, 2021). Specifically, we accessed the URL to the original wide thumbnail of the image, 

which provided us with a visual representation of the image that could be further analysed to obtain 

the GVI on the sample point. 

Step 3. Image cleaning and segmentation 

After obtaining the image, the subsequent step involved semantic image segmentation and 

image filtering process to clean and segment the images for further processing. To begin, for 

panoramic images, we performed a cropping operation to remove the bottom 20% of the image. 

This area corresponds to a band captured by the camera that is present in all panoramic images. 

By removing this band, we ensured that only the relevant portions of the image were retained for 

further analysis. 

In the next stage, we applied the Masked-attention Mask Transformer (Mask2Former) 

architecture based image segmentation model (Cheng et al., 2022) to segment the images in 
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different objects. The Mask2Former (Figure 2) is a powerful architecture designed for universal 

image segmentation, encompassing tasks such as panoptic segmentation, instance segmentation, 

and semantic segmentation (Cheng et al., 2022). To achieve its capabilities, the Mask2Former 

model incorporates several key components. One of the central elements is the use of masked 

attention, a mechanism that enables the extraction of localised features by constraining cross-

attention within predicted mask regions. By doing so, the model can focus on relevant regions and 

capture fine-grained details, resulting in highly accurate segmentation results (Cheng et al., 2022). 

 

Figure 2: Mask2Former architecture (Cheng et al., 2022) 

The performance of Mask2Former was evaluated on four popular datasets: Common 

Objects in Context (COCO), Cityscapes, ADE20K, and Mapillary Vistas (Cheng et al., 2022). 

Notably, when tested on the Mapillary Vistas dataset, the model achieved impressive mean 

intersection over union (mIoU) scores of 57.4 for small objects and 59.0 for medium and large 

objects. These results underscore the competitive performance of Mask2Former compared to other 

state of-the-art methods on Mapillary Vistas (Cheng et al., 2022). In our study, Mask2Former 

enabled the identification and classification of different objects within the images, including 

vegetation and roads, that were used for subsequent analysis. 

To determine the suitability of each image for analysis, we employed an algorithm 

designed to identify road centres from the segmented image. If road centres were detected, then 

the image was considered suitable and retained for further calculation (Figure 3 a, b). Conversely, 
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if no road centres were identified, the image was deemed unsuitable and subsequently discarded 

(Figure 3 c, d). 

This technique was applied to ensure we extract most representative viewing angle from 

the images, as many Mapillary images often has poor orientation and irregular camera angle 

(Figure 3 c, d). Therefore, excluding such images may improve the overall data quality and 

visibility estimation because irrelevant or less informative objects were removed. In cases where 

an image was both suitable and panoramic, we performed an additional cropping operation (Figure 

3 a1, a2). The image was divided into “N” parts based on the identified road centres. This division 

allowed for a more focused examination of specific sections of the panoramic image and provide 

a holistic representation of the surrounding area. 

 
Figure 3: Examples of image segmentations and filtering criteria. 
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Step 4. Calculate GVI 

The GVI equation used in this study was based on equation 1 proposed by Yang et al. 

(2009) for evaluating the visibility of urban forests. Their GVI calculates the ratio of the total green 

area from four pictures taken at a street intersection to the total area of the four pictures.  

 

GVI =	
∑ Areagreen_pixels_i

4
i=1

∑ Areatotal_pixels_i
4
i=1

 ⋯	(eq	1) 

 

Where Areagreen_pixels_i represents the count of green pixels in the image captured in the ith 

direction (north, east, south, or west) at a specific intersection and Areatotal_pixels_i corresponds to 

the total number of pixels in the image captured in the ith direction. However, due to the 

unavailability of images captured in all four directions for all sample points in our dataset, we 

made a slight modification to the formula. The modified GVI we used can be expressed with 

equation 2. 

 

GVI =
∑

Areagreen_pixels_i
Areatotal_pixels_i

N
i=1

N  ⋯	(eq	2) 

 

Where Areagreen_pixels_i is the number of green pixels in the ith picture found in the sample 

point, Areatotal_pixels_i is the total pixel number of the ith picture found in the sample point and N is 

the number of analysed pictures in the sample point. For non-panoramic images, N is equal to 1 

since there is only one image available at the sample point. However, for panoramic images, N 

corresponds to the number of road centres identified at the sample point, indicating the number of 

cropped images. 
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Step 5. Evaluate Image Availability and Image Usability of Mapillary Image Data 

In assessing image availability, we examined the presence of an assigned image for each 

sample point. Any sample point that did not have a corresponding image found within a 25-metre 

buffer was excluded. The availability of images in the dataset is expressed in equation 3 as the 

ratio of the number of sample points with assigned images (N!"#_%&&!#'()) to the total number of 

sample points N*+*%,. 

 

Image Availability Score (IAS)=
Nimg_assigned

Ntotal
 ⋯	(eq	3) 

 

Similarly, in evaluating image usability, we focused on points that had assigned images 

and a known GVI value. This indicated that the image met the expected criteria for inclusion in 

the analysis. The quality of the data is represented in equation 4 as the ratio of the number of 

sample points with assigned images and known GVI values (N!"#_%&&!#'()	∧	/01_2'+3') to the total 

number of sample points with assigned images (N!"#_%&&!#'()). 

 

Image Usability Score (IUS)=
Nimg_assigned ∧ GVI_known

Nimg_assigned
 ⋯	(eq	4) 

 

Then, to enable a more meaningful comparison between cities of varying sizes, an 

adjustment was made to both scores by incorporating the natural logarithm of the road length in 

kilometres, as shown in equations 5 and 6. By applying this logarithmic transformation, the 

adjustment places greater emphasis on the relative differences in road lengths between cities, rather 

than absolute values.  
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Adjusted Image Availability Score (AIAS)=
Nimg_assigned

Ntotal
×ln(road_length) ⋯	(eq	5) 

 

Adjusted Image Usability Score (AIUS)=
Nimg_assigned ∧ GVI_known

Nimg_assigned
×ln(road_length) ⋯	(eq	6) 

 

In addition to the availability and usability assessment, we conducted further analysis to 

provide additional insights. Firstly, we measured the proportion of panoramic images in each city. 

This assessment allows us to evaluate the availability and coverage of panoramic imagery, which 

can provide a more comprehensive view of the city’s surroundings. Furthermore, we examined the 

types of roads (e.g., residential, primary, secondary roads) with the most missing images. By 

identifying the specific road types where the image coverage is limited, we can gain insights into 

potential gaps in the dataset. This information is valuable for understanding the limitations and 

areas that require further attention in improving the availability of images for analysis. 

Step 6. Model GVI for missing points 

To estimate the GVI values for the missing data points, we employed two modelling 

approaches per city: Linear Regression and Linear Generalised Additive Models (GAM). In both 

cases, we utilised the NDVI raster file of each city. For each point in the dataset, we computed the 

average NDVI value within a fixed-size buffer surrounding the point. After conducting tests with 

multiple buffers of 100, 50, and 25 metres, it was determined that the buffer of 25 metres exhibited 

the best model performance. Subsequently, we employed the points with known GVI values and 

their corresponding calculated NDVI values to train both the Linear Regression and the Linear 

GAM models. The performance of these models was evaluated using the Root Mean Square Error 

(RMSE) through cross-validation with 5 folds. Additionally, to facilitate a comparison between 

the two models, we computed the Akaike Information Criterion (AIC) score. Finally, both models 

allowed us to estimate GVI values based on the available GVI and NDVI data in each city, thereby 

completing the information for the missing points. 
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2.6 Computational resources 

The data processing and analysis for this study were implemented using the Python 

programming language. Python provides a wide range of libraries and tools that facilitated the 

handing and manipulation of de data, as well as the implementation of various algorithms and 

models.  

To execute the code, we utilised Google Colab, a cloud-based platform that offers a Python 

development environment along with access to powerful hardware resources. The Google Colab 

environment provided several advantages, including the availability of a high amount of RAM and 

GPU acceleration, which significantly contributed to the efficiency of the image segmentation 

process. For this research, we employed a computational system with 25.5 GB of RAM and a T4 

GPU accelerator with a 15 GB memory capacity.  

This configuration allowed us to handle large datasets and smoothly execute memory-

intensive operations, resulting in a substantial reduction in processing time for each image. 

Additionally, we implemented parallel processing techniques to enhance the efficiency of the 

image segmentation process and maximise the utilisation of the available computational resources. 

Through the combination of these implemented techniques and computational resources described 

above, we achieved high processing capabilities that enabled us to analyse approximately 4,000 

images within a span of 40 minutes. 

 

3. Results 

3.1 Image Availability and Image Usability of Mapillary Image Data 

After designing and implementing the methodology to calculate the GVI using Mapillary 

data in any city worldwide, we obtained the GVI information for seven different cities. In order to 

provide a comprehensive overview of our findings, we will first address Research Question 1, 

which involves comparing the GVI across different cities and evaluating the availability and 

usability of image data obtained through Mapillary. Figure 4 provides a visual representation of 
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the calculated GVI values using exclusively Mapillary image data, highlighting disparities in 

image availability across the selected cities. Figure 4a corresponding to Seattle, Figure 4b to 

Amsterdam, and Figure 4g to City of Melbourne, consistently exhibit the highest degree of image 

availability. This observation aligns with the high AIAS achieved by these cities, as shown in 

Table 1. On the other hand, our findings reveal a contrasting picture for Figure 4c corresponding 

to Tel Aviv, Figure 4e to Dhaka, and Figure 4f to Kampala, which also exhibit significantly lower 

AIAS. Intriguingly, Figure 4d shows a significant disparity in image availability within Mexico 

City, with its southern region displaying considerably fewer images compared to the central area. 

 
Figure 4: Calculated GVI across different cities using Mapillary Image Data. 

Regarding the usability, as presented in Table 1, our findings provide intriguing insights 

into the usability of street-view imagery, adjusted for city size, in our seven cities of interest. 
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Notably, Mexico City stands out with the highest AIUS, suggesting that despite the uneven 

distribution of image availability as indicated in Table 1, the proportion of usable images remains 

high. Similarly, Tel Aviv, exhibits a relatively high IUS despite having the lowest availability in 

Table 1, indicating that although the volume of images in this city was lower, the proportion of 

usable images was high. Furthermore, Amsterdam once again demonstrates a high AIUS, 

consistent with its high Image Usability Score. This consistency indicates that the robustness of 

the usable image data in this city is largely maintained, even after accounting for city size. 

 

City IAS AIAS IUS AIUS 

Tel Aviv 0.3739 3.0118 0.7829 6.3064 

Kampala 0.3461 3.1067 0.5499 4.9362 

Dhaka 0.3764 3.6895 0.8355 8.1887 

Mexico City 0.4468 4.9863 0.8469 9.4514 

City of Melbourne  0.8371 6.4510 0.8906 6.8629 

Seattle, 0.7610 7.2340 0.8271 7.8632 

Amsterdam 0.9871 9.2057 0.9570 8.9252 

Table 1: Image Availability Score, Adjusted Image Availability Score, Image Usability Score and 

Adjusted Image Usability Score for each analysed city 

 

In terms of panoramic images, the data presented in Table 2 reveals a considerable 

difference in the availability of panoramic images. Amsterdam stands out prominently with the 

highest number, as more than 80% of its images are panoramic. In contrast, the remaining cities 

exhibit considerably lower proportions of panoramic images. For instance, Dhaka did not have any 

panoramic images in its dataset, while Mexico, City, City of Melbourne, Kampala and Tel Aviv 

all have less than 2% of their total images classified as panoramic. 
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City Panoramic Images Total Images Proportion 

Dhaka 0 31078 0 

Mexico City 689 137994 0.0049 

City of Melbourne 52 8693 0.0059 

Kampala 197 14162 0.0139 

Tel Aviv 128 6325 0.0202 

Seattle 7069 47031 0.1503 

Amsterdam 32216 38040 0.8468 

Table 2: Proportion of Panoramic Images for each analysed city. 

 

Next, we analysed the presence of missing values in each street of the cities, identifying 

the top five highway types with the highest number of missing images. Furthermore, we calculated 

the proportion of missing images corresponding to each category in every city. Our analysis 

revealed a consistent trend across all cities, with residential streets displaying the highest 

proportion of missing images, as depicted in Figure 5. Figure 5 illustrates that not only do 

residential streets have the highest volume of missing images in each city, but this deficit is notably 

significant, with all cities surpassing a 30% mark. This consistent and substantial percentage 

underscores a significant data gap within residential areas. 

 
Figure 5: Top 5 Highway Types with Most Missing Images. 
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3.2 Modelled GVI for missing points using NDVI 

Regarding Research Question 2, the viability of using NDVI to fill in missing data points 

was assessed by utilising Linear Regression and Linear GAM. Our results, shown in Table 3, reveal 

some key insights. Across cities, Linear Regression consistently resulted in lower RMSE values 

compared to Linear GAM, indicating a more accurate model with smaller residuals. The AIC 

scores highlight a consistent preference towards the Linear Regression models over the Linear 

GAM models across all cities. For instance, in Seattle, the Linear Regression model resulted in an 

AIC of -161384.4018, while the Linear GAM model yielded a less effective AIC of -136175.2627. 

This pattern is repeated across all examined cities, indicating a more favourable balance of fit and 

simplicity for the Linear Regression models when predicting GVI with NDVI. 

 

City 
Linear Regression Linear GAM 

RMSE AIC RMSE AIC 

Tel Aviv 0.1271 -20422.5508 0.1458 -19060.8670 

Kampala 0.1222 -32733.2024 0.1449 -30080.0228 

Dhaka 0.1242 -108314.5968 0.1434 -100829.2755 

Mexico City 0.1239 -488017.0528 0.1621 -425206.4704 

City of Melbourne 0.1305 -31516.7640 0.1505 -29316.2603 

Seattle 0.1256 -161384.4018 0.1737 -136175.2627 

Amsterdam 0.1660 -130717.0516 0.1832 -123572.8984 

Table 3: RMSE and AIC values for Linear Regression and Linear GAM model across all analysed cities. 

 

Furthermore, Figure 6 shows the trend line and R-squared values observed across the tested 

cities, showing a relatively low value for most of them. However, the comparatively lower RMSE 

values obtained in our study indicate that, despite the low R-squared values suggest a degree of 

unexplained variability, the RMSE values provide a more optimistic outlook on the utility of our 

models for predicting GVI using NDVI. 
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Figure 6: Linear regression trend lines and equations for each city. 

Figure 7 provides a visual comparison between missing GVI values and their predictions 

using Linear Regression models for two contrasting cities: Amsterdam and Kampala. The black 

squares in the zoomed images show that the predicted GVI values closely align the calculated GVI 

values using street-view imagery for the surrounding points in both cities. 
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Figure 7: Comparing Image Availability between Amsterdam and Kampala, with GVI Estimation for 

missing points using a Linear Regression model for each city. 

3.3 Mean and Median GVI comparison between cities 

For Research Question 3, Figure 8 provides a visualisation of the mean and median GVI 

value for each street in the studied cities indicating the differences in street-level greenness 

visibility between cities. The GVI values show clear variations between developed and developing 

cities across continents in terms of green visibility. Seattle in North America has the higher value 

of 30.05% (Figure 8a), indicating abundant visible green spaces. In Europe, Amsterdam follows 

closely with a GVI of 22.38% (Figure 8b). However, Asian and African cities like Dhaka and 

Kampala have lower GVI values of 16.62% (Figure 8e) and 18.52% (Figure 8f), respectively. 

These variations underscore the disparities in green view visibility between developed and 

developing cities, with the former having a better supply.  
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Figure 8: Mean and Median GVI per city along with their Density Plot, showing the different levels of 

street-level greenness visibility in diverse geographical contexts. 

 

4. Discussion 

4.1 Main findings 

In this study, we aimed to develop a methodological framework for utilising open-source 

image data for greenness visibility modelling and evaluate the completeness and usefulness of 

such data in multiple cities in different countries worldwide. To our best knowledge, no previous 
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studies have developed such a methodology using open-source images (e.g., Mapillary) and 

implemented similar approaches in diverse geographic contexts. Our study revealed significant 

insights into using Mapillary data to calculate GVI across different cities worldwide, effectively 

addressing our first research question. We found that image availability, represented by the AIAS, 

varied significantly among the selected cities. Seattle, Amsterdam, and City of Melbourne 

consistently had high image availability, while cities like Tel Aviv, Dhaka and Kampala had much 

lower scores, as indicated in Figure 4 and Table 1. Interestingly, we found that the usability of 

images did not necessarily correlate with their volume. Table 1 shows that despite having fewer 

images, Mexico City and Tel Aviv had high AIUS indicating that a large proportion of the 

available images were usable. This suggests that meaningful GVI assessments are possible for 

places with usable images even though the city’s overall image availability is limited. The 

distribution of panoramic images also showed a dramatic contrast across cities (Table 2). The 

disparity could impact the depth and breadth of GVI analysis, as panoramic images typically 

provide more comprehensive view of greenery in the surrounding area than a simple image with a 

limited view angle. Furthermore, our study pinpointed a considerable data gap in residential areas. 

We observed that these areas consistently showed the highest volume of missing images, as 

illustrated in Figure 5. This consistent deficit could pose potential challenges for comprehensive 

GVI assessments, highlighting the need for effective data supplementation methods. Our results 

are consistent with the previous study by Juhász and Hochmair (2016), who also demonstrated the 

availability of images varies considerable between countries and street types. 

Addressing our second research question, our analysis also suggests that the NDVI can be 

used to calibrate a Linear Regression model for each city to fill in missing GVI data points with 

reasonable errors. In Figure 7 we illustrated that even in cities like Kampala, where the number of 

missing images is significantly high, estimated GVI values from NDVI align closely with those 

derived from street-view images. We argue that even though NDVI does not directly indicate the 

visibility of greenery, as they indicate the presence of vegetation, the modelled relations can 

reasonably estimate potential GVI values. Torkko et al. (2023) also observed that NDVI values 

might correspond to perceived visibility greenery.  

To further validate the reliability of these findings, we compared our overall street-level 

GVI with data from MIT’s Treepedia project (2023) conducted by the Senseable City Lab (Cai et 



 

 30 

al., 2018). This comparison is relevant for several reasons. Firstly, Treepedia has a robust 

methodology, establishing it as an ideal reference point for our study (Cai et al., 2018; Li, Zhang, 

Li, Ricard, et al., 2015; Seiferling et al., 2017). Secondly, the similarity in our methodologies, 

specifically the application of semantic segmentation to assess street-view panoramas, fosters a 

direct and meaningful comparison. The key difference lies in our data sources, while Treepedia 

predominantly uses GSV, our study utilises Mapillary data. 

Our analysis revealed that the median street-level GVI values for Amsterdam and Tel Aviv 

were similar to the estimates provided by Treepedia. However, in the case of Seattle, our approach 

slightly overestimated the overall GVI score. This discrepancy can be attributed to the limited 

availability of panoramic images in the Mapillary dataset (only 15% coverage in Seattle) compared 

to the predominantly panoramic GSV data used by Treepedia. Additionally, our study employed 

Normalised Difference Vegetation Index (NDVI) to estimate GVI in areas where data was missing, 

which was not implemented in the Treepedia project (Cai et al., 2018). 

Finally, for the third research question, our analysis underscores a notable disparity in GVI 

across cities, particularly in high-density cities in Africa and South Asia. As Figure 8 illustrates, 

these densely populated, lower-income cities exhibit considerably less green visibility than low-

density, high-income cities located in the USA and Europe. This is slightly suggested by the 

Treepedia data, but to our knowledge, no prior research has directly addressed this distinction. 

Moreover, the Treepedia project do not cover all geographical regions equally. For instance, their 

results do not include any cities in South Asia. Thus, our study is not only providing a reliable 

alternative method for GVI calculation but also extending the analysis to previously overlooked 

areas. 

This disparity may be attributed to various factors, including the differences in urban 

planning strategies and investment in public spaces, the socio-economic development level, as 

well as the historical and cultural values assigned to green spaces in these regions. (Abebe, 2013; 

Dierwechter, 2017; Mora & Bolici, 2017; Mortoja & Yigitcanlar, 2022). 
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4.2 Strengths and limitations 

Our study exhibits multiple strengths that reinforce its relevance within the urban green 

visibility research. Firstly, it used open-source, free, and FAIR data from Mapillary, making a 

significant stride in democratising and promoting open science in GVI assessments. This method 

establishes a standard for subsequent research while highlighting the effectiveness of open data 

for scientific purposes. Secondly, the scalability of the designed methodology in our research is a 

noteworthy aspect. Our approach to calculating GVI is not confined to the selected global cities 

but can be replicated and scaled for any city worldwide. This scalability is particularly significant 

considering the growing need for GVI assessments in urban spaces. Thirdly, our innovative 

approach in modelling visibility by combining GVI and NDVI represents a step forward in the 

field. By using NDVI and known GVI points we developed models that allows to fill in the missing 

GVI data points in a city, we provide a novel solution that holds the potential to expand and 

enhance the depth of GVI studies, even in contexts where street-view imagery data may be limited. 

Fourthly, it is important to emphasise that the code used in this study is reproducible. The 

implemented code is publicly available, thereby encouraging transparency, peer verification, and 

further innovation in the field. Reproducibility not only reinforces the validity of our findings but 

also empowers other researchers to build upon our work, advancing our collective understanding 

of urban green spaces and human well-being. 

Nevertheless, our research had certain limitations that need to be acknowledge for a 

comprehensive understanding of our results. Despite the utility of Mapillary, we encountered poor 

image availability in Dhaka, Kampala, Mexico City, and Tel Aviv that can limit the assessment of 

GVI solely with street-view images. However, Amsterdam, City of Melbourne, and Seattle 

exhibited a more favourable situation regarding image availability. These disparities in image 

availability can be attributed to the socio-economic backgrounds of the cities (Fry et al., 2020) that 

may potentially lead to a less engaged community contributing to crowd-sourced database. 

Another significant limitation was the temporal nature of our study, given that the 

Mapillary data were sourced at a specific point in time, and it may not be updated frequently or 

uniformly. The dynamic character of crowd-sourcing databases could mean that the image data 

might have been augmented, updated, or even rendered obsolete since our data collection. 
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However, these issues are not exclusively to Mapillary; even GSV imagery exhibits significant 

variability in availability and quality (Biljecki & Ito, 2021; Hara et al., 2013). Further, the 

infrequent updating of images impedes temporal assessment, as certain regions may remain 

unchanged for years (Hara et al., 2013). Such limitations are particularly evident in lower-income 

regions, rural areas, and countries in Africa, South America, and Southeast Asia, where GSV 

imagery remains unavailable or limited (Biljecki & Ito, 2021; Rzotkiewicz et al., 2018). 

Moreover, a few specific limitations of using OSMnx for urban studies have been 

identified. One limitation is related to data availability and consistency, which is a recurrent issue 

in urban planning and street network analysis literature (Boeing, 2017). The data used by OSMnx, 

sourced from Open Street Map (Boeing, 2017), is provided by a community of contributors and 

thus, might not always be consistent or up-to-date. This means that any changes to the street 

networks that have occurred since the last update would not be reflected in the analysis. 

Furthermore, the reliance of OSMnx data quality and accuracy can vary considerably based on the 

location. The coverage of OSMnx is good across the United States and Europe, but developing 

countries might have less thorough street network coverage (Boeing, 2017). 

Finally, while our study validated the use of NDVI to effectively fill in missing GVI data 

points, this approach is not devoid of challenges. NDVI primarily quantifies vegetation from bird's 

eye view and may not fully capture the nuances of human perception greenery (Labib et al., 2021; 

Larkin & Hystad, 2019), which is central to GVI. Thus, utilising NDVI to calculate missing GVI 

data points could introduce some inherent errors. 

4.3 Future research 

While this study has provided valuable insights into the usability of Mapillary data for 

calculating GVI, there are several promising avenues for further investigation. One potential area 

of investigation is obtaining a weighted average GVI value using population density in determined 

areas, which can provide a more accurate reflection of green visibility within a city. This approach 

can provide a more precise depiction of green visibility within a city, considering areas where the 

presence of greenery might be less perceptible due to low or negligible population density.  
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In addition to recognising the positive impact of green spaces on well-being, research has 

also highlighted the potential of blue spaces, such as bodies of water, in promoting human health. 

(Labib et al., 2020). Therefore, it would be valuable to explore the feasibility of integrating 

Mapillary data to calculate the Blue View Index for cities. This integration would enable 

researchers to investigate the influence of both green and blue spaces on various health indicators, 

providing a more comprehensive understanding of the relationships between urban environments, 

natural features, ad human well-being.  

Furthermore, to improve the estimation of GVI for missing points using mean NDVI 

values, it is worth considering the inclusion of more variables, such as building density, height, 

and orientation. However, such building data are mostly unavailable globally, but more and more 

data on building are becoming available such as OSM building by Microsoft Building Footprints. 

Exploring these future research directions will not only expand upon the findings of this study but 

also contribute to the development of approaches for urban planning and public health 

interventions. 

 

5. Conclusions 
This research has developed and demonstrated a scalable, reproducible framework for 

utilising open-source and FAIR Mapillary image data to assess greenness visibility in diverse 

geographical contexts. Our achievement, readily accessible via the project’s GitHub repository 

(Vázquez Sánchez & Labib, 2023), reaffirms the transparency and reliability of our work, serving 

as a valuable resource for researchers in need of reproducible methodologies. 

Importantly, this research effectively addressed its research questions, demonstrating that 

despite variations in image availability across different cities, a robust methodology for GVI 

assessment can be established using images from Mapillary. Our study identified disparities in 

Mapillary data availability and usability across the selected global cities, bringing to light an 

uneven global distribution of open-source and free image data. Nonetheless, these disparities did 

not diminish the potential of Mapillary for GVI evaluations.  
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Additionally, our findings accentuate Mapillary’s adherence to FAIR principles, an asset 

in scientific research in this domain. This feature makes Mapillary an advantageous free and FAIR 

alternative to Google Street View for GVI assessments despite the found discrepancies and 

temporal limitations that are not only inherent to crowdsourced data. Our methodology enables 

new avenues to make urban greenness analysis accessible to all. 

A key innovation of our study was using globally available NDVI data to estimate GVI 

values at missing locations. Although not without limitations, this approach proved to be a 

promising method for augmenting street-level GVI analyses in data-scarce areas. The successful 

application of NDVI in our study paves the way for future research to refine and expand on this 

method, further enhancing the robustness of GVI analyses. 

Additionally, this study provided a comparative analysis between cities of varying socio-

economic contexts, finding a notable lesser greener visibility in densely populated, lower-income 

cities in South Asia and Africa as compared to their low-density, affluent counterparts in the USA 

and Europe. 

Overall, this study serves as a critical contribution to the urban planning and environmental 

research, providing an accessible, scalable, and innovative approach to green view assessment. 

Our findings and established framework, founded on open-source data and reproducibility, 

facilitate comparative studies, and establish guidelines for green view assessments across the globe 

using free images. Through this, we hope to foster a greater understanding of the relationships 

between green urban environments and human well-being, driving toward a greener, healthier, and 

more equitable urban spaces. 
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