
MSc Artificial Intelligence

Master Thesis

A Data-Driven Decision Model for Software
Package Selection

Parsa Beigzadeh 1203754

First Supervisor: Dr. Siamak Farshidi

Second Supervisor: Dr. Slinger Jansen

2024

Utrecht University

Faculty of Science

Abstract

The choice of software components is a crucial task in software engineering that has a big

impact on the output and success of a project. The purpose of this thesis is to investigate

the use of knowledge-based recommendation systems for software component selection. In

order to identify previous studies and categorize them for the application of knowledge-based

approaches in software architecture, the research will entail a systematic mapping study .

The thesis aims to investigate the potential and difficulties of software repository mining for

software engineering purposes. Specifically, it will examine how to extract software-related

knowledge from various platforms . The results of this thesis will contribute to the creation

of a knowledge-driven framework that will help software engineers make well-informed deci-

sions about the selection of software components, close the gap between software and data

engineering, and guide component selection. This thesis aims to improve the current state

of software engineering by bringing together these different points of view and providing in-

sightful analysis and useful suggestions for the effective use of knowledge-based systems in

choosing software components.

ii

I hereby extend my deepest gratitude to all those who have supported me throughout the

course of this research. Foremost, I must acknowledge Siamak for his exemplary guidance

and rigorous supervision. Our weekly meetings, characterized by robust discussion and critical

analysis, were indispensable in shaping the trajectory and success of this work.

The past seven months have been marked by substantial challenges, encompassing a range

of complex research methodologies. This period has necessitated unwavering dedication,

patience, and a robust set of technical skills. It is during this time that I have discovered

and honed previously untapped abilities within myself. The work encapsulated in this thesis

stands as a testament to the significant personal and academic growth I have experienced

throughout my studies at Utrecht University.

I also extend my sincere appreciation to my second supervisor, Slinger, and to all participants

involved in this study. Their collective experiences and insights have been invaluable to the

breadth and depth of this research.

In addition, I must express my profound gratitude to my parents. Their constant support,

encouragement, and belief in my abilities have been a cornerstone of my journey.

To everyone who has contributed to the completion of this thesis, whether in a major or

minor capacity, I offer my heartfelt thanks. Your roles, however varied, have been crucial in

bringing this academic endeavor to fruition

ii

Contents

1 Introduction 1

2 Research Approach 4
2.1 Problem statement . 4
2.2 Research questions . 5
2.3 Conceptual model . 5
2.4 Research Methods . 6

2.4.1 Literature study . 6
2.4.2 Design science . 7
2.4.3 Experiments . 8

3 Systematic Literature Review (SLR) 9
3.1 Paper Collection . 10
3.2 Search process . 10
3.3 Inclusion and exclusion criteria . 11
3.4 Quality assessment . 12
3.5 Data extraction and synthesizing . 13

3.5.1 Models and Methods . 13
3.5.2 Models' evaluation methods . 17
3.5.3 Models' quali�cation methods . 18
3.5.4 software package criteria . 19

4 Decision Model 21
4.1 Software Package Metadata Extraction Pipeline 21

4.1.1 Software Package Sentiment Analysis Pipeline 22
4.1.2 Inference Engine . 23
4.1.3 Integration and Categorization . 23
4.1.4 User . 23

4.2 Design Decisions . 24
4.3 Model Architecture . 25

5 Pipeline Implementation 27
5.1 Selecting Packages . 27
5.2 Feature selection . 28

5.2.1 Feature Identi�cation . 28
5.2.2 Feature Extraction Steps . 28

5.3 Web Scraping . 30
5.3.1 Data Extraction Steps . 30
5.3.2 Text analysis . 31

5.4 Implementation . 32

iii

iv CONTENTS

5.4.1 Elasticsearch . 32
5.4.2 Elasticsearch in Software Package Selection 32
5.4.3 BM25 Algorithm . 33
5.4.4 LM Dirichlet Similarity in Language Modeling 34
5.4.5 LM Jelinek-Mercer Similarity in Information Retrieval 34
5.4.6 Information-based (IB) . 35

5.5 Integration of the Similarity Models and Elasticsearch 36
5.5.1 Query processing . 36
5.5.2 Ensuring Relevance and E�ective Ranking 36

6 Experimentation 37
6.1 Experimental Setup . 37

6.1.1 Objective . 37
6.1.2 Methodology . 37

6.2 Creation of the Golden Set . 39
6.2.1 Role of ChatGPT . 39
6.2.2 Data Collection . 39

6.3 Results and Discussion . 39
6.3.1 Comparative Analysis of Model Performances 39
6.3.2 Accuracy, Precision, and Recall Evaluation 40

7 Discussion 42
7.1 Validity . 42

7.1.1 Internal Validity: Challenges and Considerations 42
7.1.2 External Validity: Generalizability of Findings 42
7.1.3 Validity of Construction . 43
7.1.4 Dependence on External Data Sources 43
7.1.5 E�ect on Pipeline Validity . 43

7.2 Finding during the project . 44
7.2.1 AI Integration in Software Recommendations: Potential and Limitations 44
7.2.2 The Need for a Balanced AI-Human Approach 44
7.2.3 Importance of Model Selection in Software Recommendations 44
7.2.4 Impacts on Software Engineering 45
7.2.5 Broader Implications of the Findings 45

7.3 Implications and Responsibilities in AI-Enhanced Software Engineering 45
7.3.1 Ethical and Practical Considerations of AI Systems 45
7.3.2 Enhancing Transparency and Accountability in AI Recommendations . 46
7.3.3 Wider Industry Implications of the Research 46
7.3.4 Educational Signi�cance for Prospective Software Engineers and AI

Researchers . 46

8 Conclusion and Future Work 47
8.1 Reiteration of Core Thesis and Major Contributions 47
8.2 Future Work . 47

8.2.1 Impact and Practical Applications 48
8.3 Concluding Remarks . 48

References 50

iv

Chapter 1

Introduction

Recommendation systems have become an indispensable component of our everyday exis-
tence, exerting a signi�cant impact on the decisions we make across diverse domains, includ-
ing but not limited to e-commerce, entertainment, social media, and software engineering
[1]. These systems utilize data and algorithms to deliver personalized recommendations to
users, improving user experience and satisfaction [1]. In recent times, there has been an in-
creasing inclination towards the examination and enhancement of recommendation systems,
resulting in notable progressions within this domain [1].
As an example, Within the �eld of software development, GitHub has gained signi�cant pop-
ularity as a widely utilized platform for facilitating collaboration and the sharing of code. The
authors of this study undertook an investigation into the practices of starring GitHub reposi-
tories and put forth four patterns to elucidate the progression of stars in said repositories [2].
The aforementioned patterns were obtained using clustering the time series data of stars,
thereby o�ering valuable insights into developers' perspectives on these growth patterns.
The recommendations derived from this study hold signi�cant value for open-source project
managers, as they provide insights into the signi�cance of social coding practices.
The dynamic evolution of software within automated production systems has introduced vari-
ous challenges and research avenues in the development of such recommendation systems [3].
Software packages are extensively utilized within the software industry due to their inherent
bene�ts, including decreased development time and cost [4]. The aforementioned software
packages are readily accessible on the market and can be chosen from a range of alternative
software packages [5]. A software package is de�ned as a collection of software programs
and �les that are developed and distributed together to address speci�c functionalities or
needs[6]. Software packages are the application domain that has attracted the most atten-
tion among the 10 chosen areas, according to a systematic literature review on twenty-eight
years of software package-based software engineering by [7]. In fact, 25% of the research
investigations involved software-packaged-based development. The fact that "reusing soft-
ware packages from third-party providers is a key technology for developing systems quickly
and cost-e�ectively" justi�es this, according to the authors. The use of software packages
has the potential to signi�cantly reduce the costs associated with development, according
to a study by [8]. The development of software systems solely within an organization can
incur signi�cant costs due to the need to recruit pro�cient developers, allocate resources to
infrastructure investment, and commit resources to the development process [9]. In con-
trast, commercially available software packages can be easily obtained in the market, o�ering
comparable functionality to custom-built solutions at a signi�cantly reduced cost [8]. The
a�ordability and e�ciency of commercially available software packages render them an ap-
pealing choice for organizations that have restricted �nancial resources or stringent project

1

2

schedules [9].
The main way to access these packages is through software package managers. Software
package managers are essential for organizing and streamlining the installation and upkeep of
software by establishing standardized methods for creating and using software collections[10].
Package managers o�er a reliable development environment and promote seamless reuse,
which is in line with the convergence of software development and IT operations known as
DevOps [10]. Nevertheless, the presence of various package managers and packages compli-
cates the decision-making process. For instance, PYPI1, a prominent package manager for
Python, boasts approximately 487,657 distinct packages across various domains, including
data science, web development, and machine learning, as per PYPI statistics.The second
example is NuGet, which serves as package management for.NET development. It encom-
passes around 360,893 packets. In the table, we displayed the quantity of packages in the
most well-known package repositories.

Repository Approximate Number of Packages
PyPI (Python) 506,000
npm (JavaScript) 2,100,000
Maven (Java) 37,000,000
RubyGems (Ruby) 179,508
Packagist (PHP) 389,213
NuGet (.NET) 360,893
Crates.io (Rust) 133,961

Table 1.1: Number of Packages in Software Package Repositories (As of October 2023)

Furthermore, the download rate in these repositories indicates that they have played a crucial
role in accessing the software packages. As demonstrated in �gure 1.1, the daily download
count from PYPI based on PYPI stats is approximately one billion. Moreover, approximately
429,520,831,740 downloads have been made overall for the Nuget repository2. In the table,
we showed the number of total downloads for each package manager in table 1.1.
Therefore, the process of choosing software packages holds signi�cant importance in the
�eld of component-based software engineering (CBSE) [11]. Due to the wide variety of
resources and their associated dependencies, developers must spend a considerable amount
of time browsing for relevant resources [12]. Despite the need to better assist developers
with this task, little research has been conducted on methods that make it simpler to discover
relevant libraries from open source software (OSS). [13]. In order to accomplish this task,
software engineers utilize a multiple-criteria decision-making (MCDM) approach to ascertain
the most suitable software package. Initially, developers express their speci�c requirements
and concerns. Subsequently, they proceed to analyze the various attributes of the software
packages, including their features, quality, and evaluation metrics. In the �nal stage, an
examination is conducted of the prevailing patterns within the market as well as the level of
support from the community towards the software package. This guarantees that individuals
select a software package that not only ful�lls their present requirements but also adheres
to industry norms and possesses a substantial user community for continuous assistance and
enhancements.

1https://pypistats.org/
2https://www.nuget.org/

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: PYPI download rate

As a result of the challenges involved in choosing the best software packages, researchers and
practitioners have developed software package recommendation systems. These resources
are vital for assisting developers in identifying the best software packages for their projects.
By pulling information from repositories like Nuget, npm, maven, pip, etc., these recommen-
dation systems examine a variety of software package characteristics and attributes to o�er
developers unique and precise recommendations.
The primary contributions of this study are the following:

ˆ Automated extraction of unstructured data from unstructured repositories

ˆ New modeling and reasoning strategies for the compatibility of software packages

ˆ A hybrid approach that incorporates content-based, collaborative, and knowledge-based
recommenders

ˆ Comprehensive evaluation and comparison of performance with current best practices

To enhance software package discovery and reuse, this thesis will design an intelligent recom-
mendation system to address real-world challenges in software package-based development.
The proposed methods have the potential to considerably improve the e�ciency, cost, and
caliber of software development. E�ective COTS recommendations are a signi�cant area of
study with enormous potential for application in the real world.

3

Chapter 2

Research Approach

This chapter provides a detailed explanation of the methodology that will be employed in
conducting the research and outlines the approach taken to address the research questions.
At the outset, an assessment will be conducted to determine the research methods that will
be employed. Subsequently, a comprehensive elucidation of each research methodology and
potential challenges to the validity of the �ndings will ensue. In conclusion, we will provide a
detailed analysis of the signi�cant milestones achieved throughout the project.

2.1 Problem statement

The selection of unsuitable software packages can result in �nancial consequences. If the
chosen software packages do not satisfy the stipulated criteria or encounter di�culties in
achieving seamless integration, it may necessitate supplementary �nancial resources to sub-
stitute or adapt the software packages. Consequently, this could result in exceeding the
allocated budget and prolonging the software development timeline [14]. Furthermore, it is
important to note that organizations may face the need to pay licensing fees or ongoing
support costs for the chosen software packages, which can a�ect the overall budget of the
project [15]. An evaluation can be formulated as "multiple criteria decision making" (MCDM)
problem. Any decision-making issue in the development of software can be described as an
MCDM issue that deals with weighing a variety of options and criteria. Evaluation and selec-
tion of the best options for software engineers (decision-makers) based on their preferences
and needs constitute the di�culty [16].
Consequently, there are still challenges, risks, and unknowns associated with this strategy.
The improper selection of relevant software packages contributed to a portion of these risks
and uncertainties [17]. The investigation commences with existing software package al-
ternatives that are likely to satisfy the requirements. To retain only the most prospective
alternative solution, the identi�ed list is typically evaluated based on several fundamental
criteria in addition to functionality. After carefully evaluating the retained options, the best
option is selected. However, if the software package that best meets the requirements and
can be reused with the least amount of e�ort and expenditure is not located or retained,
another software package may be chosen. This increases the probability of project failure
due to non-compliance with project expenses and deadlines and results in increased costs and
e�ort. Therefore, the outcomes of the identi�cation phase have a signi�cant impact on the
success of software package-based development[18]. Then, recommendation tools come in
and play a role in these criteria. For instance, they introduced a way for evaluating account-
ing software by matching user needs with system speci�cations, giving a practical strategy
for software selection in accounting [19]. Such recommendation tools have the following

4

CHAPTER 2. RESEARCH APPROACH 5

drawbacks:

1. The results of the recommendations do not contain all of the recommended libraries.
While certain popular libraries are more likely to get recommendations [20], others that
are less well-known have a lower chance of doing so. Because it results in a lack of
diversity and few recommendations, this is known as the "long tail problem" in the
�eld of third-party library recommendation [21].

2. When neglecting the substantial auxiliary data of the third-party libraries and only con-
sidering the correlation between projects, the recommendation results are not properly
re�ned.

3. Distinguishing between the relationship between projects and libraries by concentrating
on either project level (project similarity) or library level (library usage pattern) for the
suggestion[22].

2.2 Research questions

Relying on the problem statement, the following main research question was derived:

ˆ MRQ : How can one assist organizations or programmers in the process of selecting
development software packages?

To support this research question, we have created the following sub-research questions:

ˆ RQ1: Which software package selection approaches do exist in peer-reviewed litera-
ture?

ˆ RQ2: Which criteria are used in the software package selection methods described in
the literature? (identifying metadata features of software packages)

ˆ RQ3: Which data collection methods can automatically extract metadata of software
packages from developer communities like GitHub, Gitlab, etc., and package managers
like NuGet, npm, maven, pip, etc.? (unsupervised)

ˆ RQ4: How to develop the software package recommendation system tool, design it,
and build the model?

ˆ RQ5: How should the suggested software package recommendation model be evalu-
ated?

ˆ RQ6: How to understand the intent of developers when they are looking for software
packages?

2.3 Conceptual model

This section presents a novel pipeline speci�cally developed for a software recommendation
system. We designed the conceptual model based on the conceptual model of a pipeline
proposed [23]. This pipeline consists of �ve primary components, each playing a vital role
in improving the functionality and precision of the system. The initial stage, software pack-
age metadata extraction, entails collecting comprehensive data regarding di�erent software
packages. Subsequently, the sentiment analysis module assesses the public's opinions and

5

6 2.4. RESEARCH METHODS

attitudes surrounding these software products. The user component is dedicated to compre-
hending and collecting user preferences and requirements. The inference engine, an essential
component of the system, analyzes the gathered data to produce customized software sug-
gestions. The integration and classi�cation component e�ectively arranges the software
products into relevant categories, streamlining user navigation and selection. Collectively,
these elements collaborate harmoniously to generate a comprehensive and user-friendly soft-
ware recommendation system. We will discuss it more in chapter 4 Figure 2.1 shows a
conceptual model that shows the �nal study goal and how the decision model was made.

Figure 2.1: Conceptual model of software package recommendation system model.

2.4 Research Methods

The research questions outlined in the aforementioned section 2.2 will be addressed through
various research methodologies. In this study, we will employ three distinct research meth-
ods: literature study, design science, and experiments. While each of these methods will
be discussed in detail later on, the following table (Table 2.2) illustrates the corresponding
research method that will address each of the research questions. When a speci�c method is
chosen to address a particular research question, the intersection between them in the table
will be marked with an "X".

2.4.1 Literature study

The research question highlighted in Section 2.2 was addressed in this study by adhering to the
procedures and guidelines established by [24], [25], and [26]. Consequently, we implemented
the review protocol 3.1 to methodically gather and extract data from pertinent studies.
Finally, we attentively ensure that our research contains high-quality papers and references
and diligently gather additional illuminating insights into the intricate workings of the software
package recommendation system. We will discuss it completely in Chapter 3.

6

CHAPTER 2. RESEARCH APPROACH 7

Figure 2.2: Research Method Employed

2.4.2 Design science

Design science is a research strategy that seeks to create and enhance artifacts, such as
software systems, through the use of scienti�c methodologies. It entails the methodical
development and assessment of creative answers to real-world issues [27]. Design science
research aims to produce knowledge that professionals in a �eld can use to make recommen-
dations as well as to share empirical insights from studies of how recommendations are used
in practice [27].
Depending on the particular research problem and context, di�erent steps may be involved in
the design science research approach. There are some common software packages, though,
that are frequently used in the process. The following is a summary of these actions:

1. Problem Identi�cation: Identifying a problem or an opportunity for improvement in
a speci�c domain is the �rst step in the design science research approach. A review of
the literature, expert interviews, or observations of current procedures can all be used
to accomplish this [28].

2. Solution design: The second step is to design a solution or artifact that solves the
problem after it has been identi�ed. To do this, a conceptual model or framework that
outlines the essential elements and connections of the solution must be created [27].

3. Artifact Development: Following the design of the solution, the artifact or software
system must be created. This could entail prototyping, programming, or other devel-
opment tasks [29].

4. Reection: Following the evaluation, it's crucial to consider the �ndings and the things
we can learn from the design and development process. This may entail evaluating the
artifact's advantages and disadvantages, pointing out potential problems, and o�ering
suggestions for further study or application [27].

It is important to note that the design science research approach is cyclical and iterative,
which means that the steps can be repeated numerous times as new information and input

7

8 2.4. RESEARCH METHODS

are gathered [27]. This enables both the artifact and the research process to be continuously
improved. In conclusion, the design science research approach entails determining the issue at
hand, coming up with a solution, creating an artifact, determining its viability, and considering
the outcomes. In a variety of �elds, including software engineering, this iterative process
enables the development of creative and useful solutions to real-world problems.

2.4.3 Experiments

Recent research has prioritized the evaluation and comparison of di�erent models to improve
the comprehension of software package recommendation systems. These comparisons not
only evaluate the e�cacy of di�erent models but also take into account the requirements of
stakeholders and the objectives of the system [30]. Furthermore, incorporating advanced AI
technologies such as ChatGPT as a benchmark in testing phases introduces a fresh method for
evaluating recommendation models. This hybrid approach integrates conventional systems
with AI breakthroughs, thereby pushing the limits of software suggestion and customisation.
This innovative methodology is in line with the study by Smirnov and Ponomarev [31], who
introduced a complex context-based model for recommendation systems. This model aims
to improve the congruence between recommendations and user contexts [31].

8

Chapter 3

Systematic Literature Review (SLR)

This chapter presents the results of our Systematic Literature Review (SLR), which we
briey introduced in Chapter 3. The primary objective of conducting this SLR was to gain a
comprehensive understanding of the research landscape surrounding software package recom-
mendation and its current trends. Additionally, through the SLR, we aimed to address several
key research questions and gather pertinent data that would be instrumental in our research
endeavors, particularly in the development of the �nal decision model. This comparative
analysis with other approaches would facilitate the evaluation of our work.

The SLR was carried out in adherence to the guidelines proposed by certain references[24].
Furthermore, we drew upon the insights from a systematic literature review conducted by
[32] as a point of reference during our own SLR.

In the following sub-chapters, we will delve into the process, elucidate our rationale behind
each step, and elucidate the key �ndings stemming from our SLR. For those interested in a
more detailed examination of the complete data set and results of the SLR, we have provided
an appendix 8.3 where this information can be accessed (see �gure 3.1).

Figure 3.1: Systematic Literature Review Protocol.

9

10 3.1. PAPER COLLECTION

3.1 Paper Collection

The comprehensive methodology for searching was thoroughly explained in Chapter 2. The
methodology primarily consisted of two distinct search approaches: the initial hypothesis
method and the automatic search method. The process of doing an initial hypothesis search
allowed for the compilation of the initial collection of papers. This collection of papers then
yielded a search term based on the common keywords found within them. The preceding
search term was utilized to streamline the process of collecting data. The following sub-
chapter will delve into the process of a comprehensive search.
The key sources utilized in this investigation include digital libraries, speci�cally:

ˆ ACM Digital Library

ˆ Springer Publishing

ˆ IEEE Explore Digital Library

ˆ ScienceDirect

ˆ Scopus

The initial hypothesis was placed on these �ve libraries due to their provision of high-quality
papers, which contribute substantial value to the scienti�c community. It is important to
mention that the utilization of Google Scholar1 was not employed throughout the automated
search procedure due to its tendency to generate a substantial amount of irrelevant research
and gray literature. Moreover, the considerable potential for overlap with the other libraries
utilized in this systematic literature review (SLR) is apparent.

3.2 Search process

The whole search process and the number of collected papers are depicted in �gure 3.1.
During the automated search phase of our systematic literature review, we employed a robust
search strategy to obtain relevant and high-quality papers from scienti�c search engines. To
construct our search query, we derived keywords from a preliminary collection of papers
acquired using a manual search procedure. In the manual search, we use fundamental search
terms and knowledge to �nd more relevant and high-quality papers. We use these search
terms:

ˆ software package selection

ˆ software cots recommendation

ˆ software package recommendation

ˆ cots recommendation system

ˆ selection of software packages set

ˆ software packages selection in the package manager

1scholar.google.com

10

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 11

The initial hypothesis search phase resulted in a collection of 49 papers. When we collect
these papers, we use the Sketch Engine [33] to �nd out the most frequent keywords in these
studies and rank them based on their frequency. This helps us identify the key areas of focus
and trends within the research �eld. Then we created a search term, which is

("software development" OR "software production") AND ("COTS" OR "software pack-
ages") AND (" selection" OR "evaluation" OR "recommendation")

The search results can be exported in either CSV or Bibtex format, facilitating the systematic
collection of documents and their subsequent insertion into the spreadsheet. Subsequently,
the process entails the removal of redundant, impaired, or null data entries. During the
process of automated retrieval, supplementary documents are collected. As a result, the
combined e�orts of the manual and automatic search phases resulted in a corpus of 6,250
documents. It is noteworthy to mention that our primary focus is directed towards scholarly
articles that have been published after the year 2012. However, a few earlier documents have
been included in the study as they were considered pertinent during the manual search or
snowballing stages. These earlier documents were included to provide a historical context
or to establish a foundation for the research. Additionally, the inclusion of these documents
allows for a comprehensive analysis of the topic and ensures that no relevant information is
overlooked.
Initially, a comprehensive search yielded a total of 6250 publications. These publications were
then subjected to a rigorous process of inclusion and exclusion criteria. As a consequence, a
�nal selection of around 353 papers of high standard was obtained. Therefore, the utilization
of high-quality and contextually pertinent papers facilitated our ability to conduct a thorough
and resilient analysis, enabling the extraction of signi�cant features. The stringent selection
procedure enabled us to concentrate on the most current and noteworthy research discoveries
in our study while simultaneously recognizing the signi�cance of earlier works that contribute
to a comprehensive comprehension of the subject matter.

3.3 Inclusion and exclusion criteria

In the process of conducting a systematic literature review (SLR), the utilization of inclusion
and exclusion criteria is of utmost importance for the purpose of picking relevant studies.
These criteria ensure that the selected studies meet the necessary standards and directly
pertain to the pertinent research inquiry.
In our study phase, we employed a rigorous approach to carefully choosing publications
based on certain inclusion and exclusion criteria. This method was implemented to eliminate
unreliable or low-quality sources from our analysis. Various factors were employed in our
evaluation, including the caliber of the publication venue, the year of publication, the quantity
of citations, and the pertinence of our research topic. Our review closely adhered to speci�c
criteria in order to include papers that were of the greatest quality and relevance. Following
a systematic procedure, the initial corpus of 6250 papers was e�ectively reduced to a �nal
selection of 1063, which were subsequently chosen for further analysis.
A screening process was conducted for all papers obtained, including those contributed by
the snowballing technique, after doing both manual and machine searches. During this
stage, we conducted an assessment of the abstract, keywords, and overall relevance of each
document to our research. The ranking of the items was determined based on their relevance,
utilizing a scale consisting of four ordinal values: none, low, medium, and high. Subsequently,
we employed inclusion and exclusion criteria to further re�ne our selection. A score was

11

12 3.4. QUALITY ASSESSMENT

calculated for each piece of work, taking into account the aforementioned elements.

3.4 Quality assessment

Evaluation of the caliber of primary research is crucial in addition to the inclusion and exclu-
sion criteria. The evaluation of primary studies' quality results in more speci�c inclusion and
exclusion criteria, provides recommendations for future research, directs the interpretation of
�ndings, and gauges the reliability of inferences. It is possible to tell whether certain charac-
teristics of research design or conduct have inuenced the results by noting the strengths and
limitations of primary studies [32]. We consider the following criteria for quality assessment:

ˆ Research Method: We scrutinized whether the research methodology employed was
appropriate for addressing our research query. Additionally, we assessed the trans-
parency and lucidity of the research method.

ˆ Research Type: We considered whether the publication presented original research, a
review article, a case study, or a meta-analysis. We also evaluated the relevance and
scope of the research within the machine learning �eld.

ˆ Data Collection Method: Our evaluation included an assessment of the appropriate-
ness of the data collection method in the context of our research question. We also
examined the adequacy and clarity of the reported data collection process.

ˆ Evaluation Method: We assessed whether the chosen evaluation method was �t-
ting for addressing our research query, and we also considered the transparency and
statistical signi�cance of the reported outcomes.

ˆ Clear Problem Statement: We evaluated whether the publication e�ectively identi�ed
the research problem and provided ample background information. We also examined
the clarity and precision of the research question.

ˆ Research Questions: We scrutinized the relevance, clarity, and precision of the re-
search questions in relation to the research problem.

ˆ Research Challenges: We assessed whether the publication acknowledged the chal-
lenges and limitations associated with the research.

ˆ Statement of Findings: Our evaluation included an examination of whether the pub-
lication reported research �ndings and whether these �ndings were pertinent to the
research problem and questions.

ˆ Real-World Use Cases: We considered whether the publication provided practical,
real-world use cases or applications for the proposed method or model.

After quality assessment, we derive about 343 papers, which is a signi�cant number to
provide a comprehensive analysis. These papers cover a wide range of perspectives and
methodologies, allowing us to gain a holistic understanding of the topic and draw meaningful
conclusions.

12

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 13

3.5 Data extraction and synthesizing

Our main goals during the data extraction and synthesis phase of the systematic literature
review (SLR) were to respond to the precise research objectives we had selected and to learn
more about the fundamental models frequently used by software package recommendation
system developers. Understanding these models' properties, the quality factors connected
to them, and the criteria for evaluation applied by researchers to evaluate their methods
were among the goals we had set. We also looked at possible model combinations that
researchers might use in their research publications. We also extract the software package's
criteria, which also include the quality attribute. Additionally, we learned which evaluation
criteria the researchers used in their investigations, which gave us a clearer picture of the
software package selection. We methodically retrieved relevant information from the papers
included in our review to achieve these goals. From our point of view, evaluation measures
included a broad range of metrics and key performance indicators (KPIs) that researchers
utilized to assess the performance and e�cacy of their models.

3.5.1 Models and Methods

This study identi�ed a total of 64 models about software package recommendation systems,
sentiment models, and feature extraction. In Figure 3.2, we presented the trends of models
from 2002 to 2023.

Figure 3.2: Evolution of Analytical Models and Methodologies from 2002 to 2023: A Chrono-
logical Overview Highlighting Key Trends and Developments in software package recommen-
dation system.

Additionally, we have identi�ed the characteristics of these models and determined the quan-
tity of messages depicted in the �gures 3.3.

13

14 3.5. DATA EXTRACTION AND SYNTHESIZING

Figure 3.3: Comprehensive Matrix of Models and Features: Demonstrating the Application
and E�ectiveness of Various Computational Models Across Diverse Features in software
package recommendation.

Sentiment models serve as a pivotal tool within recommendation systems, providing a nu-
anced understanding of user attitudes, opinions, and emotional states [34]. By integrating
sentiment analysis into these systems, the potential for elevating recommendation reliability
becomes evident [34]. One e�ective approach begins with the analysis of sentiment in user
reviews, leveraging the polarity of these reviews to suggest items that encompass positive
information for users [35]. This sentiment-driven analysis seamlessly complements explicit
user ratings, adding an invaluable layer of insight to enhance the recommendation process
[34]. In the �gure 3.4, we depicted the models and their combinations. For example, we
found a variety of models such as TF-IDF, LSTM, Part of Speech (POS), etc.
TF-IDF (Term Frequency-Inverse Document Frequency) is used in sentiment modeling for
several reasons. TF-IDF is a widely used technique in information retrieval tasks, including
software engineering-related tasks [36]. It is e�ective in capturing the importance of terms
in a document by considering both their frequency in the document (TF) and their rarity in
the entire corpus (IDF) [37].
The researcher used LSTM in sentiment modeling to predict user behavior based on textual
data. LSTM, or long short-term memory, is a type of recurrent neural network that is partic-
ularly e�ective in capturing long-term dependencies in sequential data. By utilizing LSTM,
the researcher aimed to improve the accuracy and e�ectiveness of sentiment modeling, ulti-
mately contributing to the advancement of this �eld.
Sentiment modeling uses the POS (Part-of-Speech) for several reasons. A method known
as POS tagging is used to categorize words in a text according to their grammatical func-
tion, such as nouns, verbs, adjectives, etc. Researchers can learn about the text's syntactic
structure and identify useful features for comprehending user sentiments by combining POS
data into sentiment modeling [38].

14

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 15

Figure 3.4: Comparative Analysis of Sentiment Analysis Models: From Traditional Ap-
proaches to Advanced Neural Network Techniques.

Feature extraction techniques serve as a fundamental approach for mining domain knowledge
from text data. Take, for example, the use of these techniques in the domain of package
descriptions, where feature extraction models have been applied to automatically extract and
characterize features using established criteria and subject modeling techniques [39]. This
application empowers the recommendation engine with a more profound understanding of
the traits and capabilities of various software packages, ultimately leading to more precise
recommendations.

Within this context, an array of models has been identi�ed, including Bert, Glove, multi-class
logistic regression, and others. Furthermore, to provide a comprehensive overview, we have
included Table 3.5 to illustrate these models and their relationships in the studies. This not
only highlights the signi�cance of feature extraction techniques but also underscores their
pivotal role in enhancing recommendation systems.

Multi-class logistic regression is a suitable choice for feature extraction models for several
reasons. Firstly, logistic regression is a well-established and widely used classi�cation algo-
rithm [40]. It estimates the probabilities of di�erent possible outcomes of a categorically
distributed dependent variable, given a set of independent variables [40]. This makes it par-
ticularly suitable for multi-class classi�cation tasks, where there are more than two possible
classes to predict.

15

16 3.5. DATA EXTRACTION AND SYNTHESIZING

Figure 3.5: Overview of Feature Extraction Models in Computational Analysis: Charting the
Progression from Basic Techniques to Advanced Algorithms.

The �nal models employed in our study are recommendation models speci�cally designed
for usage within the area of COTS software packages. These models provide a promising
perspective for the development of an inference engine that can identify the relevant software
packages associated with the data gathered using sentiment and feature extraction models.
Next, it is necessary to prioritize the outcomes to display the most convenient and appropriate
software packages. we showed the models in �gure 3.6

For recommendation models, there are some famous types of models, such as machine learn-
ing models and MCDM models. Machine learning models can be SVM, logistic regression, or
neural networks. Support Vector Machines (SVM) have gained recognition for their capabil-
ity to properly manage high-dimensional data and e�ciently handle extensive feature spaces
[41]. This is especially advantageous in recommendation systems when multiple factors need
to be taken into account, including user preferences, object qualities, and contextual infor-
mation. Support Vector Machine (SVM) has the capability to handle intricate feature spaces
and yield precise predictions e�ectively.
A neural network can capture complex patterns and relationships in the data, allowing them
to make accurate predictions and recommendations [42]. They can learn non-linear relation-
ships between user preferences and item features, which can lead to more personalized and
accurate recommendations. On the other hand, the researcher used MCDM's models, such
as Fuzzy logic and AHP.
Fuzzy logic allows for the modeling and control of complex systems with interactive e�ects of
variables [43]. It compensates for the de�ciencies of traditional Boolean logic and improves
the modeling process [43]. This is particularly useful in recommendation models where there
are multiple variables and interactions to consider.
The Analytic Hierarchy Process (AHP) provides a comprehensive and rational framework
for structuring a decision problem, representing and quantifying its elements, relating those
elements to overall goals, and evaluating alternative solutions [44]. This makes it a robust
and systematic approach to decision-making.

16

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 17

Figure 3.6: Diverse Recommendation Models: A concise mapping of key models such as
KNN, SVM, and Neural Networks, highlighting their functionalities in recommendation sys-
tems.

3.5.2 Models' evaluation methods

Evaluation measurements for models used in recommendation systems are crucial in order to
accurately analyze the system's performance and e�cacy. In the research that has been done
on evaluating recommendation systems, a number of distinct assessment metrics that take
into account various features of the recommending process have been o�ered. The result
has been shown in �gure 3.7. We The result has been shown in �gure 3.7.We discovered
roughly 41 evaluation measures, with precision, recall, F1 score, accuracy, ablation analysis,
and the t-test being the most often employed ones. The accuracy of suggestions, the
capacity to �nd pertinent items, the harmony between precision and recall, and the variety of
recommendations are only a few of the characteristics of recommendation systems that these
metrics shed light on. However, the speci�c objectives and demands of the recommendation
system being evaluated must be taken into consideration while choosing the best evaluation
metric.

Figure 3.7: Key Evaluation Metrics in Recommendation Systems: A spectrum of metrics
from F-score to Functional Performance, indicating their frequency of use in research.

17

18 3.5. DATA EXTRACTION AND SYNTHESIZING

3.5.3 Models' quali�cation methods

Measurements for quali�cation are absolutely necessary in order to evaluate the e�ectiveness
and dependability of the models used in a software package recommendation system. These
measurements contribute to determining whether or not the models are suitable for use in
formulating correct suggestions [45]. We have extracted 17 metrics, illustrated in �gure 3.8,
with performance, scalability, reliability, modularity, exibility, maintainability, and portability
being the most popular ones. These metrics assist in evaluating the recommendation sys-
tem's overall e�ciency and quality. Scalability assesses the system's capacity to cope with
growing volumes of data and users, while performance gauges how e�ectively the system
operates. While modularity and exibility evaluate the system's ability to adapt to various
environments and user preferences, reliability ensures that the system consistently delivers
accurate recommendations. While portability assesses how easily the system can be moved
to various platforms or devices, maintainability concentrates on how simple it is to update
and address problems. Together with each other, these metrics o�er a thorough analysis.

Figure 3.8: Distribution of Quality Attributes in System Evaluation: Showcasing frequency
counts of metrics such as Performance, Scalability, and Security in research applications.

In the process of our study, we have identi�ed some essential quality standards that serve
critical functions in the evaluation of software package quality and the guarantee of its
adherence to speci�c criteria. The standards encompassed in this list are ISO/IEC 9126,
ISO SQUARE, ISO/IEC 25010, ISO/IEC/IEEE 42010, and ISO/IEC 27002:2005. These
standards o�er comprehensive criteria for assessing the quality of software, with each ful�lling
a unique objective:

ˆ ISO/IEC 9126: This plays a fundamental role in evaluating the quality of software
packages within the domain of the COTS recommendation system. This methodology
facilitates the methodical assessment of essential attributes, including functionality,
reliability, usability, e�ciency, maintainability, and portability. This particular standard
assists in evaluating the extent to which a software package ful�lls the intended quality
attributes, thereby enabling well-informed suggestions within the system.

ˆ ISO SQUARE: The software package recommendation system directly bene�ts from
SO SQUARE's emphasis on assessing the quality of software products. It o�ers a
methodical approach and predetermined metrics for evaluating various software pack-
age properties impartially. This makes it easier to quantify qualities like correctness,
reliability, and maintainability, all of which are essential when recommending a software

18

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 19

package.

ˆ ISO/IEC 25010: As part of the software package recommendation system, ISO/IEC
25010 is essential because it provides a thorough framework for assessing the quality of
software packages. It o�ers a comprehensive viewpoint that takes into account qualities
like usability, functionality, reliability, and security. This standard guarantees that the
suggested software adheres to these varied quality characteristics when recommending
software packages, improving the user experience overall.

ˆ ISO/IEC/IEEE 42010: When analyzing the architectural features of software pack-
ages within the recommendation system, ISO/IEC/IEEE 42010 is especially pertinent.
It helps with describing, analyzing, and evaluating software package architecture, ensur-
ing that suggested software packages are appropriate for integration and match project
objectives and accepted industry standards.

ˆ ISO/IEC 27002:2005: which focuses primarily on information security, is essential to
the software package recommendation system because it emphasizes security issues.
The system's users and their data are protected against potential threats and vulner-
abilities by ensuring that the recommended software packages adhere to fundamental
security standards.

These quality standards serve as a structured and exacting framework for evaluating software
packages and are an essential part of the software package recommendation system. The
e�ectiveness and dependability of the recommendation process are increased by the system's
ability to con�dently recommend software packages that not only satisfy user requirements
but also follow industry-recognized quality benchmarks.

3.5.4 software package criteria

Multiple criteria and features must be taken into account when recommending software
packages in a software package recommendation system. These standards and characteris-
tics ensure that the chosen software packages satisfy the system's functional requirements
and adhere to the particular requirements of the project. We discovered approximately 105
software package features and criteria using SLR, as shown in the �gure 3.9. Both quality
and non-quality attributes are included in these features. We acquired the requirements for
quality attributes in the previous section, but we also need non-quality features.
The most frequently used software package features are reliability, maintainability, cost,
functionality, security, license, compatibility, usability, and performance. These characteris-
tics allow the software package recommendation system to give preference to parts that have
a track record of reliability and are simple to maintain. Cost should be taken into account,
as it should be in line with the project's budget while still achieving the necessary function-
ality and security standards. In addition, seamless integration and troubleshooting depend
on compatibility with current systems and the availability of thorough documentation and
support.
To summarize, this chapter provides a thorough examination of the literature pertaining
to software package recommendation algorithms. The document provides a comprehensive
explanation of the process for choosing research papers, which includes the standards for
including or excluding articles and the evaluation of the quality of primary studies. The chap-
ter explores many models and methodologies employed in these systems, including sentiment
analysis and feature extraction techniques. This establishes a fundamental comprehension
for the upcoming chapter, which will concentrate on providing a more thorough explanation

19

20 3.5. DATA EXTRACTION AND SYNTHESIZING

Figure 3.9: Software Package Evaluation Criteria: Frequencies of various criteria like Relia-
bility, Cost, and Security used to assess software packages.

of the chosen models and characteristics, as well as connecting theoretical knowledge to
practical implementations in the �eld.

20

Chapter 4

Decision Model

Decision theories are utilized in various �elds, including software development [46] and e-
learning [47]. However, it is important to note that decision-makers may approach di�culties
di�erently due to variations in individual priorities, implicit knowledge, and decision-making
methods [48]. The primary objective of the �eld of MCDM is to address these discrepancies
in judgment through the utilization of decision models.
In scenarios involving MCDM, a set of options is assessed, and decision criteria are considered
[16]. The challenge lies in determining the optimal software packages based on the require-
ments and preferences of decision-makers [49]. It is imperative to bear in mind that there is
no universally optimal solution for MCDM problems, and the preferences of decision-makers
play a crucial role in identifying the most suitable answer for their needs [49]. In the context
of models and features for software package recommendation systems, this research focuses
on the software package selection problem and treats it as an MCDM problem.
The decision model presented in Figure 2.1, which utilizes the MCDM theory, will be highly
valuable for researchers involved in the development of software package recommendation
systems. This approach facilitates systematic exploration of options, considering key factors
in the process of software package selection, and determining the optimal con�guration of
software packages for the development of an e�ective recommendation model. This approach
has three phases, as follows:

4.1 Software Package Metadata Extraction Pipeline

The Software Package Metadata Extraction Pipeline is a vital element of the software rec-
ommendation system, speci�cally created to collect and evaluate crucial data from di�erent
software package managers. This pipeline e�ectively gathers metadata, such as name, de-
scription, author, and license, from repositories such as PYPI, npm, and NuGet by employing
advanced techniques like web crawling and web APIs. This approach allows the system to ac-
quire profound insights into software packages, enabling more knowledgeable and customized
recommendations for users.

Data Source: Software Package Managers

The software package recommendation system in this project exclusively obtained data from
PyPI, given the project's magnitude. By adopting this targeted strategy, we were able to
work with a dataset that was easier to handle while still bene�ting from a wide range of
Python programs. Alternative package managers were excluded from consideration due to
their potential impact on project scope and manageability. PyPI, often known as the Python

21

22 4.1. SOFTWARE PACKAGE METADATA EXTRACTION PIPELINE

Package Index, is a well-known repository that houses a wide range of Python packages and
modules. As of 2024, PyPI has a total of 506,000 projects, exceeding 5 million releases and
10 million �les. The user base of PyPI is estimated to be over 775,000. Due to the wide
range of software that the Python community has produced, PyPI is a crucial resource for
Python developers.

Data Extraction Process

Data extraction encompasses two primary methodologies: web crawling and the utilization
of web APIs. Web crawling is an automated process used to gather data from the web
pages of package managers. We used Selenium, a Python web scraping tool, to accomplish
this. The crawler systematically navigates to every page and retrieves pertinent data. PYPI
o�er APIs that enable more organized and e�cient retrieval of their data. By utilizing these
APIs, the system is able to directly solicit precise information regarding software packages.

Software Packages

By utilizing web crawling techniques and APIs, we have e�ectively gathered an extensive col-
lection of packages from the PYPI package manager, which has been organized and presented
in JSON format. The collection is comprehensive and contains a diverse range of software
programs, each with distinct functionalities, dependencies, and development histories.
The PyPI repository contains a wide variety of software packages, including libraries, frame-
works, and tools, which are designed to meet various programming requirements. These
utilities vary from commonly used tools that ful�ll general programming needs to specialized
libraries speci�cally intended for speci�c applications.

Metadata Extraction

The recommendation system can learn more about the variety of software packages that are
available, their features and abilities, and how developers perceive or use them through the
extraction and analysis of this metadata. Having this comprehension is crucial in order to
o�er precise and pertinent suggestions to individuals seeking software packages that align
with their particular needs.
Metadata extraction entails the extraction of certain data points related to each software
package. Typically, this includes elements like Name, URL, and Description. The extracted
metadata is essential for comprehending the functionality and possible applications of each
package. We will further elaborate on chapter 5.

4.1.1 Software Package Sentiment Analysis Pipeline

We employed Liang Feng's [50] �ndings, which encompass a comprehensive sentiment analy-
sis framework speci�cally tailored for evaluating software packages. This pipeline extensively
relies on user feedback obtained from many software development forums, including Stack-
Overow, GitHub, and G2. It employs sophisticated natural language processing algorithms.
It systematically gathers and examines user-generated content's sentiments in order to pro-
vide a thorough understanding of the product's perceived quality and usability. This technique
facilitates software developers in implementing data-driven enhancements in their products.
During its concluding phases, the pipeline combines the outcomes of sentiment analysis with
the ISO/IEC 25010 software quality model. This model delineates fundamental quality at-
tributes such as functionality, reliability, and maintainability. By correlating user feedback with

22

CHAPTER 4. DECISION MODEL 23

these characteristics, the pipeline provides a thorough assessment of software components,
taking into account their actual usage and opinions. By adhering to the ISO standard, the
analysis is comprehensive and in line with established quality standards, thereby facilitating
the improvement of software packages to better cater to user requirements.

4.1.2 Inference Engine

The inference engine is a critical part of the system, processing the user's input and delivering
recommendations. It includes two parts, as follow:

Requirements Extraction

This procedure entails scrutinizing the user keywords in order to extract precise requirements
or criteria that the software package must ful�ll. It uses name entity recognition (NER) to
extract the most important keywords from the input keywords. we will discuss it more in 5

Solution Suggestion

The inference engine proposes potential software solutions based on the extracted require-
ments. This stage entails aligning the user's requirements with the attributes of the software
packages that are already accessible. It works with the similarity algorithm, as we found that
in a literature review, similarity is the most commonly used in a recommendation system.
We used BM25, LM Jelinek Mercer similarity (LMJDM), Information-based (IB), and LM
Dirichlet similarity (LMD).

4.1.3 Integration and Categorization

Subsequently, the proposed solutions are consolidated into a cohesive collection of recom-
mendations and classi�ed according to their relevance and appropriateness to the user's
requirements. We created this knowledge base using JSON �les.

Knowledge Base

The knowledge base is an extensive repository that encompasses all the fundamental facts
utilized by the system to facilitate decision-making. The following items are included: The
metadata for software packages is gathered from multiple package managers.The sentiment
analysis pipeline determines the quality attributes of the software components. User opinion
analysis is linked to each individual software element.

4.1.4 User

User Keywords

In this step, user keywords pertain to the user's requirements, preferences, or speci�c use
cases. These are frequently presented in a keyword structure and can range from being simple,
complex, or ambiguous. These keywords facilitate comprehension of the circumstances and
distinct requirements of the user, serving as the foundation for tailored suggestions.

Ranked Feasible Components

This step will display the candidate on a list. Name, short description, URL, and ISO 25010
quality attributes are all included in this list. We provided an illustration in the �gure 4.1.

23

24 4.2. DESIGN DECISIONS

Figure 4.1: Final results.

4.2 Design Decisions

In this project, we have leveraged a fusion of three distinct model categories, as compre-
hensively detailed in Section 3.5.1. Our approach to feature extraction is centered on the
utilization of text embedding techniques.
Text embedding: Text embedding refers to the process of converting textual data, such
as words, sentences, or documents, into numerical vectors while preserving their semantic
meaning. This numerical representation allows us to e�ectively work with and analyze text
data using machine learning algorithms.
Additionally, within the architecture of our recommendation system engine, we have em-
ployed a multifaceted strategy that encompasses several key software packages:
Similarity Analysis: Similarity analysis involves quantifying the likeness or resemblance be-
tween items or user preferences. This analysis helps us measure how closely aligned user
preferences are with available items, enabling us to make recommendations that closely
match individual tastes. Ranking: Ranking algorithms determine the order in which rec-
ommendations are presented to users. These mechanisms take into consideration various
factors, including user behavior, item characteristics, and relevance, to provide more accu-
rate and personalized recommendations.
This comprehensive approach allows us to provide enhanced and personalized recommenda-
tions to our users, tailoring our suggestions to their unique preferences and interests. In the
domain of sentiment analysis, our methodology is further enriched by the incorporation of
the following elements:
Sequence Information: Sequence information pertains to the order and arrangement of
words or phrases in a text. It is crucial for understanding the ow and nuances of sentiment
expressed in textual content.
Global Context Feature: The global context feature involves considering the broader con-
text of the entire text, such as the overarching theme or tone. This context is essential for

24

	Introduction
	Research Approach
	Problem statement
	Research questions
	Conceptual model
	Research Methods
	Literature study
	Design science
	Experiments

	Systematic Literature Review (SLR)
	Paper Collection
	Search process
	Inclusion and exclusion criteria
	Quality assessment
	Data extraction and synthesizing
	Models and Methods
	Models' evaluation methods
	Models' qualification methods
	software package criteria

	Decision Model
	Software Package Metadata Extraction Pipeline
	Software Package Sentiment Analysis Pipeline
	Inference Engine
	Integration and Categorization
	User

	Design Decisions
	Model Architecture

	Pipeline Implementation
	Selecting Packages
	Feature selection
	Feature Identification
	Feature Extraction Steps

	Web Scraping
	Data Extraction Steps
	Text analysis

	Implementation
	Elasticsearch
	Elasticsearch in Software Package Selection
	BM25 Algorithm
	LM Dirichlet Similarity in Language Modeling
	LM Jelinek-Mercer Similarity in Information Retrieval
	Information-based (IB)

	Integration of the Similarity Models and Elasticsearch
	Query processing
	Ensuring Relevance and Effective Ranking

	Experimentation
	Experimental Setup
	Objective
	Methodology

	Creation of the Golden Set
	Role of ChatGPT
	Data Collection

	Results and Discussion
	Comparative Analysis of Model Performances
	Accuracy, Precision, and Recall Evaluation

	Discussion
	Validity
	Internal Validity: Challenges and Considerations
	External Validity: Generalizability of Findings
	Validity of Construction
	Dependence on External Data Sources
	Effect on Pipeline Validity

	Finding during the project
	AI Integration in Software Recommendations: Potential and Limitations
	The Need for a Balanced AI-Human Approach
	Importance of Model Selection in Software Recommendations
	Impacts on Software Engineering
	Broader Implications of the Findings

	Implications and Responsibilities in AI-Enhanced Software Engineering
	Ethical and Practical Considerations of AI Systems
	Enhancing Transparency and Accountability in AI Recommendations
	Wider Industry Implications of the Research
	Educational Significance for Prospective Software Engineers and AI Researchers

	Conclusion and Future Work
	Reiteration of Core Thesis and Major Contributions
	Future Work
	Impact and Practical Applications

	Concluding Remarks

	References

