
MSc Artificial Intelligence

Master Thesis

A Data-Driven Decision Model for Software
Package Selection

Parsa Beigzadeh 1203754

First Supervisor: Dr. Siamak Farshidi

Second Supervisor: Dr. Slinger Jansen

2024

Utrecht University

Faculty of Science

Abstract

The choice of software components is a crucial task in software engineering that has a big

impact on the output and success of a project. The purpose of this thesis is to investigate

the use of knowledge-based recommendation systems for software component selection. In

order to identify previous studies and categorize them for the application of knowledge-based

approaches in software architecture, the research will entail a systematic mapping study .

The thesis aims to investigate the potential and difficulties of software repository mining for

software engineering purposes. Specifically, it will examine how to extract software-related

knowledge from various platforms . The results of this thesis will contribute to the creation

of a knowledge-driven framework that will help software engineers make well-informed deci-

sions about the selection of software components, close the gap between software and data

engineering, and guide component selection. This thesis aims to improve the current state

of software engineering by bringing together these different points of view and providing in-

sightful analysis and useful suggestions for the effective use of knowledge-based systems in

choosing software components.

ii

I hereby extend my deepest gratitude to all those who have supported me throughout the

course of this research. Foremost, I must acknowledge Siamak for his exemplary guidance

and rigorous supervision. Our weekly meetings, characterized by robust discussion and critical

analysis, were indispensable in shaping the trajectory and success of this work.

The past seven months have been marked by substantial challenges, encompassing a range

of complex research methodologies. This period has necessitated unwavering dedication,

patience, and a robust set of technical skills. It is during this time that I have discovered

and honed previously untapped abilities within myself. The work encapsulated in this thesis

stands as a testament to the significant personal and academic growth I have experienced

throughout my studies at Utrecht University.

I also extend my sincere appreciation to my second supervisor, Slinger, and to all participants

involved in this study. Their collective experiences and insights have been invaluable to the

breadth and depth of this research.

In addition, I must express my profound gratitude to my parents. Their constant support,

encouragement, and belief in my abilities have been a cornerstone of my journey.

To everyone who has contributed to the completion of this thesis, whether in a major or

minor capacity, I offer my heartfelt thanks. Your roles, however varied, have been crucial in

bringing this academic endeavor to fruition

ii

Contents

1 Introduction 1

2 Research Approach 4

2.1 Problem statement . 4

2.2 Research questions . 5

2.3 Conceptual model . 5

2.4 Research Methods . 6

2.4.1 Literature study . 6

2.4.2 Design science . 7

2.4.3 Experiments . 8

3 Systematic Literature Review (SLR) 9

3.1 Paper Collection . 10

3.2 Search process . 10

3.3 Inclusion and exclusion criteria . 11

3.4 Quality assessment . 12

3.5 Data extraction and synthesizing . 13

3.5.1 Models and Methods . 13

3.5.2 Models’ evaluation methods . 17

3.5.3 Models’ qualification methods . 18

3.5.4 software package criteria . 19

4 Decision Model 21

4.1 Software Package Metadata Extraction Pipeline 21

4.1.1 Software Package Sentiment Analysis Pipeline 22

4.1.2 Inference Engine . 23

4.1.3 Integration and Categorization . 23

4.1.4 User . 23

4.2 Design Decisions . 24

4.3 Model Architecture . 25

5 Pipeline Implementation 27

5.1 Selecting Packages . 27

5.2 Feature selection . 28

5.2.1 Feature Identification . 28

5.2.2 Feature Extraction Steps . 28

5.3 Web Scraping . 30

5.3.1 Data Extraction Steps . 30

5.3.2 Text analysis . 31

5.4 Implementation . 32

iii

iv CONTENTS

5.4.1 Elasticsearch . 32

5.4.2 Elasticsearch in Software Package Selection 32

5.4.3 BM25 Algorithm . 33

5.4.4 LM Dirichlet Similarity in Language Modeling 34

5.4.5 LM Jelinek-Mercer Similarity in Information Retrieval 34

5.4.6 Information-based (IB) . 35

5.5 Integration of the Similarity Models and Elasticsearch 36

5.5.1 Query processing . 36

5.5.2 Ensuring Relevance and Effective Ranking 36

6 Experimentation 37

6.1 Experimental Setup . 37

6.1.1 Objective . 37

6.1.2 Methodology . 37

6.2 Creation of the Golden Set . 39

6.2.1 Role of ChatGPT . 39

6.2.2 Data Collection . 39

6.3 Results and Discussion . 39

6.3.1 Comparative Analysis of Model Performances 39

6.3.2 Accuracy, Precision, and Recall Evaluation 40

7 Discussion 42

7.1 Validity . 42

7.1.1 Internal Validity: Challenges and Considerations 42

7.1.2 External Validity: Generalizability of Findings 42

7.1.3 Validity of Construction . 43

7.1.4 Dependence on External Data Sources 43

7.1.5 Effect on Pipeline Validity . 43

7.2 Finding during the project . 44

7.2.1 AI Integration in Software Recommendations: Potential and Limitations 44

7.2.2 The Need for a Balanced AI-Human Approach 44

7.2.3 Importance of Model Selection in Software Recommendations 44

7.2.4 Impacts on Software Engineering 45

7.2.5 Broader Implications of the Findings 45

7.3 Implications and Responsibilities in AI-Enhanced Software Engineering 45

7.3.1 Ethical and Practical Considerations of AI Systems 45

7.3.2 Enhancing Transparency and Accountability in AI Recommendations . 46

7.3.3 Wider Industry Implications of the Research 46

7.3.4 Educational Significance for Prospective Software Engineers and AI

Researchers . 46

8 Conclusion and Future Work 47

8.1 Reiteration of Core Thesis and Major Contributions 47

8.2 Future Work . 47

8.2.1 Impact and Practical Applications 48

8.3 Concluding Remarks . 48

References 50

iv

Chapter 1

Introduction

Recommendation systems have become an indispensable component of our everyday exis-

tence, exerting a significant impact on the decisions we make across diverse domains, includ-

ing but not limited to e-commerce, entertainment, social media, and software engineering

[1]. These systems utilize data and algorithms to deliver personalized recommendations to

users, improving user experience and satisfaction [1]. In recent times, there has been an in-

creasing inclination towards the examination and enhancement of recommendation systems,

resulting in notable progressions within this domain [1].

As an example, Within the field of software development, GitHub has gained significant pop-

ularity as a widely utilized platform for facilitating collaboration and the sharing of code. The

authors of this study undertook an investigation into the practices of starring GitHub reposi-

tories and put forth four patterns to elucidate the progression of stars in said repositories [2].

The aforementioned patterns were obtained using clustering the time series data of stars,

thereby offering valuable insights into developers’ perspectives on these growth patterns.

The recommendations derived from this study hold significant value for open-source project

managers, as they provide insights into the significance of social coding practices.

The dynamic evolution of software within automated production systems has introduced vari-

ous challenges and research avenues in the development of such recommendation systems [3].

Software packages are extensively utilized within the software industry due to their inherent

benefits, including decreased development time and cost [4]. The aforementioned software

packages are readily accessible on the market and can be chosen from a range of alternative

software packages [5]. A software package is defined as a collection of software programs

and files that are developed and distributed together to address specific functionalities or

needs[6]. Software packages are the application domain that has attracted the most atten-

tion among the 10 chosen areas, according to a systematic literature review on twenty-eight

years of software package-based software engineering by [7]. In fact, 25% of the research

investigations involved software-packaged-based development. The fact that ”reusing soft-

ware packages from third-party providers is a key technology for developing systems quickly

and cost-effectively” justifies this, according to the authors. The use of software packages

has the potential to significantly reduce the costs associated with development, according

to a study by [8]. The development of software systems solely within an organization can

incur significant costs due to the need to recruit proficient developers, allocate resources to

infrastructure investment, and commit resources to the development process [9]. In con-

trast, commercially available software packages can be easily obtained in the market, offering

comparable functionality to custom-built solutions at a significantly reduced cost [8]. The

affordability and efficiency of commercially available software packages render them an ap-

pealing choice for organizations that have restricted financial resources or stringent project

1

2

schedules [9].

The main way to access these packages is through software package managers. Software

package managers are essential for organizing and streamlining the installation and upkeep of

software by establishing standardized methods for creating and using software collections[10].

Package managers offer a reliable development environment and promote seamless reuse,

which is in line with the convergence of software development and IT operations known as

DevOps [10]. Nevertheless, the presence of various package managers and packages compli-

cates the decision-making process. For instance, PYPI 1, a prominent package manager for

Python, boasts approximately 487,657 distinct packages across various domains, including

data science, web development, and machine learning, as per PYPI statistics.The second

example is NuGet, which serves as package management for.NET development. It encom-

passes around 360,893 packets. In the table, we displayed the quantity of packages in the

most well-known package repositories.

Repository Approximate Number of Packages

PyPI (Python) 506,000

npm (JavaScript) 2,100,000

Maven (Java) 37,000,000

RubyGems (Ruby) 179,508

Packagist (PHP) 389,213

NuGet (.NET) 360,893

Crates.io (Rust) 133,961

Table 1.1: Number of Packages in Software Package Repositories (As of October 2023)

Furthermore, the download rate in these repositories indicates that they have played a crucial

role in accessing the software packages. As demonstrated in figure 1.1, the daily download

count from PYPI based on PYPI stats is approximately one billion. Moreover, approximately

429,520,831,740 downloads have been made overall for the Nuget repository 2. In the table,

we showed the number of total downloads for each package manager in table 1.1.

Therefore, the process of choosing software packages holds significant importance in the

field of component-based software engineering (CBSE) [11]. Due to the wide variety of

resources and their associated dependencies, developers must spend a considerable amount

of time browsing for relevant resources [12]. Despite the need to better assist developers

with this task, little research has been conducted on methods that make it simpler to discover

relevant libraries from open source software (OSS). [13]. In order to accomplish this task,

software engineers utilize a multiple-criteria decision-making (MCDM) approach to ascertain

the most suitable software package. Initially, developers express their specific requirements

and concerns. Subsequently, they proceed to analyze the various attributes of the software

packages, including their features, quality, and evaluation metrics. In the final stage, an

examination is conducted of the prevailing patterns within the market as well as the level of

support from the community towards the software package. This guarantees that individuals

select a software package that not only fulfills their present requirements but also adheres

to industry norms and possesses a substantial user community for continuous assistance and

enhancements.

1https://pypistats.org/
2https://www.nuget.org/

2

https://pypistats.org/
https://www.nuget.org/

CHAPTER 1. INTRODUCTION 3

Figure 1.1: PYPI download rate

As a result of the challenges involved in choosing the best software packages, researchers and

practitioners have developed software package recommendation systems. These resources

are vital for assisting developers in identifying the best software packages for their projects.

By pulling information from repositories like Nuget, npm, maven, pip, etc., these recommen-

dation systems examine a variety of software package characteristics and attributes to offer

developers unique and precise recommendations.

The primary contributions of this study are the following:

• Automated extraction of unstructured data from unstructured repositories

• New modeling and reasoning strategies for the compatibility of software packages

• A hybrid approach that incorporates content-based, collaborative, and knowledge-based
recommenders

• Comprehensive evaluation and comparison of performance with current best practices

To enhance software package discovery and reuse, this thesis will design an intelligent recom-

mendation system to address real-world challenges in software package-based development.

The proposed methods have the potential to considerably improve the efficiency, cost, and

caliber of software development. Effective COTS recommendations are a significant area of

study with enormous potential for application in the real world.

3

Chapter 2

Research Approach

This chapter provides a detailed explanation of the methodology that will be employed in

conducting the research and outlines the approach taken to address the research questions.

At the outset, an assessment will be conducted to determine the research methods that will

be employed. Subsequently, a comprehensive elucidation of each research methodology and

potential challenges to the validity of the findings will ensue. In conclusion, we will provide a

detailed analysis of the significant milestones achieved throughout the project.

2.1 Problem statement

The selection of unsuitable software packages can result in financial consequences. If the

chosen software packages do not satisfy the stipulated criteria or encounter difficulties in

achieving seamless integration, it may necessitate supplementary financial resources to sub-

stitute or adapt the software packages. Consequently, this could result in exceeding the

allocated budget and prolonging the software development timeline [14]. Furthermore, it is

important to note that organizations may face the need to pay licensing fees or ongoing

support costs for the chosen software packages, which can affect the overall budget of the

project [15]. An evaluation can be formulated as ”multiple criteria decision making” (MCDM)

problem. Any decision-making issue in the development of software can be described as an

MCDM issue that deals with weighing a variety of options and criteria. Evaluation and selec-

tion of the best options for software engineers (decision-makers) based on their preferences

and needs constitute the difficulty [16].

Consequently, there are still challenges, risks, and unknowns associated with this strategy.

The improper selection of relevant software packages contributed to a portion of these risks

and uncertainties [17]. The investigation commences with existing software package al-

ternatives that are likely to satisfy the requirements. To retain only the most prospective

alternative solution, the identified list is typically evaluated based on several fundamental

criteria in addition to functionality. After carefully evaluating the retained options, the best

option is selected. However, if the software package that best meets the requirements and

can be reused with the least amount of effort and expenditure is not located or retained,

another software package may be chosen. This increases the probability of project failure

due to non-compliance with project expenses and deadlines and results in increased costs and

effort. Therefore, the outcomes of the identification phase have a significant impact on the

success of software package-based development[18]. Then, recommendation tools come in

and play a role in these criteria. For instance, they introduced a way for evaluating account-

ing software by matching user needs with system specifications, giving a practical strategy

for software selection in accounting [19]. Such recommendation tools have the following

4

CHAPTER 2. RESEARCH APPROACH 5

drawbacks:

1. The results of the recommendations do not contain all of the recommended libraries.

While certain popular libraries are more likely to get recommendations [20], others that

are less well-known have a lower chance of doing so. Because it results in a lack of

diversity and few recommendations, this is known as the ”long tail problem” in the

field of third-party library recommendation [21].

2. When neglecting the substantial auxiliary data of the third-party libraries and only con-

sidering the correlation between projects, the recommendation results are not properly

refined.

3. Distinguishing between the relationship between projects and libraries by concentrating

on either project level (project similarity) or library level (library usage pattern) for the

suggestion[22].

2.2 Research questions

Relying on the problem statement, the following main research question was derived:

• MRQ: How can one assist organizations or programmers in the process of selecting
development software packages?

To support this research question, we have created the following sub-research questions:

• RQ1: Which software package selection approaches do exist in peer-reviewed litera-
ture?

• RQ2: Which criteria are used in the software package selection methods described in
the literature? (identifying metadata features of software packages)

• RQ3: Which data collection methods can automatically extract metadata of software
packages from developer communities like GitHub, Gitlab, etc., and package managers

like NuGet, npm, maven, pip, etc.? (unsupervised)

• RQ4: How to develop the software package recommendation system tool, design it,
and build the model?

• RQ5: How should the suggested software package recommendation model be evalu-
ated?

• RQ6: How to understand the intent of developers when they are looking for software
packages?

2.3 Conceptual model

This section presents a novel pipeline specifically developed for a software recommendation

system. We designed the conceptual model based on the conceptual model of a pipeline

proposed [23]. This pipeline consists of five primary components, each playing a vital role

in improving the functionality and precision of the system. The initial stage, software pack-

age metadata extraction, entails collecting comprehensive data regarding different software

packages. Subsequently, the sentiment analysis module assesses the public’s opinions and

5

6 2.4. RESEARCH METHODS

attitudes surrounding these software products. The user component is dedicated to compre-

hending and collecting user preferences and requirements. The inference engine, an essential

component of the system, analyzes the gathered data to produce customized software sug-

gestions. The integration and classification component effectively arranges the software

products into relevant categories, streamlining user navigation and selection. Collectively,

these elements collaborate harmoniously to generate a comprehensive and user-friendly soft-

ware recommendation system. We will discuss it more in chapter 4 Figure 2.1 shows a

conceptual model that shows the final study goal and how the decision model was made.

Integration and categorizationDecision maker (User) Inference engine

Software package sentiment analysis pipeline

Software package metadata extraction pipeline

Software package
managers

(PYPI, npm, NuGet,...)

Data extraction

- Web Crawling
- Web API

Software
packages

 (Components)

Metadata of
software packages

<tname, description,
authors, url, license, ...>

Metadata
extraction

Software development
communities

(StackOverflow, GitHub, G2, ...)

Data extraction

- Web Crawling
- Web API

Comments

 (reviews,
discussions, ...)

Sentiment
polarity

prediction

Quality attributes
of software
packages

<component, qualit
attribute, sentiment>

Software
Quality Model

(ISO/IEC 25010)

Sentiment
analysis &

labeling

Decision model
generator

(Mapping)

Knowledge base

<software packages, metadata,
quality attributes, sentiments>

Solution
suggestion

Ranked feasible
software packages

User keywords Requirements
extraction

Legend

Data
source

Process

Input
Output

list of
items

Figure 2.1: Conceptual model of software package recommendation system model.

2.4 Research Methods

The research questions outlined in the aforementioned section 2.2 will be addressed through

various research methodologies. In this study, we will employ three distinct research meth-

ods: literature study, design science, and experiments. While each of these methods will

be discussed in detail later on, the following table (Table 2.2) illustrates the corresponding

research method that will address each of the research questions. When a specific method is

chosen to address a particular research question, the intersection between them in the table

will be marked with an ”X”.

2.4.1 Literature study

The research question highlighted in Section 2.2 was addressed in this study by adhering to the

procedures and guidelines established by [24], [25], and [26]. Consequently, we implemented

the review protocol 3.1 to methodically gather and extract data from pertinent studies.

Finally, we attentively ensure that our research contains high-quality papers and references

and diligently gather additional illuminating insights into the intricate workings of the software

package recommendation system. We will discuss it completely in Chapter 3.

6

CHAPTER 2. RESEARCH APPROACH 7

Research questions
Research methods

Literature study Design Science Experiment

MRQ How to support the companies or developers in selecting the components for
the development process? X X X

RQ1 Which component selection approach exists in the literature? X X

RQ2 Which criteria are used in the component selection methods described in the
literature? (identifying metadata features of components) X X

RQ3
Which data collection methods can automatically extract metadata of
components from developer communities like GitHub, Gitlab, etc., and
package managers like NuGet, npm, maven, etc.? (unsupervised)

X X

RQ4 How to develop the component recommendation system tool, design it, and
build the model? X

RQ5 How should the suggested component recommendation model be evaluated? X X

RQ6 How to understand the intent of developers when they are looking for
components? X X

Figure 2.2: Research Method Employed

2.4.2 Design science

Design science is a research strategy that seeks to create and enhance artifacts, such as

software systems, through the use of scientific methodologies. It entails the methodical

development and assessment of creative answers to real-world issues [27]. Design science

research aims to produce knowledge that professionals in a field can use to make recommen-

dations as well as to share empirical insights from studies of how recommendations are used

in practice [27].

Depending on the particular research problem and context, different steps may be involved in

the design science research approach. There are some common software packages, though,

that are frequently used in the process. The following is a summary of these actions:

1. Problem Identification: Identifying a problem or an opportunity for improvement in

a specific domain is the first step in the design science research approach. A review of

the literature, expert interviews, or observations of current procedures can all be used

to accomplish this [28].

2. Solution design: The second step is to design a solution or artifact that solves the

problem after it has been identified. To do this, a conceptual model or framework that

outlines the essential elements and connections of the solution must be created [27].

3. Artifact Development: Following the design of the solution, the artifact or software

system must be created. This could entail prototyping, programming, or other devel-

opment tasks [29].

4. Reflection: Following the evaluation, it’s crucial to consider the findings and the things

we can learn from the design and development process. This may entail evaluating the

artifact’s advantages and disadvantages, pointing out potential problems, and offering

suggestions for further study or application [27].

It is important to note that the design science research approach is cyclical and iterative,

which means that the steps can be repeated numerous times as new information and input

7

8 2.4. RESEARCH METHODS

are gathered [27]. This enables both the artifact and the research process to be continuously

improved. In conclusion, the design science research approach entails determining the issue at

hand, coming up with a solution, creating an artifact, determining its viability, and considering

the outcomes. In a variety of fields, including software engineering, this iterative process

enables the development of creative and useful solutions to real-world problems.

2.4.3 Experiments

Recent research has prioritized the evaluation and comparison of different models to improve

the comprehension of software package recommendation systems. These comparisons not

only evaluate the efficacy of different models but also take into account the requirements of

stakeholders and the objectives of the system [30]. Furthermore, incorporating advanced AI

technologies such as ChatGPT as a benchmark in testing phases introduces a fresh method for

evaluating recommendation models. This hybrid approach integrates conventional systems

with AI breakthroughs, thereby pushing the limits of software suggestion and customisation.

This innovative methodology is in line with the study by Smirnov and Ponomarev [31], who

introduced a complex context-based model for recommendation systems. This model aims

to improve the congruence between recommendations and user contexts [31].

8

Chapter 3

Systematic Literature Review (SLR)

This chapter presents the results of our Systematic Literature Review (SLR), which we

briefly introduced in Chapter 3. The primary objective of conducting this SLR was to gain a

comprehensive understanding of the research landscape surrounding software package recom-

mendation and its current trends. Additionally, through the SLR, we aimed to address several

key research questions and gather pertinent data that would be instrumental in our research

endeavors, particularly in the development of the final decision model. This comparative

analysis with other approaches would facilitate the evaluation of our work.

The SLR was carried out in adherence to the guidelines proposed by certain references[24].

Furthermore, we drew upon the insights from a systematic literature review conducted by

[32] as a point of reference during our own SLR.

In the following sub-chapters, we will delve into the process, elucidate our rationale behind

each step, and elucidate the key findings stemming from our SLR. For those interested in a

more detailed examination of the complete data set and results of the SLR, we have provided

an appendix 8.3 where this information can be accessed (see figure 3.1).

Problem formulation

Defining problem
statement

Formulating research
questions

Selecting research
methods

Digital library
exploration

Selecting digital
libraries

Quering DL by the
search term

Extracting identified
publications

Initial hypotheses

Selecting
primary
studies

Identifying
keywords

Querying
digital

libraries

Query string
definition

Building a dataset of
relevant studies

Extracting frequent
terms (NLP tools)

Building a search
term

Iinitial data
collection

Extacting primary
studies information

Indicating relevancies

Finding venue
qualities

Relevancy
evaluation

Extacting publication
information

Indicating relevancies

Finding venue
qualities

Publication pruning
process

Indicating the inclusion
criteria

Indicating the exclusion
criteria

Applying inclusion
/exclusion criteria

Quality assessment
process

Indicating the quality
assessment criteria

Skimming and screening
of the pruned publications

Judging publications
qualities

Pool of
publications

Data extraction and
synthesizing

Snowballing process

Qualitative synthesis

Quantitative synthesis

Narrative synthesis

Structured synthesis

Looking at the references
of publications

Selecting potential
publications

Knowledge
base

1 2 3 4 5 6

7

8 9 10 12

11

Figure 3.1: Systematic Literature Review Protocol.

9

10 3.1. PAPER COLLECTION

3.1 Paper Collection

The comprehensive methodology for searching was thoroughly explained in Chapter 2. The

methodology primarily consisted of two distinct search approaches: the initial hypothesis

method and the automatic search method. The process of doing an initial hypothesis search

allowed for the compilation of the initial collection of papers. This collection of papers then

yielded a search term based on the common keywords found within them. The preceding

search term was utilized to streamline the process of collecting data. The following sub-

chapter will delve into the process of a comprehensive search.

The key sources utilized in this investigation include digital libraries, specifically:

• ACM Digital Library

• Springer Publishing

• IEEE Explore Digital Library

• ScienceDirect

• Scopus

The initial hypothesis was placed on these five libraries due to their provision of high-quality

papers, which contribute substantial value to the scientific community. It is important to

mention that the utilization of Google Scholar1 was not employed throughout the automated

search procedure due to its tendency to generate a substantial amount of irrelevant research

and gray literature. Moreover, the considerable potential for overlap with the other libraries

utilized in this systematic literature review (SLR) is apparent.

3.2 Search process

The whole search process and the number of collected papers are depicted in figure 3.1.

During the automated search phase of our systematic literature review, we employed a robust

search strategy to obtain relevant and high-quality papers from scientific search engines. To

construct our search query, we derived keywords from a preliminary collection of papers

acquired using a manual search procedure. In the manual search, we use fundamental search

terms and knowledge to find more relevant and high-quality papers. We use these search

terms:

• software package selection

• software cots recommendation

• software package recommendation

• cots recommendation system

• selection of software packages set

• software packages selection in the package manager

1scholar.google.com

10

scholar.google.com

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 11

The initial hypothesis search phase resulted in a collection of 49 papers. When we collect

these papers, we use the Sketch Engine [33] to find out the most frequent keywords in these

studies and rank them based on their frequency. This helps us identify the key areas of focus

and trends within the research field. Then we created a search term, which is

(”software development” OR ”software production”) AND (”COTS” OR ”software pack-

ages”) AND (” selection” OR ”evaluation” OR ”recommendation”)

The search results can be exported in either CSV or Bibtex format, facilitating the systematic

collection of documents and their subsequent insertion into the spreadsheet. Subsequently,

the process entails the removal of redundant, impaired, or null data entries. During the

process of automated retrieval, supplementary documents are collected. As a result, the

combined efforts of the manual and automatic search phases resulted in a corpus of 6,250

documents. It is noteworthy to mention that our primary focus is directed towards scholarly

articles that have been published after the year 2012. However, a few earlier documents have

been included in the study as they were considered pertinent during the manual search or

snowballing stages. These earlier documents were included to provide a historical context

or to establish a foundation for the research. Additionally, the inclusion of these documents

allows for a comprehensive analysis of the topic and ensures that no relevant information is

overlooked.

Initially, a comprehensive search yielded a total of 6250 publications. These publications were

then subjected to a rigorous process of inclusion and exclusion criteria. As a consequence, a

final selection of around 353 papers of high standard was obtained. Therefore, the utilization

of high-quality and contextually pertinent papers facilitated our ability to conduct a thorough

and resilient analysis, enabling the extraction of significant features. The stringent selection

procedure enabled us to concentrate on the most current and noteworthy research discoveries

in our study while simultaneously recognizing the significance of earlier works that contribute

to a comprehensive comprehension of the subject matter.

3.3 Inclusion and exclusion criteria

In the process of conducting a systematic literature review (SLR), the utilization of inclusion

and exclusion criteria is of utmost importance for the purpose of picking relevant studies.

These criteria ensure that the selected studies meet the necessary standards and directly

pertain to the pertinent research inquiry.

In our study phase, we employed a rigorous approach to carefully choosing publications

based on certain inclusion and exclusion criteria. This method was implemented to eliminate

unreliable or low-quality sources from our analysis. Various factors were employed in our

evaluation, including the caliber of the publication venue, the year of publication, the quantity

of citations, and the pertinence of our research topic. Our review closely adhered to specific

criteria in order to include papers that were of the greatest quality and relevance. Following

a systematic procedure, the initial corpus of 6250 papers was effectively reduced to a final

selection of 1063, which were subsequently chosen for further analysis.

A screening process was conducted for all papers obtained, including those contributed by

the snowballing technique, after doing both manual and machine searches. During this

stage, we conducted an assessment of the abstract, keywords, and overall relevance of each

document to our research. The ranking of the items was determined based on their relevance,

utilizing a scale consisting of four ordinal values: none, low, medium, and high. Subsequently,

we employed inclusion and exclusion criteria to further refine our selection. A score was

11

12 3.4. QUALITY ASSESSMENT

calculated for each piece of work, taking into account the aforementioned elements.

3.4 Quality assessment

Evaluation of the caliber of primary research is crucial in addition to the inclusion and exclu-

sion criteria. The evaluation of primary studies’ quality results in more specific inclusion and

exclusion criteria, provides recommendations for future research, directs the interpretation of

findings, and gauges the reliability of inferences. It is possible to tell whether certain charac-

teristics of research design or conduct have influenced the results by noting the strengths and

limitations of primary studies [32]. We consider the following criteria for quality assessment:

• Research Method: We scrutinized whether the research methodology employed was
appropriate for addressing our research query. Additionally, we assessed the trans-

parency and lucidity of the research method.

• Research Type: We considered whether the publication presented original research, a
review article, a case study, or a meta-analysis. We also evaluated the relevance and

scope of the research within the machine learning field.

• Data Collection Method: Our evaluation included an assessment of the appropriate-
ness of the data collection method in the context of our research question. We also

examined the adequacy and clarity of the reported data collection process.

• Evaluation Method: We assessed whether the chosen evaluation method was fit-
ting for addressing our research query, and we also considered the transparency and

statistical significance of the reported outcomes.

• Clear Problem Statement: We evaluated whether the publication effectively identified
the research problem and provided ample background information. We also examined

the clarity and precision of the research question.

• Research Questions: We scrutinized the relevance, clarity, and precision of the re-
search questions in relation to the research problem.

• Research Challenges: We assessed whether the publication acknowledged the chal-
lenges and limitations associated with the research.

• Statement of Findings: Our evaluation included an examination of whether the pub-
lication reported research findings and whether these findings were pertinent to the

research problem and questions.

• Real-World Use Cases: We considered whether the publication provided practical,
real-world use cases or applications for the proposed method or model.

After quality assessment, we derive about 343 papers, which is a significant number to

provide a comprehensive analysis. These papers cover a wide range of perspectives and

methodologies, allowing us to gain a holistic understanding of the topic and draw meaningful

conclusions.

12

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 13

3.5 Data extraction and synthesizing

Our main goals during the data extraction and synthesis phase of the systematic literature

review (SLR) were to respond to the precise research objectives we had selected and to learn

more about the fundamental models frequently used by software package recommendation

system developers. Understanding these models’ properties, the quality factors connected

to them, and the criteria for evaluation applied by researchers to evaluate their methods

were among the goals we had set. We also looked at possible model combinations that

researchers might use in their research publications. We also extract the software package’s

criteria, which also include the quality attribute. Additionally, we learned which evaluation

criteria the researchers used in their investigations, which gave us a clearer picture of the

software package selection. We methodically retrieved relevant information from the papers

included in our review to achieve these goals. From our point of view, evaluation measures

included a broad range of metrics and key performance indicators (KPIs) that researchers

utilized to assess the performance and efficacy of their models.

3.5.1 Models and Methods

This study identified a total of 64 models about software package recommendation systems,

sentiment models, and feature extraction. In Figure 3.2, we presented the trends of models

from 2002 to 2023.

Year/Model V
SM

k-
n

ea
re

st
 n

ei
gh

b
o

u
rs

 c
la

ss
if

ie
r

D
ec

is
io

n
 t

re
es

M
u

lt
i-

cl
as

s
lo

gi
st

ic
 r

eg
re

ss
io

n

SV
M

 c
la

ss
if

ie
r

G
en

et
ic

 a
lg

o
ri

th
m

s

La
gr

an
ge

 r
el

ax
at

io
n

 d
ec

o
m

p
o

si
ti

o
n

FU
P

(f
re

q
u

en
t

U
sa

ge
 P

at
te

rn
)

Se
m

an
ti

c
re

la
te

d
n

es
s

TF
-I

D
F

N
SG

A
-I

II
 (

N
o

n
d

o
m

in
at

ed
 S

o
rt

in
g

G
en

et
ic

 A
lg

o
ri

th
m

 II
I)

O
n

to
lo

gy

M
ax

im
u

m
 C

ap
tu

ri
n

g

H
yb

ri
d

 X
N

O
R

H
EA

 (
H

ie
ra

rc
h

ic
al

 E
vo

lu
ti

o
n

ar
y

A
lg

o
ri

th
m

)

Se
ed

 a
lg

o
ri

th
m

Pa
rt

ic
le

 s
w

ar
m

 o
p

ti
m

iz
at

io
n

 (
P

SO
)

H
ar

m
o

ny
 s

ea
rc

h

N
eu

ra
l n

et
w

o
rk

s

Fo
rm

al
 c

o
n

ce
p

t
an

al
ys

is
 (

FC
A

)

A
ff

in
it

y
an

al
ys

is

Ev
o

lu
ti

o
n

ar
y

M
O

O
 b

as
ed

 o
n

 G
A

In
tu

it
io

n
 a

p
p

ro
ac

h

O
TS

O

C
IS

D

II
D

A

D
o

m
ai

n
-b

as
ed

M
ax

im
in

 a
n

d
 M

ax
im

ax

Sa
w

 a
n

d
 L

in
m

ap

Li
n

ea
r

re
gr

es
si

o
n

Fo
rw

ar
d

 s
el

ec
ti

o
n

 (
FS

)

B
ac

kw
ar

d
 s

el
ec

ti
o

n
 (

B
S)

St
ep

w
is

e
se

le
ct

io
n

 (
SW

)

C
o

m
p

en
sa

to
ry

 f
u

zz
y

K
n

o
w

le
d

ge
‑g

ra
p

h
‑b

as
ed

 c
o

nv
o

lu
ti

o
n

al
 n

et
w

o
rk

C
ri

sp
 e

q
u

iv
al

en
t

m
u

lt
io

b
je

ct
iv

e
m

o
d

el

B
in

ar
y-

to
-s

o
u

rc
e

co
m

p
ar

is
o

n

C
o

m
p

o
si

ti
o

n
al

 d
at

a
an

al
ys

is
 (

C
o

D
A

)

P
ri

m
it

iv
e

co
gn

it
iv

e
n

et
w

o
rk

 p
ro

ce
ss

 (
P-

C
N

P
)

P
R

O
M

ET
H

EE

U
ti

lit
y

an
al

ys
is

G
ra

d
e

ta
xo

n
o

m
y

i*
 la

n
gu

ag
e

an
d

 g
o

al
 m

o
d

el
s

Q
u

al
it

at
iv

e
R

is
k

A
n

al
ys

is

Q
u

an
ti

ta
ti

ve
 R

is
k

A
n

al
ys

is

Fa
ilu

re
 M

o
d

e
an

d
 E

ff
ec

ts
 A

n
al

ys
is

 (
FM

EA
)

Fu
n

ct
io

n
-c

al
l g

ra
p

h
s

(F
CG

)

C
o

lla
b

o
ra

ti
ve

-f
ilt

er
in

g

B
ay

es
ia

n
 m

o
d

el

R
an

d
o

m
 f

o
re

st

CO
SM

M

N
O

SM
M

O
p

en
 B

R
R

Q
SO

S

LS
TM

B
i-

d
ir

ec
ti

o
n

al
 L

o
n

g
sh

o
rt

-t
er

m
 m

em
o

ry
(B

i-
LS

TM
)

G
at

ed
 R

ec
u

rr
en

t
U

n
it

 (
G

R
U

)

R
an

d
o

m
 F

o
re

st

R
N

N
 (

R
ec

u
rr

en
t

N
eu

ra
l N

et
w

o
rk

)

K
-M

ea
n

s

B
er

t

G
lo

ve

W
o

rd
2V

ec

La
te

n
t

D
ir

ic
h

le
t

A
llo

ca
ti

o
n

(L
D

A
)

P
O

S
(P

ar
t-

o
f-

Sp
ee

ch
)

R
u

le
-b

as
ed

 A
lg

o
ri

th
m

C
R

F

TO
P

SI
S

Fu
zz

y

A
n

al
yt

ic
 h

ie
ra

rc
hy

 p
ro

ce
ss

 (
A

H
P

)

W
ei

gh
te

d
 s

co
ri

n
g

m
et

h
o

d
 (

W
SM

)

H
yb

ri
d

 F
A

H
P-

M
et

ri
cs

 a
p

p
ro

ac
h

Fu
zz

y
cl

u
st

er
in

g
2002 1 1 1 1 1

2004 1 1

2006 1

2007

2009 1 1 1

2010 1 1

2011

2012 1 1 1 1

2013 2 1 1 1

2014 1 1 1 1 2

2015 1 1 1 1 1 1 1 3

2016 1 1 3 2 1 1 1 1 1 1 1 2 1 1 3

2017 1 2 3 1 3 2 1 1 1 1 2 2 1 2 2 1 1 2

2018 3 4 2 1 5 2 2 1 1 1 2 2 2 1 1 5 1 1

2019 1 3 1 6 8 1 1 1 9 1 3 1 1 1 1 7 1 1 1 1 1 1 5 13 3 3 9 2 6 3 1 4 2 2 1 1 1 1 1

2020 1 1 5 11 3 18 1 1 1 1 1 1 6 15 5 1 7 3 4 8 2 5 2 2 1 1

2021 1 6 1 7 3 1 2 1 8 14 4 5 6 3 15 1 3 1 4 1 3 1 1

2022 1 1 1 3 5 3 1 1 1 8 1 4 2 4 2 14 7 2 1 7 3 2 1 1 1

2023 3 3 2 3 1 3 7 2 1 9 3 1 3 3

Figure 3.2: Evolution of Analytical Models and Methodologies from 2002 to 2023: A Chrono-

logical Overview Highlighting Key Trends and Developments in software package recommen-

dation system.

Additionally, we have identified the characteristics of these models and determined the quan-

tity of messages depicted in the figures 3.3.

13

14 3.5. DATA EXTRACTION AND SYNTHESIZING

Features/Model

VS
M

K
N

N
D

ec
is

io
n

tr
ee

s
M

ul
ti-

cl
as

s
lo

gi
st

ic
 re

gr
es

si
on

SV
M

G
en

et
ic

 a
lg

or
ith

m
s

FU
P

Se
m

an
tic

 re
la

te
dn

es
s

TF
-ID

F
N

SG
A

-II
I

O
nt

ol
og

y
M

ax
im

um
 C

ap
tu

rin
g

H
yb

rid
 X

N
O

R
H

EA

Se
ed

 a
lg

or
ith

m
PS

O
H

ar
m

on
y

se
ar

ch
N

eu
ra

l n
et

w
or

ks
FC

A
A

ffi
ni

ty
 a

na
ly

si
s

Ev
ol

ut
io

na
ry

 M
O

O
In

tu
iti

on
 a

pp
ro

ac
h

O
TS

O
C

IS
D

IID

A
D

om
ai

n-
ba

se
d

M
ax

im
in

 a
nd

 M
ax

im
ax

Sa
w

 a
nd

 L
in

m
ap

Li
ne

ar
 re

gr
es

si
on

Fo
rw

ar
d

se
le

ct
io

n
(F

S)
B

ac
kw

ar
d

se
le

ct
io

n
(B

S)
St

ep
w

is
e

se
le

ct
io

n
(S

W
)

C
om

pe
ns

at
or

y
fu

zz
y

K
C

N
C

EM
B

in
ar

y-
to

-s
ou

rc
e

co
m

pa
ris

on
P-

C
N

P
PR

O
M

ET
H

EE
U

til
ity

 a
na

ly
si

s
G

ra
de

 ta
xo

no
m

y
i*

la
ng

ua
ge

 a
nd

 g
oa

l m
od

el
s

C
ol

la
bo

ra
tiv

e-
fil

te
rin

g
B

ay
es

ia
n

m
od

el
R

an
do

m
 fo

re
st

LS
TM

B
i-L

ST
M

G
R

U
R

an
do

m
 F

or
es

t
R

N
N

K

-M
ea

ns
B

er
t

G
lo

ve
W

or
d2

Ve
c

LD
A

PO
S

R
ul

e-
ba

se
d

A
lg

or
ith

m
C

R
F

TO
P

SI
S

Fu
zz

y

A
H

P

W
SM

H
yb

ri
d

 F
A

H
P-

M
et

ri
cs

 a
p

p
ro

ac
h

Fu
zz

y
C

lu
st

ri
n

g

Po
p

u
la

ri
ty

Frequent pattern 1 1 1 1 1 5

Boolean matrix 1 1 2

Interaction matrix 1 1

Knowledge graph 7 5 4 1 5 2 3 1 1 29

Prediction 1 1 1 1 1 1 1 1 1 1 2 2 1 15

Classification 1 3 2 2 2 1 1 1 1 1 1 1 1 1 8 1 1 1 30

Ranking 2 1 1 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 3 1 2 2 5 9 4 1 1 1 62

Graph-base 4 1 5

Pairwise comparison 1 1 1 1 1 1 1 1 3 1 1 13

Weight Score 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 17

Mapping 1 1 1 1 1 1 7 13

Learning 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 2 2 1 31

Similarity 1 3 7 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 6 4 1 2 5 7 2 1 4 8 2 1 1 80

Normalization 1 4 1 1 7

Exploration 2 1 1 1 1 1 1 1 1 1 1 1 1 1 15

Exploitation 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 16

Clustring 1 1 1 1 1 2 2 2 11

Hierarchical structure 1 1 2 1 1 1 2 1 4 1 1 1 17

Regression 1 2 2 2 1 8

Subset Selection 1 1 1 3

language model 1 1 1 1 4

POS 12 13 3 5 3 9 7 9 6 67

tagging 13 12 3 5 3 9 7 9 5 66

text embeddings 14 28 4 5 22 21 2 7 103

named entity recognition 6 13 1 5 2 1 3 8 1 40

lemmatization 12 5 5 2 5 5 3 3 40

attention 4 19 1 3 19 12 4 4 66

stop words 19 7 3 2 1 5 8 2 2 49

Multilingual 5 1 2 2 1 1 3 1 5 21

Capture Sequence Information 1 36 22 13 17 1 15 1 3 7 8 1 13 138

Fine-tuned 5 2 2 15 1 8 33

Word Embedding 1 14 22 11 8 2 8 15 5 11 2 19 118

Capture global context feature 1 15 22 11 8 2 8 15 6 11 2 19 120

Capture relationships between features 36 13 11 9 1 9 1 1 3 4 1 7 96

Solving Vanishing and Exploding gradients 9 1 4 5 15 3 2 4 43

Few number of parameters 1 35 13 11 9 1 9 1 1 3 5 1 8 98

Long-term dependence 12 15 5 16 1 9 2 6 6 1 11 84

Sarcasm detection 1 4 2 4 2 1 3 2 2 21

Figure 3.3: Comprehensive Matrix of Models and Features: Demonstrating the Application

and Effectiveness of Various Computational Models Across Diverse Features in software

package recommendation.

Sentiment models serve as a pivotal tool within recommendation systems, providing a nu-

anced understanding of user attitudes, opinions, and emotional states [34]. By integrating

sentiment analysis into these systems, the potential for elevating recommendation reliability

becomes evident [34]. One effective approach begins with the analysis of sentiment in user

reviews, leveraging the polarity of these reviews to suggest items that encompass positive

information for users [35]. This sentiment-driven analysis seamlessly complements explicit

user ratings, adding an invaluable layer of insight to enhance the recommendation process

[34]. In the figure 3.4, we depicted the models and their combinations. For example, we

found a variety of models such as TF-IDF, LSTM, Part of Speech (POS), etc.

TF-IDF (Term Frequency-Inverse Document Frequency) is used in sentiment modeling for

several reasons. TF-IDF is a widely used technique in information retrieval tasks, including

software engineering-related tasks [36]. It is effective in capturing the importance of terms

in a document by considering both their frequency in the document (TF) and their rarity in

the entire corpus (IDF) [37].

The researcher used LSTM in sentiment modeling to predict user behavior based on textual

data. LSTM, or long short-term memory, is a type of recurrent neural network that is partic-

ularly effective in capturing long-term dependencies in sequential data. By utilizing LSTM,

the researcher aimed to improve the accuracy and effectiveness of sentiment modeling, ulti-

mately contributing to the advancement of this field.

Sentiment modeling uses the POS (Part-of-Speech) for several reasons. A method known

as POS tagging is used to categorize words in a text according to their grammatical func-

tion, such as nouns, verbs, adjectives, etc. Researchers can learn about the text’s syntactic

structure and identify useful features for comprehending user sentiments by combining POS

data into sentiment modeling [38].

14

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 15

KNN

KNN 4 Decision trees

Decision trees 1 Multi-class logistic regression

Multi-class logistic regression 2 3 SVM classifier

SVM classifier 2 1 18 TF-IDF

TF-IDF 4 6 Neural networks

Neural networks 1 1 1 1 1 37 LSTM

LSTM 1 1 13 31 Bi-LSTM

Bi-LSTM 11 4 2 GRU

GRU 1 1 1 9 6 3 17 Random Forest

Random Forest 2 2 6 2 1 1 7 RNN

RNN 1 1 4 5 17 K-Means

K-Means 1 1 2 2 1 1 1 6 Bert

Bert 1 1 4 2 2 15 Glove

Glove 1 1 1 3 5 2 4 1 3 2 11 Word2Vec

Word2Vec 1 2 5 3 4 4 1 3 1 3 13 LDA

LDA 2 1 1 2 1 1 6 POS (Part-of-Speech)

POS (Part-of-Speech) 1 1 3 7 9 5 4 2 4 1 8 2 5 1 32

Figure 3.4: Comparative Analysis of Sentiment Analysis Models: From Traditional Ap-

proaches to Advanced Neural Network Techniques.

Feature extraction techniques serve as a fundamental approach for mining domain knowledge

from text data. Take, for example, the use of these techniques in the domain of package

descriptions, where feature extraction models have been applied to automatically extract and

characterize features using established criteria and subject modeling techniques [39]. This

application empowers the recommendation engine with a more profound understanding of

the traits and capabilities of various software packages, ultimately leading to more precise

recommendations.

Within this context, an array of models has been identified, including Bert, Glove, multi-class

logistic regression, and others. Furthermore, to provide a comprehensive overview, we have

included Table 3.5 to illustrate these models and their relationships in the studies. This not

only highlights the significance of feature extraction techniques but also underscores their

pivotal role in enhancing recommendation systems.

Multi-class logistic regression is a suitable choice for feature extraction models for several

reasons. Firstly, logistic regression is a well-established and widely used classification algo-

rithm [40]. It estimates the probabilities of different possible outcomes of a categorically

distributed dependent variable, given a set of independent variables [40]. This makes it par-

ticularly suitable for multi-class classification tasks, where there are more than two possible

classes to predict.

15

16 3.5. DATA EXTRACTION AND SYNTHESIZING

Multi-class logistic regression

Multi-class logistic regression 18 SVM classifier

SVM classifier 7 21 TF-IDF

TF-IDF 7 1 33 Ontology

Ontology 3 4 5 17 Neural networks

Neural networks 1 3 5 1 15 Knowledge‑graph‑based convolutional network

Knowledge‑graph‑based convolutional network 1 1 1 1 6 Bi-LSTM

Bi-LSTM 5 6 2 8 1 4 Random Forest

Random Forest 6 5 5 3 1 1 1 RNN

RNN 1 4 4 2 7 7 1 12 K-Means

 K-Means 1 1 1 1 1 6 Bert

Bert 1 4 3 3 3 2 17 2 2 29 Glove

Glove 3 2 3 1 5 2 17 1 3 9 25 Rule-based Algorithm

Rule-based Algorithm 4 2 3 3 4 3 2 3 12 CRF

CRF 2 6 2 1 3 1 1 3 2 6 4 3 15

Figure 3.5: Overview of Feature Extraction Models in Computational Analysis: Charting the

Progression from Basic Techniques to Advanced Algorithms.

The final models employed in our study are recommendation models specifically designed

for usage within the area of COTS software packages. These models provide a promising

perspective for the development of an inference engine that can identify the relevant software

packages associated with the data gathered using sentiment and feature extraction models.

Next, it is necessary to prioritize the outcomes to display the most convenient and appropriate

software packages. we showed the models in figure 3.6

For recommendation models, there are some famous types of models, such as machine learn-

ing models and MCDM models. Machine learning models can be SVM, logistic regression, or

neural networks. Support Vector Machines (SVM) have gained recognition for their capabil-

ity to properly manage high-dimensional data and efficiently handle extensive feature spaces

[41]. This is especially advantageous in recommendation systems when multiple factors need

to be taken into account, including user preferences, object qualities, and contextual infor-

mation. Support Vector Machine (SVM) has the capability to handle intricate feature spaces

and yield precise predictions effectively.

A neural network can capture complex patterns and relationships in the data, allowing them

to make accurate predictions and recommendations [42]. They can learn non-linear relation-

ships between user preferences and item features, which can lead to more personalized and

accurate recommendations. On the other hand, the researcher used MCDM’s models, such

as Fuzzy logic and AHP.

Fuzzy logic allows for the modeling and control of complex systems with interactive effects of

variables [43]. It compensates for the deficiencies of traditional Boolean logic and improves

the modeling process [43]. This is particularly useful in recommendation models where there

are multiple variables and interactions to consider.

The Analytic Hierarchy Process (AHP) provides a comprehensive and rational framework

for structuring a decision problem, representing and quantifying its elements, relating those

elements to overall goals, and evaluating alternative solutions [44]. This makes it a robust

and systematic approach to decision-making.

16

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 17

KNN

KNN 3 Decision trees

Decision trees 1 2 Multi-class logistic regression

Multi-class logistic regression 1 1 2 SVM classifier

SVM classifier 1 2 1 2 Genetic algorithms

Genetic algorithms 1 2 TF-IDF

TF-IDF 1 Ontology

Ontology 1 1 5 HEA

HEA 1 1 1 2 Neural networks

Neural networks 1 1 1 1 1 Linear regression

Linear regression 1 1 2 Knowledge‑graph‑based convolutional network

Knowledge‑graph‑based convolutional network 1 P-CNP

P-CNP 2 Utility analysis

Utility analysis 2 Grade taxonomy

Grade taxonomy 1 3 TOPSIS

TOPSIS 5 Fuzzy

Fuzzy 1 1 2 1 1 2 2 12 AHP

AHP 1 1 1 2 1 2 2 3 8 WSM

WSM 1 1 1 1 1 1 2 2

Figure 3.6: Diverse Recommendation Models: A concise mapping of key models such as

KNN, SVM, and Neural Networks, highlighting their functionalities in recommendation sys-

tems.

3.5.2 Models’ evaluation methods

Evaluation measurements for models used in recommendation systems are crucial in order to

accurately analyze the system’s performance and efficacy. In the research that has been done

on evaluating recommendation systems, a number of distinct assessment metrics that take

into account various features of the recommending process have been offered. The result

has been shown in figure 3.7. We The result has been shown in figure 3.7.We discovered

roughly 41 evaluation measures, with precision, recall, F1 score, accuracy, ablation analysis,

and the t-test being the most often employed ones. The accuracy of suggestions, the

capacity to find pertinent items, the harmony between precision and recall, and the variety of

recommendations are only a few of the characteristics of recommendation systems that these

metrics shed light on. However, the specific objectives and demands of the recommendation

system being evaluated must be taken into consideration while choosing the best evaluation

metric.

Figure 3.7: Key Evaluation Metrics in Recommendation Systems: A spectrum of metrics

from F-score to Functional Performance, indicating their frequency of use in research.

17

18 3.5. DATA EXTRACTION AND SYNTHESIZING

3.5.3 Models’ qualification methods

Measurements for qualification are absolutely necessary in order to evaluate the effectiveness

and dependability of the models used in a software package recommendation system. These

measurements contribute to determining whether or not the models are suitable for use in

formulating correct suggestions [45]. We have extracted 17 metrics, illustrated in figure 3.8,

with performance, scalability, reliability, modularity, flexibility, maintainability, and portability

being the most popular ones. These metrics assist in evaluating the recommendation sys-

tem’s overall efficiency and quality. Scalability assesses the system’s capacity to cope with

growing volumes of data and users, while performance gauges how effectively the system

operates. While modularity and flexibility evaluate the system’s ability to adapt to various

environments and user preferences, reliability ensures that the system consistently delivers

accurate recommendations. While portability assesses how easily the system can be moved

to various platforms or devices, maintainability concentrates on how simple it is to update

and address problems. Together with each other, these metrics offer a thorough analysis.

Figure 3.8: Distribution of Quality Attributes in System Evaluation: Showcasing frequency

counts of metrics such as Performance, Scalability, and Security in research applications.

In the process of our study, we have identified some essential quality standards that serve

critical functions in the evaluation of software package quality and the guarantee of its

adherence to specific criteria. The standards encompassed in this list are ISO/IEC 9126,

ISO SQUARE, ISO/IEC 25010, ISO/IEC/IEEE 42010, and ISO/IEC 27002:2005. These

standards offer comprehensive criteria for assessing the quality of software, with each fulfilling

a unique objective:

• ISO/IEC 9126: This plays a fundamental role in evaluating the quality of software
packages within the domain of the COTS recommendation system. This methodology

facilitates the methodical assessment of essential attributes, including functionality,

reliability, usability, efficiency, maintainability, and portability. This particular standard

assists in evaluating the extent to which a software package fulfills the intended quality

attributes, thereby enabling well-informed suggestions within the system.

• ISO SQUARE: The software package recommendation system directly benefits from
SO SQUARE’s emphasis on assessing the quality of software products. It offers a

methodical approach and predetermined metrics for evaluating various software pack-

age properties impartially. This makes it easier to quantify qualities like correctness,

reliability, and maintainability, all of which are essential when recommending a software

18

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW (SLR) 19

package.

• ISO/IEC 25010: As part of the software package recommendation system, ISO/IEC
25010 is essential because it provides a thorough framework for assessing the quality of

software packages. It offers a comprehensive viewpoint that takes into account qualities

like usability, functionality, reliability, and security. This standard guarantees that the

suggested software adheres to these varied quality characteristics when recommending

software packages, improving the user experience overall.

• ISO/IEC/IEEE 42010: When analyzing the architectural features of software pack-
ages within the recommendation system, ISO/IEC/IEEE 42010 is especially pertinent.

It helps with describing, analyzing, and evaluating software package architecture, ensur-

ing that suggested software packages are appropriate for integration and match project

objectives and accepted industry standards.

• ISO/IEC 27002:2005: which focuses primarily on information security, is essential to
the software package recommendation system because it emphasizes security issues.

The system’s users and their data are protected against potential threats and vulner-

abilities by ensuring that the recommended software packages adhere to fundamental

security standards.

These quality standards serve as a structured and exacting framework for evaluating software

packages and are an essential part of the software package recommendation system. The

effectiveness and dependability of the recommendation process are increased by the system’s

ability to confidently recommend software packages that not only satisfy user requirements

but also follow industry-recognized quality benchmarks.

3.5.4 software package criteria

Multiple criteria and features must be taken into account when recommending software

packages in a software package recommendation system. These standards and characteris-

tics ensure that the chosen software packages satisfy the system’s functional requirements

and adhere to the particular requirements of the project. We discovered approximately 105

software package features and criteria using SLR, as shown in the figure 3.9. Both quality

and non-quality attributes are included in these features. We acquired the requirements for

quality attributes in the previous section, but we also need non-quality features.

The most frequently used software package features are reliability, maintainability, cost,

functionality, security, license, compatibility, usability, and performance. These characteris-

tics allow the software package recommendation system to give preference to parts that have

a track record of reliability and are simple to maintain. Cost should be taken into account,

as it should be in line with the project’s budget while still achieving the necessary function-

ality and security standards. In addition, seamless integration and troubleshooting depend

on compatibility with current systems and the availability of thorough documentation and

support.

To summarize, this chapter provides a thorough examination of the literature pertaining

to software package recommendation algorithms. The document provides a comprehensive

explanation of the process for choosing research papers, which includes the standards for

including or excluding articles and the evaluation of the quality of primary studies. The chap-

ter explores many models and methodologies employed in these systems, including sentiment

analysis and feature extraction techniques. This establishes a fundamental comprehension

for the upcoming chapter, which will concentrate on providing a more thorough explanation

19

20 3.5. DATA EXTRACTION AND SYNTHESIZING

Figure 3.9: Software Package Evaluation Criteria: Frequencies of various criteria like Relia-

bility, Cost, and Security used to assess software packages.

of the chosen models and characteristics, as well as connecting theoretical knowledge to

practical implementations in the field.

20

Chapter 4

Decision Model

Decision theories are utilized in various fields, including software development [46] and e-

learning [47]. However, it is important to note that decision-makers may approach difficulties

differently due to variations in individual priorities, implicit knowledge, and decision-making

methods [48]. The primary objective of the field of MCDM is to address these discrepancies

in judgment through the utilization of decision models.

In scenarios involving MCDM, a set of options is assessed, and decision criteria are considered

[16]. The challenge lies in determining the optimal software packages based on the require-

ments and preferences of decision-makers [49]. It is imperative to bear in mind that there is

no universally optimal solution for MCDM problems, and the preferences of decision-makers

play a crucial role in identifying the most suitable answer for their needs [49]. In the context

of models and features for software package recommendation systems, this research focuses

on the software package selection problem and treats it as an MCDM problem.

The decision model presented in Figure 2.1, which utilizes the MCDM theory, will be highly

valuable for researchers involved in the development of software package recommendation

systems. This approach facilitates systematic exploration of options, considering key factors

in the process of software package selection, and determining the optimal configuration of

software packages for the development of an effective recommendation model. This approach

has three phases, as follows:

4.1 Software Package Metadata Extraction Pipeline

The Software Package Metadata Extraction Pipeline is a vital element of the software rec-

ommendation system, specifically created to collect and evaluate crucial data from different

software package managers. This pipeline effectively gathers metadata, such as name, de-

scription, author, and license, from repositories such as PYPI, npm, and NuGet by employing

advanced techniques like web crawling and web APIs. This approach allows the system to ac-

quire profound insights into software packages, enabling more knowledgeable and customized

recommendations for users.

Data Source: Software Package Managers

The software package recommendation system in this project exclusively obtained data from

PyPI, given the project’s magnitude. By adopting this targeted strategy, we were able to

work with a dataset that was easier to handle while still benefiting from a wide range of

Python programs. Alternative package managers were excluded from consideration due to

their potential impact on project scope and manageability. PyPI, often known as the Python

21

22 4.1. SOFTWARE PACKAGE METADATA EXTRACTION PIPELINE

Package Index, is a well-known repository that houses a wide range of Python packages and

modules. As of 2024, PyPI has a total of 506,000 projects, exceeding 5 million releases and

10 million files. The user base of PyPI is estimated to be over 775,000. Due to the wide

range of software that the Python community has produced, PyPI is a crucial resource for

Python developers.

Data Extraction Process

Data extraction encompasses two primary methodologies: web crawling and the utilization

of web APIs. Web crawling is an automated process used to gather data from the web

pages of package managers. We used Selenium, a Python web scraping tool, to accomplish

this. The crawler systematically navigates to every page and retrieves pertinent data. PYPI

offer APIs that enable more organized and efficient retrieval of their data. By utilizing these

APIs, the system is able to directly solicit precise information regarding software packages.

Software Packages

By utilizing web crawling techniques and APIs, we have effectively gathered an extensive col-

lection of packages from the PYPI package manager, which has been organized and presented

in JSON format. The collection is comprehensive and contains a diverse range of software

programs, each with distinct functionalities, dependencies, and development histories.

The PyPI repository contains a wide variety of software packages, including libraries, frame-

works, and tools, which are designed to meet various programming requirements. These

utilities vary from commonly used tools that fulfill general programming needs to specialized

libraries specifically intended for specific applications.

Metadata Extraction

The recommendation system can learn more about the variety of software packages that are

available, their features and abilities, and how developers perceive or use them through the

extraction and analysis of this metadata. Having this comprehension is crucial in order to

offer precise and pertinent suggestions to individuals seeking software packages that align

with their particular needs.

Metadata extraction entails the extraction of certain data points related to each software

package. Typically, this includes elements like Name, URL, and Description. The extracted

metadata is essential for comprehending the functionality and possible applications of each

package. We will further elaborate on chapter 5.

4.1.1 Software Package Sentiment Analysis Pipeline

We employed Liang Feng’s [50] findings, which encompass a comprehensive sentiment analy-

sis framework specifically tailored for evaluating software packages. This pipeline extensively

relies on user feedback obtained from many software development forums, including Stack-

Overflow, GitHub, and G2. It employs sophisticated natural language processing algorithms.

It systematically gathers and examines user-generated content’s sentiments in order to pro-

vide a thorough understanding of the product’s perceived quality and usability. This technique

facilitates software developers in implementing data-driven enhancements in their products.

During its concluding phases, the pipeline combines the outcomes of sentiment analysis with

the ISO/IEC 25010 software quality model. This model delineates fundamental quality at-

tributes such as functionality, reliability, and maintainability. By correlating user feedback with

22

CHAPTER 4. DECISION MODEL 23

these characteristics, the pipeline provides a thorough assessment of software components,

taking into account their actual usage and opinions. By adhering to the ISO standard, the

analysis is comprehensive and in line with established quality standards, thereby facilitating

the improvement of software packages to better cater to user requirements.

4.1.2 Inference Engine

The inference engine is a critical part of the system, processing the user’s input and delivering

recommendations. It includes two parts, as follow:

Requirements Extraction

This procedure entails scrutinizing the user keywords in order to extract precise requirements

or criteria that the software package must fulfill. It uses name entity recognition (NER) to

extract the most important keywords from the input keywords. we will discuss it more in 5

Solution Suggestion

The inference engine proposes potential software solutions based on the extracted require-

ments. This stage entails aligning the user’s requirements with the attributes of the software

packages that are already accessible. It works with the similarity algorithm, as we found that

in a literature review, similarity is the most commonly used in a recommendation system.

We used BM25, LM Jelinek Mercer similarity (LMJDM), Information-based (IB), and LM

Dirichlet similarity (LMD).

4.1.3 Integration and Categorization

Subsequently, the proposed solutions are consolidated into a cohesive collection of recom-

mendations and classified according to their relevance and appropriateness to the user’s

requirements. We created this knowledge base using JSON files.

Knowledge Base

The knowledge base is an extensive repository that encompasses all the fundamental facts

utilized by the system to facilitate decision-making. The following items are included: The

metadata for software packages is gathered from multiple package managers.The sentiment

analysis pipeline determines the quality attributes of the software components. User opinion

analysis is linked to each individual software element.

4.1.4 User

User Keywords

In this step, user keywords pertain to the user’s requirements, preferences, or specific use

cases. These are frequently presented in a keyword structure and can range from being simple,

complex, or ambiguous. These keywords facilitate comprehension of the circumstances and

distinct requirements of the user, serving as the foundation for tailored suggestions.

Ranked Feasible Components

This step will display the candidate on a list. Name, short description, URL, and ISO 25010

quality attributes are all included in this list. We provided an illustration in the figure 4.1.

23

24 4.2. DESIGN DECISIONS

1
 2

3

Figure 4.1: Final results.

4.2 Design Decisions

In this project, we have leveraged a fusion of three distinct model categories, as compre-

hensively detailed in Section 3.5.1. Our approach to feature extraction is centered on the

utilization of text embedding techniques.

Text embedding: Text embedding refers to the process of converting textual data, such

as words, sentences, or documents, into numerical vectors while preserving their semantic

meaning. This numerical representation allows us to effectively work with and analyze text

data using machine learning algorithms.

Additionally, within the architecture of our recommendation system engine, we have em-

ployed a multifaceted strategy that encompasses several key software packages:

Similarity Analysis: Similarity analysis involves quantifying the likeness or resemblance be-

tween items or user preferences. This analysis helps us measure how closely aligned user

preferences are with available items, enabling us to make recommendations that closely

match individual tastes. Ranking: Ranking algorithms determine the order in which rec-

ommendations are presented to users. These mechanisms take into consideration various

factors, including user behavior, item characteristics, and relevance, to provide more accu-

rate and personalized recommendations.

This comprehensive approach allows us to provide enhanced and personalized recommenda-

tions to our users, tailoring our suggestions to their unique preferences and interests. In the

domain of sentiment analysis, our methodology is further enriched by the incorporation of

the following elements:

Sequence Information: Sequence information pertains to the order and arrangement of

words or phrases in a text. It is crucial for understanding the flow and nuances of sentiment

expressed in textual content.

Global Context Feature: The global context feature involves considering the broader con-

text of the entire text, such as the overarching theme or tone. This context is essential for

24

CHAPTER 4. DECISION MODEL 25

gaining a deeper understanding of the sentiment within the text.

4.3 Model Architecture

During our model selection procedure, we conducted a methodical investigation to find models

that meet our specific feature criteria. This part offers an in-depth analysis of the essential

components relevant to our duties, guaranteeing that our selection of models is appropriately

customized to fulfill these requirements. Based on the literature review we did in chapter

three, 3 the most common feature used for the model is similarity.

Our technique relied on incorporating Named Entity Recognition (NER) to extract features

and perform sentiment analysis. NER is a crucial technique in the field of natural language

processing. It is highly skilled at detecting and classifying important details in text, such as

the names of individuals, locations, organizations, and other entities. The capacity of Named

Entity Recognition (NER) is crucial for extracting significant and contextually appropriate in-

formation from text, which is necessary for various NLP activities, such as sentiment analysis

[51]. In our particular use case, we employed Named Entity Recognition (NER) approaches

to analyze and extract important entities from our dataset. The collected entities were fur-

ther examined using advanced approaches such as BM25, LMJL, and IB and LM Dirichlet

ranking within Elastic Search. These similarity models offer a more advanced strategy for as-

sessing document relevance, particularly in the field of information retrieval, in contrast with

traditional cosine similarity methods. Key concepts employed in our methodology include:

• BM25: BM25 is a ranking function used for information retrieval. It helps to quantify
the relevance of documents in a corpus to a given search query. In our context, BM25

is used to evaluate the relevance of software packages based on extracted entities,

aiding in identifying the most pertinent software options for users.

• Language Model Dirichlet (LM Dirichlet): LM Dirichlet similarity is a smoothing
technique used in information retrieval to handle the problem of zero probability in

language models. It incorporates Dirichlet prior smoothing, which helps in estimating

the probability of unseen words in a document. This approach improves the perfor-

mance of language models by balancing between the observed term frequency and the

background corpus frequency.

• Language model Jelinek-Mercer (LM Jelinek-Mercer): The LM Jelinek-Mercer is a
language model smoothing technique that combines two different models: a maximum

likelihood estimate (MLE) model and a background model. It uses a linear interpolation

method to balance the probability estimates from these models, with a tuning parameter

to control the contribution of each. This approach enhances the model’s performance

in language tasks by reducing the issues of data sparsity and overfitting.

• Information-based (IB): IB in information retrieval measures the proximity of docu-
ments or phrases by considering the amount of shared information content. Relevance

is determined by assessing the extent of shared information, hence improving the preci-

sion of recognizing associated things. Adopting this strategy is essential for obtaining

accurate search results and achieving efficient data clustering.

• Clustering in Elastic Search: The use of ranking techniques within the Elastic Search
database system enables the systematic organization and grouping of JSONs. These

JSONs correspond to various software packages, facilitating the efficient recommen-

dation of suitable options

25

26 4.3. MODEL ARCHITECTURE

It is crucial to acknowledge that NER plays a vital role in enhancing the performance of

our model. It is integrated into the design primarily for extracting features and conducting

sentiment analysis. Additional components and algorithms in our approach also play key roles

in attaining the intended outcomes.

26

Chapter 5

Pipeline Implementation

In the continually evolving domain of software development, the careful choice of suitable

software packages plays a crucial role in guaranteeing the success of a project, which is defined

by achieving the highest level of performance and dependability. This chapter explores the

essential stages of data preparation and extraction, establishing the basis for a data-driven

strategy in selecting software packages. Our goal is to simplify the process and procedures

used to convert raw, unstructured data into a format that supports informed decision-making.

We employ state-of-the-art tools and methodologies to explore the practical implementation

of these principles in software package selection, facilitating a comprehensive discussion.

The data preparation and extraction procedure in this study consists of two main steps:

firstly, obtaining relevant data by web scraping, and secondly, extracting and processing this

data using Natural Language Processing (NLP) techniques.

The following sections of this chapter will present a comprehensive review of the strategies

utilized in the data preparation and extraction processes. We will examine the precise web

scraping tools and methodologies employed, followed by a thorough investigation of the NLP

approaches utilized for data processing. The purpose of this chapter is to establish a strong

basis for comprehending the process of converting unprocessed data from many internet

sources into an organized data set that is prepared for analysis and utilization in our decision

model for selecting software packages. In our research, we meticulously selected 31 packages

from the Python Package Index (PYPI)1 for their applicability in sentiment analysis tasks.

For each package, we gathered key data, including the package name, description, about,

and URL. This comprehensive data collection aims to facilitate an in-depth analysis of each

package’s suitability for sentiment analysis.

5.1 Selecting Packages

Due to the extensive range of packages accessible on PyPI, a considerable portion had to be

eliminated from our study. The reasoning behind this was manifold:

• Irrelevance to Sentiment Analysis: Many packages, while useful in their own right,
did not provide the specific functionalities required for sentiment analysis and were thus

excluded.

• Quality Concerns: Packages that had issues with reliability, such as infrequent up-
dates or poor community feedback, were not considered as they could compromise the

effectiveness of sentiment analysis.

1pypi.org

27

pypi.org

28 5.2. FEATURE SELECTION

• Lack of Documentation: Packages lacking sufficient documentation or community
support pose a challenge in terms of integration and troubleshooting. Such packages

were not included to ensure a smooth research process.

• Overlap in Functionality: In cases where multiple packages offered similar function-
alities, we selected the ones that excelled in other criteria like performance, support,

and reliability to avoid redundancy.

The selection procedure was guided by the objective of identifying the most suitable, reliable,

and efficient packages for sentiment analysis. The criteria were meticulously formulated to

evaluate and choose the instruments that would not only meet the specific requirements

of our study but also maintain the standards of excellence and effectiveness necessary for

reliable sentiment analysis.

5.2 Feature selection

To enhance our data-driven decision model for software package selection, it is crucial to

prepare the features that will serve as the foundation for our study. This sub-section explores

the application of Schema.org, a collaborative and community-driven method for organizing

data on the Internet. Schema.org 2 greatly assists in finding and developing these aspects.

5.2.1 Feature Identification

Schema.org provides a shared vocabulary that webmasters can use to mark up their pages in

ways recognized by major search providers, enhancing the discoverability and understanding of

web content. In the context of software package selection, Schema.org offers a standardized

set of schemas that are instrumental in identifying key features of software packages. These

features might include, but are not limited to, aspects like software version, release notes,

user ratings, and update frequency. For this project, we incorporated the most commonly

utilized characteristics that exhibit intersections, as identified in our literature review.

5.2.2 Feature Extraction Steps

Identifying Relevant Schemas:

The initial phase of our process entails identifying the specific schemas within Schema.org

that align with the characteristics of software packages. This entails a comprehensive ex-

amination of the Schema.org vocabulary to choose schemas that most accurately depict

the essential data points for our model. We used the SoftwareApplication3 schema in this

project.

Mapping Features to Schemas:

After identifying the pertinent schemas, the next step involves aligning them with the par-

ticular characteristics we aim to extract. The ’SoftwareApplication’ schema in Schema.org

enables the extraction of attributes such as software requirements, name, and URL.

2https://schema.org
3https://schema.org/SoftwareApplication

28

https://schema.org
https://schema.org/SoftwareApplication

CHAPTER 5. PIPELINE IMPLEMENTATION 29

Property Expected Type Description

Abstract Text An abstract is a short description that summarizes a Creative-

Work.

dateModified DateTime The date on which the creative work was most recently modi-

fied or when the item’s entry was modified within a DataFeed.

Description Text A description of the item.

Name Text The name of the item.

softwareVersion Text Version of the software instance.

Url URL URL of the item.

Table 5.1: Package Criteria

Property Description

Functional Suitability Assess if the software provides and supports all its intended functionalities

effectively under specified conditions

Performance Efficiency Measures the software’s performance in terms of resource usage, pro-

cessing speed, and scalability under defined conditions.

Compatibility Evaluates the software’s ability to coexist and interact efficiently with

other systems and products.

Usability This characteristic indicates the extent to which a product or system can

be used by specified users to achieve specified goals with effectiveness,

efficiency, and satisfaction in a specified context of use.

Reliability Indicates the software’s capability to perform its required functions under

specified conditions for a specified period of time.

Security Focuses on the software’s ability to protect data and maintain confiden-

tiality, integrity, and availability against unauthorized access or attacks.

Maintainability Assesses the ease with which the software can be modified, updated,

and maintained over time.

Portability Examines the ease with which the software can be transferred and

adapted to different hardware or software environments.

Table 5.2: Quality Attributes

Feature Consolidation and Structuring:

The last stage entails merging the retrieved characteristics into a well-organized format that

can be effortlessly incorporated into our decision-making framework. This organized data

serves as the foundation of our analysis and forecasts related to software package selection.

We generated a configuration file for the web scraping process. The data is structured in

the JSON format.

Quality Attributes:

We employed Liang Feng’s work, which utilized ISO 2510, as a reference for our project.

We also applied ISO 2510 to evaluate the chosen software package candidates for our project.

Following these procedures, we choose the package criteria and quality attribute, as indicated

in the 5.1 and 5.2, respectively.

29

30 5.3. WEB SCRAPING

5.3 Web Scraping

During this phase, we utilized the selenium package in Python. Selenium is an open-source

automation tool mostly utilized for automating web applications for testing purposes. How-

ever, it is also widely employed in web scraping due to its robust capabilities for managing

dynamic web material. This section examines the application of Selenium in the web scraping

procedure for the data-driven decision model for selecting software packages. Selenium is

notable for its capacity to emulate human-like interactions with web sites, such as clicking

buttons, completing forms, and moving across web pages. This is especially advantageous for

extracting data from websites that largely depend on JavaScript and AJAX-based dynamic

content. Another benefit is its ability to be used with many web browsers and operating

systems, guaranteeing extensive interoperability.

5.3.1 Data Extraction Steps

Configuration File

We have generated a nested JSON file that encompasses the previously extracted features,

as previously elucidated. Each feature comprises various keys to identify the specific element

that is associated with the feature.

Below, we present the structure of the nested JSON file.

–

¡feature¿ :–

”parent”:

–

”id”:””,

”cssClass”:””,

”tag”:””,

”keywords”:””,

”searchPattern”:””

˝

,

”id”:””,

”cssClass”:””,

”tag”:””,

”xpath”:””,

”keywords”:””,

”searchPattern”:””

˝

In the following, we describe each key in this file:

• feature: It refers to the selected feature in the previous part.

• parent: This pertains to the ancestor of the web element, and it possesses many keys.

• id: If an element has an ID, it is related to it.

• cssClass: Displays the CSS class associated with the element.

• tag: It indicates which tag contains the element.

30

CHAPTER 5. PIPELINE IMPLEMENTATION 31

• xpath: It provides a flexible and precise means to locate elements, attributes, and
text within web documents, making it an essential tool for efficiently retrieving specific

information in automated web scraping tasks.

• keyword: If there is a specific keyword associated with an element on a web page,
such as ”license” or ”url,” we can locate the element using that keyword, and we can

use NLP to process the text and find the related information.

• searchPattern: The presence of a pattern in the collected data necessitates the im-
plementation of a strategy to accurately locate the desired information after retrieving

it from the webpage.

Using Selenium

For this project, we employed Selenium in Python to perform efficient web scraping. Specif-

ically, we used it to extract items and their corresponding information from different web

sites. The method commences with configuring the environment, which entails installing Se-

lenium within the Python environment and configuring a WebDriver, such as ChromeDriver

for Google Chrome.

After the data is extracted, it undergoes a process of cleaning and formatting to ensure uni-

formity and precision. The data is organized in a JSON format, which facilitates subsequent

analysis. The browser session is appropriately terminated after the scraping operation using

the driver.

By employing a complete methodology, we utilize the functionalities of Selenium in Python

to extract and gather significant data. This process is integral to this project and guarantees

a strong dataset for our software package selection model.

5.3.2 Text analysis

Named Entity Recognition (NER) is used in a data extraction method that has a series of

important steps that are designed to make sure that information is correctly recovered from

text descriptions of software products. The method commences by choosing a suitable NER

tool or library. SpaCy, a potent and flexible NER tool, has been selected for this particular

project because of its strength, user-friendliness, and ability to meet the specific requirements

of the dataset.

After choosing SpaCy as the NER tool, the next crucial step is to preprocess the text

data. This stage is crucial in preparing the text for efficient NER analysis. The preprocessing

processes commonly included in SpaCy typically encompass:

1. Tokenization:The process of dividing the text into separate words or tokens. SpaCy’s

tokenizer effectively manages this task, offering a strong basis for subsequent research.

2. Part-of-Speech (POS) Tagging:SpaCy applies grammatical labels to each token, such

as nouns, verbs, adjectives, etc., which is crucial for comprehending the contextual

application of words

3. Syntactic Parsing:SpaCy is highly proficient in analyzing the grammatical structures

of sentences to detect links between words, hence facilitating comprehension of the

syntactic structure of the text.

After appropriately preprocessing the text data, SpaCy’s NER capabilities are utilized to an-

alyze the text, detecting and extracting important entities and attributes. In the context

31

32 5.4. IMPLEMENTATION

of software package descriptions, these items typically encompass the names of software

packages, programming languages, dependencies, functionality, and other essential proper-

ties. SpaCy’s NER algorithm not only detects these things but also categorizes them into

predetermined classes, thereby improving the organization and analysis of the data.

The process does not conclude with entity extraction. Additionally, the post-processing

processes are essential, which encompass:

• Entity Normalization: SpaCy facilitates the resolution of diverse variations of an entity
name to a standardized form, hence ensuring consistency of data.

• contextual Analysis: Utilizing SpaCy’s sophisticated linguistic features to assess the
entities in the wider context of the text, establishing their pertinence and importance.

Subsequently, the data extracted using SpaCy’s NER capabilities is formatted into JSON for

seamless integration into databases or for further research, such as examining patterns in soft-

ware development or understanding interdependencies in software ecosystems. By leveraging

SpaCy’s NER capabilities, this comprehensive approach not only improves understanding of

software packages but also enables informed decision-making and intelligent research in the

field of software engineering.

This chapter presents a resilient search model that aims to optimize the software package

selection process. The model relies on four fundamental technologies: Elasticsearch, the

BM25, and IB algorithms. This section delves into the reasoning behind their selection, their

integration into our system, and the general aims of the model.

5.4 Implementation

5.4.1 Elasticsearch

Elasticsearch is an open-source, distributed search and analytics engine renowned for its ability

to handle large volumes of data with speed and precision. At its core, Elasticsearch is built on

top of the Apache Lucene library, which provides advanced search capabilities. Elasticsearch

extends these capabilities, offering a scalable search solution that can manage petabytes

of structured and unstructured data. Elasticsearch’s most prominent attribute is its robust

full-text search functionality. It effectively manages intricate search queries and provides

rapid search replies, making it well-suited for contexts where swift data retrieval is crucial.

Elasticsearch functions inside a distributed framework, wherein the data is disseminated and

stored across multiple nodes. This guarantees a high level of availability and durability, as

well as the capacity to expand horizontally as the amount of data increases. Real-time

data and analytics enable the instantaneous examination of data. Once a document is

indexed, it becomes searchable, allowing for instant data retrieval and analysis. Elasticsearch

has the ability to index a diverse range of data types, including text, numerical data, and

sophisticated data structures. The RESTful API offers a comprehensive and standardized

way to communicate with the search engine using conventional HTTP protocols.

5.4.2 Elasticsearch in Software Package Selection

Regarding software package selection, Elasticsearch possesses certain significant benefits that

render it very suitable for managing and searching extensive collections of software packages.

32

CHAPTER 5. PIPELINE IMPLEMENTATION 33

Dealing with Large Data Volumes

Software package repositories may hold extensive quantities of data, including diverse proper-

ties such as package names, descriptions, dependencies, and version histories. Elasticsearch

excels at managing extensive datasets, guaranteeing comprehensive searchability of the en-

tire repository. The distributed design of the system enables it to effectively handle larger

amounts of data while ensuring consistent performance and reliability.

Efficient Searching and Filtering

Elasticsearch’s proficiency in executing sophisticated full-text searches is essential in the

field of software package selection. Users frequently require the ability to conduct searches

using precise keywords, phrases, or even more intricate queries. Elasticsearch offers both

accurate search results and advanced filtering capabilities. Consequently, users have the

ability to enhance their searches by considering other characteristics such as the programming

language, dependencies, or current updates, resulting in a more effective and focused search

process.

Velocity and Pertinence

The velocity of Elasticsearch is a noteworthy factor. It provides search results instantly,

which is crucial in situations when developers or researchers are repeatedly testing different

queries to locate the appropriate software package. Moreover, the system’s relevance score

algorithm guarantees that the most relevant packages are given better rankings in the search

results, assisting consumers in promptly making well-informed judgments.

Customizability and Integration

Elasticsearch provides a significant level of customizability, allowing for the precise adaptation

of the search engine to meet the specific requirements of software package selection. It has

the capability to be combined with different tools and platforms, allowing for a smooth and

uninterrupted process where users may search for packages directly within their development

environment.

In conclusion, Elasticsearch’s robust architecture, efficient data handling, advanced search

features, and capacity to process massive volumes of data establish it as a crucial tool in the

software package selection space. Its application in this domain significantly increases users’

ability to traverse the wide and complex world of software packages, hence augmenting the

general efficacy and efficiency of the software development process.

5.4.3 BM25 Algorithm

BM25 is a contemporary version of the TF-IDF (Term Frequency-Inverse Document Fre-

quency) algorithm, which is employed by search engines as a ranking function. It evolved

from the probabilistic information retrieval concept and has gained widespread acceptance

due to its efficacy in ranking items according to their relevance to a given query.

BM25 is a software package of the Okapi BM (Best Matching) algorithm family, which was

created in the late 1980s and early 1990s at City University, London, as a part of the Okapi

information retrieval project. Its purpose was to enhance the conventional TF-IDF method

by effectively managing the fluctuation in phrase frequency among documents.

The BM25 algorithm calculates the score of a document d for a given query q using the

formula:

33

34 5.4. IMPLEMENTATION

Score(d, q) =

n∑
i=1

IDF (qi) ·
f (qi , d) · (k1 + 1)

f (qi , d) + k1 · (1− b + b · |d |avgdl)

Where:

• f (qi , d) is the term frequency of query term qi in the document d .

• |d | is the length of the document d in words.

• avgdl is the average document length in the text collection.

• k1 and b are free parameters, usually chosen, in absence of advanced optimization, as
k1 = 1.2 and b = 0.75.

• IDF (qi) is the Inverse Document Frequency of the query term qi , which can be cal-
culated as log N−n(qi)+0.5n(qi)+0.5

, where N is the total number of documents and n(qi) is the

number of documents containing qi .

BM25 is crucial in our search model as it enhances Elasticsearch’s capability to determine the

best suitable software packages for a particular query. The incorporation of BM25 enhances

Elasticsearch by offering a sophisticated method for evaluating relevance scores.

5.4.4 LM Dirichlet Similarity in Language Modeling

The LM Dirichlet similarity, a significant component in language modeling for information

retrieval, leverages the Dirichlet distribution for document modeling, enhancing retrieval and

text analysis performance. The core formula of the Dirichlet Language Model is

P (w |D) =
c(w,D) + µP (w |C)

|D|+ µ (5.1)

where P (w |D) represents the probability of a word w in a document D, c(w,D) is the
count of w in D, P (w |C) is the probability of w in the collection C, |D| is the length of the
document, and µ is the Dirichlet prior, a smoothing parameter. Studies have demonstrated

its effectiveness in various contexts, such as integrating category-specific information into

language models, which significantly improves retrieval performance [52]. Additionally, La-

tent Dirichlet Allocation (LDA) has been employed for creating topic space models in text

summarization and cross-language text similarity calculations, showcasing its versatility and

efficiency in handling complex language data [53]. This highlights the LM Dirichlet similarity’s

crucial role in enhancing text analysis and information retrieval systems.

5.4.5 LM Jelinek-Mercer Similarity in Information Retrieval

Language modeling in information retrieval, particularly the LM Jelinek-Mercer similarity,

plays a crucial role in enhancing retrieval performance. This approach involves a smoothing

technique where the likelihood of observing a term in a document is combined with the

likelihood of the term in the collection. The Jelinek-Mercer formula is given as:

P (t|D) = λP (t|D) + (1− λ)P (t|C) (5.2)

where P (t|D) is the probability of the term in the document, P (t|C) is the probability of the
term in the collection, and λ is a smoothing parameter between 0 and 1. Research has shown

34

CHAPTER 5. PIPELINE IMPLEMENTATION 35

that adjusting for document length is vital, with Dirichlet prior smoothing handling it more

effectively than Jelinek-Mercer smoothing. However, incorporating a length-based prior can

significantly improve Jelinek-Mercer’s performance [54]. Further, the probabilistic document

length prior, when combined with Jelinek-Mercer smoothing, surpasses the performance of

length-dependent smoothing components [55]. These insights highlight the method’s adapt-

ability and efficiency in various applications, including heart disease prediction systems [56],

making it a valuable tool in the field of information retrieval.

5.4.6 Information-based (IB)

Information-based similarity is a method used to quantify the similarity between data sets,

objects, or signals based on the information content they share. This concept is applied in

various fields, such as bioinformatics, medical imaging, and data analysis. For example, in

medical image analysis, similarity measures like EMPCA-MI improve robustness and com-

putational efficiency in image registration [57]. Another application is in genetic sequence

analysis, where alignment-free approaches measure similarity among sequences using infor-

mation theory [58].

A common formula in information-based similarity is the Mutual Information (MI) measure,

which quantifies the amount of information shared between two random variables. It is

defined as:

MI(X; Y) =
∑
x∈X

∑
y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
where p(x, y) is the joint probability distribution function of X and Y , and p(x) and p(y)

are the marginal probability distribution functions of X and Y , respectively. This formula is

widely used in determining the similarity of datasets, particularly in fields that require the

analysis of complex, multi-dimensional data.

Relevance Scoring Mechanism

The similarity models, built upon the aforementioned concepts, enhance the relevance score

of each document (software package) by taking into account the frequency of query terms it

contains, as well as the document’s length and the distinctiveness of the query terms. This

strategy provides a more advanced and efficient ranking of search results in comparison to

basic frequency-based algorithms. When choosing software packages, the relevance score

that similarity models produce is of utmost importance. The ranking algorithms prioritize

software packages that closely align with the user’s inquiry, especially those employing distinct

technical words or necessitating a profound comprehension of the software subject.

Expanding on Elasticsearch

Although Elasticsearch effectively handles and queries extensive datasets, BM25 further en-

hances this functionality by guaranteeing that the search outcomes are not only rapid but also

pertinent. The integration of Elasticsearch’s advanced search capabilities with the similarity

algorithms’ accurate relevance score results in a resilient and efficient system for software

package selection, specifically designed to meet the intricate requirements of developers and

researchers in the field.

35

36 5.5. INTEGRATION OF THE SIMILARITY MODELS AND ELASTICSEARCH

5.5 Integration of the Similarity Models and Elasticsearch

The combination of Elasticsearch with our similarity model creates a powerful synergy for

managing and retrieving software package data. This section delves into the integration of

these components, focusing on data indexing, query processing, and the determination of

search result relevancy and ranking.

5.5.1 Query processing

When a query is submitted, the model processes it as follows:

1. Query Reception: The model receives a user’s search query, which may range from

simple keywords to complex phrases.

2. Query Analysis: NER analyzes the query, breaking it down into terms and phrases and

understanding the context.

3. Applying the Similarity Models: The models calculate a relevance score for each

document based on term frequency, document length, and term specificity.

4. Retrieving Results: Elasticsearch fetches the documents matching the query, with

relevance scores determined by the similarity model.

5.5.2 Ensuring Relevance and Effective Ranking

The integration of Elasticsearch with our similarity model is critical for ensuring that search

results are relevant and properly ranked.

Ensuring Relevance and Effective Ranking: The integration of Elasticsearch with our

similarity model plays a crucial role in ensuring that the search results are both relevant and

appropriately ranked.

• Relevance Scoring: The model’s scoring mechanism is a key aspect of its functionality.
It assesses not just the presence of query terms in documents but also their significance

and distribution. This approach leads to higher scores for documents that are more

relevant to the query.

• Ranking Documents: Documents are ranked based on their scores in the similar-
ity model. A higher score indicates greater relevance to the query, and thus, such

documents are placed higher in the search results.

• Fine-Tuning Results: Additionally, the model incorporates factors like user prefer-
ences, historical data, and contextual information to further refine the ranking. This

ensures that the most pertinent software packages are presented to the user.

To summarize, the combination of Elasticsearch and this advanced similarity model in our

approach demonstrates the harmonious relationship between smart text indexing and intelli-

gent relevance scoring. This combination not only improves the effectiveness of the search

process but also guarantees that the results are accurate, pertinent, and prioritized accord-

ing to the user’s requirements. This integration greatly simplifies the process of selecting

software packages, making it an essential tool for developers and researchers in the field of

software engineering.

36

Chapter 6

Experimentation

This part provides an academic investigation into the evaluation of a recommendation system

for software packages, leveraging the functionalities of ChatGPT. Based on recent academic

research, we explore approaches that include extensive language models in software testing

and development. This improves the effectiveness and dependability of recommendation sys-

tems in the software engineering domain.

The incorporation of AI, specifically expansive language models such as ChatGPT, into the

process of software development and testing signifies a notable progression in the domain.

This work explores the successful utilization of such models in testing a software package

recommendation system, drawing on the knowledge gained from recent research.

Current research in the field of software engineering emphasizes diverse, cutting-edge ap-

proaches and methodologies that are transforming the domain of software testing and eval-

uation. These encompass cutting-edge methodologies for evaluating the quality of tertiary

studies [59], employing fuzz testing in Model-Driven Software Engineering (MDSE) [60], mit-

igating challenges in measurement techniques [61], and implementing search-based software

testing for assessing Deep Neural Network (DNN) quantization [62]. Each of these studies

offers useful insights regarding the utilization of AI tools, such as ChatGPT, to improve the

effectiveness and efficiency of software application testing.

We employed ChatGPT as a proficient expert specializing in the domain of software devel-

opment. We devised a methodology and formulated questions, which we then employed to

carry out an interview with ChatGPT. Consequently, we successfully collected significant

information and enhanced the efficiency of our recommendation system.

6.1 Experimental Setup

6.1.1 Objective

The main aim of this experiment was to assess the effectiveness of the built software package

recommendation system compared to a widely recognized AI model, ChatGPT, in suggesting

appropriate software packages based on provided keywords. Three similarity models that

were implemented in Elasticsearch were tested against ChatGPT. The models are BM25,

LM Jelinek-Mercer, LM Dirichlet and IB.

6.1.2 Methodology

This methodology describes a detailed process used to compare the performance of a newly

developed software package recommendation system with that of ChatGPT. The approach

37

38 6.1. EXPERIMENTAL SETUP

centers on analyzing both systems’ responses to specific keywords related to software pack-

ages. This comparison helps in determining how closely the developed application aligns with

ChatGPT’s recommendations, which are considered a golden set or standard in this context.

1. Keyword Input

• Process: A predefined list of keywords associated with various software packages
is created. These keywords are carefully chosen to cover a broad range of software

package types, ensuring a comprehensive evaluation.

• Simultaneous Input: Each keyword is then simultaneously entered into both Chat-
GPT and the software recommendation system. This simultaneous input ensures

that both systems are responding to the same query under similar conditions,

providing a fair basis for comparison.

• Documentation: The keywords are documented alongside the responses they elicit
for transparency and to facilitate a thorough analysis later.

2. Response Compilation

• Collection: Once the keywords are inputted, the responses from both ChatGPT
and the developed application are collected. Special attention is paid to ensure

that the responses are accurately captured as they are.

• JSON Structuring: The collected data is then structured into a JSON (JavaScript
Object Notation) format. This format is chosen for its readability and ease of use

in data processing. The structure includes:

– ”keyword”: The keyword that was inputted.

– ”expected value”: The response was provided by ChatGPT. This is con-

sidered the expected or ideal recommendation.

– ”suggested value”: The recommendation was made by the developed ap-

plication.

• Standardization: This standardized format helps in maintaining consistency across
all data points, which is crucial for an unbiased analysis.

3. Data Analysis

• Metrics Calculation: The responses in the JSON file are analyzed to calculate the
recommendation system’s accuracy, precision, and recall. These metrics provide

insight into various aspects of the system’s performance.

– Accuracy measures the proportion of total correct recommendations (both

true positives and true negatives), and it is calculated as:

Accuracy =
True Positives + True Negatives

Total Recommendations

– Precision assesses the correctness of the positive recommendations made by

the system and is calculated as:

Precision =
True Positives

True Positives + False Positives

– Recall evaluates how well the system identifies all relevant recommendations

and is calculated as:

Recall =
True Positives

True Positives + False Negatives

38

CHAPTER 6. EXPERIMENTATION 39

• Comparison with Golden Set: ChatGPT’s responses (the expected values) serve
as a benchmark. The system’s responses are compared against these to determine

how often it agrees with ChatGPT’s recommendations (indicating accuracy), how

relevant its suggestions are (precision), and how many relevant suggestions it

captures (recall).

• Insights and Implications: The analysis provides insights into the effectiveness of
the recommendation system. It helps identify areas where the system excels and

where improvements are needed. For instance, a high precision but lower recall

might indicate the system’s recommendations are generally on point, but it might

be missing out on some relevant suggestions.

In summary, this methodology offers a structured and systematic approach to evaluating the

performance of a software package recommendation system. By comparing it against Chat-

GPT’s recommendations, the method provides a comprehensive assessment of the system’s

capabilities for accurately and effectively suggesting software packages based on user queries.

6.2 Creation of the Golden Set

6.2.1 Role of ChatGPT

ChatGPT, developed by OpenAI, is renowned for its advanced natural language processing

capabilities. It stands out due to its ability to understand and generate human-like text re-

sponses. In this context, ChatGPT’s proficiency is leveraged as a benchmark for evaluating

the software package recommendation system. By using ChatGPT’s responses to specific

keywords as a standard, we can establish a reliable set of expected outcomes. These out-

comes then serve as a comparative measure to assess the performance of the developed

application. The rationale behind using ChatGPT as a benchmark stems from its widespread

recognition for accuracy and contextual relevance in generating responses, making it a robust

model for setting expected standards in this experiment.

6.2.2 Data Collection

The creation of the golden set, an essential part of the experiment, involved a meticulous

process. This process began with the selection of 31 diverse and representative keywords

related to different software packages. These keywords were chosen to encompass a wide

range of potential user queries, ensuring comprehensive coverage of the software domain.

Following this, each keyword was inputted into ChatGPT, and the responses were carefully

recorded. These responses from ChatGPT were then compiled to form the golden set. This

golden set represents a diverse array of expected outcomes, providing a comprehensive basis

for evaluating the recommendations made by the software package recommendation system.

By comparing the system’s suggestions against this golden set, we aimed to quantitatively as-

sess the system’s accuracy, precision, and recall, thereby gauging its effectiveness in providing

relevant software package recommendations.

6.3 Results and Discussion

6.3.1 Comparative Analysis of Model Performances

The detailed performance of each model, as presented in Table 6.1, reveals significant insights

into their respective strengths and weaknesses. The BM25 model demonstrates a balanced

39

40 6.3. RESULTS AND DISCUSSION

performance with equal counts of False Positives (FP) and False Negatives (FN), suggesting

a consistent approach in differentiating between positive and negative classifications. In

contrast, the IB model, with the highest True Positives (TP), indicates a propensity towards

positive classification, albeit at the expense of a higher FP count. This could imply a potential

bias towards overestimating positive outcomes.

The LM Jelinek-Mercer model exhibits a conservative tendency, with higher True Negatives

(TN) and lower FPs. This cautious approach, however, leads to a higher count of FNs,

indicative of missed positive classifications. The LM Dirichlet model presents an intriguing

mix of high TP and low FP, but its comparatively higher FN count suggests a potential

shortfall in identifying positive instances accurately.

Model TP TN FP FN

BM25 30 10 5 5

IB 35 5 7 3

LM Jelinek-Mercer 28 12 8 2

LM Dirichlet 33 6 4 7

Table 6.1: Detailed Comparison of Model Performance

6.3.2 Accuracy, Precision, and Recall Evaluation

As delineated in Table 6.2, the models, barring LM Dirichlet, predominantly achieve an 80%

accuracy rate, underscoring a general high level of correctness in their predictions. The

precision and recall metrics, however, offer deeper insights into each model’s efficiency. The

BM25 model’s balanced FP and FN distribution helps it achieve impressive precision and

recall, demonstrating how well it can find true positives while reducing false alarms.

The IB model, despite its high TP rate, records marginally lower precision but the highest

recall amongst the models. This reflects its strength in identifying positive cases, albeit with

an increased likelihood of false positives. Conversely, the LM Jelinek-Mercer model, with the

lowest precision, compensates with a high recall rate. This pattern is indicative of a cautious

model that minimizes false positives but at the risk of increasing false negatives. Lastly, the

LM Dirichlet model, despite its lower accuracy, achieves the highest precision, albeit with a

compromised recall, suggesting a tendency to overlook positive cases.

Model Accuracy Precision Recall

BM25 80% 85.71% 85.71%

IB 80% 83.33% 92.11%

LM Jelinek-Mercer 80% 77.78% 93.33%

LM Dirichlet 78% 89.19% 82.5%

Table 6.2: Accuracy, Precision, and Recall Analysis

In conclusion, the analysis elucidates the varied performance dynamics of each model. The

BM25 model emerges as a balanced choice, the IB model as a recall-oriented option, the

40

CHAPTER 6. EXPERIMENTATION 41

LM Jelinek-Mercer model prioritizes minimizing false positives, and the LM Dirichlet model

excels in precision at the recall’s expense. These findings are pivotal for model selection,

contingent upon specific application requirements prioritizing either precision or recall.

41

Chapter 7

Discussion

7.1 Validity

7.1.1 Internal Validity: Challenges and Considerations

This research carefully checks the internal validity, paying special attention to how represen-

tative ChatGPT’s training data is and how the keywords used to test the software package

recommendation system were chosen. The training data for ChatGPT plays a crucial role

since it directly impacts the AI model’s replies and, consequently, sets the standard for the

recommendation system. Inadequate diversity or representativeness of the data inputted

into ChatGPT can result in biased outcomes. The presence of this potential bias presents

a substantial risk to the study’s validity, as the suggestions provided by ChatGPT may not

correlate accurately with genuine user needs or industry norms [63].

Moreover, the choice of keywords included in the experiment is essential in deciding the results

of the investigation. To achieve a thorough examination, it is important to select keywords

that cover a wide variety of software package types and user inquiries. Any prejudices in the

process of choosing keywords, whether accidental or organized, could result in a distortion

of the recommendation system’s efficacy. If the chosen keywords are too specific or fail to

sufficiently encompass the range of user inquiries, the experiment may exhibit a bias towards

certain types of recommendations, thus distorting the outcomes. To improve the internal

validity of the study, it is essential to address these problems. This will ensure that the

findings are dependable and accurately represent the system’s actual capabilities in a real-

world setting [64].

7.1.2 External Validity: Generalizability of Findings

The external validity of this work hinges on the generalizability of its findings to other AI

models and their use in diverse contexts of software recommendation systems. Introduc-

ing ChatGPT as a benchmark in this research brings forth a unique AI model with distinct

training and response characteristics. This characteristic raises questions about the potential

consequences if different AI models with diverse training datasets, methodologies, or pro-

cessing capabilities were used. For example, an AI model that has been trained on a dataset

that focuses on a certain software domain or has unique language processing abilities could

generate significantly different recommendation outcomes. Therefore, the findings derived

from this study, while robust within the defined parameters, may not be easily applicable or

provide similar results when replicated with a different AI model [65].

Additionally, it is crucial to assess the applicability of the study’s results in different software

recommendation scenarios, as this is a significant factor in establishing external validity.

42

CHAPTER 7. DISCUSSION 43

Software recommendation systems vary greatly in terms of their target user demographic, the

nature of the software being recommended (such as commercial, open-source, or enterprise-

level), and the complexity of user requirements. The study that used ChatGPT only looked

at a few criteria and conditions, which might not cover all the different situations that can

happen in the bigger field of software suggestions. The efficacy, precision, and pertinence of

the suggestions examined in this study may differ when implemented in other contexts. This

constraint underscores the significance of thoroughly scrutinizing the study’s conclusions and

suggests a potential area for future investigation to examine the relevance of these outcomes

to various AI models and recommendation scenarios [66].

7.1.3 Validity of Construction

The construct validity of the study can be evaluated by examining its reliance on quantitative

criteria such as accuracy, precision, and recall to measure the performance of software pack-

age recommendation systems. While these measurements are customary and beneficial for

assessing particular aspects of system performance, they may not comprehensively represent

the intricate and nuanced nature of software recommendations. The efficacy of a product

or service in practical scenarios is frequently assessed based on criteria such as user satisfac-

tion, contextual appropriateness, and the ability to accommodate diverse user requirements.

The measurements alone may not comprehensively capture these features. Therefore, fo-

cusing just on these specific metrics in the study may lead to an incomplete understanding

of the true effectiveness of the system and the user’s experience, ultimately impacting the

research’s validity. This highlights the need to include more extensive and user-oriented eval-

uation criteria in future research to provide a more thorough comprehension of the system’s

performance and efficacy [67].

7.1.4 Dependence on External Data Sources

The pipeline’s reliance on data obtained from external platforms such as PYPI and various

package managers poses a substantial vulnerability in terms of the reliability and legitimacy

of both the data and its sources. These platforms exhibit a notable level of flexibility, always

evolving in terms of their data architecture, rules, and the precision of the data they possess.

For instance, changes in data formats or categorization methods on these platforms can

directly impact the pipeline’s ability to accurately obtain and manage the required informa-

tion. The efficacy and precision of the pipeline are heavily contingent upon external events,

underscoring its significant dependence on these factors. The functionality of the pipeline

could be immediately compromised if there are any substantial modifications or issues, such

as data corruption or periods of inactivity, in these systems. The presence of this correlation

underscores the need for robust systems inside the pipeline to adapt to external fluctuations

and maintain their effectiveness [68].

7.1.5 Effect on Pipeline Validity

The potential alterations to external data sources pose a substantial threat to the integrity of

the pipeline. The effectiveness of the pipeline depends on the assumption that these external

platforms will constantly maintain and provide high-quality data, an assumption that may

not always be true. An alteration in the legislation of data accessibility or user privacy on

these platforms may impede the pipeline’s capacity to acquire crucial data, thereby impeding

its performance. Moreover, if the data obtained from these sources declines in quality due

to errors, outdated information, or changes in the hosted software packages, it may lead to

43

44 7.2. FINDING DURING THE PROJECT

the production of inaccurate or irrelevant suggestions by the pipeline. In order to address

these issues, it is imperative to consistently monitor and revise the pipeline in accordance

with fluctuations in external data sources. Furthermore, it would be advantageous to expand

the array of data sources in order to mitigate the hazards linked to relying exclusively on a

single platform.

7.2 Finding during the project

7.2.1 AI Integration in Software Recommendations: Potential and Limitations

The research conducted in this study significantly underscores the potential of AI in enhanc-

ing software recommendation systems while also delineating its limitations. AI, particularly

advanced language models like ChatGPT, has shown a remarkable capability to understand

and process user queries, offering recommendations that are often contextually relevant and

informed. This ability not only speeds up the process of finding suitable software solutions but

also introduces a level of precision that traditional, non-AI systems may struggle to achieve.

However, the study also brings to light the limitations inherent in AI-driven recommendations.

AI models, by their very nature, are dependent on the data they have been trained on, which

can lead to biases or gaps in recommendations if the training data is not comprehensive or

up-to-date. Moreover, AI systems may lack the nuanced understanding that comes from

human expertise, particularly in complex or niche areas where contextual subtleties play a

significant role.

7.2.2 The Need for a Balanced AI-Human Approach

In light of these findings, the research highlights the necessity of a balanced approach where

AI complements rather than replaces human decision-making in software recommendations.

The integration of AI offers significant advantages in terms of efficiency and data processing

capabilities, but it should be viewed as a tool that assists human experts rather than a stan-

dalone solution. Human oversight is crucial in interpreting AI recommendations, providing

contextual insights, and making final decisions, especially in cases where the AI’s suggestions

may not fully align with specific user needs or preferences. This synergistic approach lever-

ages the strengths of both AI and human expertise, leading to more robust, accurate, and

user-centered software recommendation systems. It emphasizes the importance of human

judgment in areas where AI may lack depth, such as understanding unique user scenarios,

ethical considerations, and complex decision-making processes

7.2.3 Importance of Model Selection in Software Recommendations

The study effectively demonstrates the crucial significance of model selection in the field

of software recommendations. Various models, including BM25, LM Dirichlet, and others

examined in this study, possess unique attributes and are appropriate for diverse requirements

and circumstances. For example, certain models may demonstrate exceptional accuracy by

providing suggestions that are highly correct. However, this precision may come at the

expense of recall, resulting in the possibility of missing out on certain pertinent possibilities.

Some individuals may prefer the ability to remember information, which would result in a

wider variety of ideas while potentially sacrificing accuracy. This discrepancy emphasizes the

significance of considering context when choosing a model for software recommendations.

The effectiveness of a model is not solely determined by its technical superiority but also by

how well it corresponds to the particular objectives and limitations of the recommendation

44

CHAPTER 7. DISCUSSION 45

system. These factors include the characteristics of the software packages, the variety of

users, and the unique scenarios being targeted.

7.2.4 Impacts on Software Engineering

From a software engineering standpoint, the research provides detailed and subtle insights

into the incorporation of artificial intelligence into recommendation systems. It promotes

the perspective of considering AI as a tool that enhances, rather than substitutes, human

skill in the fields of software development and testing. This viewpoint is especially important

as it recognizes the indispensable worth of human intuition, expertise, and discernment in

making intricate decisions. AI has the ability to analyze and interpret large volumes of

data and provide recommendations based on complex patterns and connections that surpass

human capabilities. Nevertheless, in intricate or unclear situations, human supervision greatly

enhances the accuracy of the ultimate decision. This methodology promotes the utilization

of AI by software engineers to capitalize on its advantages, such as managing extensive

amounts of data and offering preliminary suggestions. Simultaneously, it acknowledges and

addresses the limitations of AI by incorporating human expertise.

7.2.5 Broader Implications of the Findings

The implications of these findings extend beyond the technical elements of model selection

and the incorporation of artificial intelligence. They indicate a change in the framework of

software engineering techniques, where AI is regarded as a cooperative ally rather than an

independent answer. This change requires software engineers to acquire a fresh set of skills

and viewpoints. They must now possess not just a thorough comprehension of AI technology

but also the ability to skillfully assess and incorporate AI advice into their work processes.

Moreover, the report highlights the significance of ongoing education and adjustment in the

industry as artificial intelligence technology and models progress. The findings indicate the

importance of including ethical considerations and user-centric approaches in the adoption of

AI. This ensures that the technology is used to improve the user experience and effectively

satisfy the different demands of users.

7.3 Implications and Responsibilities in AI-Enhanced Software

Engineering

7.3.1 Ethical and Practical Considerations of AI Systems

The study highlights crucial ethical and practical factors related to the utilization of AI sys-

tems such as ChatGPT in the field of software engineering. An urgent concern lies in the

inherent biases that can exist throughout AI systems. These biases may arise from imbal-

anced training data or the AI’s algorithms themselves, resulting in suggestions that may lack

fairness or fail to represent the different demands of users. These biases can have substantial

consequences, particularly when AI systems are employed in crucial decision-making proce-

dures in software engineering. Furthermore, the usefulness of AI recommendations is being

examined closely. Although AI has the capability to handle and examine extensive informa-

tion, it is crucial for its recommendations to be contextually suitable and feasible to apply.

This requires a meticulous equilibrium between leveraging AI for its computational capabilities

and ensuring that its recommendations are practical and pertinent in real-life situations.

45

46

7.3. IMPLICATIONS AND RESPONSIBILITIES IN AI-ENHANCED SOFTWARE

ENGINEERING

7.3.2 Enhancing Transparency and Accountability in AI Recommendations

Ensuring the openness and accountability of AI systems is crucial, particularly in key domains

such as software engineering. Understanding the mechanism via which an AI system, like

ChatGPT, produces its recommendations is essential for both users and decision-makers.

Transparency refers to both the clarity of the algorithmic processes and the ease of access

and understanding of the underlying data and decision-making variables. Accountability,

on the other hand, pertains to the responsibility of making decisions in alignment with AI

recommendations. With the growing integration of AI systems into critical activities, the issue

of accountability for these decisions becomes complex, encompassing the AI developers, the

users, and the AI system itself. In order to ensure trust in AI systems and uphold their

acceptable and ethical use, it is imperative to take into account these components [69].

7.3.3 Wider Industry Implications of the Research

This research has the potential to significantly influence industry practices regarding the use

of artificial intelligence in software development tools and processes. By clarifying the po-

tential and limitations of AI in software recommendations, it offers a platform for software

engineers and developers to carefully incorporate AI into their workflows. This includes not

only the integration of technology but also the consideration of how AI advice should be

evaluated, understood, and put into practice. The results of this study could enhance soft-

ware development processes by optimizing the use of AI to increase efficiency and stimulate

innovation [70].

7.3.4 Educational Significance for Prospective Software Engineers and AI Re-

searchers

Moreover, the paper holds substantial instructional merit for aspiring software engineers and

AI researchers. It serves as a case study that showcases the actual application of AI, offering

a good comprehension of the difficulties associated with managing AI systems in a real-world

setting. Software developers should give priority to enhancing their proficiency in AI literacy,

ethical decision-making, and critical analysis of AI recommendations. The study highlights

the importance for AI researchers to create AI systems that have both technological expertise

and ethical integrity, as well as being user-friendly. Hence, this study can offer significant per-

spectives for developing educational plans and instructional courses that will equip upcoming

experts with the essential competencies to effectively employ artificial intelligence in software

engineering while also ensuring their ability to responsibly address its challenges [71].

46

Chapter 8

Conclusion and Future Work

8.1 Reiteration of Core Thesis and Major Contributions

In this last chapter, we explore the main issue of the thesis, specifically examining the creation

of a data-driven decision model for choosing software packages. The research focuses on a

crucial part of software engineering: the choice of suitable software components, a decision

that has a substantial impact on the success and efficiency of software projects.

The thesis’s distinct contributions are diverse. It presents automated techniques for pulling

unorganized data from repositories, therefore revolutionizing data collection for software

package analysis. The study also introduces innovative techniques for evaluating software

package compatibility, providing a more nuanced method for program selection. An important

achievement is the creation of a hybrid recommendation system that combines content-based,

collaborative, and knowledge-based approaches. This comprehensive approach is a notable

improvement over current procedures as it successfully navigates the intricacies of software

package selection. The research concludes with a comprehensive assessment of this system,

showcasing its effectiveness and potential for practical use in real-world software development.

This thesis makes a substantial contribution to the subject of component-based software

engineering (CBSE) by creating an intelligent recommendation system. The system offers

valuable tools and approaches for software engineers and industry practitioners. The tech-

niques suggested in this study have the capacity to greatly improve the efficacy, affordability,

and excellence of software development, particularly in the realm of COTS software. These

contributions not only enhance the current level of expertise in software engineering methods

but also create new opportunities for future study and development in the subject.

8.2 Future Work

Future studies could delve deeper into refining data extraction techniques from software

repositories. This includes exploring advanced data mining and natural language processing

methods to enhance accuracy and comprehensiveness. Researching scalable architectures and

efficient algorithms is critical for handling larger datasets. Investigating the model’s adapt-

ability to emerging software technologies and practices, such as cloud-based development

and DevOps methodologies, would also be beneficial.

Integrating advanced AI techniques, particularly in the realm of machine learning and deep

learning, could significantly improve the sophistication and accuracy of the recommendation

system. Additionally, a thorough investigation into user interaction with the system, through

47

48 8.3. CONCLUDING REMARKS

empirical studies or real-world application feedback, would provide invaluable insights. This

user-centric approach could lead to a more intuitive and responsive system, better suited to

the diverse needs and preferences of users in software package selection.

8.2.1 Impact and Practical Applications

The research findings have significant potential to impact the real world, particularly in the

software development business. The study’s findings on knowledge-based recommendation

systems for software package selection have the potential to greatly improve the efficiency

and accuracy of software package selection. These findings have ramifications for enhancing

project results in terms of quality, cost, and time administration. The incorporation of

such systems has the potential to completely transform the approach that developers take

towards selecting components, perhaps resulting in software solutions that are more resilient

and efficient. In addition, the collaboration between academia and industry has the potential

to stimulate innovation in software engineering methods by connecting theoretical study with

practical implementation.

8.3 Concluding Remarks

This research endeavor signifies a notable advancement in the field of software engineering,

specifically in the domain of software component selection. This study involves the examina-

tion and application of a knowledge-based recommendation system, which not only enhances

academic knowledge but also provides useful tools for the industry. This study highlights

the significance of utilizing data-driven decision-making in the field of software development,

establishing a precedent for future research in this area. In the future, the consequences

of this research go beyond immediate uses, providing a basis for additional investigation and

advancement in software package selection and recommendation systems. The incorporation

of these systems in real-life situations highlights the significance of the subject, providing a

combination of theoretical advancement and practical usefulness to the wider academic and

professional community.

48

CHAPTER 8. CONCLUSION AND FUTURE WORK 49

All the data gathered in the performed SLR can be found at:

software package recommendation system Metadata

Interview protocol can be found at: Interview protocol

Github: Github link

49

https://docs.google.com/spreadsheets/d/1AsbaC4AINnW8OJO6m3F5gwwFQ3jpvVNFYTKuLWe7jXo/edit?usp=sharing
https://docs.google.com/document/d/1wUQvZOv-xUbOx8BPsY-Hv9nANGVTJn-H3TXG_Fgedfs/edit?usp=sharing
https://github.com/Parsabzh/SPR

References

[1] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.

Knowledge-Based Systems, 46:109–132, 2013.

[2] H. Borges and M. T. Valente. What’s in a github star? understanding repository starring

practices in a social coding platform. Journal of Systems and Software, 146:112–129,

2018.

[3] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy. Evolution of software in auto-

mated production systems: challenges and research directions. Journal of Systems and

Software, 110:54–84, 2015.

[4] J. Beheshti and J. Dupuis. Problems with cots software: a case study. Proceedings of

the Annual Conference of Cais / Actes Du Congrès Annuel De L Acsi, 2013.

[5] S. Kalantari, H. Motameni, E. Akbari, and M. Rabbani. Optimal components selection

based on fuzzy-intra coupling density for component-based software systems under build-

or-buy scheme. Complex and Intelligent Systems, 7:3111–3134, 2021.

[6] G. Bavota, A. D. Lucia, Andrian Marcus, and R. Oliveto. Using structural and semantic

measures to improve software modularization. Empirical Software Engineering, 18:901–

932, 2013.

[7] Tassio Vale, Ivica Crnkovic, Eduardo Santana de Almeida, Paulo Anselmo da Mota Sil-

veira Neto, Yguaratã Cerqueira Cavalcanti, and Silvio Romero de Lemos Meira. Twenty-

eight years of component-based software engineering. Journal of Systems and Software,

111:128–148, 2016.

[8] R. Garg, R. Sharma, K. Sharma, and R. Garg. Mcdm based evaluation and ranking of

commercial off-the-shelf using fuzzy based matrix method. Decision Science Letters,

pages 117–136, 2017.

[9] M. Ilyas, S. U. Khan, and N. Rashid. Empirical validation of software integration prac-

tices in global software development. SN Computer Science, 1, 2020.

[10] D. Spinellis. Package management systems. IEEE Software, 29:84–86, 2012.

[11] T. Neubauer and C. Stummer. Interactive decision support for multiobjective cots

selection. 2007 40th Annual Hawaii International Conference on System Sciences

(HICSS’07), 2007.

[12] Martin Robillard, Robert Walker, and Thomas Zimmermann. Recommendation systems

for software engineering. IEEE Software, 27(4):80–86, 2010.

50

REFERENCES 51

[13] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.

Crossrec: Supporting software developers by recommending third-party libraries. Journal

of Systems and Software, 161:110460, 2020.

[14] D. Badampudi, K. Wnuk, C. Wohlin, U. Franke, D. Šmite, and A. Cicchetti. A decision-

making process-line for selection of software asset origins and components. Journal of

Systems and Software, 135:88–104, 2018.

[15] D. Badampudi, C. Wohlin, and K. Petersen. Software component decision-making: in-

house, oss, cots or outsourcing - a systematic literature review. Journal of Systems and

Software, 121:105–124, 2016.

[16] Siamak Farshidi. Multi-Criteria Decision-Making in Software Production. PhD thesis,

Utrecht University, 2020.

[17] Amarpreet S Arora and Akepati S Reddy. Development of multiple linear regression

models for predicting the stormwater quality of urban Sub-Watersheds. Bulletin of

Environmental Contamination and Toxicology, 92(1):36–43, January 2014.

[18] Nacim Yanes, Sihem Ben Sassi, and Henda Hajjami Ben Ghezala. Ontology-based

recommender system for cots components. Journal of Systems and Software, 132:283–

297, 2017.

[19] A. Rushinek and S. Rushinek. Accounting software evaluation: hardware, audit trails,

backup, error recovery and security. Managerial Auditing Journal, 10:29–37, 1995.

[20] Ferdian Thung, David Lo, and Julia Lawall. Automated library recommendation. In 2013

20th Working Conference on Reverse Engineering (WCRE), pages 182–191, 2013.

[21] Andrea Renika D’Souza, Di Yang, and Cristina V. Lopes. Collective intelligence for

smarter api recommendations in python. In 2016 IEEE 16th International Working

Conference on Source Code Analysis and Manipulation (SCAM), pages 51–60, 2016.

[22] Jing-Zhuan Zhao, Xuan Zhang, Chen Gao, Zhu-Dong Li, and Bao-Lei Wang. KG2Lib:

knowledge-graph-based convolutional network for third-party library recommendation.

The Journal of Supercomputing, 79(1):1–26, January 2023.

[23] Siamak Farshidi and Zhiming Zhao. An Adaptable Indexing Pipeline for Enriching Meta

Information of Datasets from Heterogeneous Repositories, pages 472–484. Springer

International Publishing, 05 2022.

[24] Barbara Kitchenham, Pearl Brereton, David Budgen, Mark Turner, John Bailey, and

Stephen Linkman. Systematic literature reviews in software engineering-a systematic

literature review. Information and Software Technology, 51:7–15, 01 2009.

[25] Yu Xiao and Maria Watson. Guidance on conducting a systematic literature review.

Journal of planning education and research, 39(1):93–112, 2019.

[26] C. Okoli. A guide to conducting a standalone systematic literature review. Communi-

cations of the Association for Information Systems, 37, 2015.

[27] E. Engström, M. Storey, P. Runeson, M. Höst, and M. Baldassarre. How software en-

gineering research aligns with design science: a review. Empirical Software Engineering,

25:2630–2660, 2020.

51

52 REFERENCES

[28] B. Morschheuser, L. Hassan, K. Werder, and J. Hamari. How to design gamification?

a method for engineering gamified software. Information and Software Technology,

95:219–237, 2018.

[29] F. Fagerholm, A. Guinea, H. Mäenpää, and J. Münch. The right model for continuous

experimentation. Journal of Systems and Software, 123:292–305, 2017.

[30] Ala’a N. Alslaity and T. Tran. Goal modeling-based evaluation for personalized rec-

ommendation systems. Adjunct Proceedings of the 29th ACM Conference on User

Modeling, Adaptation and Personalization, 2021.

[31] A. Smirnov and A. Ponomarev. Multicriteria context-driven recommender systems:

Model and method. Scientific and Technical Information Processing, 47:298 – 303,

2020.

[32] Siamak Farshidi, Slinger Jansen, and Jan Martijn E. M. van der Werf. Capturing software

architecture knowledge for pattern-driven design. CoRR, abs/2005.08393, 2020.

[33] Adam Kilgarriff, V́ıt Baisa, Jan Bušta, Miloš Jakub́ıček, Vojtěch Ková̌r, Jan Michelfeit,

Pavel Rychlý, and V́ıt Suchomel. The sketch engine: ten years on. Lexicography,

1(1):7–36, July 2014.

[34] C. N. Dang, M. N. M. Garćıa, and F. D. l. Prieta. An approach to integrating sentiment

analysis into recommender systems. Sensors, 21:5666, 2021.

[35] Y. Wang, M. Wang, and W. Xu. A sentiment-enhanced hybrid recommender system

for movie recommendation: a big data analytics framework. Wireless Communications

and Mobile Computing, 2018:1–9, 2018.

[36] A. Sulistya, G. A. A. Prana, A. Sharma, D. Lo, and C. Treude. Sieve: helping develop-

ers sift wheat from chaff via cross-platform analysis. Empirical Software Engineering,

25:996–1030, 2019.

[37] T. M. Abdellatif, L. F. Capretz, and D. Ho. Automatic recall of software lessons learned

for software project managers. Information and Software Technology, 115:44–57, 2019.

[38] N. Ali, H. Cai, A. Hamou-Lhadj, and J. Hassine. Exploiting parts-of-speech for effective

automated requirements traceability. Information and Software Technology, 106:126–

141, 2019.

[39] Y. Liu, L. Liu, H. Liu, X. Wang, and H. Yang. Mining domain knowledge from app

descriptions. Journal of Systems and Software, 133:126–144, 2017.

[40] D. Falessi, S. M. Laureani, J. Çarka, M. Esposito, and D. A. d. Costa. Enhancing the

defectiveness prediction of methods and classes via jit. Empirical Software Engineering,

28, 2023.

[41] S. Beyer, C. Macho, M. D. Penta, and M. Pinzger. What kind of questions do developers

ask on stack overflow? a comparison of automated approaches to classify posts into

question categories. Empirical Software Engineering, 25:2258–2301, 2019.

[42] A. B. Nassif, D. Ho, and L. F. Capretz. Towards an early software estimation using log-

linear regression and a multilayer perceptron model. Journal of Systems and Software,

86:144–160, 2013.

52

REFERENCES 53

[43] Z. Lu, Y. Sun, S. Liu, Z. Qian, H. Chen, S. Wu, and J. Zheng. Fuzzy-logic-based mod-

eling and control for higee-aop nitric oxide attenuation with a complex gas–liquid mass-

transfer-reaction process. Industrial and Engineering Chemistry Research, 61:3428–

3438, 2022.

[44] Y. Hong, X. Zeng, P. Bruniaux, Y. Chen, and X. Zhang. Development of a new

knowledge-based fabric recommendation system by integrating the collaborative design

process and multi-criteria decision support. Textile Research Journal, 88:2682–2698,

2017.

[45] M. Ahsan, S. Stoyanov, C. Bailey, and A. Albarbar. Developing computational intel-

ligence for smart qualification testing of electronic products. IEEE Access, 8:16922–

16933, 2020.

[46] Lai Xu and Sjaak Brinkkemper. Concepts of product software. European Journal of

Information Systems, 16(5):531–541, October 2007.

[47] Rakesh Garg, Ramesh Kumar, and Sandhya Garg. Madm-based parametric selection

and ranking of e-learning websites using fuzzy copras. IEEE Transactions on Education,

62(1):11–18, 2019.

[48] Dhekra Ben Sassi, Anissa Frini, Wahiba Ben AbdessalemKaraa, and Naoufel Kraiem.

Multi-criteria decision aid and artificial intelligence for competitive intelligence. In Moo-

nis Ali, Young Sig Kwon, Chang-Hwan Lee, Juntae Kim, and Yongdai Kim, editors, Cur-

rent Approaches in Applied Artificial Intelligence, pages 171–178, Cham, 2015. Springer

International Publishing.

[49] Mrinmoy Majumder. Impact of urbanization on water shortage in face of climatic.

Springer, 2015.

[50] Feng Liang, Fang Hou, Siamak Farshidi, and Slinger Jansen. Sentiment analysis for soft-

ware quality assessment. The 22nd Belgium-Netherlands Software Evolution Workshop

Nijmegen, 2021.

[51] Arya Roy. Recent trends in named entity recognition (NER). CoRR, abs/2101.11420,

2021.

[52] Zongcheng Ji, Fei Xu, and Bin Wang. A category-integrated language model for question

retrieval in community question answering. Springer Berlin Heidelberg, pages 14–25,

2012.

[53] Tiedan Zhu and Kan Li. The similarity measure based on lda for automatic summariza-

tion. Procedia Engineering, 29:2944–2949, 2012.

[54] D. Losada and L. Azzopardi. An analysis on document length retrieval trends in language

modeling smoothing. Information Retrieval, 11:109–138, 2008.

[55] Roi Blanco and Álvaro Barreiro. Probabilistic document length priors for language

models. LNISA, pages 394–405, 2008.

[56] Phyu Pyar Moe and N. Hlaing. Android based questionnaires application for heart

disease prediction system. International Journal of Trend in Scientific Research and

Development, 2019.

53

54 REFERENCES

[57] Parminder Singh Reel, Laurence S. Dooley, and K. C. P. Wong. A new mutual infor-

mation based similarity measure for medical image registration. In IET Conference on

Image Processing (IPR 2012), pages 1–6, 2012.

[58] Albert C Yang, Ary Goldberger, and Chung-Kang Peng. Genomic classification using

an information-based similarity index: Application to the sars coronavirus. Journal of

computational biology : a journal of computational molecular cell biology, 12:1103–16,

11 2005.

[59] Dolors Costal, Carles Farré, Xavier Franch, and Carme Quer. How tertiary studies

perform quality assessment of secondary studies in software engineering, 2021.

[60] Hoang Lam Nguyen, Nebras Nassar, Timo Kehrer, and Lars Grunske. Mofuzz: A fuzzer

suite for testing model-driven software engineering tools. In 2020 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 1103–1115,

2020.

[61] Oscar Dieste and Sira Vegas. Tutorial 3: Pitfalls in the measurement methods applied

in experimental software engineering - assessment and suggestions for improvement.

In Proceedings of the 26th International Conference on Evaluation and Assessment in

Software Engineering, EASE ’22, page 465–466, New York, NY, USA, 2022. Association

for Computing Machinery.

[62] Ahmed Haj Yahmed, Houssem Ben Braiek, Foutse Khomh, Sonia Bouzidi, and Rania

Zaatour. Diverget: a search-based software testing approach for deep neural network

quantization assessment. Empirical Software Engineering, 27(7), October 2022.

[63] Aidan Gilson, C. Safranek, Thomas Huang, V. Socrates, Ling Chi, R. Taylor, and

David Chartash. How does chatgpt perform on the united states medical licensing

examination? the implications of large language models for medical education and

knowledge assessment. JMIR Medical Education, 9, 2023.

[64] J. Siegmund, Norbert Siegmund, and S. Apel. Views on internal and external validity in

empirical software engineering. 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, 1:9–19, 2015.

[65] J. Ioannidis. Science with or without statistics: Discover-generalize-replicate? discover-

replicate-generalize? Behavioral and Brain Sciences, 45, 2022.

[66] Lingzhi Wang, Shafiq R. Joty, Wei Gao, Xingshan Zeng, and Kam-Fai Wong. Improving

conversational recommender system via contextual and time-aware modeling with less

domain-specific knowledge. ArXiv, abs/2209.11386, 2022.

[67] P. Ralph and E. Tempero. Construct validity in software engineering research and

software metrics. Proceedings of the 22nd International Conference on Evaluation and

Assessment in Software Engineering 2018, 2018.

[68] Dongyao Wu, Liming Zhu, Xiwei Xu, S. Sakr, Daniel W. Sun, and Q. Lu. Building

pipelines for heterogeneous execution environments for big data processing. IEEE Soft-

ware, 33:60–67, 2016.

[69] C. Sanderson, Qinghua Lu, David M. Douglas, Xiwei Xu, Liming Zhu, and Jon Whittle.

Towards implementing responsible ai. 2022 IEEE International Conference on Big Data

(Big Data), pages 5076–5081, 2022.

54

REFERENCES 55

[70] Veronika Bogina, Alan Hartman, T. Kuflik, and Avital Shulner Tal. Educating software

and ai stakeholders about algorithmic fairness, accountability, transparency and ethics.

International Journal of Artificial Intelligence in Education, 32:808–833, 2021.

[71] Eugénio Oliveira. Beneficial ai: the next battlefield. Journal of innovation management,

5:6–17, 2018.

55

	Introduction
	Research Approach
	Problem statement
	Research questions
	Conceptual model
	Research Methods
	Literature study
	Design science
	Experiments

	Systematic Literature Review (SLR)
	Paper Collection
	Search process
	Inclusion and exclusion criteria
	Quality assessment
	Data extraction and synthesizing
	Models and Methods
	Models' evaluation methods
	Models' qualification methods
	software package criteria

	Decision Model
	Software Package Metadata Extraction Pipeline
	Software Package Sentiment Analysis Pipeline
	Inference Engine
	Integration and Categorization
	User

	Design Decisions
	Model Architecture

	Pipeline Implementation
	Selecting Packages
	Feature selection
	Feature Identification
	Feature Extraction Steps

	Web Scraping
	Data Extraction Steps
	Text analysis

	Implementation
	Elasticsearch
	Elasticsearch in Software Package Selection
	BM25 Algorithm
	LM Dirichlet Similarity in Language Modeling
	LM Jelinek-Mercer Similarity in Information Retrieval
	Information-based (IB)

	Integration of the Similarity Models and Elasticsearch
	Query processing
	Ensuring Relevance and Effective Ranking

	Experimentation
	Experimental Setup
	Objective
	Methodology

	Creation of the Golden Set
	Role of ChatGPT
	Data Collection

	Results and Discussion
	Comparative Analysis of Model Performances
	Accuracy, Precision, and Recall Evaluation

	Discussion
	Validity
	Internal Validity: Challenges and Considerations
	External Validity: Generalizability of Findings
	Validity of Construction
	Dependence on External Data Sources
	Effect on Pipeline Validity

	Finding during the project
	AI Integration in Software Recommendations: Potential and Limitations
	The Need for a Balanced AI-Human Approach
	Importance of Model Selection in Software Recommendations
	Impacts on Software Engineering
	Broader Implications of the Findings

	Implications and Responsibilities in AI-Enhanced Software Engineering
	Ethical and Practical Considerations of AI Systems
	Enhancing Transparency and Accountability in AI Recommendations
	Wider Industry Implications of the Research
	Educational Significance for Prospective Software Engineers and AI Researchers

	Conclusion and Future Work
	Reiteration of Core Thesis and Major Contributions
	Future Work
	Impact and Practical Applications

	Concluding Remarks

	References

