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Abstract

Low order climate models can play an impor-

tant role in understanding low frequency vari-

ability in the atmospheric circulation and how

it can be affected by trends in the forcing

consistent with climate change. A conceptual

model of the midlatitudes zonally symmetric

atmospheric circulation in geostrophic equilib-

rium is studied from the perspective of dynam-

ical systems theory. The model was first in-

troduced by Lorenz in 1984. A study of the

steady states and a bifurcation analysis are car-

ried out in order to identify intervals of differ-

ent behaviours in the parameter space. In the

first place, the focus is put on the study of the

nonautonomous system where the cross latitu-

dinal heat contrast varies seasonally, accord-

ingly to changes in insolation. The snapshot

attractor of the nonautonomous system season-

ally forced is compared with the attractor of

the autonomous one for two distinct moments

of the year (summer and winter). In both cases

the effects of the time dependent forcing are

reflected in a clear change of shape of the at-

tractor. Predictability is lost in both cases: the

summer attractor loses its periodicity when the

forcing is seasonal. The winter one favours en-

ergy transport through one of the two wave

components included in the model. In addi-

tion, the forcing is subjected to climate trends

(both positive and negative). The analysis of

the snapshot attractor of the system under cli-

mate trends suggests that the model does not

follow the geostrophic assumption in certain

ranges of the forcing as the average wind flow

does not always show a positive dependence on

the equator to pole heat contrast. On the other

hand, the energy transported by the eddies fol-

lows the sign of the climatic trend. Overall, dif-

ferent effects are observed. A chaotic behaviour

can be completely suppressed in favour of a reg-

ular periodic one and vice-versa. At the same

time, circulation patterns can change, suddenly

disappear and rebuild. In general, the use of

the snapshot attractor proved to be a robust

tool to study the internal variability of the cli-

mate as well as the changing arising from cli-

mate trends. Present and future perspectives

on this work also include a spectral analysis

to extensively understand the effects of climate

trends on low frequency variability.

1 Introduction and Motivation

In 1984 Edward Lorenz introduced for the
first time a conceptual model of the mid-
latitude atmospheric circulation to investi-
gate the irregularity of the atmosphere and
to study the effects of external asymmetries
on an idealised Hadley cell (Lorenz, 1984
[1]). Far from being a detailed and exact
representation of the real atmosphere, the
model had served to study and to test ex-
isting theories about the general behaviour
of the atmospheric circulation and to build
new ones. In 1984, Lorenz analysed the
autonomous case of the low order model
and characterised it by imposing a perpet-
ual season (either summer or winter) on the
forcing acting on the system: certain values
of the parameters led to intransitive peri-
odic solutions while others induced a chaotic
behaviour of the system, unveiling the exis-
tence of a strange attractor.
Given the conceptual simplification of the
extra-tropical atmospheric circulation, the
model (which I will refer to as L84 from
now on) plays a metaphoric role. Never-
theless, dynamical system tools, when ap-
plied to such low order models, prove to
be helpful both in characterizing them from
a merely mathematical perspective and in
drawing a general insight and understand-
ing of the processes they capture.
Since the publication of the original paper,
the L84 model has been largely studied in
literature. A subsequent early work from
Lorenz himself (Lorenz, 1990 [2]) revived
the L84 model to study the implications
of chaos on intransitivity related to the at-
mospheric circulation. The nonautonomous
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version of the model was taken into account
for the first time. These two works from
Lorenz highlighted how the importance of
the study of dynamical systems exceeds the
boundaries of mathematics and strength-
ened its interdisciplinary link with physics:
Lorenz used the model as a mathematical
tool to test his speculative reasoning con-
cerning the presence or absence of intransi-
tivity in the atmosphere while characteriz-
ing the fractal structures of the strange at-
tractor and its basin of attraction.
Further extensive work by others, concern-
ing the study of the bifurcations, the sta-
bility and the predictability of the model
was accomplished in the following years
(Shilnikov et al., 1995 [3]; Broer et al.,
2002 [4]; Freire et al., 2008 [5]). Re-
searching these properties to characterize
the L84 model behaviour proved to be sur-
prisingly interesting for its applications (for
the study of the atmospheric circulation
only and more). On one hand, the L84
model has been used while coupled to a low
order box model for the ocean (van Veen,
2001 [6]) to study the different feedbacks of
the atmosphere-ocean system (where the at-
mosphere acts on a fast time scale and the
ocean on a slow one).
On the other hand, additional fascinating
purposes to study the L84 model exist: for
example, a study about modelling cereal
crops cycles in semiarid regions (Mangia-
rotti et al., 2012 [7]) advocates for further
investigation and connotation of the strange
attractor of the chaotic L84 version. It was
found that the toroidal structure of the at-
tractor of the L84 model shares some sim-
ilarities with the attractor of their global
model for normalized differential vegetation
index. Beside yielding observations of ge-
ometrical similarities, the study of the L84
model could help understanding if such rich
dynamics can be captured by other types of
global models as well.
Therefore, the reasons to study the L84

model are diverse and several. Each of
them focuses on a different perspective of
the problem. The dynamical properties of
the system are quite well understood as far
as the autonomous case is concerned. Al-
though major attention has been placed on
the nonautonomous case too over the years,
it is still interesting to research the addi-
tional information one could draw from the
time dependent case, as well as it is crucial
to investigate the physical processes that
hide behind the mathematical equations of
the system.
Section 2 describes the L84 model from
a dynamical system perspective, touching
upon the autonomous case and focusing on
the nonautonomous one. It is introduced
why the L84 model is a very suitable sys-
tem to study low frequency variability in
climate, such as the sub-seasonal to sea-
sonal variability (S2S), also referred to as
intraseasonal variability.
Speculations about the model counterpart
in the real climate have already been tackled
and remarked by Lorenz at the end of the
last century. Here, the spotlight is placed on
the study of the seasonal effects on the S2S
variability by using dynamical systems tools
such as bifurcation analysis (Section 3) and
concepts, the most important and helpful
of which is the snapshot attractor or pull-
back attractor (Section 4). The concept of
the pullback attractor for nonautonomous
dynamical systems is extensively covered in
the work of Ghil and his collaborators (Ghil
et al., 2008 [8]).
In addition to the seasonal forcing arising
from changes in insolation, the main pur-
pose of this work is to subject the L84
model to different climate trends that may
resemble the effects of global warming and
to study the effects on the circulation and
waves patterns. As simple as it is, the sys-
tem represents an idealised version of the
mid-latitude atmospheric circulation whose
main driver (the equator to pole heat con-
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trast or temperature gradient) will very
likely be affected by climate change. The
westerly flows that characterise the latitude
range between 30° and 60° (both north and
south of the equator) are predicted to be
altered by a trend in the cross latitudi-
nal temperature gradient (expected with cli-
mate change). Nevertheless, different ef-
fects are observed and forecast at differ-
ent altitudes in the atmosphere (Stendel
at al., 2021 [9]): the Arctic amplification
would lead to a reduction of the temper-
ature gradient, although it can be consid-
ered to be quite a shallow phenomenon
(concerning only the first few kilometers of
the troposphere). Thus, the change would
only affect the near-surface meridional tem-
perature gradient. On the other hand, a
higher warming and energy release in the
form of latent heat is expected around the
tropopause at the tropics, leading to the op-
posite behaviour for the meridional temper-
ature gradient [9]. The latter case would
specifically affect the extra-tropical jets (up-
per troposphere westerly winds) rather than
the surface westerlies. Keeping in mind
these considerations and the conceptual na-
ture of the model, both scenarios (increasing
and decreasing cross-latitudinal heat con-
trast) are taken into account. For each dif-
ferent scenario (seasonal forcing only and
two different climate trends) the pullback
attractor has been computed, here referred
to also as snapshot attractor. The concept
of the snapshot attractor relies on the fact
that the measurements happen in a present
time state, where the forcing has a specific
value. It is interesting then to compare the
snapshot attractor of the nonautonomous
system with the forward attractor where the
forcing was held fixed to the same forcing
value for entire run (autonomous case) to
explore the effects of the time dependence
on the system.
Lastly, a summary of the main results and
the final remarks are drawn in Section 5

which also touches upon future work that
takes the topics presented here one step fur-
ther.

2 The L84 model and seasonal effects

In the second half of the 20th century Ed-
ward Lorenz’s work helped tracing the evo-
lution of our understanding of the gen-
eral circulation of the atmosphere (Lorenz,
1967 [10]; Lorenz, 1991 [11]). In particu-
lar, he proposed a 3-equations system that
conceptually represents the mid-latitude at-
mospheric circulation, as an idealised at-
mosphere in thermal wind balance1. The
model follows as:

dX

dt
= −Y 2 − Z2 − aX + aF, (1a)

dY

dt
= XY − bXZ − Y +G, (1b)

dZ

dt
= bXY +XZ − Z. (1c)

The independent variables are X, Y and
Z. X represents the intensity of the zonally
symmetric globe-encircling westerly wind
current (the westerlies). The intensity of
the current is assumed to be in permanent
equilibrium with the equator-to-pole tem-
perature gradient, which is equivalent to as-
suming geostrophic equilibrium for the at-
mosphere. Y and Z represent the cosine and
sine phases of a chain of superposed large-
scale eddies (or waves), which are a crucial
mean of poleward heat transport. In the
model, the transport happens at a rate pro-
portional to the square of the amplitudes of
these waves.
All the variables are scaled so that the time
unit is 5 days, roughly the time scale for

1Since the low dimensional L84 model does not
take into account multiple atmospheric layers it
would be more rigorous to talk about geostrophic
balance.
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the eddies to damp. Therefore, by tuning
the parameter a it is possible to determine
whether the westerlies damp more or less
rapidly than the eddies. b is a parameter
that defines the time-scale of displacement
of the eddies due to the current, while F and
G are external forcing terms, namely the
cross-latitude external heating contrast and
the asymmetric forcing arising from land-
ocean heating contrast respectively.
In the model, it is the thermal forcing F
that acts to change the equator-to-pole tem-
perature gradient X. When F is kept con-
stant and does not depend on time, the sys-
tem is defined as ”autonomous”. In the au-
tonomous case, traditionally, the condition
F = 8 coincides with a perpetual winter
season while the case when F = 6 is iden-
tified with a perpetual summer. In fact,
the meridional temperature gradient varies
accordingly to the interchange of seasons:
it is higher during the winter and lower in
the summer (because of differences in inso-
lation). Therefore, one can consider its ex-
plicit dependence on the time to study sea-
sonal and climatological effects. When F
explicitly depends on the time t, the system
is defined as nonautonomous. In the nonau-
tonomous case where the system is season-
ally forced, the forcing term appears as:

F (t) = F0 + A cos(ωt), ω =
2π

τ
(2)

where τ is the one year period (with τ = 73
since it is the number of units of five days
contained in one year). A is the amplitude
of the oscillation (fixed to A = 2).
One can notice that no thermal inertia has
been taken into account and the solar heat-
ing is the direct source of energy (as the
maxima and the minima of the forcing re-
spectively occur at the beginning and at
the half of the year). The assumption here
is that the principal heating comes directly
from the insolation, while for the real atmo-
sphere the underlying ocean and land are
the main source (and a lag exists between

the solstices and the maxima of heat pro-
vided by land and oceans).
When a global climate trend is taken into
account, the constant term F0 becomes time
dependent and the forcing shall undergo a
general linear decrease (if the focus is on
the flow near the surface where a mod-
erate westerly current exists) or increase
(at higher altitudes where the jet-streams
develop, with higher wind velocities) [9].
Specifically, in this case F0(t) assumes the
following form:

F0(t) =


F̄0, t < 10;

F̄0 ± α
(t− 10)

T
, t > 10.

(3)

The slope of the linear trend is α = 2, so
that after T = 100 years have passed after
the beginning of the trend, F0 will have de-
creased or increased of 2 units. At t = 0
the starting value is F̄0 = 7. The value
of the slope was chosen to be high enough
to guarantee that the forcing would assume
values consistent with different types of be-
haviour. In the expression (3) a 10 years
time span is left for the system to reach a
stationary climate. Although one could ar-
gue that a longer interval should be retained
for the pre-climate change period, Drotos et
al. (2015) [12] have shown that the conver-
gence time on the attractor of the L84 model
is of roughly 5 years. Therefore, during the
integration, it is required that the ensemble
of trajectories converges on the attractor.
For the sake of completeness, one could con-
sider additional types of forcing that also
change seasonally. For instance, G, who de-
picts the heat contrast between land and
ocean, could also be time dependent, but
throughout this work its value has always
been fixed to G = 1. The other parame-
ters are also kept fixed to their traditional
values: a = 0.25, b = 4. The only ex-
ception takes place in section 3 where the
dependence of system on a is investigated
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(although a is never time dependent).
It is interesting to notice that the model
can actually be derived from a truncation
of a higher order model (a 2 layer model
with a quasigeostrophic approximation of
the midlatitudes atmospheric circulation).
Van Veen (2003) [13] has shown how con-
siderations concerning the Kaplan-Yorke di-
mension of the attractor suggest the exis-
tence of a globally attracting three dimen-
sional model that the original one can be
reduced to: the L84 model. In addition,
even after the truncation, a detailed com-
parison between the bifurcation diagrams of
the original model and the L84 one suggests
that the 3 dimensional version (L84) still
provides a good qualitative representation
of the underlying phenomenon it synthe-
sizes, such as the interaction between west-
erlies (jets) and the superimposed baroclinic
waves or eddies.

The convenience of reducing the complex
model to the three equations L84 lies in the
fact that such simpler systems can be more
easily numerically integrated and a more
straightforward analytical study can be per-
formed. Keeping in mind the time scaling
of the variables, numerical simulations can
be carried out to explore the behaviour of
the model over time. Specifically, a fourth
order Runge-Kutta numerical scheme with
∆t = 0.025 (3 hours) has been used to inte-
grate the system.
As a final remark of this section, a time-
series of the variable X over time for the
nonautonomous case (with seasonal forcing)
is shown in Fig. 1. The figure shows two
consecutive years of a simulation of 20 years,
starting from the winter solstice (the initial
conditions being X = (2, 1, 0) where X is
the coordinate vector in the phase space).
As noted in [2] the system exhibits a bi-
modal behaviour during the summer sea-
son, with the flow displaying either slow
oscillations with high amplitude or faster
oscillation of smaller amplitude. The two

types of behaviours shall be respectively re-
garded as between ”active” and ”inactive”
summers. The distinction is made according
to the amplitude of the oscillations during
that season. It is interesting to relate this
phenomenon to the behaviour of the waves
and the total energy of the system, defined
as ETOT = 0.5(X2+Y 2+Z2). Fig. 2 shows
the energy of the system over the same time
interval. One notices that during the active
summer the energy of the system undergoes
higher amplitude oscillations than in the in-
active one, similarly to what happens to the
winds. This means that during the active
summer, the interaction of the flow with the
waves is stronger and waves are constantly
pumping and extracting higher quantities of
energy from the flow. During the inactive
summers there is little energy in the sys-
tem and interaction between waves and the
flow is much faster, leading to smaller oscil-
lations with higher frequency (almost dou-
bling the number of oscillations with respect
to the active summer). Therefore, it is pos-
sible to look at the amplitude of the flow’s
fluctuations as an index of the eddy activ-
ity.
Additionally, it is important to highlight
that the timeseries of X shows oscillations
with a period of roughly 20 to 30 days,
although the behaviour is chaotic (espe-
cially during the winter). This is true also
for the inactive summer (without consid-
ering the double/triple oscillatory events),
although it is less observable empirically.
The frequency of such oscillations suggests
that the L84 (within certain ranges of the
parameters) could be a suitable candidate
to investigate Intraseasonal or Sub-seasonal
to Seasonal (S2S) climate variability and
its changes due to climate change. This
type of variability is generally associated
with frequencies that span a range from few
weeks to months, typically extended up to
100 days (although different definitions have
been given in literature) (Vitart et al., 2019
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Figure 1: Final 2 years of a 20 years simulation with seasonal forcing: F (t) = F0 +
A cos(ωt), ω = 2π

τ
. Such conditions are chosen in order to achieve discontinuity between

the seasons: summers are periodic and winters are chaotic. Two different behaviours arise
for the summer season, which are defined active (first year) or inactive (second year). The
figure seems to hint that these possible behaviours take turns over the years. At the same
time, it is possible for one of the two types of summer to prevail for many consecutive
years. It is the chaotic winter that randomly resets the initial conditions for the following
summer and that leads to interannual variability.

Figure 2: Energy ETOT of the system over time, for the same years of 1. The active
summer displays energy fluctuations with higher amplitudes and lower frequency, while
the opposite happens for the inactive summer (second year).

[14]; Ghil et al., 2019 [15]). Specifically for
the westerlies and extra tropical flows, the
period of the variability is about 40 days,
which is quite higher than what is found for
the L84 model. Nevertheless, the purpose
of this work it is not to provide a frame-
work for weather or climate predictions of
low frequency variability but rather to help

reproducing and understanding the changes
of the S2S. A more detailed spectral analy-
sis that aims at investigating S2S variability
and its evolution under climate trends can
be found in the work of Maraldi B., Dijkstra
H. and Ghil M..
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3 System behaviour as the forcing
changes

In this section the dependence of the system
on the parameters a and F is researched.
Specifically, analytical and numerical bifur-
cation analysis are carried out. The rich-
ness of the system bifurcations and pre-
dictability have been researched in papers
that used more detailed softwares for the
study of continuation and bifurcation prob-
lems in ordinary differential equations sys-
tems (Shilnikov et al., 1995 [3], Broer et
al., 2002 [4]; van Veen, 2003 [13]). Here,
the steady states of the system are stud-
ied along with two different bifurcation di-
agrams. The aim is to study the behaviour
of the system under different values of the
damping parameter a and the forcing F .

3.1 Steady states

The steady states of the system are found by
setting the right hand side of equations (1a),
(1b) and (1c) equal to zero. It is immediate
to show that the resulting equations are:

Y = (1−X)G/(1− 2X− (1+ b2)X2) (4a)

Z = bXG/(1− 2X − (1 + b2)X2) (4b)

a(F−X)(1−2X−(1+b2)X2)−G2 = 0 (4c)

Reducing the system to the previous set
of equations is also useful since ((4a)) and
((4b)) depend both on X, Y and Z while
in ((4c)) the only independent variable is
X. Therefore, by finding the X coordi-
nate of the steady states it is straightfor-
ward to obtain the remaining two coordi-
nates too. Clearly the solution depends on
the free parameters, which will separately
be a and F . When a is the free parame-
ter F is kept fixed to the value F = 6 (but
any other value would yield an analogous
result). Fig. 3 hints that the system goes
from 3 to only 1 real steady state as the pa-
rameter a crosses a certain threshold (which

Figure 3: Graph of the polynomial f(X) =
a(F−X)(1−2X−(1+b2)X2)−G2 for differ-
ent values of the control parameter a, with
F = 6. Its interception with the y-axis co-
incide with the X-coordinate of the steady
states of the system. When a exceeds a crit-
ical value ac, the number of steady states
changes from 3 to 1. This type of behaviour
is the effect of a pitchfork bifurcation. Pa-
rameters values are b = 4, G = 1 and F = 6.

means that a subcritical pitchfork bifurca-
tion occurs). Given the shape of the curve
f(X) = a(F−X)(1−2X−(1+b2)X2)−G2,
one can analytically compute the value for
which the minimum of f(X) changes sign
and therefore finding the critical value ac.
Computing the derivative of f(X) and set-
ting it equal to zero yields:

f ′(X) =X2a(−3− 3b2)+

Xa(2F + 2b2F + 4)− 2aF − a = 0

(5)

and by simplifying a from each term one
finds that the solution for the minimum is
X = 0.06. One can then manipulate the
equation ((4c)) to find the relation:

a =
G2

(F −X)(1− 2X + (1 + b2)X2)
(6)

and by substituting the value of X just
found, one finds that the bifurcation oc-
curs at ac = 0.1788. The value is in ac-
cordance with the behaviour found in the
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bifurcation diagram reported in Fig. 4, ob-
tained through numerical integration and
presented in the following subsection. In
addition to the considerations on the bifur-
cation, it is interesting to observe that one
of the steady states is X = 5.99. Although
this steady state is unstable, it refers to the
geostrophic relation that is assumed in the
construction of the model. In the original
non-truncated model this is actually a ther-
mal wind relation, as hydrostatic balance is
also considered. Anyway, the steady state
X = 5.99, for which X∼F , is consistent
with these approximation.
On the other hand, F can also be used as
a control parameter. In this case, only the
result of a numerical procedure is reported.
Following the same procedure used in the
previous case one will find that the sys-
tem undergoes a pitchfork bifurcation for
F = 4.312. Once again, this is in good
agreement with what is found from the bi-
furcation diagram in Fig. 5 (see subsection
3.2).

3.2 Bifurcations of the autonomous
system

This section shows a bifurcation analysis of
the nonautonomous system. The procedure
used to build the diagram is analogous to
the one used by [4]: 1000 equally spaced
values of a have been selected in the pa-
rameter interval [0,1]; for F the interval is
[0,10]. For each value of a and F a numeri-
cal simulation is carried out and the last 100
points of the trajectory of X in the phase
space from numerical simulation are shown
in Figs. 4 and 5. While the initial con-
dition for the first value of the control pa-
rameter was X=(2,1,0), the final position
of each simulation was set to be the start-
ing condition of the following. It is obvious
that ac defines a change in behaviour for
the system, which goes from having a sta-
ble steady state to showing a periodic oscil-

Figure 4: Bifurcation diagram of the au-
tonomous case with a as a control parame-
ter. a assumes 1000 different values equally
spaced in the interval [0,1]. For each value
of a the last 100 points of the timeseries of
X are shown. The initial condition of each
simulation is the final position of the pre-
vious run (except for the first one where it
is set to {2,1,0}). A vertical line highlights
the moment where the pitchfork bifurcation
happens, in agreement with the value ana-
litically found.

lating behaviour. When this happens one
would usually expect a Hopf bifurcation to
occur. In fact, a narrow band of chaotic dy-
namics seems to exist between the pitchfork
bifurcation and the set of periodic oscilla-
tions. It is possible that the loss of stability
happens in a region of the parameter space
between the two.
The same procedure has been applied to
study the behaviour of the system as the
forcing F changes. In Fig. 5 the diagram
closely resembles the one obtained for a,
with the pitchfork bifurcation happening for
the critical value Fc = 4.312. The same
transition from single stable steady state to
periodic oscillation through an in-between
chaotic interval arises.
In addition, the parameter space has

been divided in different intervals to bet-
ter distinguish between areas of different be-
haviour and compare it with previous bifur-
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Figure 5: Bifurcation diagram of the au-
tonomous case with F as a control pa-
rameter. F assumes 1000 different values
equally spaced in the interval [0,10]. The
plot is obtained following the same proce-
dure as in 4. A black vertical line indi-
cates where the pitchfork bifurcation oc-
curs. The colored areas resume the distinc-
tion made by Lorenz in [2] to distinguish be-
tween different types of behaviour: intran-
sitive periodic (red), weak periodic fluctua-
tions (blue), weak periodic or strong chaotic
(green), transitive chaotic (yellow), strong
periodic (purple) behaviour.

cation analyses. Specifically, by subdividing
the parameter space in the same way used
by Lorenz in [2], a good agreement in terms
of the type of behaviour is found. In par-
ticular, it is clear that when the parameter
F assumes values in the interval [6.9, 8.8] a
chaotic component appears. On the other
hand, when the system evolves under a con-
stant forcing F < 6.9, periodic oscillation
are expected. This is in good agreement
with the original choice of values of F for
the summer and the winter season.
For both bifurcation diagrams one could
check if a Hopf bifurcation explicitly arises
in the interval between the pitchfork bifur-
cation. This is done through the lineariza-
tion of the system around the steady state
(Dijkstra, 2013 [16]). For a Hopf bifurca-
tion to happen the theory requires the exis-

tence of a pair of pure imaginary conjugated
eigenvalues for a specific value of a con-
trol parameter (Guckenheimer and Holmes,
1983 [17]) (a or F in this case), which would
lead the system trajectories from reaching
a steady state equilibrium to a limit cy-
cle. This does not happen in the span be-
tween the pitchfork bifurcation and the aris-
ing of periodic oscillations (for instance, in
the case of a this happens for negative val-
ues). Therefore it is presumed that the com-
plex behaviour that arises after the critical
value is exceeded is an effect of the interac-
tion between the different solutions (steady
states) already become unstable. It is inter-
esting to notice that by looking at the imag-
inary part of the eigenvalues of the single
steady state left for a > ac one would find
the value Im{λ1,2} ≃ ±1.4. From theory
it is known that the imaginary part of the
eigenvalue around the linearization is equal
to the frequency of the oscillations in the
limit cycle. In this case, the frequency of the
oscillations fits in the range of frequencies
found by the spectral analysis in the work of
Maraldi B., Dijkstra H. and Ghil M. (about
1
22

days−1). Caution is needed when mak-
ing this consideration which should rather
act as an indicator of where the low fre-
quency oscillations arise from in the nonau-
tonomous case (and as additional support
for the study of S2S variability). Finally,
the system high sensitivity to initial condi-
tions is highlighted for the cases where the
behaviour is regular and periodic (summer
season). As Lorenz had already reported in
his original paper from 1984, two different
trajectories starting at very close initial con-
ditions (e.g X={2.5,1,0} and X={2.4,1,0})
will converge on two different limit cycles
(see Fig. 6). In order to show this, a 20
years simulation with 104 initial conditions
randomly chosen was carried out.
To conclude, the methods used here to
study the bifurcation diagram might not be
the most suitable to investigate it, as the
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Figure 6: Projection of the attractor of a
numerical simulation with 104 different and
random initial conditions on X − 0.14Z.
Two separate attractors can be seen when
the forcing is F = 6. Both orbits are closed
limit cycles.

initial condition of the numerical simulation
used to obtain the bifurcation diagrams is
just set to be the last point of the previ-
ous simulation. Nevertheless, Fig. 5 shows
a good agreement in reproducing the cor-
rect type of behavior corresponding to spe-
cific regions of the parameter space used for
the following analysis. For a better repre-
sentation of the system behaviour depen-
dence on the parameters a and F , one could
also compute the leading Lyapunov Expo-
nents (LEs) as a function of the control pa-
rameter. This has been partially done by
Shilnikov et al. (1995) [3] and Mangiarotti
et al. (2012) [7], who correctly indicate a
periodic behaviour for F = 6 and a chaotic
behaviour for F = 8.

4 Pullback attraction in the presence
of time-dependent forcing

In the context of the study of nonau-
tonomous dynamical systems the tradi-
tional concept of forward attraction does
not work in certain cases, as the limit t →
+∞ is not well defined. A new concept
has to be used to replace it: the attrac-

tion is considered after the integration of
a large ensemble of initial conditions that
converges on the snapshot attractor [12] or
pullback attractor (PBA) [18]. While this
concept has been widely used in the context
of random dynamical systems (Chekroun
et al., 2011 [19]), a definition exists also
for the case of nonautonomous deterministic
dynamical systems. Detailed mathematical
definitions can be found in Caraballo and
Han (2016) [18] and Ghil et al. (2008) [8],
respectively.

The main idea behind the concept of the
PBA is the following. The key property
of the PBA is that, rather than observing
the asymptotic state of the system in the
remote future (t → +∞), the observation
occurs in a present state t, supposing that
the system has evolved from an ensemble
of initial conditions set at a remote initial
time t0 → −∞. In numerical practice, the
initial state does not need to be asymptot-
ically far in the past. In the physical lit-
erature, an attractor that resembles a PBA
is referred to as a snapshot attractor. Here
the two terms are used interchangeably. A
more complete definition of a PBA is given
in the Appendix.

In the case of L84, a representation of the
Earth climate (where climate refers to the
collection of all the possible weather config-
urations given by the variables X, Y and
Z and following the physical laws presented
in L84) is given by the so-called snapshots:
they are a cross section of the PBA for a
fixed time t. However, it is not really signif-
icant to talk about climate for a single in-
stant. Thus, one should extend the concept
of the climate portrayed by the attractor to
a collection of the snapshots, large enough
to cover a time interval where a climate can
be defined (such as one month).
It is important to remark that the use of
the snapshot attractor requires the initial-
ization of an ensemble of starting condi-
tions, rather than using only one realisation
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as it was done before. In addition, Drotos
et al. (2015) [12] have shown an impor-
tant feature of the snapshot attractor for the
seasonally forced L84 model that extends
the power of the concept: while it could
be intuitive to expect the attractor to be
dependent on the initial conditions ensem-
ble and the initial state it was initialised in,
in reality the snapshot attractor structure
shows to be independent. Any representa-
tion of the snapshot attractor at a fixed time
t̄ would look the same regardless of the ini-
tial ensemble chosen. This is true as long as
time for the system to evolve is larger than
the convergence time tc, which for the L84
model is of about 5 years (Drotos et al., 2015
[12]). At the same time, the snapshot is
periodic with periodic forcing. This means
that, after the convergence on the attrac-
tor, any reproduction of it for a given time
t = t̄ + iτ, for i= 0, 1,...,N, with N = years,
will share the same appearance. Therefore,
the choice of which year to use for the at-
tractor is arbitrary.
In order to study the PBA of the L84 model,
an ensemble of 104 random initial condi-
tions has been initialized in the multidimen-
sional interval in R3: D defined as D =
{(X, Y, Z)|−3 ≤ X ≤ 3,−3 ≤ Y ≤ 3,−3 ≤
Z ≤ 3}.
Every simulation is constructed with this
initial conditions set, with the starting time
at t0 = 0. All the parameters are kept
to the values that have been used before
(a = 0.25, b = 4, G = 1). In the case where
only the seasonal cycle is considered, the
forcing assumes the form of equation (2),
while in the case with climate trends the
additional changes from equation (3) hold.
In the following subsection the focus is put
on the comparison between the autonomous
version of L84 and the nonautonomous one,
in order to understand the sensitivity of
the system to external time dependent forc-
ing. In particular, the PBA for the nonau-
tonomous case is compared with the for-

ward attractor of a time independent real-
isation. In order to take into account the
PBA, an observation time t̄ needs to be cho-
sen. In the case with only seasonal forcing,
two different instants are considered: specif-
ically, one where F (t̄1) = 8 and one where
F (t̄2) = 6. It has already been observed
that in the autonomous case, where a per-
petual season is imposed, these values of the
forcing correspond to a chaotic and peri-
odic behaviour respectively. In the nonau-
tonomous case this can not necessarily be
stated only by looking at the time series, as
the two types of behaviour seem to inter-
twine; a more detailed study must be car-
ried out.
In addition, it is remarked that F = 6 and
F = 8 are not the extrema of the forcing
of equation (2). When the snapshots are
computed, it would be equally reasonable
to take any other time instant with differ-
ent values of the forcing. Those values were
chosen because they serve the purpose of
not having a stationary intransitive circula-
tion. In addition, the L84 has been largely
studied when F assumes those values. Sim-
ilarly, for the case when a climate trend oc-
curs, different instants have been considered
to obtain various snapshots. In this case
the effect of a climate trend is reflected in a
change of the shape of the attractor’s struc-
ture.

Although the snapshot attractor holds in
itself all the information needed to study the
climate of the model, it is more practical to
inspect its projection on the Y-Z plane for
a comparison between different cases. The
projection, which is shown as an heatmap,
measures the number of trajectories for each
possible state in that plane. In particular,
the heat map is built as a bidimensional his-
togram extending in the interval [-3,3] on
both directions, with 600 bins for each direc-
tion. An analogous analysis could be carried
out by observing the Poincaré maps arising
from the intersection of the trajectories with
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Figure 7: Heat map of the forward attractor for F = 6 (left) and of the snapshot attractor
at the time t̄1 = 48.6 time units into the year, where F (t̄1) = 6 (right). Each of the heat
maps has been made with 104 points which are the final state of the trajectories of the
initial conditions ensemble. The initial conditions were randomly set in the interval D
defined as D = {(X, Y, Z)| − 3 ≤ X ≤ 3,−3 ≤ Y ≤ 3,−3 ≤ Z ≤ 3}. To capture the real
PBA it was necessary to let the ensemble evolve for a time larger than the convergence
time of 5 years.

Figure 8: Heat map of the forward attractor for F = 8 (left) and of the snapshot attractor
at the time t̄1 = 12 time units into the year, where F (t̄1) = 8 (right). The heat maps
have been realised with the same procedure as in Fig. 7
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an arbitrary plane in the phase space. The
choice of visualizing the measure of the at-
tractor as a heat map projection follows an
example from Riechers (2022) [20]. The pro-
jection of the attractor is considered strobo-
scopic for the case where only seasonal forc-
ing acts on the system, given the periodic
recurrence of the same shape.

4.1 Seasonal forcing

It has been described how, for certain values
of the forcing F , the system exhibits either
a periodic (F = 6) or a chaotic behaviour
(F = 8). When a time dependent seasonal
forcing is included, this feature becomes less
obvious: while, generally, it remains true
for the winter season, the picture changes
for the summer (Fig. 7 and 8). Neverthe-
less, a bimodal behaviour exists during the
summer. One could suspect that this dy-
namic arises from the existence of two sep-
arate attractors of the system, like those
shown in Fig. 6, but the mechanism seems
to be more complex. In fact, during the
summer of a time dependent forcing realisa-
tion, the system displays a more chaotic be-
haviour when compared to its autonomous
counterpart (Fig. 7). This reflects the ef-
fects of the previous chaotic winter season
which disrupts the existing circulation and
induces less regular and periodic oscillations
in the following summer (or vice-versa). In
this case, periodicity and regularity seem to
be lost. This means that different regions
of the parameter space are visited, with less
predictability and higher dependence on ini-
tial conditions. In addition, it is clear that,
although a bimodal distribution exists, the
slight chaotic trait of the summer attrac-
tor prevents a direct observation of low fre-
quency variability.
In the second place, when F = 8 (Fig. 8),
although the chaotic nature is fully con-
served, there is a clear change in the shape
of the attractor between the autonomous
case and the nonautonomous one. On the

other hand, the autonomous case shows
larger uniformity in the region of the phase
space explored by the system, displaying al-
most a symmetry between the two compo-
nents of the eddies Y and Z. For the nonau-
tonomous case, it seems that a region with
significantly higher values of Z is visited by
the system (the brighter fiber in Fig. 8 (b)).
Keeping in mind that the attractor is a rep-
resentation of the climate, this can be con-
sidered as a state with a stronger activity
of one wave component (Z). Although it is
bounded, the energy of the L84 model can
change over time and it is not conserved.
Here, the contribution of the wave compo-
nent increases and extreme values are more
frequently assumed.

4.2 Climatic trends

One of the aims of this project is to investi-
gate the effects of climatic trends on the L84
model. When a seasonal forcing is applied,
after about 5 years the system converges on
the attractor, which can be considered the
representation of a stationary climate state.
In particular, the stroboscopic maps of Fig.
7 and 8 show the specific climate for a given
time of the year. Clearly, some regions of
the phase space where the attractor exists
are explored more frequently than others by
the system.
A challenging and current problem in Earth
sciences is the study of the anthropogenic ef-
fects on the climate. The effects of climate
change are especially difficult to investigate
and to model globally due to their great re-
gional dependence. Here, the L84 model
is used to qualitatively study the effects of
climatic trends in the meridional heat con-
trast on the mid-latitudes atmospheric cir-
culation. Both a positive and negative lin-
ear trends are applied to the forcing F in
order to capture the effect of climate change
on different levels of the atmosphere. Gen-
erally, by applying a non periodical forc-
ing to the system, one expects the attractor
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to deviate from the stationary state and to
change shape. The visual change of the at-
tractors can be quantitatively remarked by
observing the change in the first four mo-
ments of the distributions of the prognostic
variables X, Y and Z (namely the mean,
the standard deviation2, the skewness and
the kurtosis). The moments are computed
about the mean.
Since it would be pretentious and pointless
to investigate the changes and predict the
climate for one single instant of the year,
the full months of January and July are con-
sidered as references to study the effects of
climate trends (one could have considered
any interval long enough to have sensible
depiction of a climate). This means that
the attractor described in this section is a
collection of the snapshots of every moment
t for both months. As stated above, the
forcing F follows equation (3). In order to
properly capture the effects of the trend on
the attractor, the year before the start of
the trend is visually compared with three
other different years in the interval where
the trend is active (namely the 5th, 50th and
100th year of climate change).

4.3 Changes in the winter attractor

Firstly, the attractor of the month of Jan-
uary is considered. Fig. 9 shows the attrac-
tor for this month just before the start of
the interval of time with the trend in the
forcing.

The attractor shows a qualitative chaotic
behavior (which is in accordance to the
choice of the parameter range for the winter
season). The distribution of trajectories on
the attractor is described by the parameters
in Table 1.

Fig. 12 and 13 show the changes in the
attractor during the climate change period

2The strict definition of the second moment
would refer to the variance of the distribution, not
the standard deviation

Figure 9: Projection of the attractor on the
Y-Z plane for the month of January before
climate change.

Mean Std Skewness Kurtosis

X 1.05 0.636 0.0164 0.336
Y 0.0102 0.905 0.0192 1.51
Z 0.421 0.981 -0.223 1.97

Table 1: Statistics for X, Y and Z in the
month of January, before climate change.

for a negative and positive trend in the forc-
ing respectively.

When the trend is negative, the attrac-
tor does not seem to be affected by the
forcing 5 years after the trend has started.
On the other hand, a substantial change
in the behaviour clearly arises as the sys-
tem evolves further into the future. By the
end of the 100th year the model displays a
regular behavior for the month of January.
The trajectories are limited to a annulus of
smaller radius (substantially reducing the
range of possible combinations for the wave
components Y and Z). This represents a
more stable circulation where wave activity
is reduced and prevented from assuming ex-
treme values. The behaviour does not seem

14



to be periodic as the trajectories never re-
peat themselves but they rather fill the area
within the annulus. Regardless of the weak
chaotic nature of the attractor, Y and Z fol-
low a quite circular orbit which shows how
energy is equally transported by the two out
of phase wave components.
The quantitative changes of the distribu-
tion of the wind flow and the eddy energy
E = Y 2 + Z2 for the case with a negative
trend are shown in Fig. 16 (a, b), which
report the dependence of the first four sta-
tistical moments on time. As far as the flow
velocity is concerned, no major change in
the moments is observed in the first 50 years
after the climate change period has started.
On average, the intensity of the wind sud-
denly decreases around this time, seemingly
in agreement with the geostrophic equilib-
rium that links the equator to pole tempera-
ture gradient to the wind flow velocity. Nev-
ertheless, the mean flow goes back to its ini-
tial value by the end of the simulation. On
the other hand, the eddy energy E exhibits
a decreasing trend over the entire climate
change period, in agreement with the sign
of the trend.
In the case where the trend is positive, by
the end of year 50, the system displays a
shift towards a more regular behaviour. By
the end of the simulation a weak chaotic
component remains, although the system
seems to favour regular orbits and to ap-
proach a periodic behaviour. In chaotic sys-
tems chaos can sometimes be destroyed if a
relatively strong periodic forcing acts on the
system (Pikovsky, 2001 [21]), overcoming
the nonlinear interaction between the vari-
ables. The result is that the forced variable
starts oscillating with the same frequency as
the forcing. Although the main orbits of the
system analysed here have a much higher
oscillation frequency than the seasonal forc-
ing, by looking at a time series of X, Y and
Z and by comparing the frequencies with
F (t) at the end of the simulation a pattern

resembling a beat arises. In fact, the beat
shares the same period as the forcing, 1 year
(Fig. 10).
The average wind velocity decreases over
time, while the other moments don’t un-
dergo noteworthy changes.

Figure 10: Timeseries of X, Y and Z for
high forcing (F0 = 11) and F (t) over 2 years.
The variables oscillates faster than F (t) but
they display a beat of the same frequency.

The skewness of both distributions does
not exhibit considerable changes during the
100 years period and is always close to 0,
indicating a symmetric distribution. This
hints that energy is equally distributed be-
tween the two wave components. A rele-
vant change is observed in the kurtosis of
the distribution of E for both cases. This
indicates that the distribution of eddy en-
ergy becomes light tailed. The density of
outliers is reduced and less frequent extreme
values of wave activity are expected.
As a final remark, the analysis on the at-
tractor for the month of January highlights
that the assumption of geostrophic balance
might not hold under the range of parame-
ter chosen, as one would expect meridional
heat contrast and wind intensity to be pos-
itively correlated. This fact is not surpris-
ing given the conceptual nature of the L84
model. In addition, this could be due to the
choice of parameters: Van Veen, (2003) [6]
had already pointed out how the values of
the parameters traditionally used in the L84
model, especially b, differ from the corre-
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Mean Std Skewness Kurtosis

X 1.12 0.607 0.0106 0.340
Y -0.0133 0.606 0.0805 0.422
Z 0.349 0.666 -0.0280 0.559

Table 2: Statistics for X, Y and Z in the
month of July, before climate change

sponding physical parameters of the quasi-
geostrophic two layer model the L84 can be
derived from.

4.4 Changes in the summer attractor

Figure 11: Projection of the attractor on
the Y-Z plane for the month of July before
climate change.

An analogous analysis is carried out on
the summer attractor (month of July). The
attractor of the system, before the linear
forcing starts, exhibits a more regular be-
haviour compared to the winter one (al-
though a chaotic trait is visible, as expected
after the considerations of section 4.1). The
statistics of the attractor of July before the
climate change, shown in Fig. 11, are shown
in Table 2. The case of a negative trend

in the forcing is very interesting. The waves
pattern seems to break down and only one
soft spot is bright in the heatmap at year 50
(with Y ∼ 1 and |Z| < 0.5), as shown in Fig.
14. This means that the trajectories are
scattered and diffused over the phase space
with respect to the other cases taken into
account so far (lower density in every bin).
On the other hand, a periodic pattern is ob-
served again by the end of the simulation
and the system has rebuilt a new circula-
tion pattern. The geostrophic relation only
holds until before the year 50, where the de-
creasing trend in the average wind velocity
is disrupted. A new irregular pattern of the
average wind velocity arises, while the circu-
lation is restored by the end of the century.
Overall, the average radius of the orbits in
the Y-Z plane is substantially reduced and
as a consequence the average eddy energy E
also decreases over time. As in the winter
case, when the system shifts from a chaotic
behaviour to a periodic and regular one, the
kurtosis of the distribution substantially de-
creases. As far as the case with the pos-
itive trend case is concerned, the change
in behaviour highlights a loss of regular-
ity towards chaos and unpredictability (Fig.
14). During the first 20 years of the climate
change period the average wind velocity de-
creases and then a weak increasing trend
arises. An interesting trend in the kurtosis
of the energy distribution appears, with the
system at first shifting from a heavy tailed
distribution towards a reduction of the out-
liers, just to suddenly display a heavy tailed
distribution by the end of the simulation.
This seems to be in contrast with what hap-
pens in the previous case, where no major
inversions in the statistics trend were ob-
served. These considerations reflect the de-
ficiencies in understanding attributing a di-
rect relation between the thermal responses
of the atmosphere to climate change and its
effects on the waviness of the circulation (as
far as both the amplitude and the extremes
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are concerned) [9].

5 Conclusions and final remarks

In summary, the study of the three equa-
tions conceptual model of the midlati-
tudes atmospheric circulation introduced by
Lorenz in 1984 supports the contribution
of low order models to the qualitative un-
derstanding of poorly comprehended atmo-
spheric phenomena such as low frequency
variability. In the bifurcation analysis the
focus has been put on the damping parame-
ter a and on the forcing F . A similar be-
haviour is found for both cases: the sys-
tem undergoes a subcritical pitchfork bi-
furcation as it passes from having three
steady states to only one. Different inter-
vals where the system alternates either pe-
riodic or chaotic behaviour are found and
are in agreement with the separations found
in other works ([2]). The nonautonomous
system, where the cross-latitudinal forcing
changes seasonally, is investigated. The
differences between the climate of the au-
tonomous system and the nonautonomous
one are researched for the winter and the
summer season. The time dependent forc-
ing yields a loss of predictability for the
summer season: while the forward attrac-
tor of the autonomous system consists of
two different limit cycles, when the system is
seasonally forced a weak chaotic behaviour
arises. As far as the winter attractor is con-
cerned, the chaotic behaviour is preserved
between the two cases, but the shapes of
the attractors differ: in the nonautonomous
case the range of values of the wave compo-
nent Y is reduced in favour of higher val-
ues of Z. The model is then forced with
a cross-latitudinal heat contrast consistent
with a climate change scenario. The forc-
ing is subjected to a trend and the statis-
tics of the system on the attractor are in-
vestigated. The system does not always fol-
low the assumption of geostrophic balance

in the range of forcing values, as a direct
proportionality between X and F is some-
times missing. In fact, the westerlies are
expected to weaken with a decrease of the
near-surface meridional heat contrast. This
is not observed for the full duration of the
interval of time with a climate trend. At
the same time the energy E transported by
the eddies components Y and Z follows the
trend of the forcing (increases for a posi-
tive one and decreases for a negative one).
Since the meridional heat contrast is the
source of energy for the circulation, it seems
that when a trend is imposed the energy ex-
tracted from the system by the eddies also
follows the change with same sign. Overall,
the effects of climate change on the west-
erly flow that characterizes the midlatitudes
is still poorly understood [9]. For instance,
the direct effect of the Arctic amplification
is a reduction of the near-surface meridional
temperature gradient, which is usually as-
sociated with an increase of the waviness
of the circulation. However, some studies
(Blackport and Screen, 2020 [22]) show that
simulations with persistent Arctic amplifi-
cation do not exhibit an increase in wave
amplitudes. On top of that, observations
have also shown a missing link between Arc-
tic amplification and waviness. To conclude,
the snapshot attractor has proved to be a
useful tool to investigate the statistics of the
climate state, and the approach can be ex-
tended to more sophisticated models as well.
At the same time, although it only serves as
metaphor, the L84 model has also shown to
be a useful tool in understanding low fre-
quency variability in the atmosphere, and a
further spectral analysis shall be included to
better capture the effects of climate change
on it.
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Figure 12: Projection of the attractor on the Y-Z plane for the month of January of the
years 5, 50 and 100 after a negative climate trend has started.

Figure 13: Same as Fig 12 but with positive trend.

Figure 14: Projection of the attractor on the Y-Z plane for the month of July of the years
5, 50 and 100 after a negative climate trend has started.

Figure 15: Same as Fig 14 but with positive trend.
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(a) Moments of X in January (negative
trend).

(b) Moments of E in January (negative
trend).

(c) Moments of X in January (positive
trend).

(d) Moments of E in January (positive
trend).

(e) Moments of X in July (negative trend). (f) Moments of E in July (negative trend).

(g) Moments of X in July (positive trend). (h) Moments of E in July (positive trend).

Figure 16: Statistical moments on the attractor over time for the westerly flow X (left
column) and for the eddy energy E = Y 2 + Z2 (right column). Legend: black (mean),
yellow (standard deviation), blue (skewness), green (kurtosis).

19



Appendix: Pullback attractor (PBA)

This appendix aims at providing a more de-
tailed mathematical framework for the con-
cept of pullback attractor in the context of
nonautonomous dynamical systems. Here,
the notation used by Chekroun et al. (2011)
[19] and Charó et al. (2023) [23] is retained.
We consider the following system:

ẋ = f(t,x), (A1)

where x defines the state of the system in
phase space and f determines its evolution
over time. We look for the general solution
φ(s, t)x of the initial value problem given
by (A1) and the initial condition x(s) = x0.
For deterministic autonomous dynamical
systems the operator φ(s, t) provides only
a one time description of the system, as
only the interval t′ = t− s is of interest for
the system’s evolution, which is invariant
with respect to translations in time. On
the other hand, when the system dynamics
explicitly depend on time (as described
by (A1)), the solution φ(s, t) becomes a
two-parameter operator.

A new type of attraction is then defined
in this case with respect to the traditional
forward attraction. The result is a new ob-
ject, the pullback attractor, which satisfies
the following definition.
Definition: The indexed family of objects
A = {A(t)}t∈R, where each snapshot A(t) ∈
A is a compact subset of the phase space, is
a pullback attractor if, for all t:

• A(t) is invariant with respect to the dy-
namics: φ(t, s)A(s) = A(t) for every
s ≤ t; and

• lim
s→−∞

dist(φ(t, s)B,A(t)) = 0 for every

bounded subset B in the phase space,
where the distance is taken in the Haus-
dorff sense.

A forced and dissipative system for which
it is immediate to show how the forward and

the pullback attractions differ is the follow-
ing:

dx

dt
= −ax+ b sin t , (1)

with the initial condition x(s) = x0, where
t ≥ s. The limit for t → +∞ does not exist
for any x0. On the other hand, the limit
for s → −∞ is well defined in the pullback
sense above. Additional examples can be
found in Chekroun et al. (2011) [19] and
Riechers et al. (2022) [20].
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