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Abstract:  

Worldwide dal flats fulfil important ecological and economical roles. However, they are under 
increasingly high pressure. For effec ve management consistent monitoring of sedimentary and 
ecological variables is needed. To overcome the limita ons of field sampling and tradi onal satellite 
image-based methods, a new deep learning-based method was proposed by Madhuanand et al. 
(2023) to predict sediment and ecological proper es of dal flats based on satellite images. This 
method uses a ResNet50-based deep learning model to generate features that are used as addi onal 
informa on on top of the original image for a random forest model to predict environmental 
variables. While sa sfactory results were reached for the Wadden Sea it was unknown how well this 
method would be able to generalize to other dal flat regions. Here the predic ve performance of 
the method was tested for the dal flats in Bar Al Hikman, Oman, using Landsat 7 and Sen nel 2 
images and different transfer learning techniques. The tested scenarios include literal transfer 
without finetuning, finetuning, finetuning a er freezing, and training from scratch. The predic on 
accuracy was evaluated for the median grain size, silt content, complete biomass, complete species 
richness, crab biomass, and crab species richness. It was found that the predic ve accuracy of the 
model was much lower compared to the original accuracy achieved for the Wadden Sea. Similar to 
for the Wadden Sea the sediment proper es had the highest cross-valida on accuracy from the 
tested variables while the accuracy for species richness was low. The scenario using the pre-trained 
model without any addi onal training reached the highest cross-valida on accuracy. A closer 
inspec on of the results suggested that random forest predic ons are sensi ve to mul -year data 
and temporally separated field and imagery data. The remnants of data gaps from the SLC error of 
the Landsat 7 images were present in the generated features and could thus also have contributed to 
the low predic on accuracies. Therefore, when using this method focus should be on using satellite 
images without data gaps, using temporally closely matching field and satellite data, and predic ng 
only one year at a me for the random forest model.    

 

 

 

 

1. Introduc on 

Tidal flats are characterized by a high biodiversity and produc vity and play an important ecological 
and economic role in many regions. The shallow waters make the dal flats important nurseries for 
fish, crabs, and shrimps (Reise, 2012), and provide important foraging areas for waterbirds (Bom et 
al., 2018). The food and habitat provided are also of economic value by sustaining fisheries (Burt, 
2014; Dissanayake et al., 2018). These fisheries are important for both the local popula on and the 
export. An example are the crabs in Oman which are valuable seafood items for both the domes c 
market and the export (Hehanna et al., 2013). Overall, the yearly global value of the services provided 
by inter dal mudflats is es mated to be around US$ 5.2·1012 2007$ (Dissanayake et al., 2018; 
Costanza et al., 2013). However, worldwide dal flats are under pressure caused by coastal 
development, sea-level rise, coastal erosion, reduced sediment fluxes, subsidence, eutrophica on, 
non-nutrient pollutants, and overfishing (Lever at al., 2001; Murray et al., 2019). This causes changes 
in biodiversity and species richness in many coastal environments (Lever et al., 2001).  
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Consistent monitoring of sedimentary and ecological variables is important for effec ve management 
of these regions (Miloslavich et al., 2018). Due to the nature of dal flats, sampling can be 
challenging. If possible, it is o en me-consuming and expensive. In recent years satellite images 
have been used for monitoring due to their ability to cover large areas at a me and reach hard-to-
reach loca ons. While satellite images have a low resolu on, they can s ll give informa on about 
sediment and ecological characteris cs on the ground by using their rela on to large-scale 
geomorphological structures and spectral informa on.  

Tidal flats have a diverse geomorphology with a combina on of channels and flats. Sediment and 
ecological proper es can be linked to these geomorphological structures. Sediment proper es are 
related to the energy condi ons of the environment. At loca ons with higher flow veloci es like large 
deep channels courser grained sandy sediments are o en present, while the less energe c shallow 
flats contain more muddy sediment. Previous research has shown that sediment characteris cs can 
be linked to the dal channel distribu on and inter dal DEM (Choi et al., 2011). The spa al 
distribu on of macrobenthos is also closely related to environmental variables like surface eleva on 
(Lee et al., 2013), sediment characteris cs (Compton et al., 2013; Yoo et al., 2007), and temperature 
(Koo et al., 2005, 2007). Van der Wal et al. (2008) found for example that in their study area in the 
Netherlands the total macrobenthos biomass could be partly explained by the median grain size, mud 
content, and eleva on. The temperature on dal flats can be influenced by exposure me and water 
content in the sediment (Koo et al., 2007). Characteris cs like moisture content and the presence of 
channels or flats can be taken from satellite imagery. 

The uniform spectral nature of dal flats however makes tradi onal spectral analysis challenging. 
Deep learning methods have been shown to be able to learn to extract complex structures and 
informa on from satellite images (Willcock et al., 2018). Therefore, deep learning models have been 
used increasingly for complex analysis tasks. One such deep learning-based method was developed 
by Madhuanand et al. (2023) to predict sediment and ecological proper es from satellite images for 
the dal flats in the Wadden Sea. Using a rela vely low demanding method they reached sa sfactory 
results. If their method would be able to generalize for other inter dal mudflats this could elevate the 
need for extensive field sampling and aid effec ve management.  

There are however two main restric ons that can limit the use of deep learning models (Iman et al., 
2023). Firstly, successful training of a deep learning model requires an extensive training dataset of at 
least thousands to tens of thousands of training images. Obtaining the required amount of data can 
be me-consuming or even impossible (Zhuang et al., 2020). By using a related exis ng dataset to 
ini alize the model this training cost can be reduced.  Secondly, the training of a deep learning model 
takes extensive me and process power. Deep transfer learning (DTL) was developed to help alleviate 
these restric ons and improve the performance of deep neural networks (Iman et al., 2023).  

The concept of transfer learning in neural networks was first introduced in the 1990s by Lorien Pra  
with the goal of improving the learning speed of neural networks (Pra , 1993). It is inspired by the 
way humans learn new tasks by building on their previous experiences. It builds on concepts from 
psychology, neurobiology, and symbolic machine learning (Pra , 1933). Similar to how synapses in 
the brain come pre-wired, the idea behind transfer learning is to use ini alized weights from a 
network pre-trained on a source dataset as an improved star ng point for training compared to 
randomly ini alized weights. Intui vely, successful learning requires some connec on between the 
two learning ac vi es, in other words, the source and target domains should be linked by a higher-
level common domain (Zhuang et al., 2020; Weiss et al., 2016).  
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Many transfer learning methods make use of the fact that different layers in convolu onal neural 
networks (CNNs) learn features with different degrees of generaliza on (Yosinski et al., 2014; 
Neyshabur et al., 2020). The shallower parts of the network deal with more general features (e.g. 
edge detec on, colour blobs) and are similar for most CNNs trained on images (Yosinski et al., 2014). 
Deeper into the network the learned features become more dataset-specific. For transfer deep 
learning the focus is generally on these general features which are applicable for both the source and 
target dataset. Mul ple studies show that models pre-trained on a source dataset can effec vely be 
used to improve training on a different target dataset (Iman et al., 2023). Most works u lize the CNN 
ac va ons from the fully connected layers while using features from convolu onal layers has 
received limited a en on (Hu et al., 2015). 

DTL is applied in a large variety of situa ons with a large variety of approaches. There are different 
ways to categorize DTL based on the homogeneity of the source and target data, the label-se ng 
aspects, or the applied approaches (Iman et al., 2023). Based on the used approach DTL can be 
divided into four categories: instance-based, feature-/mapping-based, parameter-/network-/model-
based, or rela onal-/adversarial-based (Pan and Yang, 2010; Tan et al., 2018). The most used 
approaches within DTL are model-based approaches (Iman et al., 2023). Model-based approaches 
focus on adjus ng the network and include pretraining, freezing, finetuning, and adding fresh layers. 
These methods can be applied on their own but are usually combined (Iman et al., 2023). The easiest 
way to transfer informa on is literal weight transfer where the weights of the pre-trained model are 
transferred and used for the new task. This does not allow the model to learn any new informa on 
within the target dataset. Therefore, this is o en combined by methods that require the model to 
also train on the target dataset like finetuning, freezing, and/or adding new layers to the model (Iman 
et al., 2023). 

There are some complica ons that might occur when transferring a deep learning model. One of 
these problems is nega ve transfer (Zhuang et al., 2020). This happens when the source and target 
dataset or task are too dissimilar and transferring reduces the performance of the model. Another 
problem is catastrophic forge ng (Iman et al., 2023). This refers to the loss of learned skills by a 
trained model a er further training on a target dataset. Freezing the lower-level layers of a 
transferred model or only training newly added layers should reduce the risk of catastrophic 
forge ng (Iman et al., 2023). Indeed, previous research pointed out that models some mes perform 
less when applied to a different geographical or temporal se ng (Tong et al., 2021).  

The aim of this study is to transfer the deep learning method developed by Madhuanand et al. (2023) 
to Bar Al Hikman, Oman, to test if this method can be generalized and applied to a different 
geographic region. To answer this ques on the cross-valida on accuracy of the median grain size, silt 
content, complete biomass, complete species richness, crab biomass, and crab species richness was 
evaluated and compared for several scenarios. Scenarios include training from scratch and the 
transfer learning methods of literal transfer, finetuning, and freezing. These scenarios will be tested 
on Landsat 7 images which match the temporal range of this study and on a Sen nel 2 image for 
which the method was developed but which does not match the temporal range. To answer the main 
ques on the following sub-ques ons will be answered: 

- How can the scan line error of the Landsat 7 images be resolved? 
- What is the cross-valida on accuracy of each learning technique for the sediment and 

ecological variables using Landsat 7 images? 
- What is the cross-valida on accuracy of each learning technique for the sediment and 

ecological variables using a Sen nel 2 image? 
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2. Background 

2.1 Deep learning models 

Deep learning models have become increasingly popular because of their ability to describe complex 
rela onships with non-linear data. In par cular, convolu onal neural networks (CNNs) have become 
popular for performing tasks like image classifica on and segmenta on (Iman et al., 2021; Pires de 
Lima & Marfurt, 2019; Hu et al., 2015).  

2.1.1 Structure of Convolu onal Neural Networks (CNNs) 

A convolu onal neural network is a type of deep neural network that contains at least one 
convolu onal layer (Ketkar & Moolayil, 2021). A convolu onal layer uses a mathema cal opera on 
called a convolu on which convolves the input image or feature map with a kernel or filter. The 
output of this convolu on is a new feature map. The kernel can have different sizes and has weights 
and biases associated with it. These weights and biases are op mized during the training of the 
network. CNNs also typically contain pooling layers. These are layers that reduce the spa al 
dimensions of the feature maps while maintaining the main important structures. This down-
sampling reduces the dependence on the loca on of features and reduces overfi ng (Goodfellow et 
al., 2016). Most commonly max pooling is used which takes the maximum value within a chosen local 
window to produce the downscaled output map. Several convolu onal and pooling layers are o en 
followed by one or several fully connected layers at the end of the model.  

CNNs and other deep learning models learn by backpropaga on. By evalua ng a cost or loss func on 
the model evaluates how well the output corresponds to the desired output. During training the 
objec ve of the model is to minimize this cost func on and find the global, or in prac ce o en local, 
minimum in the loss landscape. One of the most well-known methods to achieve this is the gradient 
descent (Rumelhart et al., 1986). It calculates the par al deriva ve of the total error with respect to 
each weight in the network for each input-output combina on. It then accumulates the par al 
deriva ves of all these input-output combina ons to update the weights propor onally. As this 
method evaluates all training data before taking one step down the loss domain this method is 
computa onally expensive. Therefore, many models now use the stochas c gradient descent (SGD). 
It works similarly to the gradient descent, but it is done for a random sample of the training data 
called a batch. This speeds the model up while keeping the accuracy similar.  

An important variable that determines the performance of the deep learning model is the learning 
rate. The learning rate determines the step size of the gradient descent. If the learning rate is too high 
the gradient descent can overshoot the local minimum resul ng in a model that fails to converge 
(LeCun et al., 1998). On the other hand, if the learning rate is too small training will take a long me. 
As a result, it is important to choose an appropriate learning rate for a given task. An o en-applied 
method uses a dynamic learning rate that adapts to the stage of learning. The models o en start with 
a higher learning rate to quickly approach a local minimum. When this local minimum is approached 
the learning rate is reduced to prevent overshoo ng and help the model converge.  

2.1.2 Autoencoders 

An autoencoder is a specific type of neural network that is useful for learning representa ons of the 
data without supervision (Bank et al., 2023). As a special type of encoder/decoder architecture it 
consists of an encoder, which compresses the input through encoded layers, and a decoder, which 
up-samples the encoded layers again to create an output. Autoencoders learn to reconstruct the 
input images. By trying to minimize the difference between the input and the output images they 
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learn key features that contain spa al and textural informa on describing the input image. These 
features containing spa al and textural informa on can then be used as addi onal informa on next 
to the spectral data for predic ng environmental and ecological variables from the satellite images 
(Madhuanand et al., 2023).  

2.2 Deep learning method for dal flats 

Madhuanand et al. (2023) developed a deep learning method to predict sediment and ecological 
proper es from satellite images in the Wadden Sea. They used an autoencoder model to generate 
features from Sen nel 2 images which could be used as addi onal informa on to train a random 
forest model. In the following part their method will be described in more detail.  

2.2.1 Autoencoder model 

To learn representa ve features of the input data a regularized version of the autoencoder called the 
varia onal autoencoder (VAE) was used. The backpropagated loss is calculated as a combina on of 
the reconstruc on and regulariza on loss as in the equa on below.  

𝐿 =  𝜆 𝐿 + 𝜆 𝐿  

Where L1 is the reconstruc on loss, L2 is the regulariza on loss, and λ1 and λ2 are weights. The 
reconstruc on loss is derived from the mean squared error (MSE). It tries to op mize the model by 
minimizing the differences between pixels in the reconstructed image and the input. The 
regulariza on loss is calculated from the divergence loss which tries to keep the learned distribu ons 
close to a standard distribu on. The two losses were combined with a weight. The op mal 
performing weights determining the rela ve contribu on of the reconstruc on and regulariza on 
loss to the total backpropagated loss were determined by Madhuanand et al. (2023) to be 1 and 
0.001 respec vely with the reconstruc on loss thus having a higher weight.  

The used VAE uses the ResNet-50 structure. ResNet-50 is a residual neural network. These types of 
neural networks contain skip connec ons that bypass layers in the model. These skip connec ons are 
implemented to increase the performance of very deep neural networks (He et al., 2016). They are 
used to extract both low-level and high-level features (Madhuanand et al., 2023). The structure of the 
model can be seen in Figure 1. The ResNet-50 model contains 49 convolu onal layers and one fully 
connected layer. It also contains 2 pooling layers, one max pooling a er the first convolu onal layer 
and one average pooling before the fully connected layer. A er the patches move through this 
encoder it moves through several up-sampling layers. These up-sampling layers used rec fied linear 
unit (ReLU) ac va on to introduce non-linearity (Madhuanand et al., 2023).  

2.2.2 Feature extrac on 

Each of the blocks in the encoder contains features that describe the input patches. When moving 
through the encoder the number of features increases while their dimensions decrease. The first 
layer containing 64 features of 32x32 pixels each was selected to be used to generate the features for 
the random forest model and is up-sampled through bilinear interpola on. This layer was chosen to 
minimize uncertain es introduced by up-sampling and to keep the number of features low to prevent 
increasing computa onal demands. To reduce the border effect when the features are up-sampled, 
the patches are created with an overlap of 30%.  
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2.2.3 Random forest model 

The predic on of the variable of interest is done using a random forest regression model. The 
method was chosen because it had proven to be able to fit models with many input variables even 
with non-linearity or collinearity. To tune the random forest using cross-valida on the data is split 
into a training dataset (90%) and a valida on dataset (10%). A k-fold cross-valida on was 
implemented to op mize the number of observa ons when fi ng the trees. They specifically used a 
10-fold cross-valida on which was repeated three mes to reduce variance in the model 
performance.  

3. Data & Methods 

In the sec on the used methods will be described. This sec on will start with a descrip on of the 
study area (sec on 3.1). This is followed by a descrip on of the data collec on (sec on 3.2) and pre-
processing steps (sec on 3.3). A er this, the used models and used parameters are discussed (sec on 
3.4. Finally, a short descrip on is given of the different scenarios (sec on 3.5). An overview of the 
used methods and procedures can be found in the flow chart on the next page (figure 2).   
 

 

  

Figure 1 Structure of the ResNet-50 architecture. 
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3.1 Study area 

3.1.1 Geomorphology & hydrodynamics 

This study focussed on the inter dal mudflats in Barr Al Hikman, Oman. The mudflats are located on 
the narrow con nental shelf along the Arabian Peninsula in the Arabian Sea and form the connec on 
between the inland sabkhas and the Arabian Sea. They can be divided into three subareas: Khawr, 
Shannah, and Filim (figure 3). Together they have an es mated area of around 190 km2. The mudflats  

Figure 2 Overview of the used workflow. At the top the overall workflow. The blue lines depict data used for Sen nel 2 
scenarios while the yellow lines represent the Landsat 7 scenarios. The training of the deep learning model depends on the 
used scenario and is explained in more detail in the bo om part for each method. 
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contain bare mudflats, seagrass meadows, inter dal pools, reef structures, and channels (Bom et al., 
2018). Each of these features uniquely influences the water dynamics, soil structure, and physical and 
chemical proper es in its area and thereby influences the spa al distribu on of flora and fauna.  

The sediment on the mudflats originates from both the sea as well as from wind-blown deposits 
(Bom et al., 2018). Environmental parameters were es mated for a part of Shannah by Bom et al. 
(2020). They es mated that the inter dal eleva on differences are up to 2.2 m and that the median 
grain size ranges between 136 and 249 μm. The sediment depth ranges between 0 and 20 cm with 
shallower sediment depths at loca ons with reef structures (Bom et al., 2020). The dal cycle in Barr 

Figure 3 Loca on of the studied dal flats in Filim, Khawr, and Shannah in Bar Al Hikman in Oman. 



  
 

11 
 

Al Hikman is a combina on of diurnal and semidiurnal. The average dal range is around 1.5 m but 
can be up to around 3.5 m during spring des.  

Along the coast of Oman there is nearly con nuous upwelling. The strength of the upwelling is 
influenced by the monsoon winds (Bom et al., (2018). From June to August monsoon winds monsoon 
winds come from the south-west. This causes increased upwelling around the coast bringing nutrient-
rich water and increasing produc vity (Bom et al., 2018). From December to February the winds 
change to north-easterly which reverses the water currents.  

3.1.2 Ecology 

Barr Al Hikman is well-known for its large diversity of marine life and abundant birdlife. The area is an 
important habitat for many species of fish and crustaceans of economic value (Bom et al., 2018). 
Primary produc on on the inter dal mudflats takes place by phytoplankton, seagrasses, epiphytes, 
and microphytobenthos. Es mates take the primary produc on of the Barr Al Hikman area, including 
the sub dal and mangroves, to be up to 160.000 tons g C yr-1 placing it among the most produc ve 
exclusive economic zones (EEZs) that include interna onally important inter dal mudflats larger than 
5000 ha (Bom et al., 2018).  

Benthic invertebrates (e.g. bivalves, gastropods, polychaetes, and crustaceans) are important for the 
ecology of inter dal flats. They form an important link between the primary producers and secondary 
consumers including fish and birds and are usually the star ng point for the characteriza on of food 
webs in inter dal mudflats (Bom et al., 2018). Of most interest are the macrozoobenthic 
invertebrates which are all benthos > 1 mm. They form the main food supply for birds and marine 
predators in Barr Al Hikman (Bom et al., 2018). Barr Al Hikman has a benthic community with at least 
97 iden fied species. Most of these species belong to the gastropods, bivalves, or brachyuran crabs. A 
field campaign in 2008 showed standing stock densi es of the same order of magnitude as for other 
interna onal inter dal mudflats (Bom et al., 2018). The same field campaign also showed that the 
main benthic biomass of Barr Al Hikman consists mainly of gastropods and bivalves, while 
crustaceans and polychaetes contribute less to the total biomass. Over 78% of the biomass density 
was made up of three species: Pirenella arabica, Cerithium scabridum, and Pillucina fischeriana. With 
the excep on of crabs li le is known about the interannual varia ons in the benthic community. 

3.1.3 Compared to the Wadden Sea 

When comparing the dal flats in Bar Al Hikman to the studied area in the Wadden Sea the variables 
of interest differ substan ally. The dal flats in Oman have a much higher median grain size with a 
mean of 190 μm in Oman compared to 145 μm in the tested region in the Wadden Sea (Madhuanand 
et al., 2023). The silt content of the dal flats in Oman is also much lower compared to the Wadden 
Sea, with a mean of 6.3% to 13% (Madhuanand et al., 2023). For the ecological variables, the dal 
flats in Oman have a lower biomass and richness compared to the Wadden Sea.    

3.2 Data collec on 

3.2.1 Field data 

Field data was collected by Bom et al. (2017, 2020) during eight field campaigns in 2008 and 2011-
2015. Geocoded ecological data on the biomass and taxonomy of macrobenthos was collected during 
each of these campaigns. During the 2008 campaign all macrobenthos were collected while the 
campaigns from 2011-2015 focused only on crabs. Sediment data on median grain size and silt 
content was collected during the 2011 campaign. The 2008 campaign took samples in each of the 
regions Filim, Khawr, and Shannah. The other campaigns sampled only in Shannah. An overview of  
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the number of field data points for each campaign can be found in Table 1. The loca ons of the field 
samples for each campaign are given in Figure 4 for sediment proper es and Figure 5 for the 
ecological variables.  

 

Table 1 Number of field data points for each field campaign in Oman. 

Figure 4 Field collec on loca ons of the sediment proper es collected during the field campaign in 2011. Image acquisi on 
date is 14 February 2008 and is in true colour. 
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Figure 5 Loca ons of the field sampling points. The points with no recorded biomass are excluded in the analysis. 
Image acquisi on date is 14 February 2008 and are shown in true colour. 
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3.2.2 Satellite images 

Satellite images were collected to match the temporal availability of the field data between 2008 and 
2015. While the original method used Sen nel 2 images, this satellite only launched mid 2015 making 
it unsuitable for the collec on of sufficient training images within the desired me range. Instead, 
Landsat 7 images were used. Launched in 1999 and opera onal un l 2022 this satellite covered the 
en re desired temporal range. While Landsat 7 ETM+ data suffers from a failed scan line corrector 
(SLC) from 2003 onwards other open-source sensors were deemed unsuitable because of their 
inability to cover the en re desired temporal range (Sen nel 2 and Landsat 8) or failure to cover the 
desired region (Spot). Based on the results of Madhuanand et al. (2023) only the blue, green, red, and 
near-infrared(NIR) bands were used. These bands have a spectral range of 0.45-0.52 µm for the blue 
band, 0.52-0.60 µm for the green band, 0.63-0.69 µm for the red band, and 0.77-0.90 µm for the NIR 
band. The spa al resolu on of the images is 30m.  

The models were trained using Landsat 7 images for the years 2008 and 2011-2015 which correspond 
to the years during which field data was collected in Oman. Only satellite images with exposed dal 
flats and no cloud cover over the dal flats were selected. A total of 21 images complied with these 
requirements.  

To test the effect of the different sensor and SLC error the predic on ability was also tested using a 
Sen nel 2 image, which the model was originally developed for in the Wadden Sea. As men oned 
before, because of the launch date of Sen nel 2 not enough images were available within the field 
campaign meframe to train the VAE model. Therefore, only one image was collected corresponding 
to the field date of the last campaign in December 2015. The selected image was acquired on 18 
December 2015. It was chosen based on its rela vely good exposed dal flats and close temporal 
proximity to the field data. 

The image taken on 18 December 2015 was selected This image was then used to generate features 
and train the random forest model. The spectral ranges of the four used bands are 0.458-0.523 µm 
for the blue band, 0.543-0.578 µm for the green band, 0.650-0.690 µm for the red band, and 785-899 
µm for the NIR band and they have a spa al resolu on of 10 m.   

3.3 Preprocessing field data 

The biomass and taxonomy of each collected macrobenthos was stored separately in the dataset. For 
each sample loca on, the biomass of all the collected macrobenthos was summed to get the total 
biomass. The species richness was calculated by evalua ng the total number of different species for 
each sample loca on based on the recorded taxonomy. Points with no recorded macrobenthos were 
excluded from the analysis which resulted in a slightly lower number of data points (table 1). Because 
of the limited number of points for each campaign for the crab data these points were all combined 
in the random forest model, resul ng in 688 data points for crab biomass and crab richness. Since the 
November 2012 campaign did have a similar number of points as used by Madhuanand et al. (2023) 
the predic ve performance for crab data of this year was also evaluated separately from the other 
crab data. For the complete biomass and richness from 2008 there were 254 data points. All 66 
sediment samples could be used.  

The histograms of the field data showed that the distribu on is skewed towards the lower values with 
some higher values extremes (sec on 4.1, figure 7). In par cular, the biomass shows this pa ern 
strongly. A logarithmic correc on was applied to create a more normal distribu on (figure 8). 
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3.4 Preprocessing satellite images 

To prepare the Landsat 7 images for training of the VAE model a few steps had to be taken which will 
be described in more detail below. 

3.3.1 SLC failure data gaps 

From 2003 onwards Landsat 7 ETM+ images suffer from a failed scan line corrector which results in 
large strips of data gaps within the images. Before these images can be used by the model these data 
gaps have to be filled. Different techniques have been suggested to deal with these data gaps (e.g. 
Hossain et al., 2015; Scaramuzza & Barsi, 2005; Yin et al., 2016). These techniques broadly fall into 
two categories. Single image techniques use interpola on techniques to fill the data gaps using the 
data surrounding the gaps. A drawback of these techniques is that they create made-up data and that 
inherent textures tend to get lost. Mul ple image techniques use a second image to fill the data gaps. 
Since the data gaps do not occur at the same loca on for each image, data from different images can 
be used to fill the gaps. The advantage of this technique is that it uses real data with inherent 
textures. As deep learning models use texture this is an important advantage. A disadvantage is that 
there is a spectral offset between the different images and that geomorphological changes can occur 
between the two moments in me. Histogram matching is a method that aims to reduce these 
spectral differences. However, it is quite sensi ve to differences in radiance due to for example 
clouds, snow, or reflec on of water (Scaramuzza & Barsi, 2005).  

A er tes ng different filling techniques and visually comparing the results it was found that the 
mul ple-image techniques produced the best results (see sec on 3.1). As histogram matching was 
computa onally more intensive while not visually improving results this study chooses to fill the data 
gaps by simply using data from other images without any correc ons. When choosing the specific 
image to fill the gaps three criteria were taken into account. The most important criterion was that 
the image chosen to fill the gaps must fill the data gaps as much as possible. This means that the data 
gaps had to be filled completely or at a maximum only le  a limited amount of 1-to-2-pixel wide gaps 
at the edge of the area of interest (figure 6). The second criterion was that the filling image had to  

Figure  6 Examples of types of gap fills between two true colour images at the most southwest p of Filim. a) unsuitable 
filling image; filling images does not fill the gaps , (b) accepted filling image; filling image le  a limited amount of 1-to-2-
pixel wide gap, and c) preferred filling image; filling image completely fills the data gaps is the study area. 
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be taken within a specific me frame from the target image. When evalua ng this criterium seasonal 
years were used where a new year starts a er the monsoon season taking place from June to 
September. Preferably images taken within in same seasonal year were used and the filling image 
should not be more than two seasonal years away from the target image. This aims to reduce the 
effect of changes occurring over me like changing geomorphology. Finally, images with the lowest 

dal difference were preferred to minimize discon nui es caused by different dal eleva ons. 
Le over 1-2 pixel wide gaps in a limited part of the study area were filled using a median filter with a 
5 by 5 window.  

3.3.2. Masking 

Before the images were passed to the model the land and open sea were masked out. The extent of 
the dal flats was based on the maximum extension of the dal flats within our data set. The 
landward extension was taken from two images taken during high de. A small border around the 
land and sea was kept to account for some error. The dal flats in the region of Filim were separated 
from Khawr and Shannah by this masking.  

3.4 Models 

The models used are developed by Madhuanand et al. (2023). They consist of a training model based 
on Resnet 50, a model that generates features, and a random forest model that predicts the variables 
of interest. They will be described in more detail below. 

3.4.1 Training model 

The training model uses the pre-processed Landsat 7 images to train the deep learning model based 
on Resnet 50. First, each image was cut into smaller patches which form the input from which the 
deep learning model will learn. These patches had a size of 64x64 or 32x32 pixels depending on the 
scenario being tested (see sec on 3.5) and had an overlap of 10%. This resulted in a total number of 
9,009 patches for a patch size of 64x64 and 36,582 patches for a patch size of 32x32. These patches 
were then divided into a training (80%) and valida on (20%) dataset. As a result, the training dataset 
for scenarios using a patch size of 64x64 contained 7,207 patches while the remaining 1,802 patches 
were used for valida on. For scenarios with a patch size of 32x32, the training dataset contained 
29,265 patches while the valida on dataset contained 7,317 patches. The training model was then 
trained for 100 epochs at the end of which the model was saved to be used to generate features. The 
hyperparameters used for each scenario can be found in Table 2.  

 

 

Table 2 Hyperparameters used for training and the image source used for training and feature genera on for each of the 
different scenarios. 
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3.4.2 Feature genera on 

The models trained by the training model and the model from Madhuanand et al. (2023) trained on 
the Wadden Sea were used to generate features from a given input image. These features are taken 
from the first layer which contains 64 features of 32x32 pixels. To match the input size these features 
are up-sampled to 64x64 pixels. For each field campaign an input image was chosen to be close to the 
field data collec on date and to have the lowest possible dal eleva on. The dal eleva on was 
es mated from the dal gauge located in Masirah. An overview of the used Landsat 7 images can be 
found in Table 3 and seen in Figure 4. For the Sen nel scenarios (sec on 3.5.6) 64 features were 
generated for the single Sen nel 2 image.  

3.4.3 Random Forest (RF) model 

From the produced 64 features and the original images with four spectral bands values were 
extracted at the loca ons of the field data. The random forest model then built a random forest to 
predict the field data variable of interest based on these values. A random forest with 800 trees and a 
maximum depth of 20 was used. The minimum samples for a split was set to 10 with the minimum 
samples per leaf being 2. The hyperparameters for the RF model can be found in Table 3. Compared 
to the se ng used by Madhuanand et al. (2023) the number of splits used was decreased to 5 and 
the number of repeats to 2 to account for the lower number of field data points available.  

3.5 Scenarios 

Different transfer methods were tested in the paper. These are referred to as scenarios throughout 
the paper. They differ in how the model used for the feature genera on was trained and which 
images were used to generate the features.  An overview of the used hyperparameters and used 
training data per scenario can also be found in Table 2 in sec on 3.4.1.  

3.5.1. No change 

In this scenario, the easiest and basic transfer learning method of literal weight transfer without any 
further training was applied. Thus, the model from Madhuanand et al. (2023) trained on the Wadden 
Sea was used for feature genera on without any further training on the dal flats in Oman.  As the 
model from Madhuanand et al. (2023) used a patch size of 64x64 this scenario also uses a patch size 
of 64x64.   

3.5.2. Finetuning 

The target dal flats in Oman differ from the dal flats in the Wadden Sea. These regional differences 
can be important for environmental predic ons but are not yet learned by the model trained on the 
Wadden Sea. The expecta on is that finetuning of the model on images of the dal flats of Oman will 
increase the predic ve performance. Thus, the trained model from Madhuanand et al. (2023)  

                                      

Table 3 Hyperparameters used for the random forest model. 
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was used to ini alize the weights of the training model which was then trained on images from 
Oman. Since the model has been pre-trained the learning rate was reduced by a factor of 10 
compared to training from scratch to prevent weights from changing too quickly and forge ng of 
learned informa on (Li et al., 2020). Therefore, a learning rate of 0.000001 was used for this scenario.   

3.5.3. Freezing 

Literature suggests finetuning to be a subop mal transfer learning technique because of catastrophic 
forge ng (Iman et al., 2023). Freezing has been suggested as a technique to prevent catastrophic 
forge ng by not upda ng the shallow layers which contain more general features likely suitable for 
similar tasks (Iman et al., 2023). For this scenario, the weights were again ini alized by the weights 
from Madhuanand et al. (2023). However, in contrast to the previous scenario now all layers with the 
excep on of the last two were frozen. This way the model could keep the general informa on learned 
on the Wadden Sea dataset while the last two layers could adapt to new region-specific informa on. 
Again, since the model has been pre-trained the lower learning rate of 0.000001 could be used.  

3.5.4. From scratch 64 

This scenario uses the same model structure as the model used by Madhuanand et al. (2023) and a 
patch size of 64x64. However, instead of using the pre-trained weights the model was trained from 
scratch from randomly ini alized weights to see how the model structure and setup would perform 
on the new region without transfer learning. 

3.5.5. From scratch 32 

The pixel resolu on of Landsat 7 of 30 m is much larger than the 10 m pixel resolu on of the Sen nel 
2 images that the model was originally based on. As a result, a patch size of 64x64 pixels is quite large 
for the dal flat region of Oman. It results in only 7,207 training patches and 1,802 valida on patches 
which is quite li le to train a deep learning model, for which, as said, preferably tens of thousands of 
patches are used. To see the effect of using a lower patch size the model structure was adapted to 
work with a patch size of 32x32 pixels which resulted in a much larger training dataset of 29,265 
training patches and 7,317 valida on patches. The hyperparameters are kept the same as in the 
scratch 64 scenario. 

3.5.6. Sen nel 

The quality of the Landsat 7 images could influence the performance of the model as inconsistencies 
between the original image and the image used to fill the SLC error gaps can be picked up and 
learned by the model. To get an idea of this influence the same scenarios men oned above were also 
applied to a Sen nel 2 image. This is the same type of image that the model was developed for in the 
Wadden Sea. Compared to Landsat 7, Sen nel 2 images have a higher resolu on of 10 m. As Sen nel 
2 image collec on started only at the end of 2015 the temporal resolu on is reduced for these 
scenarios and only a single image collected in December 2015 was used.  

3.5.7 No change 2015 

To also test the effect of the lower temporal resolu on without the added effect of the different 
sensor one Landsat 7 scenario was repeated while using only one Landsat 7 image for the feature 
genera on. Similar to the Sen nel scenarios the image used for this was the December 2015 image. 
Because of its results, the trained model of Madhuanand et al. (2023) was used like in the other ‘no 
change’-scenarios.  
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4. Results 

4.1 Field data 

The median grain size in the study area ranged between 102.3 and 507.6 μm with a mean of 190.8 
μm. The silt content ranged from 1.08% to 15.2% with a mean of 6.30%. The biomass, measured as 
ash-free dry mass (AFDM), ranged from 0.027 to 207.8 gAFDM/m2 with a mean of 22.2 gAFDM/m2 
full biomass collected in 2008 and from 0.0002 to 1.7 gAFDM/m2 with a mean of 0.10 gAFDM/m2 for 
only crabs collected during the 2011-2015 campaigns. The full species richness ranged between 1 and 
15 with a mean of 4. The crab richness ranged between 1 and 6 and had a mean of 1. 

Figure 7 Histograms of the field data show a skewed distribu on towards the le  with some higher extremes. 
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As can be seen from the histogram in Figure 7 the distribu ons of all variables are skewed toward the 
le  with some extreme outliers for the higher variables. In par cular, for the biomass, crab biomass, 
and crab richness are the lower values much more frequent. A er the logarithmic transforma on the 
amount of extreme outliers is reduced (figure 8). Only for the crab species richness does the 
transforma on not seem to change the distribu on strongly. The effect of the logarithmic 
transforma on was most pronounced for both biomass variables. A er the transforma on their 
distribu on seems slightly skewed to the right.  

Figure 8 Histograms of the data a er the logarithmic transforma on. The distribu ons shi ed towards the right and have 
fewer extreme outliers. 
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4.2 Gap filling & image selec on 

Comparing the results of different gap-fill methods it can be seen that there are clear differences 
(figure 9). When using an interpola on technique the gap fills are smoother than the surroundings. If 
a second image is used to fill the gaps the filled regions have more texture. However, the spectral 
differences are more pronounced. The difference in water level between two images creates a clear 
difference between the original image and the filled stripes.   

To find the most op mal images to combine for mul -image gap filling an overview was created 
which evaluated each image combina on based on the criteria men oned in sec on 3.3.1. This 
overview can be seen in Table 4. It gives an overview of how well an image fills the gaps, how many 
seasonal years they are separated, and the dal eleva on difference. Of the 21 images that had to be 
filled, 13 were filled with an image acquired within a seasonal year. 5 images were selected that did 
not fill the en re data gap but le  a 1-to-2-pixel wide gap to be filled with interpola on.  

 

Figure 9 The results of different gap fill techniques. (a) interpola on using median focal sta s cs with a 7x7 window, (b) 
interpola on using inverse distance with a 7x7 window, (c) filling with a different image without correc ons, (d) filling 
with a different image using global histogram matching. 
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The images selected for feature genera on can be found in Table 5. Most images had a dal eleva on 
below the mean dal level of 1471 m (table 4). Two images were selected with a slightly higher dal 
eleva on in the absence of a be er alterna ve. The image taken on 14 February 2008 has a dal 
eleva on corresponding to low water levels during spring de. An overview of the images can be 
found in Figure 10.  

 

 

 

 

 

Table 5 Tidal eleva on of the images used to generate features. 

Figure 10 Landsat 7 images used for feature extrac on shown in true colour. Striping from the filled data gaps is s ll 
visible. 
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4.3 Training 

For all four models trained the training loss showed a steep ini al loss drop followed by a slower loss 
drop which un l around epoch 20 a er which the addi onal loss drop is minimal (figure 11). For the 
models trained from scratch the strongest loss drop occurred a er the first epoch. For the model 
trained from patches with a patch size of 64x64 this ini al strong loss drop is followed by a gradual 
drop that seems to con nue to drop very slightly the rest of the epochs. For the model trained from 
scratch with a patch size of 32x32 the steep loss drop a er the first epoch is followed by a slower loss 
drop un l around epoch 20 a er which the loss decreases only minimally. For the models that are 
finetuned from the pretrained model on the Wadden Sea the ini al strong loss drop lasts for the first 
five epochs. A er this the loss drops slightly slower for a few epochs before it reaches an almost 
stable state around 15 epochs. The final training loss was similar for the models trained from scratch 
for a patch size of 64x64, the finetuned model, and the par ally frozen model. The model trained on 
patches of 32 pixels reaches a much lower training loss.  

The valida on loss shows similar pa erns. The valida on loss for the model trained on patches of 
64x64 pixels shows a steep ini al drop followed by a much more varying but overall declining trend. 
The model trained on the patches of 32x32 shows a strong fluctua on for the first 10 epochs but with 
an overall decreasing trend. A er these first 10 epochs, the loss follows a slower decline un l it 
reaches a mostly stable state a er 50 epochs. The final valida on loss of this model was much lower 
than for the other models. The valida on loss for the models based on the pre-trained model were 
very similar (Figures 5a and b). The ini al loss was larger than for the other two models. A er a steep 

Figure 11 Training and valida on loss during the training of the four different scenarios (a) finetuning, (b) freezing, (c) 
scratch 64, and (d) scratch 32. 
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ini al drop the loss seems to quickly converge a er around 10 epochs at a slightly lower level than for 
the model trained from scratch on patch of 64x64.  

4.4 Features 

While for each scenario about 23-29 of the 64 generated features are empty for the dal flats area, 
the remaining features show a diverse range of pa erns. A limited number of features only showed a 
few select small regions with values while the rest of the flats were empty. This type of feature 
occurred 7 mes for the model trained on the Wadden Sea and 1-2 mes for the other models. Some 
features seem to enhance edges with a specific aspect, others seem to sharpen the edges, and some 
others create larger more blurred areas. While some features seem to extract larger scale similar 
areas, others detect and enhance smaller structural varia ons. Some features seem to enhance the 
striping effect of the Landsat images. Dis nct geomorphological structures are visible in the features 
like channels and the edges of dal flats. A small selec on of features created from different 
scenarios is given in Figure 12. 

The features generated by the finetuned model and the partly frozen model are similar in the sense 
that the same features contain informa on or are empty for the dal flat region. Their values are also 
similar with the finetuned model having slightly lower values with a mean of 1.15 compared to 1.20 
for the partly frozen model. The features generated by the model trained on the Wadden Sea had 
much higher values with a mean of 4.24 for the non-empty features. The models trained from scratch 
have a mean of 1.11 and 0.99 for a patch size of 64x64 and 32x32 respec vely.  

4.5 Cross-valida on accuracy Landsat 7 

4.5.1 Cross-valida on accuracy of the environmental variables 

The cross-valida on accuracy of the sediment proper es exceeds the ecological predic ons (table 6). 
For each scenario, the cross-valida on accuracy was highest for the silt content with predic ons 
ranging from 16.1% for the ‘scratch 32’-scenario to 25.0% for the 'no change’-scenario. The 
predic ons for median grain size ranged from 8.6% to 21.0% with the same scenarios performing the 
worst and best respec vely.  

For the ecological predic ons the best cross-valida on accuracy was reached for the complete 
biomass collected during the 2008 campaign. With predic ons ranging from 16.3% to 19.0% these 
accuracies exceed those on crab biomass for which the cross-valida on accuracy ranged from 3.08% 
to 5.57%. When only using the crab biomass of November 2012 the crab biomass cross-valida on 
accuracies were higher ranging from 8.36% to 14.1%. The cross-valida on accuracy was lowest for the 
crab richness ranging from 1.71% to 3.56%. The cross-valida on accuracy for the complete species 
richness ranged from 3.17% to 3.82%.  

The cross-valida on accuracy of the ‘no change 2015’-scenario is lower than that of the ‘no change’-
scenario for most variables. The crab biomass and crab richness now have nega ve R2 values. The 
cross-valida on accuracy of the silt content and the full biomass had the best cross-valida on 
accuracy under these condi ons with 13.4% and 12.9% respec vely. The complete species richness 
performed be er compared to the ‘no change’-scenario with a cross-valida on accuracy of 9.0%. 
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Figure 12 Features generate for the image collected on 14 February 2008 with top: scratch 64, middle: scratch 32, and 
bo om: freeze. 
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When comparing the predicted variables with the real field values it can be seen that the higher 
values are o en underes mated by the model while the lower values are overes mated (figure 13). 
When plo ed against the field values the predicted ecological variables form a horizontal cloud 
instead of the desired 1-to-1 line. For the sediment proper es there seems to be a small posi ve 
trend with the predic ons for the high field variables being higher than expected. However, the range 
of the predicted variables is s ll lower than the range of the field variables.  

4.5.2 Cross-valida on accuracy of the different scenarios 

The ‘no change’-scenario had the highest cross-valida on accuracy for all but one variable. Only for 
the complete biomass collected in 2008 did the ‘scratch 64’-scenario result in a higher cross-
valida on accuracy. The ‘scratch 32’-scenario resulted in the lowest cross-valida on accuracy for most 
variables. Only for the complete biomass and the November 2012 crab biomass did it reach higher 

Figure 13 Predicted values against the field samples for the 'no change'-scenario. (a) Median grain size, (b) silt content, (c) full 
biomass, (d) full richness, (e) crab biomass, and (f) crab richness. 
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cross-valida on accuracies than the ‘finetuning’- and ‘freezing’-scenario and the ‘scratch 64’-scenerio 
respec vely.   

4.6 Cross-valida on accuracy Sen nel 2 

The scenarios using Sen nel 2 images for the feature genera on and random forest model resulted in 
lower cross-valida on accuracies for almost all tested variables compared to when Landsat 7 images 
were used. On average the cross-valida on accuracy was 8.67 percent points worse. The cross-
valida on accuracy reached by the Sen nel scenarios was lower than the highest accuracy reached 
by the Landsat scenarios for each variable. When comparing the cross-valida on accuracies of the 
Sen nel scenarios to their Landsat counterpart only the accuracy of the median grain size from the 
‘scratch 64’- and ‘scratch 32’-scenario was higher. For crab biomass and species richness the cross-
valida on accuracy reached nega ve R2 values meaning the model could not fit that data.  

There was no scenario that had a convincingly higher overall cross-valida on accuracy compared to 
the other scenarios. The ‘scratch 64’-model had the highest cross-valida on accuracy for the 
sediment proper es and complete biomass but had among the lowest accuracies for the other 
ecological variables. The scenario with the highest cross-valida on accuracy on the Sen nel 2 image 
was the same as for the Landsat 7 images for the complete biomass, complete species richness, and 
crab biomass but differed for the other variables.  

5. Discussion 

5.1 Performance of transfer learning techniques 

It was expected that the 'freezing’-scenario would have the highest predic ve performance followed 
by the ‘finetuning’-scenario. Both these models were pre-trained on a related source dataset with 
higher quality images without data gaps while also ge ng the opportunity to learn region-specific 
informa on during finetuning on the target dataset. However, it was found that the pre-trained 
model without any finetuning resulted in higher cross-valida on accuracies. As literal transfer without 
finetuning is also the most straigh orward transfer learning method this would be promising to be 
able to apply these models without having to train it yourself.  

When looking at the Landsat scenarios the ‘finetuning’- and ‘freezing’-scenarios did outperform the 
models trained from scratch for the sediment proper es, complete richness, and November 2012 
crab biomass. It is thus likely that the pre-training of the model did provide valuable informa on 
useful for predic ng the sediment and ecological variable.  

The ‘scratch 32’-scenerio had the worst performance. This scenario was included to increase the 
number of training patches. It was expected that this would result in a be er trained model and 
be er predic ve results, at least compared to training from scratch with a patch size of 64x64. From 
the loss graphs this scenario seemed to indeed do best during training reaching much lower loss 
values compared to the models using less but larger patches. However, the cross-valida on accuracy 
of this scenario was overall the lowest. Besides the lower accuracy of the predic on, the training of 
this model also took much more me.  

On the Sen nel images the ‘scratch 64’-scenario outperformed the ‘no change’-model. The ‘no 
change’-scenario did have the second highest cross-valida on accuracies. The ‘scratch 32’-scenario 
had again the lowest performance.   
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5.2 Landsat versus Sen nel 

Because of the subop mal image quality of the Landsat 7 image due to the SLC error Sen nel 2 
images were also used to predict the environmental proper es. As these images have a higher quality 
and the original model was based on these images it was expected that the predic ve results would 
be higher or at least similar to the Landsat 7 images. However, it was found that the cross-valida on 
accuracies obtained based on the Sen nel 2 image were much lower compared to those obtained 
based on Landsat 7. This was especially surprising for the ‘no change’-scenario. While the other 
models were trained at least partly on Landsat 7 data the model used for the ‘no change’-scenario 
was only trained on Sen nel 2.  

An explana on could be that the temporal matching of the images and field data is important. For 
the Landsat scenarios the field data was predicted based on images with an acquisi on me as 
temporally close as possible, o en within the same seasonal year. For the Sen nel scenarios, 
however, the predic ons for all variables had to be based on a single image collected in 2015. As a 
result, there exists a me gap between the field data collec on and the image that is used to predict 
the field data. The complete biomass collected in 2008 for example had to be predicted based on the 
image from 2015, almost 7 years later. 

This is partly supported by the results of the ‘no change 2015’-scenerio. When similar to in the 
Sen nel 2 scenario only one Landsat 7 image, also taken in December 2015, was used the cross-
valida on accuracy was also reduced strongly. The results from this scenario are more similar to the 
Sen nel 2 scenarios. This suggests that indeed using an image that is not temporally close to the field 
data decreases the accuracy of the predic ons based on it.  

Over me environmental variables like sedimentary and ecological variables can change. They may 
even vary seasonally or change suddenly due to extreme events. Stormy seasons can for example be 
associated with erosion while sedimenta on can take place during calmer seasons (Belliard et al., 
2019). Tidal channels may also migrate on a me scale of a couple of years (Zhao et al., 2022). 
Biomass may also change seasonally (Beukema, 1974) or year-to-year (Beukema et al., 1993). When 
the condi ons have changed between the sampling and the acquisi on date of the satellite image 
this causes a mismatch between the data. This can then reduce the cross-valida on of the random 
forest model.  

5.3 Comparing to performance in the Wadden Sea  

Similar to the findings of Madhuanand et al. (2023) the model shows a higher predic ve performance 
for the sediment variables compared to the ecological variables. Overall, however, the model had a 
lower predic ve performance for the dal flats in Oman compared to in the Wadden Sea. For the 
sediment proper es and species richness the highest cross-valida on accuracy reached in Oman is 
lower than the lowest cross-valida on accuracy reported for the same variable by Madhuanand et al. 
(2023). The highest cross-valida on accuracies of the complete biomass did fall within the range 
found by Madhuanand et al. (2023). Crab biomass and richness were not predicted for the Wadden 
Sea but the 2012 crab biomass does fall within the cross-valida on accuracy range for biomass given 
by Madhuanand et al. (2023).     

For the Wadden Sea a difference in predic ve performance between areas was already observed 
(Madhuanand et al., 2023). This difference in predic ve performance was a ributed to a difference in 
the distribu on of the data. As the range and the mean of the predicted variables differ between 
Oman and the Wadden Sea. As a result, the distribu on might also be different, and this might have 
affected the performance of the model.  
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For Oman the availability of field data is also limited. While for the Wadden Sea each field campaign 
had over 200 field samples for Oman only the field campaign of 2008 and November 2012 had over 
200 field samples. For the sediment characteris c only 66 field samples were available to train and 
test the random forest model which could have limited the predic ve performance. For the crab 
biomass and richness the field data of the different years was combined to increase the number of 
field data points. However, this reduced the temporal resolu on of the field data. By combining 
different years differences between years can increase the noise included in the model reducing the 
predic on accuracy.       

5.4. Generaliza on 

There have been many experiments on different datasets that report posi ve gains from transfer 
learning. Mensink et al. (2012) for example performed mul ple experiments comparing different pre-
trained models with training from scratch and found that pre-trained models outperformed the 
models trained from scratch for all experiments. Similar results were also found by Neyshabur et al. 
(2020) where the pre-trained models were also able to reach higher accuracies compared to models 
trained from scratch. The results of this study are partly in line with these observa ons. For the 
Landsat scenarios the pre-trained model indeed reached higher accuracies than the models trained 
from scratch. However, this was not the case for all variables, especially when also comparing the 
finetuning and freezing scenarios. For the Sen nel scenarios the model trained from scratch reaches 
higher accuracies compared to the pre-trained scenarios for most variables. Thus, the gains from 
using a pre-trained model seem to be lower during these experiments than as described literature.  

The decrease in the accuracy of a pre-trained when applied to a new target dataset compared to its 
accuracy on the source dataset has also been previously described. Research on land cover 
classifica ons found that when applying a model trained on a dataset from one con nent to a 
different con nent the predic on performance of the model decreased (Tong et al., 2021). This 
problem of generaliza on is thought to be caused by a difference in the spectral distribu on between 
the training and target images. Seasonal changes can also influence the generaliza on of DL models 
(Tong et al., 2021). A model trained on one season can be expected to have a lower performance 
when applied to images of a different season.  

5.5 Challenges and poten al improvements 

The existence of the SLC failure gaps makes the Landsat 7 images subop mal. By combining images 
from two different moments in me with a different dal eleva on the edge stripes keep being 
detectable. Differences in the spectral data between the two years generate edges that are picked up 
by the model in the same way that spectral differences within one image for example between flats 
and channels get picked up. If an input image has clear stripes the autoencoder model will try to 
reconstruct this resul ng in it learning to create features related to these stripes. Features generated 
by edge detec on like filters for example o en do not only show the edges of channels and flats but 
also the edges of these stripes. Indeed, the effect of the stripes was visible in the generated features 
that were used in the random forest model, for example in feature 56 in Figure 12. This can cause 
confusion for the random forest model since these edges are an ar fact from the input images and 
do not reflect the environmental condi ons in which the field variables were collected. As a result the 
accuracy of the model will likely decrease. In total 45% of the field data points were located on or 
within a 5-pixel radius from these data gaps, which strongly affected the predic on accuracies of the 
random forest model.  

Comparing the results of the ‘no-change 2015’-scenarion and the ‘Sen nel no change’-scenario the 
effect of the quality difference between the Sen nel 2 and Landsat 7 images used does not seem very 
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clear. However, since both of these scenarios use a single image temporally separated from their data 
they are both subop mal. As a result, further inves ga on into the effect of the quality of the 
satellite images would be advised. Furthermore, an evalua on of the performance of the model in a 
different area with higher-quality satellite image availability and a larger field data set would be 
recommended.  

6. Conclusion 

This study looked at the transferability of the deep learning method to predict sediment and 
ecological variables developed by Madhuanand et al. (2023) for the Wadden Sea. The method is 
comprised of a VAE deep learning model and a random forest model. The VAE model is trained using 
satellite images and produces features. The random forest model then combines these features with 
the original satellite image and field data to predict sedimentary and ecological variables. In this 
study the cross-valida on accuracy of the model was evaluated for the dal flats in Bar Al Hikman, 
Oman, using Landsat 7 and Sen nel 2 images and field data collected in 2008 and 2011-2015. The 
cross-valida on accuracies for the variables median grain size, silt content, biomass, species richness, 
crab biomass, and crab species richness were evaluated. Different scenarios represen ng different 
transfer learning techniques were tested which differed in the training of the deep learning model 
used to extract features. The cross-valida on accuracies obtained using literal transfer without 
change, finetuning, freezing and training from scratch were compared.  

The best-performing scenario used the pre-trained model without any further training in the study 
area in Oman. The model trained from scratch with a patch size of 64x64 had the highest accuracies 
on the Sen nel images. Higher cross-valida on accuracies were found when the random forest model 
was trained on single-year data and when images temporally close to the field campaign data were 
used.  

Similar to the findings for the Wadden Sea the cross-valida on accuracy was highest for the sediment 
proper es. The cross-valida on accuracy was lowest for the species richness. The cross-valida on 
accuracies obtained for Oman were lower than those obtained by Madhuanand et al. (2023) for the 
Wadden Sea. This reduced accuracy when DL models are applied to a different region is in line with 
previous research on the generaliza on of deep learning methods.  

The Landsat 7 images used in this study were subop mal because of the data gaps caused by the SLC 
failure. These had to be filled with data from different images crea ng edges with spectral differences 
picked up by the deep learning model and visible in the generated features. As a result, they likely 
influenced the predic on accuracy.   

While the cross-valida on accuracies of the transfer a empts of this study were lower than 
preferred, indica ons have been found that using an improved dataset may result in be er 
predic ons. Focus should be on using satellite images without data gaps, using single-year data in the 
random forest model, and using temporally closely matched field and satellite data.   
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