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Abstract:  

Worldwide Ɵdal flats fulfil important ecological and economical roles. However, they are under 
increasingly high pressure. For effecƟve management consistent monitoring of sedimentary and 
ecological variables is needed. To overcome the limitaƟons of field sampling and tradiƟonal satellite 
image-based methods, a new deep learning-based method was proposed by Madhuanand et al. 
(2023) to predict sediment and ecological properƟes of Ɵdal flats based on satellite images. This 
method uses a ResNet50-based deep learning model to generate features that are used as addiƟonal 
informaƟon on top of the original image for a random forest model to predict environmental 
variables. While saƟsfactory results were reached for the Wadden Sea it was unknown how well this 
method would be able to generalize to other Ɵdal flat regions. Here the predicƟve performance of 
the method was tested for the Ɵdal flats in Bar Al Hikman, Oman, using Landsat 7 and SenƟnel 2 
images and different transfer learning techniques. The tested scenarios include literal transfer 
without finetuning, finetuning, finetuning aŌer freezing, and training from scratch. The predicƟon 
accuracy was evaluated for the median grain size, silt content, complete biomass, complete species 
richness, crab biomass, and crab species richness. It was found that the predicƟve accuracy of the 
model was much lower compared to the original accuracy achieved for the Wadden Sea. Similar to 
for the Wadden Sea the sediment properƟes had the highest cross-validaƟon accuracy from the 
tested variables while the accuracy for species richness was low. The scenario using the pre-trained 
model without any addiƟonal training reached the highest cross-validaƟon accuracy. A closer 
inspecƟon of the results suggested that random forest predicƟons are sensiƟve to mulƟ-year data 
and temporally separated field and imagery data. The remnants of data gaps from the SLC error of 
the Landsat 7 images were present in the generated features and could thus also have contributed to 
the low predicƟon accuracies. Therefore, when using this method focus should be on using satellite 
images without data gaps, using temporally closely matching field and satellite data, and predicƟng 
only one year at a Ɵme for the random forest model.    

 

 

 

 

1. IntroducƟon 

Tidal flats are characterized by a high biodiversity and producƟvity and play an important ecological 
and economic role in many regions. The shallow waters make the Ɵdal flats important nurseries for 
fish, crabs, and shrimps (Reise, 2012), and provide important foraging areas for waterbirds (Bom et 
al., 2018). The food and habitat provided are also of economic value by sustaining fisheries (Burt, 
2014; Dissanayake et al., 2018). These fisheries are important for both the local populaƟon and the 
export. An example are the crabs in Oman which are valuable seafood items for both the domesƟc 
market and the export (Hehanna et al., 2013). Overall, the yearly global value of the services provided 
by interƟdal mudflats is esƟmated to be around US$ 5.2·1012 2007$ (Dissanayake et al., 2018; 
Costanza et al., 2013). However, worldwide Ɵdal flats are under pressure caused by coastal 
development, sea-level rise, coastal erosion, reduced sediment fluxes, subsidence, eutrophicaƟon, 
non-nutrient pollutants, and overfishing (Lever at al., 2001; Murray et al., 2019). This causes changes 
in biodiversity and species richness in many coastal environments (Lever et al., 2001).  
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Consistent monitoring of sedimentary and ecological variables is important for effecƟve management 
of these regions (Miloslavich et al., 2018). Due to the nature of Ɵdal flats, sampling can be 
challenging. If possible, it is oŌen Ɵme-consuming and expensive. In recent years satellite images 
have been used for monitoring due to their ability to cover large areas at a Ɵme and reach hard-to-
reach locaƟons. While satellite images have a low resoluƟon, they can sƟll give informaƟon about 
sediment and ecological characterisƟcs on the ground by using their relaƟon to large-scale 
geomorphological structures and spectral informaƟon.  

Tidal flats have a diverse geomorphology with a combinaƟon of channels and flats. Sediment and 
ecological properƟes can be linked to these geomorphological structures. Sediment properƟes are 
related to the energy condiƟons of the environment. At locaƟons with higher flow velociƟes like large 
deep channels courser grained sandy sediments are oŌen present, while the less energeƟc shallow 
flats contain more muddy sediment. Previous research has shown that sediment characterisƟcs can 
be linked to the Ɵdal channel distribuƟon and interƟdal DEM (Choi et al., 2011). The spaƟal 
distribuƟon of macrobenthos is also closely related to environmental variables like surface elevaƟon 
(Lee et al., 2013), sediment characterisƟcs (Compton et al., 2013; Yoo et al., 2007), and temperature 
(Koo et al., 2005, 2007). Van der Wal et al. (2008) found for example that in their study area in the 
Netherlands the total macrobenthos biomass could be partly explained by the median grain size, mud 
content, and elevaƟon. The temperature on Ɵdal flats can be influenced by exposure Ɵme and water 
content in the sediment (Koo et al., 2007). CharacterisƟcs like moisture content and the presence of 
channels or flats can be taken from satellite imagery. 

The uniform spectral nature of Ɵdal flats however makes tradiƟonal spectral analysis challenging. 
Deep learning methods have been shown to be able to learn to extract complex structures and 
informaƟon from satellite images (Willcock et al., 2018). Therefore, deep learning models have been 
used increasingly for complex analysis tasks. One such deep learning-based method was developed 
by Madhuanand et al. (2023) to predict sediment and ecological properƟes from satellite images for 
the Ɵdal flats in the Wadden Sea. Using a relaƟvely low demanding method they reached saƟsfactory 
results. If their method would be able to generalize for other interƟdal mudflats this could elevate the 
need for extensive field sampling and aid effecƟve management.  

There are however two main restricƟons that can limit the use of deep learning models (Iman et al., 
2023). Firstly, successful training of a deep learning model requires an extensive training dataset of at 
least thousands to tens of thousands of training images. Obtaining the required amount of data can 
be Ɵme-consuming or even impossible (Zhuang et al., 2020). By using a related exisƟng dataset to 
iniƟalize the model this training cost can be reduced.  Secondly, the training of a deep learning model 
takes extensive Ɵme and process power. Deep transfer learning (DTL) was developed to help alleviate 
these restricƟons and improve the performance of deep neural networks (Iman et al., 2023).  

The concept of transfer learning in neural networks was first introduced in the 1990s by Lorien PraƩ 
with the goal of improving the learning speed of neural networks (PraƩ, 1993). It is inspired by the 
way humans learn new tasks by building on their previous experiences. It builds on concepts from 
psychology, neurobiology, and symbolic machine learning (PraƩ, 1933). Similar to how synapses in 
the brain come pre-wired, the idea behind transfer learning is to use iniƟalized weights from a 
network pre-trained on a source dataset as an improved starƟng point for training compared to 
randomly iniƟalized weights. IntuiƟvely, successful learning requires some connecƟon between the 
two learning acƟviƟes, in other words, the source and target domains should be linked by a higher-
level common domain (Zhuang et al., 2020; Weiss et al., 2016).  
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Many transfer learning methods make use of the fact that different layers in convoluƟonal neural 
networks (CNNs) learn features with different degrees of generalizaƟon (Yosinski et al., 2014; 
Neyshabur et al., 2020). The shallower parts of the network deal with more general features (e.g. 
edge detecƟon, colour blobs) and are similar for most CNNs trained on images (Yosinski et al., 2014). 
Deeper into the network the learned features become more dataset-specific. For transfer deep 
learning the focus is generally on these general features which are applicable for both the source and 
target dataset. MulƟple studies show that models pre-trained on a source dataset can effecƟvely be 
used to improve training on a different target dataset (Iman et al., 2023). Most works uƟlize the CNN 
acƟvaƟons from the fully connected layers while using features from convoluƟonal layers has 
received limited aƩenƟon (Hu et al., 2015). 

DTL is applied in a large variety of situaƟons with a large variety of approaches. There are different 
ways to categorize DTL based on the homogeneity of the source and target data, the label-seƫng 
aspects, or the applied approaches (Iman et al., 2023). Based on the used approach DTL can be 
divided into four categories: instance-based, feature-/mapping-based, parameter-/network-/model-
based, or relaƟonal-/adversarial-based (Pan and Yang, 2010; Tan et al., 2018). The most used 
approaches within DTL are model-based approaches (Iman et al., 2023). Model-based approaches 
focus on adjusƟng the network and include pretraining, freezing, finetuning, and adding fresh layers. 
These methods can be applied on their own but are usually combined (Iman et al., 2023). The easiest 
way to transfer informaƟon is literal weight transfer where the weights of the pre-trained model are 
transferred and used for the new task. This does not allow the model to learn any new informaƟon 
within the target dataset. Therefore, this is oŌen combined by methods that require the model to 
also train on the target dataset like finetuning, freezing, and/or adding new layers to the model (Iman 
et al., 2023). 

There are some complicaƟons that might occur when transferring a deep learning model. One of 
these problems is negaƟve transfer (Zhuang et al., 2020). This happens when the source and target 
dataset or task are too dissimilar and transferring reduces the performance of the model. Another 
problem is catastrophic forgeƫng (Iman et al., 2023). This refers to the loss of learned skills by a 
trained model aŌer further training on a target dataset. Freezing the lower-level layers of a 
transferred model or only training newly added layers should reduce the risk of catastrophic 
forgeƫng (Iman et al., 2023). Indeed, previous research pointed out that models someƟmes perform 
less when applied to a different geographical or temporal seƫng (Tong et al., 2021).  

The aim of this study is to transfer the deep learning method developed by Madhuanand et al. (2023) 
to Bar Al Hikman, Oman, to test if this method can be generalized and applied to a different 
geographic region. To answer this quesƟon the cross-validaƟon accuracy of the median grain size, silt 
content, complete biomass, complete species richness, crab biomass, and crab species richness was 
evaluated and compared for several scenarios. Scenarios include training from scratch and the 
transfer learning methods of literal transfer, finetuning, and freezing. These scenarios will be tested 
on Landsat 7 images which match the temporal range of this study and on a SenƟnel 2 image for 
which the method was developed but which does not match the temporal range. To answer the main 
quesƟon the following sub-quesƟons will be answered: 

- How can the scan line error of the Landsat 7 images be resolved? 
- What is the cross-validaƟon accuracy of each learning technique for the sediment and 

ecological variables using Landsat 7 images? 
- What is the cross-validaƟon accuracy of each learning technique for the sediment and 

ecological variables using a SenƟnel 2 image? 
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2. Background 

2.1 Deep learning models 

Deep learning models have become increasingly popular because of their ability to describe complex 
relaƟonships with non-linear data. In parƟcular, convoluƟonal neural networks (CNNs) have become 
popular for performing tasks like image classificaƟon and segmentaƟon (Iman et al., 2021; Pires de 
Lima & Marfurt, 2019; Hu et al., 2015).  

2.1.1 Structure of ConvoluƟonal Neural Networks (CNNs) 

A convoluƟonal neural network is a type of deep neural network that contains at least one 
convoluƟonal layer (Ketkar & Moolayil, 2021). A convoluƟonal layer uses a mathemaƟcal operaƟon 
called a convoluƟon which convolves the input image or feature map with a kernel or filter. The 
output of this convoluƟon is a new feature map. The kernel can have different sizes and has weights 
and biases associated with it. These weights and biases are opƟmized during the training of the 
network. CNNs also typically contain pooling layers. These are layers that reduce the spaƟal 
dimensions of the feature maps while maintaining the main important structures. This down-
sampling reduces the dependence on the locaƟon of features and reduces overfiƫng (Goodfellow et 
al., 2016). Most commonly max pooling is used which takes the maximum value within a chosen local 
window to produce the downscaled output map. Several convoluƟonal and pooling layers are oŌen 
followed by one or several fully connected layers at the end of the model.  

CNNs and other deep learning models learn by backpropagaƟon. By evaluaƟng a cost or loss funcƟon 
the model evaluates how well the output corresponds to the desired output. During training the 
objecƟve of the model is to minimize this cost funcƟon and find the global, or in pracƟce oŌen local, 
minimum in the loss landscape. One of the most well-known methods to achieve this is the gradient 
descent (Rumelhart et al., 1986). It calculates the parƟal derivaƟve of the total error with respect to 
each weight in the network for each input-output combinaƟon. It then accumulates the parƟal 
derivaƟves of all these input-output combinaƟons to update the weights proporƟonally. As this 
method evaluates all training data before taking one step down the loss domain this method is 
computaƟonally expensive. Therefore, many models now use the stochasƟc gradient descent (SGD). 
It works similarly to the gradient descent, but it is done for a random sample of the training data 
called a batch. This speeds the model up while keeping the accuracy similar.  

An important variable that determines the performance of the deep learning model is the learning 
rate. The learning rate determines the step size of the gradient descent. If the learning rate is too high 
the gradient descent can overshoot the local minimum resulƟng in a model that fails to converge 
(LeCun et al., 1998). On the other hand, if the learning rate is too small training will take a long Ɵme. 
As a result, it is important to choose an appropriate learning rate for a given task. An oŌen-applied 
method uses a dynamic learning rate that adapts to the stage of learning. The models oŌen start with 
a higher learning rate to quickly approach a local minimum. When this local minimum is approached 
the learning rate is reduced to prevent overshooƟng and help the model converge.  

2.1.2 Autoencoders 

An autoencoder is a specific type of neural network that is useful for learning representaƟons of the 
data without supervision (Bank et al., 2023). As a special type of encoder/decoder architecture it 
consists of an encoder, which compresses the input through encoded layers, and a decoder, which 
up-samples the encoded layers again to create an output. Autoencoders learn to reconstruct the 
input images. By trying to minimize the difference between the input and the output images they 
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learn key features that contain spaƟal and textural informaƟon describing the input image. These 
features containing spaƟal and textural informaƟon can then be used as addiƟonal informaƟon next 
to the spectral data for predicƟng environmental and ecological variables from the satellite images 
(Madhuanand et al., 2023).  

2.2 Deep learning method for Ɵdal flats 

Madhuanand et al. (2023) developed a deep learning method to predict sediment and ecological 
properƟes from satellite images in the Wadden Sea. They used an autoencoder model to generate 
features from SenƟnel 2 images which could be used as addiƟonal informaƟon to train a random 
forest model. In the following part their method will be described in more detail.  

2.2.1 Autoencoder model 

To learn representaƟve features of the input data a regularized version of the autoencoder called the 
variaƟonal autoencoder (VAE) was used. The backpropagated loss is calculated as a combinaƟon of 
the reconstrucƟon and regularizaƟon loss as in the equaƟon below.  

𝐿 =  𝜆ଵ𝐿௠ + 𝜆ଶ𝐿௞௟ 

Where L1 is the reconstrucƟon loss, L2 is the regularizaƟon loss, and λ1 and λ2 are weights. The 
reconstrucƟon loss is derived from the mean squared error (MSE). It tries to opƟmize the model by 
minimizing the differences between pixels in the reconstructed image and the input. The 
regularizaƟon loss is calculated from the divergence loss which tries to keep the learned distribuƟons 
close to a standard distribuƟon. The two losses were combined with a weight. The opƟmal 
performing weights determining the relaƟve contribuƟon of the reconstrucƟon and regularizaƟon 
loss to the total backpropagated loss were determined by Madhuanand et al. (2023) to be 1 and 
0.001 respecƟvely with the reconstrucƟon loss thus having a higher weight.  

The used VAE uses the ResNet-50 structure. ResNet-50 is a residual neural network. These types of 
neural networks contain skip connecƟons that bypass layers in the model. These skip connecƟons are 
implemented to increase the performance of very deep neural networks (He et al., 2016). They are 
used to extract both low-level and high-level features (Madhuanand et al., 2023). The structure of the 
model can be seen in Figure 1. The ResNet-50 model contains 49 convoluƟonal layers and one fully 
connected layer. It also contains 2 pooling layers, one max pooling aŌer the first convoluƟonal layer 
and one average pooling before the fully connected layer. AŌer the patches move through this 
encoder it moves through several up-sampling layers. These up-sampling layers used recƟfied linear 
unit (ReLU) acƟvaƟon to introduce non-linearity (Madhuanand et al., 2023).  

2.2.2 Feature extracƟon 

Each of the blocks in the encoder contains features that describe the input patches. When moving 
through the encoder the number of features increases while their dimensions decrease. The first 
layer containing 64 features of 32x32 pixels each was selected to be used to generate the features for 
the random forest model and is up-sampled through bilinear interpolaƟon. This layer was chosen to 
minimize uncertainƟes introduced by up-sampling and to keep the number of features low to prevent 
increasing computaƟonal demands. To reduce the border effect when the features are up-sampled, 
the patches are created with an overlap of 30%.  
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2.2.3 Random forest model 

The predicƟon of the variable of interest is done using a random forest regression model. The 
method was chosen because it had proven to be able to fit models with many input variables even 
with non-linearity or collinearity. To tune the random forest using cross-validaƟon the data is split 
into a training dataset (90%) and a validaƟon dataset (10%). A k-fold cross-validaƟon was 
implemented to opƟmize the number of observaƟons when fiƫng the trees. They specifically used a 
10-fold cross-validaƟon which was repeated three Ɵmes to reduce variance in the model 
performance.  

3. Data & Methods 

In the secƟon the used methods will be described. This secƟon will start with a descripƟon of the 
study area (secƟon 3.1). This is followed by a descripƟon of the data collecƟon (secƟon 3.2) and pre-
processing steps (secƟon 3.3). AŌer this, the used models and used parameters are discussed (secƟon 
3.4. Finally, a short descripƟon is given of the different scenarios (secƟon 3.5). An overview of the 
used methods and procedures can be found in the flow chart on the next page (figure 2).   
 

 

  

Figure 1 Structure of the ResNet-50 architecture. 
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3.1 Study area 

3.1.1 Geomorphology & hydrodynamics 

This study focussed on the interƟdal mudflats in Barr Al Hikman, Oman. The mudflats are located on 
the narrow conƟnental shelf along the Arabian Peninsula in the Arabian Sea and form the connecƟon 
between the inland sabkhas and the Arabian Sea. They can be divided into three subareas: Khawr, 
Shannah, and Filim (figure 3). Together they have an esƟmated area of around 190 km2. The mudflats  

Figure 2 Overview of the used workflow. At the top the overall workflow. The blue lines depict data used for SenƟnel 2 
scenarios while the yellow lines represent the Landsat 7 scenarios. The training of the deep learning model depends on the 
used scenario and is explained in more detail in the boƩom part for each method. 
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contain bare mudflats, seagrass meadows, interƟdal pools, reef structures, and channels (Bom et al., 
2018). Each of these features uniquely influences the water dynamics, soil structure, and physical and 
chemical properƟes in its area and thereby influences the spaƟal distribuƟon of flora and fauna.  

The sediment on the mudflats originates from both the sea as well as from wind-blown deposits 
(Bom et al., 2018). Environmental parameters were esƟmated for a part of Shannah by Bom et al. 
(2020). They esƟmated that the interƟdal elevaƟon differences are up to 2.2 m and that the median 
grain size ranges between 136 and 249 μm. The sediment depth ranges between 0 and 20 cm with 
shallower sediment depths at locaƟons with reef structures (Bom et al., 2020). The Ɵdal cycle in Barr 

Figure 3 LocaƟon of the studied Ɵdal flats in Filim, Khawr, and Shannah in Bar Al Hikman in Oman. 
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Al Hikman is a combinaƟon of diurnal and semidiurnal. The average Ɵdal range is around 1.5 m but 
can be up to around 3.5 m during springƟdes.  

Along the coast of Oman there is nearly conƟnuous upwelling. The strength of the upwelling is 
influenced by the monsoon winds (Bom et al., (2018). From June to August monsoon winds monsoon 
winds come from the south-west. This causes increased upwelling around the coast bringing nutrient-
rich water and increasing producƟvity (Bom et al., 2018). From December to February the winds 
change to north-easterly which reverses the water currents.  

3.1.2 Ecology 

Barr Al Hikman is well-known for its large diversity of marine life and abundant birdlife. The area is an 
important habitat for many species of fish and crustaceans of economic value (Bom et al., 2018). 
Primary producƟon on the interƟdal mudflats takes place by phytoplankton, seagrasses, epiphytes, 
and microphytobenthos. EsƟmates take the primary producƟon of the Barr Al Hikman area, including 
the subƟdal and mangroves, to be up to 160.000 tons g C yr-1 placing it among the most producƟve 
exclusive economic zones (EEZs) that include internaƟonally important interƟdal mudflats larger than 
5000 ha (Bom et al., 2018).  

Benthic invertebrates (e.g. bivalves, gastropods, polychaetes, and crustaceans) are important for the 
ecology of interƟdal flats. They form an important link between the primary producers and secondary 
consumers including fish and birds and are usually the starƟng point for the characterizaƟon of food 
webs in interƟdal mudflats (Bom et al., 2018). Of most interest are the macrozoobenthic 
invertebrates which are all benthos > 1 mm. They form the main food supply for birds and marine 
predators in Barr Al Hikman (Bom et al., 2018). Barr Al Hikman has a benthic community with at least 
97 idenƟfied species. Most of these species belong to the gastropods, bivalves, or brachyuran crabs. A 
field campaign in 2008 showed standing stock densiƟes of the same order of magnitude as for other 
internaƟonal interƟdal mudflats (Bom et al., 2018). The same field campaign also showed that the 
main benthic biomass of Barr Al Hikman consists mainly of gastropods and bivalves, while 
crustaceans and polychaetes contribute less to the total biomass. Over 78% of the biomass density 
was made up of three species: Pirenella arabica, Cerithium scabridum, and Pillucina fischeriana. With 
the excepƟon of crabs liƩle is known about the interannual variaƟons in the benthic community. 

3.1.3 Compared to the Wadden Sea 

When comparing the Ɵdal flats in Bar Al Hikman to the studied area in the Wadden Sea the variables 
of interest differ substanƟally. The Ɵdal flats in Oman have a much higher median grain size with a 
mean of 190 μm in Oman compared to 145 μm in the tested region in the Wadden Sea (Madhuanand 
et al., 2023). The silt content of the Ɵdal flats in Oman is also much lower compared to the Wadden 
Sea, with a mean of 6.3% to 13% (Madhuanand et al., 2023). For the ecological variables, the Ɵdal 
flats in Oman have a lower biomass and richness compared to the Wadden Sea.    

3.2 Data collecƟon 

3.2.1 Field data 

Field data was collected by Bom et al. (2017, 2020) during eight field campaigns in 2008 and 2011-
2015. Geocoded ecological data on the biomass and taxonomy of macrobenthos was collected during 
each of these campaigns. During the 2008 campaign all macrobenthos were collected while the 
campaigns from 2011-2015 focused only on crabs. Sediment data on median grain size and silt 
content was collected during the 2011 campaign. The 2008 campaign took samples in each of the 
regions Filim, Khawr, and Shannah. The other campaigns sampled only in Shannah. An overview of  
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the number of field data points for each campaign can be found in Table 1. The locaƟons of the field 
samples for each campaign are given in Figure 4 for sediment properƟes and Figure 5 for the 
ecological variables.  

 

Table 1 Number of field data points for each field campaign in Oman. 

Figure 4 Field collecƟon locaƟons of the sediment properƟes collected during the field campaign in 2011. Image acquisiƟon 
date is 14 February 2008 and is in true colour. 
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Figure 5 LocaƟons of the field sampling points. The points with no recorded biomass are excluded in the analysis. 
Image acquisiƟon date is 14 February 2008 and are shown in true colour. 
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3.2.2 Satellite images 

Satellite images were collected to match the temporal availability of the field data between 2008 and 
2015. While the original method used SenƟnel 2 images, this satellite only launched mid 2015 making 
it unsuitable for the collecƟon of sufficient training images within the desired Ɵme range. Instead, 
Landsat 7 images were used. Launched in 1999 and operaƟonal unƟl 2022 this satellite covered the 
enƟre desired temporal range. While Landsat 7 ETM+ data suffers from a failed scan line corrector 
(SLC) from 2003 onwards other open-source sensors were deemed unsuitable because of their 
inability to cover the enƟre desired temporal range (SenƟnel 2 and Landsat 8) or failure to cover the 
desired region (Spot). Based on the results of Madhuanand et al. (2023) only the blue, green, red, and 
near-infrared(NIR) bands were used. These bands have a spectral range of 0.45-0.52 µm for the blue 
band, 0.52-0.60 µm for the green band, 0.63-0.69 µm for the red band, and 0.77-0.90 µm for the NIR 
band. The spaƟal resoluƟon of the images is 30m.  

The models were trained using Landsat 7 images for the years 2008 and 2011-2015 which correspond 
to the years during which field data was collected in Oman. Only satellite images with exposed Ɵdal 
flats and no cloud cover over the Ɵdal flats were selected. A total of 21 images complied with these 
requirements.  

To test the effect of the different sensor and SLC error the predicƟon ability was also tested using a 
SenƟnel 2 image, which the model was originally developed for in the Wadden Sea. As menƟoned 
before, because of the launch date of SenƟnel 2 not enough images were available within the field 
campaign Ɵmeframe to train the VAE model. Therefore, only one image was collected corresponding 
to the field date of the last campaign in December 2015. The selected image was acquired on 18 
December 2015. It was chosen based on its relaƟvely good exposed Ɵdal flats and close temporal 
proximity to the field data. 

The image taken on 18 December 2015 was selected This image was then used to generate features 
and train the random forest model. The spectral ranges of the four used bands are 0.458-0.523 µm 
for the blue band, 0.543-0.578 µm for the green band, 0.650-0.690 µm for the red band, and 785-899 
µm for the NIR band and they have a spaƟal resoluƟon of 10 m.   

3.3 Preprocessing field data 

The biomass and taxonomy of each collected macrobenthos was stored separately in the dataset. For 
each sample locaƟon, the biomass of all the collected macrobenthos was summed to get the total 
biomass. The species richness was calculated by evaluaƟng the total number of different species for 
each sample locaƟon based on the recorded taxonomy. Points with no recorded macrobenthos were 
excluded from the analysis which resulted in a slightly lower number of data points (table 1). Because 
of the limited number of points for each campaign for the crab data these points were all combined 
in the random forest model, resulƟng in 688 data points for crab biomass and crab richness. Since the 
November 2012 campaign did have a similar number of points as used by Madhuanand et al. (2023) 
the predicƟve performance for crab data of this year was also evaluated separately from the other 
crab data. For the complete biomass and richness from 2008 there were 254 data points. All 66 
sediment samples could be used.  

The histograms of the field data showed that the distribuƟon is skewed towards the lower values with 
some higher values extremes (secƟon 4.1, figure 7). In parƟcular, the biomass shows this paƩern 
strongly. A logarithmic correcƟon was applied to create a more normal distribuƟon (figure 8). 
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3.4 Preprocessing satellite images 

To prepare the Landsat 7 images for training of the VAE model a few steps had to be taken which will 
be described in more detail below. 

3.3.1 SLC failure data gaps 

From 2003 onwards Landsat 7 ETM+ images suffer from a failed scan line corrector which results in 
large strips of data gaps within the images. Before these images can be used by the model these data 
gaps have to be filled. Different techniques have been suggested to deal with these data gaps (e.g. 
Hossain et al., 2015; Scaramuzza & Barsi, 2005; Yin et al., 2016). These techniques broadly fall into 
two categories. Single image techniques use interpolaƟon techniques to fill the data gaps using the 
data surrounding the gaps. A drawback of these techniques is that they create made-up data and that 
inherent textures tend to get lost. MulƟple image techniques use a second image to fill the data gaps. 
Since the data gaps do not occur at the same locaƟon for each image, data from different images can 
be used to fill the gaps. The advantage of this technique is that it uses real data with inherent 
textures. As deep learning models use texture this is an important advantage. A disadvantage is that 
there is a spectral offset between the different images and that geomorphological changes can occur 
between the two moments in Ɵme. Histogram matching is a method that aims to reduce these 
spectral differences. However, it is quite sensiƟve to differences in radiance due to for example 
clouds, snow, or reflecƟon of water (Scaramuzza & Barsi, 2005).  

AŌer tesƟng different filling techniques and visually comparing the results it was found that the 
mulƟple-image techniques produced the best results (see secƟon 3.1). As histogram matching was 
computaƟonally more intensive while not visually improving results this study chooses to fill the data 
gaps by simply using data from other images without any correcƟons. When choosing the specific 
image to fill the gaps three criteria were taken into account. The most important criterion was that 
the image chosen to fill the gaps must fill the data gaps as much as possible. This means that the data 
gaps had to be filled completely or at a maximum only leŌ a limited amount of 1-to-2-pixel wide gaps 
at the edge of the area of interest (figure 6). The second criterion was that the filling image had to  

Figure  6 Examples of types of gap fills between two true colour images at the most southwest Ɵp of Filim. a) unsuitable 
filling image; filling images does not fill the gaps , (b) accepted filling image; filling image leŌ a limited amount of 1-to-2-
pixel wide gap, and c) preferred filling image; filling image completely fills the data gaps is the study area. 



  
 

16 
 

be taken within a specific Ɵme frame from the target image. When evaluaƟng this criterium seasonal 
years were used where a new year starts aŌer the monsoon season taking place from June to 
September. Preferably images taken within in same seasonal year were used and the filling image 
should not be more than two seasonal years away from the target image. This aims to reduce the 
effect of changes occurring over Ɵme like changing geomorphology. Finally, images with the lowest 
Ɵdal difference were preferred to minimize disconƟnuiƟes caused by different Ɵdal elevaƟons. 
LeŌover 1-2 pixel wide gaps in a limited part of the study area were filled using a median filter with a 
5 by 5 window.  

3.3.2. Masking 

Before the images were passed to the model the land and open sea were masked out. The extent of 
the Ɵdal flats was based on the maximum extension of the Ɵdal flats within our data set. The 
landward extension was taken from two images taken during high Ɵde. A small border around the 
land and sea was kept to account for some error. The Ɵdal flats in the region of Filim were separated 
from Khawr and Shannah by this masking.  

3.4 Models 

The models used are developed by Madhuanand et al. (2023). They consist of a training model based 
on Resnet 50, a model that generates features, and a random forest model that predicts the variables 
of interest. They will be described in more detail below. 

3.4.1 Training model 

The training model uses the pre-processed Landsat 7 images to train the deep learning model based 
on Resnet 50. First, each image was cut into smaller patches which form the input from which the 
deep learning model will learn. These patches had a size of 64x64 or 32x32 pixels depending on the 
scenario being tested (see secƟon 3.5) and had an overlap of 10%. This resulted in a total number of 
9,009 patches for a patch size of 64x64 and 36,582 patches for a patch size of 32x32. These patches 
were then divided into a training (80%) and validaƟon (20%) dataset. As a result, the training dataset 
for scenarios using a patch size of 64x64 contained 7,207 patches while the remaining 1,802 patches 
were used for validaƟon. For scenarios with a patch size of 32x32, the training dataset contained 
29,265 patches while the validaƟon dataset contained 7,317 patches. The training model was then 
trained for 100 epochs at the end of which the model was saved to be used to generate features. The 
hyperparameters used for each scenario can be found in Table 2.  

 

 

Table 2 Hyperparameters used for training and the image source used for training and feature generaƟon for each of the 
different scenarios. 
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3.4.2 Feature generaƟon 

The models trained by the training model and the model from Madhuanand et al. (2023) trained on 
the Wadden Sea were used to generate features from a given input image. These features are taken 
from the first layer which contains 64 features of 32x32 pixels. To match the input size these features 
are up-sampled to 64x64 pixels. For each field campaign an input image was chosen to be close to the 
field data collecƟon date and to have the lowest possible Ɵdal elevaƟon. The Ɵdal elevaƟon was 
esƟmated from the Ɵdal gauge located in Masirah. An overview of the used Landsat 7 images can be 
found in Table 3 and seen in Figure 4. For the SenƟnel scenarios (secƟon 3.5.6) 64 features were 
generated for the single SenƟnel 2 image.  

3.4.3 Random Forest (RF) model 

From the produced 64 features and the original images with four spectral bands values were 
extracted at the locaƟons of the field data. The random forest model then built a random forest to 
predict the field data variable of interest based on these values. A random forest with 800 trees and a 
maximum depth of 20 was used. The minimum samples for a split was set to 10 with the minimum 
samples per leaf being 2. The hyperparameters for the RF model can be found in Table 3. Compared 
to the seƫng used by Madhuanand et al. (2023) the number of splits used was decreased to 5 and 
the number of repeats to 2 to account for the lower number of field data points available.  

3.5 Scenarios 

Different transfer methods were tested in the paper. These are referred to as scenarios throughout 
the paper. They differ in how the model used for the feature generaƟon was trained and which 
images were used to generate the features.  An overview of the used hyperparameters and used 
training data per scenario can also be found in Table 2 in secƟon 3.4.1.  

3.5.1. No change 

In this scenario, the easiest and basic transfer learning method of literal weight transfer without any 
further training was applied. Thus, the model from Madhuanand et al. (2023) trained on the Wadden 
Sea was used for feature generaƟon without any further training on the Ɵdal flats in Oman.  As the 
model from Madhuanand et al. (2023) used a patch size of 64x64 this scenario also uses a patch size 
of 64x64.   

3.5.2. Finetuning 

The target Ɵdal flats in Oman differ from the Ɵdal flats in the Wadden Sea. These regional differences 
can be important for environmental predicƟons but are not yet learned by the model trained on the 
Wadden Sea. The expectaƟon is that finetuning of the model on images of the Ɵdal flats of Oman will 
increase the predicƟve performance. Thus, the trained model from Madhuanand et al. (2023)  

                                      

Table 3 Hyperparameters used for the random forest model. 
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was used to iniƟalize the weights of the training model which was then trained on images from 
Oman. Since the model has been pre-trained the learning rate was reduced by a factor of 10 
compared to training from scratch to prevent weights from changing too quickly and forgeƫng of 
learned informaƟon (Li et al., 2020). Therefore, a learning rate of 0.000001 was used for this scenario.   

3.5.3. Freezing 

Literature suggests finetuning to be a subopƟmal transfer learning technique because of catastrophic 
forgeƫng (Iman et al., 2023). Freezing has been suggested as a technique to prevent catastrophic 
forgeƫng by not updaƟng the shallow layers which contain more general features likely suitable for 
similar tasks (Iman et al., 2023). For this scenario, the weights were again iniƟalized by the weights 
from Madhuanand et al. (2023). However, in contrast to the previous scenario now all layers with the 
excepƟon of the last two were frozen. This way the model could keep the general informaƟon learned 
on the Wadden Sea dataset while the last two layers could adapt to new region-specific informaƟon. 
Again, since the model has been pre-trained the lower learning rate of 0.000001 could be used.  

3.5.4. From scratch 64 

This scenario uses the same model structure as the model used by Madhuanand et al. (2023) and a 
patch size of 64x64. However, instead of using the pre-trained weights the model was trained from 
scratch from randomly iniƟalized weights to see how the model structure and setup would perform 
on the new region without transfer learning. 

3.5.5. From scratch 32 

The pixel resoluƟon of Landsat 7 of 30 m is much larger than the 10 m pixel resoluƟon of the SenƟnel 
2 images that the model was originally based on. As a result, a patch size of 64x64 pixels is quite large 
for the Ɵdal flat region of Oman. It results in only 7,207 training patches and 1,802 validaƟon patches 
which is quite liƩle to train a deep learning model, for which, as said, preferably tens of thousands of 
patches are used. To see the effect of using a lower patch size the model structure was adapted to 
work with a patch size of 32x32 pixels which resulted in a much larger training dataset of 29,265 
training patches and 7,317 validaƟon patches. The hyperparameters are kept the same as in the 
scratch 64 scenario. 

3.5.6. SenƟnel 

The quality of the Landsat 7 images could influence the performance of the model as inconsistencies 
between the original image and the image used to fill the SLC error gaps can be picked up and 
learned by the model. To get an idea of this influence the same scenarios menƟoned above were also 
applied to a SenƟnel 2 image. This is the same type of image that the model was developed for in the 
Wadden Sea. Compared to Landsat 7, SenƟnel 2 images have a higher resoluƟon of 10 m. As SenƟnel 
2 image collecƟon started only at the end of 2015 the temporal resoluƟon is reduced for these 
scenarios and only a single image collected in December 2015 was used.  

3.5.7 No change 2015 

To also test the effect of the lower temporal resoluƟon without the added effect of the different 
sensor one Landsat 7 scenario was repeated while using only one Landsat 7 image for the feature 
generaƟon. Similar to the SenƟnel scenarios the image used for this was the December 2015 image. 
Because of its results, the trained model of Madhuanand et al. (2023) was used like in the other ‘no 
change’-scenarios.  
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4. Results 

4.1 Field data 

The median grain size in the study area ranged between 102.3 and 507.6 μm with a mean of 190.8 
μm. The silt content ranged from 1.08% to 15.2% with a mean of 6.30%. The biomass, measured as 
ash-free dry mass (AFDM), ranged from 0.027 to 207.8 gAFDM/m2 with a mean of 22.2 gAFDM/m2 
full biomass collected in 2008 and from 0.0002 to 1.7 gAFDM/m2 with a mean of 0.10 gAFDM/m2 for 
only crabs collected during the 2011-2015 campaigns. The full species richness ranged between 1 and 
15 with a mean of 4. The crab richness ranged between 1 and 6 and had a mean of 1. 

Figure 7 Histograms of the field data show a skewed distribuƟon towards the leŌ with some higher extremes. 
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As can be seen from the histogram in Figure 7 the distribuƟons of all variables are skewed toward the 
leŌ with some extreme outliers for the higher variables. In parƟcular, for the biomass, crab biomass, 
and crab richness are the lower values much more frequent. AŌer the logarithmic transformaƟon the 
amount of extreme outliers is reduced (figure 8). Only for the crab species richness does the 
transformaƟon not seem to change the distribuƟon strongly. The effect of the logarithmic 
transformaƟon was most pronounced for both biomass variables. AŌer the transformaƟon their 
distribuƟon seems slightly skewed to the right.  

Figure 8 Histograms of the data aŌer the logarithmic transformaƟon. The distribuƟons shiŌed towards the right and have 
fewer extreme outliers. 
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4.2 Gap filling & image selecƟon 

Comparing the results of different gap-fill methods it can be seen that there are clear differences 
(figure 9). When using an interpolaƟon technique the gap fills are smoother than the surroundings. If 
a second image is used to fill the gaps the filled regions have more texture. However, the spectral 
differences are more pronounced. The difference in water level between two images creates a clear 
difference between the original image and the filled stripes.   

To find the most opƟmal images to combine for mulƟ-image gap filling an overview was created 
which evaluated each image combinaƟon based on the criteria menƟoned in secƟon 3.3.1. This 
overview can be seen in Table 4. It gives an overview of how well an image fills the gaps, how many 
seasonal years they are separated, and the Ɵdal elevaƟon difference. Of the 21 images that had to be 
filled, 13 were filled with an image acquired within a seasonal year. 5 images were selected that did 
not fill the enƟre data gap but leŌ a 1-to-2-pixel wide gap to be filled with interpolaƟon.  

 

Figure 9 The results of different gap fill techniques. (a) interpolaƟon using median focal staƟsƟcs with a 7x7 window, (b) 
interpolaƟon using inverse distance with a 7x7 window, (c) filling with a different image without correcƟons, (d) filling 
with a different image using global histogram matching. 
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The images selected for feature generaƟon can be found in Table 5. Most images had a Ɵdal elevaƟon 
below the mean Ɵdal level of 1471 m (table 4). Two images were selected with a slightly higher Ɵdal 
elevaƟon in the absence of a beƩer alternaƟve. The image taken on 14 February 2008 has a Ɵdal 
elevaƟon corresponding to low water levels during spring Ɵde. An overview of the images can be 
found in Figure 10.  

 

 

 

 

 

Table 5 Tidal elevaƟon of the images used to generate features. 

Figure 10 Landsat 7 images used for feature extracƟon shown in true colour. Striping from the filled data gaps is sƟll 
visible. 



  
 

24 
 

4.3 Training 

For all four models trained the training loss showed a steep iniƟal loss drop followed by a slower loss 
drop which unƟl around epoch 20 aŌer which the addiƟonal loss drop is minimal (figure 11). For the 
models trained from scratch the strongest loss drop occurred aŌer the first epoch. For the model 
trained from patches with a patch size of 64x64 this iniƟal strong loss drop is followed by a gradual 
drop that seems to conƟnue to drop very slightly the rest of the epochs. For the model trained from 
scratch with a patch size of 32x32 the steep loss drop aŌer the first epoch is followed by a slower loss 
drop unƟl around epoch 20 aŌer which the loss decreases only minimally. For the models that are 
finetuned from the pretrained model on the Wadden Sea the iniƟal strong loss drop lasts for the first 
five epochs. AŌer this the loss drops slightly slower for a few epochs before it reaches an almost 
stable state around 15 epochs. The final training loss was similar for the models trained from scratch 
for a patch size of 64x64, the finetuned model, and the parƟally frozen model. The model trained on 
patches of 32 pixels reaches a much lower training loss.  

The validaƟon loss shows similar paƩerns. The validaƟon loss for the model trained on patches of 
64x64 pixels shows a steep iniƟal drop followed by a much more varying but overall declining trend. 
The model trained on the patches of 32x32 shows a strong fluctuaƟon for the first 10 epochs but with 
an overall decreasing trend. AŌer these first 10 epochs, the loss follows a slower decline unƟl it 
reaches a mostly stable state aŌer 50 epochs. The final validaƟon loss of this model was much lower 
than for the other models. The validaƟon loss for the models based on the pre-trained model were 
very similar (Figures 5a and b). The iniƟal loss was larger than for the other two models. AŌer a steep 

Figure 11 Training and validaƟon loss during the training of the four different scenarios (a) finetuning, (b) freezing, (c) 
scratch 64, and (d) scratch 32. 
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iniƟal drop the loss seems to quickly converge aŌer around 10 epochs at a slightly lower level than for 
the model trained from scratch on patch of 64x64.  

4.4 Features 

While for each scenario about 23-29 of the 64 generated features are empty for the Ɵdal flats area, 
the remaining features show a diverse range of paƩerns. A limited number of features only showed a 
few select small regions with values while the rest of the flats were empty. This type of feature 
occurred 7 Ɵmes for the model trained on the Wadden Sea and 1-2 Ɵmes for the other models. Some 
features seem to enhance edges with a specific aspect, others seem to sharpen the edges, and some 
others create larger more blurred areas. While some features seem to extract larger scale similar 
areas, others detect and enhance smaller structural variaƟons. Some features seem to enhance the 
striping effect of the Landsat images. DisƟnct geomorphological structures are visible in the features 
like channels and the edges of Ɵdal flats. A small selecƟon of features created from different 
scenarios is given in Figure 12. 

The features generated by the finetuned model and the partly frozen model are similar in the sense 
that the same features contain informaƟon or are empty for the Ɵdal flat region. Their values are also 
similar with the finetuned model having slightly lower values with a mean of 1.15 compared to 1.20 
for the partly frozen model. The features generated by the model trained on the Wadden Sea had 
much higher values with a mean of 4.24 for the non-empty features. The models trained from scratch 
have a mean of 1.11 and 0.99 for a patch size of 64x64 and 32x32 respecƟvely.  

4.5 Cross-validaƟon accuracy Landsat 7 

4.5.1 Cross-validaƟon accuracy of the environmental variables 

The cross-validaƟon accuracy of the sediment properƟes exceeds the ecological predicƟons (table 6). 
For each scenario, the cross-validaƟon accuracy was highest for the silt content with predicƟons 
ranging from 16.1% for the ‘scratch 32’-scenario to 25.0% for the 'no change’-scenario. The 
predicƟons for median grain size ranged from 8.6% to 21.0% with the same scenarios performing the 
worst and best respecƟvely.  

For the ecological predicƟons the best cross-validaƟon accuracy was reached for the complete 
biomass collected during the 2008 campaign. With predicƟons ranging from 16.3% to 19.0% these 
accuracies exceed those on crab biomass for which the cross-validaƟon accuracy ranged from 3.08% 
to 5.57%. When only using the crab biomass of November 2012 the crab biomass cross-validaƟon 
accuracies were higher ranging from 8.36% to 14.1%. The cross-validaƟon accuracy was lowest for the 
crab richness ranging from 1.71% to 3.56%. The cross-validaƟon accuracy for the complete species 
richness ranged from 3.17% to 3.82%.  

The cross-validaƟon accuracy of the ‘no change 2015’-scenario is lower than that of the ‘no change’-
scenario for most variables. The crab biomass and crab richness now have negaƟve R2 values. The 
cross-validaƟon accuracy of the silt content and the full biomass had the best cross-validaƟon 
accuracy under these condiƟons with 13.4% and 12.9% respecƟvely. The complete species richness 
performed beƩer compared to the ‘no change’-scenario with a cross-validaƟon accuracy of 9.0%. 
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Figure 12 Features generate for the image collected on 14 February 2008 with top: scratch 64, middle: scratch 32, and 
boƩom: freeze. 
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When comparing the predicted variables with the real field values it can be seen that the higher 
values are oŌen underesƟmated by the model while the lower values are overesƟmated (figure 13). 
When ploƩed against the field values the predicted ecological variables form a horizontal cloud 
instead of the desired 1-to-1 line. For the sediment properƟes there seems to be a small posiƟve 
trend with the predicƟons for the high field variables being higher than expected. However, the range 
of the predicted variables is sƟll lower than the range of the field variables.  

4.5.2 Cross-validaƟon accuracy of the different scenarios 

The ‘no change’-scenario had the highest cross-validaƟon accuracy for all but one variable. Only for 
the complete biomass collected in 2008 did the ‘scratch 64’-scenario result in a higher cross-
validaƟon accuracy. The ‘scratch 32’-scenario resulted in the lowest cross-validaƟon accuracy for most 
variables. Only for the complete biomass and the November 2012 crab biomass did it reach higher 

Figure 13 Predicted values against the field samples for the 'no change'-scenario. (a) Median grain size, (b) silt content, (c) full 
biomass, (d) full richness, (e) crab biomass, and (f) crab richness. 
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cross-validaƟon accuracies than the ‘finetuning’- and ‘freezing’-scenario and the ‘scratch 64’-scenerio 
respecƟvely.   

4.6 Cross-validaƟon accuracy SenƟnel 2 

The scenarios using SenƟnel 2 images for the feature generaƟon and random forest model resulted in 
lower cross-validaƟon accuracies for almost all tested variables compared to when Landsat 7 images 
were used. On average the cross-validaƟon accuracy was 8.67 percent points worse. The cross-
validaƟon accuracy reached by the SenƟnel scenarios was lower than the highest accuracy reached 
by the Landsat scenarios for each variable. When comparing the cross-validaƟon accuracies of the 
SenƟnel scenarios to their Landsat counterpart only the accuracy of the median grain size from the 
‘scratch 64’- and ‘scratch 32’-scenario was higher. For crab biomass and species richness the cross-
validaƟon accuracy reached negaƟve R2 values meaning the model could not fit that data.  

There was no scenario that had a convincingly higher overall cross-validaƟon accuracy compared to 
the other scenarios. The ‘scratch 64’-model had the highest cross-validaƟon accuracy for the 
sediment properƟes and complete biomass but had among the lowest accuracies for the other 
ecological variables. The scenario with the highest cross-validaƟon accuracy on the SenƟnel 2 image 
was the same as for the Landsat 7 images for the complete biomass, complete species richness, and 
crab biomass but differed for the other variables.  

5. Discussion 

5.1 Performance of transfer learning techniques 

It was expected that the 'freezing’-scenario would have the highest predicƟve performance followed 
by the ‘finetuning’-scenario. Both these models were pre-trained on a related source dataset with 
higher quality images without data gaps while also geƫng the opportunity to learn region-specific 
informaƟon during finetuning on the target dataset. However, it was found that the pre-trained 
model without any finetuning resulted in higher cross-validaƟon accuracies. As literal transfer without 
finetuning is also the most straighƞorward transfer learning method this would be promising to be 
able to apply these models without having to train it yourself.  

When looking at the Landsat scenarios the ‘finetuning’- and ‘freezing’-scenarios did outperform the 
models trained from scratch for the sediment properƟes, complete richness, and November 2012 
crab biomass. It is thus likely that the pre-training of the model did provide valuable informaƟon 
useful for predicƟng the sediment and ecological variable.  

The ‘scratch 32’-scenerio had the worst performance. This scenario was included to increase the 
number of training patches. It was expected that this would result in a beƩer trained model and 
beƩer predicƟve results, at least compared to training from scratch with a patch size of 64x64. From 
the loss graphs this scenario seemed to indeed do best during training reaching much lower loss 
values compared to the models using less but larger patches. However, the cross-validaƟon accuracy 
of this scenario was overall the lowest. Besides the lower accuracy of the predicƟon, the training of 
this model also took much more Ɵme.  

On the SenƟnel images the ‘scratch 64’-scenario outperformed the ‘no change’-model. The ‘no 
change’-scenario did have the second highest cross-validaƟon accuracies. The ‘scratch 32’-scenario 
had again the lowest performance.   
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5.2 Landsat versus SenƟnel 

Because of the subopƟmal image quality of the Landsat 7 image due to the SLC error SenƟnel 2 
images were also used to predict the environmental properƟes. As these images have a higher quality 
and the original model was based on these images it was expected that the predicƟve results would 
be higher or at least similar to the Landsat 7 images. However, it was found that the cross-validaƟon 
accuracies obtained based on the SenƟnel 2 image were much lower compared to those obtained 
based on Landsat 7. This was especially surprising for the ‘no change’-scenario. While the other 
models were trained at least partly on Landsat 7 data the model used for the ‘no change’-scenario 
was only trained on SenƟnel 2.  

An explanaƟon could be that the temporal matching of the images and field data is important. For 
the Landsat scenarios the field data was predicted based on images with an acquisiƟon Ɵme as 
temporally close as possible, oŌen within the same seasonal year. For the SenƟnel scenarios, 
however, the predicƟons for all variables had to be based on a single image collected in 2015. As a 
result, there exists a Ɵme gap between the field data collecƟon and the image that is used to predict 
the field data. The complete biomass collected in 2008 for example had to be predicted based on the 
image from 2015, almost 7 years later. 

This is partly supported by the results of the ‘no change 2015’-scenerio. When similar to in the 
SenƟnel 2 scenario only one Landsat 7 image, also taken in December 2015, was used the cross-
validaƟon accuracy was also reduced strongly. The results from this scenario are more similar to the 
SenƟnel 2 scenarios. This suggests that indeed using an image that is not temporally close to the field 
data decreases the accuracy of the predicƟons based on it.  

Over Ɵme environmental variables like sedimentary and ecological variables can change. They may 
even vary seasonally or change suddenly due to extreme events. Stormy seasons can for example be 
associated with erosion while sedimentaƟon can take place during calmer seasons (Belliard et al., 
2019). Tidal channels may also migrate on a Ɵme scale of a couple of years (Zhao et al., 2022). 
Biomass may also change seasonally (Beukema, 1974) or year-to-year (Beukema et al., 1993). When 
the condiƟons have changed between the sampling and the acquisiƟon date of the satellite image 
this causes a mismatch between the data. This can then reduce the cross-validaƟon of the random 
forest model.  

5.3 Comparing to performance in the Wadden Sea  

Similar to the findings of Madhuanand et al. (2023) the model shows a higher predicƟve performance 
for the sediment variables compared to the ecological variables. Overall, however, the model had a 
lower predicƟve performance for the Ɵdal flats in Oman compared to in the Wadden Sea. For the 
sediment properƟes and species richness the highest cross-validaƟon accuracy reached in Oman is 
lower than the lowest cross-validaƟon accuracy reported for the same variable by Madhuanand et al. 
(2023). The highest cross-validaƟon accuracies of the complete biomass did fall within the range 
found by Madhuanand et al. (2023). Crab biomass and richness were not predicted for the Wadden 
Sea but the 2012 crab biomass does fall within the cross-validaƟon accuracy range for biomass given 
by Madhuanand et al. (2023).     

For the Wadden Sea a difference in predicƟve performance between areas was already observed 
(Madhuanand et al., 2023). This difference in predicƟve performance was aƩributed to a difference in 
the distribuƟon of the data. As the range and the mean of the predicted variables differ between 
Oman and the Wadden Sea. As a result, the distribuƟon might also be different, and this might have 
affected the performance of the model.  
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For Oman the availability of field data is also limited. While for the Wadden Sea each field campaign 
had over 200 field samples for Oman only the field campaign of 2008 and November 2012 had over 
200 field samples. For the sediment characterisƟc only 66 field samples were available to train and 
test the random forest model which could have limited the predicƟve performance. For the crab 
biomass and richness the field data of the different years was combined to increase the number of 
field data points. However, this reduced the temporal resoluƟon of the field data. By combining 
different years differences between years can increase the noise included in the model reducing the 
predicƟon accuracy.       

5.4. GeneralizaƟon 

There have been many experiments on different datasets that report posiƟve gains from transfer 
learning. Mensink et al. (2012) for example performed mulƟple experiments comparing different pre-
trained models with training from scratch and found that pre-trained models outperformed the 
models trained from scratch for all experiments. Similar results were also found by Neyshabur et al. 
(2020) where the pre-trained models were also able to reach higher accuracies compared to models 
trained from scratch. The results of this study are partly in line with these observaƟons. For the 
Landsat scenarios the pre-trained model indeed reached higher accuracies than the models trained 
from scratch. However, this was not the case for all variables, especially when also comparing the 
finetuning and freezing scenarios. For the SenƟnel scenarios the model trained from scratch reaches 
higher accuracies compared to the pre-trained scenarios for most variables. Thus, the gains from 
using a pre-trained model seem to be lower during these experiments than as described literature.  

The decrease in the accuracy of a pre-trained when applied to a new target dataset compared to its 
accuracy on the source dataset has also been previously described. Research on land cover 
classificaƟons found that when applying a model trained on a dataset from one conƟnent to a 
different conƟnent the predicƟon performance of the model decreased (Tong et al., 2021). This 
problem of generalizaƟon is thought to be caused by a difference in the spectral distribuƟon between 
the training and target images. Seasonal changes can also influence the generalizaƟon of DL models 
(Tong et al., 2021). A model trained on one season can be expected to have a lower performance 
when applied to images of a different season.  

5.5 Challenges and potenƟal improvements 

The existence of the SLC failure gaps makes the Landsat 7 images subopƟmal. By combining images 
from two different moments in Ɵme with a different Ɵdal elevaƟon the edge stripes keep being 
detectable. Differences in the spectral data between the two years generate edges that are picked up 
by the model in the same way that spectral differences within one image for example between flats 
and channels get picked up. If an input image has clear stripes the autoencoder model will try to 
reconstruct this resulƟng in it learning to create features related to these stripes. Features generated 
by edge detecƟon like filters for example oŌen do not only show the edges of channels and flats but 
also the edges of these stripes. Indeed, the effect of the stripes was visible in the generated features 
that were used in the random forest model, for example in feature 56 in Figure 12. This can cause 
confusion for the random forest model since these edges are an arƟfact from the input images and 
do not reflect the environmental condiƟons in which the field variables were collected. As a result the 
accuracy of the model will likely decrease. In total 45% of the field data points were located on or 
within a 5-pixel radius from these data gaps, which strongly affected the predicƟon accuracies of the 
random forest model.  

Comparing the results of the ‘no-change 2015’-scenarion and the ‘SenƟnel no change’-scenario the 
effect of the quality difference between the SenƟnel 2 and Landsat 7 images used does not seem very 
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clear. However, since both of these scenarios use a single image temporally separated from their data 
they are both subopƟmal. As a result, further invesƟgaƟon into the effect of the quality of the 
satellite images would be advised. Furthermore, an evaluaƟon of the performance of the model in a 
different area with higher-quality satellite image availability and a larger field data set would be 
recommended.  

6. Conclusion 

This study looked at the transferability of the deep learning method to predict sediment and 
ecological variables developed by Madhuanand et al. (2023) for the Wadden Sea. The method is 
comprised of a VAE deep learning model and a random forest model. The VAE model is trained using 
satellite images and produces features. The random forest model then combines these features with 
the original satellite image and field data to predict sedimentary and ecological variables. In this 
study the cross-validaƟon accuracy of the model was evaluated for the Ɵdal flats in Bar Al Hikman, 
Oman, using Landsat 7 and SenƟnel 2 images and field data collected in 2008 and 2011-2015. The 
cross-validaƟon accuracies for the variables median grain size, silt content, biomass, species richness, 
crab biomass, and crab species richness were evaluated. Different scenarios represenƟng different 
transfer learning techniques were tested which differed in the training of the deep learning model 
used to extract features. The cross-validaƟon accuracies obtained using literal transfer without 
change, finetuning, freezing and training from scratch were compared.  

The best-performing scenario used the pre-trained model without any further training in the study 
area in Oman. The model trained from scratch with a patch size of 64x64 had the highest accuracies 
on the SenƟnel images. Higher cross-validaƟon accuracies were found when the random forest model 
was trained on single-year data and when images temporally close to the field campaign data were 
used.  

Similar to the findings for the Wadden Sea the cross-validaƟon accuracy was highest for the sediment 
properƟes. The cross-validaƟon accuracy was lowest for the species richness. The cross-validaƟon 
accuracies obtained for Oman were lower than those obtained by Madhuanand et al. (2023) for the 
Wadden Sea. This reduced accuracy when DL models are applied to a different region is in line with 
previous research on the generalizaƟon of deep learning methods.  

The Landsat 7 images used in this study were subopƟmal because of the data gaps caused by the SLC 
failure. These had to be filled with data from different images creaƟng edges with spectral differences 
picked up by the deep learning model and visible in the generated features. As a result, they likely 
influenced the predicƟon accuracy.   

While the cross-validaƟon accuracies of the transfer aƩempts of this study were lower than 
preferred, indicaƟons have been found that using an improved dataset may result in beƩer 
predicƟons. Focus should be on using satellite images without data gaps, using single-year data in the 
random forest model, and using temporally closely matched field and satellite data.   
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