
UTRECHT UNIVERSITY

Department of Earth Sciences

Faculty of Geosciences

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE IN EARTH SCIENCES UTRECHT UNIVERSITY

Validating Multidecadal Fluvial Sediment Flux
Projections to Major Deltas Under Environmental

Change Scenarios

First examiner:

dr. Frances Dunn

Second examiner:

dr. Jaap Nienhuis

Candidate:

J.J.P. Hooijmans

Student number:

7819773

February 2, 2024



Abstract

This thesis presents a critical validation analysis of the pioneering work of (Dunn et al.,

2019) in projecting decadal sediment fluxes for major global deltas using the WBMsed

model. The study evaluates the model’s performance in accurately projecting sediment

flux scenarios and its applicability to provide as a ’missing link’ in delta sustainability

research, especially in projecting relative sea level changes for individual deltas. When

substituting empirical data with a model, recognizing its capabilities and limitations is

vital for establishing its projection accuracy, reliability and applicability for other global

deltas, and to help address the existing knowledge gap in accurately projecting future

challenges faced by deltaic systems.

Through a comprehensive operational validity study, insight into how well the WBMsed

model captures real-world patterns and behaviours is provided. By evaluating the per-

formance of the model compared to more recent and reliable validation data, significant

challenges and areas for improvement in the WBMsed model are revealed. The assess-

ment of mean annual sediment fluxes indicates generally acceptable projection perfor-

mance, with 37 out of 43 individual rivers falling within one order of magnitude of the

validation data. However, the analysis of mean inter-annual variations underscores the

model’s incapability to accurately capture yearly increase or decrease fluctuations for 21

out of 43 rivers, while simultaneously not representing natural delta system morphology

behaviour. The dominance of these extreme inter-annual fluctuations is highlighted by

the dominance of these variations on the sediment flux trends. Trendline analysis further

analyses the model’s sensitivity to chosen periods and event timing, with consistent sed-

iment increase or decrease directions observed for 24 rivers and contradicting direction

for 19 rivers between projections and measurements. These findings underscore the need

for model refinement to enhance short-term variation projections.

Focussing on the overall sediment flux magnitudes, the WBMsed model demon-

strates a pronounced tendency towards overprediction, with fluvial water discharges

overestimated up to +1700%, contrasting with underpredictions of -54% in certain rivers.

Moreover, the analysis identified that while projections suggest 16 deltas would experi-

ence increased pressure on their ability to withstand relative sea level rise as a result of

decreasing fluvial sediment flux, observations show that 26 deltas actualy experienced

increased pressure.



In this research, the WBMsed model shows promising accuracy in average annual

sediment flux predictions for many rivers around the world, however, addressing the

identified challenges on overprediction, unnatural inter-annual variability and the ex-

clusion of variables able to influence fluvial sediment fluxes in reality, is crucial for its

applicability to a broader range of global deltas and reliable use in delta sustainability

projections.
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1. Introduction

Deltas, home to over 500 million people globally and housing many of the world’s megac-

ities, have been identified as one of the most vulnerable coastal environments in the 21st

century (Deboulet & Mansour, 2022; R. Nicholls et al., 2016; J. P. Syvitski & Saito, 2007;

J. P. Syvitski et al., 2009). Deltas are popular places to live due to abundant resources,

including fertile and flat agricultural lands, potential harbour transport, fishing activities

and mining resources (Edmonds et al., 2020; Evans, 2012; Hoitink et al., 2020). Addition-

ally, the concentration of freshwater, nutrients and sediment inputs, makes deltas ideal

for fostering diverse ecosystems (Adger et al., 2018).

Various climatic, environmental and socioeconomic drivers operate at multiple scales

threatening the unique ecosystem services and livelihoods in delta areas. These drivers

range from global climate change and sea-level rise to deltaic-scale subsidence, flooding

and land cover change (R. Nicholls et al., 2016). While natural occurrences like sediment

compaction and incidental flooding are normal, anthropogenic activities exacerbate delta

vulnerability (R. J. Nicholls, 2004; Nienhuis et al., 2023; J. Syvitski, 2008; J. Syvitski &

Kettner, 2011). As the delta populations and their economies continue to grow, anthro-

pogenic pressures on the delta system are expected to increase (Dunn, 2017).

Deltas form when moving water meets a body of water with a sudden change in

flow velocity, causing sediment deposition as the dispersal forces present are not strong

enough to prevent sediment accumulation (Evans, 2012). This paper focusses on coastal

deltas, with the moving water carrying sediment being the fluvial input, the body of

water being an ocean, and wave and tidal processes, along with the river outlet are the

dispersion forces referred to. A deltas existence depends on several riverine and oceanic

processes, such as a regular sediment supply by fluvial water (Deboulet & Mansour, 2022;

Evans, 2012). Aggradation is crucial for a deltas ability to withstand relative sea level

rise, requiring regular inundation for sediment deposition and raising the delta surface

relative to sea level (Dunn, 2017).

With adequate fluvial sediment supply and minimal human influence, deltas gen-

erally maintain their integrity and are able to withstand relative sea level rise due to

aggradation mechanism (Ibáñez et al., 2014; Sanchez-Arcilla et al., 1998). However, ex-
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Introduction

panding anthropogenic activity in the last decades, including population and economic

development, accompanied by catchment developments, negatively impact aggradation

mechanisms (J. Syvitski, 2008; J. Syvitski & Kettner, 2011), reducing the deltas ability

to grow and withstand relative sea level rise. Consequently, these regions and their in-

habitants face an increasing threat of coastal flooding, depletion of wetlands, shoreline

erosion, and infrastructure damage (Ericson et al., 2006; J. P. Syvitski et al., 2009). Inter-

actions between human and natural forcings remain complex and not fully understood,

challenging our current predictive capabilities (Sanchez-Arcilla et al., 1998; J. Syvitski et

al., 2005).

With climate change driven accelerating sea-level rise, the added uncertainty intro-

duced by non-climatic drivers of relative sea level rise, particularly local sea level rise

linked to land level changes resulting from anthropogenic activities, get increasingly re-

searched (Dunn, 2017; Nienhuis et al., 2023; J. Syvitski & Kettner, 2011; J. P. Syvitski et al.,

2009).

As we recognise the importance of sediment delivery to deltas and the current re-

duction due to anthropogenic activity paired with changing sea levels, it is evident that

the current situation is unsustainable (Dunn, 2017). Urgent calls for action by the sci-

entific community on the risks faced by deltas with decreasing sediment supplies have

increased (Giosan et al., 2014; Kondolf et al., 2022). Conducting more research on the

present and potential future conditions of sediment in deltas enhances our scientific un-

derstanding of possible trends and can foster more sustainable management approaches

(Dunn, 2017).

This study builds on Dunn et al. (2019) pioneering work by validating the decadal

sediment flux projections for 43 major global delta rivers. Validated accurate sediment

flux projections can be eventually be implemented in delta management strategies plan-

ning as it is essential knowledge to project relative sea level rise at individual global

deltas, and be able to assess realistic projections of future delta sustainability (Nienhuis

& van de Wal, 2021). To detect possible model errors and/or biases, the sediment flux

projections will be validated by using historic reliable observations and operational vali-

dation.

This research aims to enhance our understanding of future delta sustainability by

exploring future sediment flux alterations within global deltas, considering both current

and future environmental shifts until the end of the 21st century. Validating the sediment

flux projections from Dunn et al. (2019) can help address the existing knowledge gap in

10



projecting future relative sea level changes in deltaic systems.

To address this problem, the following research question and sub-questions will be

answered during this project:

To what extent are the sediment flux projections of Dunn et al. (2019) able to accurately project

sediment flux scenarios and thus give a reliable sediment information source to be implemented in

projections of global delta land loss?

1. How do the sediment flux projections perform when compared to recent measurements?

2. What factors cause the discrepancies between the projections and the measurements?

3. How could the sediment flux projections be improved?

The research project will build further on existing work on anthropogenic and nat-

ural influences on delta sediment fluxes and their impact on delta sustainability on a

multidecadal timescale (Dunn et al., 2019). Due to relative stable natural influences on

sediment fluxes, there will be a focus on anthropogenic influences on sediment fluxes in

this study, as these are harder to predict on a longer timescale and are therefore more

likely to cause projection errors (Dunn, 2017).

In Chapter 2, the intricacies governing delta sustainability and overall delta function-

ing are explained. This includes an exploration of processes influencing delta surface el-

evation relative to sea level and an examination of the drivers of change impacting these

deltaic processes, a detailed description of the WBMsed model employed for projections

along with the data utilized in shaping these projections. Also, the importance of validat-

ing the projections established by Dunn (2017) is explained, shedding light on potential

errors inherent in the model or the data employed. In Chapter 3, the validation method

and dataset are introduced, followed by preparation of the projection data. Chapters 4

and 5 contain the results and discussion of the validation analysis, beginning by fulfilling

objective 1 through the presentation of direct comparison results between the projections

and validation data. Objective 2 is subsequently achieved as the comparisons are exam-

ined, delving into potential factors contributing to observed discrepancies. This thorough

analysis results in the identification of points of improvement, offering valuable insights

into refining the projection model and fulfilling objective 3.

11



2. The difficulty of projecting delta sustainability

Coastal delta systems are highly dynamic landscapes, facing sustainability challenges

due to the disturbance of delta processes (Wagner et al., 2017; Zonneveld & Nadin, 2020).

The equilibrium of mechanisms creating and deteriorating deltas is globally disturbed,

causing deltas to currently be among the most stressed and vulnerable systems (Day

et al., 2016; IPCC, 2007). They are vulnerable to the impacts of climate change and an-

thropogenic factors influencing inland precipitation patterns and the fluvial runoff and

sediment delivery patterns. However, these same drivers also influence the ability of the

delta to keep up with sea level rise, and especially as low-lying plains, deltas are highly

sensitive to changes in relative sea level (Wong et al., 2014). This prompted a recent in-

crease in research efforts, with a surge in studies focusing on monitoring and projecting

future sediment fluxes (Cohen et al., 2022; Dunn et al., 2018; Moragoda & Cohen, 2020).

Notably, Dunn (2017) performed pioneering work in this domain, offering insights on ex-

pected effects of environmental changes on sediment fluxes to the worlds’ major deltas.

However, the interaction of different mechanisms makes it difficult to make correct pro-

jections for future delta risks and their magnitudes (Ericson et al., 2006). Therefore, en-

suring the reliability of these projections is essential, as undisclosed discrepancies could

lead to misleading results (Valle et al., 2009).

2.1 The influence of delta elevation change processes

Delta sensitivity to relative sea level rise is only enlarged due to the natural subsidence of

deltaic sedimentary environments, which itself is accelerated by anthropogenic activities

in densely populated areas (Dunn, 2017; R. J. Nicholls & Cazenave, 2010). The sensitivity

lies in coastal threats such as floods and coastal erosion due to relative sea level rise (R.

Nicholls et al., 2007). Dunn (2017) prioritised relative sea level rise as a key risk factor

for deltas as a result of environmental change, focussing on eustatic sea level changes,

sediment compaction and aggradation. All these elements can be influenced by anthro-

pogenic factors, thereby impacting relative sea level rise.

12



2.1 The influence of delta elevation change processes

2.1.1 Eustatic sea level changes

While it has been recognised for decades that anthropogenic-driven climate change con-

tributes to ice mass-retreat and ocean warming, changing eustatic sea levels (Fairbridge,

1961; Rovere et al., 2016), are likely to accelerate as warming of (sub)polar glaciers contin-

ues (Meier et al., 2007; Sames et al., 2020). Important to note is that the global sea level rise

will never be uniformly distributed globally due to self-gravitation in the surface mass

load. Meaning, as ice melts, mass is lost locally and water will be redistributed from the

local area to further locations (Mitrovica et al., 2001). The differing global distribution

of global eustatic sea level changes influence deltas globally in different manners. Some

deltas will experience eustatic sea level rise, whereas others may experience a drop (Yin

et al., 2010). The unpredictability of (sub)polar ice masses add complexity to accurate

future projections, as changes in glacier behaviour can occur on short time scales (Rignot

& Thomas, 2002).

2.1.2 Sediment Compaction

Subsidence is a well-known phenomenon in deltaic areas consisting of natural and an-

thropogenic drivers (Nguyen et al., 2023). Natural compaction and consolidation is com-

mon in delta areas due to the relatively young sediment composition (Truong & Nguyen,

2020; Zoccarato et al., 2018). However, these natural compaction rates can be intensified

by anthropogenic influence. Water extraction results in aquifer compaction (Jordan et

al., 2019; Parker, 2020), and as cities grow, the weight on the delta subsurface increases,

driving further compaction of the sediments (Parsons et al., 2023; Waltham, 2002). Delta

sediment compaction strongly increases the deltas’ vulnerability to flooding, coastal ero-

sion and ultimately permanent inundation (Minderhoud et al., 2020). The anthropogenic

activities currently dominate the main drivers for delta subsidence (Saito et al., 2007),

making the projection of future subsidence rates more complicated. The few studies that

exist on projecting anthropogenic intensified delta compaction rates rely on extrapolated

extraction and mining activity rates. This creates uncertainties as increased weight of

growing cities and other land use changes are not accounted for (Dunn, 2017; Minder-

houd et al., 2020).

2.1.3 Aggradation

According to J. P. Syvitski et al. (2009), “A delta’s aggradation rate is determined from the

volume of sediment delivered to and retained on the subaerial delta surface as new sedimentary

layers”. As relative sea levels rise is either a result of rising sea levels or delta land sub-
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The difficulty of projecting delta sustainability

sidence, accommodation space is created. If sufficient fluvial sediment is provided, this

accommodation space is filled and the delta is maintained (J. Syvitski, 2008). Alterna-

tively, if the accommodation space exceeds delivered sediment supply rate or volume,

the delta area will retreat (Nienhuis & van de Wal, 2021). Sustainable deltas are thus

characterized by an adequate sediment supply to withstand marine forcing and relative

sea level rise (Besset et al., 2019). Therefore, with current accelerated sea level rise, there

is also an increase in sediment supply needed to maintain modern deltas. However,

where at the start of classic civilizations anthropogenic activities induced fluvial sedi-

ment delivery due to large-scale implementation of deforestation, agricultural practices

and other land use changes (Ibáñez et al., 2014; Maselli & Trincardi, 2013), anthropogenic

activities negatively impact delta aggradation capabilities in the modern day. Upstream

damming, instream sediment mining and canal- and levee construction has been reduc-

ing sediment delivery to deltas for decades (Ericson et al., 2006; J. Syvitski, 2008). Be-

sides sediment delivery, the ability to retain this sediment is equally important for delta

aggradation (J. P. Syvitski et al., 2009). However, even this retention capability is affected

by anthropogenic activities, with flood defence efforts being of highest influence (Dunn,

2017). Being ironic, as the natural process of aggradation is essential for deltas to keep up

with relative sea level rise. (Dunn, 2017) comprised the magnitudes of eustatic change,

crustal deformation, and compaction for 47 global deltas. These values were compared

to the accompanying aggradation values, showing that even with current aggradation

processes, 14 out of 16 deltas which had data available on all processes, cannot keep up

with current relative sea level rise.

2.2 Sediment delivery challenges

The importance of delta aggradation, and thus sediment delivery to deltas, to be able to

keep up with RSLR is recognised. However, modern deltas face escalating challenges

in fluvial runoff and sediment delivery patterns, stemming from climate change and in-

creasing anthropogenic activities.

2.2.1 Climate drivers

Anthropogenic-driven climate change is a global phenomenon, but manifests in diverse

effects on individual deltas. Precipitation and temperature alterations significantly influ-

ence fluvial sediment fluxes (Dunn, 2017). Climate change-induced precipitation changes,

whether intensifying or decreasing, impact erosive processes and sediment transport.
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Increasing and intensifying precipitation has an erosive effect, increasing precipitation

runoff needed to transport this eroded sediment, ultimately increasing the fluvial sed-

iment transport (Çakmak et al., 2021; Dunn, 2017; Hancock, 2009). Temperature also

conducts its own influence on these processes. For example, an increase in global tem-

peratures is expected to increase sediment fluxes in cold environments due to the melting

of frozen sediment and glaciers or due to increased fluid precipitation (J. P. Syvitski, 2003;

T. Zhang et al., 2022). The effects of both precipitation and temperature changes on sed-

iment fluxes is complex and varies per individual delta, which makes it hard to project

the influence of climate change on deltas’ aggradation abilities (Dunn, 2017).

2.2.2 Anthropogenic drivers

Anthropogenic activities drastically transformed deltaic environments since the 20th cen-

tury (Day et al., 2016), primarily due to land use changes, reservoir construction and

channel activities like mining. According to (J. P. Syvitski et al., 2009), the construction of

reservoirs has the biggest negative impact on sediment delivery to deltas, as dams retain

substantial amounts of fluvial sediment (Vörösmarty et al., 2003). According to J. Syvitski

et al. (2022)

“If it were not for sequestration of sediment behind dams, global rivers would

have increased their particulate loads by 212% between 1950 and 2010”.

Channel mining and engineering, as well as flow diversion, further influence sediment

fluxes, often resulting in declines (Kondolf, 1997; McManus, 2002). Channel engineering

activities are related to economically prosperous communities with higher GNP, linking

to the correlation of declining sediment fluxes as thriving deltaic economies continue to

grow (Dunn, 2017). Flow diversion, implemented for consumption purposes, further

reduces fluvial sediment fluxes due to increased evaporation and consumption losses

leading to less discharge (Ericson et al., 2006; Vörösmarty et al., 2003). The dominant

impact of anthropogenic drivers on sediment flux is emphasized by Moragoda and Co-

hen (2020), projecting future sediment flux scenario’s under climate change effects as

temperature and discharge, along with current anthropogenic influences and without

the anthropogenic influences. They identified that already existing anthropogenic activ-

ities, which already diminish sediment fluxes, hinder the climate’s positive influence on

increasing sediment flux. As such, for some deltas the projected sediment fluxes was

decreasing with current anthropogenic activities taken into account, but shifted to an

increase in sediment flux when climate change effects were isolated.
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2.3 Projecting future delta sustainability using WBMsed v2.0

Dunn employed the WBMsed v2.0 model for the sediment flux projections, which is an

extension of WBMplus, which itself is an updated version of the original WBM (Water

Balance Model) (Cohen et al., 2013). The original WBM was able to project soil mois-

ture, evapotranspiration and runoff for individual cells. Due to the grid being two-

dimensional, the discharge transfer between cells depended on the topology of the chan-

nel network, storage times of cells, and floodplain inundation (Dunn, 2017; Vörösmarty

et al., 1989). The WBMplus extension of Wisser et al. (2008) introduces anthropogenic ir-

rigation, evapotranspiration and additional reservoir components to better represent the

grid based water balance (Wisser et al., 2010). In the WBMsed v2.0 extension, the cell

discharge output computed by WBMplus is modified by adjusting daily water discharge

for each grid-cell based on its bankfull discharge(maximum capacity). If projected water

discharge surpasses the bankfull discharge, the surplus will be stored in an infinite mod-

elled floodplain, and the water discharge will be limited to the bankfull discharge level.

When predicted water discharge drops below bankfull levels again, water stored in the

floodplain will be reintroduced to the river grid-cell. The amount of water returning to

the river is proportional to the deficit of the river grid-cell from bankfull level. In other

words, very low river discharge after a period of very high river discharge, will lead to

a higher reintroduction of floodplain water. Additionally, floodplain storage allows the

reduction of sediment flux projections as settling of sediment occurs (Cohen et al., 2014;

Dunn, 2017).

WBMsed v2.0 integrates the BQART sediment delivery model of J. P. Syvitski and

Saito (2007), which computes long-term suspended sediment loads at river mouths, tak-

ing into account the influence of geomorphic and tectonic influences (basin area and re-

lief), geography (temperature, runoff), geology (lithology, ice cover), and human activi-

ties (reservoir trapping, soil erosion) on sediment fluxes to coastal zones (J. P. M. Syvitski

& Kettner, 2011):

QS = ωBQ0.31A0.5
B RT when T ≥ 2◦C (2.1)

QS = 2ωBQ0.31A0.5
B R when T < 2◦C (2.2)

Where QS is suspended sediment (kg/s), B are the catchment factors of glacial ero-
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sion, lithology and anthropogenic soil erosion, AB is basin area (km2), R is maximum

relief difference (m), T is the spatially averaged basin temperature (°C), Q is discharge

(m3/s) and ω is a proportionality coefficient (0.02 for kg/s or 0.0006 for Mt per year)

(Dunn, 2017). To account for intra- and interannual variability, the Psi sediment delivery

model by Morehead et al. (2003) is introduced along the BQART model. By merging the

BQART and Psi models, WBMsed achieves the capability to simulate global daily water

transport, enabling the spatial and temporal simulation of global sediment fluxes (Cohen

et al., 2013). WBMsed is not a mass conservative model, as it does not explicitly compute

sediment transport, but calculated sediment flux from the upstream basin at each indi-

vidual pixel. Overall key fluvial basin input factors to the WBMsed with the potential to

systematically affect performance according to Dunn (2017) are: Temperature, precipita-

tion, flow channel network, contributing area, maximum- and minimum relief, minimum

slope, ice cover, population density, GNP, large- and small reservoir capacity, irrigation

area, -intensity and -efficiency, crop fraction, lithology factors, soil parameters, bankfull

discharge, river bed slope and floodplain to river flow.

2.3.1 Composing Dunn et al. (2019) projections

In applying WBMsed for global delta sediment fluxes till 2100, corresponding input

datasets are required. Dunn et al. (2019) used Jones et al. (2011) climate data, Murakami

and Yamagata (2017) socioeconomic data, and Grill et al. (2015) together with Zarfl et al.

(2015) for projected global reservoir capacity. To investigate fluvial sediment flux sensi-

tivity to future climate- or socioeconomic changes, 12 scenarios of different climate and

socioeconomic combinations are projected for the time period 1980-2099. This time pe-

riod is chosen to provide sufficient historic years for validation of the research and be-

yond the end of the 21st century, confidence in projected datasets diminish as anthro-

pogenic and natural projection uncertainties increase with time (Dunn, 2017). The 12

scenarios used in Dunn et al. (2019) are combinations of the four Representative Concen-

tration Pathways (RCPs) and the first three Shared Socioeconomic Pathways (SSPs), SSP1

to SSP3 (shown in Figure 2.1).
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Figure 2.1: Matrix of the 12 future climate scenarios, constructed using all four RCP’s and
SSP1 to SSP3 from Dunn (2017)

2.3.1.1 Climate

The four RCPs project four different magnitudes and extents of climate change under dif-

ferent levels of radiative forcing (van Vuuren et al., 2014). Each RCP number represents

the stabilised radiative forcing before the end of the 21st century (4.5 and 6.5) or the ra-

diative forcing reached at 2100(2.6 and 8.5) (Dunn, 2017). The RCPs translate emissions,

concentrations and accompanying land use and land cover to radiative forcing, and then

this forcing is expressed in climate change (van Vuuren et al., 2011). The data used for cli-

mate change of Jones et al. (2011) utilizes atmospheric pollutant concentrations and land

use from the RCPs, and additional solar irradiance and stratospheric volcanic aerosols

to produce climate projections from 1950 to 2100 at 0.5 degree resolution. However, as

the RCPs diverge from 2005 onward, climate data between 1950-2004 is the same for all

pathways per basin. The climate variables used for implementation in WBMsed are the

annual mean air temperature and precipitation (Dunn, 2017).

2.3.1.2 Socioeconomics

As RCPs are established for global socioeconomic assumptions, there is no detailed RCP

data available for individual basins (Dunn, 2017). To be able to understand and work
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with possible societal futures, five Shared Socioeconomic Pathways(SSPs) were constructed

to characterize five future social trends. These SSPs consist of quantitative and qualitative

elements describing how the future might develop in terms of population growth, gover-

nance efficiency, inequality across and within countries, socio-economic developments,

institutional factors, technology change, and environmental conditions (O’Neill et al.,

2014; van Vuuren et al., 2014). Murakami and Yamagata (2017) have used pre-existing

data and interpolation to produce yearly, databases on population and demographics,

urbanisation and GDP for SSP1-3 at a 0.5 degree resolution for the years 1980-2100.

2.3.1.3 Dams

Due to their earlier established significant impact on sediment delivery to deltas, Dunn

(2017) implemented dam construction as a separate consistent variable in projecting the

future sediment fluxes. The used reservoir data of Zarfl et al. (2015) consists of hy-

dropower dams with at least 1MW capacity which are under construction, planned, fi-

nanced and assigned, in a feasibility assessment stage or even in a pre-feasibility stage.

These dams are corresponded with information on the dam location, hydroelectric ca-

pacity and construction timeline. To be used in the WBMsed model, the hydroelectric

capacity of the dams are translated to reservoir volumes using Grill et al. (2015). To imple-

ment these constructed reservoir volumes at the correct location on the timeline used in

the WBMsed model, the previously mentioned dam construction stages are used. Dunn

(2017) assumed that dams under construction in 2015 come online in 2020; dams financed

and signed as off 2015 come online in 2030; dams in the ‘feasibility assessment’ stage per

2015 come online in 2040; and all other dams (planned or in the ‘pre-feasibility’ stage)

come online in 2050. An important note in the use of this particular reservoir dataset, is

the exclusion of smaller, or other types of dams, giving rise to under-estimates of future

dam reservoir volume present in the delta basins. Also, in reality, at the time of dam

‘employment’ sediment carrying capacity is not fully reduced at once (Lai et al., 2017).

2.4 The need for validation

When substituting empirical data with a model, recognizing its capabilities and possible

limitations is vital, along with the accuracy of the utilized variables and external datasets,

used in Dunn (2017).
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2.4.1 Modelled water discharge

According to Dunn (2017), the model tends to overpredict mean annual water discharge,

especially for rivers with lower annual water discharges (<8km3/year). Additionally,

the study reveals that rivers in temperate climates, especially those below 11°C, have

more accurate discharge projections, likely due to temperatures impact on vegetation

growth. The models representation of cropping locations in lower temperatures is more

accurate than in hotter regions, explaining discrepancies. Similarly, rivers with high pre-

cipitation are more likely to have less projection discrepancies, which could be caused by

the models crop location representation. However, where high temperature is combined

with high precipitation, the discrepancy ratio of the projections is even lower than just

high temperatures alone, suggesting a complex model bias for crop growth assumptions

(Dunn, 2017). Important to note, WBMsed struggles to accurately represent the river dis-

charge in the presence of dams, as extreme alterations in flow occur and predicting global

dam operation magnitudes and schedules is challenging in itself (Cohen et al., 2014).

In contrast to the mean annual flow, the model underpredicts the annual peak dis-

charge at lower discharges and overpredicts for higher discharges (Cohen et al., 2013).

However, looking closer at the peak discharges, rivers with high annual water discharges

(>160 km3 per year) are more likely to have well predicted peak discharges. For rivers

with low annual water discharges or when large reservoir volumes are present in the

basin(>100,000km3), peak discharges tend to be overpredicted. Indicating WBMsed not

being able to appropriately capture water discharge dynamics when basins contain a

large total reservoir volume, and thus is not able to accurately simulate the effect of large

reservoirs on flood peaks (Dunn, 2017).

2.4.2 Anthropogenic soil erosion

One of the catchment factors introduced in the WBMsed model is the anthropogenic

soil erosion factor. Inspired from Saito et al. (2007), and based on population density

and Gross National Product (GNP) per capita. Dunn (2017) enabled the possibility to

fluctuate this value in the projections, making the values used for the anthropogenic soil

erosion factor as illustrated in Table 2.1. A problem that can arise by implementing the

possibility for GNP value variability, is the abrupt changes in sediment flux projections

due to slight shifts in GNP per capita. This mechanism is unrealistic, as the transition of

a community to anthropogenic drivers influencing soil erosion occurs gradually (Dunn,

2017).
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Table 2.1: Values of the anthropogenic factor in the WBMsed model (Dunn, 2017)

Population Density

<30 per km2 30-140/km2 >140 per km2

GNP per Capita

<$2,500 1 1 2

$2,500-$20,000 1 1 1

>$20,000 1 0.3 0.3

2.4.3 Sediment fluxes

Dunn (2017) made an effort to validate the projected sediment fluxes, however, there

was limited reliable sediment data available. The used sediment data carried uncertain-

ties as the quality varied and duration of observations of sediment measurements were

relatively short. Most sources did not specify their methods or location even, and the

coverage was often measured in years rather than decades, if the time period was even

indicated at all (Dunn, 2017). On top of that, the most recent sediment data of some

sources dated from Milliman and Meade (1983) or Milliman and Syvitski (1992). Due

to the high uncertainty in this data, primarily the magnitude of the measurements was

taken into account. The comparison showed larger overprediction than underprediction,

and even errors larger than an order of magnitude away. The overprediction is no sur-

prise considering earlier mentioned discharge overprojections. To reassess this validation

and theory, a new validation with more accurate measurement data is needed to make

substantiated assumptions. Ideally, the validation data consist of real-life sediment flux

measurements of the specific projected deltas. As highlighted by Dethier et al. (2022)

and Dunn (2017), there is a vast challenge associated with collecting such data, as many

rivers lack suspended sediment observation data. Therefore, datasets derived from al-

ternative observation methods which underwent thorough substantiation and validation

using reliable methods, would be a good data source for validation. One such promising

validation dataset is sourced from Dethier et al. (2022). Dethier et al. (2022) investigated

historical and recent changes in suspended sediment flux in 414 major rivers worldwide,

emphasizing the crucial role of sediment flux in delta sustainability and underscoring

the influences of different stressors such as dams and anthropogenic influences. Concen-

trating on rivers >90 m at their outlet, draining areas >20,000 km2, and utilizing satellite

image analysis combined with algorithms trained on 130,000 ground truth measurements

from 340 sites in North- and South America and Taiwan, the algorithm estimated accu-

rate suspended sediment concentration for 414 global rivers from 1984 to 2020.
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2.5 Data limitations

Besides the WBMsed model discrepancies, the projected sediment fluxes for global deltas

are based on multiple external datasets, introducing fundamental issues in the sediment

flux projections. Examples of this are the previously mentioned capability to project reli-

able anthropogenic factors for long-term periods or data limitations in the used climate,

socioeconomic and dam datasets. The different temporal variations of the data sources

used for the input and validation datasets for the model, represented in figure 2.2, and

more general limitations of global climate and hydrological models, should be taken into

account (Dunn, 2017; Fekete et al., 2016). These uncertainty factors highlight the need for

validation of the projections made in Dunn et al. (2019), before it can be confidently used

in delta morphology projections.

Figure 2.2: Temporal variability of different relevant datasets used in the study of Dunn et
al. (2019) and this research
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This chapter outlines the research methodology employed to validate the global delta

sediment flux projections from Dunn et al. (2019) using more recent and validated sedi-

ment flux data. The purpose of this research is to assess the accuracy, reliability, and ap-

plicability of the existing findings of Dunn et al. (2019) by systematically comparing them

with data derived from an external source. A comparative research design is adopted for

this study, allowing for systematic comparison of both datasets. By employing a com-

parative approach, this research aims to identify consistencies, discrepancies and trends

between the base dataset of Dunn et al. (2019) and the validation dataset, providing a

comprehensive understanding of the validity of the findings from Dunn et al. (2019).

3.1 Operational validity

Operational validity, as defined by Sargent (2010), involves determining whether the sim-

ulation model’s output behaviours have the required accuracy for its intended purpose

over the model’s domain. In the context of the sediment flux projections, operational

validity provides insight into how well the WBMsed model captures real-world patterns

and behaviours (Thacker et al., 2004). With a focus on projecting sediment flux behaviour

and patterns rather than precise magnitudes due to inherent uncertainties in natural sys-

tems (Refsgaard et al., 2013), the operational validity analysis is conducted mostly quali-

tatively with supporting quantitative details, emphasizing the model’s ability to portray

expected behavioural aspects.

3.1.1 Exploring model behaviour

Understanding the WBMsed models’ behaviour is crucial, as it involves uncertainties

and complexities inherent in natural systems. Behaviour analysis can be done qualita-

tively and quantitatively. Qualitative analysis focusses on output directions and if the

model outputs lie within ‘reasonable’ intervals, aiming at the models ability to simu-

late expected patterns and processes. Quantitative analysis delves into numerical accu-

racy, providing insights into the ability of the model to precisely project exact sediment

flux magnitudes (Sargent, 2010). In this study, the primary focus lies within assessing
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the model’s ability to depict the expected behavioural aspects of the sediment flux pro-

jections, therefore, the operational validity is conducted dominantly qualitatively with

supporting quantitative analysis. To compare the models behaviour and patterns on the

global delta sediment fluxes with real measurements, the datasets are graphed in various

ways, including time series plots, barplots, and scatter plots. Statistical significance test-

ing ensures the reliability of findings. Identified discrepancies trigger further validation

and expert consultations, enhancing the overall study reliability. Assessing the quality of

model projections involves comparing sediment flux projections with validation data. If

projections lie within one order of magnitude of validation data, the model’s quality is

deemed ’reasonable’ (Dunn, 2017). While parameter variability-sensitivity analysis and

various statistical methods could enhance operational validity analyses (Sargent, 2010),

the unavailability of original input data limits these aspects in this study.

3.1.2 Limitations

Acknowledging limitations is crucial for interpreting the research results in the correct

context, interpreting the validity of the research and the conclusions provided. The un-

derstanding of the limitations goes beyond just listing magnitudes and directions of val-

idation problems, but requires interpretation of the influence of potential errors on the

eventual findings (Ioannidis, 2007).

One limitation is the availability and quality of the validation dataset, which might

affect the depth of the comparative analysis. Additionally, differences in data collection

methods between the base and validation datasets could introduce biases in validation

results, compromising the consistency and accuracy or the validation analysis. Finally,

validating model outputs directly with test data takes on the entire model system, which

can be problematic as the model comprises multiple components with complex connec-

tions and the original input data is not accessible. If there proves to be poor agreement

between the projections and the validation measurements, it is difficult if not impossible

to isolate which subsystem of the model is responsible for the discrepancy (Thacker et al.,

2004).

3.2 Datasets

In this section, we delve into the foundational datasets that form the backbone of our

comparative study. The datasets are categorized into two main components: Base data

and Validation data.
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The Base Data encompasses the original dataset containing global delta sediment flux

projections from Dunn et al. (2019), forming the basis of this comparative study and is the

work of F.E. Dunn, the researcher and creator of the dataset. It incorporates information

concerning 47 deltas with each its own directory with .csv files. The file names are the

coordinates where the data is from, which is simultaneously the starting point of the

delta area. In cases where deltas are fed by more than one river, there are multiple .csv

files, resulting in a total of 62 different river model outputs. An overview of the 47 deltas

and their river coordinates are in Appendix A. The files contain the annual sediment

flux projection results over a period of 1980 to 2099 on 0.5 degree resolution, portraying

12 scenarios that combine 4 RCPs and 3 SSPs (as explained in Section 2.3.1). The direct

access to the dataset and insights from F.E. Dunn ensures the authenticity and accuracy

of the data used for this research.

Validation data is essential in assessing the reliability of the sediment flux projec-

tions. The validation data will consists of the suspended sediment fluxes from the study

of Dethier et al. (2022), explained in 2.4.3. By validating Dunn et al. (2019) sediment

flux projections with the validated historic suspended sediment fluxes by Dethier et al.

(2022), the uncertainty and reliability of the projections will be evaluated. This thorough

evaluation using more recent and precise sediment data will enhance our understand-

ing of sediment delivery processes and contribute to the development of effective and

sustainable management strategies.

3.3 Data Preparation

To ensure compatibility and consistency, both datasets are in need of preprocessing us-

ing Python. This involves converting the datasets into a uniform format and eliminating

irrelevant data for analysis. By intersecting both datasets, common deltas or individ-

ual rivers shared by both, are identified, setting the stage for meaningful comparative

analysis. Also, the individual Dunn et al. (2019) data will be statistically analysed, to

determine which of the 12 scenarios will serve as the basis for validation. This process

evaluates the occurrence of specific RCP and SSP combinations within the relevant time

period for validation practices, aligning the projection data with the available validation

data.
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3.3.1 Data intersection

The Dethier et al. (2022) study incorporates a wide range of sediment flux measurements

from 414 rivers, but may not include all 47 deltas and corresponding rivers from the Dunn

et al. (2019) study due to potential limitations in remotely sensed imagery and field mon-

itoring data availability. If there is a lack of overlap for certain deltas or individual rivers,

they are excluded from the study. Identifying trustworthy or complete supplementary

validation datasets for the missing rivers proves challenging, as freely available river

discharge and suspended sediment flux records for long historical periods are extremely

rare (Cohen et al., 2014).

The exclusion of specific rivers or entire deltas from the analysis due to limited avail-

ability of validation data introduces limitations to the study’s findings. The lack of reli-

able or complete additional validation data for these missing rivers underscores the need

for standardized sediment flux data collection methods across various sources to ensure

consistency in global fluvial sediment data.

In tables 3.1 and 3.2, Dunn et al. (2019)’s rivers are shown alongside their correspond-

ing validation dataset. In some cases, partial joins were conducted for Dunn et al. (2019)

rivers upstream of the corresponding Dethier et al. (2022) location. These couples are

the Pasak & Menam river in the Chao Phraya delta, the MacKenzie & Peel river in the

Mackenzie delta, the Limpopo & Changane river in the Limpopo delta, the Magdalena

& Brazo De Mompos in the Magdalena delta and the Brahmani & Baiterani river in the

Mahanadi Brahmani Baiterani delta, resulting in 53 distinct Dunn et al. (2019) rivers for

further analysis. For the comparative analysis, the datasets of these combined rivers are

also joined. While this may introduce variability, it allows for a comprehensive compar-

ative analysis of the datasets.
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Table 3.1: Data intersection of Dunn et al. (2019) rivers with Dethier et al. (2022) data lo-
cations. Continents: AF = Africa, AS = Asia, EU = Europe, OC = Oceania, NA = North-
America and SA = South-America

River Nr. River Name(s)
(Dunn et al., 2019)

Designation in
Dethier et al. (2022)

Continent

1 Amazon ‘Amazon’ SA

2 Amur ‘Amur’ AS

3 Burdekin ‘Burdekin’ AS

4 MaeKlong (Chao Phraya delta) ‘MaeKlong’ AS

5 Pasak-Menam (Chao Phraya delta) ‘Chao Phraya’ AS

6 BangPakong (Chao Phraya delta) X AS

7 Colorado X NA

8 Congo ‘Congo’ AF

9 Ebro ‘Ebro’ EU

10 Fly ‘Fly’ OC

11 Meghna (Ganges
Brahmaputra Meghna delta)

‘Meghna’ AS

12 Ganges (Ganges
Brahmaputra Meghna delta)

‘Ganges’ AS

13 Brahmaputra (Ganges
Brahmaputra Meghna delta)

‘Brahmaputra’ AS

14 Godavari ‘Godavari’ AS

15 Grijalva X NA

16 Han (Han delta) ‘Han’ AS

17 Imijn (Han delta) X AS

18 Ryesong (Han delta) X AS

19 Indus ‘Indus’ AS

20 Irrawaddy ‘Irrawaddy’ AS

21 Krishna ‘Krishna’ AS

22 Lena X AS

23 Limpopo-Changane
(Limpopo delta)

‘Limpopo’ AF

24 MacKenzie-Peel
(Mackenzie delta)

‘MacKenzie’ NA

25 Magdalena-Brazo De Mompos
(Magdalena delta)

‘Magdalena’ SA

26 Mahakam ‘Mahakam’ AS
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Table 3.2: Data intersection of Dunn et al. (2019) rivers with Dethier et al. (2022) data lo-
cations. Continents: AF = Africa, AS = Asia, EU = Europe, OC = Oceania, NA = North-
America and SA = South-America

River Nr. River Name(s)
(Dunn et al., 2019)

Designation in
Dethier et al. (2022)

Continent

27 Mahanadi (Mahanadi Brahmani
Baiterani delta)

‘Mahanadi’ AS

28 Brahmani-Baiterani (Mahanadi
Brahmani Baiterani delta)

‘Brahmani’ AS

29 Mekong ‘Mekong’ AS

30 Mississippi ‘Mississippi’ NA

31 Moulouya ‘Moulouya’ AF

32 Murray ‘Murray Darling’ OC

33 Niger ‘Niger’ AF

34 Nile ‘Nile’ AF

35 Orinoco - Caroni X SA

36 Orinoco - Orinoco X SA

37 Paraná ‘Parana’ SA

38 Pearl - Xi Jiang ‘Zhujiang’ AS

39 Pearl - Bei Jiang X AS

40 Pearl - Dong Jiang X AS

41 Po ‘Po’ EU

42 Red ‘Song Hong’ AS

43 Rhine X EU

44 Rhône ‘Rhone’ EU

45 Rio Grande ‘RioGrande’ SA

46 São Francisco X SA

47 Sebou ‘Sebou’ AF

48 Senegal ‘Senegal’ AF

49 Tana ‘Tana’ AF

50 Tigris Euphrates ‘Shatt el Arab’ AS

51 Tone X AS

52 Vistula ‘Vistula’ EU

53 Volta X AF

54 Yangtze ‘Changjiang’ AS

55 Yellow ‘Huanghe’ AS

56 Yukon ‘Yukon’ NA

57 Zambezi ‘Zambezi’ AF
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3.3.2 Dunn et al. (2019) data preparation

For the 62 distinct model outputs of Dunn et al. (2019), it is key to identify significant

differences among the 12 scenario outputs and to determine which best represents the

reality for the timeframe 1980-2020. Finding significant output differences between the

12 scenarios is crucial for understanding the level of variability in the model outputs

and identifying potential sources of uncertainty. Additionally, comparing the scenarios

can provide insights into the driving factors that have the greatest influence on delta

dynamics, which can inform management strategies and adaptation plans. However,

a challenge arises when the original WBMsed inputs are not available, preventing direct

comparison between historical climate- and socioeconomic data, hindering the discovery

of which scenario aligns best with reality. Therefore, a statistical analysis is undertaken to

determine the most suitable Dunn et al. (2019) data scenario for the comparative analysis.

Ensuring that the chosen scenario portrays the most accurate representation of reality.

3.3.2.1 Inter-scenario comparison

A distinctive feature of the literature on climate change and socio-economic change sce-

narios is the use of a ‘baseline’ scenario to analyse various target levels (Birkmann et al.,

2015; Riahi et al., 2007). In this research, the first and final cells of the 12 scenario matrix

represent opposite ends of a spectrum in terms of climate change and socio-economic

challenges. By using scenario one as baseline, the other eleven scenarios can be assessed

in relation to it. This approach streamlines the comparison process, providing a clear

understanding of the most extreme differences possible between scenarios. Absolute

differences are transformed into relative differences, facilitating a comprehensive com-

parison and analysis of inter-scenario differences for individual rivers. Statistical outliers

are crucial in identifying abnormal inter-scenario differences. Outliers are data points

that significantly deviate from the norm and therefore provide valuable insights into the

potential impacts of socio-economic and climate challenges on individual river systems

(Aguinis et al., 2013). To identify these outliers, three widely employed techniques are

used: histograms, the standard deviation, and a quantile-quantile plot (Q-Q plot) for vi-

sual and quantitative inspection (Ghasemi & Zahediasl, 2012). These techniques help

visualize the distribution of inter-scenario differences and determine which values are

more likely to appear if the sediment flux projection dataset is expanded. During this

analysis the period 1980-2020 is used from the Dunn et al. (2019) data to represent the

validation period.
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Visual inspection

The initial step in visual inspection involves constructing a histogram (Figure 3.1), con-

taining intervals representing the inter-scenario differences for all data points of scenarios

2-12, with the base scenario 1. Within these intervals, the height of the vertical bar rep-

resents the number of datapoints which hold inter-scenario differences within the partic-

ular intervals. Notably, the interval between -10% and +10% holds the highest number

of datapoints, 27526 from the total of 27962, with each 62 rivers spanning 41 years (1980-

2020) and containing 11 inter-scenario values.

Figure 3.1: Relative inter-scenario differences of scenario 2-12 with base scenario 1 for an-
nual data for all 62 rivers.

While the histogram in Figure 3.1 provided insights into data distribution, its shape

is influenced by the chosen number of bins. To refine the data distribution shape, we

create a probability density function (PDF) displayed in Figure 3.2 (Scott, 2015). The

PDF describes likelihood observing a certain outcome from a data-generating process

(Grinstead & Snell, 2006). Each black line along the x-axis represents a measured inter-

scenario difference value in the Dunn et al. (2019) dataset for the period 1980-2020.
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Figure 3.2: Probability density function of the relative inter-scenario differences of scenario
2-12 with base scenario 1 for annual data for all 62 rivers.

In the context of this research, the density plot provides a visual representation of

the distribution of differences between inter-scenario sediment flux projections in the

projection dataset of the interval 1980-2020. By examining the density plot, we can gain

insights into the likelihood of observing certain outcomes and identify which values are

more probable compared to others. Suggesting that when expanding the dataset globally,

for 1980-2020, the relative inter-scenario differences in projected sediment flux are likely

to fall between -10% and 10% with a concentration around the 0

Looking at the histogram and PDF, it seems that the sediment flux projections for

the 62 rivers in the period 1980-2020 portrays a steep normal distribution. To test this

assumption, a Quantile-Quantile (Q-Q) plot is constructed and displayed in Figure 3.3.

It illustrates the correlation between the datasets and a normal distribution (Ford, 2015),

plotted along the ideal match reference line.
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Figure 3.3: Quantile-quantile plot of relative inter-scenario differences for annual sediment
flux projections for the period 1908-2020 for 62 rivers

Notice the points fall along the reference line in the middle of the graph, but curve

off in the extremities. Normal Q-Q plots that exhibit this behaviour usually suggest the

data possesses more extreme values than would be expected if they truly came from a

normal distribution (Ford, 2015). These extreme values are exactly what we want to look

further into because extreme values in the delta datasets mean that within a certain year,

for a certain river, there is an abnormally large inter-annual difference between delta flux

scenarios.

From the Q-Q plot and the histogram, we assume that the mutual difference within

the sediment delta flux projections from Dunn et al. (2019), follow a steep normal distri-

bution with extreme values at the tails. To identify the extreme scenario difference values,

the standard deviation from the normal distribution is used. According to Streiner (1996)

and Altman and Bland (2005), the Standard Deviation (SD) is an index of the variability

of the original data points, it is an index of how closely the individual data points cluster

around the mean.

Standard deviation formula (Wan et al., 2014):

S =

[
n

∑
i=1

(Xi − X̄)
2

(n − 1)

]1/2

(3.1)

Where X̄ is the Arithmetic mean of the observations, X the certain value in the data dis-

tribution, and n the number of observations.

32



3.3 Data Preparation

Table 3.3: Outcomes calculation Standard Deviation and outliers

Mean 0.202

Standard deviation 3.163

Large outliers (extreme values > 3*SD) 145

Small outliers (extreme values < 3*SD) 19

Total number of outliers 164

Due to the large dataset and small standard deviation (Table 3.3), meaning that there

is a high concentration of the data points around the mean, the rule of using three stan-

dard deviations to find extreme values is applied. A value that falls outside +− three

standard deviations, which consist of 99,7% of all data points, is part of the distribution

but it is an unlikely or rare event. These values are applied to the dataset and visualised

in Figure 3.4.

Figure 3.4: Overview of the relative inter-scenario differences for 62 rivers for the period
1980-2020

The results show 145 data points >3SD and 19 data points <3SD, indicating 164 ex-

treme values in the sediment flux projections of the 47 deltas, accounting for 0.59% of all

inter-annual scenario values. The presence of these extreme values shows that for some

deltas, certain scenarios have an extreme impact on the sediment flux projections when

compared to scenario 1. The delta rivers which pose extreme values are: Dong Jiang,

Changane, Han, Imijn, Limpopo, Mahanandi, Meghna, Rio Grande, Sebou and Tigris.
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Among these 10 delta rivers, the extreme values manifest in two distinct ways. Firstly,

some outliers occur in just one or two years of the dataset and are associated with Specific

Scenario Pathways (SSP), shown by the fact that the 4 scenarios belonging to a specific

SSP scenario, show large extreme outliers. When looking at these sudden isolated shifts,

it suggests that the responsible socio-economic values surpassed a threshold into a new

category on the GDP table, influencing sediment projections. The robustness of this the-

ory is challenged by instances where SSP2 induces outliers, while SSP1 and SSP3 do not

exhibit similar patterns. This discrepancy is illogical given that SSP2 depicts the interme-

diate challenges, suggesting that SSP1 or SSP3 would surpass a certain threshold prior to

SSP2. This inconsistency suggests issues in the SSP input data for sediment flux projec-

tions in Dunn et al. (2019). This theory is substantiated by the fact that in all other years

the sediment flux projections don’t show outstanding values. The inconsistency of the

SSP input data is also substantiated by the fact that for the concerning datasets, a single

SSP is one or two years ahead of the other SSP’s in their values, therefore, in those specific

instances, the extreme values are removed from the dataset. After removal of the outliers

linked to the single varying SSP years, the reliability of the dataset is restored and data

distortions caused by inconsistent SSP input data is minimized.

Other observed outliers are RCP bound, represented by the fact that the extreme values

in the dataset are for multiple years and are repeated in the same RCP bound scenarios.

These RCP-related outliers arise due to variations in global climate data influenced by

factors like geographical location, topography, and regional climate patterns. These fac-

tors contribute to the different rates and intensities of climate change experienced glob-

ally. Consequently, for different deltas, climate change has a more outspoken influence on

the sediment flux projections for the different scenarios, resulting in larger mutual differ-

ences between the sediment flux projections. This phenomenon is especially prominent

in the later 2010s as the difference between the RCPs become more prominent. The var-

ied representations of the outliers in different rivers are detailed in Table 3.4, while their

global positions are visualised in Figure 3.5, with the Category 2 and Category 3 rivers

annotated.
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Table 3.4: Categorization (Cat.) of inter-scenario comparison of individual rivers with char-
acteristics (Char.)

Cat. Char. Datasets

1 No outliers
in individ-
ual delta
dataset

Amazon, Amur, Baiterani, Bang Pakong, Beijiang, Brahmani,
Brahmaputra, Brazo De Mompos, Burdekin, Caroni, Colorado,
Congo, Ebro, Fly, Ganges, Godavari, Grijalva, Indus, Irrawaddy,
Krishna, Lena, Mackenzie, MaeKlong, Magdalena, Mahakam,
Mekong, Menam, Mississippi, Moulouya, Murray, Niger, Nile,
Orinoco, Paraná, Pasak, Peel, Po, Red, Rhine, Rhône, Ryesong,
São Francisco, Senegal, Tana, Tone, Vistula, Volta, Xijiang,
Yangtze, Yellow, Yukon, Zambezi

2 1 or 2 years
in the indi-
vidual delta
dataset
holds out-
liers on SSP
base

Dong Jiang, Han, Imijn, Mahanadi, Meghna, Sebou

3 Multiple
outliers
with a
shown de-
pendence
on climate
change

Changane, Limpopo, Rio Grande, Tigris

Figure 3.5: Visualisation of relative inter-scenario difference categorisation of individual
rivers. Green: Category 1 river, Orange: Category 2 river and Red: Category 3 river.
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Managing the varied represented outliers depends on their characteristics. Category

1 rivers do not possess any remarkable inter-scenario differences for their projected sedi-

ment fluxes, therefore the 12 scenarios are averaged to represent one sediment flux value

per year per river. In Category 2, the outliers on the SSP base are removed because they

are linked to inconsistencies in the SSP input data, and the 12 scenarios are averaged to

represent one sediment flux value per year per river. By removing these outliers, the

dataset becomes more reliable for analysis and minimizes distortions or biases caused

by the inconsistent SSP input data. In Category 3, the 12 scenarios are reduced to av-

eraged 4 RCP scenarios because these rivers show a higher sensitivity to different RCP

scenarios. Due to the limitations in consulting local historic climate changes, comparing

the RCP scenarios to validation data allows for the selection of the best fitting scenario

sediment flux projection data. For the deltas of Category 3, the RCP scenario with the

lowest mean absolute difference will be used in the comparative analysis, ensuring that

the comparative analysis is based on the most accurate and reliable data, of which the re-

sults are displayed in Table 3.5. Showing the use of RCP2.6 for Limpopo-Changane and

Rio Grande, and RCP8.5 for TigrisEuphrates. By using the scenario that closely matches

the validation dataset, the results of the analysis will be more relevant. This approach re-

duces the potential for discrepancies between the projections and the observed sediment

dynamics.

Table 3.5: Mean absolute and percentile differences of the four RCP scenarios of Category 3
deltas, with the validation data.

Mean difference with validation dataset [Mt/a]

Delta RCP2.6 RCP4.5 RCP6.0 RCP8.5

Limpopo-Changane 3.023
(+114.71%)

3.025
(+114.80%)

3.225
(+122.36%)

3.414
(+129.55%)

Rio Grande 0.430
(+122.37%)

0.443
(+126.09%)

0.441
(+125.52%)

0.494
(+140.63%)

TigrisEuphrates 35.932
(+1667.11%)

35.516
(+1647.8%)

35.960
(+1668.33%)

35.427
(+1643.67%)

By completing the necessary preparations, the Dunn et al. (2019) data is now ready

for comparative analysis. The data has been reduced to single sediment flux values for

each of the 43 rivers, covering the period from 1984 to 2020. These single values provide a

concise representation of the sediment flux projections for each river, allowing for easier

comparisons and analysis of the data.
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In this section, the results are presented of the validation process conducted to assess

the reliability of the global delta sediment flux projections from Dunn et al. (2019). The

validation aims to assess the agreement of the projections with the validation dataset of

Dethier et al. (2022), and the overall consistency between the datasets. The focus extends

beyond numerical comparisons, emphasizing a qualitative analysis that delves into the

trends and behaviours of the datasets. Statistical tests are used to substantiate the valida-

tion process, but not as a validation analysis technique.

4.1 Absolute magnitudes

The first step in the validation process is to create an overview of the absolute measure-

ment plots illustrating the raw data of the projections and the real-life measurements for

the individual rivers. The rivers are displayed in Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6,

divided in their respective continents.

Figure 4.1: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in Africa
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Figure 4.2: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in Asia

Figure 4.3: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in Oceania
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Figure 4.4: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in Europe

Figure 4.5: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in North-America
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Figure 4.6: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in South-America

In analysing the raw data plots of the projections and the validation data, three obser-

vations stand out:

Inter-annual Variability

The projections exhibit a remarkable inter-annual variability, displaying abrupt changes

in sediment flux from one year to another. This characteristic is at odds with the ex-

pected behaviour of natural fluvial systems, where sediment fluxes tend to change grad-

ually over time. The unnaturally sharp fluctuations in Dunn’s projections raise concerns

about the model’s ability to capture the gradual and more continuous nature of sediment

transport in reality. These sharp annual fluctuations are probably related to a number of

possibilities. First being the Anthropogenic factor that can shift inter-annually to another

threshold, influencing the sediment flux projections suddenly. Another influence can be

that certain dams are being introduced in a certain year. This will suddenly dramati-

cally decrease the sediment flux in the river. Also from 2010 onwards, the RCPs begin to

deviate, increasing climate influence on the sediment projections suddenly.

Overall Sediment Flux Discrepancies

The projections often significantly overpredict, and sometimes underpredict the overall

sediment flux. While there may be structural similarities between the projections and

real-life measurements, the projections are almost in every instance located far above or

below the validated observations in the plot. This over- and underprediction lacks a

structured pattern, making it challenging to quantify precisely how much the projections

deviate from actual measurements. This suggests a need for refinement in the model to
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bring it in closer agreement with real-world sediment flux dynamics.

Timing Discrepancies

An additional noteworthy observation pertains to timing discrepancies in the projections.

There are instances where the model inaccurately projects sudden drops or increases in

sediment flux, which do not align with the gradual changes observed in reality. Con-

versely, there are cases where the initial projection deviates significantly from actual mea-

surements, but subsequent adjustments lead to a sudden alignment with the observed

data. These timing irregularities underscore the complexity of accurately capturing the

temporal dynamics of sediment transport in the model.

To conclude, the Absolute Measurements Plot highlights substantial challenges in the

accuracy of Dunn’s sediment flux projections, particularly in terms of inter-annual vari-

ability, overall sediment flux discrepancies, and timing inaccuracies. These findings em-

phasize the necessity for further validation analysis to get a more nuanced understanding

of the level of similarity between the projections and real-life events.

4.2 Euclidean distance

The Euclidean distance is a widely used technique to measure dissimilarity between time

series of the same time lengths. It is a straightforward measure, calculating the dis-

tance between two time series as the straight-line distance between matching time points

based on a distance metric. As we are calculating the distance and not direct similarity,

a smaller distance suggests more similarity between the timeseries (Barrett, 2005; Ding

et al., 2008; Faloutsos et al., 1994; Jiang et al., 2019; Puri et al., 2022). The Euclidean dis-

tance is parameter-free and requires minimal computation, making it suitable for large

datasets. Also, as presented by Ding et al. (2008), the Euclidean distance is competitive

to other more complex approaches, especially with large datasets.

Euclidean distance =

√
n

∑
i=1

(xi − yi)
2 (4.1)

There are two facts making this method problematic. Firstly, the Euclidean distance is

sensitive to outliers and is strongly influenced by scale differences between the two time

series datasets, therefore many statisticians recommend normalizing the data (Stoddard,

1979). Otherwise the variables measured in large valued units will dominate the com-

puted dissimilarity. The second problem is that there is no set value for the maximum

distance, making the similarity between the datasets hard to target as ‘good’ or ‘bad’.
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To achieve reliable interpretation about the degree of similarity between the pro-

jections and the validation data, the initial used data and resultant Euclidean distance

need to be transformed into a 0-1 metric using a strictly linear method. This rescaling is

achieved by using the maximum possible distance observable between the two datasets

at a certain year for each individual river, referred to as md (Barrett, 2005). The rivers are

individually normalised due to large magnitude scale differences between rivers and the

fact that we want to analyse possible structured proportional dissimilarity embedded in

the projections.

The particular maximum observable discrepancy at a certain year is then used to ini-

tially normalise the individual squared discrepancy of the Euclidean distance calculation

for each individual river. Then the square root of the sum of these normalised squared

values represent the raw Euclidean distance of these normalised values:

Raw Euclidean distance =

√√√√ n

∑
i=1

(xi − yi)
2

mdi
2 (4.2)

The final step to scale back the Euclidean distance itself to a metric between 0 and

1.0, the scaled squared discrepancies are divided by the square root of the number of

data points in the individual datasets (v), which is constantly 37 in this case for the time

period 1984-2020:

Scaled Euclidean distance =

√
∑n

i=1
(xi−yi)

2

mdi
2

√
v

(4.3)

Formulas from Barrett (2005)

The resulting metrics represent scaled Euclidean distances, capturing the dissimilar-

ity between both the projected and validation time series for the individual rivers. Where

1 would mean the maximum dissimilarity between datasets, meaning a consistent maxi-

mum observed distance across the scaled datasets, while values closer to 0 show that the

majority of the time series data are closer to the validation data compared to the max-

imum observed distance. Scaling all Euclidean distances of individual rivers ensures

direct comparability.

42



4.2 Euclidean distance

Table 4.1: Scaled Euclidean distances between the projections and validation

dataset

River nr. River name Scaled Euclidean Distance (0-1)

1 Amazon 0.831176419

2 Amur 0.369617725

3 Brahmani-Baiterani 0.59349487

4 Brahmaputra 0.764167409

5 Burdekin 0.325435311

6 Congo 0.954702773

7 Ebro 0.92281828

8 Fly 0.896613286

9 Ganges 0.518386791

10 Godavari 0.593472567

11 Han 0.549976293

12 Indus 0.486701125

13 Irrawaddy 0.687324145

14 Krishna 0.676439912

15 Limpopo-Changane 0.576728769

16 MacKenzie-Peel 0.611246999

17 MaeKlong 0.487527591

18 Magdalena-BrazoDeMompos 0.921477023

19 Mahakam 0.909825817

20 Mahanadi 0.270524058

21 Meghna 0.904082471

22 Mekong 0.732752311

23 Mississippi 0.598057771

24 Moulouya 0.963430173

25 Murray 0.33035611

Continued on next page
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Table 4.1: Scaled Euclidean distances between the projections and validation

dataset (Continued)

26 Niger 0.871648809

27 Nile 0.922377283

28 Parana 0.515869783

29 Pasak-Menam 0.400284905

30 Po 0.832087126

31 Red 0.340166487

32 Rhone 0.891340487

33 RioGrande 0.656494708

34 Sebou 0.858462956

35 Senegal 0.282391465

36 Tana 0.906800953

37 TigrisEuphrates 0.753173716

38 Vistula 0.920183467

39 Xijiang 0.37231285

40 Yangtze 0.280639309

41 Yellow 0.427983539

42 Yukon 0.646852909

43 Zambezi 0.865091183

This type of dissimilarity analysis does not disclose the magnitude of the differences,

however, our focus is on identifying consistent dissimilarity ranges or structures between

projections and observations. As can be observed in table 4.2, there is a large range of val-

ues, meaning there is no consistent dissimilarity between the projections from Dunn et al.

(2019) and the validation data of Dethier et al. (2022), suggesting there is no structured

dissimilarity between datasets. However, Dunn (2017) already suspected that discharge

is at the core of possible anomalies in the projections, stating “The results from rivers with

naturally low discharge, high temperature or low precipitation need to be treated with

caution”. To explore this theory, we can use the individually calculated Euclidean dis-

tances to explore connections between structural dissimilarity in the datasets and the dif-
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ferent input variables used by Dunn et al. (2019) to model the sediment flux projections.

Unfortunately, as stated before, the original input data is unavailable, but there are a few

averages of the WBMsed input data recorded per delta: Delta Area (km2), Delta Area

Average Temperature (°C), Delta Area Average Precipitation (mm/year), Delta Popula-

tion (millions), Delta GNP (bnUS$2005/year) and the estimated water discharge value

(km3/a). To test if the statement of Dunn is true, the estimated water discharge value

(km3/a) is plotted against the Euclidean distances in Figure 4.7.

Figure 4.7: Scaled Euclidean distances plotted against the average annual discharge of the
individual rivers: 1)Amazon, 2)Amur, 3)Brahmani-Baiterani, 4)Brahmaputra, 5)Burdekin,
6)Congo, 7)Ebro, 8)Fly, 9)Ganges, 10)Godavari, 11)Han, 12)Indus, 13)Irrawaddy, 14)Krishna,
15)Limpopo-Changane, 6)MacKenzie-Peel, 17)MaeKlong, 18)Magdalena-BrazoDeMompos,
19)Mahakam, 20)Mahanadi, 21)Meghna, 22)Mekong, 23)Mississippi, 24)Moulouya, 25)Mur-
ray, 26)Niger, 27)Nile, 28)Parana, 29)Pasak-Menam, 30)Po, Z1)Red, 32)Rhone, 33)RioGrande,
34)Sebou, 35)Senegal, 36)Tana, 37)TigrisEuphrates, 38)Vistula, 39)Xijiang, 40)Yangtze, 41)Yel-
low, 42)Yukon, 43)Zambezi

We observe at the lower discharge values higher Euclidean distance values. However

at higher discharges there are both relatively high and low Euclidean distances observed,

indicating there is no structural dissimilarity to be observed related to the projected mean

annual discharge. Also, when plotting the Euclidean distance against the other available

variables that influence the eventual sediment flux projections of Dunn, there was no

structural connection between the dissimilarity of the datasets with any of the variables

used in WBMsed by Dunn (2017), of which the plots are in Appendix B. Therefore, further

qualitative validation analysis is needed on the similarity of the projections versus the

validation measurements.
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4.3 Mean absolute differences

To provide insight into the overall magnitude similarity performance of the Dunn’s sed-

iment flux projections, a mean absolute difference bar chart is displayed in Figure 4.8.

Showcasing the mean differences between the projections and the validation data for

each individual river, illustrating how much Megatons[Mt] the projections are in their

entirety over- or underestimated.

Figure 4.8: Barchart on the mean absolute difference between the projections and validation
data in Megaton.

The barchart illustrates that the mean absolute differences between the projections

and measurements vary in direction. While only 8 rivers show negative differences, in-

dicating underprediction by the model, the majority of 35 rivers exhibit positive differ-

ences, confirming an overall tendency of overpredicting sediment fluxes by the WBMsed

model. This confirmation has implications for model reliability, indicating a potential

need to adjust model parameters to cancel out the overprediction. The dispersion in mag-

nitudes of the mean absolute differences highlights the complexity of the overprediction

of the WBMsed model, emphasizing the difficulty in isolating the causes for overpredic-

tion and the universal difficulty in capturing the diverse dynamics of sediment transport

in different river systems. Further effort in understanding the patterns and magnitudes

of projection inaccuracies is necessary to improve the capabilities of the WBMsed model

in usage of projecting accurate sediment fluxes for global deltas.
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4.4 Average annual sediment fluxes

As the overprediction characteristic of the WBMsed model is established, it is important

to understand if these overpredicted magnitudes are relatively significant. The scatter-

plot in Figure 4.9 compares the projected average annual sediment fluxes versus the ob-

served average annual sediment fluxes, providing insight into their relative difference.

Figure 4.9: Average annual sediment flux projections versus the average annual sediment
flux observations for the individual rivers: 1)Amazon, 2)Amur, 3)Brahmani-Baiterani,
4)Brahmaputra, 5)Burdekin, 6)Congo, 7)Ebro, 8)Fly, 9)Ganges, 10)Godavari, 11)Han, 12)In-
dus, 13)Irrawaddy, 14)Krishna, 15)Limpopo-Changane, 6)MacKenzie-Peel, 17)MaeKlong,
18)Magdalena-BrazoDeMompos, 19)Mahakam, 20)Mahanadi, 21)Meghna, 22)Mekong,
23)Mississippi, 24)Moulouya, 25)Murray, 26)Niger, 27)Nile, 28)Parana, 29)Pasak-Menam,
30)Po, Z1)Red, 32)Rhone, 33)RioGrande, 34)Sebou, 35)Senegal, 36)Tana, 37)TigrisEuphrates,
38)Vistula, 39)Xijiang, 40)Yangtze, 41)Yellow, 42)Yukon, 43)Zambezi, with reference lines:
black) y=x and grey) y=0.1x and y=10x

In this study we established the qualitative threshold of one order of magnitude. If

the average annual sediment fluxes of the projections lie within one order of magnitude

or the average annual sediment fluxes of the validation data, the overprediction char-

acteristic of the model is not labelled as a ‘bad’ projection. Solely looking at the aver-

age annual sediment fluxes, the projection performance for 37 out of 43 rivers is within

one degree of magnitude margin and is thus an encouraging indication of the models
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multi year average projection capabilities. While the scatterplot highlights the acceptable

overall projection performance, the significant variation in relative differences among the

rivers without a consistent bias, encourages further investigation. Also, while the over-

predicting characteristic of the WBMsed model might look acceptable in the scatterplot

above, its lack of trend and consisting of averages, makes it essential to investigate possi-

ble causes for these variations in the projections before the model is applicable for deltas

globally.

4.5 Inter-annual variations

To gain a more detailed understanding, the analysis delves into annual fluctuations, fo-

cusing on mean inter-annual changes for each river. Aiming to uncover patterns in the

model’s ability to capture fluctuations in sediment flux on a yearly basis. The mean inter-

annual variations of the projections are plotted against the mean inter-annual variations

of the validation data in Figure 4.10.
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Figure 4.10: Mean inter-annual changes for all individual rivers: 1)Amazon, 2)Amur,
3)Brahmani-Baiterani, 4)Brahmaputra, 5)Burdekin, 6)Congo, 7)Ebro, 8)Fly, 9)Ganges,
10)Godavari, 11)Han, 12)Indus, 13)Irrawaddy, 14)Krishna, 15)Limpopo-Changane,
6)MacKenzie-Peel, 17)MaeKlong, 18)Magdalena-BrazoDeMompos, 19)Mahakam, 20)Ma-
hanadi, 21)Meghna, 22)Mekong, 23)Mississippi, 24)Moulouya, 25)Murray, 26)Niger, 27)Nile,
28)Parana, 29)Pasak-Menam, 30)Po, Z1)Red, 32)Rhone, 33)RioGrande, 34)Sebou, 35)Sene-
gal, 36)Tana, 37)TigrisEuphrates, 38)Vistula, 39)Xijiang, 40)Yangtze, 41)Yellow, 42)Yukon,
43)Zambezi, with reference lines: black) y=x and grey) y=0.1x and y=10x

For the similarity between the projections and the validation data being assessed as

‘reasonable’, again the threshold of one order of magnitude above or below the y=x line

is applied. However, as inter-annual variations are harder to project for natural systems,

rivers should fall into quadrants with a common direction (++, −−) to be assessed as

‘reasonable’. The plot indicates that 22 out of 43 rivers fall within this threshold, display-

ing similar directional behaviour in both projections and measurements. On the other

hand, 21 rivers exhibit contradicting directions in their mean inter-annual variations. To

clarify, a river in the Dethier et al. (2022) dataset might show a positive mean inter-annual

variation but Dunn et al. (2019) projected a negative mean annual variation. This indi-

cates a discrepancy in the ability of the WBMsed model in capturing the correct growth

or decrease in annual sediment flux amounts, which is at the core of a reliable projection,

and is a critical anomaly. Seeing that for 21 out of 43 rivers the mean inter-annual vari-

ation is in contradicting directions, draws questions to the reliability of the statements
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made in Dunn et al. (2019) about global deltas retreating or growing in the future. In-

creasing the accuracy of capturing short-term variations by the projections makes the

model less dependent on a chosen period, signaling a need for refinement in the model.

4.6 Trends

As part of the validation process, a linear regression analysis can show similarity in be-

haviour and direction between the projections and the observations. Allowing for an

in depth analysis of the dominant trajectories of the datasets and unexpected deviations

which may prompt a closer examination of possible causes for the anomalies.

4.6.1 Trends for period 1984-2020

Trend analysis involves using a linear regression model with time as the independent

variable to explore the long-term behaviour of the series (Nugus, 2009). The objective

when estimating a linear regression model is to minimize the sum of the squared error,

also called ‘least-squares’, between the concerning y-value of the data and the trendline

(Jenkins-Smith et al., 2017). The resulting linear regression is the best fit for the data

in the sense of minimizing the sum of the deviations of each y-value from the line (Lee

et al., 2014). Therefore, the trendline strongly depends on the y-value behaviour and

distribution of the data. The absolute data for each individual river of the Dunn et al.

(2019) and Dethier et al. (2022) datasets along their respective first order trendlines are

displayed in Figures 4.11, 4.12, 4.13, 4.14, 4.15 and 4.16.

Figure 4.11: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in Africa with their corresponding trendlines
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Figure 4.12: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in Asia with their corresponding trendlines

Figure 4.13: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in Europe with their corresponding trendlines
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Figure 4.14: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in North-America with their corresponding trendlines

Figure 4.15: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in South-America with their corresponding trendlines
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Figure 4.16: Absolute magnitudes of Dunn et al. (2019) projections and of the validation data
of Dethier et al. (2022) for rivers in Oceania with their corresponding trendlines

As observed in Figures 4.11, 4.12, 4.13, 4.14, 4.15 and 4.16, performing linear regres-

sion often results in non-zero trends. To test the significance of the linear regression of

the trendlines, the classical t-test is applied with the following null hypothesis and its

alternative:

H0: There is no significant trend

H1: There is a significant trend

The t-value, representing the deviation ratio of the values from the regression line

(Allen, 1997), is calculated for each trendline with its respective dataset. With the t-value

we can calculate the p-value, indicating the probability of observing the data if the null-

hypothesis is true (Dahiru, 2008). Compare the p-value to the conventional significance

level 0.05. A p-value < 0.05 rejects H0, signifying statistical significance (Allen, 1997). The

t-test outcomes for Dunn et al. (2019) and Dethier et al. (2022) are in Appendix C.

Results suggest some trendlines lack evidence to reject H0, indicating ’time [year]’

insignificantly predicts ’sediment flux [Mt]’. This is not surprising as the observation

data is influenced by uncertainties related to natural systems and anthropogenic influ-

ence that is not always possible to detect. To assess the overall directional variations in

sediment flux projections compared to measurements, a scatterplot was created in Figure

4.17, plotting the slopes of the trendlines for both projections and measurements, aiming

for ++ or −− scatters for data behaviour similarity.
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Figure 4.17: Slopes of projections versus the slopes of the validation data fort the period
1984-2020 for individual rivers: 1)Amazon, 2)Amur, 3)Brahmani-Baiterani, 4)Brahmaputra,
5)Burdekin, 6)Congo, 7)Ebro, 8)Fly, 9)Ganges, 10)Godavari, 11)Han, 12)Indus, 13)Irrawaddy,
14)Krishna, 15)Limpopo-Changane, 6)MacKenzie-Peel, 17)MaeKlong, 18)Magdalena-
BrazoDeMompos, 19)Mahakam, 20)Mahanadi, 21)Meghna, 22)Mekong, 23)Mississippi,
24)Moulouya, 25)Murray, 26)Niger, 27)Nile, 28)Parana, 29)Pasak-Menam, 30)Po, Z1)Red,
32)Rhone, 33)RioGrande, 34)Sebou, 35)Senegal, 36)Tana, 37)TigrisEuphrates, 38)Vistula,
39)Xijiang, 40)Yangtze, 41)Yellow, 42)Yukon, 43)Zambezi, with reference lines: black) y=x
and grey) y=0.1x and y=10x

For the similarity between the projections and the validation data being assessed as

‘reasonable’, again the threshold of one order of magnitude above or below the y=x line

is applied. However, in terms of the ability of the model being able to project the correct

sediment flux behaviour, rivers should fall into quadrants with a common direction (++,

−−) to be assessed as ‘reasonable’. The plot indicates that out of the 43 rivers analysed,

24 rivers exhibit consistent slopes, portraying the desired similarity, a key element in a

models ability to make valid projections. 19 rivers show contradicting slopes between

projections and measurements, again suggesting a discrepancy in the model’s ability to

replicate the directional behaviour observed in real-life measurements.
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4.6.2 Robustness of the trends

To assess the robustness of the projections, the average inter-annual variations (Section

4.5) of individual rivers and their respective trendline slopes should portray similar di-

rections, irrespective of the sample period, to ensure the alignment between inter-annual

variations and trendline behaviour. There is a discrepancy observed on this matter re-

garding the Dunn et al. (2019) data, 11 rivers show contradiction between their inter-

annual variation direction and their respective trendline slope (Table 4.2).

Table 4.2: Rivers with contradicting mean inter-annual variations and trendline slope

for (Dunn et al., 2019) data

River nr. River name(s) Average inter-annual var.

[Mt/a]

Trendline Slope

1 Amazon -3.266150031 2.144361903

2 Amur -0.03961666 0.026546929

4 Brahmaputra -0.243399929 1.049954897

6 Congo -0.843580871 0.460860899

13 Irrawaddy -0.842424776 0.051568833

15 LimpopoChangane 0.011212474 -0.004672634

16 MacKenziePeel -0.021557927 0.005210705

20 Mahanadi 0.019103384 -0.131646453

22 Mekong -0.098669908 0.122714937

23 Mississippi -0.013241373 0.015753771

34 Sebou -0.097148566 0.129728765

This phenomenon is due to the nature of the theory behind calculating the mean

inter-annual variation and the first order trendline. The mean inter-annual variations are

calculated by summing all inter-annual differences and dividing that sum the number

of inter-annual variations. Therefore, the inter-annual behaviour is dominated by large

inter-annual magnitude drops in the graphs, regardless of their timing. On the contrary,

first order trend lines follow the dominant trajectory of the projections, as they strive for

minimization of the total error between the data points and the trendline. Consequently

when at the end of the concerning period a large inter-annual difference is projected in the
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opposite direction of the previous dominant trajectory, the trendline is not redirected and

keeps its slope in the direction of the dominant trajectory. This results in conflicting di-

rections of the mean inter-annual variations and their respective trendlines, which when

interpolated would result in conflicting future projections. This is an undesirable key

issue of the WBMsed model, as now the projected trends highly depend on the chosen

period and when events are timed within this period. While this issue is likely present in

most time series, it highlights the models sensitivity to chosen periods and event timing,

necessitating smoothing of significant inter-annual differences.

This theory is supported by the use of the available projection data for the years 1980-

2099. Figure 4.18 illustrates the impact of interpolating incorrect trendlines, showcasing

Dethier et al. (2022) validation data for its time period 1984-2020, the projections from

Dunn et al. (2019) for the available period 1980-2099 and the previous trendlines with

interpolation to the year 2099.

Figure 4.18: Absolute magnitudes of Dunn et al. (2019) projections for the period 1980-2099,
the validation data of Dethier et al. (2022) for the period 1984-2020 and the interpolated
trendlines for the Dunn et al. (2019) data.

Figure 4.18 confirms that most of the computed trendlines are in need of redirection.

Due to the trendline directions conflicting with the behavioural direction of the data, the

dissimilarity between the sediment flux projections and interpolated trendline increases

with increasing time.

For the Amur, Mississippi and the MacKenziePeel the trend lines seem quite a good

fit, however this can be related to the small difference in slopes between the mean-inter

annual differences, being less than a 0.07 Mt/a difference, which visually would not no-

tably influence the course of the trendline.
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4.7 Diminishing inter-annual extremes

As we now know, the inter-annual sediment flux extremes greatly influence the inter-

pretation of the WBMsed model results. From literature we know that these sudden

inter-annual changes can be related to a shift in GNP per capita, leading to a different an-

thropogenic soil erosion factor, instantly influencing sediment flux projections. The rapid

impact of dam employment on sediment flux projections adds to this complexity, which

could be observed only in 2020 for this concerning period. Neither implementation of

these mechanisms in the model is realistic, as the transition of a community to anthro-

pogenic drivers of soil erosion are implemented gradually and the geomorphic change

of a delta as an effect of sediment trapping by dams also occurs moderately. To show the

dominance of the current implementation of anthropogenic mechanisms in the WBMsed

model, inter-annual variations >20% of its previous magnitude have been removed from

the dataset, focussing on 32 rivers where the projected mean inter-annual variation dif-

fers more than one order of magnitude from the mean inter-annual variations of the ob-

served sediment fluxes (Figure 4.11, Section 4.5). These 32 rivers with original projection

and validation data are shown in Figure 4.19.

Figure 4.19: Projection and validation data of 32 rivers of which the mean inter-annual vari-
ation differs more than one order of magnitude from the mean inter-annual variations of the
observed sediment fluxes.
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Out of these 32 rivers, 14 rivers had inter-annual differences >20%, the BrahmaniBait-

erani, Burdekin, Godavari, Han, Indus, Krishna, MaeKlong, Mahanadi, Meghna, Pasak-

Menam, Sebou, Senegal, TigrisEuphrates and the Xijiang. Emphasising the large occur-

rence of the presence of inter-annual differences >20%, confirms the fact that this is a key

issue to resolve before the model is implemented for more global deltas. In Figure 4.20

the projection and validation data is visualised without the inter-annual variations >20%,

showing the behaviour of the projections without the abrupt variations.

Figure 4.20: Projection and validation data of 32 rivers of which the mean inter-annual vari-
ation differs more than one order of magnitude from the mean inter-annual variations of
the observed sediment fluxes with their projection data plotted with inter-annual variations
>20% removed.

Figure 4.20 illustrates that excluding these extremes enhances the overall behaviour of

the projections, aligning more closely with observations. The need for the anthropogenic

effects on sediment flux projections in terms of correctly projecting the absolute sediment

flux magnitudes is emphasized. Without the anthropogenic effects, the sediment flux

projections do not advance towards the observed sediment flux amounts and in some

cases even deflects from it.

At 18 out of the 32 rivers: the Amazon, Amur, Congo, Irrawaddy, Limpopo-Changane,

MacKenzie-Peel, Magdalena-BrazoDeMompos, Mekong, Mississippi, Moulouya, Mur-

ray, Parana, Po, Rhone, RioGrande, Tana, Vistula, and Yukon, there was not an inter-
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annual difference >20% in the data. However, as the mean-inter annual variations from

the projections for these rivers showed a dissimilarity larger than one order of magnitude

with the observations, the underlying cause for this similarity needs attention. One thing

that stands out for the data concerning these 18 rivers is the fact that their behaviour and

direction visually are quite good, but the difference in the absolute magnitudes of their

observations and projections show large differences. From literature we understand that

the WBMsed model tends to overpredict the water discharge which could result in an

overprediction of the sediment fluxes.

4.8 Overpredictions

To test if the difference in projected and observed water discharge[km3/a] is the cause for

the anomalies observed in the overall magnitude differences, we construct a scatterplot

containing the average annual discharge(Qa) for the projections and the observations for

all 43 rivers, shown in Figure 4.21.

Figure 4.21: Does the model indeed under- and overpredict according to literature for the
individual rivers: 1)Amazon, 2)Amur, 3)Brahmani-Baiterani, 4)Brahmaputra, 5)Burdekin,
6)Congo, 7)Ebro, 8)Fly, 9)Ganges, 10)Godavari, 11)Han, 12)Indus, 13)Irrawaddy, 14)Krishna,
15)Limpopo-Changane, 6)MacKenzie-Peel, 17)MaeKlong, 18)Magdalena-BrazoDeMompos,
19)Mahakam, 20)Mahanadi, 21)Meghna, 22)Mekong, 23)Mississippi, 24)Moulouya, 25)Mur-
ray, 26)Niger, 27)Nile, 28)Parana, 29)Pasak-Menam, 30)Po, Z1)Red, 32)Rhone, 33)RioGrande,
34)Sebou, 35)Senegal, 36)Tana, 37)TigrisEuphrates, 38)Vistula, 39)Xijiang, 40)Yangtze, 41)Yel-
low, 42)Yukon, 43)Zambezi, with reference lines: black) y=x and grey) y=0.1x and y=10x
y=x.
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Figure 4.21 shows that the WBMsed model under- and overpredicts the fluvial dis-

charge, with a larger tendency to overpredict, across all observed water discharges from

the validation data. The actual magnitude of these under- and overpredictions is dis-

played by the plot in Figure 4.22. Representing the relationship between the relative

difference in annual Qa between the projections and observations and the average Qa

observed for the individual rivers. The relative difference in Qa shows the percentile

proportion of the projected annual Qa in relation to the observed Qa. For example, when

the projected average Qa is of twice the magnitude of the observed Qa, the relative dif-

ference is +100%.

Figure 4.22: How do the under- and overpredictions translate to the relative differ-
ence between the projected and observed annual discharges for the individual rivers:
1)Amazon, 2)Amur, 3)Brahmani-Baiterani, 4)Brahmaputra, 5)Burdekin, 6)Congo, 7)Ebro,
8)Fly, 9)Ganges, 10)Godavari, 11)Han, 12)Indus, 13)Irrawaddy, 14)Krishna, 15)Limpopo-
Changane, 6)MacKenzie-Peel, 17)MaeKlong, 18)Magdalena-BrazoDeMompos, 19)Ma-
hakam, 20)Mahanadi, 21)Meghna, 22)Mekong, 23)Mississippi, 24)Moulouya, 25)Murray,
26)Niger, 27)Nile, 28)Parana, 29)Pasak-Menam, 30)Po, Z1)Red, 32)Rhone, 33)RioGrande,
34)Sebou, 35)Senegal, 36)Tana, 37)TigrisEuphrates, 38)Vistula, 39)Xijiang, 40)Yangtze, 41)Yel-
low, 42)Yukon, 43)Zambezi, with reference line y=0.

Figure 4.22 shows the significant dominance of the overprediction characteristic of

the WBMsed model as overpredicted water discharges are up to 1700% overpredicted,

while other rivers are only underpredicted by -54%. There is no correlation observed

on when the model over- or underpredicts based on the observed discharges, which are

related to the basins climate characteristics and inputs used in the model. To test if the

under- and overproduction of the fluvial discharge is the dominant factor for the under-
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and overpredicting the sediment flux [Mt], Figure 4.23 represents the relative difference

in average sediment flux(Qs) magnitudes in relation to the observed Qa. Similar to the

explanation for Figure 4.22, the relative difference in Qs shows the percentile proportion

of the projected annual Qs in relation to the observed Qs.

Figure 4.23: How do the under- and overpredictions translate to the mean relative dif-
ference between the projected and observed sediment fluxes for the individual rivers:
1)Amazon, 2)Amur, 3)Brahmani-Baiterani, 4)Brahmaputra, 5)Burdekin, 6)Congo, 7)Ebro,
8)Fly, 9)Ganges, 10)Godavari, 11)Han, 12)Indus, 13)Irrawaddy, 14)Krishna, 15)Limpopo-
Changane, 6)MacKenzie-Peel, 17)MaeKlong, 18)Magdalena-BrazoDeMompos, 19)Ma-
hakam, 20)Mahanadi, 21)Meghna, 22)Mekong, 23)Mississippi, 24)Moulouya, 25)Murray,
26)Niger, 27)Nile, 28)Parana, 29)Pasak-Menam, 30)Po, Z1)Red, 32)Rhone, 33)RioGrande,
34)Sebou, 35)Senegal, 36)Tana, 37)TigrisEuphrates, 38)Vistula, 39)Xijiang, 40)Yangtze, 41)Yel-
low, 42)Yukon, 43)Zambezi, with reference line y=0.

The dissimilarity between plots shows a certain anomaly in the steps between the

discharge and the eventual projected sediment fluxes. If the under- and overprediction

of the discharge is the main reason for differences in the projected and observed sediment

flux projections, the distribution of the relative sediment flux difference would be similar.

However, that is not the case, 9 of the 16 rivers with underpredicted fluvial discharge

shows overpredicted sediment fluxes. Also, several rivers with already overpredicted

fluvial discharge, show an even greater overprediction in the sediment flux projections.
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4.9 Sediment starvation risk

Dunn (2017) focussed on sediment starvation as a key risk factor driving changes in rel-

ative sea level rise and thus the sustainability of global deltas. The mentioned drivers

of change in relative sea level rise in Section 2.1 are eustatic sea level changes, sediment

compaction and aggradation. Aggradation is the primary mechanism which makes it

possible for deltas to oppose relative sea level rise. In this Section the projected aggra-

dation abilities of individual deltas are compared to the aggradation abilities calculated

with the validation data, to see if this key element for delta sustainability is correctly

projected and thus reliable to use for delta sustainability management. To assess if the

projected sediment fluxes suffice the amount of sediment needed for individual rivers to

aggradate, the Sediment Starvation Risk Index (SSRI) is utilised in Dunn (2017):

SSRI =
QsS − QsE

A
(4.4)

QsS: Sediment flux at the start of the concerning period [m3/a]

QsE: Sediment flux at the end of the concerning period [m3/a]

A: Delta area [m2]

The sediment load is calculated with bulk density of 2 t/m3 and the trapping effi-

ciency is assumed as 100%, resulting in the SSRI representing change in sediment flux

per unit of delta area(m/a) (Dunn, 2017). In the study of Dunn (2017), the SSRI is calcu-

lated for the full projection period of 1980-2099 however, as we focus on the validation

of the projections with available observation data, the SSRI is calculated for the 43 indi-

vidual rivers for the relevant period 1984-2020. Due to the shorter period, the ‘start’ of

the period will be assessed as 1984-1988 and the ‘end’ as 2016-2020. The SSRI does not

take into account the current state of each delta, it only shows if certain deltas are likely

to face increased sustainability difficulties in the concerned period. The results of these

calculations are in Appendix D. These calculated SSRI values show for the projections

16 out of 43 rivers would have been expected to experience more aggradation difficul-

ties due to decreasing sediment fluxes between 1984 and 2020. Whereas the observations

show that actually 26 out of 43 rivers were likely to have experienced more aggradation

difficulties as a result of decreasing sediment fluxes. This error in the projected SSRI val-

ues enforces the model limitations in representing all real life factors influencing fluvial

sediment fluxes. It is necessary to correctly project the capacity of the delta to keep pace

with relative sea level rise as this is a key factor in delta sustainability.
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Literature addresses the difficulty in making correct projections for future delta risks re-

garding sediment fluxes due to the intricate interaction of different climate- or anthro-

pogenic threats with delta mechanisms. Therefore, the goal of this study was to uncover

to what extent the sediment flux projections made by Dunn et al. (2019) were representa-

tive for the actual situation, ensuring the reliability of the used methods and results for

global delta management implementation.

5.1 Interpreting raw data comparison results

The projection data of Dunn et al. (2019) was visually compared to validation data of De-

thier et al. (2022), representing historic sediment flux data, for the period 1984-2020. The

analysis highlights a notable extreme inter-annual variability in the sediment flux projec-

tions, inconsistent with the gradual nature expected in natural fluvial systems. Possible

contributing factors to these fluctuations include anthropogenic influences and dam acti-

vation, of which their effect on sediment fluxes is modelled instantly, and the timing for

all dam implementation is set in 2020, an unrealistic assumption.

While structural similarities in the data behaviour exist, the sediment flux projec-

tions by the WBMsed model are heavily overpredicted and sometimes underpredicted in

comparison to real-life observations. The lack of a clear pattern in this under- and over-

prediction complicates quantification of discrepancies, emphasizing the need for model

refinement to achieve better representation of reality by the projections. To quantify the

measure of dissimilarity between the projections and the validation data, the scaled Eu-

clidean distance was calculated, and the results were analysed for a possible structural

dissimilarity in the use of the WBMsed model to project global delta sediment fluxes.

The lack of this expected consistent dissimilarity across the datasets suggest complexities

that extend beyond a single metric. Emphasized by the attempt to correlate dissimilarity

with input variables of the model like discharge[km3/a], no clear structural connection

is observed.
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5.2 Interpreting overall tendencies comparison results

In order to test the models tendencies compared to the validation data, similarity between

the projections and validation data was measured in their mean absolute differences[Mt]

and average annual sediment fluxes[Mt/a]. For the model’s projections to be classified as

‘reasonable’ in reflecting the validation data, it has to lie within one order of magnitude.

Results showed varying directions of the mean absolute differences between the pro-

jections and observations, with a dominance in overprediction, confirming the underpre-

diction of the model but mainly confirming the overpredictive tendencies of the WBMsed

model. The dispersion in differing magnitudes highlights the complexity in isolating the

reasons for dominant overprediction by the model, demanding a detailed understand-

ing of projection inaccuracies. While the overprediction characteristic of the WBMsed

model is established, the mean annual sediment flux of 37 out of 43 individual rivers be-

ing within one order of magnitude different from the validation data suggests acceptable

overall projection performance. However, the significant variation in relative differences

among rivers, without a consistent bias, calls for a deeper investigation into the causes

for these variations.

5.3 Interpreting time-dependency analysis results

To explore the sensitivity of the WBMsed model on specific time periods, the model’s

ability to accurately project sediment fluxes on a yearly basis is explored and using a lin-

ear regression analysis provided the assessment of the sensitivity of the WBMsed model

interpretations regarding the timing of large inter-annual variations.

The analysis of mean inter-annual variations explores the model’s ability to capture

fluctuations on a yearly basis. The divergence in directional behaviour for 21 out of 43

rivers signals a need for refinement in the model to improve short-term variation pro-

jections, as these short term projections are the basis for specific projection periods. See-

ing that for 21 out of 43 rivers the mean inter-annual variation is in contradicting direc-

tions, this draws questions regarding the reliability of the statements made in Dunn et al.

(2019) about global deltas retreating or growing in the future. However, the conclusions

drawn by Dunn et al. (2019) were based on the comparison of the beginning and end

of a century-long timeframe, which contrasts with the decadal scope of this study. This

longer period may render their findings more resilient to the introduced variability stem-

ming from extreme inter-annual variations, although not entirely immune, as extending
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the period with just one extra year could already drastically alter the results.

The scatterplot of the linear regression trend analysis in Section 4.6, suggests both con-

sistent slopes for 24 rivers and contradicting slopes for 19 rivers between projections and

measurements, suggesting a discrepancy in the model’s ability to replicate the directional

behaviour of reality. Testing the robustness of these trendlines highlights discrepancies

between mean inter-annual variations and trendline slopes, indicating the model’s sen-

sitivity to chosen periods and event timing. This sensitivity can be related to the extreme

inter-annual variations and especially the timing of these variations within the specific

period, as they are able to redirect trend lines significantly, necessitating smoothing of

the significant inter-annual differences.

5.4 Interpreting error factor influence analysis results

As the research revealed several possible factors influencing the reliability of the sedi-

ment flux projections using the WBMsed model, the actual influence of these factors was

established by exclusion and correlation analysis.

Focusing on 32 rivers where the projected mean inter-annual variation differs more

than one order of magnitude from the mean inter-annual variations of the observed sed-

iment fluxes, inter-annual extremes greater than 20% were present in 14 rivers and ex-

cluded. This exclusion results in visual enhancement of the overall behaviour of the

projects, aligning more closely with the observations. Because these extreme inter-annual

variations are related to anthropogenic influences or dam construction, the implementa-

tion of these factors should be reassessed as their effect on the sediment flux projections

is needed to represent a more accurate magnitude range.

According to Dunn et al. (2019), the threshold for expecting overprediction of the dis-

charge is for rivers with Qa<8km3/year. This statement is not supported by the data,

which can be a reuslt of the use of different historic validation data in the Dunn et al.

(2019) study and this research. There is no clear threshold to be observed for over-,

under- or correctly projecting the discharge. A similarity observed with the mean annual

discharge validation conducted by Dunn et al. (2019), is the overall dominance of the

overprediction characteristic of the WBMsed model, as overpredicted water discharges

are up to 1700% overpredicted, while other rivers are only underpredicted by -54%. The

lack of trend in the under- or overpredictions suggest there is a certain influence that

causes particular rivers to be overpredicted and others to be underpredicted while their

observed discharges are roughly equal.
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This discharge projection discrepancy could be related to underlying error within the

used data to project water discharge. The water discharge calculation is impacted by

climate drivers and anthropogenic changes such as precipitation, temperature, soil mois-

ture balance, irrigation water demand and reservoir construction. According to Wisser

et al. (2010), there is a large uncertainty in correctly documenting precipitation data on

a global-scale water balance context, which can translate to errors in water discharge

projections. Another reason for water discharge projection discrepancies is the lack of

inclusion of smaller dams in the used dam dataset, as they collectively have a significant

impact on river flow by irrigation expansion and seasonality change of the discharge

(Vörösmarty et al., 2003). Also, presented by Cohen et al. (2013), introducing a flood

plain reservoir component would improve the models discharge projections. However,

in the study of Dunn et al. (2019), a floodplain component was added, but still resulted in

both underprediction and significant overprediction of the fluvial discharge. This could

potentially be related to the fact that this mechanism instigates a higher reintroduction of

floodplain water at very low discharges.

Remarkably, the under- and overpredictive behaviour at designated discharge levels

is not translated to the sediment flux projections, leading to a conclusion that observed

sediment fluxes might vary from the projections due to unincluded natural delta pro-

cesses in the WBMsed model, and thus the under- and overprediction of the sediment

flux would still occur to some degree, even if realistic water discharge amounts are used

for the projections. The WBMsed model was build on the BQART sediment delivery

model of J. P. Syvitski and Saito (2007), making the computed sediment fluxes based

on basin area and relief, temperature, runoff, lithology, glacial erosion, reservoir trap-

ping and anthropogenic soil erosion. According to Dunn et al. (2019) it is unlikely that

the basin area and relief, temperature and glacial erosion would produce errors in the

projections. As explained before, the discharge is not the only prominent factor for the

under- and overprediction of the sediment fluxes, and according to Dunn et al. (2019) the

conversion of lithology data to usable factor values for the model may be a key source

of potential error in that variable, but that statement can not be validated as the orig-

inal data and model is unavailable. This leaves reservoir trapping and anthropogenic

soil erosion as possible dominant factors responsible for the yet unexplained projection

discrepancies, primarily stemming from the absence of specific factors in the provided

anthropogenic datasets, like the smaller reservoirs or other variables unaccounted for

in their totality. Once again highlighting the complex interplay between anthropogenic

and natural drivers of fluvial sediment fluxes and the difficulty in accurately projecting
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5.4 Interpreting error factor influence analysis results

this interplay. Indicating that improving the accuracy of sediment flux projections by the

WBMsed model takes more than only adjusting parameters within the model.

Possible variables unaccounted for in the model are:

Anthropogenic changes

Anthropogenic activities significantly impact fluvial sediment fluxes, and WBMsed pri-

marily considers population density and GNP per capita for anthropogenic soil erosion.

However, rapid socio-economic shifts, beyond GNP per capita, can impact land use and

human activities. Undocumented local human activities, such as deforestation, mining,

and urbanization, can significantly impact sediment fluxes but are not explicitly incorpo-

rated into the model. These activities alter land cover and contribute to erosion, affecting

sediment transport in rivers (Maaß et al., 2021; MacKenzie et al., 2022). For example, a

study by Dethier et al. (2023) showed that in 80% of their researched rivers in the tropics,

the suspended sediment concentrations were more than double their pre-mining sedi-

ment concentrations.

Future dam construction is solely implemented in the model for hydropower dams with

at least 1MW capacity. However, regardless of their size, dams have the capacity to trap

sediment and thus decrease the fluvial sediment flux (Moragoda et al., 2023). Therefore,

not all global sediment trapping by dams is portrayed in the model. This is undermining

the great dominance of fluvial sediment flux reduction caused by dams, as there are cur-

rently ∼58,000 dams with heights >15m in the world and an additional ∼3,700 dams that

are under construction or planned (Best & Darby, 2020; Moragoda et al., 2023). Alongside

dam construction, sand and gravel mining is also one of the most common forms of an-

thropogenic intervention in fluvial systems. Removal of sediment directly from the river

bed affects the channel geometry head-on, affecting flow and sediment mechanisms, ul-

timately causing sediment deficits (Preciso et al., 2012; Rascher et al., 2018). Integrating

more accurate anthropogenic effects in the WBMsed model is essential, as according to

Moragoda and Cohen (2020) and Y. Zhang et al. (2023), the influence of anthropogenic

activities on fluvial sediment flux dominate climate change impacts, even extreme events.

Extreme events

Climate change is incorporated in the model as the mean annual air temperature and

precipitation. However, there is also an increase in extreme events as a result to climate

change which can have a drastic and complex impact on global sediment fluxes (Mor-

agoda & Cohen, 2020). Even a few extreme precipitation events can increase the sedi-

ment flux greatly due to their high impact on soil erosion, affecting fluvial sediment load

(Y. Zhang et al., 2023). The magnitude of these extreme events dominate their influence
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Discussion

on sediment delivery. Therefore, the ability to project the occurrence and magnitude of

future extreme events caused by future climate change, is crucial in accurately project-

ing future delta sediment fluxes (Fryirs, 2013). An extra complexity in this matter is, the

threshold for an event to be extreme can shift, as the catchment-equilibrium could change

due to climate change, making accurately projecting these extreme events difficult (Reid

et al., 2007). However, as the number of studies on regional climate effects on extreme

events increase, it has potential to be implemented in the WBMsed model (Li et al., 2022;

Y. Zhang et al., 2023).

Ecological factors

One of many ecosystem functions is their ability to stabilize and trap sediment (Hill-

man et al., 2020). However due to climate change or dam construction, these ecosystems

are impacted, accompanied by their sediment trapping ability. Besides the implemented

negative effect of dam construction on sediment fluxes, it also decreases the frequency

of overbank flooding, increasing vegetation within or along the river channel, increas-

ing sediment trapping and further decreases sediment fluxes (van Oorschot et al., 2018).

Also, an increase in drought frequency, intensity or duration as a result of climate change

can increase the fluvial sediment flux as a consequence of vegetation reduction in the

basin due to drier conditions (Juracek & Fitzpatrick, 2022). Ecological factors and sedi-

ment flux are finely interlinked making it a complicated factor to include in the WBMsed

model, but potentially enhances projection reliability.

Finally, the Sediment Starvation Risk Index showed a discrepancy of the models re-

liability to correctly project delta aggradation abilities. The analysis revealed that there

were 26 deltas which their ability to withstand relative sea level rise are likely to become

more pressured by sediment starvation, in contrast to the projected amount of 16 deltas.

This inaccuracy could be caused by the presence of an extreme inter-annual variation at

the end of the concerning period, as this would impact the sediment flux change increase

or decrease direction in the calculation, but it could also result from inability of the model

to accurately reflect real life factors impacting delta sediment fluxes.

5.5 Implications

The analysis of the WBMsed model’s performance in projecting sediment fluxes reveals

both strengths and areas needing attention. The model generally performs acceptably

regarding average annual sediment fluxes with the majority of rivers falling within an
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5.5 Implications

acceptable margin, in line with Cohen et al. (2013), suggesting that WBMsed can project

multi-year average sediment loads well. However, investigation is necessary when ex-

amining inter-annual variations, as a substantial number of rivers exhibit contradictory

directions between projections and measurements during the temporal scale of this re-

search.

Linear regression analysis provides insights into long-term behaviour, but discrep-

ancies between mean inter-annual variations and trendline slopes raise questions about

the model’s robustness. This discrepancy, linked to the nature of calculating mean inter-

annual variations and the model’s trendline, highlights the need for a more natural repre-

sentation of environmental changes due to changing anthropogenic drivers in the delta.

Aligning the WBMsed model parameters with more extensive and detailed real-world

sediment dynamics is crucial, particularly the gradual transition of communities to an-

thropogenic drivers of soil erosion and the impact of dam employment, to reduce the

model result dependency on specific periods.

While the Euclidean distance analysis attempts to correlate dissimilarity with input

variables, the lack of a clear structural connection raises questions about the relevance

and accuracy of the variables used by Dunn et al. (2019) in WBMsed or the validation

data. However, as the actual used datasets for the projections cannot be consulted, and

there is insufficient validation data available, this analysis would be in need of further re-

search. Additionally, the large magnitude differences between the projections and the ob-

servations highlight the discharge overprediction within the WBMsed model and high-

lights that real-life factors influencing sediment fluxes, such as sediment mining, smaller

reservoir construction, urbanization and changed ecosystems, are not fully accounted for.

All of these results imply that this specific version of the WBMsed model is not fully

reliable for long term delta management strategies, as it is highly dependent on the cho-

sen timeframe, significantly over- and underpredicts and does not display sediment al-

terations due to several anthropogenic or environmental effects naturally, making the

projections not robust. However, the model’s reliability improves when used to project

long-term changes in sediment fluxes far into the future, as extending the projection pe-

riod diminishes the influence of extreme inter-annual variations on the trend direction

over this period.
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Discussion

5.6 Limitations

For interpreting the research findings, it is crucial to acknowledge several potential lim-

itations. Firstly, reliance on existing datasets introduces concerns about their accuracy

and representativeness, potentially impacting the robustness of the outcomes. As stated,

there is a global shortage of sufficient sediment flux data, therefore the validation data

could not be evaluated or expanded with other sources. Additionally, the subsequent

exclusion of specific rivers or entire deltas from the analysis due to limited availability of

validation data introduces limitations to the study’s findings. Moreover, unavailability

of the original input data used in WBMsed restricts a comprehensive analysis of the re-

lationship between dissimilarity and specific input variables. As RCP’s started to differ

from 2005 onward, the models ability to accurately represent the different RCP path-

ways could not be assessed in this study, which might hold certain discrepancies. During

this study fundamental methods are used, such as the Euclidean distance and first order

trendlines to examine the basic characteristics and behaviour of the projections. Also,

with the used SSRI calculation, it is assumed that 100% of the fluvial sediment output is

retained in the delta, while this is not naturally accurate. Finally, generalizing findings

of this research to other global deltas requires caution, considering the study’s specific

focus on certain datasets and regions. The qualitative analysis of trends and behaviours

involves subjectivity, and different interpretations of these trends may impact the overall

assessment of model performance. Recognizing these limitations is essential, providing

insights into areas for future refinement and guiding subsequent research efforts.

5.7 Future research

The lack of reliable or complete additional validation data for these missing rivers em-

phasizes the need for standardized sediment flux data collection methods across various

sources to ensure consistency in global fluvial sediment data. Also expanding the input

datasets with more accurate, consistent and comprehensive global data along with more

validation and calibration sources can further ensure model reliability. As mentioned in

Section 5.3, due to negligible small differences between the 12 projected scenarios, the

average of these scenarios were taken for most of the individual rivers. However as the

RCP scenarios are increasingly differing in the future, a closer examination on which sce-

nario used for the projections is needed as inter-scenario changes will increase. There

would be research needed on global data to determine the RCP trajectories of global

deltas. Dynamic time warping is proposed as a future method to depict dissimilarity
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5.7 Future research

between the model and validation data, as this will introduce the ability to account for

timing discrepancies within the model, delving into more intricate aspects beyond the ba-

sic forms analysed in this study. Further research in the method of discharge projections

is needed on the certain influence causing particular rivers to be under- or overpredicted

while their observed discharges are equal. Additionally, a more realistic representation

of delta aggradation could be achieved if time-dependent trapping efficiencies for indi-

vidual deltas were calculated.

Moragoda and Cohen (2020) underscore the intricate challenge of accurately simulat-

ing global fluvial sediment fluxes due to their multiscale nature, highlighting the need

for advanced methodologies for incorporating additional factors like sediment mining,

dam construction, urbanization, and changed ecosystems into the model, to significantly

improve projections. If possible regional characteristics can be implemented such as the

mining boom across the tropics increasing local sediment fluxes as researched by Dethier

et al. (2023). In Dunn (2017), there were crop growth assumptions made, based on pre-

cipitation and temperature, to validate certain projection biases. This same theory could

perhaps be applied to incorporate certain ecological systems and their effects on sediment

fluxes in the model, after further research about their ideal conditions, behaviour and ef-

fects. Another example can be the study of Y. Zhang et al. (2023), in which the temporal

trends and spatial patterns of sediment load as a response to climate change, especially

climate extremes, was investigated. They found a dominant influence of rainstorms on

soil loss and the key factor for local sediment flux changes. Studies like this could be

combined with studies projecting global exposure to rainstorms as an effect of climate

change(Liao et al., 2019), and could be applied to the WBMsed model for increased ac-

curacy. Ongoing research should explore ways to integrate these complexities, which

could mean the inclusion of algorithms or analysing trends bound to regional variables,

ensuring the model’s accuracy for diverse global delta mechanisms.

The impact of inter-annual extremes on projections is evident. While transforming

these abrupt inter-annual variations to a more natural effect on the sediment fluxes en-

hances projection behaviour, accurately representing anthropogenic effects remains a

challenge. Future research should focus on refining anthropogenic effect modelling for

more realistic projections.
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6. Conclusion

As Dunn et al. (2019) provided pioneering work in projecting decadal sediment fluxes

for 47 global deltas, this study set out to discover to what extent the projections are able

to accurately project sediment flux scenarios and provide a reliable sediment information

source for delta sustainability research such as projections of global delta land loss.

The comprehensive analysis of sediment flux projections by the WBMsed model re-

veals several challenges and areas for improvement. The model exhibits significant inter-

annual variability, overall sediment flux discrepancies and timing inaccuracies, indicat-

ing limitations in capturing the complex dynamics of sediment transport. While the Eu-

clidean distance analysis and mean absolute differences offer quantitative insights, the

lack of consistent dissimilarity and a clear structural connection with model input vari-

ables necessitates further qualitative validation.

The trend analysis emphasizes the need for refinement in the model, considering both

the significance of trendlines and the robustness of trends across different sample periods.

The sensitivity of the model to chosen periods and event timing endorses the importance

of addressing such issues for reliable projections, which would create a more reliable ba-

sis for global delta management strategies. Ensuring the extreme inter-annual variations

are more naturally incorporated in the model will enhance the alignment of projections

with observations, but knowing how to account for the impact of unforeseeable anthro-

pogenic effects remains a key challenge.

The overprediction analysis and dissimilar delta aggradation capabilities between

projections and observations highlight potential factors influencing sediment fluxes not

accounted for in the model. The influence of real-life factors, as sediment mining, small

reservoir construction, extreme events, and ecosystems, show the need for further model

improvements and its difficulty.

To conclude, Dunn et al. (2019)’s projections show promising accuracy in average an-

nual sediment flux projections for major global deltas. However, addressing the identi-

fied challenges on overprediction, unnatural inter-annual variability and the exclusion of

variables able to influence fluvial sediment fluxes in reality, is crucial for its applicability

to a broader range of global deltas and reliable use in delta sustainability projections.
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A. List of Dunn (2017) deltas and their river coordi-

nates

Table A.1: List of 47 deltas and their rivers coordinates (Dunn, 2017)

Delta Apex Latitude, Longitude

Amazon -1.54368, -52.72264

Amur 53.09969, 139.85332

Burdekin -19.71295, 147.29023

Chao Phraya 15.25714, 100.0575; 14.64947, 100.9637; 13.95067, 101.37038;

13.89303, 99.89099

Colorado 32.75106, -114.64291

Congo -5.75414, 13.24175

Ebro 40.7729, 0.64739

Fly -8.25786, 142.55464

Ganges Brahmaputra

Meghna

24.84539, 87.95208; 25.23968, 89.75353; 24.25343, 91.15707

Godavari 17.21379, 81.6839

Grijalva 18.18004, -93.33626

Han 37.99815, 126.39846; 37.89964, 126.79678; 37.56986, 127.001

Indus 24.73682, 68.14388

Irrawaddy 18.2891, 95.41181

Krishna 16.35835, 80.84568

Lena 72.0949, 127.10557

Limpopo -24.406, 33.01334; -24.36311, 33.55294

Mackenzie 67.65721, -133.96667; 67.64299, -134.75189

Continued on next page
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List of Dunn (2017) deltas and their river coordinates

Table A.1: List of 47 deltas and their rivers coordinates (Dunn, 2017) (Continued)

Magdalena 10.41469, -74.77455; 9.15114, -74.24994

Mahakam -0.34527, 116.9483

Mahanadi Brahmani

Baiterani

20.4557, 85.81554; 20.85188, 86.14747; 21.22313, 86.16526

Mekong 11.55579, 105.04546

Mississippi 31.05813, -91.62047

Moulouya 35.12365, -2.51588

Murray -34.97861, 139.35589

Niger 5.57685, 6.55163

Nile 29.75918, 31.25468

Orinoco 8.56811, -62.32174; 8.48602, -62.21823

Paraná -32.67496, -60.341

Pearl 23.15196, 112.71086; 23.29473, 112.80009; 23.44827, 112.94642

Po 44.96045, 12.160156

Red 20.91594, 105.95295

Rhine 51.85382, 4.90113

Rhône 43.9163, 4.73445

Rio Grande 26.35338, -98.74988

São Francisco -10.16007, -36.63488

Sebou 34.54216, -6.35319

Senegal 16.45329, -15.64329

Tana -2.43558, 40.25205

Tigris Euphrates 30.35235, 48.25008

Tone 36.04321, 140.52154

Vistula 54.02423, 18.94498

Volta 6.54507, 0.05753

Yangtze 32.33372, 119.52415

Continued on next page
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Table A.1: List of 47 deltas and their rivers coordinates (Dunn, 2017) (Continued)

Yellow 37.62862, 118.42554

Yukon 62.19093, -163.84877

Zambezi -18.04213, 35.66087
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B. Scaled Euclidean distances vs. different variables

For all plots the numbers represent the individual rivers: 1)Amazon, 2)Amur, 3)Brahmani-

Baiterani, 4)Brahmaputra, 5)Burdekin, 6)Congo, 7)Ebro, 8)Fly, 9)Ganges, 10)Godavari,

11)Han, 12)Indus, 13)Irrawaddy, 14)Krishna, 15)Limpopo-Changane, 6)MacKenzie-Peel,

17)MaeKlong, 18)Magdalena-BrazoDeMompos, 19)Mahakam, 20)Mahanadi, 21)Meghna,

22)Mekong, 23)Mississippi, 24)Moulouya, 25)Murray, 26)Niger, 27)Nile, 28)Parana, 29)Pasak-

Menam, 30)Po, Z1)Red, 32)Rhone, 33)RioGrande, 34)Sebou, 35)Senegal, 36)Tana, 37)TigrisE-

uphrates, 38)Vistula, 39)Xijiang, 40)Yangtze, 41)Yellow, 42)Yukon, 43)Zambezi.

Figure B.1: Scaled Euclidean distance vs. Validation data’s average annual
discharge[km3/a]
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Figure B.2: Scaled Euclidean distance vs. Dunn’s (2017) input variable ’Basin Area [km2]’

Figure B.3: SScaled Euclidean distance vs. Dunn’s (2017) input variable ’Basin Area average
temperature [°C]’

77



Scaled Euclidean distances vs. different variables

Figure B.4: Scaled Euclidean distance vs. Dunn’s (2017) input variable ’Basin average pre-
cipitation [mm/a]’

Figure B.5: Scaled Euclidean distance vs. Dunn’s (2017) input variable ’Basin population
[millions]’
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Figure B.6: Scaled Euclidean distance vs. Dunn’s (2017) input variable ’Basin GNP
[bnUS$2005/year]’
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C. Significance test trendlines

Table C.1: T-test results significance testing trendline Dunn et al.(2019) 1984-2020

River T-value P-value Significant trendline (p-value<0.05)?

Amazon 3.292685 0.002231 Yes

Amur 3.040471 0.004385 Yes

BrahmaniBaiterani -3.33538 0.001985 Yes

Brahmaputra 4.699653 3.75E-05 Yes

Burdekin -2.63517 0.012326 Yes

Congo 2.993102 0.004966 Yes

Ebro -2.99792 0.004904 Yes

Fly 6.08023 5.43E-07 Yes

Ganges -5.01444 1.44E-05 Yes

Godavari -4.21787 0.000159 Yes

Han -5.32731 5.51E-06 Yes

Indus 3.871043 0.000438 Yes

Irrawaddy 0.551158 0.58493 No

Krishna -4.54835 5.92E-05 Yes

LimpopoChangane -1.31197 0.197835 No

MacKenziePeel 0.472376 0.63951 No

MaeKlong -1.44074 0.158299 No

MagdalenaBrazo -1.34065 0.188434 No

Mahakam 6.064437 5.70E-07 Yes

Mahanadi -1.15852 0.254279 No

Meghna -3.91046 0.000391 Yes

Continued on next page
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Table C.1: T-test results significance testing trendline Dunn et al.(2019) 1984-2020 (Con-

tinued)

Mekong 2.803062 0.008102 Yes

Mississippi 1.723821 0.093319 No

Moulouya -2.0419 0.048541 Yes

Murray -0.11186 0.911559 No

Niger 5.719292 1.65E-06 Yes

Nile -5.5074 3.17E-06 Yes

Parana -5.27046 6.56E-06 Yes

PasakMenam -5.19715 8.21E-06 Yes

Po 6.05621 5.85E-07 Yes

Red -4.7041 3.70E-05 Yes

Rhone 5.920246 8.88E-07 Yes

RioGrande -5.4948 3.29E-06 Yes

Sebou 2.804704 0.008069 Yes

Senegal -1.08327 0.285889 No

Tana -2.36053 0.023785 Yes

TigrisEuphrates -5.48521 3.39E-06 Yes

Vistula 2.715984 0.010088 Yes

Xijiang -5.07796 1.18E-05 Yes

Yangtze -5.58685 2.48E-06 Yes

Yellow -1.9816 0.0552 No

Yukon 6.028595 6.36E-07 Yes

Zambezi 6.051238 5.94E-07 Yes

Table C.2: T-test results significance testing trendline Dethier et al. (2022) 1984-2020

River T-value P-value Significant trendline (p-value<0.05)?

Amazon 4.004987 0.000297 Yes

Continued on next page
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Significance test trendlines

Table C.2: T-test results significance testing trendline Dethier et al. (2022) 1984-2020

(Continued)

Amur 4.11989 0.000212 Yes

BrahmaniBaiterani -0.921 0.363181 No

Brahmaputra -3.20391 2.84E-03 Yes

Burdekin 1.456183 0.154009 No

Congo 0.729254 0.470565 No

Ebro -4.557 5.77E-05 Yes

Fly 1.670883 1.03E-01 No

Ganges -2.90633 6.22E-03 Yes

Godavari 2.403709 0.021504 Yes

Han -1.64709 1.08E-01 No

Indus -4.66602 4.15E-05 Yes

Irrawaddy -0.02994 0.976278 No

Krishna 0.470325 6.41E-01 No

LimpopoChangane 0.51247 0.611452 No

MacKenziePeel 2.108529 0.04201 Yes

MaeKlong 2.272481 0.029129 Yes

MagdalenaBrazo 4.723231 3.49E-05 Yes

Mahakam 4.909647 1.98E-05 Yes

Mahanadi -0.98918 0.329178 No

Meghna 0.688077 0.495814 No

Mekong -2.86512 0.006917 Yes

Mississippi 0.229842 0.819516 No

Moulouya 0.401274 0.690591 No

Murray -2.43742 0.019862 Yes

Niger 5.221183 7.63E-06 Yes

Nile -3.32874 2.02E-03 Yes

Continued on next page
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Table C.2: T-test results significance testing trendline Dethier et al. (2022) 1984-2020

(Continued)

Parana -2.92248 5.97E-03 Yes

PasakMenam 3.569279 1.04E-03 Yes

Po 1.187451 2.43E-01 No

Red -5.25751 6.83E-06 Yes

Rhone 1.109383 2.75E-01 No

RioGrande 2.216089 3.31E-02 Yes

Sebou -1.4789 0.147864 No

Senegal 4.195981 0.000169 Yes

Tana 4.494213 6.97E-05 Yes

TigrisEuphrates 2.022854 5.06E-02 No

Vistula -0.11288 0.910749 No

Xijiang -4.90564 2.00E-05 Yes

Yangtze -5.21617 7.75E-06 Yes

Yellow -4.24344 0.000147 Yes

Yukon 2.591051 1.37E-02 Yes

Zambezi 3.506084 1.24E-03 Yes
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D. Projected vs. observed SSRI values

Table D.1: SSRI results of individual deltas for projections and observations

Delta(river) Projected SSRI Observed SSRI

Amazon -0.00024 -0.0014

Amur -0.00024 -0.0073

BrahmaniBaiterani 0.000108 0.000234

Brahmaputra -1.65E-04 5.96E-05

Burdekin 0.00191 -0.00185

Congo -0.00257 -0.00022

Ebro 1.49E-05 6.92E-05

Fly -0.00061 -0.00044

Ganges 6.62E-04 8.95E-05

Godavari 0.006303 -0.00229

Han 5.06E-05 4.66E-06

Indus -0.00162 0.002427

Irrawaddy 6.91E-07 -9.13E-05

Krishna 0.00104 -0.0004

LimpopoChangane 4.44E-05 -0.00028

MacKenziePeel 2.04E-05 -0.00039

MaeKlong 7.38E-06 -5.28E-06

MagdalenaBrazo 0.000871 -0.0035

Mahakam -0.00018 -0.00026

Mahanadi 2.46E-04 -3.87E-05

Meghna 3.12E-04 -1.16E-07

Continued on next page
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Table D.1: SSRI results of individual deltas for projections and observations (Contin-

ued)

Mekong -5.12E-05 0.000333

Mississippi -4.38E-06 1.36E-05

Moulouya 2.16E-05 -4.61E-06

Murray 1.33E-06 7.10E-05

Niger -0.00038 -0.00068

Nile 2.73E-05 3.53E-06

Parana 0.001982 0.002275

PasakMenam 2.99E-05 -8.55E-05

Po -0.00097 -0.0003

Red 0.002237 0.002887

Rhone -0.00033 -0.00039

RioGrande 6.19E-06 -1.54E-06

Sebou -0.00264 0.000191

Senegal 0.000381 -0.00085

Tana 0.000173 -0.00098

TigrisEuphrates 2.46E-03 -1.05E-05

Vistula -4.68E-05 5.96E-06

Xijiang 4.84E-05 0.004831

Yangtze 0.003767 0.003745

Yellow 0.000371 0.004873

Yukon -0.00012 -0.00216

Zambezi -0.00012 -0.00022
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