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Abstract

Post-traumatic stress disorder (PTSD) is a psychiatric disorder that may develop when an individual ex-

periences or witnesses a traumatic stressful event. Although trauma-focused psychotherapy is a common

approach for treatment, a significant proportion of patients continue to experience symptoms even after

therapy. To enhance treatment response rates, it is important to increase the understanding of the neurobi-

ological factors that may predict treatment response.

Recently, there has been a growing interest in characterizing neural activity in terms of order and disorder.

It is theorized that the brain operating close to the border between order and disorder presents optimized

information processing. The concepts of ’criticality’ and ’entropy’ provide analytical frameworks for studying

these phenomena.

This thesis, conducted on behalf of the Expertisecentrum MGGZ of the Dutch Military, aims to investigate

whether the criticality and entropy concepts are useful for explaining differences in treatment response. For

this study, a set of resting-state functional magnetic resonance imaging (fMRI) data is used, acquired from

Dutch soldiers diagnosed with PTSD before undergoing psychotherapy.

The first part of the thesis focuses on criticality, relying on the Pairwise Maximum Entropy Model. Due

to constraints in data sampling, an archetype model is derived from the concatenated timeseries of the

participants. Two approaches are presented, involving the inference of a ’personal’ system temperature,

analogous to the Ising model, and drawing phase diagrams inspired by the Sherrington-Kirkpatrick model.

These methodologies aim to ’personalize’ the archetype model and serve as metrics to compare the distance

from criticality.

In the second part of the thesis, the concept of entropy is explored using the Permutation Fuzzy Entropy

algorithm. This algorithm is chosen for its reliability in estimating Shannon entropy of neural signals in

fMRI data.
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Introduction

Post-traumatic stress disorder (PTSD) is a psychiatric disorder that may arise when a person experiences

or observes a traumatic stressful event. The main characteristics of PTSD include re-experiencing the

trauma, avoidance of traumatic reminders, negative thoughts and emotions, and increased arousal and

reactivity [1]. Typically, PTSD is treated with trauma-focused psychotherapy [2]. However, the response

rates are not optimal, as a subsubstantial number of patients, ranging between 30% and 50%, continue to

experience symptoms after intervention. In order to enhance treatment response, we aim to investigate the

neurobiological factors that may underlie the differences in respondence prior to intervention.

In the recent years, there is a growing interest in characterizing the order and disorder of brain activity.

It is hypothesized that the brain organizes itself at the border between order and disorder, to optimize

information processing. This notion can be analyzed using criticality and entropy. In this thesis, we are

going to investigate whether these concepts can be used for explaining the difference in treatment response.

For this, we will use a dataset consisting of resting-state functional magnetic resonance imaging (fMRI)

scans of a group of veterans with PTSD, acquired around the start of their treatment with trauma-focused

psychotherapy [3].

With criticality, we refer to a state of a system that behaves on the border between order and disorder. It has

been shown, both theoretically and through experimental studies, that this state is associated with optimal

computational abilities [4,5]. Thecritical brain hypothesis proposes that the brain is such a complex system

that organizes itself in a state near criticality [4, 6–10]. Due to the critical brain hypothesis, one would

intuitively expect that the brains of individuals with higher cognitive abilities operates relatively closer

to criticality. This relation is not empirically proven yet, but there are several studies that suggest that

cognitive performance is associated with criticality [11–16]. Additionally, several researchers used criticality-

based tools for studying the brain under various psychiatric conditions, which revealed differences between

the healthy and affected brain [17]. As one would expect that better cognitive performance may contribute

to improved treatment response, we aim to investigate whether the criticality hypothesis could be used to

explain the differences in treatment response to trauma-focused psychotherapy for post-traumatic stress

disorder (PTSD).

We will introduce two general methods for examining the distance to criticality, relying on the pairwise

maximum entropy model (PMEM) [18], inspired by the work of Ezaki et al. [16] and Ruffini et al. [19].

The PMEM, rooted in statistical mechanics, serves as an abstract framework for understanding emerging

phenomena, including phase transitions in large-scale networks such as neural networks [20].
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This feature makes the PMEM particularly valuable for measuring the extent to which the brain operates

near criticality.

In addition to investigating the concept of criticality, we will also explore the entropy of neural signals.

Entropy serves as a measure of the complexity or amount of randomness (or uncertainty) within a system [21,

22]. Various studies suggest that the intricate complexity of the brain is a fundamental property underlying

the manifestation of phenomena as consciousness and adaptability. Consequently, brain-related deficiencies

and disorders are attributed to the decline of this neural complexity [23]. Entropy measures are therefore

widely used for quantitatively characterizing abnormal (regional) brain activity in neural activity (including

fMRI data), in individuals, including aged persons, patients with psychopathic and neurological disorders [24].

This encourages us to explore treatment response using the concept of entropy.

A higher entropy value indicates greater randomness and complexity, suggesting a more complicated and

dynamic brain state associated with increased information processing capacity and functional brain devel-

opment. Conversely, lower entropy implies less randomness and complexity, suggesting a more predictable,

less flexible and rigid brain state, which means that the central nervous system is less flexible and efficient

information processing [25]. In this sense, measuring the entropy of brain signals can be used for quantifi-

cation of the brain function. As for the criticality, this leads to the question whether the concept of entropy

could be used for explaining differences in treatment response using the resting state fMRI data.

In this thesis, conducted on behalf of the Expertise Center of the Military Mental Health outpatient clinics,

we will analyze resting-state blood-oxygen-level-dependent (BOLD) fMRI data using the concepts of crit-

icality and entropy. The dataset consists of n = 46 fMRI scans of veterans with PTSD, acquired around

the start of treatment. After trauma-focused psychotherapy (consisting of cognitive therapy (tf-CBT), eye

movement desensitization and reprocessing (EMDR) or a combination thereof), approximately half of the

participants responded positively, while the other half did not. We hypothesize that the brains of partici-

pants who responded to the therapy are closer to a critical phase transition (i.e., criticality) than those of

non-responders. Additionally, we aim to explore the entropy of the neural data.

The thesis is structured as follows. In Chapter 1, we introduce the dataset and provide a comprehensive

overview of the findings from a previous study of this dataset. After that, the thesis is divided into two

parts. In Part I, we study the concept of criticality. This part consists of four chapters, including:

• In Chapter 2, we give an introduction to criticality, the critical brain hypothesis and the methods we

apply in this thesis;

• In Chapter 3, the essential preliminaries are discussed, including Spin Models (Section 3.1), the Pairwise

Maximum Entropy Model (Section 3.2), the Inverse Ising Problem (Section 3.3), Biases in Inverse Ising

Estimates (Section 3.4), and the Metropolis-Hastings Algorithm (Section 3.5);

• Chapter 4, the concept of criticality is studied using ’personal’ system temperatures. In this chapter,

we introduce the method (Section 4.1) and analyze the obtained results (Section 4.2); We will see that

the ’personal’ system temperature serves as a measure for the distance to criticality and is associated

with treatment response.

5



• In Chapter 5, we explore the concept of criticality using phase diagrams. In this chapter, we, again,

introduce the method (Section 5.1) and analyze the obtained results (Section 5.2). We will show that

this analysis will not reveal a difference between the two groups, implying that we can not use this

method to predict treatment response.

In Part II, we explore the entropy of the neural signals. This part consists of three chapters, including:

• Chapter 6 introduces three entropy algorithms, including Permutation Entropy (Section 6.1 and Fuzzy

Entropy (Section 6.2). We will analyze a composition of these two algorithms, called Permutation

Fuzzy Entropy, introduced in Section 6.3;

• In Chapter 7, we discuss some implementation details (Section 7.1) and we analyze the Permutation

Fuzzy Entropy of the neural signals (Section 7.2). We will see that this algorithm is not sensitive

enough for picking up differences in the functioning of the brain of the two groups.
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Chapter 1

The Dataset

As already introduced in the introduction, the aim of this project is to investigate whether the concepts of

criticality and entropy could be used for explaining differences in prospective treatment response for patients

with post-traumatic stress disorder (PTSD). We aim to investigate this by analyzing a dataset consisting of

resting-state fMRI scans of war veterans with a PTSD diagnosis, acquired at the beginning of their treatment.

After trauma-focused psychotherapy about half of these participants were classified as treatment responders,

the other half did not respond.

This dataset was studied before by van Lutterveld et al. [3], who tried to explore potential underlying

(neuro)biological factors that could explain the difference in treatment response. In this study, they tried to

investigate whether spontaneous brain activity, brain network characteristics and head motion during resting

state could be associated with prospective treatment response using trauma-focused therapy.

The spontaneous resting-state activity of the brain was characterized using the amplitude of low-frequency

fluctuations (ALFF), which is a measure used in neuroimaging to quantify the strength or intensity of

spontaneous fluctuations that occur at low frequencies and reflects changes in regional brain activity. They

calculated and analysed the ALFF for each voxel (volume element that is scanned) and region of interest

(ROI; defined by the parcellation of the voxels according to the Brainnetome atlas [26]) in the brain and

expected to find changes in spontaneous brain activity in responders compared to non-responders in areas

most strongly discriminating prospective treatment responders and non-responders. However, no significant

differences between the responder and non-responder group were observed for the ROI and exploratory

whole-brain analysis.

To explore the functioning of the brain as a network, they performed a global network analysis using the

minimum spanning tree (MST) and several network measures. The MST is a binary subgraph of the

functional connectivity that connects all nodes, such that the strongest connections in the original network

are included while avoiding loops. They expected to find differences in regional MST network characteristics

and an increased MST global network integration. The latter, as there is suggestive evidence that network

integration is related to cognition and better cognitive capabilities may lead to more effective treatment.
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Figure 1.1: Illustration of the first steps of the graph analysis, adapted from van Lutterveld et al. [3]. (A)

The Brainnetome atlas [26] is applied to the functional data. (B) Extracting the time-series for each Region

Of Interest (ROI). (C) The functional connectivity between all possible pairs of ROIs i and j is calculated,

using Pearson’s correlation coefficient, for each participant.

The connectivity matrix was created by calculating Pearson’s correlation coefficients between the regions

of interest (ROIs) of the Brainnetome atlas [26]. A schematic representation of the pipeline of these steps

is shown in Figure 1.1. After that, the MST was created for each functional connectivity matrix using

Kruskal’s algorithm and characterized using the average connectivity strength and four measures of network

integration (maximum betweenness centrality, which reflects the strength of the most important note in the

MST; the leaf fraction, which reflects to what extent the MST has a central organization; the diameter,

which gives the efficiency of global network organization; and average eccentricity, the tendency of nodes in

the network to be isolated and poorly integrated). The regional differences in network organization were

studied with the centrality (i.e., relative importance) of each node, using degree and betweenness centrality.

The global MST graph analysis did not show significant differences between the the group of responders

compared to the non-responders. However, some significant differences between the two groups were observed

in the (regional) betweenness centrality. It turned out that brain areas involved in executive function,

attentional processes, learning, action and visual-object processing exhibit different functioning.

Lastly, the head motion, measured by the framewise displacement (FD), during acquisition was studied.

Commonly, head motion metrics are calculated for the time series and subsequently regressed out, because

it is a serious confounding factor by fMRI network analyses. However, it can also be considered as a

behavioral measure in itself. Van Lutterveld et al. [3] explored whether head motion could be associated to

treatment response. For this comparison, some factors that has been reported to be associated with head

motion (including education level, cigarette use, dexterity, and age) were regressed out. Responders exhibited

significantly less head motion than non-responders. The exact mechanism underlying the association between

head motion and prospective treatment response are not clear and subject for further research.
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For this project, we are going to study this dataset using the concepts of criticality and entropy. In the

upcoming sections, we will discuss further relevant details about the participants, the image acquisition and

preprocessing of the dataset.

1.1 Participants

We will analyze the resting-state fMRI scans of n = 46 war veterans diagnosed with PTSD. The PTSD

diagnosis was determined by a psychologist or psychiatrist of the Military Mental Health outpatient clinics

in the Netherlands. Participants were around the beginning of trauma-focus psychotherapy at the start of the

study, which included trauma-focused psychotherapy included trauma-focused cognitive behavioral therapy

(tf-CBT) and/or eye-movement desensitization and reprocessing (EMDR) therapy. In order to measure the

severity of the PTSD symptoms, the researchers applied the Clinician-Administered PTSD Scale (CAPS) at

the start of treatment and after 6 − 8 months of treatment. Additionally, a clinical interview for DSM-IV

Axis I disorders was conducted to identify any comorbid psychiatric disorders. Baseline fMRI scans and

clinical interviews were performed as close as possible to the start of treatment, with clinical interviews were

repeated 6− 8 months later to assess the changes in symptomatology.

Participants included in the study had a history of deployment to a warzone and were between 18 and

60 years old. Exclusion criteria involved a history of neurological disorders were excluded, while comorbid

psychiatric disorders such as mood disorder, psychotic disorders, substance-related disorder, or any other

psychiatric disorder were not considered exclusion criteria.

Participants were categorized as responder or non-responder based on their reduction in CAPS scores at the

second timepoint. A participant is responsive if the total CAPS score at the second interview was reduced

by at least 30 percent. The fMRI scans were acquired as close as possible to the start of treatment.

1.2 Image acquisition

The imaging was performed on a Philips Achieva 3 Tesla Clinical MRI scanner (Philips Medical System,

Best, Netherlands). To improve localization of the functional data, a high-resolution T1 weighted anatomical

scan was acquired with the following settings: repetition time (TR): 10 ms, echo time (TE): 4.6 ms, flip angle

(FA): 8◦, 200 sagittal slices, field of view (FOV) 240 × 240 × 160, matrix 340 × 299. Hereafter, 320 blood-

oxygenation level-dependent (BOLD) resting-state fMRI images were acquired per subject with the following

settings: TR: 1600 ms, TE: 23 ms, FA: 72.5◦, FOV 256 × 208 × 120, 30 transverse slices, matrix 64 × 51,

voxel size 4 × 4 × 3.60 mm, 0.4 mm gap, total scan time 8 min and 44.8 s. During resting-state scanning,

participants were asked to focus on on a fixation cross, let their min wander and relax. Furthermore, they

were provided with thorough instructions to prevent head motion.
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1.3 Preprocessing

As described by van Lutterveld et al. [3], the functional MRI data were preprocessed using the Data Pro-

cessing Assistant for Resting-State fMRI (DPRASF) advanced edition (version 4.5) as part of the Data

Processing and Analysis for Brain Imaging (DPABI) toolbox, running in MATLAB. The first 10 volumes

were discarded for steady-state magnetization, leaving 310 volumes for further analysis. The remaining vol-

umes underwent realignment, skull stripping using the Brain Extraction Tool (BET), co-registration to the

individual structural scan (CSF) and linear trends removal.

After that, nuisance covariate regression was performed using a 36-parameter model and included temporal

censoring and global signal regression. Temporal censoring was performed through spike regression based

on framewise displacement (FD) limits of 0.2 mm calculated according to Jenkinson’s algorithm. Here-

after, images were spatially normalized to Montreal Neurological Institute (MNI) space using Diffeomorphic

Anatomical Registration Through Exponentiated Lie Algebra.

10



Part I

Criticality
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Chapter 2

The criticality hypothesis

The brain is a textbook example of a complex system: complex cognitive functions are the result of neural

activity across different scales in the brain; from large-scale brain networks to small neuronal circuits. In the

recent years, there is a growing interest in discovering the fundamental principles underlying these global

dynamics of the brain caused by the macroscopic interactions between neurons using neural data. One of

these principles is the notion that neural networks, and thereby many aspects of brain activity, organizes

itself into a critical state. This hypothesis is called the critical brain hypothesis and has been largely

studied [4, 6–10]. With a critical state, or system that behaves at criticality, we refer to a state of a system

that behaves on the border between order and disorder. It has been shown, both theoretically as with

experimental studies, that this critical state is associated with a range of advantageous properties, including

optimal sensitivity to inputs [27], it facilitates coordination among individual components [28,29], it enables

a large range of dynamic responses [30,31], and maximizes the computational ability trough so-called edge-

of-chaos computation [4,32,33]. The hypothesis is that this also applies to the brain and therefore will result

in optimal memory and information processing capabilities [5].

In this section we will review the ideas behind the critical brain hypothesis, both from a neuroscientific

as mathematical/physical point of view and explain how to connect these fields of science for studying the

notion of criticality.

Within the framework of statistical physics, criticality refers to the behavior of a system that undergoes a

phase transition. A phase transition is defined by the global order of the system, measured by the order

parameter, that changes as a function of a model parameter, called the control parameter. The point where

a small change in the control parameter leads to an abrupt change in the order parameter, is called a

phase transition. This abrupt change could be a discontinuity (a jump), which is called a first-order or

discontinuous phase transition, or a sharp corner (a non-differentiable point), a second-order or continuous

phase transition. In case of a second-order phase transition, a system can be exactly at the transition point

between the two phases. Then, the system is said to be ’at criticality’ or in the critical state. Furthermore,

when the control parameter of the system is below the critical value, the system is in the subcritical phase,

while the system is in supercritical phase when the control parameter is above the critical value. [17,34]
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A good illustration of the concept of criticality, is the two-dimensional Ising model, which we will treat later

more in detail (see Section 3.1). The classical Ising model is a system of spins, defined on a two-dimensional

lattice, that can point in two directions (up- and downwards). We assume that each spin can interact with

its nearest neighbors and favors to align in the same direction. In case of the Ising model, we measure the

order of the model by the alignment of the spins and control the order by varying the temperature (the

control parameter). At low temperature, below the critical temperature, these nearest neighbor interactions

will dominate. We observe large clusters of aligned spins which will interfere with its surrounding and get

larger and larger until all spins are aligned and the whole lattice is magnetized. Increasing the temperature,

will temper the mutual interactions and spins will jostle the spins until the critical temperature is reached.

Past this critical temperature, the thermal fluctuations overwhelm the interactions, leading to a loss of

magnetization and randomly orientated spins. At the phase transition, the order and disorder in the system

are balanced, leading to maximal correlation length. Furthermore, we observe that the order parameters

(the magnetization, but also magnetization domain size and magnetic susceptibility) become power-law

distributed (i.e., the random variable x > x0 has probability distribution p(x) = Cx−α, where α the power-

law exponent). The power-law distributed observable and increased correlation length, are characteristic for

systems at criticality. [17]

From the notion of the brain operating near criticality and the additional advantageous properties, one would

intuitively expect that the distance to criticality is associated with cognitive abilities. While this relation is

not yet empirically proven, there is evidence supporting this hypothesis. Several studies have demonstrated

an relation between cognitive performance and relatively discrete brain states during rest [12–14], as well

as during working memory tasks [15], visual perception tasks [11] and intellectual ability [16]. Moreover,

these studies and others [35, 36] provide evidence for the idea that the dynamics of state-transitions in the

brain involve large-scale brain networks. This is in line with the notion that cognitive functions depend on

the network connectivity among various regions scattered over the entire brain [37]. Additionally, several

researchers used criticality-based tools to improve the understanding of common psychiatric conditions like

depression [38–42], schizophrenia [43–46], anxiety [47], and PTSD [48]. Most of these studies were able to

identify differences between the healthy and affected brain. This motivates us to explore whether criticality

can be used for explaining the differences in treatment response. Moreover, assuming that there is a link

between criticality, cognitive abilities, and treatment response, we hypothesize that the intricate dynamics

of the brain near to criticality are associated with treatment response.

There are a few major conventional methods developed for studying criticality and edge-of-chaos compu-

tations in neural data. In the neuroscience, it is posed that the brain operates near criticality when the

activation patterns of ensembles of neurons display typical signatures of critical behavior. Therefore, most of

the methods examine the criticality hypothesis by considering neuronal avalanches and bursts of cascading

activity. They aim to investigate whether these phenomena exhibit power-law properties, as these are related

to criticality [49,50]. However, this power-law behavior could be a result of a critical branching process (and

therefore imply criticality), but does not necessarily imply that a system is operating near a critical state and

could potentially be explained by alternative mechanisms [5,16,51]. To overcome this problem, we introduce

a more general method that relies on statistical mechanics, a field of the mathematics and physics that can

be used for understanding the collective behavior biological systems consisting of interacting particles [7].
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Figure 2.1: Illustration of a phase transition in the two-dimensional Ising model, adapted from Zimmern [17].

(A) Simulation of the Ising model defined on a lattice of size 256 × 256 in subcritical, critical and super-

critical state. The orientation of the spins are represented by the black and white areas. (B) Illustration of

the arrangement of spins on the lattice. (C) The order parameter (the magnetization) as a function of the

control parameter (the temperature). (D) The correlation length as a function of the control parameter.
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Assuming that a system can be described using a probability distribution on the different states (i.e. the

system is in equilibrium), one can use the Principle of Maximum Entropy [18] to derive a model that provides

a good estimate of the probability distribution on the observed data of an system in equilibrium. It has

been shown that this model, the so-called Pairwise Maximum Entropy Model (PMEM), is very capable of

modeling biological systems, including protein interactions, antibody diversity and the flocking behavior

of birds [7, 20]. In the neuroscience, the PMEM models the pairwise interactions between nodes (or, at

microscopic level, neurons) on a neuronal network. Several studies have demonstrated that this model

accurately characterizes the resting-state human brain network [52, 53], including the network derived from

resting-state fMRI scans [54,55]. Additionally, the analogy of the PMEM with known statistical mechanical

models, enables us to use this theory for studying their critical properties.

To obtain the PMEM that is able to describe neuronal data, the parameters of the model (including the

pairwise interaction strength between the particles) has to be inferred. This problem is called the Inverse

Ising problem and can be solved using several methods. Several studies suggest that one of the most accurate

and efficient ways to do this, is using the method of Pseudo-Likelihood Maximization (PLM) [20,56]. However,

it is well-established that this, as well as the other methods, are not accurate when the number of samples

is small [56]. Given our dataset, consisting of only 310 fMRI scans per participant, it follows that it is

challenging to accurately infer a PMEM for each of the participants based on their own neural data. To

overcome this problem, we present two methods that relies on an archetype PMEM that is approximated

using the concatenated data of all participants. This archetype PMEM can be adjusted in various ways to

match the neural signals of each individual. We present two of these of approaches and will show that these

can be utilized for studying the distance to criticality.

The first method, inspired by the work of Ruffini et al. [19], consists of inferring the system temperature

for each participant using the archetype PMEM. The temperature of the system determines the qualitative

behavior of the system and serves, as we will show, as a control parameter of the system. This behavior

is determined by studying observables of the system that capture the emerging statistical properties of the

inferred system. At a critical temperature Tc the system undergoes a phase transition from a ferro- to

a paramagnetic state. We will show that this temperature can be inferred for each participant using the

archetype PMEM and, again, pseudo-likelihood maximization. Additionally, as the temperature controls

the characteristics of the system and undergoes a phase transition, we can study differences in distance to

criticality individually by comparing these temperatures.

The second approach, inspired by the work of Ezaki et al. [16], involves drawing phase diagrams depicting ob-

servables of the archetype PMEM. For this, we use a parametrization inspired by the Sherrington-Kirkpatrick

spin-glass model [57], resulting in a range of models, characterized by, again, the observables. This approach

reveals, analogous to the SK-model, three qualitatively distinct types of behavior, reflected by three phases (a

spin-glass, ferro- and paramagnetic phase) in the phase diagram, separated by a phase transition. Using the

phase diagrams and the corresponding observables, which can be directly computed from each participants’

fMRI data, allows us to approximate a parameter combination that aligns the archetype model with the

neural data of each individual. This specific parameter combination corresponds to a position in the phase

diagram, indicating a certain distance from the two curves where the phase transition occurs. Therefore, we

study the distance to criticality using the distance to these curves.
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Consequently, this method focuses on studying the distance to criticality by considering the distance from

these curves.

A concern of inferring the PMEM from the whole brain imaging data (i.e., for all 238 ROIs), is that the

resulting network is not necessarily informative in terms of the underlying neurology [16, 29, 58]. One could

expect that certain regions and networks are more involved than others in certain processes that contribute

to treatment response. Therefore, to get more insight into the underlying local interactions, we will also

study seven functional networks, which are subsets of the ROIs and proposed by Yeo et al. [59], includes the

Visual network (26 ROIs), Somatomotor network (33 ROIs), Dorsal Attention network (30 ROIs), Ventral

Attention (22 ROIs) network, Limbic network (26 ROIs), Frontoparietal network (26 ROIs) and Default

network (36 ROIs). Moreover, studying the smaller networks has the advantage that the PMEM can be

inferred more accurately due to the (relatively) bigger sample size [51, 56] trying to infer is less sparsely

sampled.

As mentioned in the introduction of this thesis, we hypothesize that the brains of participants who responded

to psychotherapy operate closer to a phase transition than those of the non-responders.

Part I is structured as follows. In the first chapter, Chapter 3, we treat the preliminaries. Here, the point

of departure will be the concept of criticality by introducing the framework of statistical mechanics by

introducing three models that describe the dynamics of a spin system and contain a phase transition: the

Ising model, the Generalized Ising model, the Curie Weiss model and the Sherrington-Kirkpatrick model.

After that, we derive the Pairwise Maximum Entropy Model (PMEM), a model that can be used to describe

the dynamics of the brain on a neural network. We will see that this model is analogous to a spin system,

and we therefore can use the theory of statistical mechanics for analyzing it. These topics will be discussed

in Section 3.1 respectively 3.2.

In order to obtain a PMEM that is able to describe a set of neural data that is available, we have to infer

the parameters of the model. This problem, the Inverse Ising problem, can be solved using pseudolikelihood

maximization. The derivation of this technique in Section 3.3.

For analyzing the obtained PMEM, must be able to generate samples and to calculate the corresponding

observables. We will introduce in Section 3.5 the most basic and general methods in statistical mechanics

for doing this: the Metropolis-Hastings algorithm. To conclude, it is shown that, although it is the best and

most efficient algorithm, pseudolikelihood maximization could possibly cause a sample bias in the inferred

model. To reduce this bias, we introduce use a bias correction (see Section 3.4), the last section of this

chapter.

In the second and third chapter of this part, Chapter 4, resp. 5, we will study the concept of criticality using

the system temperature and phase diagrams. Here, we will see that treatment response is associated with

the system temperature when considering the functional networks. For both, we will discuss the general

procedure, some implementation details and analyze the obtained results statistically.
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Chapter 3

Preliminaries

3.1 Spin Models and Phase Transitions

The theory of equilibrium statistical mechanics is a field of the mathematics that was originally used for

studying equilibrium thermodynamics. Today, its concepts and methods are applied across various scientific

disciplines to examine the macroscopic behavior of systems composed of many interacting particles. In this

thesis, we will apply this theoretical framework to the neuroscience to model neural networks and explore

how these give rise to the observed neural activity.

In general, we are going to analyze spin systems consisting of i spins (i = 1, . . . , N) with orientation σi

defined on a finite, undirected graph G = (V,E). Typically, the set of nodes V is a subset of Zd and

the edges E are the nearest neighbors denoted by i ∼ j, that is, pairs of nodes i, j with ∥j − i∥1 = 1,

where ∥v∥1 =
∑

k |vk|. The configuration or microstate of the system σ = {σi}i∈V is an assignment of spin

orientations to each node i.

These spin systems, also referred to as magnets, can behave in many ways influenced by external factors. In

this section, we introduce some essential general concepts and methods for modeling these spin systems by

presenting three spin models that describes the interactions between spins.

3.1.1 The Ising model

The Ising model [34, 60] is defined on a lattice Λd ⊂ Zd and assume that each spin σi (i ∈ Λd) can point

either ’up’ or ’down’, denoted by +1 or −1 respectively. This implies that σi ∈ {−1, 1} and the configuration

σ = {σi}i∈Λd
∈ ΩΛd

, where ΩΛd
= {−1, 1}Λd .

The overall energy of a spin configuration is obtained by adding the interactions between all pairs of nodes

with strength J ∈ R and the interaction with the constant external magnetic field of strength h ∈ R. The
energy as a function of the interaction strength J and strength of the external magnetic field h is described
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by the Hamiltonian HIsing
Λd

(σ|h, J), given by

HIsing
Λd

(σ|J, h) = −h
∑
j∈Λd

σj − J
∑
i,j∈V
i∼j

σiσj ,

where spins at two distinct nodes i, j ∈ V interact with interaction strength J ∈ R if and only if the pair

{i, j} ∈ E is an edge of the graph, implying that only neighboring nodes, denoted by i ∼ j, interacts.

The Ising model is defined such that the system inherently tends towards configurations of minimal energy

and, consequently, it satisfies two fundamental assumption as follows:

1. The interaction between nodes i ∼ j favors alignment of the spins, i.e. σi = σj by decreasing the overall

energy of the system by −Jσiσj if the spins at the nodes i, j agree. Consequently, configurations where

most pairs of spins are aligned exhibit lower energy.

2. Spins align with the external magnetic field h ∈ R that acts on the system decreasing the energy by

−hσi, implying that when h > 0 spins favor to point upwards (+1).

The probability of observing configuration σ is given by the Boltzmann distribution (also known as the

canonical Gibbs measure) at inverse temperature β = 1/kBT ≥ 0 :

P Ising
Λd

(σ|J, h, β) = 1

ZIsing
Λd

(J, h, β)
exp

[
−βHIsing

Λd
(σ|J, h)

]
,

and partition function

Z(J, h, β)IsingΛd
=
∑
{σ}

exp
[
−βHIsing

Λd
(σ|J, h)

]
.

Here, {σ} = {σ ∈ {−1, 1}N} denotes the set of all possible configurations and kB = 1.380649·10−23m2kgs−2K−1

the Boltzmann constant, which relates the energy of the system to its temperature. [61]

The main goal of studying these spin systems is to investigate under which circumstances the local tendency

to align induces order at global scale. For this purpose, we introduce the magnetization of configuration σ,

which measures the alignment quantitatively by averaging over the spin values σi (i ∈ V ) as follows

mΛd
(σ) =

∑
i∈Λd

σi.

Then, the magnetization density
mΛd

(σ)

|Λd|
∈ [−1, 1]

gives the difference between the fractions of spins that are orientated upwards (+1) and downwards (−1)

respectively.

We will first study how the system depends on the temperature T = 1/kBβ by considering the fluctuations

of the magnetization in the absence of a magnetic field, i.e. when h = 0. In the limiting situation of infinite

temperature β = 1/kBT ↓ 0, the Boltzmann distribution converges to the uniform distribution on ΩΛd
. We

find for each σ ∈ ΩΛd

lim
β↓0

P Ising
Λd

(σ|0, J, β) = P (σ|0, J, 0) = 1

|ΩΛd
|
,

18



implying that for β ↓ 0 the magnetization MΛd;h=0 is a sum of independent and identically distributed

random variables. For this reason, we will find that MΛd;h=0 → 0 as |Λd| → ∞ using classical limit theorems

of Probability Theory.

At zero temperature β ↑ ∞, the configurations that minimize the Hamiltonian are favored. These states are

called ground states, and are given by σ+ = {σi = 1}i∈Λd
and σ− = {σi = −1}i∈Λd

. It can be shown easily

that P Ising
Λd

(σ+|0, J, β) = P Ising
Λd

(σ−|0, J, β), such that

lim
β↑∞

P Ising
Λd

(σ|0, J, β) =

 1
2 if σ ∈ {σ+,σ−}

0 otherwise

which implies that, for low temperature, the Boltzmann distribution ’freezes’ the system in either one of the

ground states.

These two qualitative different types of behavior suggest two possible scenarios for high- and low-temperature

behavior of the Ising model. First, when the inverse temperature β is low (and the temperature T is large),

we expect that the global magnetization density mΛd;h=0/|Λd| is close to zero with high probability, implying

that the proportion of spins that point upwards (+1) is approximately equal to the part that point downwards

(−1).

On the other hand, when the inverse temperature is large (and the temperature T is low), the probability

distribution concentrates on the configurations that are close to the ground states σ+,σ− implying that

mΛd;h=0/|Λd| ≃ ±1 with a high probability. In this case, we observe global order since (almost) all spins are

aligned. The question that arises now, is how we can actually describe the system for values of 0 < β < ∞,

and where does the change in the global order of the model occur.

In case of the Ising model on a d-dimensional lattice (i.e. Λd ⊂ Zd, d ≥ 2), it can be shown that the

model can exhibit two distinct types types of behavior: paramagnetism and ferromagnetism. These states

of the system, also referred to as magnetic states, are commonly observed in spin systems and arise from the

arrangement of the spins and the interactions between them in the system.

Figure 3.1: Illustration of a ferromagnetic system, adapted from the book of Friedli and Velenik [34]. We

observe a discontinuity in the magnetization m when the field (h ∈ R) goes through zero. The values ±m∗

corresponds to the spontaneous magnetization of the system, that is, the magnetization of the system in the

absence of an external field. The sign of the spontaneous magnetization depends on whether the external

field approached zero from the positive or negative side of its domain.

19



A system is in a ferromagnetic state when the spins are aligned in the same direction due to strong local

interactions, resulting in global magnetization, which persists when the external field is removed. Conse-

quently, in case of the Ising model, looking at the graph of the magnetization m as a function of the external

field strength h, we will observe discontinuity in the magnetization for h = 0. An example of the graph of a

ferromagnetic system is given in Figure 3.1.

In the paramagnetic state, the spins are randomly orientated, and there is no long-range magnetic order.

This results in a weak attraction to external magnetic fields. In the presence of a (strong) magnetic field that

forces spins to align uniformly, the system exhibits global ordering. However, when the external magnetic

field is removed, the system loses its magnetization. Therefore, in case of the Ising model, looking at the

graph of the magnetization m as a function of the external field strength h, we will observe a decrease of the

magnetization with the strength of the external magnetic field. An example of the graph of a paramagnetic

system is shown in Figure 3.2.

Figure 3.2: Illustration of a paramagnetic system, adapted from the book of Friedli and Velenik [34]. The

magnetization m decreases with the field (h ∈ R) to zero from both sides of the domain (i.e. h > 0 and

h < 0.)

It can be shown that the Ising model can switch between these two states, also called phases, by adjusting

the temperature of the system. When the temperature T = 1/kBβ crosses a critical value Tc, the model the

system will undergo a phase transition, leading to a qualitatively different behaving system. This transition

can involve a shift from ferromagnetic to a paramagnetic system, or vice versa. We call the range range

where T > Tc (i.e. β < βc) supercritical regime and where T < Tc (i.e. β > βc) the subcritical regime. The

point T = Tc is called the critical regime. For h = 0, the state of the system can be studied by considering

the magnetization m as a function of the temperature T. An example of this graph is shown in Figure 2.1.

3.1.2 The Generalized Ising Model

More general, we define the generalized Ising Model as a spin system that behaves on an undirected graph

G = (V,E) where, as the classical Ising model, each spin σi (i ∈ V ) can point either ’up’ or ’down’. This

implies that σi ∈ {−1, 1} and, assuming |V | = N the configuration σ = {σi}i∈V = {−1, 1}N . Additionally,

we assume that neighboring spins i ∼ j ∈ E (i, j ∈ G) are connected with interaction strength Jij ∈ R and

an external field works on node i ∈ G with strength hi ∈ R.
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Then, the Hamiltonian is given by

HGen. Ising
G (σ|J ,h) = −

∑
i∈V

σihi −
∑
i,j∈V
i∼j

σiσjJij = −
N∑
i=1

σihi −
N∑
i=1

∑
j = 1, j ̸= iNσiσjJij ,

the corresponding Boltzmann distribution

PGen. Ising
V (σ|J, h, β) = 1

Z(J, h, β)
exp

[
−βHGen. Ising

V (σ|J, h)
]
,

and partition function

Z(J, h, β)Gen. Ising
V =

∑
{σ}

exp
[
−βHIsing

Λd
(σ|J, h)

]
.

3.1.3 The Curie-Weiss Model

The Curie-Weiss model [34] is such a generalized Ising model, defined on a complete graph, where it is

assumed that Jij = 1/
√
N (i, j = 1, . . . , n) and hi = h (i = 1, . . . n). So, assuming |V | = N and all nodes are

connected by an unique edge, the Hamiltonian of the Curie-Weiss model for a configuration σ ∈ {−1, 1}N

is given by

HCW
V (σ|h) = −h

∑
i∈V

σi −
1√
N

∑
i,j

σiσj ,

with partition function

ZCW
V (h, β) =

∑
{σ}

exp
[
−βHCW

V (σ|h)
]
.

It can be shown that the Curie-Weiss model, like the Ising model, exhibits paramagnetic behaviour at high

temperature and ferromagnetic behaviour at low temperature.

3.1.4 The Sherrington-Kirkpatrick model

The last, and main, model we consider, is the Sherrington-Kirkpatrick model [57, 62], which is a so-called

spin-glass model. Spin glass models are Ising spin models with the assumption that the interaction strength

between nodes is Gaussian distributed. This brings negative interactions into the system and hereby in-

troduces a new type of behaviour: the spin-glass phase. In here, the quenched disorder in the interaction

strengths results in both positive ferromagnetic and negative antiferromagnetic interactions between spins.

The ferromagnetic behaviour forces spins to align at low temperatures, whereas antiferromagnetic couplings

prefer to anti-align. Since this it is not possible to satisfy both tendencies, we say that the system is frustrated

and we observe local, but not global magnetization.

We consider, as for the Curie-Weiss model, an generalized Ising spin system consisting of N spins defined

on a complete graph where the interaction strength Jij (i, j = 1, . . . , n) is Gaussian distributed with mean

J0 and standard deviation J (i.e. Jij ∼ N (J0/
√
N, J2/N)). The energy of a configuration σ is given by the

Hamiltonian

HSK
V (σ|h,J) = −

∑
i

hiσi −
1

2
√
N

N∑
i,j=1

Jijσiσj ,
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where σi denotes the orientation of the spin at node i, hi describes the interaction with an external mag-

netic field and Jij gives the interaction strength between the spins i and j. The corresponding probability

distribution for observing the spin configuration σ is given by the Boltzmann distribution

P SK
V (σ|h,J , β) = 1

ZSK
V (h,J , β)

exp
[
−βHSK

V (σ|h,J)
]

where

ZSK
V (h,J , β) =

∑
{σ}

exp
[
−βHSK

V (σ|h,J)
]

the partition function, β = 1/kBT the inverse temperature and {σ} = {σ ∈ {−1, 1}N} the set of all possible

configurations σ.

As previously discussed, the magnetization m serves as an order parameter for the transition between the

ferro- and paramagnetic phase. To analyses the behavior of a spin-glass system and the disordered arrange-

ment and interactions of spins, a second parameter that quantifies the amount of local magnetization, and

thereby whether the system is in a glassy state, is needed. This observable, called the spin-glass order param-

eter q, and follows as a side-effect by deriving an analytic expression for the partition function Z(σ|h,J , β)
corresponding to the SK-model. [57, 62,63]

For most of the thermodynamic quantities, we average the system over the nodes. The average Z is relatively

easy to determine, but lnZ is more difficult to calculate. To overcome this problem, the so called replica-trick

is introduced [57,64], which proposes to use the fact that

lnZ = lim
n→0

Zn − 1

n
.

Here, Zn is the replicated partition function of n identical replicas of the original system and is given by

Zn(h,J , β) =
∑
{σ}

exp

[
−β

n∑
α=1

Hα(σ|h,J)

]
.

Here, α = 1, . . . , n are the so called replica indices and Hα is the Hamiltonian with dummy variables σα.

It requires some involved derivations, but one can show that for N → ∞, the solution space is described by

the magnetization and inter-replica spin correlation order parameters

mα =
1

N

∑
i

σiα,

qαβ =
1

N

∑
i

σiασiβ ,

where α, β = 1, . . . , n. Using that the replicas are mathematical artifices and are apparently indistinguishable,

the simplifying replica-symmetric Ansatz proposes to substitute mα = m for all α and qαβ = q for all α ̸= β.

It follows that m and q can be identified as the average magnetization and overlap, given by

m =
1

N

N∑
i=1

⟨σi⟩

q =
1

N

N∑
i=1

⟨σi⟩2
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(where ⟨σi⟩, again, the ensemble average), and can be used to characterize three qualitatively different states

of the system:

• Paramagnetic phase if m = 0, q = 0, characterized by randomly oriented magnetic moments that tend

to align with the external magnetic field, exhibiting no long-range magnetic order;

• Ferromagnetic phase if m ̸= 0, q > 0, characterized by a (tendency to) collective alignment of neigh-

boring spins, exhibiting long-range magnetic order;

• Spin-glass phase if m = 0, q > 0, characterized by a disordered magnetic state with competing inter-

actions, frustration and absence of long-range magnetic order.

On the borders between these phases, the system is said to be critical. Note that the model parameters h

and J determine in which phase (and therefore how) a system will behave.

For the case where there is not external magnetic field (i.e. h = 0), the corresponding phase diagram is

given by figure 3.3.

Figure 3.3: Schematic diagram of the observed phases that arise in the Sherrington-Kirkpatrick model,

adapted from Sessak [65]. Here, it is assumed without loss of generality that TkB = 1, and h = 0.

To quantify how a responds to an applied external field, the so-called susceptibility χ is used. This measure

can be used to determine where a phase transition occurs.

As the ferromagnetic phase is distinguished from the paramagnetic phase by how the magnetization of the

system responds to the applied field h, the local susceptibility χij to this phase transition can be measured

for each spin σi (i = 1, . . . , N) by

χij =
∂

∂hj
mi = β (⟨σiσj⟩ − ⟨σi⟩⟨σj⟩) .

Note that when χij diverges, the spin σi responds strongly on the applied field hj (i, j = 1, . . . , N) implying

an increase of the correlation between the spins σi and σj .

Averaging over all spins i and applied fields j, shows us how the system responds to the whole field h and
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is called the uniform susceptibility [62]

χUni =
1

N

N∑
i,j=1

χij = β
1

N

N∑
i,j=1

⟨σiσj⟩ − ⟨σi⟩⟨σj⟩.

In the phase transition between the paramagnetic and spin-glass phase, the uniform susceptibility will also

diverge, as follows easily from the definition. However, here it is not the spin correlation ⟨σiσj⟩ that acquires
long-range behavior, but its square (i.e. q, the spin-glass order parameter). Therefore, the so-called spin-glass

susceptibility χSG is introduced, which measures the q-response to a random field h by

χSG =
1

N

N∑
i,j=1

χ2
ij = β2 1

N

n∑
i,j=1

c2ij .

This quantity can be derived in a similar way as the uniform susceptibility and diverges at the boundary

between the paramagnetic and spin-glass phase. [63]

3.2 The Pairwise Maximum Entropy Model (PMEM)

In this section, we will introduce and derive the Pairwise Maximum Entropy Model. This statistical model

captures the pairwise interactions between particles in a system and relies on the principle of maximum

entropy. This principle which states that the probability distribution that best represents the available in-

formation, maximizing uncertainty and is agreement with prior information, is distribution with the largest

Shannon-entropy. As described, this principle can be applied for modeling a variety of complex systems with

nonlinear interactions and has been successfully applied to complex systems such as the flocks of birds, social

networks and gene expression [7]. We will use this model to describe the brain structure and function [55,66]

by using the provided resting state fMRI data.

In this section, we will show how the PMEM can be derived using the maximum entropy principle and how

it can be applied to model the functional dynamics of the brain. We will see that the PMEM is analogous to

the statistical mechanical models that describe the dynamics of spin systems (as introduced in Section 3.1)

and therefore undergo a phase transition, which enables us to use the PMEM for studying criticality.

3.2.1 The Maximum Entropy Principle

The maximum entropy principle serves as a basis for the PMEM. Therefore, for the sake of completeness,

we will provide additional information on this principle.

The notion of maximizing the Shannon-entropy was proposed by Jaynes [18], stating that the probability

distribution with the highest Shannon-entropy is the distribution that that represents best the available

information about a system. In other words, if we have no information about a system except that it sat-

isfies certain constraints, then we should assign the probability distribution that has the greatest degree of

uncertainty or randomness. Here, we consider Shannon-entropy as a measure of uncertainty or randomness

of a system, where a higher Shannon-entropy means that there is more uncertainty.
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This implies that, in case of limited information, the most unbiased assumption is to choose the probability

distribution that spreads the probability as evenly as possible by maximizing the uncertainty. A general

definition of the Shannon-entropy can be found in the introduction of Part II.

It is important to emphasize that the maximum entropy principle relies on the on the assumption that we

have no information about a system except that it satisfies certain constraints. If additional information is

available, then the principle becomes inapplicable, and an alternative method of statistical inference that

considers this information should be employed.

3.2.2 Derivation of the Pairwise Maximum Entropy Model (PMEM)

Consider the set of binary signals S = {S(t)}Bt=1 ∈ RN×B , where S = {Si = ±1}Ni=1 a vector of length N

that describes activation of each brain region. Then, the average activation rate is given by,

⟨Si⟩Empirical =
1

B

B∑
t=1

Si(t), (3.1)

and the correlations

⟨SiSj⟩Empirical =
1

B

B∑
t=1

Si(t)Sj(t). (3.2)

where (i, j = 1, . . . , N). The objective is to find a model that characterizes the relation between these binary

signals by inferring a probability distribution P (S) on all possible configurations [7]. We will do this by,

applying the principle of maximum entropy as proposed by Jaynes [18], maximizing the Shannon-entropy

S(P ) = −
∑
{S}

P (S) logP (σ),

and taking into account the available information, including Equation (3.1), (3.2) and the normalization

condition ∑
{S}

P (S) = 1.

Here {S} ≡ {S ∈ [−1, 1]N} is the set of all possible configurations the system can attain. Consequently, in

the end it should hold that ⟨Si⟩Empirical = ⟨Si⟩P and ⟨SiSj⟩Empirical = ⟨SiSj⟩P where

⟨Si⟩P =
∑
{S}

P (S)Si

⟨SiSj⟩P =
∑
{S}

P (S)SiSj ,

the expectation value of Si resp. SiSj (i, j = 1, . . . , N) under the distribution P.

Using the method of Lagrange multipliers [67], the Lagrangian corresponding to this problem is given by

L = S + λ0g0 + λ1g1 + λ2g2, (3.3)
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where

g0 =
∑
{S}

P (S)− 1,

g1 =

N∑
i=1

⟨Si⟩P − ⟨Si⟩Empirical

g2 =

N∑
i,j=1

⟨SiSj⟩P − ⟨SiSj⟩Empirical

and satisfies the constraints when it holds that g0 = g1 = g2 = 0. In order to find the maximum, we have to

solve

∂

∂P (S)
=

∂

∂P (S)
[S + λ0g0 + λ1g1 + λ2g2]

= (− lnP (S)− 1) + λ0 +

N∑
i=1

λ1iSi +

N∑
i,j=1

λ2ijSiSj = 0,

where λ0, {λ1i} ∈ RN and {λ2ij} ∈ RN×N the Lagrange multipliers.

It can be shown that this problem is maximized by the pairwise maximum entropy probability distri-

bution, which is given by

P (S) =
1

Z
exp

− N∑
i=1

λ1iSi −
1

2

N∑
i,j=1

λ2ijSiSj

 , (3.4)

with the partition function

Z =
∑
{S}

exp

− N∑
i=1

λ1iSi −
1

2

N∑
i,j=1

λ2ijSiSj

 .

Note that this probability distribution is analogous to the Boltzmann distribution by interpreting the La-

grange multipliers as fields and couplings, i.e., λ1i = βhi and λ2ij = βJij .

3.3 The Inverse Ising problem

To infer the parameters for spin models as defined in Section 3.1 from a dataset, we have to solve the so

called Inverse Ising problem. Solving the Inverse Ising problem involves computing (or actually, approximat-

ing) the interactions Jij and external fields hi (i, j = 1, . . . , N) from observed spin configurations sampled

independently from the Boltzmann distribution [20].

Based on several studies [20,56], we decided to use pseudo-likelihood inference, founded by Besag [68]. This

is a method, based on logistic regression, is one of the most efficient and accurate ways of solving an inverse

Ising problem [20,56], even when the amount of data is severely limited.

In this section we treat the derivation of the pseudo-likelihood inference, as treated by Aurell and Ekeberg [56]

and Ngyen et al. [20].
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3.3.1 The Inverse Ising problem

We consider a system of N interacting spins σi ∈ ±1, i = 1, . . . , N, as defined in Section 3.1.2, where a

configuration is given by σ ∈ {−1, 1}N and the energy of a spin configuration σ is given by the Hamiltonian

H(σ|h,J) = −
N∑
i=1

hiσi −
1

2

N∑
i=1

N∑
j=1,j ̸=i

Jijσiσj .

Assume that the probability of observing a given configuration σ is given by the Boltzmann distribution

P (σ) =
1

Z(h,J , β)
exp [−βH (σ|h,J , β)] , (3.5)

where Z(h,J , β) the partition function, given by

Z(h,J , β) =
∑
{σ}

exp [−βH (σ|h,J)] ,

where β = 1/kBT the inverse temperature, Jij the pairwise interactions, hi the external magnetic fields and

{σ} = {σ|σi ∈ [−1, 1]N , i = 1, . . . , N}, the set of all possible spin configurations. Throughout this analysis

we consider β without loss of generality to be constant, e.g. β = C ∈ R [20].

The expectation values of configurations of spin variables and functions Q(σ) of them, are defined by the

ensemble average

⟨Q(σ)⟩ =
∑
{σ}

p(σ)Q(σ).

Subsequently, as introduction in Section 3.1, the magnetization of a spin σi (i = 1, . . . , N) is defined as as

mi = ⟨σi⟩ =
∑

{σ} p(σ)σi and the correlation between two spins i, j (i, j = 1, . . . , N, i ̸= j) as χij = ⟨σiσj⟩ =∑
{σ} p(σ) (σiσj) . Furthermore, denote the pairwise correlation between two spins i, j by cij = χij −mimj .

Then, inverse Ising inference is the procedure of inferring a set of parameters (h, J , and β) from the

observations to the Boltzmann distribution, given by Equation (3.5). This can be verified by measuring the

spin magnetization and correlations.

3.3.2 Solving the Inverse Ising problem using Pseudo-Likelihood Inference

Consider the set of B independent observations, D = {σ(t)}Bt=1 ∈ RN×B , and assume that they are drawn

from the Boltzmann distribution, given in Equation (3.5). The state of the entire set of spins at time t = t′,

σ(t = t′), is called a configuration, and the full data set of B ×N observations the dataset. It is important

to note that time is used as an index for the observations that are made in time and we are not studying

how the signals evolve over time, i.e., the dynamics of the system as a function of time.

3.3.3 The Maximum Likelihood Estimator

The point of departure for the derivation of the method of pseudo-likelihood maximization, is the maximum

likelihood framework [20].

27



Assume, given is the set of observations x1, x2, . . . , xB which are all drawn from a statistical model p(x1, x2, . . . , xB |θ),
where θ the unknown parameter that defines the model and has to be inferred from the observed data. One

way to approximate this parameter, is using the so-called maximum likelihood estimator

θML = argmaxθp(x
1, x2, . . . , xB |θ). (3.6)

Here, p(x1, x2, . . . , xB |θ) is the likelihood function, which is a function of the parameter θ with the observa-

tions x1, x2, . . . , xB as constants. This estimator θML converges in probability to the value θ in the limit of

the number of observations.

As we are working with a lot of observations and the likelihood scales exponentially with the number of

samples, it is convenient to use the log-likelihood.

The principle of maximum likelihood can also be applied to the Inverse Ising problem, where we want to infer

the couplings J and magnetic fields h. Assuming that the observations in a dataset D = {σ(t)}Bt=1 ∈ RN×B

are sampled independent from the Boltzmann distribution, then the log-likelihood of corresponding to the

observed configurations D is given by

L(D|h,J) = 1

B

B∑
t=1

lnP (σ(t)|h,J)

=
1

B

B∑
t=1

ln
1

Z(h,J , β)
exp [−βH (σ|h,J)]

=
1

B

B∑
t=1

ln
1

Z(h,J , β)
exp

β N∑
i=1

hiσi(t) + β
1

2

N∑
i=1

N∑
j=1,j ̸=i

Jijσi(t)σj(t)


= β

N∑
i=1

hi
1

B

B∑
t=1

σi(t) +
β

2

N∑
i=1

N∑
j=1,j ̸=i

Jij
1

B

B∑
t=1

σi(t)σj(t)−
1

B

B∑
t=1

lnZ(h,J , β)

= β

N∑
i=1

hi⟨σi⟩Empirical +
β

2

N∑
i=1

N∑
j=1,j ̸=i

Jij⟨σiσj⟩Empirical − lnZ(h,J , β). (3.7)

Here, the sample average or magnetization ⟨σi⟩Empirical and correlation ⟨σiσj⟩Empirical of the spins are defined

by

⟨σi⟩Empirical =
1

B

B∑
t=1

σi(t)

⟨σiσj⟩Empirical =
1

B

B∑
t=1

σi(t)σj(t).

3.3.4 Exact maximization of the likelihood

The most straightforward of inferring solving the Inverse Ising problem, is simply maximizing the log-

likelihood, i.e.

{hML,JML} = argmaxL(D|h,J).

28



Since the log-likelihood is concave in the model parameters (see Appendix A.2), we can use, for example,

gradient ascent [67] to maximize the objective. It can be derived (see Appendix A.1) that

∂

∂hi
L(D|h,J) = β (⟨σi⟩Empirical − ⟨σi⟩P )

∂

∂Jij
L(D|h,J) = β (⟨σiσj⟩Empirical − ⟨σiσj⟩P ) ,

where ⟨σi⟩P and ⟨σiσj⟩P expectation values under the Boltzmann distribution P (as defined in Equa-

tion (3.5). Therefore the log-likelihood attains its maximum when, for both the magnetization and correlation

∀i, j = 1, . . . , N , the empirical averages equals the the expectation under the Boltzmann distribution P, i.e.

⟨σi⟩Empirical = ⟨σi⟩P
⟨σiσj⟩Empirical = ⟨σiσj⟩P .

As a result, the gradient ascent updating scheme that can be used to solve this problem [67], is given by

hnew
i = hold

i + η
∂

∂hi
L(D|hold,Jold)

Jnew
ij = Jold

ij + η
∂

∂Jij
L(D|hold,Jold),

where η the learning rate of the algorithm.

Now we arrive at the biggest disadvantage of this algorithm: in order to calculate the expectation values, we

have to calculate a several time averages over all 2N possible configurations. This is feasible for small N, but

becomes a bottleneck when N increases. A good method that overcomes this problem, is pseudo-likelihood

maximization.

3.3.5 Pseudo-likelihood maximization

With the concept of likelihood maximization in mind, we are able to derive the method of pseudo-likelihood

maximization. This method, introduced by Besag [68], relies on the idea of likelihood maximization and

infers the model parameters exact in the limit of an infinite number of samples.

We will start the derivation of this method by considering how the (log)likelihood (defined in Equation (3.7))

depends on the model parameters h and J and how the orientation of one spin influences the system by

dividing the Hamiltonian into two parts:

H(σ|h,J) = Hi(σ|h,J) +H/i(σ/i|h,J) = σi

−hi −
1

2

N∑
j=1,j ̸=i

Jijσj

+H/i(σ/i|h,J), (3.8)

where σ/i denotes all spin variables except spin σi, and H/i the Hamiltonian for all spins except spin σi

(i = 1, . . . , N). The first term of Equation 3.8 describes the contribution of spin σi to the total energy, which

only depends on the magnetic field hi and interactions Jij of spin σi to the other spins, whereas the the

second part gives the contribution of spin σi.
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Using the contribution of one spin to the total energy, it follows that the conditional probability for observing

a single spin σi ∈ {−1, 1} is given by

P̃
(
σi|h,J , β,σ/i

)
=

exp [−βHi(σ|h,J)]∑
{σi} exp [−βHi(σ|h,J)]

=
exp

[
σiβ

(
hi +

∑N
j=1,j ̸=i Jijσj

)]
exp

[
β
(
hi +

∑N
j=1,j ̸=i Jijσj

)]
+ exp

[
−β
(
hi +

∑N
j=1,j ̸=i Jijσj

)]
=

1

2

1 + σi tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj

 .

Notice that this probability only depends on the ith row of the model parameters hi and Ji∗, i.e. P̃ (σi|h,J , β,σ/i) =

P̃ (σi|hi, Ji∗,σ/i). It follows that the log-likelihood of the ith row of the model parameters (i.e. hi and Ji∗)

given the observed configurations D = {σi(t)}Bt=1 is given by

Li(D|hi,J i∗) =
1

B

B∑
t=1

ln P̃ (σi(t)|hi,J i∗, β,σ(t)/i)

=
1

B

B∑
t=1

ln
1

2

1 + σi(t) tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj(t)

 (3.9)

Now, considering all couplings and fields together by summing the log pseudo-likelihood Li(D|hi,J i∗) over

all i = 1, . . . , N, gives us the so-called (log) pseudo-likelihood

L(D|h,J) =
N∑
i=1

Li(D|hi,J i∗) =
1

B

N∑
i=1

B∑
t=1

ln P̃ (σi(t)|hi,J i∗, β,σ(t)/i). (3.10)

Maximizing the pseudo-likelihood with respect to all rows of h and J , gives us the desired estimators.

It can be shown (again) that the log pseudo-likelihood is concave (see Appendix A.4, which implies that we

can solve this system of equations using gradient ascent [67]. The updating scheme corresponding to this

problem follows by the derivative of the log pseudo-likelihood with respect to hi and Jij , given by

∂

∂hi
L(D|h,J) = β (⟨σi⟩Empirical − ⟨σi⟩P̃ )

∂

∂Jij
L(D|h,J) = β (⟨σiσj⟩Empirical − ⟨σiσj⟩P̃ ) ,
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where

⟨σi⟩P̃ =
∑
{σi}

σiP̃ (σi|h,J , β,σ/i)

=
∑
{σi}

σi ·
1

2

1 + σi tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj


=

1

2

1 + tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj

− 1

2

1− tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj


= tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj

 ,

such that

⟨σi⟩P̃ =
1

B

B∑
t=1

tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj(t)

 ,

and

⟨σiσj⟩P̃ =
∑
{σi}

σiσjP̃ (σi|h,J , β,σ/i)

=
∑
{σi}

σiσj ·
1

2

1 + σi tanh

β
hi +

N∑
j′=1,j′ ̸=i

Jij′σj′


=

σj

2

1 + tanh

β
hi +

N∑
j′=1,j′ ̸=i

Jij′σj′

− σj

2

1− tanh

β
hi +

N∑
j′=1,j′ ̸=i

Jij′σj′


= σj tanh

β
hi +

N∑
j′=1,j′ ̸=i

Jij′σj′

 ,

which gives

⟨σiσj⟩P̃ =
1

B

B∑
t=1

σj(t) tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj(t)

 .

We obtain the gradient ascent updating scheme:

hnew
i = hold

i + η (⟨σi⟩Empirical − ⟨σi⟩P̃ )

Jnew
ij = Jold

ij + η (⟨σiσj⟩Empirical − ⟨σiσj⟩P̃ ) . (3.11)

3.3.6 Inferring the temperature T = 1/β

Besides using pseudo-likelihood maximization for inferring the model parameters h and J , we will also apply

the framework of pseudo-likelihood optimization for inferring the temperature β = 1/kBT. For this method,

we consider h and J as known (e.g. already approximated) and fit the model to the dataset D = {σ(t)}Mt=1.
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The log-likelihood for spin σi is in this case given by

Li(D|β) = 1

M

M∑
t=1

ln P̃ (σi|hi,J i∗, β,σ/i(t)),

where the conditional Boltzmann distribution is given by

P̃ (σi|hi,J i∗, β,σ/i(t)) =
1

2

1 + σi tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj

 .

The log pseudo-likelihood becomes

L(D|β) =
∑
i

Li(D|β)

=
1

B

N∑
i=1

B∑
t=1

ln P̃ (σi(t)|hi,J i∗, β,σ(t)/i)

=
1

B

N∑
i=1

B∑
t=1

ln
1

2

1 + σi(t) tanh

β
hi +

N∑
j=1,j ̸=i

Jijσj(t)

 .

Using that the log pseudo-likelihood is concave (see Appendix A.6), it can be derived that the optimum can

be found using gradient ascent [67]. The derivative of the log pseudo-likelihood with respect to β is given by

∂

∂β
L(D|β) = ⟨H⟩Empirical − ⟨H⟩P̃ ,

which implies that the gradient ascent algorithm becomes

βnew = βold − η
(
⟨H⟩Empirical − ⟨H⟩P̃

)
.

The derivation can be found in the Appendix A.5.

3.4 Biases in Inverse Ising Estimates: C2 correction

Recent research has shown that estimators for inference of Inverse Ising models, such as pseudolikelihood

maximization (PLM), are biased [51]. In particular, small-sample models inferred through PLM are quite

large in critical regimes close to phase boundaries. This may alter the qualitative analysis of the inferred

model. In order to correct for this bias, we will use a data-driven method proposed by Kloucek et al. [51].

In the limit of large sample size, PLM is exact. However, it is unlikely to have infinite sample size in

real world datasets and the small sample size biases can dominate the inference. The parameter estimates

obtained through PLM depend on both the number of samples B as a prefactor set by the true parameter

and is not known a priori, resulting in the estimate

J∗
ij = J0

ij +
b1,ij(h

0,J0

B
+O(B−2).

Here, the superscripts ∗ and 0 denote the inferred and true values respectively, b1,ij(h
0,J0) is the state-

dependent first order prefactor to the leading 1/B bias and O(B−2) consists of all lower order terms (i.e.
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order < B−2). The prefactors b1,ij(h
0,J0) for i, j = 1, .. ., N together determine the difficulty of learning a

given model by increasing or decreasing the required amount of data to dissipate the bias.

The averaged quantities of the inferred parameters, such as the standard deviation σ of the couplings J in

terms of the bias is given by

σ∗ = σ0 +
b1(h

0,J0

B
+O(B−1),

where b1 the combination of the bias terms b1,ij on the individual Jij couplings and sets the bias contribution

to the inferred standard deviation.

Besides this sample size bias, there is an additional small sample size issue called separation. Separation

occurs when a subset of covariance (e.g. σsep ⊂ σ\r) in the logistic regression is able to perfectly predict

the outcome variable (σr) and leads to large estimates for the corresponding parameters. The methods that

correct for the first order bias term have been shown to also control separation.

It can be shown that for non-separated data, the first order bias behaves as

b1,ij(J
0,h) ≈ b1,ij(σ0),

implying that the bias is a function of the variance of the parameters (i.e. the inverse temperature T =

1/(σ
√
N)).

The procedure that is introduced to correct for this bias, uses the result that the bias is captured by the

temperature of the system and the PLM models over-estimate the covariance C2, defined by

C2 =
1

N

N∑
i,j=1

C2
ij , (3.12)

It proposes to require that the inferred model has a covariance C2 as close as possible to the one esti-

mated from the input data. This is reached by performing a second optimization after estimating the PLM

parameters by minimizing the objective

L(Tf ) =
(
C2

empirical − C2
MC(Tf )

)2
,

where C2
empirical is determined as C2 in equation 3.12 from the dataset and C2

MC is calculated from MC

simulations where the re-scaled parameters J/Tf and h/Tf are used. Here, the re-scaling parameter Tf > 0

acts as a fictitious temperature.

This procedure (significantly) improves the reconstructed temperature when a PLM solution can be found

(i.e. separation does not occur) and provides the best improvement at higher temperatures.
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3.5 Sampling from the Boltzmann distribution: the Metropolis-

Hastings Algorithm

There are several ways to generate configurations of spins that follow the Boltzmann distribution. The most

basic known algorithms, is Metropolis-Hastings algorithm [69–72], which is a Monte Carlo method that is

used to generate random samples (in this case configurations σ) according to the (conditional) Boltzmann

distribution P (σ|h,J , β).

The idea of Monte Carlo sampling is to pick states in such a manner that the probability that a particular

state σ is chosen, equals P (σ|h,J , β). We can do this by generating a Markov chain of successive states

σ1 → σ2 → .. .. Here, each state is generated from the previous one using the transition probability T (σ →
σ′), which gives the probability to transform from state σ to σ′. This transition probability should be chosen

such that the transition occurs with probability P (σ|h,J , β).
Suppose that the probability of observing state σ in the Markov chain at time t is denoted by Pt(σ), then,

in terms of transition probabilities, the probability observing the state σ at t+ 1 is given by

Pt+1(σ) = Pt(σ) +
∑
{σ}

[T (σ′ → σ)Pt(σ
′)− T (σ → σ′)Pt(σ)] . (3.13)

When you generate enough samples (i.e. t → ∞), the probability Pt+1(σ) will converge to the stationary

distribution, which we want to be the Boltzmann distribution. This can be obtained, by choosing the

transition probabilities T in such a way that Pt(σ) = P (σ|h,J , β) and all terms in the summation vanish.

So, it should hold for all σ and σ′ that

T (σ → σ′)P (σ′|h,J , β) = T (σ′ → σ)P (σ|h,J , β).

This is called the detailed balance equation and implies that the process has to be reversible. From this, it

follows that it should hold that

T (σ → σ′)

T (σ′ → σ)
=

P (σ′|h,J , β)
P (σ|h,J , β)

= exp [−β(H(σ′)−H(σ))] = exp [−β∆H(σ′,σ)] , (3.14)

where ∆H(σ,σ′) = H(σ′)−H(σ) the change in energy.

There are different transition probabilities T that satisfies this condition (3.14). One of these possible

transition probabilities was proposed by Metropolis [69] and is given by

T (σ → σ′) =

1, if ∆H ≤ 0

exp [−β∆H(σ,σ′)] if ∆H ≥ 0.
(3.15)

The procedure where we generate a Markov chain using this transition probability, is called the Metropolis-

Hastings algorithm [69, 70].

In order to determine change in energy ∆H when flipping a spin k, first notice that we can rewrite the
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Hamiltonian as

H(σ|h,J) = −
N∑
i=1

hiσi −
N∑
i=1

N∑
j=1,j ̸=i

Jijσiσj

=

(
−hkσk −

N∑
i=1

Jikσiσk

)
+

−
N∑
i=1

hiσi −
N∑
i=1

N∑
j=1,j ̸=i

Jijσiσj

 ,

implying that the contribution of a spin k to the total energy of the system is given by

Hk(σ|h,J) = −σk

(
N∑
i=1

Jikσi + hk

)
. (3.16)

After flipping this spin k, the energy associated with this spin becomes

(Hk(σ|h,J))k flipped = σk

(
N∑
i=1

Jikσi + hk

)
,

which implies that the change in energy after flipping a spin in our case, is given by

∆H(σ|h,J) =
(
(Hk(σ|h,J))k flipped −Hk(σ|h,J)

)
= 2σk

(
N∑
i=1

Jikσi + hk

)
.

The general outline of Metropolis Hastings algorithm is simple. We initialize a configuration σ. This can

be done in a random fashion (this is called a hot start because T = ∞) or in a structured way, all spins

are aligned, way by choosing σ = ±1 (a cold start, T = 0.) After initialization, we are going to generate

states using the Markov chain. Each iteration, a new state σ′ is generated and proposed by choosing a spin

and flipping it. This new state is attained (i.e. the proposal is accepted) with the transition probability

T (σ → σ′) we defined in Equation (3.15). After a large number of iterations, the system will be converged

to an equilibrium. When this equilibrium is reached (the process of reaching this equilibrium is called

thermalization), we can draw samples form the obtained system. These samples can be used to calculate

observables and, subsequently, analyse the model. [72]

In order to obtain a correct approximation of the observables, it is important to consider the time it takes

for the Markov Chain to attain its equilibrium: the equilibration time. This time depends on the size of the

system (i.e. the number of nodes N) and the model and is usually measured in units of sweeps, which equals

N (the number of spin updates).

Moreover, after the system has reached its equilibrium, we have to sample from the Markov chain carefully.

Due to the nature of the process, each successive state only one flipped spin from the previous, implying that

the subsequent samples are not independent but strongly correlated. Therefore, it is important to average

over a large number of observables and to sample states that are sufficiently far apart from each other so

that they are no longer correlated. This distance can be determined by the autocorrelation time, measured

in units of sweeps. [73]
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Chapter 4

Temperature analysis

As previously discussed, we investigate the concept of criticality by examining how the system’s behavior,

measured by an order parameter, changes in response to a control variable. Inspired by the work of Ruffini

et al. [19], we consider the system temperature T = 1/kBβ as control parameter for this analysis.

As outlined in the introduction, concatenating the observed neural signals enables us to infer an archetype

PMEM for of the neural network. In this analysis, we refine this model for each participant by inferring the

system temperature using pseudo-likelihood optimization. This temperature serves as an individual measure

for the distance to criticality.

We will perform this procedure for the whole-brain network, consisting of N = 238 nodes (ROIs parcellated

according to the Brainnetome atlas [26], and for each of the functional networks [59], including the Visual (nr.

1), Somatomotor (nr. 2), Dorsal Attention (nr. 3), Ventral Attention (nr. 4), Limbic (nr. 5), Frontoparietal

(nr. 6) and Default network (nr. 7).

This chapter is organized in two sections. In the first section (Section 4.1), we outline the general procedure

of this analysis, consisting of inference the model parameters of the PMEM and the system temperature for

each of the participants. We apply this method to both the functional networks, as the whole-brain network.

In the second section (Section 4.2), we analyze the obtained results.

4.1 Methods

4.1.1 Inferring the archetype PMEM

Prior to inferring the PMEM, we have to prepare the data. Recall that, as described in section 3.2) the

PMEM derived on the assumption that the random variables are discrete, or, in terms of neural signals, that

a neuron or region of interest (ROI) is either active (+1) or inactive (−1).
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Figure 4.1: Schematic illustration of the steps for inferring the PMEM from the fMRI data, adapted from

the Energy Landscape Analysis Toolbox User’s Guide of Ezaki and Masuda [74].

Hence, the first step involves binarizing the fMRI data zj(t) for each ROI j = 1, . . . , N by using

Sj(t) =

+1 if zj(t) ≥ z̃j

−1 if zj(t) < z̃j ,

for t = 1, . . . , B the number of samples, where z̃j the median of zi(1), . . . , zj(B). This choice for binarization

is inspired by a similar study of Ruffini et al. [19]. The binarized activity pattern at time t (t = 1, . . . , B) is

denoted by the vector S(t) = {S1(t), . . . , SN (t)} ∈ {±1}N . Note that this process needs to be repeated for

each individual, resulting in n sets of timeseries Si(t) (i = 1, . . . , n).

The objective is to infer the archetype PMEM by concatenating the binarized signals {Si(t)}Bt=1 from all

participants (i = 1, . . . , n) into one dataset S = {S1(1), . . . , S1(B), S2(1), . . . , Sn(B)} ∈ {−1, 1}N×(nB).

Using PLM (as introduced in Section 3.3) and assuming β = 1 without loss of generality, we can infer the

PMEM by maximizing the pseudo-likelihood function (given by Equation (3.10)) using the gradient descent

updating steps (see Equation (3.11)). The inferred model parameters, denoted by ĥ and Ĵ , satisfy the

constraints of the PMEM such that the probability of observing a signal S is given by:

P (S|h,J) = 1

Z(h,J)
exp [−H(S|h,J)] ,

where Z the partition function with

Z(h,J) =
∑
{S}

exp [−H(S|h,J)]

and the Hamiltonian

H(S|h,J) = −
N∑
i=1

hiSi −
1

2

N∑
j=1,j ̸=i

JijSiSj .
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4.1.2 Inferring the ’personal’ system temperature T

Given the model parameters ĥ and Ĵ , inferred using the concatenated dataset, we adjust the PMEM for each

participant by reintroducing the system temperature β = 1/kBT and defining the Boltzmann probability

distribution as

P (σ|h,J , β) = 1

Z(h,J , β)
exp [−βH(σ|h,J)] , (4.1)

where Z(h,J , β) the partition function given by

Z(h,J , β) =
∑
{σ}

exp [−βH(σ|h,J)] .

Using the framework of pseudo-likelihood maximization for inferring β we derived before in Section 3.3.6,

we can approximate this system temperature T = 1/kBβ with the gradient descent algorithm that is defined

by

βnew = βold − η
(
⟨H(σ|ĥ, Ĵ)⟩empirical − ⟨H(σ|ĥ, Ĵ)⟩P̃

)
, (4.2)

where

⟨H(σ|h,J)⟩empirical =
1

B

B∑
t=1

N∑
i=1

Hi(σ(t)|h,J) =
1

B

B∑
t=1

N∑
i=1

σi(t)

hi +

N∑
j=1,j ̸=i

Jijσj(t)


the empirical average of the Hamiltonian, and

⟨H(σ|h,J)⟩P̃ =

N∑
i=1

hi⟨σi⟩P̃ +

N∑
j=1,j ̸=i

Jij⟨σiσj⟩P̃

 .

the (data dependent) model mean.

The procedure of adapting the PMEM for each participant, is quite straightforward. Fixing the model

parameters the model parameters ĥ and Ĵ , we personalize the model by inferring the temperature T̂ for

each participant using the learning rate.

When varying the system temperature T induces a phase transition, then this quantity can be used as

a measure for the distance to criticality. The point T = Tc where the phase transition occurs, can be

investigated by sampling from the archetype PMEM for different values of T and calculating the observables

for this model. The distance to criticality of an individual is then defined as T̂ − Tc.

Note that for this temperature analysis, the bias correction (as introduced in Section 3.4) is not necessary.

The correction factor, i.e., fictitious temperature Tf , scales the model parameters by a factor 1/Tf (h/Tf

and J/Tf ) and will therefore only shift the obtained system temperature from or to the critical point, but

not not change the mutual differences between the participants (the measure of interest). Therefore, we

ignore this bias.

4.1.3 Statistical analysis

When it can be shown that the system exhibits a phase transition when varying the system temperature

(i.e., there is a critical temperature T = Tc), then we analyze the differences in distance to criticality by

comparing the inferred ’personal’ temperatures.
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Functional networks

First, we identify outliers based on exceeding 1.5 · IQR (InterQuartile Range) limits, and we remove these

extreme outliers from the analysis. Subsequently, we conduct a mixed analysis of variance (ANOVA), using

IBM SPSS Statistics 29.0, to examine whether the distance to criticality (in terms of temperature) is the

result of the interaction between the functional network and treatment response with age and education

(measured by ISCED) as covariate, as similar studies [16,58,75,76] did. We verify the normality assumption

using one-sample Kolmogorov-Smirnov tests, and the sphericity assumption with Mauchly’s test of sphericity.

When a covariate turns out to not be significant, we repeat the analysis without that covariate. If there is

a significant interaction, we perform for each network a post-hoc analysis of variance (ANOVA) to examine

the effect further.

Whole-brain network

After identifying outliers based on exceeding 1.5 · IQR (InterQuartile Range) limits and removing them from

analysis, we conduct an analysis of variance (ANOVA) using IBM SPSS Statistics 29.0 to examine the effect

of treatment response on distance to criticality (in terms of temperature) with age and education (measured

by ISCED) as covariates. We verify the normality assumption using one-sample Kolmogorov-Smirnov tests

and will only consider covariates that are significant.

4.2 Results

4.2.1 Analysis of the functional networks

Inferring the PMEM and ’personal’ system temperatures

The PMEM is fitted to the concatenated timeseries of all participants for each functional network with

learning rate γ = 0.05.

We validate the accuracy of this method by comparing, for each ROI i (i = 1, . . . , N), the mean ⟨Si⟩Empirical

and correlation ⟨SiSj⟩Empirical between the empirical data and a simulated dataset using the inferred param-

eters ĥ and Ĵ , as proposed by Ezaki et al. [16]. The method is accurate (i.e., we estimated the parameters h

and J well) when the estimated mean and correlation closely align with the empirical mean and correlation.

These results are summarized in Figure 4.2.

Simulating the archetype model as a function of the system temperature T , i.e. using the temperature

dependent Boltzmann distribution (4.1), shows us that tuning T forces the system to shift from paramagnetic

to ferromagnetic phase, as both the uniform as the spin-glass susceptibility, χUni resp. χSG diverge.

We performed this experiment both for the whole-brain network, as well for the functional networks using the

Metropolis-Hastings algorithm (see Section 3.5) with 107 thermalization sweeps and collecting B = 46× 310

samples (i.e., the size of the concatenated dataset) every 1000 sweeps, as proposed by several similar stud-

ies [16,51,56] to ensure proper samples. To correct for variability, we averaged over 10 independent simula-

tions. The results are shown in Figure 4.3.
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Functional network 1. Functional network 2 Functional network 3.

Functional network 4. Functional network 5. Functional network 6.

Functional network 7.

Figure 4.2: Accuracy of PLM, considered by comparing the empirical and sampled mean ⟨Si⟩ and correlation

⟨SiSj⟩ for each ROI i (i = 1, . . . , N).
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Functional network 1.

Functional network 2.

Functional network 3.

Functional network 4.

41



Functional network 5.

Functional network 6.

Functional network 7.

Whole-brain network

Figure 4.3: Plot of the observables m, q, χUni and χSG respectively, as a function of the system temperature

T for the functional networks and the whole-brain network.
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Considering the uniform susceptibility χUni and spin-glass susceptibility χSG (as defined in Section 3.1), we

observe that these, both for the whole-brain network and functional networks, diverges at a certain point

T = Tc. This implies that when temperature increases, the system undergoes a phase transition form ferro-

to paramagnetic phase. Moreover, for T < Tc, we observe that the magnetization m > 0 and spin-glass order

parameter q > 0 implying that the system is in ferromagnetic phase and when T > Tc both, magnetization

m = 0 and spin-glass order parameter q = 0, i.e. the system is in paramagnetic phase.

To ensure that the observed phase transitions are not resulting from the tendency to align with the external

field h, we also consider the absence of the external field, i.e., h = 0. This analysis can be found in the

Appendix B.1.1. Here, we observe qualitatively the same graphs for the observables as a function of the

system temperature T.

We can conclude that an increasing temperature the system shifts from ferro- to paramagnetic phase. For

the whole-brain network, this phase transition occurs for Tc ∼ 0.5 and for the functional networks for

Tc ∼ 0.3− 0.4.

Inferring the ’personal’ system temperature

After that, we ’personalized’ this archetype PMEM for each of the participants using their ’own’ neural data.

We applied the gradient ascent updating steps (see Equation (4.2)) with learning parameter η = 0.01. The

obtained ’personal’ system temperatures T̂ are shown in Figure 4.4.

Figure 4.4: Inferred ’personal’ system temperatures T, depicted for each of the functional networks.

∗ A main effect was observed (P = 0.014).

Statistical analysis

First, 5 outliers (3 from the non-responder, and 2 of the responder group) were identified and removed from

analysis. The normality assumption was verified for both groups using one-sample Kolmogorov-Smirnov

tests, which were not significant for any of the functional networks. Education (ISCED) was not a signifi-

cant covariate and therefore removed from analysis.
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However, there was a significant main effect of the covariate, age, on the system temperature (F (1, 38) =

15.405, p < 0.001), implying that age is associated with the system temperature. The sphericity assumption

was tested using Mauchly’s test, which was significant (χ2(20) = 39.338, P = 0.006 ). Therefore, the

Greenhouse-Geisser correction was applied (ε = 0.749).

There was no significant interaction effect between functional network and the covariate, age, on the tem-

perature ((F (4.492, 170.692) = 2.065, P = 0.079). This implies that the effect of age on the temperature was

similar for the seven functional networks. There was no significant interaction effect between functional net-

work and treatment response on the system temperature (F (4.492, 170.692) = 0.701, P = 0.608), implying

that there are no significant differences between networks between the two groups. There was no significant

main effect of functional network on the temperature (F (4.492, 170.692) = 2.067, P = 0.079). This means

that the temperature does not vary for the functional networks.

However, there was a significant main effect between treatment response and the system temperature T

(F (1, 38) = 0.098, P = 0.014). This implies that treatment response does depend on the system temperature.

A statistical comparison of the demographics and clinical data revealed no significant differences between

the two groups at the start of the study. This means that the two groups can be considered as equivalent

at the start of treatment. By the end of the study, the non-responder group had significantly higher clinical

scores (measured by the Clinician Administered PTSD Scales (CAPS)), defining the difference in treatment

response. Furthermore, the non-responder group exhibited a significantly higher frequency of (comorbid)

anxiety disorders and usage of SSRIs (commonly prescribed for depression) post-treatment. This can be

expected as depressive, substance use, and other anxiety disorders are comorbid with PTSD [77]. These

demographics and clinical data and statistical comparisons are shown in Table 4.1.

We can conclude that there is an association between treatment response and the ’personal’ system temper-

ature. Specifically, responders to psychotherapy exhibit a significantly lower system temperature compared

to non-responders, indicating that they are closer to criticality. This is in line with what we hypothesized.

Additionally, there are no significant differences between the two groups in demographics and clinical data

at the start of treatment. Therefore, we may conclude that treatment response could be explained by the

distance to criticality calculated (using an archetype PMEM and the ’personal’ system temperature). How-

ever, because only a main effect is measured, we are not able to identify functional networks that are more

involved than others.

4.2.2 Analysis of the whole-brain network

Inferring the PMEM and ’personal’ system temperatures

As for the functional networks, we fitted the PMEM to the concatenated timeseries of all participants for each

functional network with learning rate γ = 0.05. The accuracy is summarized in Figure 4.5a. Subsequently the

’personal’ system temperatures were inferred using, again, learning rate η = 0.01. The obtained temperatures

are shown in Figure 4.5b.
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Responders

(n = 22)

Non-

responders

(n = 19)

Test-value

(df)

P-value

Age (median, IQR [years]) 35 (12) 35 (18) U = 151 P = 0.129a

Gender (m/f) 22/0 19/0

Handedness (left/right/ambidextrous) 1/19/2 2/15/2 0.792 P = 0.838b

Education (0/1/2/3/5 [ISCED])

Own 0/0/2/15/4 0/0/7/11/1 U = 146 P = 0.054a

Mother 1/0/13/4/3 1/2/8/3/3 U = 169 P = 0.758a

Father 0/1/9/3/7 1/1/4/6/6 U = 169.5 P = 0.747a

Time since last deployment (median, IQR

[months])

38 (167) 60 (126) U = 181 P = 0.644a

Number of times deployed (median, IQR) 2 (4) 2 (2) U = 177.5 P = 0.558a

Early traumatic experiences (median, IQR [ETI

total])

3(3.5) 3.5 (7.5) U = 175 P = 0.883a

Therapy received

EMDR/tfCBT/EMDR and tfCBT 16/4/2 10/4/5 2.427 P = 0.288b

Total number of therapy sessions (median, IQR) 6.0 (9.0) 8.0 (5.0) U = 126.5 P = 0.265a

Therapy received prior to scanning and CAPS

No therapy/EMDR/tfCBT/EMDR and tfCBT 16/4/2/0 12/3/3/1 1.756 P = 0.782b

Total number of therapy sessions (median IQR) 0.0 (1.0) 0.0 (4) U = 175 P = 0.281a

Baseline clinical scores

Clinical scores at baseline (mean, SD [CAPS])

Total 70.68 (15.126) 69.47 (11.467) U = 200.5 P = 0.824a

Re-experiencing 22.909 (4.849) 22.316 (6.237) U = 194 P = 0.694a

Avoiding 23.636 (11.290) 23.105(6.839) U = 203.5 P = 0.886a

Hyperarousal 24.136 (5.213) 24.053 (3.865) U = 202.5 P = 0.864a

Comorbid disorder baseline (no. [SCID])

Mood disorders 12 11 χ2(1) = .046 P = 0.829c

Schizophrenia and other psychotic disorders 1 0 · P = 1.000b

Substance-related disorders 1 1 · P = 1.000b

Anxiety disorders 7 9 χ2(1) = 1.036 P = 0.309c

Somatoform disorders 1 1 · P = 1.000b

Baseline medication (no.)

SSRI 3 6 · P = 0.260b

Benzodiazepines 7 3 · P = 0.292b

SARI 1 0 · P = 1.000b

Antipsychotics 2 0 · P = 0.490b

β-blockers 0 2 · P = 0.209b

Nicotine agonists 1 0 · P = 1.000b

Ritalin 0 0
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Responders

(n = 22)

Non-

responders

(n = 19)

Test-value

(df)

P-value

Clinical scores post-treatment (median, IQR

[CAPS])

Total 32 (25) 63 (16) U = 12.5 P < 0.001a*

Re-experiencing 7.5 (13.5) 23 (7) U = 39.0 P < 0.001a*

Avoiding 6 (10.25) 17 (16) U = 36.0 P < 0.001a*

Hyperarousal 13 (10.75) 21 (11) U = 48.5 P < 0.001a*

Comorbid disorder post-treatment (no. [SCID])

Mood disorders 4 8 χ2(1) = 3.252 P = 0.071c

Schizophrenia and other psychotic disorders 0 1 · P = 0.450b

Substance-related disorders 0 2 · P = 0.196b

Anxiety disorders 3 8 · P = 0.040c*

Somatoform disorders 0 1 · P = 0.450b

Post-treatment medication (no.)

SSRI 4 9 χ2(1) = 4.011 P = 0.045c*

Benzodiazepines 6 2 · P = 0.249b

SARI 1 0 · P = 1.000b

Antipsychotics 2 1 · P = 1.000b

β-blockers 0 0

Nicotine agonists 0 0

Ritalin 0 0

SD, standard deviation; IQR, interquartile range; ISCED, international scale for education; CAPS, clinician administered

PTSD scale; SCID, structured clinical interview for DSM IV Axis II disorders; SSRI, serotonin reputake inhibitor; SARI,

serotonin antagonist and reuptake inhibitors; EMDR, eye movement desensitization and reprocessing; tf-CBT, trauma-

focused cognitive behavioral therapy.
· No test-value is provided by SPSS for 2× 2 Fisher’s exact tests.
* P < 0.05.

Number of cases with missing data: education mother responders n = 1; education mother non-responders n = 2;

education father responders n = 1; education father non-responders n = 1; time since last deployment non-responders

n = 1; number of times deployed non-responders n = 1; ETI responders n = 2; ETI non-responders n = 1; total number

of therapy sessions responders n = 5; SCID post-treatment non-responders n = 1.
a Mann-Whitney U test.
b Fisher’s exact test.
e χ2-test

Table 4.1: The demographics at the start of the study and after treatment.
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(a) Accuracy PLE whole-brain network. (b) Inferred ’personal’ system temperatures T for the

whole-brain network.

Figure 4.5

Statistical analysis

No outliers were identified and the normality assumption was met for each group (tested using a one-

sample Kolmogorov-Smirnov test, which was not significant for both groups). Education (ISCED) was not

a significant covariate and therefore removed from analysis. However, there was a significant main effect of

the covariate, age, on the temperature (F (1, 43) = 15.837, p < 0.001). This implies that the effect of age on

the temperature was similar for the seven functional networks.

There was no significant main effect of treatment response on the distance to criticality (F (1, 43) = 0.672,

P = 0.417). This implies that treatment response does not depend on the system temperature for the

whole-brain network.

A statistical comparison of the demographics and clinical data at the start of the study revealed a significant

difference between the two groups in education level (measured by ISCED) (U = 186, P = 0.042.) There

were no significant differences between the two groups on the other test-values observed (0.079 ≤ P ≤ 1.000).

By the end of the study, the non-responder group did have significantly higher clinical scores (measured by

the Clinician Administered PTSD Scales (CAPS)) (P < 0.001), defining the difference in treatment response

between the two groups. Furthermore, the non-responder group exhibited a significantly higher frequency

of comorbid mood disorders (χ2(1) = 5.008, P = 0.025), anxiety disorders (χ2(1) = 6.724, P = 0.010), and

SSRI usage (χ2(1) = 3.919, P = 0.048). As mood, depressive, substance use, and other anxiety disorders are

comorbid with PTSD [77,78], this can be expected.

We conclude, based on the statistical tests, that the distance to criticality, measured by the ’personal’ system

temperature, is not significantly different between the two groups of participants.

47



Moreover, an analysis of the demographics and clinical data and clinical data of the two groups revealed a

significant difference in education level between the groups meaning that the groups cannot be completely

considered as equivalent. Consequently, treatment response cannot be explained by the distance to the

ferromagnetic phase transition calculated using an archetype PMEM for the whole-brain network and the

corresponding phase diagrams
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Chapter 5

Phase diagram analysis

For the second approach, inspired by Ezaki et al. [16], we parameterize the archetype PMEM inspired by

the Sherrington-Kirkpatrick model [57] by linearly transforming the interaction matrix J . We will see that

the used parameters, equivalent to the mean and standard deviation of the interaction matrix when this

would be Gaussian distributed, induces three qualitatively distinct types of behavior within the model,

corresponding to regions in the phase diagram: a ferromagnetic, paramagnetic and spin-glass phase. Hence,

these parameters function as control parameters of the model. The objective is to personalize the archetype

PMEM for each participant by approximating these model parameters.

As for the temperature analysis, we infer the PMEM for the concatenated timeseries of all participants

by assuming without loss of generality β = 1. This gives us the archetype PMEM that can be used to

draw phase diagrams based on the observables for the SK-model, including the magnetization m, spin-glass

order parameter q, spin-glass susceptibility χSG and uniform susceptibility χUni. Furthermore, it is possible

to calculate the spin-glass and uniform susceptibility (χSG resp. χUni, as defined in section 3.1) for each

participant directly from the data. The combination of these two observations provides us a procedure to

locate the position of a participant in the phase diagram, and thereby which parameter combination reflects

best the individuals neural data. Additionally, this position in the phase diagrams serves as a measure for

the distance from a critical phase transition.

Note that the ’personal’ temperature is not relevant for this analysis. Personalizing the archetype PMEM

would generate unique models for each participant, and thereby distinct phase diagrams. Since we utilized

the archetype phase diagrams as the common factor to quantify the distance to criticality, direct comparison

between participants in this manner is no longer feasible.

We will perform the procedure, as we also did for the system temperature analysis, for the whole-brain net-

work, consisting of N = 238 nodes (ROIs), and for each of the functional networks, including the Visual (nr.

1), Somatomotor (nr. 2), Dorsal Attention (nr. 3), Ventral Attention (nr. 4), Limbic (nr. 5), Frontoparietal

(nr. 6) and Default network (nr. 7).
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This chapter is organized in two sections. In the first section (Section 5.1), we introduce the general proce-

dure, inspired by Ezaki et al. [16], of this analysis, consisting of inference the PMEM, the drawing of phase

diagrams and the calculation of the distance to criticality. The second section (Section 5.2) is dedicated to

discussing the obtained results and a statistical analysis of them.

5.1 Methods

5.1.1 Inferring the PMEM

For this method, we infer the archetype PMEM using the same concatenated timeseries as for the temperature

analysis. Therefore, the inference is exactly the same and the details can be found in Section 4.1.1.

However, for this analysis the bias correction as explained in section 3.4, is relevant: although the PLM is

considered one of the most accurate methods for inferring the PMEM, a residual bias may still exist and

could influence the results. As we are going to parametrize the model in another way than adjusting the

system by a constant factor (i.e. the system temperature), we have to correct for this bias. Therefore, as an

additional step, we correct the obtained PMEM for these biases by applying the C2-correction, as proposed

by Kloucek et al. [51] and described in Section 3.4. Recall that this C2 correction consists of optimizing the

objective function

L(Tf ) =
(
C2

empirical − C2
MC(Tf )

)2
,

where C2 = 1
N

∑
i,j C

2
ij . We will utilize the Fibonacci search algorithm for this, where we evaluate the

objective by sampling from the Boltzmann distribution with temperature Tf using the Metropolis-Hastings

algorithm (see Section 3.5). For this, we used, again, 107 thermalization sweeps and collected B = 46× 310

samples (i.e., the size of the concatenated dataset) every 1000 sweeps, as proposed by several similar studies

[16,51,56] to ensure proper samples. To correct for variability, we averaged over 30 samples per evaluation.

The resulting fictitious temperature Tf that optimizes the objective, should improve the model and the

corrected model parameters are given by ĥ/Tf and Ĵ/Tf .

5.1.2 Drawing phase diagrams

To characterize the behavior of the brain and to measure the distance to a phase transition for each par-

ticipant, we need to parameterize the model. As previously discussed (in the introduction and section 3.1

about the SK-model), in case of SK-model, the mean and standard deviation of the interaction matrix J

determine the order of the model. Inspired by this observation, we parameterize the archetype PMEM by

linearly transforming the inferred interaction matrix Ĵ by the parameters µ and σ (corresponding to the

mean and standard deviation in case of the SK-model) using the affine linear transformation

Jij = (Ĵij − µ̂)
σ

σ̂
+ µ,

where µ̂ the mean and σ̂ the standard deviation of the off-diagonal elements of Ĵ . (Note that when it holds

that Ĵij ∼ N (µ̂, σ̂2), then, the linear transformation with parameters µ, σ would imply that Jij ∼ N (µ, σ2).)

Additionally, we keep the external field h = ĥ fixed.
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The latter is permitted as it can be demonstrated that the external field h does not qualitatively change the

observables/phase diagrams. A justification is given in the supplementary material (see Appendix B.1.2).

By varying the parameters µ and σ across a range of values, we obtain a set of functional brain networks that

we can analyze by generating samples from the model using the Metropolis-Hastings algorithm (as introduced

in section 3.5). For this, we used, as proposed by several similar studies [16,51,56], 107 thermalization sweeps

and collected B = 46× 310 samples (i.e., the size of the concatenated dataset) every 1000 sweeps to ensure

proper samples. Additionally, to account for variability, the results were averaged over 10 independent

experiments.

We analyze the obtained samples by calculating the observables of the SK-model, including the magnetization

m, spin-glass parameter q, uniform susceptibility χUni and spin-glass susceptibility χSG (as introduced in

section 3.1). These observables are summarized in phase diagrams, which provide insights into how the

system behaves for each parameter combination (µ, σ).

Figure 5.1: Phase-diagrams for the Sherrington-Kirkpatrick model, where the couplings Jij ∼ N (µ, σ2).

Here, for each parameter combination (µ, σ) the corresponding value of the magnetization m, spin-glass

susceptibility q, spin-glass susceptibility χSG and uniform susceptibility χUni is represented. The diagrams

were obtained using the software provided by Ezaki et al. [16, 79] for a system of size N = 238.

An illustrative example of the phase diagrams for the SK-model is given in Figure 5.1. Here, we parameterized

the SK-model by the mean µ and standard deviation σ of the interaction model J and with zero external field

(i.e. h = 0. We will see later that the phase diagrams computed from the archetype PMEM are analogous to

diagrams corresponding to the SK-model. In these phase diagrams, three phases can be identified by looking

at the magnetization m and spin-glass order parameter q, each corresponding to a qualitatively distinct state

of the system. Moreover, note that, as described before, the uniform respectively spin-glass susceptibility

diverges at the boundaries of the phases. At these curves, the system is said to be at criticality.

5.1.3 Locating position participant in phase diagrams

We adapt the archetype PMEM by locating the position of each participant in the phase diagram. This

involves identifying the model (or, actually, functional network) with the parameter combination (µ, σ) that

best describes the brain activity patterns. We denote the estimated position by (µ̃, σ̃).

The procedure relies on the phase diagrams corresponding to the archetype PMEM (inferred by the con-

catenated timeseries) and the values of the uniform and spin-glass susceptibility χSG = N−1
∑N

i,j=1 c
2
ij resp.
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χUni = N−1
∑N

i,j=1 cij , with cij = ⟨SiSj⟩−⟨Si⟩⟨Sj⟩, that can be directly calculated from the individual data

(denoted by χ̃SG and χ̃Uni) without inferring the PMEM.

We analyze the generated phase diagrams in terms of χSG and χUni, obtained by sampling χSG(µ, σ) resp.

χUni(µ, σ) using the inferred model parameters ĥ and Ĵ at the points (µ, σ) = (µk, σℓ) (k = 1, . . . ,m

and ℓ = 1, . . . , n ). This gives us two surfaces as illustrated in Figure 5.2. The aim of the procedure is

to determine the point (µ̃, σ̃) where it holds that both χSG(µ̃, σ̃) = χ̃SG and χUni(µ̃, σ̃) = χ̃Uni. For this

parameter combination, the archetype model with interactions

Ĵij = (Ĵij − µ̂)
σ̃

σ̂
+ µ̃

would reflect best the observed neural signals of the participant. Note that this combination (µ̃, σ̃) can

be found by considering the intersection of the level-sets Lχ̃SG
= {(µ, σ)|χSG(µ, σ) = χ̃SG} and Lχ̃Uni

=

{(µ, σ)|χUni(µ, σ) = χ̃Uni}. These level-sets are depicted in Figure 5.2 by the blue resp. red curve. Assuming

that there is only one point where these intersects, it should hold that (µ̃, σ̃) = Lχ̃SG
∩ Lχ̃Uni

.

Figure 5.2: The surfaces of χSG(µ, σ) and χUni(µ, σ) obtained by simulating the model for different parameter

combinations (µ, σ). The piecewise linear curves at which it holds that χSG ≈ χ̃SG and χUni ≈ χ̃Uni

are depicted by a blue resp. red curve.

To determine this intersection from the generated phase diagrams, we use a procedure as follows. For each

µk (k = 1, . . . ,m) we determine the value of σk such that χSG(µk, σk) = χ̃SG using linear interpolation:

σ′
k = ασℓ′ + (1 − α)σℓ′ , where ℓ’ (1 ≤ ℓ′ < n) satisfies χSG(µk, σℓ′) ≤ χ̃SG < χSG(µk, σℓ′+1) and α =

[χSG(µk, σℓ′+1)− ˜χSG] / [χSG(µk, σℓ′+1)− χSG(µk, σℓ′)] . This gives us the piecewise linear curve (µk, σk)

(k = 1, . . . ,m) (See Figure 5.3).

Subsequently, we calculate the curve for which it holds that χUni(µℓ, σℓ) = χ̃Uni (ℓ = 1, . . . , n) using the

same algorithm as for χSG. Note that these curves corresponds to the level-sets Lχ̃SG
and Lχ̃Uni

.
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Figure 5.3: The piecewise linear curves χSG(µ, σℓ) resp. χUni(µk, σ) (k = 1, . . . ,m and ℓ = 1, . . . , n).

Now, we estimate (µ̃, σ̃) by examining the intersections of these two curves. An example is shown in

Figure 5.4.

Figure 5.4: The piecewise linear curves in the (µ, σ)-plane.

Note that there is a possibility that the curves intersect more than two times. In that case, we consider the

point (µ̃, σ̃) for which it holds that m(µ̃, σ̃) ≈ m̃ and q(µ̃, σ̃) ≈ q̃ using, again, linear interpolation. Here, m̂

and q̂ are directly calculated from the timeseries.
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5.1.4 Computing the distance from criticality

After we have determined the participant’s position in the phase diagram, and thereby for which parameter

combination the archetype PMEM reflects best the observed signals, we can use this to calculate the distance

to criticality for each of them. In contrast to Ezaki et al. [16], who determined this distance in terms of σ

and µ by fixing µ = µ̂ and looking at χSG resp. σ = σ̂ and χUni, we introduce use a more general method.

By definition, the values of χUni and χSG diverges at a phase transition. For the phase transition between the

paramagnetic and spin-glass phase χUni will increase, whereas between the ferro- and paramagnetic phase

both χUni and χSG increases (as explained in Section 3.1). These ’extreme’ curves define the boundary

between the different phases and, therefore, where a phase-transition occurs. Using the phase diagrams of

χUni and χSG, we can approximate these curves. We will denote the boundary between the paramagnetic and

spin-glass phase by the curve σSG
c (µ) (here, both χUni and χSG are maximized) and the boundary between

the ferro- and paramagnetic phase by σUni
c (µ) (at this curve, both χUni is maximized). Subsequently, we

simply define the distance to a phase transition as the shortest Euclidean distance to one of these curves.

Practically speaking, we approximate the curves χ↑
Uni(µ, σ) and χ↑

SG(µ, σ) by looking where the values of

χUni and χSG reach their maximal value and fitting a continuous curve to it. To account for variability

arising from the stochastic nature of the simulations, we utilize the curve that spans 1.5 the grid size. This

provides a smoother representation of the critical boundary in the phase diagrams.

5.1.5 Refining the position using refined phase diagrams

While the Metropolis-Hastings algorithm is effective in generating samples from the Boltzmann distribution,

achieving accurate samples requires a considerable amount of time for the system to equilibrate. Furthermore,

to obtain uncorrelated samples, a substantial number of intermediate sweeps is necessary. Consequently, the

computational cost is high, leading to long computation times.

To give an idea, for a network with N ∼ 20− 30 nodes, it takes approximately 6 hours to compute a phase

diagram of size 25×25. This computation involves performing 10 independent experiments per combination of

(µ, σ) to correct for variability, consisting of 1e7 thermalization steps and samplingB times every 1000 sweeps.

As a consequence, we are constrained to a phase diagram with a relatively low resolution, potentially leading

to coarse approximations of the participants’ positions. To enhance these approximations, we generate a

second refined phase diagram, wherein the range of µ and σ is determined based on the position of the

participants’ position in the initial rough phase diagrams by taking

µ ∈
[

min
i=1,...,n

µ̂i − α, max
i=1,...,n

µ̂i + α

]
, α =

1

5

(
min

i=1,...,n
µ̂i − max

i=1,...,n
µ̂i

)
σ ∈

[
min

i=1,...,n
σ̂i − β, max

i=1,...,n
σ̂i + β

]
, β =

(
min

i=1,...,n
σ̂i − max

i=1,...,n
σ̂i

)
.

This will result in a a phase diagram that is smoother and exhibits less variation between the different

combinations (µ, σ). In Figure 5.5 the improvement for locating the position of participants is illustrated.

Here, we observe that the piecewise linear curve, computed using the refined phase diagrams, is smoother.
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(a) ”Roughly” computation position. (b) ”Refined” computation position.

Figure 5.5: The piecewise linear curves at which it holds that χSG ≈ χ̃SG and χUni ≈ χ̃Uni using the rough

resp. refined phase diagram.

5.1.6 Statistical analysis

Functional networks

First, we identify outliers based on exceeding 1.5 · IQR (InterQuartile Range) limits, and we remove these

extreme outliers from the analysis. Subsequently, we conduct a mixed analysis of variance (ANOVA), using

IBM SPSS Statistics 29.0, to examine whether the distance to criticality is the result of the interaction

between the functional network and treatment response with age and education (measured by ISCED)

as covariate, as similar studies [16, 58, 75, 76] did. We verify the normality assumption using one-sample

Kolmogorov-Smirnov tests, and the sphericity assumption with Mauchly’s test of sphericity.

When a covariate turns out to not be significant, we repeat the analysis without that particular covariate.

If there is a significant interaction, we perform for each network a post-hoc analysis of variance (ANOVA)

to examine the effect further.

Whole-brain network

After identifying outliers based on exceeding 1.5 · IQR (InterQuartile Range) limits and removing them from

analysis, we conduct an analysis of variance (ANOVA) using IBM SPSS Statistics 29.0 to examine the effect

of treatment response on distance to a phase transition with age and education (measured by ISCED) as

covariate. We verify the normality assumption using one-sample Kolmogorov-Smirnov tests and will only

consider the covariates that have a significant main effect.
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Functional network nr. Tf

1 1.00092

2 1.03234

3 1.00598

4 1.00598

5 1.01159

6 1.00902

7 1.01738

Table 5.1: Correction factors (fictitious temperatures).

5.2 Results

5.2.1 Analysis of the functional networks

Fitting the PMEM

The PMEM is fitted to the concatenated timeseries of all participants for each functional network with

learning rate γ = 0.05. Recall that the accuracy is summarized in Figure 4.2.

After performing the bias correction, we observe an improved accuracy. These results are given in Fig-

ure 5.6.The fictitious temperatures, i.e. corrective factors, are given in the Table 5.1.

It’s worth noting that for the functional networks, these factors are relatively small and their impact on the

model is minimal. This suggests that there was only a slight bias in the model.

Drawing phase diagrams

After the archetype PMEM is obtained, we draw phase diagrams for each of the functional networks. The

domain over which µ and σ are varied were determined experimentally.

Figure 5.7 shows the obtained (rough) phase diagrams. It can be observed that the diagrams have qualita-

tively the same structure as the diagrams corresponding to the SK-model, as shown in Figure 5.1. Here, the

model was simulated for N = 238 nodes. However, based on the definition of the SK-model discussed in Sec-

tion 3.1, it follows that the phase diagrams scale with the system size N . Therefore, the phase diagrams for

smaller systems exhibit the same characteristics. This suggests that the inferred archetype PMEM models

of the functional networks are analogous to the SK-model, and motivates to analyse the system using the

observables of a spin-glass system.

In the phase diagrams, the solid white line represents the boundary between the different phases based on

the curve at which χSG and χUni ”diverges” (i.e. are maximized). The dashed line is the curve where the

potential variability of the simulations is considered. We will use the latter for computing the distance to

criticality. Additionally, the positions of the participants are indicated by dots, with red dots representing

responders and white dots nonresponders.
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Functional network 1 Functional network 2 Functional network 3.

Functional network 4 Functional network 5 Functional network 6

Functional network 7

Figure 5.6: Accuracy of PLM combined with the C2-bias correction, considered by comparing the empirical

and sampled mean ⟨Si⟩ and correlation ⟨SiSj⟩ for each ROI i (i = 1, . . . , N).
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Functional network 1.

Functional network 2.

Functional network 3.

Functional network 4.
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Functional network 5.

Functional network 6.

Functional network 7.

Figure 5.7: Phase diagrams of the functional networks for the observables m, q, χUni and χSG. To take

into account the bi-stability of the system (that arises in the finite case), we selected the one of the stable

branches by flipping the whole system so that the magnetization is positive (i.e., we consider |m|). This

bi-stability does only affect the magnetization. As we do not use the value of the magnetization for the

whole analysis, this is only for representing the obtained observable correctly. [16, 19]
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Functional network 1.

Functional network 2.

Functional network 3.

Functional network 4.
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Functional network 5.

Functional network 6.

Functional network 7.

Figure 5.8: Refined phase diagrams of the functional networks for the observables χUni and χSG. Due to the

smaller range of (µ, σ), the diagram is restricted to mainly the paramagnetic phase, implying that the phase

diagrams for the magnetization m and spin-glass order parameter q are not interesting anymore (as these

remain zero in the paramagnetic phase).
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Functional

network nr.

Age Treatment response

Test-value (df) P-value Test-value (df) P-value FDR corrected

1 F (1, 32) = 4.191 P = 0.049* F (1, 32) = 3.107 P = 0.88 P = 0.880

2 F (1, 32) = 13.415 P < 0.001* F (1, 32) = 2.142 P = 0.153 P = 0.373

3 F (1, 32) = 28.963 P < 0.001* F (1, 32) = 1.599 P = 0.215 P = 0.376

4 F (1, 32) = 1.002 P = 0.324 F (1, 33) = 2.062 P = 0.160a P = 0.373

5 F (1, 32) = 0.237 P = 0.629 F (1, 33) = 0.196 P = 0.661a P = 0.771

6 F (1, 32) = 8.584 P = 0.006* F (1, 32) = 0.418 P = 0.552 P = 0.771

7 F (1, 32) = 2.108 P = 0.156 F (1, 33) = 6.051 P = 0.019a P = 0.133

* P < 0.05.
a Age was not significant and therefore removed from analysis.

Table 5.2: An ANOVA was performed for each of the functional networks, with age as covariate. When age

had revealed no main effect, the covariate was removed from analysis. The False Discovery Rate (FDR) was

used to correct the obtained P -values for multiple comparisons [80].

Using the positions of the participants, we drew the refined phase diagrams to enhance the accuracy of their

positions. The refined phase diagrams are shown in Figure 5.8.

From the phase diagrams, we observe that the brain of the participants are in paramagnetic phase, more

in the vicinity of the uniform phase transition than of the spin glass phase transition. This is confirmed

by looking at the cross-section of the phase diagram for χSG and χUni through µ = µ̃ resp. σ = σ̃ (where,

µ̂ =
∑n

i=1 µ̂
i and σ̂ =

∑n
i=1 σ̂

i, i.e. averaged over the position of the participants in terms of µ̂ and σ̂).

These figures can be found in the supplementary material (see Appendix B.2). Therefore, for the statistical

analysis, we only consider the shortest distance to the boundary between the para- and ferromagnetic phase.

Statistical analysis

First, 11 outliers (5 from the nonresponders, 6 from the responders) were identified and removed from

analysis. The normality assumption was verified using one-sample Kolmogorov-Smirnov tests, which were

not significant for any of the functional networks. Education (ISCED) was not a significant covariate and

therefore removed from analysis. However, there was a significant main effect of the covariate, age, on the

distance to criticality (F (1, 32) = 17.089, p < 0.001), implying that the effect of age on the temperature was

similar for the seven functional networks. The sphericity assumption was tested using Mauchly’s test, which

was significant (χ2(20) = 33.859, P = 0.028 ). Therefore, the Greenhouse-Geisser correction was applied

(ε = 0.753).

There was no significant interaction effect between functional network and treatment response on distance

to criticality (F (4.519, 144.615) = 0.322, P = 0.883). However, there was a significant interaction effect

between functional network and the covariate, age, on the distance to criticality (F (4.519, 144.615) = 4.535,

p < 0.001). This implies that the age did significantly differ across the networks across the groups. Therefore,

we consider each functional network independently using an analysis of variance (ANOVA). The results are

summarized in Table 5.2.
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Figure 5.9: Approximated distance to the ferromagnetic phase transition for each of the functional networks,

based on the refined phase diagrams.

Applying an correction for multiple comparisons (using the False Discovery Rate) to the obtained P -values

for the main effect of treatment response on the distance to criticality, using R version 4.3.0, revealed that

there are no significant main effects. This means that there is no functional network where the distance to

criticality is associated with treatment response.

A statistical comparison of the demographics and clinical data at the start of the study where the outliers

were removed revealed no significant difference between the two groups (0.073 ≤ P ≤ 1.000). By the end of

the study, the non-responder group did have significantly higher clinical scores (measured by the Clinician

Administered PTSD Scales (CAPS)) (P < 0.001), defining the difference in treatment response between the

two groups. Furthermore, the non-responder group exhibited a significantly higher frequency of comorbid

mood disorders (χ2(1) = 4.300, P = 0.038). As depressive, substance use and other anxiety disorders are

comorbid with PTSD [77], this can be expected.

See Figure 5.9 for a graphical representation of the results.

We conclude that, based on the statistical tests, the distance to criticality is not significantly different between

the two groups of participants, considering the seven functional networks as defined by Yeo et al. [59].

Additionally, there are no significant differences between the two groups in demographics and clinical data

at the start of treatment, implying that the groups may be considered equivalent. Consequently, treatment

response cannot be explained by the distance to criticality calculated using an archetype PMEM and phase

diagrams
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5.2.2 Analysis of the whole-brain network

Fitting the PMEM

As for the functional networks, we fitted the PMEM to the concatenated timeseries of all participants for

each functional network with learning rate γ = 0.05. Subsequently, we corrected the obtained model using the

C2-correction and obtained the fictitious temperature Tf = 1.06729. This seemingly small corrective factor

demonstrates a positive impact on the model’s accuracy. The accuracy for both the initial and corrected

model is given in Figure 5.10.

Accuracy PLM. Accuracy PLM after C2-correction.

Figure 5.10: Accuracy of PLM for the whole-brain network, considered by comparing the empirical and

sampled mean ⟨Si⟩ and correlation ⟨SiSj⟩ for each ROI i (i = 1, . . . , N).

Drawing phase diagrams

We draw phase diagrams using the obtained PMEM. The domain for µ and σ were determined experimentally.

Because of the computation time of these phase diagrams, the resolution of the phase diagram was reduced to

20×20. The resulting rough phase diagrams are shown in Figure 5.11 and the refined phase diagrams (where

the range of µ and σ are adapted to the participants’ position in the rough phase diagrams) in Figure 5.12.

Also in this case, the phase diagram of the archetype PMEM for the whole-brain network exhibits the

same characteristics as the diagrams of the SK-model. This suggests that the inferred archetype PMEM is

analogous to the SK-model and can be analyzed as a spin-glass model.

Note that the participants are still in the paramagnetic phase, but it is less clear whether they are closer

to the spin-glass or ferromagnetic phase transition. The cross-section of the phase diagram for χSG and

χUni through µ = µ̃ resp. σ = σ̃ (the corresponding figures can be found in the supplementary material

in Appendix B.2)) does not reveal much more information. Therefore, for the statistical analysis, consider

both the the shortest distance to the boundary between the para- and ferromagnetic phase as between the

paramagnetic and spin-glass phase.
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Figure 5.11: Phase diagrams corresponding to the whole-brain network for the observables m, q, χUni and

χSG.

Figure 5.12: Refined phase diagrams corresponding to the whole-brain network for the observables χUni and

χSG. As the participants are in the paramagnetic phase, we observe agian that the phase diagrams for m

and qare not relevant.

Statistical analysis

Distance to ferromagnetic phase transition

After 3 outliers (2 from the nonresponders, 1 from the responders) were identified and removed from analysis,

we verified the normality assumption for each group using a one-sample Kolmogorov-Smirnov test. These

were not significant. Both age and education were not significant covariates and therefore removed from

analysis.

There was not a significant main effect of treatment response on the distance to criticality (F (1, 41) = 0.133,

P = 0.717). This implies that distance to the spin-glass phase transition is not different across groups for

the whole-brain network.

A statistical comparison of the demographics and clinical data at the start of the study where the outliers

were removed revealed a significant difference in education level (ISCED) between the two groups (U = 157,

P = 0.038). However, no significant difference between the other test-were observed (0.098 ≤ P ≤ 1.000).

By the end of the study, the non-responder group did have significantly higher clinical scores (measured by

the Clinician Administered PTSD Scales (CAPS)) (P < 0.001), defining the difference in treatment response

between the two groups.
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Figure 5.13: Approximated distance to the spin-glass phase transition for the whole-brain network, based

on the refined phase diagram.

Furthermore, the non-responder group exhibited a significantly higher frequency of comorbid mood disorders

(χ2(1) = 5.815, P = 0.016), anxiety disorders (χ2(1) = 6.007, P = 0.014) and usage of SSRIs (χ2(1) =

4.773, P = 0.029). As depressive, mood, substance use and other anxiety disorders are comorbid with

PTSD [77,78], this can be expected.

See Figure 5.13 for a graphical representation of the results.

We conclude that, based on the statistical tests, the distance to the ferromagnetic phase transition is not

significantly different between the two groups of participants. Moreover, an analysis of the demographics

and clinical data of the two groups revealed a significant difference in education level between the groups.

Therefore, the groups cannot be completely considered as equivalent. Consequently, treatment response

cannot be explained by the distance to the ferromagnetic phase transition calculated using an archetype

PMEM for the whole-brain network and the corresponding phase diagrams

Distance to the spin-glass phase transition

No outliers were identified and the normality assumption was met for each group (tested using a one-

sample Kolmogorov-Smirnov test, which were both not significant). Education (ISCED) was not a significant

covariate and therefore removed from analysis.

There was a significant main effect of the covariate, age, on the distance to criticality (F (1, 43) = 6.369,

P = 0.015), meaning that distance to the spin-glass phase transition is associated with the covariate, age,

for the whole-brain network. There was not a significant main effect of treatment response on the distance

to criticality (F (1, 43) = 0.707, P = 0.405). This implies that treatment response does not depend on the

distance to the spin-glass phase transition for the whole-brain network.
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Figure 5.14: Approximated distance to the ferromagnetic phase transition for the whole-brain network, based

on the refined phase diagram.

A statistical comparison of the demographics and clinical data at the start of the study revealed a significant

difference between the two groups in education level (measured by ISCED) U = 186, P = 0.042. There were

no significant differences between the two groups on the other test-values observed (0.079 ≤ P ≤ 1.000).

By the end of the study, the non-responder group did have significantly higher clinical scores (measured by

the Clinician Administered PTSD Scales (CAPS)) (P < 0.001), defining the difference in treatment response

between the two groups. Furthermore, the non-responder group exhibited a significantly higher frequency

of comorbid mood disorders (χ2(1) = 5.007, P = 0.025), anxiety disorders (χ2(1) = 6.724, P = 0.010) and

usage of SSRIs (χ2(1) = 3.919, P = 0.048). As depressive, mood, substance use and other anxiety disorders

are comorbid with PTSD [77,78], this can be expected.

See Figure 5.14 for a graphical representation of the results.

We conclude that, based on the statistical tests, the distance to the spin-glass phase transition is not

significantly different between the two groups of participants. Additionally, an analysis of the demographics

and clinical data of the two groups revealed a significant difference in education level between the groups.

This means that the groups cannot be completely considered as equivalent. Consequently, treatment response

cannot be explained by the distance to the spin-glass phase transition calculated using an archetype PMEM

for the whole-brain network and the corresponding phase diagrams.
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Part II

Entropy
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There are numerous ways to study the complexity of (fMRI) brain signals. The complexity of is measured

by the unpredictability of these signals: irregular signals are more complex than regular signals. One of the

most commonly used measures, is the Shannon-entropy due to its simple algorithm, the small amount of data

required and robustness to noise [24,25]. The entropy of a signal measures the randomness or predictability

of a stochastic process and increases with the degree of irregularity [21, 22]. In the last decades, several

studies provided both empirical and theoretical evidence for the crucial role of brain signal variability for

the functioning of the brain [23].

Additionally, there is evidence that entropy could be a robust feature for classification of mental states

of the brain. Studies on cognitive performance [81, 82], Schizophrenia [83], attention-deficit/hyperactivity

disorder [84], and depression [85] showed that entropy can be used to analyze the temporal changes in

resting state fMRI signals and locate the relevant brain regions. Furthermore, it provided evidence that the

change in entropy could be related to disease states. These different studies showed that entropy can be

used to analyze the temporal changes in resting state fMRI signals and locate the relevant brain regions.

Furthermore, the change in entropy could be related to disease states. This motivates to explore the entropy

of our dataset. As for the criticality, this leads to the question whether the concept of entropy could be used

for explaining differences in treatment response using the resting state fMRI data.

Mathematically, the Shannon-entropy is defined as the rate of new ”information” generation or ”uncertainty”

and measures the probability of generating a new pattern in the signal: the greater the probability of

generating a new pattern that there is, the greater the signal complexity [24]. The main formula for the

(Shannon-)entropy S is defined as

S = −
∑
i

pi log pi,

where pi the probability of observing the ith state a system can attain (i = 1, . . . , n).

Consequently, in case of the neuroscience, the aim of an entropy algorithm is to approximate this probability

distribution from the given neural data. There are several ways to do this. The most common used methods

include approximate entropy (AE), sample entropy (SE), permutation entropy (PE) and fuzzy entropy (FE).

Niu et al. [24] discovered the test-retest reliability of these four different methods and proposed a new entropy

algorithm: permutation fuzzy entropy (PFE). The results showed that the highest reliability was achieved

with PFE. Therefore, for this thesis we are going to study the PFE to explore whether entropy could play

a role in treatment response. For each measured signal per ROI [26], we will calculate the PE and PFE and

compare the obtained values at whole-brain level, at subnetwork level and per ROI.

Part II is structured as follows. In Chapter 6 we will discuss Permutation Entropy (PE) and Fuzzy Entropy

(FE), which form together the foundation of Permutation Fuzzy Entropy (PFE). In Chapter 7, some imple-

mentation choices are introduced after which we analyze the PFE of the neural signals at whole-brain and

subnetwork level. The analysis of the PFE per ROI is discussed in the Appendix C.
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Chapter 6

Preliminaries

6.1 Permutation Entropy

The first entropy algorithm we consider is permutation entropy (PE). PE, proposed by Bandt and Pompe [86],

was introduced for measuring the irregularity of dynamic time series [86] and uses the shape of neighboring

time points to evaluate complexity based on permutation patterns [24]. The method has several advantages

over other entropy measures: it is simpler, has lower computation complexity without the need of making

further modeling assumptions, and is robust in the presence of observational and dynamical noise [25].

Furthermore, as described before, it has a good test-retest reliability [24].

The process of calculating PE is as follows. Assume, given is the time series X of length B, i.e.

X = {x(1), x(2), . . . , x(B)}.

We are going to construct a phase space consisting of vectors composed of the m−th subsequent values by

reconstructing a phase space as follows:

X(i) = (x(i), x(i+ τ), . . . , x(i+ (m− 1)τ)) ,

where i = 1, 2, . . . , N − (m− 1)τ, m the embedding parameter and τ the delay time.

Thereafter, we rearrange each component in ascending numerical order as follows:

x(i+ (j1 − 1)τ) ≤ x(i+ (j2 − 1)τ) ≤ · · · ≤ x(i+ (jm − 1)) (6.1)

where j1, j2, . . . , jm the index of the column in the reconstructed component. Notice that in the case that

two values are equal, i.e. x(i+(jn− 1)τ) = x(i+(jn+1− 1)τ), then they are ordered according to the size of

the value of jn and jn+1, such that when jn < jn+1 we have x(i+(jn−1)τ) < x(i+(jn+1−1)τ). We obtained

a set of permutation vectors, that maps each vector X(i) to a sequence (1, 2, . . . ,m), or (2, 1, . . . ,m), . . . , or

(m,m− 1, . . . , 1) (in total m! possible sequences).
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Now, denote the probability of observing one of these sequences by Pg(g = (1, . . . , k)). Then, we define the

PE as the Shannon entropy for the k different sequences

PE(N,m, τ) = −
∑
j≤k

Pj lnPj .

To conclude this definition, notice that PE reaches its maximum lnm! when Pg = 1/m!. The standardized

PE (by lnm!) is given by [21]

PEs = PE/ lnm!.

In order to calculate the PE, we have to consider three parameter values. One value, the length of the time

series B is set. The other two parameters, the embedding dimension m and time delay τ should be chosen.

6.2 Fuzzy Entropy

The second entropy algorithm we will discuss, is fuzzy entropy (FE). FE is proposed by Chen [87] and based

on the concept of ”fuzzy sets” introduced by Zadeh [88]. The main advantage of FE, it that it is applicable

to relatively short signals and is very robust to noise.

A fuzzy set, is a set whose elements have varying degrees of membership. This is different from the ”classical”

definition of a set, where elements have full membership or not. The degree of membership of an elements

of a fuzzy set is described by the membership function µC(x) that maps elements x of the set C into a real

value on the interval [0, 1]. This gives us a mechanism for measuring the degree to which an element belongs

to a set, or equivalently, a pattern belongs to a certain class. The latter is what we are using for calculating

the entropy of a signal: we are actually counting how many signals belongs to which class by looking for a

similarity in two vectors.

For the PFE algorithm, we use the exponential membership function µ(dij) = exp(−(dmij )
n/r) (the fuzzy

function) to get a fuzzy measurement of two vectors’ similarity based on their shapes. The closer the

measurements Xi and Xj are, the greater the similarity. Note that the exponential function attains its

maximum i.e.µ(dij) = 1 when the two vectors are similar. Now, the PE is defined as the conditional

probability that patterns observed in signals of length m are the same for m+ 1 points and depends on the

average of the similarity Dm
ij = µ(dij) of the different sequences of length m and m+ 1.

The algorithm for calculating FE, is as follows. Assume, given is the time series X of length B :

X = {x(1), x(2), . . . , x(B)}.

We reconstruct the phase space by as follows:

Xm
i = {x(i), x(i+ 1), . . . , x(i+m− 1)} − x0(i), 1 ≤ i ≤ N −m+ 1.

Here, we remove a baseline, given by

x0(i) =
1

m

∑
j≤m−1

x(i+ j).
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We define the distance dmij between the vectors Xm
i and Xm

j as the largest absolute difference between its

elements (maximum norm), i.e.

dmij = ∥Xm
i −Xm

j ∥∞ = max
k=0,1,...,m−1

|x(i+ k)−X(j + k)| i, j = 1, 2, . . . , N −m+ 1, j ̸= i.

Using the fuzzy membership function µ(dmij , n, r), we calculate the similarity degree Dm
ij of the vector Xm

j

to Xm
i as

Dm
ij = µ(dmij , n, r) = exp

(
−(dij)

n

r

)
.

Here, n and r are the width and gradient of the exponential function.

Defining the function ϕm(r) as

ϕm(r) =
1

N −m+ 1

N−m+1∑
i=1

 1

N −m

∑
j ̸=i≤N−m+1

Dm
ij

 ,

gives us the following expression for the estimated value of the corresponding PE:

FE(N,m, r) = lnϕm(r)− lnϕm+1(r).

Here, m is the phase space dimension, r the similar tolerance. Both has to be chosen beforehand.

6.3 Permutation fuzzy entropy

Permutation fuzzy entropy (PFE), proposed by Niu et al. [24] combines the advantages of PE and PE and

performed in their study the best test-retest reliability. The algorithm is a composition of the procedure for

calculating the PE and FE as introduced above.

We first sort and symbolize the original time series X of length B and then calculate the PE of the newly

obtained sequence

Y (i),1 ≤ i ≤ N − (pm− 1)τ,

here, pm is the permutation embedding parameter and τ the time delay. The PFE follows by calculating

the PE of this obtained sequence Y and is given by

PFE(N, pm, τ,m, r) = lnϕm(r)− lnϕm+1(r),

where, again, m is the phase space dimension and r the similar tolerance.
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Chapter 7

Entropy analysis

As the Permutation Fuzzy Entropy (PFE) performed the best test-retest reliability, we will analyze our

neural data using this entropy algorithm. In this exploration, we will study the entropy across the two dif-

ferent levels as utilized in the criticality analysis, including the whole-brain network, consisting of N = 238

nodes (ROIs), and the functional networks, including the Visual (1), Somatomotor (2), Dorsal Attention (3),

Ventral Attention (4), Limbic (5), Frontoparietal (6) and Default network (7).

This chapter is organized in two sections. In the first section (Section 7.1), we outline the algorithm for com-

puting the PFE per ROI, functional network and the whole-brain network. In the second section (Section 7.2),

we analyze the obtained results for the functional networks and the whole-brain network. Additionally, the

statistical comparison of the entropy per ROI is explored. These results can be found in the supplementary

material (see Appendix C).

7.1 Methods

7.1.1 Computing the PFE

For the PFE algorithm, we have to set the parameters pm, τ and m. The optimal values for these parameters

does not depend on the data(structure), so we set these as defended in other studies [22, 24, 89] as follows:

the permutation embedding pm = 4, the time delay τ = 1, the phase space dimension m = 2 and the similar

tolerance r = 0.25 · σi, where σi the standard deviation of the signal i (i = 1, . . . , N).

Note that this algorithm computes the PFE per individual ROI. We calculate the entropy for each functional

network by averaging the PFE across the relevant ROIs. The entropy for the whole-brain network is obtained

by averaging over all ROIs.
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Figure 7.1: PFE per functional network for each participant.

7.1.2 Statistical analysis

Functional networks

First, we identify outliers based on exceeding 1.5 · IQR (InterQuartile Range) limits, and we remove these

extreme outliers from the analysis. Subsequently, we conduct a mixed analysis of variance (ANOVA),

using IBM SPSS Statistics 29.0, to examine whether the PFE is the result of the interaction between the

functional network and treatment response with age and education (measured by ISCED) as covariate, as

similar studies [90–92] did. We verify the normality assumption using one-sample Kolmogorov-Smirnov tests,

and the sphericity assumption with Mauchly’s test of sphericity.

When a covariate turns out to not be significant, we repeat the analysis without that particular covariate.

If there is a significant interaction, we perform for each network a post-hoc analysis of variance (ANOVA)

to examine the effect further.

Whole-brain network

After identifying outliers based on exceeding 1.5 · IQR (InterQuartile Range) limits and removing them from

analysis, we conduct an analysis of variance (ANOVA) using IBM SPSS Statistics 29.0 to examine the effect

of treatment response on PFE with age and education (measured by ISCED) as covariates. We verify the

normality assumption using one-sample Kolmogorov-Smirnov tests and will only consider covariates that are

significant.

7.2 Results

The obtained values of PFE per functional network are summarized in Figure 7.1. For the whole-brain

network, the obtained values (per participant) are represented in Figure 7.2.
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Functional

network nr.

Age Treatment response

Test-value (df) P-value Test-value (df) P-value FDR corrected

1 F (1, 41) = 22.104 P < 0.001* F (1, 41) = 0.842 P = 0.364 P = 0.868

2 F (1, 41) = 22.613 P < 0.001* F (1, 41) = 0.051 P = 0.823 P = 0.868

3 F (1, 41) = 25.566 P < 0.001* F (1, 41) = 0.103 P = 0.749 P = 0.868

4 F (1, 41) = 29.395 P < 0.001* F (1, 41) = 0.127 P = 0.723 P = 0.868

5 F (1, 41) = 2.755 P = 0.105 F (1, 42) = 1.396 P = 0.244a P = 0.868

6 F (1, 41) = 28.412 P < 0.001* F (1, 41) = 0.035 P = 0.852 P = 0.868

7 F (1, 41) = 21.497 P < 0.001* F (1, 41) = 0.028 P = 0.868 P = 0.868

* P < 0.05.
a Age was not significant and therefore removed from analysis.

Table 7.1: An ANOVA was performed for each of the functional networks, with age as covariate. When age

had revealed no main effect, the covariate was removed from analysis. The False Discovery Rate (FDR) was

used to correct the obtained P -values for multiple comparisons [80].

7.2.1 Statistical analysis

Functional networks

First, 2 outliers (2 from the non-responder group) were identified and removed from analysis. The normality

assumption was verified for both groups using one-sample Kolmogorov-Smirnov tests, which were not signif-

icant for any of the subnetworks. Education (ISCED) was not a significant covariate and therefore removed

from analysis. However, there was a significant main effect of age on PFE (F (1, 41) = 26.798, p < 0.001).

This implies that age is associated with PFE. The sphericity assumption was tested using Mauchly’s test,

which was significant (χ2(20) = 98.871, p < 0.001 ). Therefore, the Greenhouse-Geisser correction was

applied (ε = 0.604).

There was no significant interaction effect between functional network and treatment response on PFE

(F (3.627, 148.699) = 1.819, p = 0.135). This means that PFE was not significantly different for the networks

and groups. However, was a significant interaction effect between functional network and age on PFE

(F (3.627, 148.699) = 6.212, p < 0.001). This implies that the effect of age on the PFE was different

across networks. Therefore, we consider each functional network independently using an analysis of variance

(ANOVA). The results are summarized in Table 7.1.

Applying an correction for multiple comparisons (using the False Discovery Rate) to the obtained P -values

for the main effect of treatment response on the distance to criticality, using R version 4.3.0, revealed that

there are no significant main effects. This means that there is no functional network where the PFE is

associated with treatment response.

A statistical comparison of the demographics and clinical data (conducted using the same methods as sum-

marized in Table 4.1) at the start of the study of the groups where the outliers were removed revealed a

significant difference in education level (measured by ISCED) U = 153, P = 0.015. There were no significant

differences between the two groups on the other test-values observed (0.065 ≤ P ≤ 1.000).
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By the end of the study, the non-responder group did have significantly higher clinical scores (measured by

the Clinician Administered PTSD Scales (CAPS)) (P < 0.001), defining the difference in treatment response

between the two groups. Furthermore, the non-responder group did exhibit a significantly higher frequency

of comorbid mood disorder (χ2(1) = 6.247, P = 0.012), anxiety disorder (χ2(1) = 8.097, P = 0.004), and

usage of SSRIs (χ2(1) = 5.065, P = 0.024). As depressive, mood, substance use and other anxiety disorders

are comorbid with PTSD [77,78], this can be expected.

We conclude that, based on the statistical tests, the PFE of fMRI signals for each of the functional net-

works was not significantly different between the two groups of participants. Moreover, an analysis of the

demographics and clinical data at the start of the study revealed a significant difference in education level

between the groups. Therefore, the groups cannot be completely considered as equivalent. Consequently,

treatment response cannot be explained by the PFE of the neural signals of the functional networks.

Whole-brain network

No outliers were identified and the normality assumption was met for each group (tested using a one-

sample Kolmogorov-Smirnov test, which was not significant for both groups). Education (ISCED) was not

a significant covariate and therefore removed from analysis. However, there was a significant main effect of

age on PFE (F (1, 43) = 28.172, p < 0.001), meaning that PFE is associated with age for the whole-brain

network.

There was no significant main effect of treatment response on the PFE (F (1, 43) = 0.050, p = 0.825). This

implies that treatment response does not depend on the PFE for the whole-brain network.

Figure 7.2: PFE of the whole brain network for each participant.

76



A statistical comparison of the demographics and clinical data at the start of the study revealed a significant

difference between the two groups in education level (measured by ISCED) U = 186, P = 0.042. There were

no significant differences between the two groups on the other test-values observed (0.079 ≤ P ≤ 1.000). By

the end of the study, the non-responder group did have significantly higher clinical scores (measured by the

Clinician Administered PTSD Scales (CAPS)) (P < 0.001), defining the difference in treatment response

between the two groups. Furthermore, the non-responder group exhibited a significantly higher frequency

of comorbid mood disorders (χ2(1) = 5.007, P = 0.025), anxiety disorders (χ2(1) = 6.724, P = 0.010) and

usage of SSRIs (χ2(1) = 3.919, P = 0.048). As depressive, mood, substance use and other anxiety disorders

are comorbid with PTSD [77,78], this can be expected.

Based on these statistical tests, we conclude that the PFE is not significantly different between the two groups

of participants. Moreover, an analysis of the demographics and clinical data of the two groups revealed a

significant difference in education level between the groups. Therefore, the groups cannot be completely

considered as equivalent. Consequently, treatment response cannot be explained by the PFE of the neural

signals of the whole-brain network.
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Discussion

In conclusion, in this thesis we studied the difference of treatment response of patients with PTSD to

psychotherapy using the concepts of criticality and entropy.

Criticality

We studied the notion of criticality, based on the criticality hypothesis, using two methods. Both relied on an

archetype PMEM, inferred from the concatenated neural signals of all participants, and aimed to investigate

whether there exists an association between the distance to a phase transition and treatment response.

We hypothesized that the brains of participants who responded to psychotherapy operate closer to criticality

than those of the non-responders. To explore our hypothesis, we applied the two different approaches to both

the whole-brain network based on the Brainnetome atlas [26], consisting of 238 Regions Of Interest (ROIs),

similar as previous studies [16,19,29,58], and to seven functional networks (the Visual, Somatomotor, Dorsal

Attention, Ventral Attention, Limbic, Frontoparietal and Default network) inspired by the study of Xin et

al. [58] and proposed by Ezaki et al. [16].

System temperature analysis

The first method, inspired by Ruffini et al. [19], involved inferring the system temperature for each participant

using the archetype Pairwise Maximum Entropy Model (PMEM). We showed that this ’personal’ system

temperature that was used to personalize the archetype PMEM also served as a measure for the distance to

criticality.

Analysis of simulations revealed that participants were consistently in the paramagnetic phase, with a system

temperature above the critical temperature. While no significant difference in temperature was observed for

the whole-brain network, a significant main effect in temperature was found for the functional networks.

Specifically, responders to psychotherapy exhibited a significantly lower system temperature compared to

non-responders, indicating that they were closer to criticality. This is in line with our hypothesis and supports

the notion that the brain is functioning more optimal in the vicinity of a phase transition, as proposed by

the criticality hypothesis. Additionally, there were no significant differences observed in the demographics

and clinical data at the start of treatment. Therefore, we can conclude that the distance to criticality could

be explained by the distance to criticality, measured by the ’personal’ system temperature.

Moreover, this result suggests that the inferred whole-brain network does not operate equivalently to the seven
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functional networks functioning collectively. This emphasizes the importance of considering the functional

networks individually.

A practical limitation that should be taken into account, for both analyses, is that the posterior part of the

occipital cortex (i.e., a part of the back of the brain) was not included for all participants. As a result, eight

occipital ROIs (out of a total of 246, 3.3%), all part of one of the seven functional networks, were excluded

from the analysis. This may lead to an structural difference in the inferred whole-brain network and the

relevant functional network, but should not have influenced the other inferred functional networks.

Since several studies suggest that cognitive performance is associated with criticality [11–16], our findings

could imply that improved cognitive abilities contributes to treatment response. To ensure that variations

in cognitive abilities cannot be attributed to intelligence, we corrected for intelligence (indirectly) by using

education as covariate (unfortunately, IQ was not measured on itself). The results of the statistical tests

did not reveal an association between education level (measured by ISCED) and the ’personal’ system

temperature.

A similar study, performed by Ruffini et al. [19], employed this method to a dataset of fMRI scans to study

whether the different functioning of a LSD-induced brain could be explained by the system temperature.

He concluded, considering the whole-brain network, that the brain operates in a paramagnetic state and

LSD shifts the brain further away from criticality by an increased system temperature. These results align

partially with our findings, as we observed that the (more) healthy brain operates closer to a phase transition

than the affected brain.

In contrast to our findings, they found that the temperature served as a control parameter to shift the system

from the spin-glass to the paramagnetic phase. However, there is no clear evidence that this phase transition

state is associated with the criticality hypothesis [16]. Moreover, the observed phase transition between the

ferro- and paramagnetic phases is associated with advantageous increased computational ability [4, 32, 33]

and is supported by several other computational studies on the appearance of criticality in the functioning

of the brain [93–95].

One might consider that the difference in the observed phase transition is influenced by network size; however,

we demonstrated using simulations that this is not the case. The ferromagnetic phase transition appears

for both the whole-brain network and the functional networks. Thus, another factor must contribute to this

difference. One potential factor could be that our study involves a group of patients with an impaired brain,

as opposed to the healthy group of participants used by Ruffini et al. [19].

Phase diagram analysis

The second method, inspired by the work of Ezaki et al. [16], involved drawing phase diagrams using the

archetype Pairwise Maximum Entropy Model (PMEM) with inverse temperature β = 1.. For this approach,

we adapted the archetype PMEM for each participant by parameterizing the model. To determine which

parameter combination reflected best the individual neural signals, using the found analogy between the

inferred archetype PMEM and SK-model, we proposed a procedure based on the observed data and phase

diagrams. As a result, each participant was assigned to a position in the phase diagram, corresponding to

their optimal parameter combination.
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We demonstrated that this position can be used to calculate the distance to criticality.

Consistent with the temperature analysis, we observed that the participants’ brains operated in the para-

magnetic phase, close to the phase transition between para- and ferromagnetic phase. The distance to

criticality was defined as the shortest distance from participants in the phase diagram to the curve marking

the boundary between the different phases. To address the variability resulting from the low resolution of

the drawn phase diagrams, we introduced (adapted) refined phase diagrams for calculating a more accurate

distance.

Statistical analysis of the obtained distances to criticality did not reveal any significant differences in the

distance to a phase transition between the two groups of participants, for both the whole-brain and functional

networks. This means that, following this analysis, the difference in treatment response cannot be explained

by the distance to criticality.

As previously discussed, the two different approaches we explored both rely on the archetype PMEM, intro-

duced to overcome the challenge of the sparsely sampled neural signals. The way in which we defined the

distance to criticality (i.e., by the system temperature and the position in the phase diagram), followed by

the procedure that was used to adapt the archetype model to the participants.

However, it is questionable whether the individual subjects behave the same as the group-level archetype

model and thereby whether the used method is valid. A simple robustness analysis, provided in Appendix B.3,

by grouping the participants randomly into two groups, shows us that it is possible to infer a PMEM and

these give rise to equivalent phase diagrams. This suggests that, for both approaches we used, the findings

are not caused by the way in which the participants were grouped.

To enhance the accuracy of the results, one might consider to improve the methods that are used. There

are various paths you could take to achieve this. The most thorough solutions involve finding methods that

enable the inference of the PMEM individually. For this, it is important that the neural signals are less

sparsely sampled and/or a bigger dataset is provided. Otherwise, for example, a Bayesian framework maybe

be useful for the estimation of the PMEM [96, 97]. The method of Bayesian inference can reliably estimate

individual PMEMs, even with small samples, by incorporating the prior group information. However, for

these personalized PMEMs, it is less obvious how to study the notion of criticality in the system. Where a

definition for the distance to criticality arises naturally in the way we analyzed the archetype PMEM, this

will more difficult in case you have to study multiple distinct models. Therefore, a more obvious path to

take is to improve the methods we used to analyze criticality, i.e., by using an archetype model and further

considering the different approaches for ’personalizing’ the PMEM.

The main advantage of the temperature analysis is that we do not need to sample from the inferred model.

Consequently, this method is more accurate than the phase diagram analysis where you are dealing with

variability. However, this means also that there is not much more space for improvement.

For the phase diagram analysis, one can enhance the method’s accuracy by improving the sampling technique.

The Metropolis-Hastings algorithm we used, motivated by similar studies [16, 51, 56], was computationally

costly. Exploring more efficient methods such as parallel and simulated tempering [73] could significantly

enhance computational efficiency.
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This would enable to generate more accurate results by drawing finer phase diagrams with higher resolution.

Additionally, it facilitates better correction for variability by leveraging a larger number of experiments in

the averaging process.

Besides improving the method, there are other interesting aspects of this analysis that can be improved. One

of the most interesting and important findings is the relevance of the functional networks. Therefore, key

recommendation is to continue studying functional networks individually rather than considering the entire

whole-brain network. Building on this, further improvements could involve investigating the interactions

between these functional networks. The so-called Block spin Ising model, as described by Contucci et

al. [98], could be a useful model for doing this. This model explores interactions among ’blocks’ of (Ising)

spin systems.

Another fundamental aspect that is ignored in the analysis, is the spatial correlation among ROIs. To

address for this, one may consider incorporating a two- or three-dimensional spin-glass model [62].

A last suggestion for further research, to conclude, is to consider the biological interpretation of the (archetype)

PMEM and the way in which we defined the defined distance to criticality. The quantities used to control

and analyze the statistical mechanical models, provide insight into the system’s structure and whether they

differ, but are biologically not meaningful. Therefore, based on our findings, we cannot draw clear conclu-

sions about how the distance to criticality affects the functioning of the brains. Additionally, the theory of

statistical mechanics, developed for studying thermodynamics, relies on the assumption that a system is in

equilibrium. In our analysis, we assumed that brain is operates in equilibrium, implying that observed states

can be sampled independently from a distribution. However, this does not take into account the observed

temporal dynamics. Consequently, unless the assumptions seems to align well with the functioning of the

brain, the neurological relevance of our findings is difficult to determine.

Entropy

We explored the measure of entropy using Permutation Fuzzy Entropy, motivated by the good test-retest

reliability [24]. For each participant, we computed the entropy of the neural signals per ROI and compared

the results at the same levels we employed for the examination of criticality, i.e., for functional networks and

the whole-brain network, by averaging across the relevant ROIs. The statistical comparison revealed no sig-

nificant differences in entropy, for across functional networks and for the whole-brain network. Additionally,

we explored the entropy per ROI. This analysis did reveal significant differences for several ROIs, however,

these did not survive correction for multiple comparisons.

To conclude, these results suggest that the PFE is not sensitive enough for picking up differences in treatment

response from the acquiered fMRI data.

In summary, we studied whether treatment response in PTSD participants could be explained through

criticality or differences in entropy. Promising results in criticality analysis indicated a closer distance to

criticality in responders, while entropy analysis did not yield significant differences.
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[42] Matti Gärtner, Mona Irrmischer, Emilia Winnebeck, Maria Fissler, Julia M Huntenburg, Titus A Schroeter,

Malek Bajbouj, Klaus Linkenkaer-Hansen, Vadim V Nikulin, and Thorsten Barnhofer. Aberrant long-range

temporal correlations in depression are attenuated after psychological treatment. Frontiers in human neuro-

science, 11:340, 2017.

[43] VB Slezin, EA Korsakova, MA Dytjatkovsky, EA Schultz, TA Arystova, and JR Siivola. Multifractal analysis

as an aid in the diagnostics of mental disorders. Nordic Journal of Psychiatry, 61(5):339–342, 2007.

[44] Anca R Radulescu, Denis Rubin, Helmut H Strey, and Lilianne R Mujica-Parodi. Power spectrum scale invariance

identifies prefrontal dysregulation in paranoid schizophrenia. Human brain mapping, 33(7):1582–1593, 2012.

[45] Vadim V Nikulin, Erik G Jönsson, and Tom Brismar. Attenuation of long-range temporal correlations in

the amplitude dynamics of alpha and beta neuronal oscillations in patients with schizophrenia. Neuroimage,

61(1):162–169, 2012.

[46] James K Moran, Georgios Michail, Andreas Heinz, Julian Keil, and Daniel Senkowski. Long-range temporal

correlations in resting state beta oscillations are reduced in schizophrenia. Frontiers in psychiatry, 10:517, 2019.

[47] Denis Tolkunov, Denis Rubin, and Lilianne R Mujica-Parodi. Power spectrum scale invariance quantifies limbic

dysregulation in trait anxious adults using fmri: adapting methods optimized for characterizing autonomic

dysregulation to neural dynamic time series. Neuroimage, 50(1):72–80, 2010.

[48] Tomas Ros, Bernard J. Baars, Ruth A Lanius, and Patrik Vuilleumier. Tuning pathological brain oscillations

with neurofeedback: a systems neuroscience framework. Frontiers in human neuroscience, 8:1008, 2014.

[49] John M. Beggs and Dietmar Plenz. Neuronal avalanches in neocortical circuits. The Journal of Neuroscience,

23(35):11167–11177, December 2003.

[50] John M Beggs. The criticality hypothesis: how local cortical networks might optimize information process-

ing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

366(1864):329–343, August 2007.

84



[51] Maximilian B. Kloucek, Thomas Machon, Shogo Kajimura, C. Patrick Royall, Naoki Masuda, and Francesco

Turci. Biases in inverse ising estimates of near-critical behavior. Physical Review E, 108(1), jul 2023.

[52] Gasper Tkacik, Elad Schneidman, Michael J Berry, and William Bialek. Ising models for networks of real

neurons, 2006.

[53] Yasser Roudi. Statistical physics of pairwise probability models. Frontiers in Computational Neuroscience, 3,

2009.

[54] Takamitsu Watanabe, Satoshi Hirose, Hiroyuki Wada, Yoshio Imai, Toru Machida, Ichiro Shirouzu, Seiki Konishi,

Yasushi Miyashita, and Naoki Masuda. A pairwise maximum entropy model accurately describes resting-state

human brain networks. Nature Communications, 4(1), January 2013.

[55] Igor Fortel, Mitchell Butler, Laura E. Korthauer, Liang Zhan, Olusola Ajilore, Anastasios Sidiropoulos, Yichao

Wu, Ira Driscoll, Dan Schonfeld, and Alex Leow. Inferring excitation-inhibition dynamics using a maximum

entropy model unifying brain structure and function. Network Neuroscience, 6(2):420–444, 2022.

[56] Erik Aurell and Magnus Ekeberg. Inverse ising inference using all the data. Phys. Rev. Lett., 108:090201, March

2012.

[57] David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Physical Review Letters,

35(26):1792–1796, December 1975.

[58] Yumeng Xin, Tongjian Bai, Ting Zhang, Yang Chen, Kai Wang, Shan Yu, Ning Liu, and Yanghua Tian. Electro-

convulsive therapy modulates critical brain dynamics in major depressive disorder patients. Brain Stimulation,

15(1):214–225, January 2022.

[59] B. T. Thomas Yeo, Fenna M. Krienen, Jorge Sepulcre, Mert R. Sabuncu, Danial Lashkari, Marisa Hollinshead,

Joshua L. Roffman, Jordan W. Smoller, Lilla Zöllei, Jonathan R. Polimeni, Bruce Fischl, Hesheng Liu, and

Randy L. Buckner. The organization of the human cerebral cortex estimated by intrinsic functional connectivity.

Journal of Neurophysiology, 106(3):1125–1165, September 2011.

[60] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31(1):253–258, February 1925.

[61] Boltzmann constant.

[62] K. H. Fischer and J. A. Hertz. Spin Glasses. Cambridge Studies in Magnetism. Cambridge University Press,

1991.

[63] David Sherrington. Spin glasses, 1998.

[64] S F Edwards and P W Anderson. Theory of spin glasses. Journal of Physics F: Metal Physics, 5(5):965–974,

May 1975.

[65] Vitor Sessak. Inverse problems in spin models. October 2010.

[66] Elad Schneidman, Michael J. Berry, Ronen Segev, and William Bialek. Weak pairwise correlations imply strongly

correlated network states in a neural population. Nature, 440(7087):1007–1012, April 2006.

[67] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

[68] Julian Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–195, 1975.

[69] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller.

Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092,

June 1953.

[70] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika,

57(1):97–109, April 1970.

85



[71] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm. The American

Statistician, 49(4):327, November 1995.

[72] Helmut G. Katzgraber. Introduction to monte carlo methods, 2009.

[73] M. E. J. Newman and G. T. Barkema. Monte Carlo methods in statistical physics. Clarendon Press, Oxford,

1999.

[74] Takahiro Ezaki and Naoki Masuda. Energy Landscape Analysis Toolbox (ELAT) User’s Guide (ver. 3.2), January

2022. Available at https://github.com/tkEzaki/energy-landscape-analysis/blob/master/users_guide.

pdf.

[75] Lili Jiang, Kaini Qiao, and Chunlin Li. Distance-based functional criticality in the human brain: intelligence

and emotional intelligence. BMC Bioinformatics, 22(1), January 2021.

[76] Longzhou Xu, Jianfeng Feng, and Lianchun Yu. Avalanche criticality in individuals, fluid intelligence, and

working memory. Human Brain Mapping, 43(8):2534–2553, February 2022.

[77] Kathleen T Brady, Therese K Killeen, Tim Brewerton, and Sylvia Lucerini. Comorbidity of psychiatric disorders

and posttraumatic stress disorder. Journal of clinical psychiatry, 61:22–32, 2000.

[78] Kelly A. Knowles, Rebecca K. Sripada, Mahrie Defever, and Sheila A. M. Rauch. Comorbid mood and anxiety

disorders and severity of posttraumatic stress disorder symptoms in treatment-seeking veterans. Psychological

Trauma: Theory, Research, Practice, and Policy, 11(4):451–458, May 2019.

[79] Phase diagram of the sherrinton-kirkpatrick (sk) model. https://github.com/elohimfr/sk_model, 2020.

[80] Sigrid Rouam. False Discovery Rate (FDR), page 731–732. Springer New York, 2013.

[81] Moses Sokunbi, Roger Staff, Gordon Waiter, George Cameron, Trevor Ahearn, and Alison Murray. Functional

mri entropy measurements of age-related brain changes. 06 2011.

[82] Mianxin Liu, Xinyang Liu, Andrea Hildebrandt, and Changsong Zhou. Individual cortical entropy profile:

Test–retest reliability, predictive power for cognitive ability, and neuroanatomical foundation. Cerebral Cortex

Communications, 1(1):tgaa015, 2020.

[83] Moses O. Sokunbi, Victoria B. Gradin, Gordon D. Waiter, George G. Cameron, Trevor S. Ahearn, Alison D. Mur-

ray, Douglas J. Steele, and Roger T. Staff. Nonlinear complexity analysis of brain fmri signals in schizophrenia.

PLoS ONE, 9(5):e95146, May 2014.

[84] Moses O. Sokunbi, Wilson Fung, Vijay Sawlani, Sabine Choppin, David E.J. Linden, and Johannes Thome.

Resting state fmri entropy probes complexity of brain activity in adults with adhd. Psychiatry Research: Neu-

roimaging, 214(3):341–348, December 2013.

[85] Chemin Lin, Shwu-Hua Lee, Chih-Mao Huang, Guan-Yen Chen, Pei-Shan Ho, Ho-Ling Liu, Yao-Liang Chen,

Tatia Mei-Chun Lee, and Shun-Chi Wu. Increased brain entropy of resting-state fmri mediates the relationship

between depression severity and mental health-related quality of life in late-life depressed elderly. Journal of

Affective Disorders, 250:270–277, May 2019.

[86] Christoph Bandt and Bernd Pompe. Permutation entropy: A natural complexity measure for time series. Physical

Review Letters, 88(17), April 2002.

[87] Weiting Chen, Zhizhong Wang, Hongbo Xie, and Wangxin Yu. Characterization of surface emg signal based on

fuzzy entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(2):266–272, 2007.

[88] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, June 1965.

86



[89] Waqar Hussain, Muhammad Shahid Iqbal, Jie Xiang, Bin Wang, Yan Niu, Yuan Gao, Xin Wang, Jie Sun,

Qionghui Zhan, Rui Cao, and Zhou Mengni. Epileptic seizure detection with permutation fuzzy entropy using

robust machine learning techniques. IEEE Access, 7:182238–182258, 2019.

[90] Y. Yao, W. L. Lu, B. Xu, C. B. Li, C. P. Lin, D. Waxman, and J. F. Feng. The increase of the functional entropy

of the human brain with age. Scientific Reports, 3(1), October 2013.

[91] Liangfeng Kuang, Weijia Gao, Luoyu Wang, Yongxin Guo, Weifang Cao, Dong Cui, Qing Jiao, Jianfeng Qiu,

Linyan Su, and Guangming Lu. Increased resting-state brain entropy of parahippocampal gyrus and dorso-

lateral prefrontal cortex in manic and euthymic adolescent bipolar disorder. Journal of Psychiatric Research,

143:106–112, November 2021.

[92] Shishun Fu, Sipei Liang, Chulan Lin, Yunfan Wu, Shuangcong Xie, Meng Li, Qiang Lei, Jianneng Li, Kanghui

Yu, Yi Yin, Kelei Hua, Wuming Li, Caojun Wu, Xiaofen Ma, and Guihua Jiang. Aberrant brain entropy

in posttraumatic stress disorder comorbid with major depressive disorder during the coronavirus disease 2019

pandemic. Frontiers in Psychiatry, 14, June 2023.

[93] Daniel Fraiman, Pablo Balenzuela, Jennifer Foss, and Dante R. Chialvo. Ising-like dynamics in large-scale

functional brain networks. Physical Review E, 79(6), June 2009.

[94] Manfred G. Kitzbichler, Marie L. Smith, Søren R. Christensen, and Ed Bullmore. Broadband criticality of

human brain network synchronization. PLoS Computational Biology, 5(3):e1000314, March 2009.

[95] Daniele Marinazzo, Mario Pellicoro, Guorong Wu, Leonardo Angelini, Jesús M. Cortés, and Sebastiano Stra-
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Appendix A

Derivations

A.1 Derivation MLE Updating Steps for h and J

In order to obtain the updating steps for (pseudo)likelihood maximization, we first have to derive the derivatives of

the log-likelihood function L(D|h,J) w.r.t. hi and Jij for i, j = 1, . . . , N.

The log-likelihood L(h,J), (defined in Equation (3.7)) is given by

L(D|h,J) = β

N∑
i=1

hi⟨σi⟩Empirical + β

N∑
j=1,j ̸=i

Jij⟨σiσj⟩Empirical − lnZ(h,J , β).

It follows directly that

∂

∂hi
L(D|h,J) = β⟨σi⟩Empirical −

∂

∂hi
lnZ(h,J , β) (A.1)

∂

∂Jij
L(D|h,J) = β⟨σiσj⟩Empirical −

∂

∂Jij
lnZ(h,J , β). (A.2)

The derivative of the partition function Z(h,J , β) w.r.t. hi (i = 1, . . . , N) is given by

∂

∂hi
lnZ(h,J , β) =

1

Z(h,J , β)

∂

∂hi

∑
{σ}

exp [−βH(σ|h,J)]

=
1

Z(h,J , β)

∂

∂hi

∑
{σ}

exp

β N∑
i=1

hiσi + β

N∑
i=1

N∑
j=1,j ̸=i

Jijσiσj


= β

1

Z(h,J , β)

∑
{σ}

σi exp [−βH(σ|h,J)]

= β⟨σi⟩P . (A.3)
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and w.r.t. Jij gives

∂

∂Jij
lnZ(h,J , β) =

1

Z(h,J , β)

∂

∂Jij

∑
{σ}

exp [−βH(σ|h,J)]

=
1

Z(h,J , β)

∂

∂Jij

∑
{σ}

exp

β N∑
i=1

hiσi + β

N∑
i=1

N∑
j=1,j ̸=i

Jijσiσj


= β

1

Z(h,J , β)

∑
{σ}

σiσj exp [−βH(σ|h,J)]

= β⟨σiσj⟩P . (A.4)

Substituting the resulting derivatives given by Equations (A.3) and (A.4) into the Equations (A.1) resp. (A.2), we

conclude that

∂

∂hi
L(D|h,J) = β (⟨σi⟩Empirical − ⟨σi⟩P )

∂

∂Jij
L(D|h,J) = β (⟨σiσj⟩Empirical − ⟨σiσj⟩P ) .

A.2 Concavity of the Log-Likelihood Function in h and J

In order to use convex (or concave) optimization techniques [67], we have to show that the log-likelihood function

L(D|h,J) is strictly concave in the parameters h and J . As a result, we can conclude that the maximum of the

log-likelihood is uniquely determined. We will follow the intuition of the proof by Nguyen et al. [20].

Recall that a twice differentiable function f is strictly concave if and only if its Hessian matrix D2f(x) is negative

definite [67]. The aim is to use this theorem for proving concavity of the log-likelihood function.

For simplicity, let θ = (h,J) , i.e. θi = (hi, Ji1, . . . , JiN ) , andQ(σ) =
(
σ,σσT

)
implying thatQk(σ) = (σk, σkσ1, . . . σkσN ) .

Without loss of generality, assume β = 1, such that we the Boltzmann distribution is given by

P (σ) =
1

Z(θ)
exp

[∑
k

θk (Qk(σ))
T

]
,

with partition function

Z(θ, β) =
∑
σ

exp

[∑
k

θk (Qk(σ))
T

]
.

and, subsequently, the log-likelihood function

L(θ) = lnP (σ)

= ln
1

Z(θ, β)
exp

[∑
k

θk (Qk(σ))
T

]
.

It follows that the first and second derivative of the log-likelihood L are defined by

∂

∂θi
L(θ) = ∂

∂θi
ln

1

Z(θ)
exp

[∑
k

θk (Qk(σ))
T

]

=
∂

∂θi

∑
k

θk (Qk(σ))
T − 1

Z(θ)

∂

∂θi
Z(θ)

= Qi(σ)−
1

Z(θ)

∂

∂θi
Z(θ)
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respectively

∂2

∂θi∂θj
L(θ) = − 1

Z(σ)

(
∂2

∂θi∂θj
Z(θ)−

(
∂

∂θi
Z(θ)

)2
)
.

Using

∂

∂θi
Z(σ) =

∑
σ

Qi(σ) exp

[∑
k

θk (Qk(σ))
T

]
and

∂2

∂θi∂θj
Z(σ) =

∑
σ

Qi(σ)Qj(σ) exp

[∑
k

θk (Qk(σ))
T

]
,

we may conclude that
∂2

∂θi∂θj
L(θ) = − (⟨Qi(σ)Qj(σ)⟩ − ⟨Qi(σ)⟩⟨Qj(σ)⟩) .

The only step that remains is showing that the Hessian matrix H(L) is negative definite on its domain. Recall that

a matrix A is negative definite if and only if xTAx ≤ 0 for all x ∈ Rn. It can be verified easily that

xTH(L)x =

N∑
i,j=1

∂2

∂θi∂θj
L(θ)xixj

= −
N∑

i,j=1

(⟨Qi(σ)Qj(σ)⟩ − ⟨Qi(σ)⟩⟨Qj(σ)⟩)xixj

=

〈(
N∑

k=1

(xkQk(σ)− ⟨xkQk(σ)⟩

)2〉
≤ 0.

Consequently, we may conclude that the Hessian matrix is negative-definite and therefore the log-likelihood is concave.

This implies that it has a unique maximum and allows us to utilize convex (or, equivalently, concave) optimization

techniques.

A.3 Derivation of the PLM Updating Steps for h and J

Given the log pseudolikelihood

L(D|h,J) = 1

B

N∑
i=1

B∑
t=1

P̃ (σi(t)|hi,J i∗,σ(t)/i)

=
1

B

N∑
i=1

B∑
t=1

ln
1

2

1 + σi(t) tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)

 ,

it follows that

∂

∂hk
logL(D|h,J) = ∂

∂hk

1

B

N∑
i=1

B∑
t=1

ln
1

2

1 + σi(t) tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)


=

1

B

B∑
t=1

β

σk(t)− tanh

β
hk +

N∑
j=1,j ̸=k

Jkjσj(t)


=

1

B

B∑
t=1

βσk(t)︸ ︷︷ ︸
=β⟨σk⟩Empirical

− 1

B

B∑
t=1

β tanh

β
hk +

N∑
j=1,j ̸=k

Jkjσj(t)


︸ ︷︷ ︸

=β⟨σk⟩P̃

,
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where we used the fact that

d

dx
ln

1

2
[1± tanh f(x)] =

d

dx

[
±f(x)− ln

[
ef(x) + e−f(x)

]]
= f ′(x) (±1− tanh f(x)) . (A.5)

Furthermore, it holds that

∂

∂Jkl
logL(D|h,J) = ∂

∂Jkl

1

B

N∑
i=1

B∑
t=1

ln
1

2

1 + σi(t) tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)


=

1

B

B∑
t=1

βσl(t)

σk(t)− tanh

β
hk +

N∑
j=1,j ̸=k

Jkjσk(t)


=

1

B

B∑
t=1

βσk(t)σl(t)︸ ︷︷ ︸
=β⟨σkσl⟩Empirical

− 1

B

B∑
t=1

βσk(t) tanh

β
hk +

N∑
j=1,j ̸=k

Jkjσj(t)


︸ ︷︷ ︸

=β⟨σkσl⟩P̃

.

A.4 Concavity of the Log-Pseudolikelihood Function in h and J

Similar as for the log-likelihood function in Section A.2, we have to show that the log-pseudolikelihood function

L(D|h,J) is strictly concave in the parameters h and J such that may conclude that the maximum of the log-

likelihood is uniquely determined. This allows us to use convex (or concave) optimization techniques [67].

Let θ = (h,J) , and Q(σ) =
(
σ,σσT

)
. Consequently, θi = (hi, Ji1, . . . , JiN ) , and Qi(σ) = (σi, σiσ1, . . . σiσN ) .

Without loss of generality assume β = 1. Then, the conditional Boltzmann distribution can be written as

P̃ (σi(t)|θ,σ/i(t)) =
exp

[
θi (Qi(σ(t)))

T
]

exp
[
θi (Qi(σ(t)))

T
]
+ exp

[
−θi (Qi(σ(t)))

T
] ,

and the log-pseudolikelihood

L(D|θ) = 1

B

N∑
i=1

B∑
t=1

ln P̃ (σi(t)|θ,σ/i(t))

=
1

B

N∑
i=1

B∑
t=1

ln
exp

[
θi (Qi(σ(t)))

T
]

exp
[
θi (Qi(σ(t)))

T
]
+ exp

[
−θi (Qi(σ(t)))

T
]

=
1

B

N∑
i=1

B∑
t=1

θi (Qi(σ(t)))
T − ln

(
exp

[
θi (Qi(σ(t)))

T
]
+ exp

[
−θi (Qi(σ(t)))

T
])

.

It follows that the first and second derivative of the log-pseudolikelihood L are given by

∂

∂θk
L(D|θ) = 1

B

B∑
t=1

Qk(σ(t))
T −Qk(σ(t))

T exp
[
θiQi(σ(t))

T
]
− exp

[
−θiQi(σ(t))

T
]

exp [θiQi(σ(t))T ] + exp [−θiQi(σ(t))T ]

=
1

B

B∑
t=1

Qk(σ(t))
T −Qk(σ(t))

T tanh
[
−θiQi(σ(t))

T
]

and respectively

∂2

∂θ2k
L(D|θ) = 1

B

B∑
t=1

−Qk(σ(t))Qk(σ(t))
T
(
1− tanh2

[
−θiQi(σ(t))

T
])

.
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Furthermore, it holds that
∂2

∂θk∂θl
L(D|θ) = 0.

which implies that

xTH(L)x =

N∑
i,j=1

∂2

∂θi∂θj
L(D|θ)xixj

=

N∑
k=1

∂2

∂θ2k
L(D|θ)x2

k

=
1

B

B∑
t=1

−Qk(σ(t))Qk(σ(t))
T
(
1− tanh2

[
−θiQi(σ(t))

T
])

.

≤ 0,

because, clearly, it holds thatQk(σ(t))Qk(σ(t))
T ≥ 0 and

(
1− tanh2

[
−θiQi(σ(t))

T
])

≥ 0. Consequently, the Hessian

matrix H(L) is negative-definite implying that the log-likelihood is concave.

A.5 Derivation PLM Updating Steps for β

Given the conditional Boltzmann distribution

P̃ (σi|hi,J i∗, β,σ/i(t)) =
1

2

1 + σi tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj

 ,

we have to determine the derivative of the log pseudolikelihood with respect to β

L(D|β) = 1

B

N∑
i=1

B∑
t=1

ln
1

2

1 + σi(t) tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)

 .

Using Equation (A.5), it follows that

∂

∂β
L(D|β) = ∂

∂β

1

B

N∑
i=1

B∑
t=1

ln
1

2

1 + σi(t) tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)


=

1

B

N∑
i=1

B∑
t=1

hi +
1

2

N∑
j=1,j ̸=i

Jijσj(t)

σi(t)− tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)


=

1

B

B∑
t=1

N∑
i=1

σi(t)

hi +
1

2

N∑
j=1,j ̸=i

Jijσj(t)

 . . .

− 1

B

B∑
t=1

N∑
i=1

hi +
1

2

N∑
j=1,j ̸=i

Jijσj(t)

tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)


= ⟨H(σ(t)|h,J)⟩Empirical − ⟨H(t)(σ|h,J)⟩P̃ ,

where

⟨H(σ|h,J)⟩Empirical =
1

B

B∑
t=1

N∑
i=1

Hi(σ(t)|h,J) =
1

B

B∑
t=1

N∑
i=1

σi(t)

hi +
1

2

N∑
j=1,j ̸=i

Jijσj(t)


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and,

⟨H(σ|h,J)⟩P̃ =
1

B

N∑
i=1

B∑
t=1

hi +
1

2

N∑
j=1,j ̸=i

Jijσj

tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj


=

N∑
i=1

(
1

B

B∑
t=1

hi tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)

 . . .

− 1

B

B∑
t=1

1

2

N∑
j=1,j ̸=i

Jijσj(t) tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)

)

=

N∑
i=1

hi⟨σi⟩P̃ +
1

2

N∑
j=1,j ̸=i

Jij⟨σiσj⟩P̃

 .

A.6 Concavity of the log-pseudolikelihood function in β

In order to use convex (or concave) optimization techniques [67], we have to show again that the log-pseudolikelihood

function L(D|β) is strictly concave in the parameter β.

Given is the log-pseudolikelihood

L(D|β) = 1

B

N∑
i=1

B∑
t=1

ln P̃ (σi(t)|hi,J i∗, β,σ(t)/i) =
1

B

N∑
i=1

B∑
t=1

ln
1

2

1 + σi(t) tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)

 .

In this case, we can use that a twice-differentiable function in one variable is concave if and only if the second

derivative is negative on its entire domain [67]. Notice that

∂

∂β
L(D|β) = 1

B

N∑
i=1

B∑
t=1

hi +
1

2

N∑
j=1,j ̸=i

Jijσj(t)

σi(t)− tanh

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)

 ,

and, using Equation A.5,

∂2

∂β2
L(D|β) = 1

B

N∑
i=1

B∑
t=1

−

hi +
1

2

N∑
j=1,j ̸=i

Jijσj(t)

21− tanh2

β
hi +

1

2

N∑
j=1,j ̸=i

Jijσj(t)

 ≤ 0

because
(
hi +

1
2

∑N
j=1,j ̸=i Jijσj(t)

)2
≥ 0 and

(
1− tanh2

[
β
(
hi +

1
2

∑N
j=1,j ̸=i Jijσj(t)

)])
≥ 0, for all β ∈ R. We can

conclude that the log-pseudolikelihood is concave.
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Appendix B

Supplementary figures

B.1 Robustness against variations in h

B.1.1 Temperature Analysis

In order to ensure that the found phase transition (i.e., from ferro- to paramagnetic phase as the temperature

increases) does not result from the fluctuations in the external field h and the tendency of the spins to align with it,

we drew the plots for the observables m, q, χSG and χUni as a function of the system temperature T also for h = 0.

The resulting graphs are shown in Figure B.3. We observe that the obtained curves are qualitatively similar to what

we observed for the inferred external ĥ and does not change our conclusions about the observed phase transitions.

Functional network 1.

Functional network 2.
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Functional network 3.

Functional network 4.

Functional network 5.

Functional network 6.
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Functional network 7.

Whole-brain network

Figure B.3: Plot of the observables m, q, χUni and χSG respectively, as a function of the system temperature

T for the functional networks and the whole-brain network where h = 0.
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B.1.2 Phase Diagram Analysis

In order to test the robustness of the phase diagrams for the empirical data against variations in h, we drew phase

diagrams where hi = 0 (i = 1, . . . , N) and where hi = −2 × max1≤i′≤N ĥi (i = 1, . . . , N). The resulting diagrams

are shown in Figure B.4 until B.11. Here, the first row of phase diagrams corresponds to the case where hi = 0

(i = 1, . . . , N), the second row where hi = −2 ×max1≤i′≤N ĥi (i = 1, . . . , N). We observe that the phase diagrams

are qualitatively similar to each other.

To save time, we reduced the accuracy of the phase diagrams by using less thermalization steps (106 instead of 107)

and by generating samples (B/500 instead of B = 46 · 310).

Figure B.4: Functional network 1.
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Figure B.5: Functional network 2.

Figure B.6: Functional network 3.
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Figure B.7: Functional network 4.

Figure B.8: Functional network 5.
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Figure B.9: Functional network 6.

Figure B.10: Functional network 7.
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Figure B.11: Whole-brain network.
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B.2 Cross-sections

Functional network 1.

Functional network 2.

Functional network 3.

Functional network 4.
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Functional network 5.

Functional network 6.

Functional network 7.

Whole-brain network.

Figure B.13: Cross-sections of the rough resp. refined phase diagrams of χSG resp. χUni through µ = µ̂ resp.

σ = σ̂ as described in Section 5.1.
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B.3 Robustness of the method against variation in groups

To test the robustness of the method, i.e., that the estimation of the individual parameters µ, σ based on the

phase diagrams corresponding to the archetype PMEM are robust enough for noise, we performed two additional

experiments.

First, we divided all participants randomly into two groups. For both of the groups, we fitted the PMEM and

compared the empirical and sampled spin correlations ⟨SiSj⟩ (i, j = 1, . . . , N, i ̸= j) for each functional network in

four ways:

a By comparing the spin correlations calculated for the empirical data from the first subgroup and that for the second

subgroup;

b By comparing the spin correlations sampled from the archetype PMEM that we estimated for the first subgroup

and that for the second subgroup;

c By comparing the spin correlations sampled from the archetype PMEM that we estimated for the first subgroup,

shown on the horizontal axis, and the spin correlations directly calculated for the empirical data for the first

subgroup (represented by the red dots) and the second subgroup (represented by the blue ones), shown on the

vertical axis;

d By comparing the spin correlations sampled from the archetype PMEM that we estimated for the second subgroup,

shown on the horizontal axis, and the spin correlation directly calculated for the empirical data for the first subgroup

(represented by the blue dots) and the second subgroup (represented by the red ones), shown on the vertical axis.

These results are shown in the Figures B.14 till B.21. We observe that the covariance obtained from the two halves are

strongly correlated, implying that the way of grouping the participants does not have a major affect on the inferred

PMEM.

Figure B.14: Functional network 1.
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Figure B.15: Functional network 2.

Figure B.16: Functional network 3.

Figure B.17: Functional network 4.

Figure B.18: Functional network 5.
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Figure B.19: Functional network 6.

Figure B.20: Functional network 7.

Figure B.21: Whole-brain network.

Additionally, we drew the phase diagrams corresponding to the inferred PMEMs for each of the subgroups. In the

Figures B.22 till B.29, these resulting diagrams are shown for the functional networks and the whole-brain network.

One can observe that these phase diagrams are very similar. In these phase diagrams we plotted for each group the

mean and standard deviation of the inferred interaction matrix Ĵ (denoted by a cross), and, in the same way, the

mean and standard deviation of the interaction matrix inferred to the whole dataset (denoted by a dot). For most of

the networks, these values corresponds very well.

These two experiments suggest that the inference of the PMEM based on the concatenated timeseries is robust against

variations in the data, as the groups exhibited corresponding characteristics (in terms of observables calculated from

the inferred archetype model).
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Figure B.22: Functional network 1.

Figure B.23: Functional network 2.
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Figure B.24: Functional network 3.

Figure B.25: Functional network 4.
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Figure B.26: Functional network 5.

Figure B.27: Functional network 6.
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Figure B.28: Functional network 7.

Figure B.29: Whole-brain network.
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Appendix C

Statistical analysis PFE per ROI

As an exploratory analysis, we also consider the Permutation Fuzzy Entropy per ROI.

C.1 Methods

C.1.1 Calculating the PFE

The PFE per ROI was calculated as proposed for the other analyses (i.e, per functional network and for the whole-

brain network). These details are discussed in Section 7.1.

C.1.2 Statistical analysis

We perform 238 ANOVA’s (i.e., for each ROI) to compare the obtained results, using R version 4.3.0.

Beforehand, we identify outliers based on exceeding 1.5 · IQR (InterQuartile Range) limits, and we remove these

extreme outliers from the analyses. Subsequently, we conduct an analysis of variance (ANOVA), to examine whether

the PFE is the result of the interaction between the ROI and treatment response with age and education (measured

by ISCED) as covariate, motivated by similar studies [90–92]. When a covariate turns out to not be significant, we

repeat the analysis without that particular covariate.

C.2 Results

C.2.1 Statistical analysis

Out of the N = 238 ROIs, for 39 ROIs the ANOVA’s revealed a significant difference (i.e. P < 0.05). However, none

did survive the correction for multiple comparisons using the False Discovery Rate (0.0753 <= P <= 0.9694).
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Appendix D

Code

Most of the experiments were compiled and runned on a MacBook Pro with a 1,4 GHz Quad-Core Intel Core i5.

For the experiments, a combination of MATLAB and C++ was used. We will indicate for each section which

programming language has been used. The code programmed in MATLAB was run using MATLAB R2022a, and

the code programmed in C++ was compiled using Apple clang version 15.0.0.

All results can be reproduced by using the code provided in chapter.

Collect Data (MATLAB)

This section includes the functions that are used for extracting the data from the provided dataset in different ways

and preparing it for further analysis by binarizing the neural signals.

The dataset consisted of 46 files, where file consists of the observed signals for the 238 Regions Of Interest (ROIs),

acquired at 310 timepoints.

Additionally, it includes one experiment that collects and binarizes the data for each of the 7 functional networks

and the whole-brain network. The other functions are used in other analyses.

Experiment: Collect Data Set

c l e a r ; c l o s e a l l ;

%% Co l l e c t data f o r a l l networks

% Output : b ina r i z ed time s e r i e s f o r a l l networks .

p a r t i c i p an t s = readmatrix ( ' data/ Pa r t i c i pan t s / pa r t i c i p an t s . dat ' ) ;

%% Funct ional networks

f o r i = 1 :7

f o l d e r = s p r i n t f ( 'Data/Subnetworks/Subnetwork%d ' , i ) ;

l a b e l s = readmatr ix ( s p r i n t f ( 'Data/Subnetworks/Subnetwork%d/ l a b e l s . dat ' , i ) ) ;

b i na r i z ed da ta = func co l l e c tDa ta ( pa r t i c i pan t s , l a b e l s ) ;
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writematr ix ( b inar i z ed data , s p r i n t f ( '%s/ input data / da ta s e t . dat ' , f o l d e r ) ) ;

end

%% Whole−bra in network

l a b e l s = 'Data/Whole−bra in / l a b e l s . dat ' ;

b i na r i z ed da ta = func co l l e c tDa ta ( pa r t i c i pan t s , l a b e l s ) ;

wr i tematr ix ( b inar i z ed data , 'Whole−bra in / input data / da ta s e t . dat ' ) ;

Function: Collect Data of a Participant
%% Co l l e c t data f o r s p e c i f i e d nodes o f a pa r t i c i p an t

% Input : number o f the pa r t i c i p an t (k ) , numbers o f the s i g n a l s ( s i g n a l n r s ) .

% Output : b ina r i z ed s i gna l , us ing the median o f each s i g n a l as th r e sho ld .

func t i on [ data ] = func co l l e c tDa taPa r t i c i p an t ( pa r t i c i pan t n r , s i g n a l n r s )

ROI s igna l s = func readROISignal ( pa r t i c i pan t n r , s i g na l n r s , 1 , 310 ) ;

M = median ( ROI s ignals , 2 ) ;

data = func b inar i z eData ( ROI s ignals , M) ;

end

Function: Collect Data
%% Co l l e c t Data

% Co l l e c t s data and b i n a r i z e s data per pat ient , median as th re sho ld

% Returns : matrix with a l l data ; ROI ' s in rows , t imepo ints in columns .

func t i on [ data ] = func co l l e c tDa ta ( pa r t i c i pan t s , s i g n a l n r s )

data = [ ] ;

f o r k = pa r t i c i p an t s

data part = func co l l e c tDa taPa r t i c i p an t (k , s i g n a l n r s ) ;

data = [ data , data part ] ;

end

end

Function: readROISignal
%% ReadROISignal

% Input : number pa t i en t k , numbers o f the s i g n a l s s i g n a l n r s and time window

% t1 and t2 ( i . e . t imepoint 1 and 2 ) .

% Return : data

func t i on [ ROISignal ] = func readROISignal (k , s i g na l n r s , t1 , t2 )

i f ( k < 10)

f i l ename = s p r i n t f ( ' / . . . / ROISignals 00%d . txt ' , k ) ;

e l s e i f ( k < 100)

f i l ename = s p r i n t f ( ' / . . . / ROISignals 0%d . txt ' , k ) ;

e l s e

f i l ename = s p r i n t f ( ' / . . . / ROISignals %d . txt ' , k ) ;

end

temp = readmatrix ( f i l ename ) ' ;
ROISignal = temp( s i g na l n r s , t1 : t2 ) ;
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end

Function: Binarize Data
%% Binar i z e Data

% Input : datase t z i ( t ) , t \ in { 0 , . . . ,T} , i \ in N ( s i z e : T \ t imes N) , th r e sho ld .

% Output : B inar i zed data S i ( t ) .

% Threshold : S i ( t ) = +1 i f z i ( t ) \geq thresho ld , −1 otherwi se .

f unc t i on [ b ina r i z ed ] = func b inar i z eData ( data , th r e sho ld )

[ numberROI , t imePoints ] = s i z e ( data ) ;

b i na r i z ed = s ign ( data − ( th r e sho ld+eps ) . ∗ ones (numberROI , t imePoints ) ) ;

end

Infer Archetype PMEM (MATLAB)
Assuming that the datasets are collected and binarized, we can infer the archetype PMEM using the experiment provided in this section.

Experiment: Infer Pairwise Maximum Entropy Model
c l e a r ; c l o s e a l l ;

addpath ( genpath ( '/ Users /myrthesterk / s u r f d r i v e /Shared/Crit ica l i ty and entropy BETER/Code/Col lectData ' ) ) ;

%% Estimating PMEM fo r a l l networks

% input : b ina r i z ed data

% output : model parameters h and J

%% Funct ional networks

f o r i = 1 :7

f o l d e r = s p r i n t f ( 'Data/Subnetworks/Subnetwork%d ' , i ) ;

b i na r i z ed da ta = readmatr ix ( s p r i n t f ( '%s/ input data / da ta s e t . dat ' , f o l d e r ) ) ;

[ h , J ] = func in fe rParams ( binar izedData , 1e −10);

wr i tematr ix (h , s p r i n t f ( '%s/PMEM/h . dat ' , f o l d e r ) ) ;

wr i tematr ix (J , s p r i n t f ( '%s/PMEM/J . dat ' , f o l d e r ) ) ;

end

%% Whole−bra in network

f o l d e r = 'Data/Whole−brain ' ;

b i na r i z ed da ta = readmatr ix ( s p r i n t f ( '%s/ input data / da ta s e t . dat ' , f o l d e r ) ) ;

[ h , J ] = func in fe rParams ( binar izedData , 1e −10);

wr i tematr ix (h , s p r i n t f ( '%s/PMEM/h . dat ' , f o l d e r ) ) ;

wr i tematr ix (J , s p r i n t f ( '%s/PMEM/J . dat ' , f o l d e r ) ) ;

Function: Infer Model Parameters PMEM
%% In f e r model params PMEM

% Using pseudo−l i k e l i h o o d maximization and grad i ent descent .

% Input : b ina r i z ed data , p e rm i s s i b l e e r r o r

% Output : parameters h and J

func t i on [ h , J ] = func in fe rParams ( b inar i z ed data , p e rm i s s i b l e e r r o r )
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[ nr nodes , da ta l ength ] = s i z e ( b ina r i z ed da ta ) ;

max i t e ra t i on s = 5000000;

dt = 0 . 0 5 ; %l e a rn i ng ra t e

h = ones ( nr nodes , 1 ) ;

J = ze ro s ( nr nodes ) ;

data mean = mean( b inar i z ed data , 2 ) ;

d a t a c o r r e l a t i o n = ( b ina r i z ed da ta ∗ b inar i z ed data ' ) / data l ength ;

f o r t=1: max i t e r a t i on s

% Calcu la te G h

G h = − data mean + mean( tanh ( ( J ∗ b ina r i z ed da ta . . .

+ h ∗ ones (1 , data l ength ) ) ) , 2 ) ;

% Calcu la te G J ; zorgt ervoor dat matrix symmetrisch wordt

G J = −da t a c o r r e l a t i o n + . . .

0 . 5 ∗ b ina r i z ed da ta ∗ ( tanh ( ( J ∗ b ina r i z ed da ta + . . .

h ∗ ones (1 , data l ength ) ) ) ) ' / data l ength . . .

+ 0 .5 ∗ ( b ina r i z ed da ta ∗ ( tanh ( ( J ∗ b ina r i z ed da ta + . . .

h ∗ ones (1 , data l ength ) ) ) ) ' ) ' / data l ength ;

G J = G J − diag ( diag (G J ) ) ; %e l im ina t e d iagona l e n t i t i e s ( J { i i }=0)

% Update h and J

h = h − dt ∗ G h ;

J = J − dt ∗ G J ;

% Check stopping c r i t e r i um

d i f f = sq r t (norm(G J)ˆ2 + norm(G h)ˆ2)/ nr nodes /( nr nodes +1);

i f ( d i f f < p e rm i s s i b l e e r r o r )

break

end

end

end

Temperature Analysis (MATLAB)
The temperature analysis was performed in MATLAB. In this section, the experiment that infers the personal temperature for each

participant and each network (including the functional networks and whole-brain network) is provided, as well as the algorithm for

inferring the personal temperature.

Experiment: Infer Personal Temperatures
%% Determine per sona l temperature

% Input : archetype PMEMs.

% Output : f i l e with i n f e r r e d per sona l temperatures .

% Make ordered l i s t o f re sponders and nonresponders

re sponders = readmatrix ( ' / . . . / Data/ Pa r t i c i pan t s / responders . dat ' ) ;
nonresponders = readmatrix ( ' / . . . / Code/Data/ Pa r t i c i pan t s / nonresponders . dat ' ) ;
p a r t i c i p an t s = [ responders nonresponders ] ;

% I n i t i a l i z e r e s u l t s

r e s u l t s = ze ro s ( l ength ( p a r t i c i p an t s ) , 8 ) ;

% Star t with i n f e r r i n g beta per subnetwork

f o r n = 1 :7

% Read l a b e l s o f ROI ' s be long ing to the subnetwork , cor responding

% parameters h and J .
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l a b e l s = readmatr ix ( s p r i n t f ( ' / . . . / Data/Subnetworks/Subnetwork%d/ l a b e l s . dat ' , n ) ) ;

h = readmatrix ( s p r i n t f ( ' / . . . / Data/Subnetworks/Subnetwork%d/PMEM/h . dat ' , n ) ) ;

J = readmatrix ( s p r i n t f ( ' / . . . / Data/Subnetworks/Subnetwork%d/PMEM/J . dat ' , n ) ) ;

% For each par t i c ipant , i n f e r beta

f o r i = 1 : l ength ( p a r t i c i p an t s )

i

b i na r i z ed da ta = func co l l e c tDa taPa r t i c i p an t ( p a r t i c i p an t s ( i ) , l a b e l s ) ;

beta = func i n f e rBe t a ( b inar i z ed data , h , J , 1e −10);

r e s u l t s ( i , n ) = 1/ beta ;

end

end

% Same f o r the whole−bra in network

% Read l a b e l s o f ROI ' s be long ing to the whole−bra in network

l a b e l s = readmatrix ( ' / . . . / Data/Whole−Brain/ l a b e l s . dat ' ) ;
h = readmatrix ( ' / . . . / Data/Whole−Brain/Vers ion 02 /PMEM/h . dat ' ) ;
J = readmatrix ( ' / . . . / Data/Whole−Brain/Vers ion 02 /PMEM/J . dat ' ) ;

% For each par t i c ipant , i n f e r beta

f o r j = 1 : l ength ( p a r t i c i p an t s )

b ina r i z ed da ta = func co l l e c tDa taPa r t i c i p an t ( p a r t i c i p an t s ( j ) , l a b e l s ) ;

beta = func i n f e rBe t a ( b inar i z ed data , h , J , 1e −10);

r e s u l t s ( j , 8) = 1/ beta ;

end

% Write r e s u l t s to output . csv , i n c l ud ing s t a t s p a r t i c i p an t s

r e s u l t s = [ pa r t i c i pan t s ' , r e s u l t s ] ;

t ab l e = ar ray2 tab l e ( r e s u l t s , 'VariableNames ' , [ ” p a r t i c i p an t n r ” ,” T sub1 ” ,” T sub2 ” , . . .

”T sub3 ” ,” T sub4 ” ,” T sub5 ” ,” T sub6 ” ,” T sub7 ” ,”T wb ” ] ) ;

s t a t s = readtab l e ( ' / . . . / Code/Data/ s t a t s p a r t i c i p a n t s . csv ' ) ;
t ab l e = [ t ab l e s t a t s ( : , 2 : end ) ] ;

w r i t e t ab l e ( table , ' output . csv ' ) ;

Function: Infer β
%% Calcu la te Ind i v i dua l Tempertature

% Using the archetype PLM and grad i ent descent . Note : T = 1/ beta .

% Input : i nd i v i dua l b ina r i z ed data , h and J obtained by PLM

% Output : f o r each subgroup the per sona l temperature .

f unc t i on beta = func i n f e rBe t a ( b inar i z ed data , h , J , p e rm i s s i b l e e r r o r )

[ nr nodes , da ta l ength ] = s i z e ( b ina r i z ed da ta ) ;

max i t e r a t i on s = 5000000;

dt = 0 . 0 1 ; %l e a rn i ng ra t e

beta = 0 ;

data mean = mean( b inar i z ed data , 2 ) ;

d a t a c o r r e l a t i o n = ( b ina r i z ed da ta ∗ b inar i z ed data ' ) / data l ength ;

f o r t = 1 : max i t e r a t i on s

mean P = mean( tanh ( beta ∗( J ∗ b ina r i z ed da ta + . . .

h ∗ ones (1 , data l ength ) ) ) , 2 ) ;

corr P = 0.5 ∗ b ina r i z ed da ta ∗ ( tanh ( beta ∗ ( J ∗ b ina r i z ed da ta + . . .

h ∗ ones (1 , data l ength ) ) ) ) ' / data l ength . . .

+ 0 .5 ∗ ( b ina r i z ed da ta ∗ ( tanh ( beta ∗( J ∗ b ina r i z ed da ta + . . .

h ∗ ones (1 , data l ength ) ) ) ) ' ) ' / data l ength ;

116



%ca l c u l a t e g rad i ent o f beta

H emp = − h ' ∗ data mean − t r a c e ( da t a c o r r e l a t i on ' ∗ J ) ;

H P = −h ' ∗ mean P − t r a c e ( corr P ' ∗ J ) ;

G beta = H emp − H P ;

%Update

beta = beta − dt ∗ G beta ;

d i f f = abs ( G beta ) ; %Andere stopping c r i t e r i a bepalen ?

i f ( d i f f < p e rm i s s i b l e e r r o r )

break

end

end

end

Draw Phase Diagrams (C++)
The phase diagram analysis was performed in both C++ and MATLAB. Using the inferred archetype PMEM, we drew the phase

diagrams using C++. These phase diagrams were analyzed (i.e., calculating the position of the participants) and visualized using

MATLAB.

The implementation in C++ consists of three directories. In this section, we maintained this structure by using a subsection for each

directory.

Src

InverseIsingProblem.cpp

#inc lude ” inc lude / Inver se I s ingProb lem . h”

#inc lude ” inc lude / u t i l . h”

#inc lude <Eigen/Eigenvalues>

us ing namespace Eigen ;

us ing namespace std ;

Inver se I s ingProb lem : : Inver se I s ingProb lem ( const s t r i n g& fo ld e r , bool c o r r e c t ed ) :

f o l d e r ( f o l d e r ) , T ( 1 . )

{
data = openData ( f o l d e r + ”/ input data / da ta s e t . dat ” ) ;

// I f f i c t i t i o u s temperature i s g iven & correc ted , ad jus t h and J .

// Corrected == true => f i c t i t i o u s temperature i s inco rporated .

i f ( f i l e e x i s t s ( f o l d e r + ”/PMEM/T f . dat” && cor r e c t ed ) ) {
VectorXd temp = openData ( f o l d e r + ”/PMEM/T f . dat ” ) ;

T ∗= temp ( 0 ) ;

}

// Read h , terminate i f not a v a i l a b l e .

i f ( f i l e e x i s t s ( f o l d e r + ”/PMEM/h . dat ”) )

h = openData ( f o l d e r + ”/PMEM/h . dat ”)/T ;

e l s e {
cout << ”h not a v a i l a b l e ! ” ;

e x i t ( 0 ) ;

}

// Read J , terminate i f not a v a i l a b l e .

i f ( f i l e e x i s t s ( f o l d e r + ”/PMEM/J . dat ”) )

J = openData ( f o l d e r + ”/PMEM/J . dat ”)/T ;
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e l s e {
cout << ”h not a v a i l a b l e ! ” ;

e x i t ( 0 ) ;

}
}

// Save h and J

void Inverse I s ingProb lem : : save ( ) {
i f ( nr == 0) {

saveData ( f o l d e r + ”/PMEM/h . dat ” , h ) ;

saveData ( f o l d e r + ”/PMEM/J . dat ” , J ) ;

}
e l s e {

saveData ( f o l d e r + ”/PMEM/h” + t o s t r i n g ( nr ) + ” . dat ” , h ) ;

saveData ( f o l d e r + ”/PMEM/J” + t o s t r i n g ( nr ) + ” . dat ” , J ) ;

}
}

// Update h and J

void Inverse I s ingProb lem : : update (VectorXd &h , MatrixXd &J) {
h = h ;

J = J ;

}

// Return h and J

pair<VectorXd , MatrixXd> Inver se I s ingProb lem : : return params ( ) {
pair<VectorXd , MatrixXd> temp ;

temp . f i r s t = h ;

temp . second = J ;

re turn temp ;

}

// Return T.

double Inver se I s ingProb lem : : return T ( ) {
re turn T ;

}

// Return datase t .

MatrixXd Inverse I s ingProb lem : : r e turn data ( ) {
re turn data ;

}

Include

InverseIsingProblem.h

#pragma once

#inc lude <Eigen/Eigenvalues>

us ing namespace Eigen ;

us ing namespace std ;

c l a s s Inver se I s ingProb lem {
pub l i c :

Inver se I s ingProb lem ( const s t r i n g& fo ld e r , bool c o r r e c t ed = f a l s e ) ;

s t r i n g f o l d e r ;
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void update (VectorXd &h , MatrixXd &J ) ;

void save ( ) ;

pair<VectorXd , MatrixXd> return params ( ) ;

double return T ( ) ;

MatrixXd re turn data ( ) ;

p ro tec ted :

MatrixXd data ;

VectorXd h ;

MatrixXd J ;

double T ;

} ;

util.cpp

#pragma once

#inc lude <Eigen/Eigenvalues>

#inc lude <Eigen/Dense>

#inc lude <iostream>

#inc lude <c s td io>

#inc lude <vector>

#inc lude <fstream>

#inc lude <s t r i ng>

#inc lude <cmath>

#inc lude <random>

#inc lude <thread>

#inc lude <chrono>

us ing namespace Eigen ;

us ing namespace std ;

// Read data from . dat f i l e

// Adapted from :

// https :// a leksandarhaber . com/ eigen−matrix−l i b r a ry −c−t u t o r i a l −saving−and−loading−data−in−from−a−csv− f i l e /

s t a t i c MatrixXd openData ( const s t r i n g& da t a f i l e t o o p e n )

{
vector<double> mat r i x en t r i e s ;

i f s t r e am ma t r i x d a t a f i l e ( d a t a f i l e t o o p e n ) ;

s t r i n g mat r i x row s t r ing ;

s t r i n g matr ix entry ;

i n t matrix row number = 0 ;

whi le ( g e t l i n e ( ma t r i x da t a f i l e , mat r i x row s t r ing ) )

{
s t r ing s t r eam matr ix row st r ing s t r eam ( mat r i x row s t r ing ) ;

whi l e ( g e t l i n e ( matr ix row st r ing s t r eam , matr ix entry , ' , ' ) )
{

mat r i x en t r i e s . push back ( stod ( matr ix entry ) ) ;

}
matrix row number++;

Eigen : : MatrixXd temp = Eigen : :Map<Eigen : : MatrixXd>(ma t r i x en t r i e s . data ( ) ,

( Eigen : : Index ) ma t r i x en t r i e s . s i z e ( ) / matrix row number , matrix row number ) ;

r e turn temp . t ranspose ( ) ;

}
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// Write data to . dat f i l e

// Adatpted from :

// https :// a leksandarhaber . com/ eigen−matrix−l i b r a ry −c−t u t o r i a l −saving−and−loading−data−in−from−a−csv− f i l e /

s t a t i c void saveData ( const s t r i n g& data f i l e name , const MatrixXd& matrix )

{
const s t a t i c IOFormat CSV format ( Fu l lP r e c i s i on , DontAlignCols , ” ,” , ”\n ” ) ;

o f stream f i l e ( data f i l e name ) ;

i f ( f i l e . i s open ( ) )

{
f i l e << matrix . format (CSV format ) ;

f i l e . c l o s e ( ) ;

}
}

// Ca lcu la te mean over o f f−diagona l e lements J

s t a t i c double matrixMean (MatrixXd &matrix ) {
double sum = 0 ;

f o r ( s i z e t i = 0 ; i < matrix . rows ( ) ; i++) {
f o r ( s i z e t j = 0 ; j < matrix . c o l s ( ) ; j++) {

i f ( i != j )

sum += matrix ( i , j ) ;

}
}

re turn sum/(( double ) matrix . rows ( )∗ matrix . c o l s ( ) − matrix . rows ( ) ) ;

}

// Ca lcu la te standard dev i a t i on over o f f−diagona l e lements J

s t a t i c double matrixSTD(MatrixXd &matrix ) {
double mean = matrixMean ( matrix ) ;

double sum = 0 ;

f o r ( s i z e t i = 0 ; i < matrix . rows ( ) ; i++) {
f o r ( s i z e t j = 0 ; j < matrix . c o l s ( ) ; j++) {

i f ( i != j ) {
sum += (matrix ( i , j ) − mean )∗ ( matrix ( i , j ) − mean ) ;

}
}

}

re turn sq r t (sum/(( double ) matrix . rows ( )∗ matrix . c o l s ( ) − matrix . rows ( ) − 1 ) ) ;

}

PhaseDiagram.h

#pragma once

#inc lude <Eigen/Eigenvalues>

#inc lude <chrono>

#inc lude ” inc lude / Inver se I s ingProb lem . h”

#inc lude ” inc lude / Simulate . h”

#inc lude ” inc lude / u t i l . h”

us ing namespace Eigen ;

us ing namespace std ;
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/∗ Af f i n e transfrom f o r phase diagram ∗/
s t a t i c MatrixXd a f f i n e t r a n s f o rm (MatrixXd &matrix , double mu, double sigma , double mean , double stdev ) {

MatrixXd ma t r i x t i l d e ( matrix . rows ( ) , matrix . c o l s ( ) ) ;

f o r ( s i z e t i = 0 ; i < matrix . rows ( ) ; i++) {
f o r ( s i z e t j = 0 ; j < matrix . c o l s ( ) ; j++) {

matr ixTi lde ( i , j ) = ( matrix ( i , j ) − mean) ∗ sigma/ stdev + mu;

}
}

re turn ma t r i x t i l d e ;

}

/∗ Determine boundar ies f o r r e f i n e d phase diagram ∗/
MatrixXd r e f i n e d I n t e r v a l ( s t r i n g &f o l d e r ) {

MatrixXd s t a t s p a r t i c i p a n t s = openData ( f o l d e r + ”/ s t a t s p a r t i c i p a n t s . dat ” ) ;

double sigma min = s t a t s p a r t i c i p a n t s . c o l ( 1 ) . minCoeff ( ) −
( s t a t s p a r t i c i p a n t s . c o l ( 1 ) . maxCoeff ( ) − s t a t s p a r t i c i p a n t s . c o l ( 1 ) . minCoeff ( ) ) / 5 ;

double sigma max = s t a t s p a r t i c i p a n t s . c o l ( 1 ) . maxCoeff ( ) +

( s t a t s p a r t i c i p a n t s . c o l ( 1 ) . maxCoeff ( ) − s t a t s p a r t i c i p a n t s . c o l ( 1 ) . minCoeff ( ) ) / 1 ;

double mu min = s t a t s p a r t i c i p a n t s . c o l ( 2 ) . minCoeff ( ) −
( s t a t s p a r t i c i p a n t s . c o l ( 2 ) . maxCoeff ( ) − s t a t s p a r t i c i p a n t s . c o l ( 2 ) . minCoeff ( ) ) / 5 ;

double mu max = s t a t s p a r t i c i p a n t s . c o l ( 2 ) . maxCoeff ( ) +

( s t a t s p a r t i c i p a n t s . c o l ( 2 ) . maxCoeff ( ) − s t a t s p a r t i c i p a n t s . c o l ( 2 ) . minCoeff ( ) ) / 1 ;

Eigen : : MatrixXd new in t e rva l s ( 2 , 2 ) ;

n ew in t e rva l s << sigma min , sigma max ,

mu min , mu max ;

re turn new in t e rva l s ;

}

/∗ Calcu la te phase diagram ∗/
// Input : Inve r s e I s i n g problem ( c on s i s t i n g o f data , i n f e r r e d h , i n f e r r e d J ) , f o l d e r to save the diagram

// t max : the rma l i z a t i on time

// nr samples : nr o f samples that are generated

void computePD( Inver se I s ingProb lem &problem , s t r i n g &fo lde r pd , VectorXd range sigma ,

VectorXd range mu , long t max , long nr samples ) {

VectorXd h = problem . return params ( ) . f i r s t ;

MatrixXd J = problem . return params ( ) . second ;

// Nr exper iments f o r averag ing

double nr exper iments = 10 ;

long res mu = range mu . s i z e ( ) ;

long re s s i gma = range s igma . s i z e ( ) ;

/∗ Mean and standard dev i a t i on o f J f o r a f f i n e t rans fo rmat ion ∗/
double mean = matrixMean ( J ) ;

double stdev = matrixSTD(J ) ;

/∗ I n i t i a l i z e r e s u l t s ∗/
MatrixXd mResults = MatrixXd : : Constant ( res mu , res s igma , 0 ) ;

MatrixXd qResu l t s = MatrixXd : : Constant ( res mu , res s igma , 0 ) ;

MatrixXd chiSGResults = MatrixXd : : Constant ( res mu , res s igma , 0 ) ;

MatrixXd ch iUniResu l t s = MatrixXd : : Constant ( res mu , res s igma , 0 ) ;
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MatrixXd CResults = MatrixXd : : Constant ( res mu , res s igma , 0 ) ;

long count = res mu ∗ r e s s i gma ;

s i z e t i , j ;

/∗ Simulat ion o f the model ∗/
#pragma omp p a r a l l e l f o r c o l l a p s e (2 ) schedu le ( dynamic ) p r i va t e ( i , j )

f o r ( i = 0 ; i < res mu ; i++) {

f o r ( j = 0 ; j < r e s s i gma ; j++) {

MatrixXd JTi lde = a f f i n e t r a n s f o rm (J , range mu ( i ) , range s igma ( j ) , mean , stdev ) ;

VectorXd obse rvab l e s = VectorXd : : Constant ( 5 , 0 ) ;

f o r ( i n t k = 0 ; k < nr exper iments ; k++) {
obse rvab l e s += sampleObservables ( problem . return params ( ) . f i r s t , JTilde , t max , nr samples ) ;

}

obse rvab l e s /= nr exper iments ;

/∗ Store r e s u l t s ∗/
mResults ( i , j ) = obse rvab l e s ( 0 ) ;

qResu l ts ( i , j ) = obse rvab l e s ( 1 ) ;

ch iUniResu l t s ( i , j ) = obse rvab l e s ( 2 ) ;

chiSGResults ( i , j ) = obse rvab l e s ( 3 ) ;

CResults ( i , j ) = obse rvab l e s ( 4 ) ;

}
}

/∗ Save r e s u l t s ∗/
i f ( problem . r e tu rn nr ( ) == 0) {

saveData ( f o l d e r pd + ”/pd m . dat ” , mResults ) ;

saveData ( f o l d e r pd + ”/pd q . dat ” , qResu l t s ) ;

saveData ( f o l d e r pd + ”/ pd chiUni . dat ” , ch iUniResu l t s ) ;

saveData ( f o l d e r pd + ”/pd chiSG . dat ” , chiSGResults ) ;

saveData ( f o l d e r pd + ”/pd C . dat ” , CResults ) ;

saveData ( f o l d e r pd + ”/ mu l i s t . dat ” , range mu ) ;

saveData ( f o l d e r pd + ”/ s i gma l i s t . dat ” , range s igma ) ;

} e l s e {
saveData ( f o l d e r pd + ”/pd m” + t o s t r i n g ( problem . r e tu rn nr ( ) ) + ” . dat ” , mResults ) ;

saveData ( f o l d e r pd + ”/pd q” + t o s t r i n g ( problem . r e tu rn nr ( ) ) + ” . dat ” , qResu l t s ) ;

saveData ( f o l d e r pd + ”/ pd chiUni ” + t o s t r i n g ( problem . r e tu rn nr ( ) ) + ” . dat ” , ch iUniResu l t s ) ;

saveData ( f o l d e r pd + ”/pd chiSG” + t o s t r i n g ( problem . r e tu rn nr ( ) ) + ” . dat ” , chiSGResults ) ;

saveData ( f o l d e r pd + ”/pd C” + t o s t r i n g ( problem . r e tu rn nr ( ) ) + ” . dat ” , CResults ) ;

saveData ( f o l d e r pd + ”/ mu l i s t ” + t o s t r i n g ( problem . r e tu rn nr ( ) ) + ” . dat ” , range mu ) ;

saveData ( f o l d e r pd + ”/ s i gma l i s t ” + t o s t r i n g ( problem . r e tu rn nr ( ) ) + ” . dat ” , range s igma ) ;

}
}

Simulate.h

#pragma once

#inc lude </usr / l o c a l / inc lude / e igen3 /Eigen/Eigenvalues>

#inc lude <c s td io>

#inc lude <u t i l i t y >

#inc lude <vector>

#inc lude <iostream>

#inc lude <random>
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#inc lude ” inc lude / Inver se I s ingProb lem . h”

#inc lude ” inc lude / u t i l . h”

s t r u c t sample {
double m = 0 ;

double q = 0 ;

double C = 0 ;

VectorXd l o ca l magne t i z a t i on ;

MatrixXd c o r r e l a t i o n ;

} ;

/∗ Generate samples from the i n f e r r e d parameters ∗/
// t max : the rma l i z a t i on time

// nr samples : nr o f samples that are generated

s t a t i c s t r u c t sample s imulate (VectorXd h , MatrixXd J , long t max , long nr samples ) {
i n t nr nodes = ( i n t ) h . s i z e ( ) ;

long n ;

double E = 0 ;

double E2 = 0 ;

double dE , p ;

/∗ I n i t i a l i z e random number generator ∗/
// I n i t i a l i z e d per experiment f o r proper ly generated random samples when running in p a r a l l e l .

s td : : random device rd ;

std : : de fau l t random eng ine engine ( rd ( ) ) ;

std : : u n i f o rm r e a l d i s t r i b u t i o n<double> randomReal (0 , 1 ) ;

VectorXd l o ca l magne t i z a t i on = VectorXd : : Constant ( nr nodes , 0 ) ;

MatrixXd c o r r e l a t i o n = MatrixXd : : Constant ( nr nodes , nr nodes , 0 ) ;

//VectorXd sigma = VectorXd : : Constant ( nr nodes , 1 ) ;

VectorXd sigma ( nr nodes ) ;

std : : generate ( sigma . begin ( ) , sigma . end ( ) , [& ] ( )

{double p = randomReal ( eng ine ) ; i n t s = 1 ; i f (p <= 0 . 5 ) { s ∗= 1;} re turn s ; } ) ;

// Thermal izat ion proce s s

f o r ( long t = 0 ; t < t max ∗ nr nodes ; t++) {
n = ( long ) t % nr nodes ;

dE = −2. ∗ h(n) ∗ sigma (n) − 2 ∗ J . c o l (n ) . dot ( sigma ) ∗ sigma (n ) ;

p = min<f l o a t >(1 , ( f l o a t ) exp (dE ) ) ;

i f ( randomReal ( eng ine ) <= p)

sigma (n) = sigma (n) ∗ (−1);

}

// Sampling proce s s ( sample every 1000 sweeps )

f o r ( long t = 0 ; t < nr samples ∗ nr nodes ∗ 1000 ; t++) {
n = ( long ) t % nr nodes ;

dE = −2 ∗ h(n) ∗ sigma (n) − 2 ∗ J . c o l (n ) . dot ( sigma ) ∗ sigma (n ) ;

p = min<f l o a t >(1 , ( f l o a t ) exp (dE ) ) ;

i f ( randomReal ( eng ine ) <= p)

sigma (n) = sigma (n) ∗ (−1);

i f ( t % ( nr nodes ∗ 1000) == 0) {
l o c a l magne t i z a t i on = lo ca l magne t i z a t i on + sigma ;

c o r r e l a t i o n = c o r r e l a t i o n + sigma ∗ sigma . t ranspose ( ) ;
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double energy = −(0.5 ∗ J ∗ sigma ) . t ranspose ( ) ∗ sigma − h . dot ( sigma ) ;

E = E − energy ;

E2 = E2 + energy ∗ energy ;

}
}

// Store obse rvab l e s

s t r u c t sample temp ;

l o c a l magne t i z a t i on = lo ca l magne t i z a t i on / ( double ) nr samples ;

E2 = E2 / ( double ) nr samples ;

E = E / ( double ) nr samples ;

temp .C = (E2 − E ∗ E) / nr nodes ;

temp . q = lo ca l magne t i z a t i on . dot ( l o c a l magne t i z a t i on ) / nr nodes ;

temp .m = lo ca l magne t i z a t i on . sum( ) / nr nodes ;

temp . l o c a l magne t i z a t i on = lo ca l magne t i z a t i on ;

temp . c o r r e l a t i o n = c o r r e l a t i o n / nr samples ;

r e turn temp ;

}

/∗ Calcu la te and return magnet izat ion and c o r r e l a t i o n ∗/
s t a t i c pair<VectorXd , MatrixXd> sampleStats (VectorXd h , MatrixXd J , long t max , long nr samples ) {

s t r u c t sample temp = s imulate ( std : : move(h ) , std : : move( J ) , t max , nr samples ) ;

pair<VectorXd , MatrixXd> temp pair ;

temp pair . f i r s t = temp . l o c a l magne t i z a t i on ;

temp pair . second = temp . c o r r e l a t i o n ;

re turn temp pair ;

}

/∗ Calcu la te and return magnetizat ion , spin−g l a s s order parameter , uniform and spin−g l a s s s u s c e p t i b i l i t y ∗/
s t a t i c VectorXd sampleObservables (VectorXd h , MatrixXd J , long t max , long nr samples ) {

s t r u c t sample temp = s imulate ( std : : move(h ) , std : : move( J ) , t max , nr samples ) ;

MatrixXd covar iance = temp . c o r r e l a t i o n − temp . l o c a l magne t i z a t i on ∗ temp . l o c a l magne t i z a t i on . t ranspose ( ) ;

double ch i Uni = covar iance . sum( ) / ( double ) covar iance . c o l s ( ) ;

double chi SG = covar iance . squaredNorm ( ) / ( double ) covar iance . c o l s ( ) ;

VectorXd vec = VectorXd : : Constant ( 5 , 0 ) ;

vec [ 0 ] = abs ( temp .m) ;

vec [ 1 ] = temp . q ;

vec [ 2 ] = ch i Uni ;

vec [ 3 ] = chi SG ;

vec [ 4 ] = temp .C;

re turn std : : move( vec ) ;

}

/∗ Calcu la te and return Cˆ2 ∗/
// Used f o r C2 c o r r e c t i o n

s t a t i c double sampleC2 ( const VectorXd& h , MatrixXd J , long t max , long nr samples ) {
s t r u c t sample temp = s imulate (h , std : : move( J ) , t max , nr samples ) ;

MatrixXd covar iance = temp . c o r r e l a t i o n − temp . l o c a l magne t i z a t i on ∗ temp . l o c a l magne t i z a t i on . t ranspose ( ) ;

r e turn covar iance . squaredNorm ( ) / ( double ) h . s i z e ( ) ;

}
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CorrectC2.h

#inc lude <Eigen/Eigenvalues>

#inc lude ” inc lude / u t i l . h”

#inc lude ” inc lude / Simulate . h”

us ing namespace std ;

us ing namespace Eigen ;

/∗ Compute ob j e c t i v e f o r C2 c o r r e c t i o n f o r f i c t i t i o u s temperature T ∗/
double compute object ive ( Inver se I s ingProb lem &problem , double T,

double target , i n t nr exper iments , long t max ) {
VectorXd h = problem . return params ( ) . f i r s t / T;

MatrixXd J = problem . return params ( ) . second / T;

VectorXd ob j e c t i v e s = VectorXd : : Constant ( nr exper iments , 0 ) ;

double mean object ive = 0 , sampled C2 = 0 ;

i n t j ;

#pragma omp p a r a l l e l f o r p r i va t e ( j , sampled C2 ) shared (h , J ) r educt ion (+: mean object ive )

f o r ( j = 0 ; j < nr exper iments ; j++) {
sampled C2 = sampleC2 (h , J , t max , 310∗46) ;
mean object ive += ( ta rg e t − sampled C2 ) ∗ ( t a r g e t − sampled C2 ) ;

cout << T << ” & ” << sampled C2 << endl ;

}

re turn mean object ive / nr exper iments ;

}

/∗ Compute ta r g e t C2 ∗/
double compute target ( Inver se I s ingProb lem &problem ) {

VectorXd data mean = problem . re turn data ( ) . rowwise ( ) . mean ( ) ;

MatrixXd da t a c o r r e l a t i o n = ( problem . r e turn data ( )∗ problem . r e turn data ( ) . t ranspose ( ) )

/problem . r e turn data ( ) . c o l s ( ) ;

MatrixXd covar iance ( problem . return params ( ) . f i r s t . s i z e ( ) , problem . return params ( ) . f i r s t . s i z e ( ) ) ;

covar iance = da t a c o r r e l a t i o n − data mean ∗ data mean . t ranspose ( ) ;

r e turn covar iance . squaredNorm ( ) / ( double ) problem . return params ( ) . f i r s t . rows ( ) ;

}

/∗ C2 Correc t ion us ing Fibonacc i search ∗/
// Input : Inve r s e I s i n g problem

// Outl ine Fibonacc i search algor i thm : http :// homepages . math . u i c . edu/˜ jan /mcs471/ go ld en s e c t i on . pdf

double correctC2 ( Inver se I s ingProb lem &problem ) {
double t a r g e t = compute target ( problem ) ;

double a = 0 . 9 ;

double b = 1 . 1 ;

double t o l = 1e−5; // t o l e r a t e d r e l a t i v e e r r o r

double g o l d en r a t i o = ( s q r t f (5 ) − 1 )/2 ;

double l e f t = go l d en r a t i o ∗ a + (1 − go l d en r a t i o ) ∗ b ;

double o b j l e f t = compute object ive ( problem , l e f t , target , 10 , 1 e7 ) ;

double r i gh t = (1 − go l d en r a t i o ) ∗ a + go l d en r a t i o ∗ b ;

double o b j r i g h t = compute object ive ( problem , r ight , target , 10 , 1 e7 ) ;
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whi le ( abs (b − a ) > t o l ) {
i f ( o b j l e f t < ob j r i g h t ) {

b = r i gh t ;

r i g h t = l e f t ;

o b j r i g h t = o b j l e f t ;

l e f t = go l d en r a t i o ∗ a + (1 − go l d en r a t i o ) ∗ b ;

o b j l e f t = compute object ive ( problem , l e f t , target , 10 , 1 e7 ) ;

}
e l s e {

a = l e f t ;

l e f t = r i gh t ;

o b j l e f t = ob j r i g h t ;

r i g h t = (1 − go l d en r a t i o ) ∗ a + go l d en r a t i o ∗ b ;

o b j r i g h t = compute object ive ( problem , r ight , target , 10 , 1 e7 ) ;

}
}

re turn T = (b − a ) /2 ;

}

App

Experiment: Draw Phase Diagrams

#inc lude ” inc lude / Inver se I s ingProb lem . h”

#inc lude ” inc lude /PhaseDiagram . h”

#inc lude ” inc lude /CorrectC2 . h”

#inc lude ” inc lude / u t i l . h”

#inc lude <Eigen/Eigenvalues>

us ing namespace Eigen ;

us ing namespace std ;

void performC2Correct ion ( s t r i n g &f o l d e r ) {
Inver se I s ingProb lem problem = Inverse I s ingProb lem ( f o l d e r ) ;

T = correctC2 ( problem ) ;

saveData (T, f o l d e r + ”/T f . dat ” ) ;

} ;

i n t main ( ) {

s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork1 ” ;

performC2Correct ion ( f o l d e r ) ;

s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork2 ” ;

performC2Correct ion ( f o l d e r ) ;

s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork3 ” ;

performC2Correct ion ( f o l d e r ) ;

s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork4 ” ;

performC2Correct ion ( f o l d e r ) ;

s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork5 ” ;

performC2Correct ion ( f o l d e r ) ;

s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork6 ” ;

performC2Correct ion ( f o l d e r ) ;

s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork7 ” ;

performC2Correct ion ( f o l d e r ) ;
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s t r i n g f o l d e r = ”Data/Subnetworks/Whole−bra in ” ;

performC2Correct ion ( f o l d e r ) ;

r e turn 0 ;

}

Experiment: Draw Rough Phase Diagrams

#inc lude ” inc lude / Inver se I s ingProb lem . h”

#inc lude ” inc lude /PhaseDiagram . h”

#inc lude ” inc lude /CorrectC2 . h”

#inc lude ” inc lude / u t i l . h”

#inc lude <Eigen/Eigenvalues>

us ing namespace Eigen ;

us ing namespace std ;

/∗ Calcu la te rough phase diagram ∗/
// Input : f o l d e r where problem i s stored , range mu and range s igma

void calculatePDRough ( const s t r i n g& fo ld e r , VectorXd range mu , VectorXd range s igma ) {
Inver se I s ingProb lem problem = Inverse I s ingProb lem ( f o l d e r ) ;

i n t N = ( in t ) problem . return params ( ) . f i r s t . s i z e ( ) ; // nr nodes

i n t B = ( in t ) problem . re turn data ( ) . c o l s ( ) ; //nr samples

s t r i n g f o ld e r pd rough = f o l d e r + ”/ phase diagrams rough ” ;

computePD( problem , fo lde r pd rough , range sigma , range mu , 1e7 , B) ;

}

i n t main ( ) {

/∗ Subnetwork 1 ∗/
f o l d e r = ”Data/Subnetworks/Subnetwork1 ” ;

range mu rough = VectorXd : : LinSpaced (25 , −0.075 , 0 . 3 5 ) ;

range s igma rough = VectorXd : : LinSpaced (25 , 0 , 1 . 5 ) ;

calculatePDRough ( f o l d e r , range mu rough , range s igma rough )

/∗ Subnetwork 2 ∗/
f o l d e r = ”Data/Subnetworks/Subnetwork2 ” ;

range mu rough = VectorXd : : LinSpaced (25 , −0.03 , 0 . 2 ) ;

range s igma rough = VectorXd : : LinSpaced (25 , 0 , 0 . 6 5 ) ;

calculatePDRough ( f o l d e r , range mu rough , range s igma rough )

/∗ Subnetwork 3 ∗/
f o l d e r = ”Subnetwork3/Vers ion 02 ” ;

range mu rough = VectorXd : : LinSpaced (25 , −0.09 , 0 . 3 5 ) ;

range s igma rough = VectorXd : : LinSpaced (25 , 0 , 1 . 4 ) ;

calculatePDRough ( f o l d e r , range mu rough , range s igma rough )

/∗ Subnetwork 4 ∗/
s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork4 ” ;

range mu rough = VectorXd : : LinSpaced (25 , −0.06 , 0 . 2 5 ) ;

range s igma rough = VectorXd : : LinSpaced (25 , 0 , 1 . 2 5 ) ;

calculatePDRough ( f o l d e r , range mu rough , range s igma rough )
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/∗ Subnetwork 5 ∗/
f o l d e r = ”Data/Subnetwork5/Vers ion 02 ” ;

range mu rough = VectorXd : : LinSpaced (25 , −0.08 , 0 . 2 5 ) ;

range s igma rough = VectorXd : : LinSpaced (25 , 0 , 1 . 1 5 ) ;

calculatePDRough ( f o l d e r , range mu rough , range s igma rough )

/∗ Subnetwork 6 ∗/
f o l d e r = ”Data/Subnetworks/Subnetwork6/Vers ion 02 ” ;

range mu rough = VectorXd : : LinSpaced (25 , −0.1 , 0 . 3 ) ;

range s igma rough = VectorXd : : LinSpaced (25 , 0 , 1 . 4 5 ) ;

calculatePDRough ( f o l d e r , range mu rough , range s igma rough )

/∗ Subnetwork 7 ∗/
f o l d e r = ”Data/Subnetworks/Subnetwork7/Vers ion 02 ” ;

range mu rough = VectorXd : : LinSpaced (25 , −0.05 , 0 . 2 ) ;

range s igma rough = VectorXd : : LinSpaced (25 , 0 , 0 . 8 ) ;

calculatePDRough ( f o l d e r , range mu rough , range s igma rough )

/∗ Whole−bra in network ∗/
s t r i n g f o l d e r = ”Data/Whole−bra in ” ;

range mu rough = VectorXd : : LinSpaced (20 , −0.0015 , 0 . 0 1 ) ;

range s igma rough = VectorXd : : LinSpaced (20 , 0 , 0 . 1 4 ) ;

calculatePDRough ( f o l d e r , range mu rough , range s igma rough ) ;

r e turn 0 ;

}

Experiment: Draw Refined Phase Diagrams

#inc lude ” inc lude / Inver se I s ingProb lem . h”

#inc lude ” inc lude /PhaseDiagram . h”

#inc lude ” inc lude /CorrectC2 . h”

#inc lude ” inc lude / u t i l . h”

#inc lude <Eigen/Eigenvalues>

us ing namespace Eigen ;

us ing namespace std ;

/∗ Calcu la te r e f i n e d phase diagram ∗/
// Input : f o l d e r where problem i s stored , r e s o l u t i o n r e f i n e d phase diagrams

// Remark : rough phase diagram should be c a l c u l a t ed and po s i t i o n s

// f o r p a r t i c i p an t s to be approximated ( us ing MATLAB)

void ca lculatePDRef ined ( const s t r i n g& fo ld e r , i n t r e s o l u t i o n ) {
Inver se I s ingProb lem problem = Inverse I s ingProb lem ( f o l d e r ) ;

i n t N = ( in t ) problem . return params ( ) . f i r s t . s i z e ( ) ;

i n t B = ( in t ) problem . re turn data ( ) . c o l s ( ) ;

Inver se I s ingProb lem problem = Inverse I s ingProb lem ( f o l d e r ) ;

MatrixXd r e f i n e d i n t e r v a l = r e f i n e d I n t e r v a l ( f o ld e r pd rough ) ;

VectorXd range s i gma r e f i n ed = VectorXd : : LinSpaced ( r e s o l u t i on ,

r e f i n e d i n t e r v a l ( 0 , 0 ) , r e f i n e d i n t e r v a l ( 0 , 1 ) ) ;

VectorXd range mu re f ined = VectorXd : : LinSpaced ( r e s o l u t i on ,

r e f i n e d i n t e r v a l ( 1 , 0 ) , r e f i n e d i n t e r v a l ( 1 , 1 ) ) ;

s t r i n g f o l d e r p d r e f i n e d = f o l d e r + ”/ pha s e d i a g r ams co r r e c t ed r e f i n ed ” ;
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computePD( problem , f o l d e r pd r e f i n e d , range s i gma re f i ned , range mu re f ined , 1e7 , B) ;

}

i n t main ( ) {

/∗ Subnetwork 1 ∗/
f o l d e r = ”Data/Subnetworks/Subnetwork1 ” ;

ca lcu latePDRef ined ( f o l d e r , 2 5 ) ;

/∗ Subnetwork 2 ∗/
f o l d e r = ”Data/Subnetworks/Subnetwork2 ” ;

ca lcu latePDRef ined ( f o l d e r , 2 5 ) ;

/∗ Subnetwork 3 ∗/
f o l d e r = ”Subnetwork3/Vers ion 02 ” ;

ca lcu latePDRef ined ( f o l d e r , 2 5 ) ;

/∗ Subnetwork 4 ∗/
s t r i n g f o l d e r = ”Data/Subnetworks/Subnetwork4 ” ;

ca lcu latePDRef ined ( f o l d e r , 2 5 ) ;

/∗ Subnetwork 5 ∗/
f o l d e r = ”Data/Subnetwork5/Vers ion 02 ” ;

ca lcu latePDRef ined ( f o l d e r , 2 5 ) ;

/∗ Subnetwork 6 ∗/
f o l d e r = ”Data/Subnetworks/Subnetwork6/Vers ion 02 ” ;

ca lcu latePDRef ined ( f o l d e r , 2 5 ) ;

/∗ Subnetwork 7 ∗/
f o l d e r = ”Data/Subnetworks/Subnetwork7/Vers ion 02 ” ;

ca lcu latePDRef ined ( f o l d e r , 2 5 ) ;

/∗ Whole−bra in network ∗/
s t r i n g f o l d e r = ”Data/Whole−bra in ” ;

ca lcu latePDRef ined ( f o l d e r , 2 5 ) ;

r e turn 0 ;

}

Analyze Phase Diagrams (MATLAB)

Determine µ, σ for each participant
Given the phase diagrams corresponding to an inferred PMEM, we can determine the parameters µ, σ for each participant using the

experiment and function provided below.

Experiment: Determine µ, σ for each Participant

c l e a r ; c l o s e a l l ;

%% Estimating and sigma f o r each pa r t i c i p an t

% Using the phase diagrams

% Output : f i l e with the s t a t s

% (mu, sigma , m, q , chiSG , chiUni ) f o r each pa r t i c i p an t

network = ' Subnetworks/Subnetwork3 ' ; %Adjust per network

f o l d e r = s p r i n t f ( 'Data/%s/phase diagrams ' , network ) ;

l a b e l s = readmatrix ( s p r i n t f ( 'Data/%s/ l a b e l s . dat ' , network ) ) ;
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re sponders = readmatrix ( 'Data/ Pa r t i c i pan t s / responders . dat ' ) ;
nonresponders = readmatrix ( 'Data/ Pa r t i c i pan t s / nonresponders . dat ' ) ;
l i s t p a r t i c i p a n t s = [ re sponders nonresponders ] ;

s t a t s p a r t i c i p a n t s = [ ] ;

% General phase diagram

m resu l t s = readmatrix ( s p r i n t f ( '%s/pd m . dat ' , f o l d e r ) ) ;

q r e s u l t s = readmatrix ( s p r i n t f ( '%s/pd q . dat ' , f o l d e r ) ) ;

pd Chi Uni = readmatrix ( s p r i n t f ( '%s/pd chiUni . dat ' , f o l d e r ) ) ;

pd Chi SG = readmatrix ( s p r i n t f ( '%s/pd chiSG . dat ' , f o l d e r ) ) ;

mu l i s t = readmatrix ( s p r i n t f ( '%s/mu l i s t . dat ' , f o l d e r ) ) ;

s i gma l i s t = readmatrix ( s p r i n t f ( '%s/ s i gma l i s t . dat ' , f o l d e r ) ) ;

% Data per pa r t i c i p an t

f o r x = l i s t p a r t i c i p a n t s

b ina r i z ed da ta = func co l l e c tDa taPa r t i c i p an t (x , l a b e l s ) ;

[m, q , chi SG , ch i Uni ] = func a l cu l a t eObs e rvab l e s ( b ina r i z ed da ta ) ;

[mu, sigma ] = func computePos i t i onPart i c ipant (m, q , chi SG , chi Uni , . . .

q r e s u l t s , m resu l t s , pd Chi SG , pd Chi Uni , mu l i s t , s i gma l i s t ) ;

s t a t s p a r t i c i p a n t s = [ s t a t s p a r t i c i p a n t s ; x , sigma , mu, m,

q , chi SG , ch i Uni ] ;

end

c l o s e a l l ;

wr i tematr ix ( s t a t s p a r t i c i p a n t s , . . .

s p r i n t f ( '%s/ s t a t s p a r t i c i p a n t s . dat ' , f o l d e r ) ) ;

Function: Compute Position Participant

%% Compute po s i t i o n f o r each pa r t i c i p an t

% Input : obse rvab l e s c a l c u l a t ed from data pa r t i c i p an t (m, q , chiSG , chiUni )

% and the phase diagrams f o r a l l ob s e rvab l e s .

% Output : mu, sigma that corresponds best to data pa r t i c i p an t (

func t i on [mu, sigma ] = func computePos i t i onPart i c ipant (m, q , chi SG , chi Uni , q r e s u l t s , m resu l t s , pd Chi SG , pd Chi Uni , mu l i s t , s i gma l i s t )

f i g u r e ( ) ;

y l ab e l (”\mu”)

x l ab e l (”\ sigma ”)

hold on

ylim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] )

xlim ( [ s i gma l i s t ( 1 ) , s i gma l i s t ( end ) ] )

%% Estimate mu−sigma curve

% s a t i s f y i n g pdChiUni (mu, sigma ) = chiUni & pdChiSg (mu, sigma ) = chiSG

c Uni = contourc ( s i gma l i s t , mu l i s t , pd Chi Uni , [ chi Uni , ch i Uni ] ) ;

c SG = contourc ( s i gma l i s t , mu l i s t , pd Chi SG , [ chi SG , chi SG ] ) ;

i f ( s i z e ( c Uni , 2) > 0) && ( s i z e ( c SG , 2) > 0)

% Sp l i t curves Chi Uni

cs Uni = {} ; %contour s p l i t t e d

k = c Uni (2 , 1) + 1 ;

temp = [ ] ;

f o r i = 2 : l ength ( c Uni )

i f i <= k
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temp = [ temp c Uni ( : , i ) ] ;

e l s e

cs Uni = [ cs Uni temp ] ;

k = c Uni (2 , i ) + i ;

temp = [ ] ;

end

end

cs Uni = [ cs Uni temp ] ;

% Sp l i t curves Chi SG

cs SG = {} ;

k = c SG (2 , 1) + 1 ;

temp = [ ] ;

f o r i = 2 : l ength ( c SG )

i f i <= k

temp = [ temp c SG ( : , i ) ] ;

e l s e

cs SG = [ cs SG temp ] ;

k = c SG (2 , i ) + i ;

temp = [ ] ;

end

end

cs SG = [ cs SG temp ] ;

% Co l l e c t i n t e r s e c t i o n between curves

i n t e r = [ ] ;

f o r curve Uni = cs Uni

f o r curve SG = cs SG

[ sigma , mu] = i n t e r s e c t i o n s ( curve Uni {1 , 1} ( 1 , : ) , . . .

curve Uni {1 , 1} ( 2 , : ) , curve SG {1 , 1} ( 1 , : ) , . . .

curve SG { 1 , 1 } ( 2 , : ) ) ;

i n t e r = [ i n t e r [ sigma mu ] ' ] ;
end

end

i f ( s i z e ( in t e r , 2) == 0)

best = [ nan ; nan ] ;

e l s e

best = [ i n t e r ( : , 1 ) ] ;

be s t q = in t e rp2 ( s i gma l i s t , mu l i s t , q r e s u l t s , . . .

i n t e r ( 1 , 1 ) , i n t e r ( 2 , 1 ) ) ;

best m = inte rp2 ( s i gma l i s t , mu l i s t , m resu l t s , . . .

i n t e r ( 1 , 1 ) , i n t e r ( 2 , 1 ) ) ;

f o r j = 1 : s i z e ( in t e r , 2 )

temp q = int e rp2 ( s i gma l i s t , mu l i s t , q r e s u l t s , . . .

i n t e r (1 , j ) , i n t e r (2 , j ) ) ;

temp m = inte rp2 ( s i gma l i s t , mu l i s t , m resu l t s , . . .

i n t e r (1 , j ) , i n t e r (2 , j ) ) ;

i f abs ( temp q − q ) < abs ( be s t q − q ) && . . .

abs ( temp m − m) < abs ( best m − m)ˆ2

best = [ i n t e r ( : , j ) ] ;

end

end
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end

sigma = best ( 1 , 1 ) ;

mu = best ( 2 , 1 ) ;

e l s e

sigma = nan ;

mu = nan ;

end

hold o f f

end

Function: Compute Observables Participant

%% Calcu la te obse rvab l e s o f the datase t

% Input : b ina r i z ed da ta

% Ouput : m, q , chiSG , chiUni

func t i on [m, q , chi SG , ch i Uni ] = func ca l cu l a t eObs e rvab l e s ( b ina r i z ed da ta )

l o c a l magne t i z a t i on = sum( b inar i z ed data , 2)/ s i z e ( b inar i z ed data , 2 ) ;

nr nodes = s i z e ( l o ca l magne t i z a t i on , 1 ) ;

m = sum( loca l magne t i z a t i on , 1) / nr nodes ;

q = dot ( l o ca l magne t i z a t i on , l o c a l magne t i z a t i on ) / nr nodes ;

covar iance = ( b ina r i z ed da ta ∗ b inar i z ed data ' ) / s i z e ( b inar i z ed data , 2) − . . .

l o c a l magne t i z a t i on ∗ l o ca l magne t i z a t i on ' ;
ch i Uni = sum( covar iance , ” a l l ”) / nr nodes ;

chi SG = sum( covar iance .∗ covar iance , ” a l l ”) / nr nodes ;

end

Function: intersections

This function is used to calculate the intersection between the level-sets of χUni and χSG.

f unc t i on [ x0 , y0 , iout , j out ] = i n t e r s e c t i o n s ( x1 , y1 , x2 , y2 , robust )

%INTERSECTIONS I n t e r s e c t i o n s o f curves .

% Computes the (x , y ) l o c a t i o n s where two curves i n t e r s e c t . The curves

% can be broken with NaNs or have v e r t i c a l segments .

%

% Example :

% [X0 ,Y0 ] = i n t e r s e c t i o n s (X1 ,Y1 ,X2 ,Y2 ,ROBUST) ;

%

% where X1 and Y1 are equal−l ength vec to r s o f at l e a s t two po in t s and

% rep r e s en t curve 1 . S imi l a r l y , X2 and Y2 rep r e s en t curve 2 .

% X0 and Y0 are column vec to r s conta in ing the po in t s at which the two

% curves i n t e r s e c t .

%

% ROBUST ( opt i ona l ) s e t to 1 or t rue means to use a s l i g h t va r i a t i on o f the

% algor i thm that might return dup l i c a t e s o f some i n t e r s e c t i o n points , and

% then remove those dup l i c a t e s . The de f au l t i s true , but s i n c e the

% algor i thm i s s l i g h t l y s lower you can s e t i t to f a l s e i f you know that

% your curves don ' t i n t e r s e c t at any segment boundar ies . Also , the robust

% ve r s i on proper ly handles p a r a l l e l and over lapp ing segments .

%

% The algor i thm can return two add i t i ona l v e c to r s that i nd i c a t e which

% segment pa i r s conta in i n t e r s e c t i o n s and where they are :

%
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% [X0 ,Y0 , I , J ] = i n t e r s e c t i o n s (X1 ,Y1 ,X2 ,Y2 ,ROBUST) ;

%

% For each element o f the vec to r I , I ( k ) = ( segment number o f (X1 ,Y1) ) +

% (how f a r along t h i s segment the i n t e r s e c t i o n i s ) . For example , i f I ( k ) =

% 45.25 then the i n t e r s e c t i o n l i e s a quarte r o f the way between the l i n e

% segment connect ing (X1(45) ,Y1(45 ) ) and (X1(46) ,Y1 ( 4 6 ) ) . S im i l a r l y f o r

% the vec tor J and the segments in (X2 ,Y2 ) .

%

% You can a l s o get i n t e r s e c t i o n s o f a curve with i t s e l f . Simply pass in

% only one curve , i . e . ,

%

% [X0 ,Y0 ] = i n t e r s e c t i o n s (X1 ,Y1 ,ROBUST) ;

%

% where , as be fore , ROBUST i s op t i ona l .

% Vers ion : 2 . 0 , 25 May 2017

% Author : Douglas M. Schwarz

% Email : dmschwarz=i e e e ∗org , dmschwarz=urgrad ∗ r o ch e s t e r ∗edu
% Real emai l = regexprep (Email ,{ '= ' , ' ∗ '} ,{ '@' , ' . ' } )

% Theory o f operat ion :

%

% Given two l i n e segments , L1 and L2 ,

%

% L1 endpoints : ( x1 (1 ) , y1 ( 1 ) ) and ( x1 (2 ) , y1 ( 2 ) )

% L2 endpoints : ( x2 (1 ) , y2 ( 1 ) ) and ( x2 (2 ) , y2 ( 2 ) )

%

% we can wr i t e four equat ions with four unknowns and then so l v e them . The

% four unknowns are t1 , t2 , x0 and y0 , where ( x0 , y0 ) i s the i n t e r s e c t i o n o f

% L1 and L2 , t1 i s the d i s t ance from the s t a r t i n g point o f L1 to the

% i n t e r s e c t i o n r e l a t i v e to the l ength o f L1 and t2 i s the d i s t ance from the

% s t a r t i n g point o f L2 to the i n t e r s e c t i o n r e l a t i v e to the l ength o f L2 .

%

% So , the four equat ions are

%

% (x1 (2) − x1 (1 ) )∗ t1 = x0 − x1 (1)

% ( x2 (2) − x2 (1 ) )∗ t2 = x0 − x2 (1)

% ( y1 (2) − y1 (1 ) )∗ t1 = y0 − y1 (1)

% ( y2 (2) − y2 (1 ) )∗ t2 = y0 − y2 (1)

%

% Rearranging and wr i t i ng in matrix form ,

%

% [ x1(2)−x1 (1) 0 −1 0 ; [ t1 ; [−x1 ( 1 ) ;

% 0 x2(2)−x2 (1) −1 0 ; ∗ t2 ; = −x2 ( 1 ) ;

% y1(2)−y1 (1) 0 0 −1; x0 ; −y1 ( 1 ) ;

% 0 y2(2)−y2 (1) 0 −1] y0 ] −y2 ( 1 ) ]

%

% Let ' s c a l l that A∗T = B. We can so l v e f o r T with T = A\B.

%

% Once we have our s o l u t i o n we j u s t have to look at t1 and t2 to determine

% whether L1 and L2 i n t e r s e c t . I f 0 <= t1 < 1 and 0 <= t2 < 1 then the two

% l i n e segments c r o s s and we can inc lude ( x0 , y0 ) in the output .

%

% In p r i n c i p l e , we have to perform th i s computation on every pa i r o f l i n e

% segments in the input data . This can be qu i t e a l a r g e number o f pa i r s so

% we w i l l reduce i t by doing a s imple pre l im inary check to e l im ina t e l i n e

% segment pa i r s that could not po s s i b l y c r o s s . The check i s to look at the

% sma l l e s t en c l o s i n g r e c t ang l e s ( with s i d e s p a r a l l e l to the axes ) f o r each

% l i n e segment pa i r and see i f they over lap . I f they do then we have to

% compute t1 and t2 ( v ia the A\B computation ) to see i f the l i n e segments

% cross , but i f they don ' t then the l i n e segments cannot c r o s s . In a
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% typ i c a l app l i c a t i on , t h i s technique w i l l e l im ina t e most o f the po t en t i a l

% l i n e segment pa i r s .

% Input checks .

i f verLessThan ( ' matlab ' , ' 7 . 1 3 ' )
e r r o r ( nargchk (2 ,5 , narg in ) ) %#ok<NCHKN>

e l s e

narginchk (2 , 5 )

end

% Adjustments based on number o f arguments .

switch narg in

case 2

robust = true ;

x2 = x1 ;

y2 = y1 ;

s e l f i n t e r s e c t = true ;

case 3

robust = x2 ;

x2 = x1 ;

y2 = y1 ;

s e l f i n t e r s e c t = true ;

case 4

robust = true ;

s e l f i n t e r s e c t = f a l s e ;

case 5

s e l f i n t e r s e c t = f a l s e ;

end

% x1 and y1 must be vec to r s with same number o f po in t s ( at l e a s t 2 ) .

i f sum( s i z e ( x1 ) > 1) ˜= 1 | | sum( s i z e ( y1 ) > 1) ˜= 1 | | . . .

l ength ( x1 ) ˜= length ( y1 )

e r r o r ( 'X1 and Y1 must be equal−l ength vec to r s o f at l e a s t 2 po in t s . ' )
end

% x2 and y2 must be vec to r s with same number o f po in t s ( at l e a s t 2 ) .

i f sum( s i z e ( x2 ) > 1) ˜= 1 | | sum( s i z e ( y2 ) > 1) ˜= 1 | | . . .

l ength ( x2 ) ˜= length ( y2 )

e r r o r ( 'X2 and Y2 must be equal−l ength vec to r s o f at l e a s t 2 po in t s . ' )
end

% Force a l l inputs to be column vec to r s .

x1 = x1 ( : ) ;

y1 = y1 ( : ) ;

x2 = x2 ( : ) ;

y2 = y2 ( : ) ;

% Compute number o f l i n e segments in each curve and some d i f f e r e n c e s we ' l l

% need l a t e r .

n1 = length ( x1 ) − 1 ;

n2 = length ( x2 ) − 1 ;

xy1 = [ x1 y1 ] ;

xy2 = [ x2 y2 ] ;

dxy1 = d i f f ( xy1 ) ;

dxy2 = d i f f ( xy2 ) ;

% Determine the combinations o f i and j where the r e c t ang l e en c l o s i n g the

% i ' th l i n e segment o f curve 1 ove r l ap s with the r e c t ang l e en c l o s i n g the

% j ' th l i n e segment o f curve 2 .
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% Or ig ina l method that works in o ld MATLAB ver s i ons , but i s s lower than

% using binary s i n g l e t on expansion ( e x p l i c i t or imp l i c i t ) .

% [ i , j ] = f i nd ( . . .

% repmat (mvmin( x1 ) , 1 , n2 ) <= repmat (mvmax( x2 ) . ' , n1 , 1 ) & . . .

% repmat (mvmax( x1 ) , 1 , n2 ) >= repmat (mvmin( x2 ) . ' , n1 , 1 ) & . . .

% repmat (mvmin( y1 ) , 1 , n2 ) <= repmat (mvmax( y2 ) . ' , n1 , 1 ) & . . .

% repmat (mvmax( y1 ) , 1 , n2 ) >= repmat (mvmin( y2 ) . ' , n1 , 1 ) ) ;

% Se l e c t an algor i thm based on MATLAB ver s i on and number o f l i n e

% segments in each curve . We want to avoid forming l a r g e matr i ce s f o r

% l a r g e numbers o f l i n e segments . I f the matr i ce s are not too la rge ,

% choose the best method ava i l a b l e f o r the MATLAB ver s i on .

i f n1 > 1000 | | n2 > 1000 | | verLessThan ( ' matlab ' , ' 7 . 4 ' )
% Determine which curve has the most l i n e segments .

i f n1 >= n2

% Curve 1 has more segments , loop over segments o f curve 2 .

i j c = c e l l (1 , n2 ) ;

min x1 = mvmin( x1 ) ;

max x1 = mvmax( x1 ) ;

min y1 = mvmin( y1 ) ;

max y1 = mvmax( y1 ) ;

f o r k = 1 : n2

k1 = k + 1 ;

i j c {k} = f ind ( . . .

min x1 <= max( x2 (k ) , x2 ( k1 ) ) & max x1 >= min( x2 (k ) , x2 ( k1 ) ) & . . .

min y1 <= max( y2 (k ) , y2 ( k1 ) ) & max y1 >= min( y2 (k ) , y2 ( k1 ) ) ) ;

i j c {k } ( : , 2 ) = k ;

end

i j = ve r t ca t ( i j c { : } ) ;

i = i j ( : , 1 ) ;

j = i j ( : , 2 ) ;

e l s e

% Curve 2 has more segments , loop over segments o f curve 1 .

i j c = c e l l (1 , n1 ) ;

min x2 = mvmin( x2 ) ;

max x2 = mvmax( x2 ) ;

min y2 = mvmin( y2 ) ;

max y2 = mvmax( y2 ) ;

f o r k = 1 : n1

k1 = k + 1 ;

i j c {k } ( : , 2 ) = f i nd ( . . .

min x2 <= max( x1 (k ) , x1 ( k1 ) ) & max x2 >= min( x1 (k ) , x1 ( k1 ) ) & . . .

min y2 <= max( y1 (k ) , y1 ( k1 ) ) & max y2 >= min( y1 (k ) , y1 ( k1 ) ) ) ;

i j c {k } ( : , 1 ) = k ;

end

i j = ve r t ca t ( i j c { : } ) ;

i = i j ( : , 1 ) ;

j = i j ( : , 2 ) ;

end

e l s e i f verLessThan ( ' matlab ' , ' 9 . 1 ' )
% Use bsxfun .

[ i , j ] = f i nd ( . . .

bsxfun (@le ,mvmin( x1 ) ,mvmax( x2 ) . ' ) & . . .

bsxfun (@ge ,mvmax( x1 ) ,mvmin( x2 ) . ' ) & . . .

bsxfun (@le ,mvmin( y1 ) ,mvmax( y2 ) . ' ) & . . .

bsxfun (@ge ,mvmax( y1 ) ,mvmin( y2 ) . ' ) ) ;

e l s e

% Use imp l i c i t expansion .

[ i , j ] = f i nd ( . . .

mvmin( x1 ) <= mvmax( x2 ) . ' & mvmax( x1 ) >= mvmin( x2 ) . ' & . . .
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mvmin( y1 ) <= mvmax( y2 ) . ' & mvmax( y1 ) >= mvmin( y2 ) . ' ) ;

end

% Find segments pa i r s which have at l e a s t one ver tex = NaN and remove them .

% This l i n e i s a f a s t way o f f i nd i ng such segment pa i r s . We take

% advantage o f the f a c t that NaNs propagate through ca l c u l a t i on s , in

% pa r t i c u l a r subt rac t i on ( in the c a l c u l a t i o n o f dxy1 and dxy2 , which we

% need anyway ) and add i t i on .

% At the same time we can remove redundant combinations o f i and j in the

% case o f f i nd i ng i n t e r s e c t i o n s o f a l i n e with i t s e l f .

i f s e l f i n t e r s e c t

remove = isnan (sum( dxy1 ( i , : ) + dxy2 ( j , : ) , 2 ) ) | j <= i + 1 ;

e l s e

remove = isnan (sum( dxy1 ( i , : ) + dxy2 ( j , : ) , 2 ) ) ;

end

i ( remove ) = [ ] ;

j ( remove ) = [ ] ;

% I n i t i a l i z e matr i ce s . We' l l put the T' s and B ' s in matr i ce s and use them

% one column at a time . AA i s a 3−D extens ion o f A where we ' l l use one

% plane at a time .

n = length ( i ) ;

T = ze ro s (4 , n ) ;

AA = ze ro s (4 , 4 , n ) ;

AA( [ 1 2 ] , 3 , : ) = −1;

AA( [ 3 4 ] , 4 , : ) = −1;

AA( [ 1 3 ] , 1 , : ) = dxy1 ( i , : ) . ' ;
AA( [ 2 4 ] , 2 , : ) = dxy2 ( j , : ) . ' ;
B = −[x1 ( i ) x2 ( j ) y1 ( i ) y2 ( j ) ] . ' ;

% Loop through p o s s i b i l i t i e s . Trap s i n g u l a r i t y warning and then use

% lastwarn to see i f that plane o f AA i s near s i n gu l a r . Process any such

% segment pa i r s to determine i f they are c o l i n e a r ( over lap ) or merely

% p a r a l l e l . That t e s t c o n s i s t s o f checking to see i f one o f the endpoints

% of the curve 2 segment l i e s on the curve 1 segment . This i s done by

% checking the c r o s s product

%

% (x1 (2 ) , y1 ( 2 ) ) − ( x1 (1 ) , y1 ( 1 ) ) x ( x2 (2 ) , y2 ( 2 ) ) − ( x1 (1 ) , y1 ( 1 ) ) .

%

% I f t h i s i s c l o s e to zero then the segments over lap .

% I f the robust opt ion i s f a l s e then we assume no two segment pa i r s are

% p a r a l l e l and j u s t go ahead and do the computation . I f A i s ever s i n gu l a r

% a warning w i l l appear . This i s f a s t e r and obv ious ly you should use i t

% only when you know you w i l l never have over lapp ing or p a r a l l e l segment

% pa i r s .

i f robust

over lap = f a l s e (n , 1 ) ;

warn ing s ta te = warning ( ' o f f ' , 'MATLAB: s ingu larMatr ix ' ) ;
% Use try−catch to guarantee o r i g i n a l warning s t a t e i s r e s t o r ed .

t ry

lastwarn ( ' ' )
f o r k = 1 : n

T( : , k ) = AA( : , : , k )\B( : , k ) ;

[ unused , l a s t warn ] = lastwarn ; %#ok<ASGLU>

l as twarn ( ' ' )
i f strcmp ( last warn , 'MATLAB: s ingu larMatr ix ' )

% Force in range (k ) to be f a l s e .

T(1 , k ) = NaN;
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% Determine i f these segments over lap or are j u s t p a r a l l e l .

over lap (k ) = rcond ( [ dxy1 ( i ( k ) , : ) ; xy2 ( j ( k ) , : ) − . . .

xy1 ( i ( k ) , : ) ] ) < eps ;

end

end

warning ( warn ing s ta te )

catch e r r

warning ( warn ing s ta te )

rethrow ( e r r )

end

% Find where t1 and t2 are between 0 and 1 and return the corresponding

% x0 and y0 va lues .

i n range = (T( 1 , : ) >= 0 & T( 2 , : ) >= 0 & T( 1 , : ) <= 1 & T( 2 , : ) <= 1 ) . ' ;
% For over lapp ing segment pa i r s the a lgor i thm w i l l r e turn an

% i n t e r s e c t i o n po int that i s at the cente r o f the over lapp ing reg i on .

i f any ( over lap )

i a = i ( over lap ) ;

j a = j ( over lap ) ;

% s e t x0 and y0 to middle o f over lapp ing reg i on .

T(3 , over lap ) = (max(min ( x1 ( i a ) , x1 ( i a +1)) ,min ( x2 ( ja ) , x2 ( ja +1))) + . . .

min (max( x1 ( i a ) , x1 ( i a +1)) ,max( x2 ( ja ) , x2 ( ja +1 ) ) ) ) . '/2 ;
T(4 , over lap ) = (max(min ( y1 ( i a ) , y1 ( i a +1)) ,min ( y2 ( ja ) , y2 ( ja +1))) + . . .

min (max( y1 ( i a ) , y1 ( i a +1)) ,max( y2 ( ja ) , y2 ( ja +1 ) ) ) ) . '/2 ;
s e l e c t e d = in range | over lap ;

e l s e

s e l e c t e d = in range ;

end

xy0 = T(3 : 4 , s e l e c t e d ) . ' ;

% Remove dup l i c a t e i n t e r s e c t i o n po in t s .

[ xy0 , index ] = unique ( xy0 , ' rows ' ) ;
x0 = xy0 ( : , 1 ) ;

y0 = xy0 ( : , 2 ) ;

% Compute how f a r along each l i n e segment the i n t e r s e c t i o n s are .

i f nargout > 2

s e l i n d e x = f ind ( s e l e c t e d ) ;

s e l = s e l i n d e x ( index ) ;

i ou t = i ( s e l ) + T(1 , s e l ) . ' ;
j out = j ( s e l ) + T(2 , s e l ) . ' ;

end

e l s e % non−robust opt ion

f o r k = 1 : n

[ L ,U] = lu (AA( : , : , k ) ) ;

T( : , k ) = U\(L\B( : , k ) ) ;

end

% Find where t1 and t2 are between 0 and 1 and return the corresponding

% x0 and y0 va lues .

i n range = (T( 1 , : ) >= 0 & T( 2 , : ) >= 0 & T( 1 , : ) < 1 & T( 2 , : ) < 1 ) . ' ;
x0 = T(3 , i n range ) . ' ;
y0 = T(4 , i n range ) . ' ;

% Compute how f a r along each l i n e segment the i n t e r s e c t i o n s are .

i f nargout > 2

i ou t = i ( in range ) + T(1 , i n range ) . ' ;
j out = j ( in range ) + T(2 , i n range ) . ' ;

end

end

% Plot the r e s u l t s ( u s e f u l f o r debugging ) .

% p lo t ( x1 , y1 , x2 , y2 , x0 , y0 , ' ok ' ) ;
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f unc t i on y = mvmin(x )

% Faster implementation o f movmin(x , k ) when k = 1 .

y = min (x ( 1 : end−1) ,x ( 2 : end ) ) ;

f unc t i on y = mvmax(x )

% Faster implementation o f movmax(x , k ) when k = 1 .

y = max(x ( 1 : end−1) ,x ( 2 : end ) ) ;

Calculate Distance to Criticality
Using the phase diagrams and determined positions of the participants in it, we can calculate the distance to the phase transitions.

This experiment calculates the distances to the phase transitions and write these to a file. Additionally, the phase diagrams with

approximated boundaries between and the positions of the participants are generated.

Experiment: Calculate Distance

c l e a r ; c l o s e a l l ;

%% Calcu la te d i s t ance to phase t r an s i t i o n , save data and p lo t p a r t i c i p an t s in phase diagrams

% Input : phase diagrams rough and phase d i ag rams re f i n ed

% Output : d i s t an c e s to phase t r a n s i t i o n s and p lo t o f the diagrams

responders = readmatrix ( 'Data/ Pa r t i c i pan t s / responders . dat ' ) ;
nonresponders = readmatrix ( 'Data/ Pa r t i c i pan t s / nonresponders . dat ' ) ;
l i s t p a r t i c i p a n t s = [ re sponders nonresponders ] ;

a l l s t a t s p = [ ] ;

% Subnetworks

f o r i = 1 :7

f o l d e r = s p r i n t f ( 'Data/Subnetworks/Subnetwork%d/phase diagrams rough ' , i ) ;

%% Co l l e c t phase diagrams , s t a t s p a r t i c i p an t s rough data

pd m = readmatr ix ( s p r i n t f ( '%s/pd m . dat ' , f o l d e r ) ) ;

pd q = readmatrix ( s p r i n t f ( '%s/pd q . dat ' , f o l d e r ) ) ;

pd ChiUni = readmatrix ( s p r i n t f ( '%s/pd chiUni . dat ' , f o l d e r ) ) ;

pd ChiSG = readmatrix ( s p r i n t f ( '%s/pd chiSG . dat ' , f o l d e r ) ) ;

mu l i s t = readmatrix ( s p r i n t f ( '%s/mu l i s t . dat ' , f o l d e r ) ) ;

s i gma l i s t = readmatrix ( s p r i n t f ( '%s/ s i gma l i s t . dat ' , f o l d e r ) ) ;

%% Determine bound between phase t r a n s i t i o n s

[ curve ch iUni ] = func ca lcu lateBoundUni ( pd ChiUni , mu l i s t , s i gma l i s t ) ;

[ curve chiSG ] = func calculateBoundSG (pd ChiSG , pd ChiUni , mu l i s t , s i gma l i s t ) ;

curve chiSG = [ curve chiSG ( 1 , : ) ; curve chiSG ( 2 , : ) − 1 . 5∗ ( s i gma l i s t ( end ) . . .

− s i gma l i s t ( 1 ) ) / l ength ( s i gma l i s t )∗ ones (1 , s i z e ( curve chiSG ( 2 , : ) , 2 ) ) ] ;

curve ch iUni = [ curve ch iUni ( 1 , : ) − 1 . 5∗ ( mu l i s t ( end ) . . .

− mu l i s t ( 1 ) ) / l ength ( mu l i s t )∗ ones (1 , s i z e ( curve ch iUni ( 1 , : ) , 2 ) ) ; curve ch iUni ( 2 , : ) ] ;

%% Co l l e c t r e f i n e d data

f o l d e r = s p r i n t f ( 'Data/Subnetworks/Subnetwork%d/ phase d iagrams re f ined ' , i ) ;

pd m = readmatr ix ( s p r i n t f ( '%s/pd m . dat ' , f o l d e r ) ) ;

pd q = readmatrix ( s p r i n t f ( '%s/pd q . dat ' , f o l d e r ) ) ;

pd ChiUni = readmatrix ( s p r i n t f ( '%s/pd chiUni . dat ' , f o l d e r ) ) ;

pd ChiSG = readmatrix ( s p r i n t f ( '%s/pd chiSG . dat ' , f o l d e r ) ) ;

mu l i s t = readmatrix ( s p r i n t f ( '%s/mu l i s t . dat ' , f o l d e r ) ) ;
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s i gma l i s t = readmatrix ( s p r i n t f ( '%s/ s i gma l i s t . dat ' , f o l d e r ) ) ;

s t a t s p = readmatrix ( s p r i n t f ( '%s/ s t a t s p . dat ' , f o l d e r ) ) ;

s t a t s p = [ s ta t s p , z e r o s ( s i z e ( s ta t s p , 1) , 2 ) ] ;

mean stats p = mean( s ta t s p , 1 ) ;

mean sigma = mean stats p ( 2 ) ;

mean mu = mean stats p ( 3 ) ;

%% Pro j ec t p a r t i c i p an t s on c r o s s s e c t i o n

ch iSG cross = in t e rp2 ( s i gma l i s t , mu l i s t , pd ChiSG , s i gma l i s t , mean mu ) ;

ch iUn i c r o s s = in t e rp2 ( s i gma l i s t , mu l i s t , pd ChiUni , mean sigma , mu l i s t ) ;

f i g 1 = f i g u r e ( ) ;

p l o t ( s i gma l i s t , ch iSG cross , ' LineWidth ' , 1 , 'Color ' , ' black ' )
hold on ;

f o r m = 1 : l ength ( l i s t p a r t i c i p a n t s )

pos = in t e rp1 ( s i gma l i s t , ch iSG cross , [ s t a t s p (m, 2 ) ] ) ;

i f m <= length ( re sponders )

s c a t t e r ( s t a t s p (m, 2 ) , pos , ' r ' , 'o ' , ' f i l l e d ' ) ;
e l s e

s c a t t e r ( s t a t s p (m, 2 ) , pos , 'k ' , 'o ' , ' f i l l e d ' ) ;
end

end

x l ab e l (”\ sigma ” , ”FontSize ” ,20)

y l ab e l (”\ c h i {SG}” , ”FontSize ” ,20)

xlim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

ylim ( [ min (pd ChiSG , [ ] , ” a l l ” ) , max(pd ChiSG , [ ] , ” a l l ” ) ] )

hold o f f ;

f i g 2 = f i g u r e ( ) ;

p l o t ( mu l i s t , ch iUn i c ro s s ' , ' LineWidth ' , 1 , 'Color ' , ' black ' )
hold on ;

f o r m = 1 : l ength ( l i s t p a r t i c i p a n t s )

pos = in t e rp1 ( mu l i s t , ch iUn i c ro s s ' , [ s t a t s p (m, 3 ) ] ) ;

i f m <= length ( re sponders )

s c a t t e r ( s t a t s p (m, 3 ) , pos , ' r ' , 'o ' , ' f i l l e d ' ) ;
e l s e

s c a t t e r ( s t a t s p (m, 3 ) , pos , 'k ' , 'o ' , ' f i l l e d ' ) ;
end

end

x l ab e l (”\mu” , ”FontSize ” ,20)

y l ab e l (”\ c h i {Uni }” , ”FontSize ” ,20)

xlim ( [ mu l i s t (1 ) mu l i s t ( end ) ] ) ;

ylim ( [ min ( pd ChiUni , [ ] , ” a l l ” ) , max( pd ChiUni , [ ] , ” a l l ” ) ] )

hold o f f ;

%% Plot r e f i n e d phase diagrams

f i g 5 = f i g u r e ( ) ;

hold on

su r f ( mu l i s t , s i gma l i s t ' , pd ChiSG ' , EdgeColor=”none ”)

s c a t t e r 3 ( s t a t s p ( 1 : l ength ( re sponders ) , 3 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 2 ) , 100+ s t a t s p ( 1 : l ength ( responders ) , 6 ) , ' . ' , ' r ' ) ;
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s c a t t e r 3 ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 3 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 2 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 6) + 100 , ' . ' , 'w ' ) ;

p lo t3 (mean mu∗ ones ( l ength ( mu l i s t ) ) , s i gma l i s t ' , ch iSG cross ) ;

xlim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] ) ;

ylim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

x l ab e l (”\mu” , ”FontSize ” ,20)

y l ab e l (”\ sigma ” , ”FontSize ” ,20)

view (2)

ax i s square ;

colormap (” turbo ”)

co l o rba r ( ' southouts ide ' )
t i t l e ( '\ c h i {SG} ' ,” FontSize ” ,20)

hold o f f

f i g 6 = f i g u r e ( ) ;

hold on

su r f ( mu l i s t , s i gma l i s t ' , pd ChiUni ' , EdgeColor=”none ”)

s c a t t e r 3 ( s t a t s p ( 1 : l ength ( re sponders ) , 3 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 2 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 7)+ 100 , ' . ' , ' r ' ) ;
s c a t t e r 3 ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 3 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 2 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 7) + 100 , ' . ' , 'w ' ) ;

p lo t3 ( mu l i s t , mean sigma∗ ones ( l ength ( s i gma l i s t ) ) ' , c h iUn i c r o s s ) ;

xlim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] ) ;

ylim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

x l ab e l (”\mu” , ”FontSize ” ,20)

y l ab e l (”\ sigma ” , ”FontSize ” ,20)

colormap (” turbo ”)

view (2)

ax i s square ;

c o l o rba r ( ' southouts ide ' )
t i t l e ( '\ c h i {Uni } ' , ” FontSize ” ,20)

hold o f f

%% Determine d i s t ance from pa r t i c i p an t s to phase t r a n s i t i o n

f o r j = 1 : l ength ( s t a t s p )

mu = s t a t s p ( j , 3 ) ;

sigma = s t a t s p ( j , 2 ) ;

d i s tances SG = sqr t ( ( curve chiSG (1 , : ) . . .

− ones (1 , s i z e ( curve chiSG , 2 ) ) ∗ mu) . ˆ 2 + ( curve chiSG (2 , : ) . . .

− ones (1 , s i z e ( curve chiSG , 2) ) ∗ sigma ) . ˆ 2 ) ;

[ mininmal distance SG , index SG ] = min ( dis tances SG ) ;

d i s t ance s Un i = sq r t ( ( curve ch iUni (1 , : ) . . .

− ones (1 , s i z e ( curve chiUni , 2 ) ) ∗ mu) . ˆ 2 + ( curve ch iUni (2 , : ) . . .

− ones (1 , s i z e ( curve chiUni , 2 ) ) ∗ sigma ) . ˆ 2 ) ;

[ mininmal distance Uni , index Uni ] = min ( d i s t ance s Un i ) ;

s t a t s p ( j , 8 : 9 ) = [ mininmal distance SG , mininmal d i s tance Uni ] ;

end

a l l s t a t s p = [ a l l s t a t s p , s t a t s p ( : , 8 : 9 ) ] ;
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f i g 3 = f i g u r e ( ) ;

hold on

su r f ( mu l i s t , s i gma l i s t ' , abs (pd m ) ' , EdgeColor=”none ”)

s c a t t e r 3 ( s t a t s p ( 1 : l ength ( re sponders ) , 3 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 2 ) , . . .

abs ( s t a t s p ( 1 : l ength ( responders ) , 4))+ 100 , ' . ' , ' r ' ) ;
s c a t t e r 3 ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 3 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 2)+ . . .

abs ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 4 ) ) , 100 , ' . ' , 'w ' ) ;

colormap (” turbo ”)

c l im ( [ 0 . 0 1 , 1 ] ) ;

x l ab e l (”\mu” , ”FontSize ” ,20)

y l ab e l (”\ sigma ” , ”FontSize ” ,20)

xlim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] ) ;

ylim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

view (2)

ax i s square ;

c o l o rba r ( ' southouts ide ' )
t i t l e ( ' |m| ' , ” FontSize ” ,20)

hold o f f

f i g 4 = f i g u r e ( ) ;

hold on

su r f ( mu l i s t , s i gma l i s t ' , pd q ' , EdgeColor=”none ”)

s c a t t e r 3 ( s t a t s p ( 1 : l ength ( re sponders ) , 3 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 2 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 5)+ 100 , ' . ' , ' r ' ) ;
s c a t t e r 3 ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 3 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 2 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 5)+ 100 , ' . ' , 'w ' ) ;

colormap (” turbo ”)

c l im ( [ 0 . 0 0 0 1 , 1 ] )

xlim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] ) ;

ylim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

x l ab e l (”\mu” ,” FontSize ” ,20)

y l ab e l (”\ sigma ” ,” FontSize ” ,20)

view (2)

ax i s square ;

c o l o rba r ( ' southouts ide ' )
t i t l e ( 'q ' , ” FontSize ” , 2 0 ) ;

hold o f f

end

%% Whole−bra in

%% Co l l e c t phase diagrams , s t a t s p a r t i c i p an t s rough data

f o l d e r = 'Data/Whole−bra in / phase diagrams rough ' ;

pd m = readmatr ix ( s p r i n t f ( '%s/pd m . dat ' , f o l d e r ) ) ;

pd q = readmatrix ( s p r i n t f ( '%s/pd q . dat ' , f o l d e r ) ) ;

pd ChiUni = readmatrix ( s p r i n t f ( '%s/pd chiUni . dat ' , f o l d e r ) ) ;

pd ChiSG = readmatrix ( s p r i n t f ( '%s/pd chiSG . dat ' , f o l d e r ) ) ;

mu l i s t = readmatrix ( s p r i n t f ( '%s/mu l i s t . dat ' , f o l d e r ) ) ;

s i gma l i s t = readmatrix ( s p r i n t f ( '%s/ s i gma l i s t . dat ' , f o l d e r ) ) ;
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%% Determine bound between phase t r a n s i t i o n s

[ curve ch iUni ] = func ca lcu lateBoundUni ( pd ChiUni , mu l i s t , s i gma l i s t ) ;

[ curve chiSG ] = func calculateBoundSG (pd ChiSG , pd ChiUni , mu l i s t , s i gma l i s t ) ;

curve chiSG = [ curve chiSG ( 1 , : ) ; curve chiSG ( 2 , : ) − . . .

1 . 5∗ ( s i gma l i s t ( end ) − s i gma l i s t ( 1 ) ) / l ength ( s i gma l i s t )∗ ones (1 , s i z e ( curve chiSG ( 2 , : ) , 2 ) ) ] ;

curve ch iUni = [ curve ch iUni ( 1 , : ) − 1 . 5∗ ( mu l i s t ( end ) − . . .

mu l i s t ( 1 ) ) / l ength ( mu l i s t )∗ ones (1 , s i z e ( curve ch iUni ( 1 , : ) , 2 ) ) ; curve ch iUni ( 2 , : ) ] ;

%% Co l l e c t r e f i n e d data

f o l d e r = 'Data/Whole−bra in / phase d iagrams re f ined ' ;

pd m = readmatr ix ( s p r i n t f ( '%s/pd m . dat ' , f o l d e r ) ) ;

pd q = readmatrix ( s p r i n t f ( '%s/pd q . dat ' , f o l d e r ) ) ;

pd ChiUni = readmatrix ( s p r i n t f ( '%s/pd chiUni . dat ' , f o l d e r ) ) ;

pd ChiSG = readmatrix ( s p r i n t f ( '%s/pd chiSG . dat ' , f o l d e r ) ) ;

mu l i s t = readmatrix ( s p r i n t f ( '%s/mu l i s t . dat ' , f o l d e r ) ) ;

s i gma l i s t = readmatrix ( s p r i n t f ( '%s/ s i gma l i s t . dat ' , f o l d e r ) ) ;

s t a t s p = readmatrix ( s p r i n t f ( '%s/ s t a t s p . dat ' , f o l d e r ) ) ;

s t a t s p = [ s ta t s p , z e r o s ( s i z e ( s ta t s p , 1) , 2 ) ] ;

mean stats p = mean( s ta t s p , 1 ) ;

mean sigma = mean stats p ( 2 ) ;

mean mu = mean stats p ( 3 ) ;

%% Pro j ec t p a r t i c i p an t s on c r o s s s e c t i o n

ch iSG cross = in t e rp2 ( s i gma l i s t , mu l i s t , pd ChiSG , s i gma l i s t , mean mu ) ;

ch iUn i c r o s s = in t e rp2 ( s i gma l i s t , mu l i s t , pd ChiUni , mean sigma , mu l i s t ) ;

f i g 1 = f i g u r e ( ) ;

p l o t ( s i gma l i s t , ch iSG cross , ' LineWidth ' , 1 , 'Color ' , ' black ' )
hold on ;

f o r m = 1 : l ength ( l i s t p a r t i c i p a n t s )

pos = in t e rp1 ( s i gma l i s t , ch iSG cross , [ s t a t s p (m, 2 ) ] ) ;

i f m <= length ( re sponders )

s c a t t e r ( s t a t s p (m, 2 ) , pos , ' r ' , 'o ' , ' f i l l e d ' ) ;
e l s e

s c a t t e r ( s t a t s p (m, 2 ) , pos , 'k ' , 'o ' , ' f i l l e d ' ) ;
end

end

x l ab e l (”\ sigma ” ,” FontSize ” ,20)

y l ab e l (”\ c h i {SG}” ,” FontSize ” ,20)

xlim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

ylim ( [ min (pd ChiSG , [ ] , ” a l l ” ) , max(pd ChiSG , [ ] , ” a l l ” ) ] )

hold o f f ;

f i g 2 = f i g u r e ( ) ;

p l o t ( mu l i s t , ch iUn i c ro s s ' , ' LineWidth ' , 1 , 'Color ' , ' black ' )
hold on ;

f o r m = 1 : l ength ( l i s t p a r t i c i p a n t s )

pos = in t e rp1 ( mu l i s t , ch iUn i c ro s s ' , [ s t a t s p (m, 3 ) ] ) ;
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i f m <= length ( re sponders )

s c a t t e r ( s t a t s p (m, 3 ) , pos , ' r ' , 'o ' , ' f i l l e d ' ) ;
e l s e

s c a t t e r ( s t a t s p (m, 3 ) , pos , 'k ' , 'o ' , ' f i l l e d ' ) ;
end

end

x l ab e l (”\mu” ,” FontSize ” ,20)

y l ab e l (”\ c h i {Uni }” ,” FontSize ” ,20)

xlim ( [ mu l i s t (1 ) mu l i s t ( end ) ] ) ;

ylim ( [ min ( pd ChiUni , [ ] , ” a l l ” ) , max( pd ChiUni , [ ] , ” a l l ” ) ] )

hold o f f ;

%% Plot r e f i n e d phase diagrams

f i g 5 = f i g u r e ( ) ;

hold on

su r f ( mu l i s t , s i gma l i s t ' , pd ChiSG ' , EdgeColor=”none ”)

s c a t t e r 3 ( s t a t s p ( 1 : l ength ( responders ) , 3 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 2 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 6)+ 100 , ' . ' , ' r ' ) ;
s c a t t e r 3 ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 3 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 2 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 6)+ 100 , ' . ' , 'w ' ) ;

p lo t3 (mean mu∗ ones ( l ength ( mu l i s t ) ) , s i gma l i s t ' , ch iSG cross ) ;

xlim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] ) ;

ylim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

x l ab e l (”\mu” ,” FontSize ” ,20)

y l ab e l (”\ sigma ” ,” FontSize ” ,20)

view (2)

ax i s square ;

colormap (” turbo ”)

co l o rba r ( ' southouts ide ' )
t i t l e ( '\ c h i {SG} ' , ” FontSize ” ,20)

hold o f f

f i g 6 = f i g u r e ( ) ;

hold on

su r f ( mu l i s t , s i gma l i s t ' , pd ChiUni ' , EdgeColor=”none ”)

s c a t t e r 3 ( s t a t s p ( 1 : l ength ( responders ) , 3 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 2 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 7) + 100 , ' . ' , ' r ' ) ;
s c a t t e r 3 ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 3 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 2 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 7)+ 100 , ' . ' , 'w ' ) ;

p lo t3 ( mu l i s t , mean sigma∗ ones ( l ength ( s i gma l i s t ) ) ' , c h iUn i c r o s s ) ;

xlim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] ) ;

ylim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

x l ab e l (”\mu” ,” FontSize ” ,20)

y l ab e l (”\ sigma ” ,” FontSize ” ,20)

colormap (” turbo ”)

view (2)

ax i s square ;

c o l o rba r ( ' southouts ide ' )
t i t l e ( '\ c h i {Uni } ' ,” FontSize ” ,20)
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hold o f f

%% Determine d i s t ance from pa r t i c i p an t s to phase t r a n s i t i o n

f o r j = 1 : l ength ( s t a t s p )

mu = s t a t s p ( j , 3 ) ;

sigma = s t a t s p ( j , 2 ) ;

d i s tances SG = sqr t ( ( curve chiSG (1 , : ) − ones (1 , s i z e ( curve chiSG , 2 ) ) ∗ mu) . ˆ 2 + . . .

( curve chiSG (2 , : ) − ones (1 , s i z e ( curve chiSG , 2) ) ∗ sigma ) . ˆ 2 ) ;

[ mininmal distance SG , index SG ] = min ( dis tances SG ) ;

d i s t ance s Un i = sq r t ( ( curve ch iUni (1 , : ) − ones (1 , s i z e ( curve chiUni , 2 ) ) ∗ mu) . ˆ 2 + . . .

( curve ch iUni (2 , : ) − ones (1 , s i z e ( curve chiUni , 2 ) ) ∗ sigma ) . ˆ 2 ) ;

[ mininmal distance Uni , index Uni ] = min ( d i s t ance s Un i ) ;

s t a t s p ( j , 8 : 9 ) = [ mininmal distance SG , mininmal d i s tance Uni ] ;

end

a l l s t a t s p = [ a l l s t a t s p , s t a t s p ( : , 8 : 9 ) ] ;

f i g 3 = f i g u r e ( ) ;

hold on

su r f ( mu l i s t , s i gma l i s t ' , abs (pd m ) ' , EdgeColor=”none ”)

s c a t t e r 3 ( s t a t s p ( 1 : l ength ( responders ) , 3 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 2 ) , . . .

abs ( s t a t s p ( 1 : l ength ( responders ) , 4 ) ) + 100 , ' . ' , ' r ' ) ;
s c a t t e r 3 ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 3 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 2 ) , . . .

abs ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 4 ) ) + 100 , ' . ' , 'w ' ) ;

colormap (” turbo ”)

c l im ( [ 0 . 0 1 , 1 ] ) ;

x l ab e l (”\mu” ,” FontSize ” ,20)

y l ab e l (”\ sigma ” ,” FontSize ” ,20)

xlim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] ) ;

ylim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

view (2)

ax i s square ;

c o l o rba r ( ' southouts ide ' )
t i t l e ( ' |m| ' , ” FontSize ” ,20)

hold o f f

f i g 4 = f i g u r e ( ) ;

hold on

su r f ( mu l i s t , s i gma l i s t ' , pd q ' , EdgeColor=”none ”)

s c a t t e r 3 ( s t a t s p ( 1 : l ength ( responders ) , 3 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 2 ) , . . .

s t a t s p ( 1 : l ength ( responders ) , 5) + 100 , ' . ' , ' r ' ) ;
s c a t t e r 3 ( s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 3 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 2 ) , . . .

s t a t s p ( l ength ( responders )+1: l ength ( l i s t p a r t i c i p a n t s ) , 5) + 100 , ' . ' , 'w ' ) ;

colormap (” turbo ”)

c l im ( [ 0 . 0 0 0 1 , 1 ] )

xlim ( [ mu l i s t ( 1 ) , mu l i s t ( end ) ] ) ;

ylim ( [ s i gma l i s t (1 ) s i gma l i s t ( end ) ] ) ;

x l ab e l (”\mu” ,” FontSize ” ,20)

144



y l ab e l (”\ sigma ” ,” FontSize ” ,20)

view (2)

ax i s square ;

c o l o rba r ( ' southouts ide ' )
t i t l e ( 'q ' , ” FontSize ” , 2 0 ) ;

hold o f f

%% Co l l e c t and save data

a l l s t a t s p = [ l i s t p a r t i c i p a n t s ' , a l l s t a t s p ] ;

l i s t o b s e r v a b l e s = [ ] ;

f o r i = 1 :7

l i s t o b s e r v a b l e s = [ l i s t o b s e r v a b l e s , [ s p r i n t f (” d i s t2SG s%d” , i ) , s p r i n t f (” d i s t 2Un i s%d” , i ) ] ] ;

end

l i s t o b s e r v a b l e s = [ l i s t o b s e r v a b l e s , [ ” dist2SG wb ” , ” dist2Uni wb ” ] ] ;

l i s t o b s e r v a b l e s = [” pa r t i c i p an t n r ” , l i s t o b s e r v a b l e s ] ;

t ab l e = ar ray2 tab l e ( a l l s t a t s p , 'VariableNames ' , l i s t o b s e r v a b l e s ) ;

s t a t s = readtab l e ( 'Data/ s t a t s p . csv ' ) ;
t ab l e = [ t ab l e s t a t s ( : , 2 : end ) ] ;

w r i t e t ab l e ( table , ' outputRPDA corrected subnetworks . csv ' ) ;

c l o s e a l l ;

Function: Calculate Boundary Between Paramagnetic and Spin-Glass Phase

%% Calcu la te the boundary between the paramagnetic and SG phase

% Input : phase diagrams

% Output : s e t o f po in t s that d e f i n e s the boundary

func t i on [ curve SG ] = func calculateBoundSG (pd ChiSG , pd ChiUni , pd mu , pd sigma )

res mu = s i z e (pd mu , 1 ) ;

r e s s i gma = s i z e ( pd sigma , 1 ) ;

bound SG = [ ] ; %sigma as a func t i on o f mu

% Remove over lap between chiUni and chiSG

pd ChiSG temp = pd ChiSG − 0 .5 .∗ pd ChiUni ;

% Determine where chiSG i s maximal

j = 1 ;

whi le j <= res mu

[ value , index ] = max( pd ChiSG temp ( j , : ) ) ;

bound SG = [ bound SG , [ pd mu( j ) ; pd sigma ( index ) ] ] ;

i f index == res s i gma

break

end

j = j + 1 ;

end

% Fit a curve to the found po in t s

f = f i t t y p e ( ' exp2 ' ) ;
sp l ine SG = f i t ( bound SG ( 1 , : ) ' , bound SG ( 2 , : ) ' , f ) ;

% Return the curve

range SG = bound SG ( 1 , 1 ) : ( ( bound SG(1 ,2)−bound SG (1 , 1 ) ) /100000 ) : bound SG (1 , end ) ;

curve SG = f e v a l ( spl ine SG , range SG ) ;
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curve SG = [ range SG ; curve SG ' ] ;

curve SG = [ curve SG ( 1 , : ) ; curve SG ( 2 , : ) ] ;

end

Function: Calculate Boundary Between Para- and Ferromagnetic Phase

%% Calcu la te the boundary between the para− and fe r romagnet i c phase

% Input : phase diagrams

% Output : s e t o f po in t s that d e f i n e s the boundary

func t i on [ curve Uni ] = func ca lcu lateBoundUni ( pd ChiUni , pd mu , pd sigma )

res mu = s i z e (pd mu , 1 ) ;

r e s s i gma = s i z e ( pd sigma , 1 ) ;

%% Determine the boundar ies in the phase diagrams o f m and q

% In pd m : t r a n s i t i o n from m = 0 to m \neq 1 ;

% In pd q : t r a n s i t i o n from q = 0 to q > 0 ;

bound Uni = [ ] ; %mu as a func t i on o f sigma

% Determine where chiUni i s maximal

i = 1 ;

whi le i <= res s i gma

[ value , index ] = max( pd ChiUni ( : , i ) ) ;

bound Uni = [ bound Uni , [ pd mu( index ) ; pd sigma ( i ) ] ] ;

i f index == res mu

break

end

i = i + 1 ;

end

% Fit a curve to the found po in t s

f = f i t t y p e ( ' poly5 ' ) ;
s p l i n e Un i = f i t ( bound Uni ( 2 , : ) ' , bound Uni ( 1 , : ) ' , f ) ;

range Uni = bound Uni ( 2 , 1 ) : ( ( bound Uni (2 ,2)−bound Uni ( 2 , 1 ) ) /100000 ) : bound Uni (2 , end ) ;

curve Uni = f e v a l ( sp l ine Un i , range Uni ) ;

curve Uni = [ curve Uni ' ; range Uni ] ;

curve Uni = [ curve Uni ( 1 , : ) ; curve Uni ( 2 , : ) ] ;

end

Entropy Analysis (MATLAB)
The entropy analysis was performed in MATLAB. In this section, we provide the experiment that computes the Permutation Fuzzy

Entropy (PFE) per ROI for each participant, including the averaging procedure. The algorithm for calculating the PFE of a signal is

provided separately.

Experiment: Compute Permutation Fuzzy Entropy (PFE)
%% Compute Permutation Fuzzy Entropy o f the fMRI s i g n a l s f o r each pa r t i c i p an t .

% Generates three output f i l e s :

% the PFE f o r each ROI ,

% fun c t i ona l network/ subnetwork

% and the whole−bra in network .

re sponders = readmatrix ( ' / . . . / Data/ Pa r t i c i pan t s / responders . dat ' ) ;
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nonresponders = readmatrix ( ' / . . . / Data/ Pa r t i c i pan t s / nonresponders . dat ' ) ;
l i s t p a r t i c i p a n t s = [ re sponders nonresponders ] ;

PFE all = [ ] ;

f o r k = l i s t p a r t i c i p a n t s

k

s i g n a l s = func readROISignal (k , 1 : 238 , 1 , 310 ) ;

temp = ze ro s (1 , s i z e ( s i gna l s , 1 ) ) ;

f o r i = 1 : s i z e ( s i gna l s , 1)

s i g n a l = s i g n a l s ( i , : ) ;

r = std ( s i g n a l ) ; %S im i l a r i t y t o l e r an c e

PFE = func computePFE ( s i gna l , 4 , 1 , 2 , 0 .25∗ r ) ;

%%Parameter cho i c e s as in Niu et a l (2020)

temp( i ) = PFE;

end

PFE all = [ PFE all , temp ' ] ;
end

%% Write r e s u l t s to output . csv , i n c l ud ing s t a t s p a r t i c i p an t s

r e s u l t s a l l = [ l i s t p a r t i c i p a n t s ' , PFE all ] ;

l i s t ROI s = [ ] ;

f o r i = 1 : s i z e ( PFE all , 2)

l i s t ROI s = [ l i s t ROIs , s p r i n t f (”ROI %d” , i ) ] ;

end

l i s t ROI s = [” pa r t i c i p an t n r ” , l i s t ROI s ] ;

t ab l e = ar ray2 tab l e ( r e s u l t s a l l , 'VariableNames ' , l i s t ROI s ) ;

s t a t s = readtab l e ( ' / . . . / Data/ s t a t s p a r t i c i p a n t s . csv ' ) ;
t ab l e = [ t ab l e s t a t s ( : , 2 : end ) ] ;

w r i t e t ab l e ( table , ' outputPFE . csv ' ) ;

%% Write r e s u l t s to output f i l e averaged over wb

r e s u l t s a l l = [ l i s t p a r t i c i p a n t s ' , mean( PFE all , 2 ) ] ;

t ab l e = ar ray2 tab l e ( r e s u l t s a l l , 'VariableNames ' , [ ” p a r t i c i p an t n r ” , ”wb ” ] ) ;

t ab l e = [ t ab l e s t a t s ( : , 2 : end ) ] ;

w r i t e t ab l e ( table , ' outputPFE wb . csv ' )

%% Write r e s u l t s to output f i l e per subnetwork , i n c l ud ing s t a t s p a r t i c i p an t s

labe l subn ROI = readmatrix ( ” / . . . / Brainnetome ROIs network labels Yeo . x l sx ” ) ;

t emp re su l t s subn = [ label subn ROI ' ; PFE all ] ;

r e s u l t s s ubn = [ ] ;

f o r i = 1 :7

temp = a l l ( t emp re su l t s subn (1 , : ) == i , 1 ) ;

r e s u l t s s ubn = [ r e su l t s subn , mean( temp resu l t s subn ( 2 : end , temp ) , 2 ) ] ;

end

r e s u l t s s ubn = [ l i s t p a r t i c i p a n t s ' , r e s u l t s s ubn ] ;

l i s t s u b n = [ ] ;
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f o r i = 1 : s i z e ( r e su l t s subn , 2) − 1

l i s t s u b n = [ l i s t s ubn , s p r i n t f (” subnetwork %d” , i ) ] ;

end

l i s t s u b n = [” pa r t i c i p an t n r ” , l i s t s u b n ] ;

t ab l e = ar ray2 tab l e ( r e su l t s subn , 'VariableNames ' , l i s t s u b n ) ;

s t a t s = readtab l e ( ' / . . . / Data/ s t a t s p a r t i c i p a n t s . csv ' ) ;
t ab l e = [ t ab l e s t a t s ( : , 2 : end ) ] ;

w r i t e t ab l e ( table , ' outputPFE subnetworks . csv ' ) ;

Function: Compute Permutation Fuzzy Entropy (PFE)
%% Calcu la te permutation entropy

% Input : s i gna l , order o f permutation entropy /

embedding dimension pm, delay time o f permutation

% entropy tau , phase space dimension m and s im i l a r t o l e r an c e r .

% Output : permutation fuzzy entropy .

func t i on [PFE] = func computePFE ( s i gna l , pm, tau , m, r )

B = length ( s i g n a l ) ;

l i s t p e rmu t a t i o n s = perms ( 1 :pm) ;

U(B−(pm−1)∗ tau ) = 0 ; %I n i t i a l i z e phase space .

%Phase space r e c on s t ru c t i on f o l l ow ing as f o r PE

f o r i = 1 :B−tau ∗(pm−1)

[ a , i n d i c e s ] = so r t ( s i g n a l ( i : tau : i+tau ∗(pm−1)) ) ;

f o r j = 1 : l ength ( l i s t p e rmu t a t i o n s )

i f ( abs ( l i s t p e rmu t a t i o n s ( j , : ) − i n d i c e s ) ) == 0

U( i ) = j ;

break

end

end

end

%For the newly obtained time s e r i e s U( i ) ( i =1 , . . . ,B−(pm−1)∗ tau ) , the

%fuzzy entropy i s c a l c u l a t ed .

PFE = log ( phi (U, m, r ) ) − l og ( phi (U, m+1, r ) ) ;

end

%% CalculateFuzzy Entropy o f s i g n a l U

func t i on [ r e s ] = phi (U, m, r )

N = s i z e (U, 2 ) ; %Length time s e r i e s .

X(m, N) = 0 ;

X0(N) = 0 ;

%Calcu la te X0

f o r i = 1 :N−m+1

X0( i ) = mean(U( i : i+m−1)) ;

end

%Phase space r e c on s t ru c t i on

f o r i = 1 :N−m+1

X( : , i ) = U( i : i+m−1) − X0( i ) ;

end

%Calcu la te d i s t ance between vec to r s Xiˆm and Xjˆm

d(N−m+1, N−m+1) = 0 ;

f o r i = 1 : s i z e (d , 1 )

f o r j = 1 : s i z e (d , 2 )
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i f i ˜= j

d( i , j ) = max( abs (X( : , i ) − X( : , j ) ) ) ;

end

end

end

n = 2 ;

D = exp(−(d ) . ˆ n/ r ) ;

r e s = sum(D, ” a l l ” ) / ( (N−m−1)∗(N−m) ) ;

end
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