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1 Abstract

Understanding the relationships between organisms and their environment is crucial for the conserva-
tion of species and ecosystems all over the world. In ecology, relationships between organisms and their
environment are typically obtained from correlation-based analyses of observational data. However,
understanding ecological processes and developing strategies to maintain them requires knowledge on
causation rather than correlation. Since causality between organisms and their environment is difficult
to study using observational data, ecologists may need advanced computational techniques to identify
causal relationships. In particular, the field of causal discovery offers a smorgasbord of algorithms to
establish causal relationships from observational data. Nonetheless, causal discovery algorithms have
not yet been widely adopted in ecology. In this review, we (1) introduce the concepts of causality
and causal discovery algorithms, (2) review the use of causal discovery algorithms in ecology, and (3)
present a perspective on the use of causal discovery algorithms and the interpretation of causality in
ecology, illustrated by the field of animal movement research.

So far, ecological studies have used causal discovery algorithms to establish causal relationships
between organisms and meteorological factors, and to identify causal interactions between species. The
most popular causal discovery algorithm in ecology is convergent cross mapping, which requires time
series data. Ecological studies often study causal links to a single response variable of interest, whereas
fewer studies consider causal links between more variables and create a causal network. Notably,
ecological interpretation of causal links can be hampered by changes in the strength and effect (positive
or negative) of the causal relationship over time or differences between observations.

To improve the interpretation of causal links in ecology, we identify three concepts that should
be considered in ecological causality research: First, we argue for a network-based approach in which
causal links between multiple variables are considered, because this could identify variables that mod-
ulate causal relationships between other variables. Second, we stress that causes may differ between
time scales. Third, individual heterogeneity may hamper the interpretation of causal relationships.
Overall, broader use of causal discovery algorithms in ecology can increase our understanding of the
relationships between organisms and their environment, which could in turn help to conserve ecosys-
tems.

2 Layperson’s summary

As global biodiversity is declining, it is important to understand how organisms and their environment
affect each other. Ecology studies the relationships between organisms, such as animals and plants,
and their environment. The environment of an organism includes other organisms, but also non-living
factors, such as rainfall or sunlight. For example, ecologists could ask whether plant growth increases
or decreases when there is more rainfall. To study this, ecologists measure both the amount of rainfall
and the amount of plant growth for a certain period of time. If the amount of plant growth always
increases with the amount of rainfall, or the amount of plant growth always decreases with the amount
of rainfall, there is a correlation between plant growth and rainfall.
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Importantly, a correlation between plant growth and rainfall does not mean that plant growth
increases because there is more rain, or rainfall increases because there is more plant growth. Indeed,
there could be a third factor that causes both rainfall and plant growth to increase. Therefore, ecolo-
gists mainly report correlations between factors, instead of claiming that one factor causes the other.
However, knowing which factors cause others to change is important to understand the functioning of
an ecosystem, and to develop methods to protect endangered species.

Recently, computer methods have been developed that can tell whether one factor is a cause of
another factor, based on measurements of the two factors. These methods are called causal discovery
algorithms. Notably, causal discovery algorithms are not yet widely used in ecology. In this article,
we aim to show how causal discovery algorithms can be useful in ecology, and what the advantages
and disadvantages are. To that end, we first explain the concepts of correlation, causality and causal
discovery algorithms. Next, we review how causal discovery algorithms have been used in ecology
so far. Third, we discuss how the results of a causal discovery algorithm can be understood in their
ecological context. Therefore, we take the field of animal movement research as an example.

Causal discovery algorithms in ecology are mainly used to understand how weather conditions affect
living organisms and how living organisms interact with each other. Notably, ecological studies mostly
look at causal relationships between two factors. However, ecosystems consist of many living and
non-living factors. We argue that ecological studies should consider causal relationships between many
different factors, to get a more complete image of the ecosystem. Moreover, we stress that ecologists
should take into account the timescale of a causal effect. For example, the cause of daily movement of
an animal may be different than the cause of annual migration. Finally, the causes of movement may
differ between animals. Therefore, it is important to distinguish between causes of movement of an
individual and causes of movement of a group. Overall, causal discovery algorithms are a promising
new tool to understand causal relationships between organisms and their environment. This could
help to develop methods to protect species and the ecosystems they live in.

3 Introduction

All life on Earth is shaped by the environment it lives in, and in turn affects its environment. Since
ecosystems all over the world are facing biodiversity loss, it is important to understand the inter-
actions between organisms and their environment [1]. In ecology, relationships between variables in
an ecosystem are often studied by measuring correlations between variables in observational data,
such as weather conditions, resource availability and animal behaviour [2]. Additionally, mechanistic
models can be used to describe ecological phenomena based on assumptions or hypotheses about the
interactions between organisms and their environment [3][4][5].

Notwithstanding the insights obtained from correlation-based analyses of observational data as well
as mechanistic models, these methods do not provide insight into the causal relationships underlying
ecological processes. Nevertheless, causal terminology such as ’drive’, ’affect’, or ’influence’ is frequently
used to describe a link between two correlated variables, implying a causal relationship without a
theoretical underpinning [6]. Furthermore, modeling efforts may prioritize prediction of a response
variable over identifying causation. Importantly, the best predictive model is not necessarily the
model that describes the causal network underlying an effect [7]. Overlooking this could lead to claims
of causation with a lack of theoretical foundations. Therefore, novel methods are needed to establish
causal relationships in ecology.

With the rise of big data analysis in the life sciences, the number of computational techniques
available to biologists has expanded [8]. In particular, causal discovery algorithms have been developed
to establish causal relationships purely based on observational data [9][10]. Indeed, this would enable
ecologists to identify not only correlation but also causation from observational data, without the need
for controlled experiments. Although causal discovery algorithms are extensively used in molecular
biology, their applications in ecology have remained limited so far [11][12].

In this review, we aim to show the potential of causal discovery algorithms for ecology. To that end,
we first provide a brief introduction to causal discovery. Second, we review the use of causal discovery
algorithms in ecology so far. In the last part of this review, we present a perspective on the wider use
of causal discovery algorithms in ecology. Therefore, we take a case of a field where causal discovery
algorithms, to our knowledge, have not been used yet, but could be of great benefit: animal movement.
Using animal movement as an example, we highlight three concepts to aid the interpretations of causal
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relationships in ecology.

4 Causality and causal discovery

The study of biology, as many sciences, is filled with associations between variables that follow from
observational studies. Plant growth and daylight, heart rate and physical activity, humidity and
bacterial growth might lead to neat diagonal lines when plotted against each other. Yet, finding a
correlation between two variables does not answer any question other than whether the two variables
are associated, while ever so often, the question of interest is a different one: Does variable A cause a
change in variable B? [6]

Traditionally, causal questions in biology are studied using controlled experiments [13]. If a change
in B occurs in the presence of a change in A, but not in the absence of a change in A, and all other
factors are the same, then a change in Amay be identified as a cause of a change in B [14]. Importantly,
a controlled experiment adjusts for the possibility that A does not cause B, but both A and B are
caused by a confounding variable C. Although setting up a controlled experiment can be feasible in
molecular biology, relationships between organisms and their environment are difficult to simulate in
a laboratory. Therefore, ecological research typically involves obtaining correlations between variables
from observational data, and the possibility of confounding cannot be ruled out [6].

In lack of controlled experiments, causality between variables in ecology may be identified using
causal discovery algorithms. (As the definitions and use of causal discovery and related concepts in
literature differ, see Box 1 for an overview of the terminology used in this review.) Causal discovery
algorithms aim to identify causal structures from observational data. Starting with a dataset with
variables, the causal discovery algorithm infers whether the variables are causally related or not, and if
so, what is the direction of the causality. Importantly, the field of causal discovery offers a wide range
of causal discovery algorithms, that vary in terms of the computational procedures and assumptions
underlying them [9][10]. To illustrate how causality could be established from observational data,
we give an example of a causal discovery algorithm that requires time series data, convergent cross
mapping, in Box 2. In general, convergent cross mapping states that if variable A is causally linked
to variable B, then a trace of variable A should be found in the time series data of variable B [10].
However, it should be noted that other causal discovery algorithms can take very different approaches,
and discussing all of them is beyond the scope of this review. For an extensive review of different
causal discovery algorithms, the reader is referred to e.g. [9] and [11].
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Box 1: Correlation, causality and causal discovery.

A correlation between two variables A and B implies that A and B tend to increase or
decrease together (Figure 1a). Notably, correlation is not sufficient to establish a causation,
nor is a correlation required to establish a causation. A causal relationship between A and
B may be established if B changes in the presence but not in the absence of A, while all
other variables that could possibly affect B do not change [14]. A causal relationship can be
interpreted in terms of its direction (does A cause B, or does B cause A, or do A and B
cause each other), its strength (what is the size of the effect of the causal variable on the
response variable), and whether its effect on the response variable is positive or negative. If A
and B correlate but are not causally related, the correlation between A and B is spurious. A
spurious correlation can be a sign of confounding, in which a third variable C has a causal
relationship with both A and B (Figure 1b). The causal relationships between variables can
be shown in a causal network [9].

Figure 1: Inferring relationships between variables from observational data. (a) A
correlation between variables A and B. (b) Arrows indicate causal relationships. A confounding
variable C causes both A and B.

The aim of causal discovery is to infer causal relationships from observational data. Causal
discovery is not to be confused with causal inference. Causal inference assumes causality
between two variables in a data set and then tests the strength and the effect of the causal
relationship, while causal discovery does not assume that any of the variables in the data
set are causally related [15][16]. Although causal discovery generally refers to computational
methods to infer causality from observational data, the terms causal structure discovery and
computational causal discovery are sometimes used to describe causal discovery explicitly by
means of computational methods [17][12].
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Box 2: Convergent cross mapping.

Convergent cross mapping is a causal discovery algorithm that requires time series data.
Convergent cross mapping is based on dynamical systems theory. Dynamical systems theory
states that there is a causal relationship between two variables A and B in the time series data
set if A and B originate from the same dynamical system. If A and B originate from the same
dynamical system, A and B have a common attractor manifold [10].

Convergent cross mapping creates a manifold for the data points of A and another
manifold for the data points of B (Figure 2). Thus, for every time index in the data set,
a data point of variable A and a data point of variable B are found on the two manifolds,
respectively. Next, convergent cross mapping assesses whether the time indices of points that
are close to each other in the manifold of A can be used to find points that are close to each
other in the manifold of B, and vice versa. This procedure is called cross-mapping. The
estimation of B based on the time series values of A is evaluated by the cross-mapping skill,
which is the Pearson correlation coefficient between the observed values of B and the values
of B estimated using A. If A causes B, A can be estimated from the time series values of B [10].

Figure 2: Manifolds of a variable A (left) and a variable B (right). The blue lines
connect data points with the same time index. Modified from Sugihara et al. [10].

Importantly, convergence of the cross-mapping skill is crucial to establish a causal relationship
between A and B. This means that the more data points are available, i.e. the longer the
time series, the higher the cross-mapping skill for the estimation of A from B. The speed of
convergence, i.e. the improvement in the estimate of B with an increase in the length of the
time series of A, is a metric of the strength of the causal relationship [10].

5 Causal discovery algorithms in ecology

In molecular biology, causal discovery algorithms are a frequently used tool to uncover the causal
structures underlying networks of gene expression [11]. In contrast, the applications of causal discov-
ery algorithms in other fields of biology are much less explored. In ecology, causal discovery algorithms
are occasionally used to reveal causal effects of meteorological factors ([18][19][20]) or to unravel in-
teractions between species ([21][22][23]). Since observational data in ecology are often collected over
time, convergent cross mapping is frequently used as a causal discovery approach [18][19][20][21][23][24].
However, a few studies use different causal discovery algorithms, such as fast causal inference and ad-
ditive noise models, to infer causality from non-time series data [22][12]. In this section, we review the
applications of causal discovery algorithms in ecology, highlighting the possibilities and challenges of
the methodology.
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5.1 Discovering causality using time series data

5.1.1 Causal effects of meteorological factors

As ecology studies the relationships between organisms and their environment, causal links in ecology
could be identified between living organisms as well as between living organisms and abiotic factors,
such as temperature, precipitation and sunlight. The direction of causality between organisms and
meteorological factors is typically straightforward, e.g. sunlight may affect plant growth but the
opposite is unlikely. However, establishing which meteorological factor causes a change in a biotic factor
can be difficult, because seasonal change typically involves a change in multiple meteorological factors
and biological processes concurrently. This can lead to spurious correlations, and to a high number
of candidate causal variables for a seasonal biological process. In addition, laboratory experiments
designed to isolate the effect of a single meteorological factor may fail to account for interactions
between meteorological variables or seasonal change in a variable [19].

To reveal causal relationships between meteorological factors and biological processes, several stud-
ies have used convergent cross mapping [18][19][20]. For instance, Kitiyama et al. examined the effects
of meteorological factors, such as air temperature and rainfall, on the seasonality of production of leaf
litter in tropical rain forests [18]. Importantly, causing a change in a variable and causing seasonality
of a variable are two different concepts. For example, a causal variable may cause a change in the
response variable during a part of the year, but not be involved in seasonal changes of the response
variable in the rest of the year. Therefore, establishing a causal relationship between two variables
A and B is not sufficient to conclude that A is the cause of observed seasonal change in B. To find
the cause of the seasonality of leaf litter production, rather than merely identifying variables that can
affect leaf litter production irrespective of the seasonal pattern, Kitiyama et al. compare seasonality
of time series of potential causal variables to seasonality in time series of leaf litter production. As
a result, convergent cross mapping reveals air temperature, but not rainfall, as a cause of seasonality
in leaf litter production [18]. This highlights the possibility of causal discovery approaches to distin-
guish between temporally correlated and causal factors, and to assess whether a causal variable is also
causing the seasonal change of its response variable.

Even when two variables are causally related, the effect of a causal relationship may be dependent
on a third variable. For example, Nova et al. use convergent cross mapping to find out if rainfall and
temperature are causally linked to the incidence of dengue virus [19]. Both rainfall and temperature are
identified as causal factors of dengue incidence, but only when the population of susceptible individuals
is sufficiently large. This demonstrates that causal variables may be dependent on other variables to
have a causal effect. Moreover, although increase in temperature had a small median positive effect on
dengue incidence, increase in temperature could also lead to a decrease in dengue incidence. Likewise,
rainfall had a median negative effect on dengue incidence, but could also result in an increase in the
number of dengue cases [19]. Hypothetically, the effects of rainfall, temperature and possibly other
factors on dengue incidence are coupled. In turn, the interactions between different causal factors
might affect the net causal effect on dengue incidence.

The convergent cross mapping approaches discussed above do not explicitly consider the presence
of unmeasured variables that influence the effect on the response variable. Importantly, unmeasured
variables are not only potential causal factors, but they might also modulate the direction, strength
or effect of the causal relationship between two variables. In the study on dengue incidence discussed
above, rainfall could cause both an increase and a decrease in dengue incidence. Both high rainfall and
water storage in times of drought could lead to more still-standing water, offering a habitat for the
mosquitoes that transmit dengue virus [19]. Indeed, the effect of rainfall on dengue incidence could be
mediated by a third variable, still-standing water, that is caused by rainfall as well as human behavior.

In addition, this example shows that causal links between variables could be worth studying even
in the absence of a strong correlation. Namely, the effects of two causes may cancel out, so there is no
net observable correlation between each of the causal variables and the response variable. For instance,
if the effects of rainfall and water storage in times of drought cancel out, correlation-based methods
may fail to detect an association between rainfall and dengue incidence.

So far, ecological studies using convergent cross mapping have mainly focused on discovering causes
of a single response variable of interest [19][20][18][21]. To that end, the connections between the
response variable and the other variables in the data set are studied, while connections between the
other variables are typically not reported. However, understanding how an effect arises may require
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not only direct causal connections between the variable of interest and its causal variables. Indeed,
studying the interactions and possible causal effects between the causal variables enables the creation
of a causal network, providing insight into the causal processes underlying an observed effect. A causal
network could also help to improve predictions of an effect, for instance because it might reveal a
variable that modulates the effect of the causal relationship between two other variables.

Although convergent cross mapping is based on identifying whether two variables are causally
linked, it can also be used to create a causal network. If a data set contains N variables, convergent
cross mapping could assess all N(N−1)/2 variable pairs, and build a network based on the established
causal connections [10]. This approach could be especially useful in cases where multiple variables have
a causal relationship with the response variable, as that might suggest that the causal variables are
causally related to each other as well.

Since the number of possible causal links increases exponentially with the number of variables in
the data set, the amount of computational power required to analyse all possible connections between
variables can greatly outweigh the amount of power needed to analyse only links connected to one
variable. Further integration of ecology with expertise from big data analysis may be required to
address the procedure in a computationally efficient and time-efficient manner. Importantly, some
links between variables in the data set may not be relevant because they are ecologically nonsensical.
Therefore, ecologists need to decide which connections to study based on prior knowledge or intuition.
However, relationships between variables that do not make sense ecologically can still be useful as a
control to confirm that the causal discovery algorithm finds no causal relationship. For instance, the
causal discovery algorithm used in Nova et al. finds no causal effect of dengue incidence on rainfall
[19]. Overall, explicitly considering interactions between variables other than the response variable of
interest would be a logical step to do justice to ecological complexity and increase understanding of
causality in ecosystems.

5.1.2 Causal discovery to create species interaction networks

The interactions between different species in an ecosystem, such as a predator and a prey species, have
intrigued mathematical biologists for more than a century [25]. Although correlations between e.g. the
abundance of predator and prey species are intuitive, inferring causality from species interactions is
challenging. In this section, we discuss the applications of causal discovery methods to identify causal
links underlying species dynamics, i.e. the abundance of species over time.

Notably, causal discovery approaches to reveal causal relationships between species typically in-
volve more variables, and assess more interactions between variables, than studies on meteorological
variables. Indeed, convergent cross mapping and other causal discovery algorithms are used to create
networks of interactions between species rather than only establishing links directly connected to a
single response variable of interest [21][22][23]. Species dynamics may traditionally be studied from an
ecosystem perspective rather than from the perspective of a single species [26]. Therefore, it is logical
to assess causal links between multiple species rather than only focusing on a single species of interest.

In contrast to the meteorological effects discussed above, species interaction networks describe
connections where both the causal variable and the effect variable consist of living organisms. In
particular, the species of interest are often animals, meaning that they have the cognitive and physical
capacity to participate in complex behavioral patterns. This could be a reason why multiple causal
discovery studies on species dynamics report that causal interactions between species change over
time [21][23]. For instance, Ushio et al. analysed the interactions between fifteen fish species in a
community in Maizaru Bay, Japan, using convergent cross mapping on data collected over twelve
years [23]. Remarkably, the strengths of the interactions between the fish species generally follow a
seasonal pattern, with weaker interactions during summer and stronger interactions during winter.
The seasonal pattern might be explained by seasonal changes in primary production, species diversity,
or behaviour [23]. The cause of the seasonality in interaction strength between the fish species could
again be studied using a causal discovery algorithm. For instance, Kitayama et al. present an approach
to study the cause of seasonality in a variable [18]. Following Kitayama et al., the seasonality in time
series data on interaction strength between the fish species could be compared to seasonality in time
series data of one of the proposed causal variables, such as fluctuations in primary production.

Importantly, species interaction networks assess interactions between the collection of individuals
of a species in a community rather than behavior of individual members of a species. Extrapolating
interaction patterns at the level of the species to the level of the individual requires caution, because
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behavior can differ between individuals of the same species. Speculatively, behavior of a mere subset of
individuals from species A might give rise to a causal effect on the dynamics of species B, while other
individuals of species A do not participate in the behavior. Therefore, establishing a causal relationship
between individual-level behavior and interactions between species may be challenging. Heterogeneity
within the group of individuals from a species could result in variability in causal strength and type
(positive or negative) of a possible effect of individual behavior on interactions between species.

5.2 Causal discovery algorithms without time series data

Most ecological studies using causal discovery algorithms analyse time series data, and therefore they
can use convergent cross mapping. However, there are also causal discovery algorithms that can be
used to obtain causal relationships from non-time series data. Yet, other causal discovery algorithms
than convergent cross mapping are hardly applied in ecology [22][12]. Nevertheless, the few studies
that do apply them offer promising results and perspectives for future research on causal discovery in
ecology, so we include them briefly in this review.

To establish the direction of causality between generalism and abundance of species, Song et al. use
cross-sectional data sets on fish, plants and hummingbirds collected at different locations [12]. Both
causal discovery algorithms used, one based on an additive noise model and one based on information-
geometric inference, identify generalism as a cause of abundance and not the other way around. Im-
portantly, though, causality is assessed only between two variables - generalism and abundance - and
possible confounding variables are not considered. A causal network with more variables could be
created to identify possible confounding variables.

One approach to create a causal network from non-time series data is the causal discovery algorithm
called fast causal inference [14]. Mielke et al. use a fast causal inference algorithm to identify causal
relationships in freshwater ecosystems [22]. In contrast to convergent cross mapping, the fast causal
inference algorithm takes a network structure of variables as a starting point. In a nutshell, fast causal
inference starts with a network that connects every variable to every other variable in the data set,
and then removes a connection if the variables are conditionally independent. Next, the direction of
causality between the remaining connected variables is established. Notably, a causal link between two
variables can also be bidirectional. Mielke et al. present an example of a bidirectional link between two
plant species, which is interpreted as a sign of a confounding variable, water, that is causally related
to both plant species [22]. However, in other cases, a bidirectional causal link between two variables
may indicate a feedback loop rather than a confounding variable [24].

6 Conclusions and future perspectives

Traditional computational analyses of relationships between variables in ecology have been mostly
limited to correlation-based approaches (Figure 3a, first panel). Recently, the field of causal discovery
has been explored to identify causal relationships from observational ecological data, with convergent
cross mapping as the most popular approach. Causal discovery algorithms, mainly convergent cross
mapping, have been used in ecology to shed light on the causal links underlying the associations
between species and meteorological factors as well as interactions between species and species dynamics.
Interestingly, convergent cross mapping approaches have successfully unmasked causal relationships
from data sets with many temporally correlated variables, such as meteorological data. This is a
promising result, because ecological processes are often correlated with meteorological variables, and
many fields of ecology have not yet exploited the potential of causal discovery algorithms to determine
whether temporal correlation is underpinned by causality. Despite the fact that correlation is not a
prerequisite for causality, correlations between ecological factors may serve as a good starting point to
search for causal relationships.

Although causal discovery algorithms have successfully identified causal relationships between eco-
logical variables, interpretation of the causal relationship can be difficult. For example, a causal variable
can be positively associated to its response variable in one case but negatively in another [19], or the
strength of the causal relationship can change over time [23]. To better appreciate the implications of
a causal relationship between two variables in the ecological context, future work should focus not only
on identifying causal relationships, but also on understanding the variability in strength and effect of
the causal relationship over time or between individuals.
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To aid the interpretation of causal relationships in ecology, we identify three concepts: (1) studying
a causal network rather than a single variable of interest, (2) considering the time scale at which a
causal effect occurs, and (3) accounting for individual heterogeneity within a group of organisms. We
argue that these three concepts are widely applicable in ecology, including fields of ecology where causal
discovery algorithms have not yet been applied. Notably, some ecological studies already use causal
discovery algorithms to create causal networks [23][22]. However, to our knowledge, no ecological
studies have explicitly assessed the implications of time scale and individual heterogeneity in the
interpretation of causal links established by a causal discovery algorithm. Therefore, we illustrate
the potential of these two concepts by means of a field where causal discovery algorithms have not
been applied yet, but could be of great benefit: animal movement. As animal movement is a complex
behaviour associated with many internal and external factors, causal discovery algorithms could help
to understand what causes an animal to move.

6.1 Towards a network-based approach of causality in ecology

Remarkably, most ecological studies using causal discovery algorithms have focused on causal links to
a single response variable of interest (Figure 3). Although this limits the required amount of data and
computational power, focusing on causal relationships to a single response variable may hamper the
interpretation of a causal relationship in its ecological context. For instance, the strength and effect
(i.e. positive or negative) of a causal relationship can change over time, which is difficult to understand
when the causal variable remains unchanged. A possible explanation for variability in strength and
effect of a causal relationship could be the presence of an unmeasured variable that modulates the
causal relationship. Alternatively, the identified causal variables in a study may not only be causally
related to the response variable of interest, but also to each other.

To address these challenges, we argue for a network-based approach to causality in ecology, that
acknowledges the tight connections between ecological variables (Figure 3). To account for variables
that are difficult to measure, causal discovery algorithms should be explored that can identify hidden or
latent variables in a causal network, i.e. variables that are not in the data set [14]. Naturally, creating
causal networks requires more data and more computational power than focusing on connections
between one response variable and a few potential causal variables. However, integration of tools and
techniques from the field of data science may help ecology to exploit the potential of the data that is
already available [27]. Ideally, causal discovery algorithms should be added to the standard toolbox
of data analysis strategies used by ecologists, to stretch ecological data analysis far beyond traditional
correlation-based approaches. Moreover, future research should assess how correlation-based analyses,
mechanistic models and causal discovery algorithms could complement each other, and provide a
framework on when to use which approach. This way, ecological data can live up to its potential as
a big data science, following disciplines like molecular biology in which big data strategies are widely
adopted [27][11][8].

As with all interdisciplinary research, integration of data science methods in ecology comes at the
risk of mutual misunderstanding. From the perspective of ecologists, causal discovery algorithms may
lead to a black box effect in which a data set is put in and a causal relationship magically comes
out. On the contrary, data scientists might overlook the complexity of ecological systems and the
impossibility to fully capture biological organisms as nodes in a graph. Overcoming these challenges
requires close collaboration between ecologists and data scientists, guided by clear communication and
a willingness to learn about each other’s discipline.

6.2 Moving forward: Causality in animal movement research

In the next sections, we discuss challenges in the interpretation of ecological causal relationships regard-
ing the timescale of the causal link and individual differences between organisms. To our knowledge,
these two topics have not yet been explicitly addressed in ecological causal discovery literature. To
concretely illustrate the relevance of timescales and individual heterogeneity, we take the field of animal
movement research as an example. First, we provide a brief background of the need to study causality
in animal movement and how it has been studied so far. Second, we address challenges regarding the
interpretation of causality from time series data. Third, we highlight the importance of individual
heterogeneity within groups in interpreting causal relationships.

9



Approach Causal discovery algorithm Reference
Causation of a single response variable Convergent cross mapping [18]

Convergent cross mapping [19]
Convergent cross mapping [20]
Convergent cross mapping [21]

Causal network Convergent cross mapping [23]
Fast causal inference [22]

Figure 3: Strategies to understand relationships between ecological variables from ob-
servational data. (a) Correlation-based methods (first panel) are widely adopted in ecology. Causal
discovery approaches are occasionally used, but mostly focus on a single response variable of interest
(second panel). We encourage a network-based perspective on causal relationships in ecology (third
panel). Black arrows indicate causal relationships. (b) Examples of ecological studies using causal
discovery algorithms to study either causation of a single response variable (second panel in (a)), or
to create a causal network (third panel in (a)).

The ability to move from one place to another enables animals to find resources and reproductive
partners, and to escape predators and extreme weather conditions. At the same time, animal movement
plays a key role in seed dispersal, disease transmission and gene flow, and thereby in the maintenance
of biodiversity [28]. Thus, animal movement is intertwined with many different biological processes at
the individual level, the population level, and the ecosystem level [29]. Strikingly, animal movement
is strongly linked to human action, with a reduction of mammalian displacement up to a threefold in
areas heavily shaped by human activity compared to areas with low human activity [30]. Unraveling
the causes of animal movement is required to reveal any causal relationships between human activities
and animal movement. Consequently, understanding of the causes as well as the effects of animal
movement may help to develop conservation strategies and maintain biodiversity.

At the individual level, animal movement can be studied by considering (1) the internal state
of the animal, (2) motion, (3) navigation, and (4) factors external to the animal [31]. Using GPS
tracking data, animal movement has been associated with internal factors such as heart rate and
body size, as well as external factors like landscape and resource availability [32][33]. In addition to
correlations obtained from observational studies, mechanistic models have been proposed to explain
and predict movement patterns [4]. For instance, individual-based models simulating motion and
navigation behavior have successfully predicted bird migration patterns [5].
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6.2.1 Causality and time

To collect data on animal movement, animals can be equipped with a GPS tracker that follows their
location over time. Animal movement can be quantified using different metrics related to speed,
direction and displacement distance, such as the step size between two subsequent GPS locations in
the data set [34]. As a starting point, convergent cross mapping may be used to find causality between
an animal movement metric, e.g. step size, and a potential cause of animal movement for which time
series data are available, such as resource availability or a meteorological factor.

Analysis and collection of time series data on animal movement come with a number of challenges
(Figure 4). First, despite sophisticated GPS tracking technology, animal movement data frequently
contains gaps. Therefore, imputation of missing values may be performed using strategies previously
used to analyse movement data, or explore imputation methods specifically developed for causal dis-
covery algorithms and applied in different fields of biology [35][36].

Second, data collection on animal movement raises the question of how much time there should
be between two data points. Indeed, if an animal moves after the first measuring point but is back
at its initial location before the second measuring point, the movement of the animal will not be
registered. Hence, long time intervals between measurements can lead to an underestimation of the
displacement distance. On the other hand, small time intervals may lead to indistinguishable GPS
data points that are strongly affected by measurement errors [37]. Naturally, the maximum distance
an animal can move within one time interval depends on the species. Hypothetically, the time interval
between measurements could impact the patterning of the data set over time, and thereby whether
a causal relationship can be established or not. Therefore, data thinning may be used to enlarge the
time interval of an animal movement data set, and assess whether a larger time interval changes the
outcome of the causal discovery algorithm [38].

Finally, the total duration of the study, i.e. the time span covered by the measurements, might
affect whether animal movement and a variable of interest are causally linked. Importantly, movement
patterns on shorter and longer timescales may not have the same causes. For instance, a cause of daily
movement behavior is not necessarily a cause of seasonal migration. Moreover, causes of movement
could change over time. One way to distinguish between movement behavior on different time scales
would be to identify movement patterns from time series data (see [39] for methods) on different time
scales (e.g. weekly, monthly, yearly). Following the approach of Kitayama et al., convergent cross
mapping could be used to compare temporal patterns of animal movement to temporal patterns in
potential causal variables, and possibly identify a cause of a specific temporal movement pattern [18].

Figure 4: Time series data vary with respect to the total time span covered by the
measurements, the time interval between measurements (colored arrows), and missing
data (grey rectangles). The figure is not based on real data.
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6.2.2 Individual heterogeneity in cause and effect

Animal movement is not only studied at the level of the individual, but also at the level of the group,
where a group consists of multiple individuals (Figure 5a). Since animal movement within groups can
be heterogeneous, extrapolating causality of individual movement to explain group movement could
be incorrect [40][41]. Notably, the importance of individual heterogeneity in understanding group
movement might depend on the spatial scale of movement. For instance, on a small spatial scale,
individual movement heterogeneity could change the shape of a group because individuals move in
different directions. Moreover, group and individual movement could have causal feedback on each
other, e.g. because an individual adjusts its position to the shape of the group (Figure 5b). In this
case, a change in group spatial position or shape would be both a cause and a consequence of individual
movement. To test this, causal discovery algorithms may be used to analyse observational data on
both individual movement and group movement, and assess causal relationships in both directions.

In long-distance migration of a group, all individuals in the group simultaneously cover the same
distance in the same direction. Yet, observing similar outcomes for individuals within a group does not
mean that the cause is the same for all individuals in the group (Figure 5c). In theory, migration could
be initiated by a few members of the group, while others simply follow. This could reflect heterogeneity
of causes of movement within the group, where, for example, an internal factor causes movement of
one or two individuals. That could in turn cause movement of the rest of the individuals, that may
not even experience the internal factor that caused the others to move. Although this example is
theoretical and is therefore not necessarily true for any case of group migration, it illustrates that
heterogeneity in the causes of movement within a group should be considered, even if the effects are
the same for all individuals (Figure 5c).

Traditionally, mechanistic models have been used to study heterogeneity within groups and feedback
between biological levels [40][3]. However, mechanistic models generally seek for an explanation of the
data rather than unraveling the causal structures that generated the data [42]. Causal discovery
algorithms may help to identify causality between individuals and the group they belong to, e.g.
between the shape of the group and the movement of an individual, and between the movement of
individuals. Moreover, potential causal variables of movement should be studied in relation to different
individuals in a group, rather than extrapolating findings for one individual to all individuals or taking
the group mean. Indeed, a causal variable might have opposing effects on different individuals (Figure
5d). Hence, a weak or undetectable net effect of a causal link between two variables might be a sign
of individual heterogeneity regarding the response to the variable.

To identify heterogeneous causes within a group, separate causal networks may be created for dif-
ferent individuals rather than creating one network based on the group mean of a movement variable.
However, this approach is sensitive to measurement errors in the movement data of single individu-
als. Alternatively, observations from different individuals could be grouped beforehand based on the
correlation coefficient of the movement variable with the potential causal variable of interest. Yet,
an approach like this requires great caution as it decreases the sample size and comes at the risk of
pushing the analysis towards a specific result, and future research should focus on exploring methods
to study possible causal heterogeneity in animal movement.

6.3 Final remarks

Taken together, causal discovery algorithms are a promising tool to study causality in ecology. Causal
discovery algorithms have already uncovered causal effects of meteorological factors and species inter-
actions, mostly by means of convergent cross mapping. Close collaborations between ecologists and
data scientists could explore the use of more different causal discovery algorithms in more ecological
disciplines. To strengthen the position of causal discovery algorithms in ecology, future work should
adopt a network-based approach to causality in ecology. Moreover, future research should explicitly
take into account causality on different timescales and individual heterogeneity with respect to causes
as well as effects. This could enhance our understanding of the complex relationships found in ecosys-
tems, and help to conserve the variety of species found on Earth.
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Figure 5: Animal movement at the individual level and at the group level. (a) Animals can
be part of a group, for example a school of fish. (b) Group movement and individual movement could
be causally related to each other, and individual movement can be causally related to the movement
of other individuals in the group. (c) Causes (A and B, black boxes) of animal movement can differ
between individuals (green circles) in a group, even if the effect is the same. (d) A cause of group
movement does not necessarily have the same effect on all individuals in the group, e.g. because
group movement (yellow arrow) reflects a net effect of individuals moving in different directions (green
circles). In (c) and (d), vertical arrows indicate causal relationships, and horizontal arrows indicate
movement.
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