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Chapter 1

Introduction

Over the course of the 19th and 20th century, mathematics moved towards an increasingly abstract
approach, away from tangible and intuitive methods, and towards the general and axiomatic. In
some areas of mathematics, this journey has been well documented, we know who contributed and
what their motivations were to do so. In others this history is not so clear. One such area where its
development is rather unclear is that of affine spaces as a generalization of geometry and a distinct
topic within linear algebra.

The mathematical term affine was initially introduced by Euler in 1748 [7]. Almost a century
later, Mobiüs uses the term in his 1827 ‘Barycentrische Calcul’ [14], although he merely uses it
to describes a geometric relation in line with congruent and similar figures. For almost a century,
it is only this aspect of affinity, along with the transformations that preserve affinity, that gets
studied and further developed. The first person to work out affine geometry as a whole in detail is
Hermann Weyl [22], in his 1918 work ‘Space, Time, Matter’ [21]. In this work however, he himself
credits an “epoch-making” 1844 work for the systematic treatment of affine geometry in higher
dimensions, the ‘Ausdehnungslehre’ by Hermann Grassmann [8]. Some modern mathematicians
also recognize the affine approach in this work, and credit him as the first to develop this area of
mathematics [13,19]. Others are somewhat more critical, stating for instance that Grassmann had
created ‘empty generalizations’, which had yet to be given meaning by later mathematicians [23].
During his lifetime Grassmann’s work went largely unnoticed, and it was only towards the end of
the 19th century that his work started to gain recognition by mathematicians such as Klein, Lie
and Peano [6, 12,16].

In this thesis, I aim to shed some light on the development of affine geometry. I will focus in
particular on Grassmann’s work, to dissect what aspects of affine geometry he had developed and
what has been over-interpreted by modern readers. To do so, I will start by establishing what I
will consider as the ‘modern’ approach to affine geometry in chapter 2. This will form a reference
point to compare the historic approaches to. After this I will go over the approach by Weyl in
chapter 3, as his has been credited as the first modern approach. After analyzing what an early
modern approach could look like I will move on to Grassmann. In chapter 4 I will go into detail on
some of the mathematics Grassmann developed in his Ausdehnungslehre, and attempt to relate it
to modern concepts. I will focus in particular on the concepts of points and vectors and how these
interact, as well as the higher dimensional spaces he works in and their coordinate systems. In
chapter 5 I will discuss the concepts of quotients that Grassmann develops in the second edition of
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his work. These quotients can take the role of a transformation matrix, and share many properties
of square matrices like that of a determinant and eigenvalues. The concept behind them is however
rather different, and as such they are an excellent topic for a case study on how Grassmann’s
approach differs from the modern one. I will use this case study in particular to discuss some of
the advantages and disadvantages of Grassmann’s approach compared to the modern one.

In order to accurately represent the work done by Weyl and Grassmann, I will often cite segments
directly from English translations of their original works before discussing them further. These
citations are placed in textboxes to separate them from my original text. Hence, unless stated
otherwise, everything contained in textboxes is a direct citation, with the exception of the equation
numbering which follows the numbering of this thesis instead. For Weyl’s ‘Space, Time, Matter’ I
have used the 1922 translation by Henry L. Brose [21]. In the case of Grassmann I will reference
two works, the first being his 1844 ‘Die lineale Ausdehnungslehre’ (from here on referred to as
A1) and the second his 1862 ‘Die Ausdehnungslehre’ (from here on referred to as A2) in which
he shared his theory in a different format. For both of these I have used translations by Lloyd C.
Kannenberg [8, 10].

Grassmann’s work contains a lot of unfamiliar terms, both because he wrote his work before
vector analysis was fully developed, and because his work outside of mathematics left him limited
time to stay up to date with the language of his contemporaries. This made it a difficult read
not just for his contemporaries, but also for the modern reader. However, to distinguish between
Grassmann’s concepts and the modern ones, I will often be using his terms while discussing his
work. In appendix A I have included a list of some of the more commonly used terms and their
modern interpretation, to serve as a reading aid.

I would like to thank my thesis supervisor, Viktor Bl̊asjö, for suggesting this interesting topic, the
regular feedback and interesting discussions, as well as the support when I was unsure of how to
progress on my thesis.
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Chapter 2

Modern definition of affinity

In this thesis I will discuss several historical views of affinity, and compare them to a modern
perspective. However even from our modern perspective there are different ways one can approach
the topic of affinity, so for clarity and ease of comparison, I will fix one such definition here to refer
back to throughout the rest of the document.

2.1 Affine space

Definition 2.1.1 (Affine space). [20] Let k be a field, and V be a k-vector space. An affine space
over V is a set A together with an operation

A× V → A
P, v⃗ 7→ P ⊕ v⃗

satisfying the following axioms:

1. (Right identity) For all P ∈ A, P ⊕ 0⃗ = P .

2. (Associativity) For all P ∈ A, v⃗, w⃗ ∈ V, P ⊕ (v⃗ + w⃗) = (P ⊕ v⃗)⊕ w⃗.

3. (Subtraction) For any P,Q ∈ A there exists a unique v⃗ ∈ V such that P ⊕ v⃗ = Q. I will write
−−→
PQ to denote this vector.

I will call the elements of k scalars, the elements of V vectors and the elements of A points.

Now this definition of affine space has the axioms of vector space, such as the existence of an additive
identity, implied in it. Since these had not yet been established in the sources I will discuss, I will
also include this definition for ease of comparison:

Definition 2.1.2 (Vector space). [18] Let k be a field. A vector space over k is a nonempty set V
together with two operations

V× V → V (addition)

v⃗, w⃗ 7→ v⃗ + w⃗

k × V → V (scalar multiplication)

k, v⃗ 7→ kv⃗
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satisfying the following axioms:

1. For all u⃗, v⃗, w⃗ ∈ V, u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗

2. For all v⃗, w⃗ ∈ V, v⃗ + w⃗ = w⃗ + v⃗

3. There exists a 0⃗ ∈ V such that for all v⃗ ∈ V, 0⃗ + v⃗ = v⃗ + 0⃗ = v⃗

4. For each v⃗ ∈ V there exists w⃗ ∈ V such that v⃗ + w⃗ = w⃗ + v⃗ = 0⃗.

5. For all a ∈ k, v⃗, w⃗ ∈ V, a(v⃗ + w⃗) = av⃗ + aw⃗

6. For all a, b ∈ k, v⃗ ∈ V, (a+ b)v⃗ = av⃗ + bv⃗

7. For all a, b ∈ k, v⃗ ∈ V, (ab)v⃗ = a(bv⃗)

8. For all v⃗ ∈ V, 1v⃗ = v⃗

2.2 Affine transformation

Definition 2.2.1 (Affine transformation). [20] Let A be an affine space over the k-vector space V.
An affine transformation on A is a bijective map f : A → A which induces a linear map f̃ : V → V
such that for any point P and any vector v⃗,

f(P ⊕ v⃗) = f(P )⊕ f̃(v⃗)

As a linear map, f̃ also satisfies the properties that for all v⃗, w⃗ ∈ V, a ∈ k:

f̃(v⃗ + w⃗) = f̃(v⃗) + f̃(w⃗)

f̃(av⃗) = af̃(v⃗)

In other words, an affine transformation is a bijective endomorphism on an affine space with an
associated map on its vector space such that the two maps preserve the affine properties.

The study of affine geometry, then, is the study of those properties that remain invariant under
affine transformations.
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Chapter 3

Hermann Weyl’s ‘Space, Time,
Matter’

One of the first modern approaches to affine space is that of Hermann Weyl [22], in his 1918 ‘Space,
Time, Matter’ [21]. In this book, Weyl introduces affine geometry as a mathematical framework
for relativity theory. In the following sections, I will present Weyl’s affine geometry and how it
compares to our current understanding. Almost all of this is found in §2 of his book, aptly titled
“The Foundations of Affine Geometry”.

3.1 The foundation: points and vectors

Weyl begins his section on affine geometry by describing the objects of study, being vectors and
points, and some of their properties, after which he lists the axioms they should satisfy. He seems
to work in the context of space as a given, in which we naturally have points which seem to need no
further definition. Any displacement or translation is then named a vector, and quickly associated

with points, introducing the notation
−−→
PQ for the displacement that “transfers the point P to the

point Q”. After this, addition is introduced as the result of successive translations. Multiplication
and division by an integer are then derived from this concept of addition, and inverses and the nil-
vector with their familiar properties are introduced. Following that the concept of multiplication
is extended to fractional scalars, and finally through continuity to any real scalar.

After this brief intuitive introduction the axioms are introduced, first those of vectors (separated
into addition laws and scalar multiplication laws), and then those of points, or rather those of the
interaction between points and vectors. Weyl takes great care in separating points and vectors.
They have their own axioms and operations, vectors collectively form a vector field while points
collectively form a point-configuration, and vectors have components while points have co-ordinates
dependent on a chosen co-ordinate system. Although the two are similar, co-ordinates depend on
the origin of the system while components do not. In properties that hold for both, he is careful to
state them both and not identify the two. At the same time, they are intimately connected. The
relation that a vector transfers one point to another is introduced in the very first paragraph of §2,
and it takes an important role in Weyl’s view of affine transformations as we shall see in section
3.4.
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3.1.1 The axioms

Weyl first presents his axioms for vectors, or rather those of vector addition and scalar multiplica-
tion, and later follows with those for points and vectors. His axioms for vectors are as follows:

Vector axioms, addition and multiplication [21, p. 17]

Two vectors a and b uniquely determine a vector a + b as their sum. A number λ and a
vector a uniquely define a vector λa, which is “λ times a” (multiplication). These operations
are subject to the following laws:—

(α) Addition—

(1) a+ b = b+ a (Commutative Law).

(2) (a+ b) + c = a+ (b+ c) (Associative Law).

(3) If a and c are any two vectors, then there is one and only one value of x for which the
equation a+ x = c holds. It is called the difference between c and a and signifies c− a
(Possibility of Subtraction).

(β) Multiplication—

(1) (λ+ µ)a = (λa) + (µa) (First Distributive Law).

(2) λ(µa) = (λµ)a (Associative Law).

(3) 1a = a.

(4) λ(a+ b) = (λa) + (λb) (Second Distributive Law).

These axioms are almost identical to our modern axioms of a vector space as stated in definition
2.1.2. The only notable differences are the inclusion of a “Possibility of Subtraction” axiom, and the
absence of modern axioms 3. and 4. (existence of additive identity and additive inverse). However,
the Possibility of Subtraction axiom is equivalent to these two modern axioms: We know that it
follows from the axioms of a vector space that the inverse of any vector is unique. It follows, then,
that for any two vectors a⃗, c⃗ there is a unique vector x⃗ = c⃗+−a⃗ such that a⃗+x⃗ = c⃗. Conversely, from
Possibility of Subtraction one can obtain the existence of additive identity and inverses. First, for
some vector a it implies the existence of a vector that I will suggestively call 0, such that a+ 0 = a.
For any other vector b we know there exists some x such that a+ x = b. We then get that

b+ 0 = (a+ x) + 0 (def. of x)

= (x+ a) + 0 (Commutative Law)

= x+ (a+ 0) (Associative Law)

= x+ a (def. of 0)

= a+ x (Commutative Law)

= b (def. of x)

Hence, 0 serves as identity. Using Possibility of Subtraction with any vector a and 0 then easily
gives us the existence of an inverse 0− a = −a.

A little further, Weyl states one more vector axiom, namely his “Axiom of Dimensionality”, which
is conceptually different from how we treat modern vector spaces. Namely, he postulates:
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Axiom of Dimensionality [21, p. 19]

There are n linearly independent vectors, but every n+1 are linearly dependent
on one another,
or: The vectors constitute an n-dimensional linear manifold.

He states this axiom later as he first has to establish the concept of linear dependence and
dimensions, which I will discuss in section 3.2. We can however already observe how the inclusion
of this axiom changes the concept of Weyl’s spaces compared to our modern view. First of all, the
formulation of this axiom betrays a slightly different concept of axiomatization than we typically use.
Rather than stating the properties that hold for any vector space, Weyl seems to take an arbitrary
but specific space in mind before stating the axioms it satisfies. A more modern statement of this
axiom might have been:

“For any vector space V, there exists a positive integer n such that there exist n linearly
independent vectors in V, but every n+1 vectors are linearly dependent on one another.”

More importantly, this axiom requires that any space has some integer dimension, and therefore
rules out infinite-dimensional spaces. Also, although it is not explicitly stated, the further discussion
around these axioms suggests that he considers all scalars to be real numbers, hence his concept of
vector space is limited to Rn. For the purpose of his work this restriction is very reasonable. In
this chapter Weyl is establishing a vector system to discuss space-time, and finite dimensions with
real scalars suffice for this purpose.

With the vector axioms out of the way, Weyl proceeds to present his axioms for points and vectors:

Points and Vectors axioms [21, p. 18]

1. Every pair of points A and B determines a vector a; expressed symbolically
−−→
AB = a. If

A is any point and a any vector, there is one and only one point B for which
−−→
AB = a.

2. If
−−→
AB = a,

−−→
BC = b, then

−→
AC = a+ b.

After which he summarizes the objects and relations that occur, which will become relevant
when we consider affine transformations:

Fundamental categories of objects, fundamental relations [21, p. 18]

In these axioms two fundamental categories of objects occur, viz. points and vectors; and
there are three fundamental relations, those expressed symbolically by—

a+ b = c b = λa
−−→
AB = a (3.1)

The axioms on points and vectors are considerably less concise than those on vectors. The first

one in particular does double duty as both a definition of the relation
−−→
AB = a and the axiom of

the uniqueness of B in that relation given A and a. Furthermore, where a modern affine space is

typically defined through the addition relation⊕ : A⊕a = B, Weyl instead uses the relation
−−→
AB = a.
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This alternate definition with Weyl’s axioms is also used by some modern sources (cf. [15, p. 7])
and is indeed equivalent, as I will show below.

In order to prove the equivalence between Weyl’s axioms and the modern definition of affine
space in definition 2.1.1, we must first establish the ⊕ addition in Weyl’s space. Weyl’s first axiom
on points and vectors easily allows us to define this: Let A ⊕ a be that unique point B such that−−→
AB = a. Adopting this notation, Weyl’s axioms now read:

1. Every point A with any vector a determines a point B, denoted A⊕ a = B. If A and B are
any two points, there is one any only one vector a such that A⊕ a = B.

2. If A⊕ a = B,B ⊕ b = C, then A⊕ (a+ b) = C.

First, I will show that these axioms can be deduced from the modern ones. The first axiom now
starts simply with the definition of ⊕ as an operation instead. Its second part is equivalent to the
affine axiom of subtraction. The second axiom follows from the associative axiom of affine spaces:

A⊕ (a+ b) = (A⊕ a) + b

= B + b

= C

The reverse is a little bit more involved, as we have to show that the axioms of right identity,
associativity and subtraction follow from Weyl’s axioms. Subtraction is stated precisely in Weyl’s
first axiom, so right identity and associativity remain.

For right identity, let A,B be any two points. Then by Weyl’s first axiom there exist unique
vectors a, b such that A ⊕ a = A and B ⊕ b = A. Using Weyl’s second axiom, we get that
B ⊕ (b + a) = A. But then by definition of b we get that b = b + a, hence, by the vector axioms,
a = 0. Hence for any point P we have that p = 0 for that unique vector such that P ⊕ p = P , thus
necessarily that P ⊕ 0 = P .

Finally, for associativity, Let A be any point and a, b be any vectors, and suppose A ⊕ a = B
and B ⊕ b = C. Then we have by Weyl’s second axiom:

A⊕ (a+ b) = C

= B ⊕ b

= (A⊕ a)⊕ b

So indeed, with some change in notation, Weyl’s affine space is equivalent to our modern concept
of an affine space over Rn, and in fact his axioms represent any affine space where the associated
vector space is finite-dimensional.

3.2 Bases, coordinates and dimensions

In the section above I stated Weyl’s axiom of dimensionality without establishing his concept of
dimensions. In his work, he presents this axiom a little later, so as to first define dimensions using
the other axioms. He once again starts with an intuitive introduction, demonstrating how a straight
line, a plane and “all space” can be formed from a point and several vectors. After this introduction
he extends this to the formation of a higher dimensional space.
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Starting from an arbitrary point O and any non-zero vector e1, Weyl forms a straight line as the

collection of points P where
−−→
OP = ξ1e1 for some real number ξ1. Finding some arbitrary vector e2

that is not of the form ξ1e1 and considering all P such that
−−→
OP = ξ1e1 + ξ2e2 grants us a plane,

conceptualized from the affine perspective as obtained by “sliding one straight line along another”.
Continuing this process with a third vector (not of the form ξ1e1+ξ2e2), he then obtains “all space”.

In this intuitive build up Weyl relies on the intuition of a ‘given’ three-dimensional space, but
he lets go of this restriction for the definitions that follow. First he introduces the general concept
of linear independence:

Definition: linear independence, h-dimensional linear vector-manifold [21, p. 19]

A finite number of vectors e1, e2, . . . eh is said to be linearly independent if

ξ1e1 + ξ2e2 + · · ·+ ξheh (3.2)

only vanishes when all the coefficients ξ vanish simultaneously.
With this assumption all vectors of the form (3.2) together constitute a so-called h-
dimensional linear vector-manifold (or simply vector-field); in this case it is the one
mapped out by the vectors e1, e2, . . . eh.

With linear (in)dependence established, Weyl can introduce coordinate systems:

Definition: co-ordinate system, components, co-ordinates [21, p. 20]

A point O in conjunction with n linear independent vectors e1, e2, . . . , en will be called a
co-ordinate system (C). Every vector x can be presented in one and only one way in the
form

x = ξ1e1 + ξ2e2 + · · ·+ ξnen (3.3)

The numbers ξi will be called its components in the co-ordinate system (C). If P is any

arbitrary point and if
−−→
OP is equal to the vector (3.3), then the ξi are called the co-ordinates

of P .

The above definitions are essentially equivalent to the modern ones, aside from a few concepts
that are given a different name. The linearly independent vectors e1, e2, . . . , en form a basis, which,
together with an origin O make up the co-ordinate system. Each vector and point then has compo-
nents or co-ordinates that uniquely identify them in said co-ordinate system. Weyl also notes that
in affine geometry, there is nothing unique about any one co-ordinate system. He proceeds to show
that any other co-ordinate system O′; e′1, e

′
2, . . . , e

′
n is equivalent and shows how one can move from

one system to another, that is, how one can chance basis and origin, which I will further discuss in
section 3.3.

Weyl seems to be fairly comfortable using arbitrary (finite) dimensions, but is aware that this
may not be true for his readers. Before introducing h-dimensional manifolds he first uses the line,
the plane and space to build some intuition of how they would work, and right after his axiom
of dimensionality, he reminds his readers that n = 1, 2, 3 gives us affine geometry of the straight
line, the plane and space respectively. He justifies his n-dimensional approach by stating that from
a mathematical perspective, this restriction to three dimensions appears to be ‘accidental’, and
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should therefore not be used to develop geometry systematically. The straight line, plane and space
are to be considered just as special cases.

3.3 Change of basis

With the co-ordinate systems established, Weyl explains how one can find the co-ordinates of some
point or components of some vector in a co-ordinate system (O; e1, e2, . . . , en), given the co-ordinates
or components in another system (O′; e′1, e

′
2, . . . , e

′
n). That is, he derives a change-of-basis formula.

In modern notation we typically use matrix multiplication for the change of basis, together with
vector addition for the change of origin. Later in his work, Weyl demonstrates some use of this
approach. For the introduction of change-of-basis formulas however, he instead uses somewhat more
cumbersome summations. Aside from the notation, though, the formulas and their derivations are
essentially identical to the modern approach.

On page 21, Weyl derives them as follows: Since the ei form a co-ordinate system, we have
equations of the form

e′i =

n∑
k=1

akiek (3.4)

for all e′i, where the aki form a ‘number system’ with non-vanishing determinant since the e′i are
linearly independent. Now, suppose that ξi are the components for some vector x in the system
(O; e1, e2, . . . , en), and ξ′i the components of that same vector in the system (O′; e′1, e

′
2, . . . , e

′
n).

Substituting the equations (3.4) into
∑

i ξiei =
∑

i ξ
′
ie

′
i, he derives the relation

ξi =

n∑
k=1

aikξ
′
i (3.5)

Similarly, let xi be the co-ordinates of a point P in (O; e1, e2, . . . , en), x
′
i the co-ordinates of the

same point in (O′; e′1, e
′
2, . . . , e

′
n), and write ai for the co-ordinates of O′ in (O; e1, e2, . . . , en). The

x′
i then are the components of the vector

−−→
O′P , whereas xi − ai are the components of

−−→
OP −

−−→
OO′.

Since
−−→
O′P =

−−→
OP −

−−→
OO′, we can once again substitute the equations (3.4) to find that

xi =

n∑
k=1

aikx
′
k + ai (3.6)

He concludes that this type of notation allows for analytical treatment of affine geometry, where geo-
metrical relations between points and vectors are presented as relations between their co-ordinates
and components, of such a kind that they are not destroyed by the co-ordinate transformations
described by equations (3.5) and (3.6).

3.4 Transformations and matrices

Weyl uses the change-of-basis formulas as a starting point for discussing affine transformations, stat-
ing that equations (3.5) and (3.6) can also serve as a representation of affine transformation within
one established co-ordinate system. He then proceeds to define a linear or affine transformation:
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Definition: Affine transformations [21, pp. 21–22]

A transformation, i.e. a rule which assigns a vector x′ to every vector x and a point P ′ to
every point P , is called linear or affine if the fundamental relations (3.1) are not disturbed
by the transformation: so that if the relations (3.1) hold for the original points and vectors
they also hold for the transformed points and vectors:a

a′ + b′ = c′

b′ = λa′

−−−→
A′B′ = a′

and if in addition no vector differing from 0 transforms into the vector 0. Expressed in other
words this means that two points are transformed into one and the same point only if they
are themselves identical.

aThe English translation by Brose states
−−−→
A′B′ = a′ − b′ as the final relation. I have used the seventh

German edition for the version cited here.

Two figures that can be transformed into one another by such a transformation are said to be
affine, and considered identical in affine geometry. Affine properties then are precisely those that
are preserved by these transformations; linearly independent vectors remain independent, parallels
remain parallel.

This entire approach is very similar to our modern one from definition 2.2.1. Assigning points to
points corresponds to the map f on the affine space A, and assigning vectors to vectors corresponds
to the associated map f̃ on the underlying vector space V. Preserving the first two affine relations
simply means that f̃ must be a linear map, and the last property gives us precisely the relation
between f and f̃ . That is, if we translate that property to ⊕-notation like we did before, it now
states that if A⊕a = B, then A′⊕a′ = B′. This is identical to the relation f(P ⊕ v⃗) = f(P )⊕ f̃(v⃗)
that we require for modern affine maps. Thus, it is the preserving of affine properties that makes
this transformation an affine map.

Weyl claims without proof that his requirement of no vector other than 0 transforming to 0,
is equivalent to the transformation being injective on points. This is indeed correct, for suppose

A′ = B′ for any two points A,B. Then
−−−→
A′B′ = 0, but this means that in fact

−−→
AB = 0 hence

A = B. So the transformation is indeed injective on points. Furthermore the transformation is also
surjective: Any basis (O; e1, . . . , en) is transformed into another basis (O′; e′1, . . . , e

′
n) since none of

the ei get mapped to 0 and the linear independence relation is preserved through preserving the
affine relations. Using this new basis any point P can be written as P = O′ +

∑
i pie

′
i, and is

therefore the result after transforming the point O+
∑

i piei. Hence, the transformation is bijective
on points, precisely the last remaining condition on our affine map f to be an affine transformation.

Some slight differences still remain in notation: Weyl considers his transformation to act on
both the vectors and the points, rather than there being two related maps on the two different sets.
This reflects how Weyl seems to treat the point set and the vector field as two sides of the same
coin. Additionally, this transformation is called both affine and linear. This again makes sense from
the point of view where it acts both on the vectors and on points. The transformation on vectors
indeed fits the modern definition of a linear map, it is only the transformation on points that is
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affected by a translation and thus still affine but no longer linear.

In this introduction on transformations, each component or co-ordinate is determined by its own
sum. In modern notation, these can be condensed into one n×n matrix with the aki as its entries,
and in the case of points, also the addition of the vector with the ai as its entries. For the case of
linear vector transformations, Weyl does indeed introduce matrices later on:

Definition: Matrix [21, pp. 39–40]

A linear vector transformation makes any displacement x correspond linearly to another
displacement, x′, i.e. so that the sum x′+y′ corresponds to the sum x+y and the product λx′ to
the product λx. In order to be able to refer conveniently to such linear vector transformations,
we shall call them matrices. If the fundamental vectors ei of a co-ordinate system become

e′i =
∑
k

aki ek

as a result of the transformation it will in general convert the arbitrary displacement

x =
∑
i

ξiei into x′ =
∑
i

ξie′i =
∑
ik

aki ξ
iek.

We may therefore, characterise the matrix in the particular co-ordinate system chosen by
the bilinear form ∑

ik

aki ξ
iηk.

I will not go into the concept of “bilinear form” in this definition, but a bit more can be said
about the aki that appear throughout. These will eventually come to define the matrix. First they
are referred to simply as the components of the matrix (e.g. p. 49), and eventually they are even
deemed equal to the matrix, when for instance on page 139 he mentions “the rotation matrix (aik)”.

The use of matrices explains the mention of determinants in section 3.3 from a modern perspec-
tive, and indeed throughout his work we occasionally see the now familiar array notation of a matrix
in order to compute a determinant. This is however the only context he uses this array notation,
and in most other cases he prefers to refer to either summations or just the components instead.
Occasionally (e.g. p. 50), Weyl will refer to a matrix using a capital letter, and use it as a function.
This allows him to write A(x) = x′ to say that A transforms x into x′. From this he establishes
matrix multiplication, with BA(x) being the vector one obtains by applying first A and then B to
x, although the components of BA are once again given by a sum. All in all, it does seem like Weyl
did have many properties of matrices available to him, although his understanding of them was at
times different from how we would approach them now. His introduction using summations rather
than matrices, then, seems to have been a conscious choice rather than a limitation in the tools he
had available.
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Chapter 4

Hermann G. Grassmann’s
‘Ausdehnungslehre’

Although Weyl was one of the first to describe affine geometry in its modern form [22], that is
most certainly not where its history starts. For the longest time, however, the study of affine
geometry was limited to these affine transformations, often as just a special case of projective
transformations. It is all the more surprising, then, that some historians claim that affine geometry
was already developed back in the 1840s, by a man called Hermann Günther Grassmann [13, 19].
In the year 1844 Grassmann publishes the first edition of his Ausdehnungslehre (A1) [8]. In this
work he establishes ‘Extension Theory’, an entirely new discipline of mathematics with which he
aims to ‘complete’ a part he deemed missing from mathematics. His work went largely unnoticed,
for which he and his admirers give different reasons. Some arguments include that his work was too
philosophical for his fellow mathematicians, or that he was simply too far ahead of his time [19].
Indeed, those contemporaries that did receive his work, commented that it was too abstract, lacked
intuitive clarity, or that they disliked the philosophical abstractions [17, p. 38]. Grassmann himself
lamented that he was never able to obtain a position at a university, which greatly limited his
opportunities to share his work [8, p. 19].

In response to the criticisms, Grassmann publishes a second version in 1862 (A2) [10], in which
he takes a completely different approach. Since it seemed to be the philosophical approach that
was keeping contemporaries from reading A1, in A2 he opted for an Euclidean approach. He also
skipped many of the applications in physics that he had included in A1, as well as the sections that
he deemed to difficult or analytical [17, p. 70]. Where A1 might have been overly philosophical, A2
jumped to the other extreme. With little to no justification for the concepts introduced in his work,
his contemporaries failed to see the potential applications of the theory he developed. It was only
in the late 19th and early 20th century that his work became noticed, and he eventually obtained
somewhat of a cult following [4].

In this chapter I aim to dissect some of Grassmann’s work, particularly that contained in A1,
and compare it to our modern approach. In comparing these I hope to show whether Grassmann’s
posthumous credit for affine geometry is accurate, or whether people may have been too generous
in that regard. Any page references in this chapter will refer to A1, unless stated otherwise.
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4.1 Philosophy behind the Ausdehnungslehre

Grassmann’s Ausdehnungslehre (A1) [8] starts off with a philosophical introduction, in which he
describes his view of what pure mathematics is and how it should be organized. In his proposed
structure he points out that there is still an area that has not been covered, and with his book he
aims to develop the groundwork for this missing area of mathematics, completing the picture.

Grassmann describes pure mathematics as the “theory of forms” (“Formenlehre”), the study of
objects of thought (pp. 23–25). It sets itself apart from other sciences in that its objects of study
(‘forms’) do not exist independently from thought, which groups it together only with logic. It is
then separated from logic as the study of the ‘particulars’, where logic studies the general laws of
thought. He proceeds to observe that by this definition, geometry is not a mathematical discipline,
as its objects of study (space, lengths, areas) exist independently from our thought. With his
extension theory his intention is to generalize geometry into a discipline of pure mathematics, such
that geometry will become just one of the applications of this science.

From here he continues to describe two axes along which disciplines of the theory of forms can
be categorized, determined by how their object of study is generated from an initial element, and
how the generated objects relate to each other. The first axis is that of discrete versus continuous
generation (p. 25). On the one hand we have discrete generation, where the form is generated by
distinct repeated acts of applying an operation and placing the result. An example of this would
be the natural numbers. For continuous generation on the other hand the operation and placing
‘blend together’ to create a continuous stream of becoming, as we might see in functions, or in
Grassmann’s terms; magnitudes.

The second axis details how forms relate to others in its particular area of mathematics. Here
he distinguishes the study of equals versus the study of differents, calling the former the algebraic
form and the latter the combinatorial form (p. 26). In discrete mathematics this covers number
theory on the one hand and combinatorics on the other. In continuous mathematics, Grassmann
argues that so far only the algebraic form is studied in the form of analysis, the theory of functions.
This leaves the continuous combinatoric form to be developed, and this is what Grassmann aims
to do in his work A1, his study of ‘extensive magnitudes’ (p. 27). This partition of mathematics,
and its associated areas of mathematics, is summarized in table 4.1.

Grassmann’s philosophy of mathematics was heavily influenced by his father, Justus Grassmann
[17, p. 236]. Justus had been the one who originally divided the areas of mathematics along these
same two axes, although he had had no answer for what might serve as the area of continuous
generation of differents. His focus instead was on the area of combinatorics, inspired by Leibniz.
He considered combinations to be those objects one obtains by taking the conjunction of different
elements [17, pp. 104–106], that is, in some way combining them. He eventually published a
combinatorial approach to geometry [11], allowing him to study geometry in a way that was free
of metrics. It is in this context that Hermann Grassmann eventually proposes his extension theory
as ‘continuous combinatorics’, the study of conjunctions of continuously generated differents.

Discrete generation Continuous generation
Equal Theory of numbers Theory of functions
Different Combinatorics Extension theory

Table 4.1: Grassmann’s partition of mathematics [1, 17]
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Later in his career Grassmann seems to abandon this partition of mathematics. Particularly, his
Textbook of Arithmetic [9] approaches arithmetic from the perspective of extensive magnitudes,
that is, that of extension theory [17, p. 202], a branch that should be opposite to arithmetic in his
original partition. A further analysis of Grassmann’s changing philosophy and his inspirations can
be found in his biography by Petsche [17] as well as several analyses by Cantù [1, 2].

4.1.1 Theory of Forms

In Grassmann’s view, all branches of mathematics are governed by the same foundational ‘truths’,
which he calls the theory of forms. This encompasses several statements on the concepts of equality,
difference, and several operations. As these are considered a given for all his work on extension
theory, I will describe some of these concepts here for context of what follows, as he describes them
in the first 12 sections of his work (pp. 33–45).

To start off, he defines equality as

Definition: equality [8, p. 33]

Those are equal of which one can always assert the same, or more generally what in any
judgment can be substituted one for the other.
It plainly follows from this that, if two forms are each equal to a third, they are also equal
to each other; and that those generated in the same way out of equals are again equal.

With equality established, he discusses some properties of conjunctions, that is, of operations.
Any conjunction combines two factors to form a product, and Grassmann does not limit these terms
to multiplication. An important class of conjunctions are the elementary ones:

Definition: elementary conjunction [8, p. 35]

If a conjunction is of the type that one can arbitrarily place parentheses around any three of
its factors and change the order of any two of its factors without changing the product, then
it is also true that the placement of parentheses and the order of factors is unimportant for
the product of any number of factors.
For brevity we call a conjunction satisfying the given conditions elementary.

In modern terms, an elementary conjunction is thus an operation that is both associative and
commutative.

From here, Grassmann proceeds to separate conjunctions into two classes. On the one hand
there are the synthetic conjunctions, generating a product from two factors. On the other hand
there are their inverses, the analytic conjunctions, which aim to recover one of the factors of a
synthetic conjunction given the other factor and the resulting product. Using these, he defines
addition and subtraction:
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Definition: addition/subtraction [8, p. 37]

If the synthetic conjunction is elementary and the corresponding analytic conjunction is
unique, then one can insert or omit parentheses after a synthetic symbol. In this case
(provided that that uniqueness is generally valid), we call the synthetic conjunction addition
and the corresponding analytic function subtraction.

Hence, addition is defined as any operation that is both associative and commutative, and for
which the inverse (subtraction) always yields a unique result. In this case, the brackets after an
addition symbol may be omitted: a+ (b− c) = a+ b− c.

Following this, multiplication is defined as a conjunction of ‘next higher order’, with its only
defining property being distributivity over addition (p. 40). Throughout this section, Grassmann
derives some elementary properties of addition and multiplication, like the existence of a unique
indifferent form (a− a, independent of a) and negative form (−a) (p. 38).

From a modern perspective, Grassmann’s Theory of Forms almost takes the shape of a ring struc-
ture. Addition satisfies precisely the properties of addition in a ring, being associative, commutative,
having a unique identity and unique inverse. His concept of multiplication is slightly broader, as
associativity is not assumed. The level of generality in these definitions makes sense for his intention
to apply this to any area of mathematics. In particular, it allows him to study various types of
multiplication in his extension theory.

4.2 The 1844 lineale Ausdehnungslehre (A1)

After establishing the logical structure he will be working in, Grassmann details first the objects
of study in extension theory and then studies their properties. He divides these objects into two
types: The first part of his work discusses extensive magnitudes, which includes objects we would
now call vectors. The second part studies elementary magnitudes, which capture the concept of
weighted points. In the following discussion I will focus mainly on the first part. Towards the end
I will discuss how some properties of extensive magnitudes translate to elementary magnitudes, as
these will be particularly interesting when it comes to transformations.

Grassmann takes a very philosophical approach in A1, where he often describes the reasoning
behind certain properties and slowly builds up to any specific definition or result. These results are
then typically stated at the end of such a paragraph. In this discussion of his work I will take the
opposite approach, starting by quoting, where possible, this final result, and then analyzing what
he meant by it and how it could be interpreted with a modern lens.

4.2.1 The foundation: points and displacements

In the first chapter of part one, Grassmann develops the concepts that we could now consider as
vectors and vector spaces. In section 13 and 14 (pp. 45–48) he describes how the most basic
extensive magnitudes are generated by elements and evolutions. Elements serve as a generalisation
of geometrical points or positions, and evolutions as a generalisation of motion, as it represents the
transition of an element from one ‘state’ to another (p. 46). It is through this evolution that the
‘differents’, essential to extension theory, are generated. Specifically, he introduces the extensive
structure of first order :
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Definition: extensive structure of first order [8, p. 47]

By an extensive structure of first order we mean the collection of elements into which a
generating element is transformed by a continuous evolution.
In particular we call the generating element in its first state the initial element, and in its
last the final element.

Of particular importance are the infinitesimally small evolutions, which he calls fundamental
evolutions and which essentially capture only a direction. With these he narrows down the concept
of extensive structure:

Definition: elementary extensive structure [8, p. 47]

The elementary extensive structure is that which results from the continuous action of the
same fundamental evolution.

The definition of extensive structure is a bit too general to translate into geometry, but the
elementary extensive structure can represent a line segment. It is the collection of all the positions
we travel through when we start at an arbitrary position and move a point in the same direction
continuously until some endpoint. Continuing this fundamental evolution indefinitely, and including
its opposite evolution, yields a system (or domain) of first order. This serves as an abstraction of
the line as a collection of points, that is, the one-dimensional space.

When we consider only the means of generation of an elementary extensive structure, rather
than its collection of elements, we obtain what Grassmann calls an extensive magnitude of first
order, or a displacement. These correspond geometrically to vectors, as these have only length
and direction but no position. As that which is generated equally is considered equal, indeed
displacements generated by the same evolution from another starting element are equal, just as
vectors of equal direction and length are equal regardless of position.

In a roundabout way we can distill from these definitions the relation between points and vectors.
By definition, an extensive structure of first order, and therefore also an elementary extensive
structure, has an initial and final element, say α and β respectively. As a displacement captures
the generation of this structure, it captures in particular how α is transformed into β. With that
in mind, Grassmann begins to write [αβ] for such a displacement starting in §15.

In this section he establishes addition of displacements:

Definition: addition of similar displacements [8, p. 49]

If two similar displacements are contiguous, that is, so conjoined that the final element of
the first is the initial element of the second, then the displacement from the initial element
of the first to the final element of the second is the sum of the two.

Using his newfound notation for displacements he shows that it indeed satisfies the necessary
properties to be an addition, and derives a meaning for a 0 displacement as [αα] for any element
α, and that of a negative displacement as −[αβ] = [βα].

Technically, Grassmann’s definition here does not apply to all displacements. So far he has only
established systems of first order, that is, one-dimensional spaces, and he only defines this addition
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for ‘similar’ displacements, those “generated in the same sense”, or in the opposite sense (p. 39).
Geometrically, this corresponds to vectors with parallel directions. To prove that dissimilar, non-
parallel displacements can be added in the same way, as he does in §§17–18, he must first define
systems of higher order.

4.2.2 Bases and dimensions

In §16, Grassmann describes how one can generate systems of any order:

Definition: systems of higher order [8, p. 50]

I consider next two dissimilar fundamental evolutions, and let the first fundamental evolution
(or its opposite) arbitrarily transplant an element, and then let the element thus generated
likewise be arbitrarily transplanted by the second method of evolution. In this way I can
therefore generate an infinite set of new elements from a single element, and the collection
of elements so generated I call a system of second order. I then assume a third fundamental
evolution, which does not lead from that same initial element again to one of the elements
of this system of second order, and which I therefore designate as independent of those first
two, and let this third evolution (or its opposite) arbitrarily transplant an arbitrary element
of that system of third order. Since this method of generation has no limitation on its
concept, I can in this way proceed to systems of arbitrarily high order.

In his goal of generalizing from geometry, Grassmann avoids the use of any given space, and
instead generates higher orders one at a time by conceiving of evolutions independent to the previous
ones. The first order, a line, consisted of all the positions a point could arrive at following one
direction. By this definition, moving that line in an independent direction we get a collection of
infinitely many parallel lines, that is, a plane, the system of second order. Moving that plane in
yet another independent direction, the collection of these parallel planes forms all of space, the
system of third order. As he doesn’t presume our physical space as given, he is not limited to three
spatial directions, and can thus continue this process, collecting parallel spaces to form a fourth
order system, and so on.

The fundamental evolutions in this definition can be viewed as some foundation for bases, and
from there the order of his systems can be related to dimensions. In §20 he proves that systems of
m-th order are indeed generated by any m independent displacements:

Independence of evolutions of higher order system [8, p. 60]

Every displacement of a system of m-th order can be represented as a sum of m displacements
belonging to m given independent methods of evolution of the system, the sum being unique
for each such set.

And that it’s independent of its choice of initial element:
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Independence of starting element of higher order system [8, p. 60]

Every system of m-th order can be regarded as generated by those same m independent
methods of evolution from any arbitrary element; that is, all other elements can be generated
from a single such element by those methods of evolution.

With (arbitrary) bases and (arbitrary) origins of spaces established, it seems like it should be a
small step to arrive at a coordinate system. However, the systems he has built have no underlying
field, and therefore there are no scalars to function as coordinates. It takes him the better part
of four chapters before he introduces ‘numerical magnitudes’ in §68, derived from the inverse of a
conjunction he calls outer multiplication.

4.2.3 Outer multiplication, numerical magnitudes and coordinates

Grassmann’s goal in A1 is to establish this branch of mathematics fully independently of the other
known branches. This means that some familiar concepts such as numbers are put on the sideline in
favor of studying the conjunctions between the extensive magnitudes themselves. Even when some
numerical concept eventually shows up, it is embedded within the context of extension theory,
when he introduces numerical magnitudes. These numerical magnitudes are defined as a ratio
or quotient of two similar displacements, and are treated as such throughout. Intuitively, these
numerical magnitudes represent how many times longer one vector is compared to another. To
understand how Grassmann arrives there, we first need to understand his outer multiplication.

In chapter 2, Grassmann introduces this outer multiplication. He starts out with a geometric
concept, generalizes this to his extensive magnitudes, and finally arrives at an abstract property of
the multiplication so developed which then serves as its abstract definition. In this section I will
follow the same approach.

From a geometric point of view, outer multiplying two vectors yields the area of the parallelogram
they enclose, and similarly the product of three vectors gives the volume of the parallelepiped they
define. This idea is somewhat reminiscent of our modern cross product. However in Grassmann’s
case the product is not another vector, but instead the ‘actual’ two-dimensional area or three-
dimensional volume. For example, in figure 4.1, the product of a and b is the parallelogram αββ′α′,
and that of a and −b is the parallelogram αββ′′α′′. These products are also, in a sense, signed.
Since b and −b have opposite direction, the products a.b and a. − b will have opposite sign; if the
first is positive, the second will be negative.

Figure 4.1: Outer multiplication
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If one were to imagine a third vector c sticking out of the paper, then a, b, c together define a
parallelepiped in the same way a, b define a parallelogram, and this parallelepiped then represents
the product a.b.c.

If we let go of the restrictions of space, we can continue this process indefinitely with arbitrarily
many independent displacements, and indeed this is how Grassmann generalizes this concept to
extensive magnitudes. Since the outer product of two displacements is not another displacement
but rather a generalization of parallelogram, this product creates a new category of objects which
he calls an extension of second order. From there he tentatively generalizes to extensions of n-th
order:

Definition: extension of n-th order [8, p. 77]

We now extend this definition to arbitrarily many factors, and tentatively mean by a∩b∩c . . .
where a, b, c, . . . are arbitrarily many, say n, displacements, that extension resulting when
each element of a generates the displacement b, all elements of the resultant generate the
displacement c, and so on, and require this extension to be similar to all other parts of the
same system of n-th ordera. We call the extension so generated an extension of n-th order.

aThe 1995 translation erroneously said second order here, I have corrected this using the German original.

This definition mirrors that of his systems of higher order, but it generates a section of a system
rather than the system in its totality. Geometrically, to generate some extension a ∩ b ∩ c . . . , one
starts with the displacement a. This displacement marks a line segment, a section of a line. Moving
all points on the line segment a along the displacement b yields a collection of parallel line segments,
which together form a parallelogram, a section of a plane. Moving all points on the parallelogram
along a third displacement c yields a collection of ‘parallel’ parallelograms, which together form a
parallelepiped, a section of space. It is this process of generation which eventually leads to the nth
order extensions, as a part of an nth order system.

This concept relies on the concept of similarity and what it means for higher order extensions
to be similar, that is, ‘generated in the same way’. He therefore also includes that any nth order
magnitude belonging to the same nth order system, is similar to one another. This does not
immediately seem intuitive; the parallelograms in figure 4.2a seem to be entirely unrelated, yet
Grassmann considers them ‘similar’ because they lie in the same plane. However, parallels only

(a) A 2D view (b) A 3D view

Figure 4.2: similar parallelograms
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become visible when we go one dimension up. And indeed, in the 3D view in figure 4.2b, their
shared property becomes visible: although they are completely different parallelograms, they lie
on parallel planes, and are thus generated by the same two directions. This is the property that
Grassmann means by ‘similarity’.

The definition of higher order extensions that Grassmann gave is only tentative as he has yet
to show that this operation is indeed a multiplication, which is also why he uses the ∩ notation.
In the following section he shows that it indeed satisfies the properties of multiplication that he
established for the theory of forms, and writes the product of a, b as a.b instead.

In §§33–34, finally, he arrives at the abstract property that will define outer multiplication:

Definition: outer multiplication [8, p. 81]

[...] for this particular type of multiplication we have obtained the law that “if a factor
includes a summand that is similar to one of the adjacent factors, then that summand can
be dropped,” which already incorporates the result that if two adjacent factors are similar,
the product is zero.
This law, in combination with the general multiplicative relation to addition for forms, fixes
all further laws regarding the particular type of multiplication we consider here, and thus
can be taken as its fundamental law. We call this type of multiplication outer, and take as
its particular symbol the point (period), retaining simple juxtaposition as the general sign
for multiplication.

Geometrically, this law is the generalisation of the fact that in a situation like figure 4.3, a.b,
that is, the parallelogram αββ′α′, has an equal area to (a + b1).b, the parallelogram αγγ′α′. The
term b1, being similar to b, can thus be ‘dropped’ from the multiplication (a+ b1).b and we can say
that (a+ b1).b = a.b. In particular, this means that b.b1 = b.0 = 0, and in fact the product is only
non-zero when all factors are independent. This is the reason he chose the name outer product, as
it only has a meaningful result when choosing factors outside of the previous ones.

Grassmann spends all of chapter 3 developing the properties of the higher order extensions, and so
it takes until §60 in chapter 4 for Grassmann to define the inverse of outer multiplication, being
outer division. A special case of this occurs when dividing two similar displacements, say a and a1.
The quotient a1

a must be such that, when outer multiplied by a, it yields a1. Outer multiplication

Figure 4.3: Outer multiplication
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however has the property that the order of the product is the sum of the orders of its factors.
In order to extend this property to fractions, and thus to hold for the equality a1

a .a = a1, the
order of a1

a must be 0 [8, see footnote p. 125]. It is these 0-order magnitudes, representing the
proportion between two similar displacements, that Grassmann defines as numerical magnitudes in
§68. Intuitively, these represent scalars λ such that λa = a1. Equality of numerical magnitudes
is defined through their relation with outer multiplication: two numerical magnitudes a1

a , b1
b with

a, b independent, are considered equal when a1.b = a.b1 (p. 122). Since b1
b b = b1 and equals

can be substituted for each other, it then also holds that a1

a b = b1, which fully defines the scalar
multiplication. Furthermore, the numerical magnitude a

a for arbitrary a can serve as 1, since for
any b, a

a .b equals that magnitude b1 such that a.b = a.b1, thus in fact b1 = b. Grassmann proceeds
to define addition and multiplications of these objects, and eventually proves that these numerical
magnitudes satisfy all laws of arithmetic. I will omit these definitions and proofs since they would
require further discussion on the higher order extensive magnitudes.

Now that we finally have an extensional equivalent of numbers, and thus scalars, a coordinate
system can be established, and Grassmann does so in §§87–88. Grassmann defines these in such a
way that they apply to extensions of any order, making for a rather convoluted definition. Hence
after citing his definitions I will narrow this down to displacements.

Definition: Reference system [8, p. 147]

I call the n displacements a, b, . . . that define a system of n-th order (and thus are all
mutually independent) the reference measures of first order or the fundamental measures of
the system, inasmuch as each displacement of the system is expressed through them; the
assembly of them a reference system, the products of m fundamental measures (retaining
their original order) reference measures of m-th order, the reference measure of n-th order
the principal measure. Finally, we call the system of reference measures of m-th order a
reference domain of m-th order, and in particular the system of fundamental measures,
reference axes (coordinate axes).

Definition: Reference terms, indicators [8, p. 148]

[...] each extension of m-th order belonging to a system of n-th order can be interpreted as a
sum of terms similar to the reference measures of m-th order belonging to that system. We
now call these terms reference terms of that magnitude, so that each magnitude appears as
the sum of its reference term; the numerical magnitudes resulting if the reference terms of a
magnitude are divided by the corresponding (similar) reference measures are the indicators
of the magnitude, so that each magnitude therefore appears as a multiple sum of the reference
measures of the same order.

If we’re only concerned with displacements, we will only have to concern ourselves with the
fundamental measures. So let e1, . . . , en be n independent displacements that define a system of
n-th order, then these take the role of reference measures. The collection of these, a basis of the
space, Grassmann calls a reference system. We know that any displacement x in the system can be
written as a sum of multiples of the reference measures: x = α1e1 + · · ·+αnen. The terms αiei are
what Grassmann calls the reference terms. Finally, taking the quotients αiei

ei
results in n numerical
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magnitudes, which Grassmann calls the indicators of the displacement. It is these indicators of the
displacement which correspond to the coordinates of our vector, the αi in the earlier expression. In
this way, Grassmann’s reference systems almost define a coordinate system. This system however
lacks an origin, and as such it cannot give the coordinates of any points.

4.2.4 Elementary magnitudes

Where part one of A1 is concerned with extensive magnitudes, generalizing vectors, the second
part discusses the concept of elementary magnitudes, which generalize weighted points. In this
part, Grassmann demonstrates how many of the concepts he developed for extensive magnitudes
translate to elementary magnitudes. In this section I will describe some of the concepts and their
consequences from a more modern lens, without quoting Grassmann directly as I have done in the
previous sections.

As with extensive magnitudes, the concept of elementary magnitude is very broad and not immedi-
ately intuitive. In §98 however, Grassmann demonstrates that elementary magnitudes of first order
can simply be considered as weighted points, or as he calls them, multiple elements, the weight
being a numerical magnitude. The element and weight together form the elementary magnitude, so
every elementary magnitude A is of the form xσ with a weight x and an element σ. An elementary
magnitude with weight 1 is then called a simple element. The one exception to this rule is the
magnitude with weight 0, which will be represented by displacements, for reasons that will become
clear when we consider addition.

Grassmann’s argument in §98 also shows how addition works on these objects. Suppose one
wants to compute the sum aα+ bβ + . . . , where α, β, . . . are elements, or points, and a, b, . . . their
corresponding weights. Then the outcome is defined as that element σ with weight x such that the
weight x is equal to the sum of the a, b, . . . , and the element σ satisfies the following relation for
any arbitrary point ρ:

a[ρα] + b[ρβ] + ... = (a+ b+ . . . )[ρσ]

or equivalently

[ρσ] =
a[ρα] + b[ρβ] + ...

a+ b+ . . .
.

Hence, the sum essentially takes the shape of a weighted average.

Figure 4.4: Addition of elementary magnitudes
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As an example, consider figure 4.4, which represents the addition 0.2α+0.3β+0.5γ. One takes
an arbitrary point ρ, and adds to ρ the displacements 0.2[ρα], 0.3[ρβ], 0.5[ργ] to arrive at σ, which
will be in the same location no matter what point ρ was chosen.

The one exception to this rule of addition is the case where a + b + · · · = 0, in which case
an element σ satisfying the above equations will no longer exist. In fact, in this case it is not
the element σ that remains equal regardless of the choice of ρ, but rather the displacement [ρσ].
Consider for example β − α. We would be looking for a σ such that, for any ρ,

[ρσ] = [ρβ]− [ρα]

= [ρβ] + [αρ]

= [αρ] + [ρβ]

= [αβ]

Clearly no one such σ exists, and Grassmann opts to instead define β−α = [αβ], showing that this is
consistent with the further definitions. In fact, it is consistent with the relation α+[αβ] = β, where
we can now consider both points and displacements as elementary magnitudes. Finally, the weights
of elementary magnitudes allow us to easily define scalar multiplication: multiplying an elementary
magnitude aα by a numerical magnitude m simply gives the same element (α) with a weight of m ·a
instead. This is still consistent with displacements as well, as indeed 2[αβ] = 2(β − α) = 2β − 2α
will have twice the length of [αβ].

With elementary magnitudes established, Grassmann proceeds to show how many of the properties
of extensive magnitudes also extend to elementary magnitudes. In §107 he defines elementary mag-
nitudes as independent when one cannot be written as a multiple sum of the others. Geometrically,
this occurs when three points do not all lie on the same line, or four points do not all lie on the
same plane. Following that, n independent elementary magnitudes form an elementary system of
n-th order, as the collection of elements that are dependent on the n independent elements. Since
one needs four points to define a three-dimensional space, this means that space can be interpreted
both as a third order extensional system and a fourth order elementary system. More generally, the
displacements in any elementary system of n-th order belong to an extensional system of n− 1-th
order, for suppose α, β, γ, . . . are the n mutually independent elements of the elementary system.
Then any displacement ρ− σ in this system can be written as

ρ− σ = aα+ bβ + cγ + . . .

where a+ b+ c+ ... = 0, hence a = −b− c− . . . . Substituting that, we get that

ρ− σ = b(β − α) + c(γ − α) + ...

[σρ] = b[αβ] + c[αγ] + ...

and thus, indeed, a system of n− 1 displacements with α, in a sense, acting as the origin.
Grassmann also defines an outer product of elementary magnitudes in §108 using the same

abstract property he used for extensional magnitudes (see section 4.2.3), and which therefore has
all the same properties as were proven for the extensional version. This elementary product relates
to the extensional product the same way the elementary systems relate to extensional ones: the
product of three points, say α.β.γ, is the parallelogram with these three points as three of its vertices,
making for a third order elementary magnitude. It corresponds to the second order extensional
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magnitude [αβ].[αγ], as Grassmann establishes in §115. In general, any n-th order elementary
magnitude will correspond in this way to an n− 1-th order extensional magnitude.

In §§116-117 Grassmann extends the concept of reference systems, that is, coordinate systems,
to elementary magnitudes, using the previously established addition and scalar multiplication. In
§117 he mentions that, when limited to space, we find the type of coordinates that Möbius used in
his Barycentrische Kalkül [14], the simplest version of which we obtain when we consider only simple
elements, or points with weight 1. In this case, suppose α, β, γ, δ are four independent reference
magnitudes. Then any point ρ in space can be written as a sum

ρ = aα+ bβ + cγ + dδ with a+ b+ c+ d = 1,

similar to how in figure 4.4 on page 24, σ was written as a sum of α, β, γ. The a, b, c, d then are ρ’s
indices, and they add up to 1 to ensure that ρ is once again a point with weight 1. As it follows
that a = 1− b− c− d, this can also be written as

ρ = (1− b− c− d)α+ bβ + cγ + dδ

= α+ b(β − α) + c(γ − α) + d(δ − α)

= α+ b[αβ] + c[αγ] + d[αδ]

and we have thus found our ‘typical’ system with an origin (α) and three base vectors as a full
coordinate system.

With the elementary magnitudes and their reference systems established, we can finally consider
Grassmann’s concept of the affine transformation.

4.2.5 Affinity

While most of the history of affine geometry has been primarily concerned with affine transforma-
tions, Grassmann only discusses affinity in a few sections towards the end of his work.

In the 1844 edition, the concept of affinity is mainly treated as an equivalence relation between
two assemblies, or collections, of magnitudes. In chapter 4 of part 2, Grassmann observed that any
numerical relation that holds between magnitudes, is preserved when one considers their ‘shadows’
in a system of lower order. The reverse, however, is not generally true. For example, when three
points lie on the same line in space, their projections on any plane will be collinear as well. However,
figure 4.5 shows the reverse is not true. The shadows α′, β′, γ′ on the plane of the points α, β, γ

Figure 4.5: Shadows of vectors
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might be collinear, while the original points are not. Observing this one-sided relation, Grassmann
proceeds to consider those relations that do preserve numerical relations both ways, and calls those
affine:

Definition: affine assemblies [8, p. 248]

This relation only appears in its complete generality, however, if the correspondence is
reciprocal, that is if every numerical relation obtaining between magnitudes of one series,
whichever it is, also prevails between the magnitudes of the other series; and two such
assemblies of corresponding magnitudes standing in this reciprocal relation to each other we
call affine.

Although Grassmann defines this relation between arbitrary collections of magnitudes, this
can easily be extended to entire systems to obtain a concept of affine transformation. In §154
Grassmann describes that to construct an assembly affine to a given one, one must identify a set of
n independent magnitudes out of which all other magnitudes in the assembly can be obtained. The
second assembly is then built by associating these magnitudes by another n arbitrary magnitudes
with the only requirement that these, too, are mutually independent. The other magnitudes are
associated to magnitudes built from these n magnitudes in the same way the original magnitude was
in the original assembly. As an example, suppose one has a set S of magnitudes, and each of these
magnitudes can be written as a multiple sum of the three independent magnitudes α, β, γ. An affine
assembly is then constructed by finding three independent magnitudes α′, β′, γ′, and associating α
with α′, β with β′ and γ with γ′. Any other magnitude ρ = aα+ bβ + cγ in the set S will then be
associated to ρ′ = aα′ + bβ′ + cγ′.

This concept of n independent magnitudes can easily be generalized to the reference system of
an n-th order system. Two assemblies then are affine if they transform into one another by changing
the reference system, and properties are affine precisely when they can be expressed as a numerical
relation of the indicators. Indeed, in §161 Grassmann proves that his initial definition of affinity
corresponds to that of having equal indicators in different reference systems.

In §159, Grassmann discusses affinity in the plane, in which case three independent point mag-
nitudes α, β, γ, correspond to three independent point magnitudes α′, β′, γ′. This correspondence
preserves the property of three points being collinear, and in fact Grassmann also uses the term
collinearly related to denote the same relation. The relation is however more general, as the refer-
ence measures are not restricted to simple points. The reference measures in one assembly might be
associated to magnitudes in the other with a different weight, or even to ones with weight 0, that
is, displacements. In this case, points get associated to directions and directions get associated to
points, in which case properties like parallel lines are no longer preserved. Grassmann acknowledges
this in §164, where he states that “Our definition of affinity therefore coincides with the usual one
so long as it is applied to the same magnitudes, that is to simple points (with equal weights)”.

4.3 Grassmann’s second edition (1862) (A2)

In 1862 Grassmann publishes ‘Die Ausdehnungslehre. Vollstandig und in strenger Form bearbeitet’
[10] (A2). In this work he once again publishes his extension theory, but this time with a far more
mathematical approach. Along with the change in style, Grassmann has also changed some of the
mathematical structure in A2. The strict divide that he made between extensive and elementary
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magnitudes in A1 is entirely gone, and he instead treats them as the same object wherever possible.
He also lets go of his aim to build extension theory completely independently from existing areas
of mathematics like analysis [17, p. 76], which removed many obstacles. Particularly, where in A1
numbers (or numerical magnitudes) were first introduced in chapter 4, in A2 he makes use of them
immediately. Magnitudes are now built up from units:

3. DEFINITION (Unit) [10, p. 3]

I define as a unit any magnitude that can serve for the numerical derivation of a series of
magnitudes, and in particular I call such a unit an original unit if it is not derivable from
another unit. The unit of numbers, that is one I call the absolute unit, all others relative.
Zero can never be a unit.

Several independent units form a system of units, and any magnitude derived from them is
called an extensive magnitude:

5. DEFINITION (Extensive magnitude) [10, p. 4]

I define as an extensive magnitude any expression that is derived from a system of units
(none of which need be the absolute unit) by numbers, and I call the numbers that belong
to the units the derivation numbers of that magnitude; for example the polynomial

α1e1 + α2e2 + . . .

or ∑
αe or

∑
αrer,

where α1, α2, . . . are real numbers and e1, e2, . . . form a system of units, is an extensive
magnitude, specifically the one derived from the units e1, e2, . . . by the numbers α1, α2, . . .
belonging to them.

The collection of all extensive magnitudes derived from a system of units is called a domain (of
nth order) in A2, rather than a system (of nth order) [10, p. 8].

The concept of weighted points is eventually introduced, but only in the context of applications
to geometry [10, ch. 5]. This time he specifies that every point has a position and a coefficient
(weight). The displacements, as points of weight 0, are given a position at infinity.

For multiplication he also takes a different approach. First of all, he chooses a different notation,
as the product of two magnitudes a, b is now written [ab]. Further, since all extensive magnitudes
can be represented by their derivation from a system of units, this notation can be used to define
a general product from its distributivity over addition [10, p. 19]:[∑

r

αrer ·
∑
s

βses

]
=

∑
r,s

αrβs[eres]

Different choices for what the [eres] mean then lead to different types of products. Setting [eres] =
−[eser] for all r, s (from which it naturally follows that [erer] = 0 for all r), yields what Grassmann
calls the combinatorial product. He later defines this somewhat more generally:
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52. DEFINITION (Combinatorial product) [10, p. 29]

If the factors of a product P are derived from a system of units, and every pair of products of
the units that result from the interchange of the last two factors yield zero upon summation,
but every product that includes only different units as factors is different from zero, then I
call that product P combinatorial, and those factors of it its elementary factors; that is, if b
and c are units, and A is an arbitrary series of units, then the above definition is expressed
by the formula

[Abc] + [Acb] = 0

He then proceeds to show that, in fact, the combinatorial product is such that interchanging any
two elementary factors (that is, factors that are not themselves products), causes the sign to change.
This turns out to be equivalent to the outer product from A1. Indeed, in A1, Grassmann proves that
the outer product is such that interchanging two adjacent factors will change the sign [10, p. 82].
Conversely, in A2 he shows that the combinatorial product does not change if, to one of the factors,
a multiple of one of the other factors is added [10, 35], meaning that for instance [ab] = [a · (b+qa)].
This was precisely the fundamental property of outer multiplication in A1. Finally, he defines units
of mth order as the products of m ‘original’ units, and magnitudes of mth order as any magnitude
derived from the mth order units, which completes the connection to the outer product of A1. The
term outer product does appear in A2 as well, and is closely related: the outer product of two
higher order magnitudes is the combinatorial product of their underlying factors [10, p. 45].

The entire section on affinity in A1 has been removed in A2. Anything related to geometric
relationships has been condensed to a remark [10, p. 221]. This remark is in regards to a whole
section on ‘quotients’, a concept Grassmann introduced in A2 which, through a modern lens, might
be interpreted as transformation matrices. In the next chapter I will further discuss these quotients
and their relation to matrices.
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Chapter 5

Quotients as Grassmann’s concept
of transformation matrix

In modern algebra, matrices play a major role, as they can be used to represent any linear map. In
Grassmann’s time, the concept of matrices, or arrays, definitely wasn’t unknown, but it didn’t yet
see much application beyond representing systems of linear equations. Its use for transformations
had been very limited. Between the publications of A1 and A2 the theory of matrices and their
use for transformations was greatly expanded by Arthur Cayley, however it is unclear whether
Grassmann was aware of this development [5]. It is therefore not strange that, although Grassmann
does mention the determinant of “n series of n numbers” in A2 [10, p. 33], no actual matrices appear
in his work. He does however introduce a more general concept of a quotient which, as we shall see,
behaves like a matrix in many ways. In the following chapter I will detail how Grassmann defines
his quotient and develops some of its properties and applications, comparing to the modern matrix
properties throughout. All page and section numbers in this chapter will thus refer to A2 [10].

Like the rest of this work, Grassmann attempts to define his quotients and their properties for
the most general concept of (first order) magnitudes. For readability, I will only interpret these as
displacements, that is, vectors. When we get to applications, I will extend this interpretation to
points as well.

In 377, Grassmann defines his quotient:

377. DEFINITION (Quotient) [10, p. 207]

If a1, a2, . . . , an are magnitudes of first (or (n − 1)th) order in a principal domain of nth
order, and stand in no numerical relation to one another, I mean by the fraction (quotient)

Q =
(b1, b2, . . . , bn)

(a1, a2, . . . , an)

the expression which, multiplied by a1, a2, . . . , an, yields the values b1, b2, . . . , bn respectively,
so that

(b1, b2, . . . , bn)

(a1, a2, . . . , an)
ar = br.
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I call (a1, a2, . . . , an) the denominators of the fraction, (b1, b2, . . . , bn) their corresponding
numerators, and set two fractions, or two expressions numerically derived from fractions,
equal to one another if and only if they yield equals when they are multiplied by every
magnitude of first {or (n−1)th} order. If in addition the numerators are magnitudes of first
(or (n − 1)th) order, and stand in no numerical relation to one another, I call the fraction
invertible, and in this case, if

Q =
(b1, b2, . . . , bn)

(a1, a2, . . . , an)
,

I denote the inverted fraction by 1
Q , that is, I set

1

Q
=

(a1, a2, . . . , an)

(b1, b2, . . . , bn)
.

So, what we have here is a set of n independent vectors a1, a2, . . . , an in an n-dimensional space,
a set of ‘values’ b1, b2, . . . , bn, and an object Q that, when applied to any ar through multiplication,
yields the corresponding br. While the term ‘value’ is rather vague and seems to imply numbers,
Grassmann actually uses the term for just about any object and expression, including magnitudes.
In the remark after 377 he clarifies that he will always consider the denominators magnitudes of first
(or (n− 1)th) order, unless stated otherwise. Hence for the sake of comparison I will also consider
the bi to be displacements. The object Q then acts as a linear transformation on a basis a1, . . . , an.
How Q acts on any other displacement follows by writing this displacement as a numerical relation
of the ai and applying the distributive properties of multiplication that he established earlier. In
378 he uses this to prove that indeed defining a quotient on a system of units uniquely determines
how it acts on all displacements, and thus that the Q defined in 377 functions as a well-defined
map on the whole space.

By the above definition, scalars behave as a special case of a quotient. Multiplying any vector
by a scalar ρ or a matrix ρIn yields the same result, so from Grassmann’s perspective ρ and ρIn
are equal, as they both represent the quotient (ρa1,ρa2,...,ρan)

(a1,a2,...,an)
. He points out this particular fact in

his remark after 383 (p. 210), and this will become relevant to understand his notation in section
5.2.

In the remark after 377 Grassmann states that the denominators could, in fact, have been magni-
tudes of arbitrary higher order, “but one would then exchange the indubitable advantage of greater
simplicity for the doubtful advantage of barren generality.” It might be precisely this generality
where both the strength of his approach, and the weakness in its reception lies. For even now to
compare this work to modern mathematics, I narrow his ‘narrow’ definition down further to only
first order, and specifically only to the first order object of displacements. Grassmann’s approach
actually applies to more, including more abstract, objects, but in doing so it becomes harder to
grasp intuitively, without many apparent applications.

In 379 (p. 208), Grassmann demonstrates how to add quotients with the same denominators and
how to multiply them by scalars. Using the general properties of multiplication he shows that

β
(b1, b2, . . . )

(a1, a2, . . . )
+ γ

(c1, c2, . . . )

(a1, a2, . . . )
+ · · · = ((βb1 + γc1 + . . . ), (βb2 + γc2 + . . . ), . . . )

(a1, a2, . . . )
.

This equation makes sense from the perspective of a fraction; to add fractions, the denominators
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must be equal, and the numerators are added (in this case; component-wise), and scalar multipli-
cation gets applied to the numerator.

In 380 (p. 208) he proves that a quotient can be rewritten to have any set of independent
displacements as its denominators, which allows us to write all of our quotients from the same
original units e1, e2, . . . , en. A quotient then tells us where all of the ei get mapped to, which is
precisely what the columns of a modern transformation matrix do. In other words, a matrix contains
only the information in the numerator of the quotient, as the denominator is automatically assumed
to be ‘the’ basis relative to which everything is computed. With this translation the properties of
379 also boil down to the scalar multiplication and component-wise addition of matrices.

The result of 381 (p. 209) completes this translation, as here he introduces what are essentially
the components of a matrix, and from it a rather unintuitive way of writing any quotient as a
sum of these. To do so, he first introduces fractional units. These are the n2 quotients Er,s that
multiplied by er give es and multiplied by any other ei give 0. In matrix terms: Er,s is the matrix
with a 1 in the r’th column, s’th row, and 0s everywhere else. As multiplying a fraction Q with
some ei results in some displacement of the form

∑n
b=1 αi,beb, it can be decomposed into all of its

fractional units:

Q =
∑

1≤a,b≤n

αa,bEa,b

Once again, in matrix terms; the αa,b are the components of the matrix that represents Q.

So far, we have a matrix-like object that acts on displacements, with components with two indices,
addition and scalar multiplication of these objects, but no multiplication of the objects itself. The
objects are also limited to the equivalents of square matrices, which gives us two more potential
properties: the determinant and eigenvalues.

5.1 Determinant

The equivalent of the determinant will be given by the power of a quotient, although this equivalence
is somewhat hidden in the use of other definitions. This power is first introduced in 383:

383. DEFINITION. (Power of a fraction) [10, p. 210]

The relative product of the numerators of a fraction whose denominators form the system
of original units I call the power of the fraction, and I denote the power of the fraction Q,
if the number of its numerators is n, by [Qn], that is, if

Q =
(a1, a2, . . . , an)

(e1, e2, . . . , en)
,

and e1, e2, . . . , en form the system of original units, I set

[Qn] = [a1a2 . . . an].

To see what is computed here, we must trace back what it means to compute the relative
product [a1a2 . . . an]. The definition of relative product in 94 (p. 53) is dependent on the orders of
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the factors and the order of the domain they are a part of. In the case that the orders (dimensions)
of the factors sum to the order of the space, as is true for our case, the relative product is equal to
the outer product. As we have seen in the previous chapter, this comes down to what he, in A2,
calls the combinatorial product. So, to compute the power of a fraction, we have to compute the
combinatorial product of the ai.

This does not immediately seem helpful, as the combinatorial product was defined by its proper-
ties rather than a practical computation. Conveniently though, in 62 (p. 33) Grassmann introduces
determinants entirely separately from his quotients, and the result of 63 will give exactly the relation
between this determinant and combinatorial products. The determinant in 62 is that of “n series of
any n numbers”, and in his definition he essentially describes the Leibniz formula for determinants:

62. DEFINITION. (Determinant) [10, p. 33]

62. DEFINITION. By the determinant of n series of any n numbers one means, if one

denotes the rth number of the sth series by α
(s)
r , that polynomial one obtains from the

product α
(1)
1 α

(2)
2 . . . α

(n)
n by interchanging the lower indices in all possible ways one by one,

leaving the upper indices unchanged, then furnishes these products with a + or − sign,
according as the number of those pairs of indices that are oppositely ordered relative to
those above is even or odd, and adds this collection of terms. One denotes this determinant

by
∑

±α
(1)
1 α

(2)
2 . . . α

(n)
n , that is, one sets∑

±α
(1)
1 α

(2)
2 . . . α(n)

n =
∑

(−1)uα(1)
r α(2)

s . . . α(n)
w ,

where r, s, . . . , w are equal to the numbers 1, 2, . . . , n taken in any order, the sum refers to
all possible orderings of this type, and u denotes the number of index pairs below that are
oppositely ordered relative to those above.

In 63 he shows how the combinatorial product of n factors of the form α
(i)
1 a1 + · · · + α

(i)
n an

relates to that of a1, . . . , an. This turns out to use this determinant, giving the following relation:

[(α
(1)
1 a1 + · · ·+ α(1)

n an)(α
(2)
1 a1 + · · ·+ α(2)

n an) . . . (α
(n)
1 a1 + · · ·+ α(n)

n an)]

=
∑

±α
(1)
1 α

(2)
2 . . . α(n)

n · [a1a2 . . . an]

With this in mind, let’s look back at the power of a quotient. In 381 we had established the
indices of our matrix, such that if

Q =
(a1, a2, . . . , an)

(e1, e2, . . . , en)
=

∑
1≤a,b≤n

αa,bEa,b,

we have for each i that ai = αi,1e1 + . . . αi,nen. The power [Qn] = [a1 . . . an] then becomes

[(α1,1e1 + . . . α1,nen) . . . (αn,1e1 + . . . αn,nen)]

Which, by 63, is equal to ∑
±α1,1α2,2 . . . αn,n · [e1e2 . . . en]
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That is, the determinant of the αi,i times the combinatorial product of the original units. If we
could set the combinatorial product of the ei equal to 1, we could then conclude that

[Qn] = det(αi,i) = det(Q)

This final identification might seem problematic. We had established earlier that the outer
product of n units forms a magnitude of nth order, whereas 1, a numerical magnitude, should be
of 0th order. This is however where another part of the definition of relative product comes into
play: in 94 the product of the ei is defined to 1. He resolves the discrepancy in orders in 95, where
he shows that the order of a product should in fact be considered modulo the order of the domain.
He proves that this preserves all of the properties he previously established and indeed this means
that the product of n displacements in a domain of n-th order is a number.

Although Grassmann does not precisely derive the multiplicative rule of determinants, he does get
pretty close. In his definition of the power of a quotient he only defined it for those quotients with
the original units as the denominator. In the result following that, he proves how to calculate it for
general quotients, and shows how it follows the fractional structure again. Namely, for any quotient

Q = (b1,...,bn)
(a1,...,an)

, its power is equal to

[Qn] =
[b1 . . . bn]

[a1 . . . an]
.

If we consider that [a1, . . . , an] is the power of A = (a1,...,an)
(e1,...,en)

and similarly [b1, . . . , bn] is the power

of B = (b1,...,bn)
(e1,...,en)

, we can consider what their corresponding matrices do. Since Aei = ai and

Qai = bi, the matrix product QA would map ei to bi, that is, it would represent the same mapping
as multiplying by B does. In terms of matrices then, we have QA = B hence detQ · detA = detB,
which leads us to the result detQ = detB

detA that Grassmann found.
Weyl, in his ‘Space, Time, Matter’, makes use of Grassmann’s notation for the power of a

quotient to obtain the multiplication theorem of determinants [21, p. 139], proving that he had
indeed found inspiration in Grassmann’s work.

5.2 Eigenvalues

With the determinant established, we can consider the concept of eigenvalues and how to determine
them. This is the matrix concept that appears most directly in A2, as Grassmann defines in 387:

387. DEFINITION. (Principal number) [10, p. 214]

If a fraction Q multiplied by a nonzero magnitude of first order yields a multiple of this
magnitude, say the ρ-fold of it, so that

Qx = ρx,

I call the coefficient ρ (whether it is real or imaginary) a principal number of the fraction
Q, and the domain to which all those magnitudes x belong that satisfy that equation the
principal domain of that principal number.
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Translating ‘fraction’ in this definition to ‘matrix’ and ‘nonzero magnitude of first order’ to
‘vector’, we have here precisely the definition of an eigenvalue (principal number) and the eigenspace
(principal domain) associated to it. It is even specified that the eigenvalues may be imaginary.

In 388 Grassmann describes how one can compute these eigenvalues, and both the method and
its derivation are essentially identical to our modern approach. The identity Qx = ρx he rewrites
to 0 = (ρ−Q)x, as in his notation a scalar is also a quotient; in modern notation this would read
0 = (ρI −Q)x. Since (ρ−Q) is a quotient, we can let ci for 1 ≤ i ≤ n be displacements such that

(ρ − Q)ei = ci, and write our quotient in a fractional form: (ρ − Q) = (c1,...,cn)
(e1,...,en)

. If we then write

x =
∑

ξiei, we get that (ρ − Q)x =
∑

ξici = 0. Since x is by definition non-zero this means that
the ci (or, the columns of the matrix (ρI −Q)) are dependent. The product of dependent factors
equals 0, and so since [(ρ − Q)n] = [c1 . . . cn], the power of (ρ − Q) and hence the determinant of
(ρI − Q) is equal to 0. From this identity he derives what we would now call the characteristic
polynomial of Q:

α0ρ
n − α1ρ

(n−1) + · · ·+ (−1)nα0 = 0,

whose roots give us the n principal numbers. Grassmann then concludes this section with the fact
that the product of the n principal numbers is equal to the power of Q.

What follows from the principal numbers does look somewhat different from the modern approach.
Grassmann is not particularly interested in the eigenvectors belonging to an eigenvalue, but rather
in the principal domain (eigenspace) belonging to it. How he obtains this space also looks different,
and relies on the fact that his quotients are not tied to one particular basis.

Suppose we have some quotient Q = (a1,...,an)
(e1,...,en)

and we have found some principal number ρ.

Then there exist one or more independent displacements xi that, multiplied by ρ −Q, give 0, say
m of them. These displacements can then replace part of the denominators in ρ−Q, that is, if we
sort the ei appropriately, we can write

ρ−Q =
(c1, . . . , cn)

(e1, . . . , en)
=

(c1, . . . , cn−m, 0, . . . , 0)

(e1, . . . , en−m, xn−m+1, . . . , xn)
.

These xi, then, form the basis of the principal domain belonging to ρ, and in modern notation these
are the eigenvectors belonging to ρ.

It is earlier in 386 (p. 213) where Grassmann shows how to rewrite a quotient in this form,
which in general is possible whenever the numerators are linearly dependent. Since we know ρ is
an principal number, we know that the ci will be dependent. We can then order them in such a
way that the first n−m form an independent system and the remaining m are dependent on those.
That means, that for every i > n−m, we can write

ci = α1,ic1 + · · ·+ αn−m,icn−m.

This means that multiplying the quotient ρ−Q by either the displacement ei or the displacement
α1,ie1 + · · ·+ αn−m,ien−m will give ci as the product. The displacement

xi = α1,ie1 + · · ·+ αn−m,ien−m − ei

multiplied by ρ − Q then has 0 as the product and is thus part of the principal domain of ρ − Q.
It is also independent of e1, . . . , en−m and can thus replace ei in the denominator of the quotient.
Following the same procedure for all n−m < i ≤ n, we find the m displacements xi that span the
principal domain.
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The method used here, is, in the end, not all that different from what we would do in modern
notation. To find which of the ci are dependent on the others, and to find the αj,i that relate them,
the modern approach would be to solve the equation (ρI −Q)x = 0, since the ci form the columns
of the matrix (ρI − Q). This is the same equation we solve to find our modern eigenvectors. It
is the conceptual idea behind the procedure, and the different notation it allows for, that really
defines the difference.

5.3 Applications

Now that we have established some of the parallels between quotients and matrices, the question
of application remains. What does Grassmann use his quotients for, and how do they hold up
compared to the use of matrices?

In 382 (p. 210) and its following remark, Grassmann establishes that the quotient can represent
systems of linear functions in multiple variables, although he does not show how this would help in
solving the system. More interesting in the context of affine geometry is his second remark after
390 (p. 221), where he discusses the quotient as representing a collinear relationship.

If we continue to view the numerators and denominators of a quotient as vectors, then any
quotient represents a linear transformation, just like matrices do. As stated before however, this is
not the only possible interpretation. We can also consider points in space as first order magnitudes.
With the numerators and denominators considered as points, the quotients represent a far broader
set of transformations, without the need to ‘augment’ them like we do with matrices. In this
discussion I will limit these to simple points, as they relate most directly to geometry.

In the remark on page 221, Grassmann discusses several properties of collinear relationships
that one can derive from their quotient representation, and he defines several ‘special’ geometric
relationships by the properties of their quotient. This is where the affine relationship appears in
A2, where it is defined by the requirement that “to the infinitely distant points of each system
there also correspond infinitely distant points of the other”. Indeed, this would map ‘directions’ to
directions, and since collinearity is preserved, this means that parallel lines remain parallel. I will
show that any invertible quotient of finitely distant points also preserves infinitely distant points.

Let A,B,C,D and A′, B′, C ′, D′ be any two sets of independent, finitely distant points, and let
E be an infinitely distant point. We can then derive A′, B′, C ′, D′, E from A,B,C,D:

A′ = a1A+ a2B + a3C + a4D a1 + a2 + a3 + a4 = 1

D′ = b1A+ b2B + b3C + b4D b1 + b2 + b3 + b4 = 1

C ′ = c1A+ c2B + c3C + c4D c1 + c2 + c3 + c4 = 1

D′ = d1A+ d2B + d3C + d4D d1 + d2 + d3 + d4 = 1

E = e1A+ e2B + e3C + e4D e1 + e2 + e3 + e4 = 0
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The quotient Q = (A′,B′,C′,D′)
(A,B,C,D) then maps the point E to

E′ =e1A
′ + e2B

′ + e3C
′ + e4D

′

=e1(a1A+ a2B + a3C + a4D) + e2(b1A+ b2B + b3C + b4D)

+ e3(c1A+ c2B + c3C + c4D) + e4(d1A+ d2B + d3C + d4D)

=(e1a1 + e2b1 + e3c1 + e4d1)A+ (e1a2 + e2b2 + e3c2 + e4d2)B

+ (e1a3 + e2b3 + e3c3 + e4d4)C + (e1a4 + e2b4 + e3c4 + e4d4)D

The coefficients of which add to

e1a1 + e2b1 + e3c1 + e4d1 + e1a2 + e2b2 + e3c2 + e4d2

+ e1a3 + e2b3 + e3c3 + e4d4 + e1a4 + e2b4 + e3c4 + e4d4

=e1(a1 + a2 + a3 + a4) + e2(b1 + b2 + b3 + b4) + e3(c1 + c2 + c3 + c4) + e4(d1 + d2 + d3 + d4)

=e1 + e2 + e3 + e4

=0

Thus Q maps infinitely distant points to infinitely distant points. An entirely analogous derivation
for 1

Q shows that indeed infinitely distant points in each system correspond to infinitely distant
points in the other. Therefore any invertible quotient of finitely distant, simple points, represents
an affine transformation.

Grassmann follows the introduction of the affine relationship by naming several more special
relations. For instance, he proposes a “special type of affinity” where the product of the princi-
pal values, that is the discriminant, is equal to 1, in which case areas and volumes are preserved.
Unfortunately, aside from this one remark, Grassmann does not explore the representation of trans-
formations any further.

5.4 Comparing quotients and matrices

All in all, Grassmann’s approach provides an interesting alternative to our modern one. One of
its strengths lies in its generality; its general approach is the exact same regardless of whether
its applied to vectors, points, or any other generic object of first (or (n − 1)th) order. In my
comparison to the modern approach I restricted the points to simple, finitely distant points, which
put some restrictions on the quotients of points compared to those of vectors - allowing for multiple
and infinitely distant points resolves these differences. Had Grassmann’s approach found more
popularity, it is conceivable that the concept of multiple (‘weighted’) points would have been further
developed, and mass point geometry might have become incorporated in geometry as a whole.

The notation of quotients itself is both a strength and a weakness. The quotient notation is a
sensible way to denote a linear map; a linear operation is fully defined by how it acts on any basis.
If the operation acts by multiplication, then the operation itself is found by division, that is as the
quotient of those known values. Several of its properties naturally follow from this definition as
well. There is a freedom in being able to easily define an operation as how it acts on any basis,
without immediately having to consider how it acts on some ‘standard’ basis. This freedom in
basis, and the explicit notation of the one used, allows for some operations on quotients that are
either not possible in matrices, or where our notation obscures what is happening geometrically. For
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instance, we typically apply elementary matrix operations to the rows of a matrix, for instance with
Gaussian elimination. If we were to apply these to columns of a matrix rather than rows, the result
essentially changes the basis we start from and tells us where this different basis gets mapped to.
For matrices this is entirely hidden in the algebraic operations, whereas in Grassmann’s notation
we can see the numerators change and the denominators change accordingly, as he describes in 380.
A particular application of this is how the eigenvectors of the eigenvalue ρ of a quotient Q show
up in the denominator when one looks at the quotient ρ−Q and adjusts it so that the numerator
contains 0’s.

As an example, suppose we want to find the eigenvectors of the matrix−2 −1 0
0 1 1
−2 −2 −1


belonging to the eigenvalue 0. In modern notation, one would apply Gaussian elimination to −2 −1 0 0

0 1 1 0
−2 −2 −1 0


to eventually arrive at  −2 −1 0 0

0 1 1 0
0 0 0 0


and use this to conclude that the eigenvectors are given by any multiple of (1,−2, 2)t. This process
is perfectly valid algebraically, but has very little connection to the geometric transformation the
matrix might represent.

To compare this to Grassmann’s approach, we much first write this matrix as a quotient. The
matrix above maps e1 to a1 = (−2, 0, 2)t, e2 to a2 = (−1, 1,−2)t and e3 to a3 = (0, 1,−1)t. The

matrix can then be written as the quotient (a1,a2,a3)
(e1,e2,e3)

. The question of the eigenvectors then becomes

a question of which vectors get mapped to 0. To solve this, we must write a3 as a sum of a1, a2,
and indeed we can write that a3 = − 1

2a1 + a2. It follows that both e3 and − 1
2e1 + e2 get mapped

to a3, and thus that x = − 1
2e1 + e2 − e3 gets mapped to 0. As it is also independent of e1 and e2,

the quotient can be rewritten to (a1,a2,0)
(e1,e2,x)

, and any multiple of x is an eigenvector for the eigenvalue
0.

This method lacks the convenient algorithm that Gaussian elimination provides. The quotient
notation however shows more clearly what the eigenvector means geometrically, as we end up
rewriting the quotient such that it directly reveals the vector that gets mapped to 0. This is only
possible because this notation is not limited to the standard basis. This method also does not
require the coefficients of the matrix, the only thing we need to know is the relation between the
ai.

The generality and lack of coefficients does come at a price. Where the concepts and ideas behind
it can be fairly intuitive if we let go of our modern framework, the same cannot be said for working
with these objects in a practical context. To multiply any point or other object with a quotient,
one needs to know the coordinates of this object with regards to whichever basis had been chosen

for this particular quotient. That is, to multiply a vector x with the quotient (b1,...,bn)
(a1,...,an)

, one would
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first have to write x as a multiple some of the ai. A solution could be to rewrite any quotient to
having a standard basis as its denominators, but in doing so we are ignoring precisely the strength
of generality that it had.

This problem also extends to Grassmann’s version of determinant. Although he shows that
these can be computed for any quotient regardless of numerators, no clear-cut computation is ever
provided for the relative products one has to compute. The closest we get is in the relation between
those products and the “determinant of n series of n” numbers. To determine this, however, we
still end up needing the coefficients of our numerator and denominator relative to some standard
basis. Since we need to compute this for both numerator and denominator, this means twice the
work with precisely those coefficients that this notation otherwise avoids altogether.

One more apparent limitation is that the quotients are only equivalent to square matrices, as any
n objects must map to n objects. This is however not as bad as it seems, as the numerator does not
need to be independent. The map can indeed not map into a subset of a higher dimensional space.
However when the objects in the numerator are linearly dependent, they span a lower dimensional
space and the quotient essentially maps into that space. In fact one can rewrite the quotient in the
same way as when determining the eigenvectors, to find the kernel of the map in the denominator.

All in all, the quotient notation that Grassmann introduces does have some advantages compared
to our modern transformation matrix. However I do not think that these advantages outweigh the
limitations that they have, particularly in their lack of coefficients making any numerical approach
unnecessarily difficult.
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Chapter 6

Conclusion

In 1918, we find the first systematic approach to affine geometry in Hermann Weyl’s ‘Space, Time,
Matter’ [21]. He makes use of a rather modern axiomatic approach, and even where his axioms
diverge from the now common ones, correspondences are easily established. In fact some modern
sources still use his axioms, now referred to as “Weyl’s axioms” [15]. Some conceptual differences
still remain. He does not differentiate as strongly between the affine space and its underlying vector
space as we do now, although he does make mention of both a vector field and a point configuration.
His spaces are also limited to finite dimensions, the generalization to infinite-dimensional spaces
being a more modern one.

In his work, the axiomatic approach has a clear purpose in establishing a rigorous foundation for
the later chapters, in which he uses the affine geometry to discuss the general theory of relativity.
He points this out on page 159, where he states that “We have set forth these details with pedantic
accuracy so as to be armed at least with a set of mathematical conceptions which have been sifted
into a form that makes them immediately applicable to Einstein’s principle of relativity for which
our powers of intuition are much more inadequate than for that of Galilei.” Indeed, this rigor serves
as a foundation to work on theories where intuition is no longer adequate, and might even lead one
astray. The quest for rigor is however not his only aim. In the preface, Weyl mentions his desire
to create a systematic presentation of the general theory of relativity, which he says was lacking
up to this point. This indicates his more descriptive aim, where he takes great care in how he
presents his material so the reader can follow along, with great attention to the foundations. On
the topic of affine geometry this is particularly noticeable in how he moves back and forth between
the abstract, context-free axioms, and the discussions before and after where he does introduce
context and encourages the reader to build their intuition. [3]

Hermann Grassmann’s Ausdehnungslehre [8,10] is quite a different story. First of all, the intentions
behind this work were very different. Through his theory of forms, Grassmann had a strong
conviction of how mathematics should be built up, and as such creating that foundation served
to fulfill an architectural aim. More than that, though, Grassmann aimed to develop a new branch
of mathematics. In his foreword he argues how abstraction and generalization reveal the patterns
and elegance of mathematical theories, which in turn made it easier to connect different concepts
and eventually apply them. As such, his abstract approach served as a tool for conceptual analysis,
a tool for understanding his new branch of mathematics [3]. This was however not a goal he
managed to achieve, as it turned out that it was precisely this approach that stood in the way of
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his contemporaries understanding his work.
From a modern perspective, it might seem that the abstract approach also hindered Grassmann

himself. Through careful reading we may certainly uncover many affine concepts in Grassmann’s
work, and he deserves particular credit for the early treatment of n-dimensional spaces. Many
properties however get lost in the overly general treatment, and the desire in A1 to develop extension
theory independently from other areas of mathematics. Grassmann did not seem to realize the
significance of some of the more specific concepts he developed, which is particularly noticeable
when many properties of vectors are overshadowed by the study of higher dimensional magnitudes.
Even the numerical magnitudes, which ended up functioning as a generalization of numbers, could
not be fully understood without these higher dimensional magnitudes.

The question of whether Grassmann was indeed the first to develop affine geometry deserves, I
believe, a two-fold answer. On the one hand, he did indeed develop a new approach to geometry
and mathematics in general, and its foundation uses many affine concepts. It is entirely possible
that, as mathematics progressed, Grassmann’s work did inspire mathematicians like Weyl that
brought affine geometry to the area of mathematics that we know today. On the other hand, the
work that Grassmann wrote is not in itself a foundation for affine geometry, and to say that it
is would be disingenuous. However it is hard to say what extension theory might have developed
into if Grassmann had gotten earlier recognition and more time to expand on it. In chapter 5
I discussed some of the advantages Grassmann’s notation of quotients might have had compared
to our modern transformation matrices. Possible follow-up research could involve extending this
comparison to other areas of extension theory. Higher order magnitudes in particular seem to have
no meaningful equivalent in modern affine geometry. Further investigation on what application
these could have might reveal whether we lost a brilliant theory in neglecting Grassmann’s work,
or whether the eventual approach that affine geometry took was indeed the superior one.

41



Appendix A

‘Translations’ of Grassmann’s
terms

Below is a list of terms used in Grassmann’s work, and how they can be interpreted in modern
affine geometry. The page number refers to the page where I discuss this correspondence in this
thesis. These correspondences are not a direct translation. In many cases they behave similarly,
but the concept behind them is different. In some cases, I have chosen a modern concept that is
more narrow than the one Grassmann considers.

Grassmann Modern Page
conjunction (binary) operation 16
displacement vector 18
domain (nth order) n-dimensional space 28
element point/position 17
elementary extensive structure line segment 18
elementary magnitude (first order) weighted point 24
evolution motion 17
extensive magnitude (first order) vector 18
extensive magnitude (nth order) n-dimensional parallelepiped 21
fundamental evolution direction 18
indicators of a magnitude coordinates of a vector 24
magnitude vector/point/plane/space/etc.
magnitude (first order) 1-dimensional object (point/vector) 30
numerical magnitudes (real) numbers/scalars 23
power of a quotient determinant of a matrix 32
principal domain eigenspace 34
principal number eigenvalue 34
quotient/fraction square matrix 30
reference measures unit vectors 23
reference system basis of a space 23
similar displacements parallel vectors 19
similar extensions parallel vectors/parallelograms/etc 21
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system (first order) one-dimensional space 18
system (nth order) n-dimensional space 19
system of units basis of a space 28
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[10] , Die ausdehnungslehre. vollständig und in strenger form bearbeitet, Vol. 1, American Mathematical
Society, 1862. English translation by L.C. Kannenberg, 2000.

[11] JG Grassmann, Zur physischen krystallonomie und geometrischen combinationslehre, stettin, bei friedr, Heinr.
Morin (1829).

[12] F. Klein, A. Sommerfeld, and P. Furtwängler, Ausgewählte kapitel der zahlentheorie, 1896.
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[14] August Ferdinand Möbius, Der barycentrische calcul ein neues hülfsmittel zur analytischen behandlung der
geometrie dargestellt und insbesondere auf die bildung neuer classen von aufgaben und die entwickelung mehrerer
eigenschaften der kegelschnitte angewendet von august ferdinand mobius professor der astronomie zu leipzig,
Verlag von Johann Ambrosius Barth, 1827.

[15] Katsumi Nomizu and Takeshi Sasaki, Affine differential geometry: geometry of affine immersions, Cambridge
university press, 1994.

[16] Giuseppe Peano, Geometric calculus, according to the ausdehnungslehre of h. grassmann, Birkhauser Boston,
1888. English translation by L.C. Kannenberg, 2000.

[17] Hans-Joachim Petsche, Hermann grassmann: Biography, Birkhäuser, 2009. English translation by M. Minnes,
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