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Layman's summary 
Natural sciences aim to understand the world around us. Biology is no exception 

and is particularly interested in the structures and interactions that govern how 

living things interact. Where physics and chemistry can fall back on fundamental 

building blocks of the universe, biologists can only go back to the simplest known 

life forms. Even these present complex self-organizing features. To explain the 

observed behavior, we create models which take the known components of the 

system and describe their interactions. In recent years the development of faster 

and faster computers allowed biologists to transform these models into something 

more. The use of computational biology allows us to take existing models and 

predict behavior far into the future. From the growth of bacteria, to the infection of 

plant cells, and the development of roots. The unique advantage of biological 

modeling is our ability to introduce all sorts of artificial challenges. Changing 

temperatures to see what can be done to store food longer. Changing the distance 

between humans to find the optimal range for preventing COVID-19 spread. Testing 

altered gene expression in the survival of plants under salt stress. Even though these 

could all be tested in traditional laboratory settings. The use of biological models is 

faster, cheaper, and more flexible. In this review, we introduce the world of 

computational modeling and show how these models can be used to support and 

possibly exceed laboratory experiments. 
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Abstract 
Biological modeling is a quickly developing subsection of biology. Combining biology and mathematics 

to provide computational models that can predict and explain biological phenomena. Where classic 

models provide an overview of a system with connections to predict outcomes when changing a single 

component, computational models can simultaneously update every component in the system. 

Allowing for more sensitive and time-dependent effects to be observed. We demonstrate how a 

dynamic model can be created through the use of Ordinary Differential Equations (ODEs). These inform 

what the values for each compartment within the system is and how they change over time. To help 

explain we showcase a classical thermodynamic entropy model. The principles of ODEs are then 

expanded to a multi-compartment system. From here dynamics of bioreactors and bacterial 

populations can be explained using computational models. To describe distance-dependent systems 

such as bacterial spread on plates, development of roots, and self-organisation of tissues we introduce 

an imaginary space named a lattice. These multi-dimensional planes utilize coordinate systems to 

characterise individual positions in space and provide information about components within the 

proximity. To optimize computational efficiency, we demonstrate how to connect the edges of a lattice 

using boundary conditions. These conditions allow for components in the system to travel indefinitely 

without ever leaving the lattice or becoming strapped in the corners. Once the establishment of 

components in a biological model is explained, we delve into strategies to parameterize the system. 

These strategies combine existing laboratory data with derivative-based searching tools to accurately 

establish values for the connections between components in the system, paving the way for more 

precise and insightful biological models. As technology advances, particularly with the emergence of 

Artificial Intelligence-guided programming, it is easier than ever for biologists to apply their field-

specific knowledge and develop models to support their work. Therefore this review gives an overview 

of the essential components to consider when creating models. Alongside explaining every component, 

we provide examples of well-executed biological modeling projects. 

Introduction; Conceptional models vs computational models 

In the context of biology, models are often used. They provide a simplified version or simulation which 

describes, explains or predicts biological phenomena. Classical models are static, they define acting 

parties with a network of connections between them. The interactions can induce, reduce or transform 

other components in the model. With regards to transcription factors, these models can be followed 

to predict the implications of mutations, usually in an on or off-state (Beckwith, 1967).  

With the introduction of computers, it became feasible to set up dynamic models. These often take 

preexisting static models and repeatedly compare the state and values of each component over time. 

By taking the initial values and iterating over time, dynamic models can show changes in the relative 

contribution of individual parts to the whole system (Modeling Complex Systems). Or highlight changes 

caused, either directly or indirectly, by single parts. Even though it was always possible to iterate models 

over time by hand, the advancements in computational modeling have expanded the possibilities in 

terms of time steps and the number of components tremendously. This allows the simultaneous 

modeling of many dynamic parts. Giving excellent insight into the complex behaviour that arises in the 

systems and comparing them with processes of spontaneous collaboration observed in nature. From 

embryogenesis (Jaeger, 2009) to the synchronisation of fireflies (Strogatz, 1997) and the formation of 

intricate root structures (Rutten & Tusscher, 2019). 

In many cases, models help us understand and predict biological behaviour. However, the initial 

assumptions we make about a system shape the results obtained from biological models. Here, we 

discuss the principle components of biological models and present how these were implemented in 
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relevant research. Where possible, we highlight what considerations should be taken when 

implementing these models and how these might shape the obtained results. 

How to set up a dynamic model 
To set up a dynamic model, we start by defining a set of Ordinary differential equations (ODEs) (3). 

These comprise two parts—namely, the compartments in the system and the interaction between 

these compartments. The simplest dynamic model described by statistical mechanics is a two-

compartment system describing thermodynamic entropy (Friedli & Velenik, 2017). Here two connected 

compartments (S1, S2) in an ideal system are defined by three variables, their Volume (V), Number of 

particles (N), and their Energy (U) (Figure 1). 

  

 

 

Figure 1, two-compartment system to describe 
thermodynamics. The image shows two 
compartments (S1, S2) with their associated volume 
(V) and number of particles (N), and energy (U). In 
the middle, there is a fixed barrier that doesn’t 
allow the exchange of particles but does allow 
energy to flow between the systems as indicated by 
the arrows. This figure has been adapted from 
(Friedli & Velenik, 2017). 

By specifying more details about the variables in the system, we find: 

𝑉𝑡𝑜𝑡𝑎𝑙 =  𝑉1  + 𝑉2, 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁1  + 𝑁2, 𝑈𝑡𝑜𝑡𝑎𝑙 =  𝑈1  + 𝑈2          (1) 

This indicates that each variable has a fixed total value in the shown system. Furthermore, the 

separation of the two compartments by a semi permeable barrier results in both (V1, V2) and (N1, N2) 

being fixed (Figure 1). For the energy term, we can express both variables U1 and U2 in terms of U1, 

because the total energy in the system is fixed: 

(𝑈1, 𝑈2)  →  𝑆(𝑈1, 𝑉1, 𝑁1) + 𝑆(𝑈2, 𝑉2, 𝑁2)  =  𝑆(𝑈1, 𝑉1, 𝑁1) + 𝑆(𝑈𝑡𝑜𝑡𝑎𝑙 − 𝑈1, 𝑉2, 𝑁2)          (2)  

From here, it follows that the two compartments are at equilibrium when the energy flow between 

them is equal. In other words, at every time step, the changes in U1➞2 and U2➞1 are equal: 

∂S/ ∂U (𝑈1, 𝑉1, 𝑁1) =  ∂S/ ∂U (𝑈2, 𝑉2, 𝑁2)          (3) 

This equation creates a simplistic scalable system for energy flow that is core to describing the flow 

between any number of compartments in a lattice system. In the next section we show what happens 

when we increase the number of components in a one dimensional system.  

Modeling at scale 
In equation (3) we assumed only two compartments in the system. Therefore, any change in one meant 

an opposite change in the other. For S1 to gain one unit of energy, S2 must lose one unit of energy. For 

systems with more than two components, there are generally two ways of incorporating exchange 

between components. Either global, meaning each component has interaction with every other 

component. Or local, meaning each component has direct interaction with its nearest neighbours. 

Expanding our two-compartment model to a four-compartment model visualises how one might adapt 

the nearest neighbour method (Figure 2). 
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Figure 2, Expansion from a two to four compartment model. The image shows four compartments (S1, S2, S3, S4) with their 
associated volume (V), number of particles (N), and energy (U). The system's total energy is not shown but can be assumed 
to be Utotal. between compartments, there are fixed barriers that do not allow for the exchange of particles, but do allow 
energy to flow freely within the systems. The arrows passing though the barriers indicate the exchange of energy between 

the compartments, expressed in energy (Ui➞j ) flow from compartment one (Ui) to (➞) compartment two (Uj). 

Here the number of components is increased from two to four. The number of interactions between 

the system however, increased from two to six, which is a precursor of how these systems quickly grow 

to be more complex. The new notation used U1➞2 is sufficient for now and indicates the start and 

ending point of the energy flow. As we can see compartments only interact with the ones right next to 

them, but the previously mentioned principles about equilibrium still applies (3). Since for each 

compartment the number of particles (N) and the volume (V) are fixed, we can again state that the 

system is in equilibrium when the energy flow (Ui➞j) in and out are equal. If we were to suddenly 

increase the energy in S1, we can imagine U1➞2 will become larger than U2➞1. The energy would slowly 

redistribute throughout the system. Even though S1 and S4 are not directly connected, the energy can 

still travel between them over enough time steps.  

We can make our first model by substituting the compartments S1,2,3,4 

with biologically relevant terms. For instance, bacteria growth under 

viral pressure in a bioreactor (Figure 3). Here we see the compartments 

are defined as resistant, uninfected, and infected bacteria, together 

with their growth resources, and the virus particles (Middelboe et al., 

2001). Again the total resources in the system are fixed, therefore any 

increase in uninfected bacteria population will decrease the available 

resources in the system. The arrows that indicate the interactions 

between the components in the system represent terms in the 

differential equations associated with the system. Working out the 

values for the constants such as growth rate and death rate can be 

done by interpreting experimental data. 

Bioreactors and other liquid based systems are usually described by 

ODEs, since they are well mixed and every component of the system is 

in close contact with every other component. This is not the case for 

many other biological systems, where separation in space plays a large 

role in the likelihood of two components interacting. In the next section 

we will expand our compartment model to a large plane called a lattice. 

Figure 3, flow chart of bacteria 
growth and infection with a virus. 
The image shows the boxes with 
the different compartments and 
connecting arrows that indicate 
some interaction between them. 
The image was adapted from 
(Middelboe, 2000).  



5 
 

Dynamic models using a lattice space 
A lattice is an imaginary space composed of neighbouring compartments, hereafter cells. The size and 

shape of a lattice can vary, but for simplicity, we will assume a 2D square space with sides (L1, L2)(Figure 

4). Each cell in the lattice has a unique (0 to L1, 0 to L2) coordinate. Cells can represent many things and 

hold one or more values. The advantage of using a lattice is the ease with which you can organise 

interactions.  

To explain this, we will use the spread of a virus though an plate with bacteria. If each cell in the lattice 

represents a bacteria, we can assign certain states to each cell, such as susceptible or infected. 

Essentially we are describing a system with 3 compartments, however they are spread out over a larger 

plane. To travel through the plane and find each individual cell, we can utilize the coordinate system. 

Going from position (0, L2) to (L1, L2) implies moving though the rows of the lattice grid. We use “i” to 

specify the number in L1. By iterating through these numbers, we can effectively walk through the grid, 

examining each individual. To identify the state of the surrounding cells we can again utilize the current 

value of i. The neighbouring cells can be found by subtracting 1 (neighbour to the left) or adding one 

(neighbour to the right). Once we have identified the state of neighbouring cells, we can calculate the 

likelihood of the central cell will be infected. For instance, we can sum the states of the surrounding 

cells (uninfected = 0, infected = 1) and multiply by some infection rate λ12 (Figure 4).  

  

 

 

 

 

Figure 4, Schematic representation of viral infection 
sight in N. benthamiana leaf. The dark grey cell (Cell-0) 
in the middle of the lattice represents the original 
infection sight. The surrounding rings are the closest 
neighbours (Cell-1) and their closest neighbours (Cell-1) 
and their closest neighbours (Cell-2). λ12  represents the 
likelihood of a virus particle moving between cells. This 
figure has been adapted from (Abebe et al., 2021). 

An example that utilizes this idea, describes the spread of multiple virus particles from one N. 

benthamiana cell to another using several differential equation (Abebe et al., 2021; Miyashita & 

Kishino, 2010). These describes the small chance of the virus particles moving to a neighbouring cell 

dependent on the number of virus particles in the host cell. In the experiment presented in figure 4, 

two fluorescently tagged viruses were infected in the plant. The subsequent spread of the virus 

particles and the observed mix of co-infected or single-infected cells indicated the likelihood of 

neighbour infection. Ultimately, the average number of founder virus particles was determined by 

combining wet-lab experiments with this dynamic model (Abebe et al., 2021). Here we described 

systems where neighbouring cells are all treated equally. In the next section we will introduce preferred 

directions and see how this can lead to self-organisation of large structures. 
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Gradient formation 
In the previous example, lattice cells represented plant cells. Here we will expand on the lattice 

structure and consider multiple lattice cells forming one biological cell. Demonstrating how  a uniformly 

shaped lattice grid can model plant roots, which have distinct cell types, each with their own 

orientation and expression patterns (Grieneisen et al., 2007). As a result of these expression patterns, 

the establishment of known hormone gradients can be explained. The plant hormone Auxin and its 

gradient across tissues is essential for the development of roots (Cruz-Ramírez et al., 2012). Auxin is 

transported from cell to cell by PIN-FORMED (PIN) proteins (Rutten & Tusscher, 2019; van den Berg et 

al., 2016). The expression of PIN proteins is tissue-specific, and the membrane localisation is dependent 

on the specific members of the PIN protein family (van den Berg et al., 2016). In the following model, 

several cell types were characterised, each with its own PIN localisation and distinct height (Figure 5, 

C). The PIN localisation was based on microscope images, showing the need for high-quality 

experiments to verify values for the constants used in the model. Running the model leads to a reverse 

fountain pattern which is common for Auxin flow (Figure 5, E)(Goh et al., 2014). Even though the shape 

of the root tip is far from biologically accurate, Auxin accumulation can be observed just below the 

Quiescent Center (QC) just as expected. 

 

Figure 5, Rudimentary model of auxin transport by PIN proteins. The figure shows an arrangement of root models. A) A 
model of a single root is shown. The Different cell types are depicted in different colours. At the bottom the Quiescent Center 
(QC) is shown. The characteristics of the cell types are shown in panel B. B) the shape and localisation of PIN proteins are 
shown for each of the four cell types used in the model. Additionally the formulas for the flow of Auxin for each of the PIN 
proteins is linked to the specific cell expressing them. C) microscope images of single cells with stained PIN proteins is shown. 
These form the basis for localization of the PIN proteins in panel B. C) The same modelled root is shown with the arrows 
indicating the flow of Auxin through the root. The colour also indicates the flow of auxin, however the legend for this was not 
added as the same information can be derived from the arrows. The images were adapted from (Grieneisen et al., 2007). 
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Early studies into gravity-driven root orientation showed PIN3 & PIN7 were primarily involved in the 

initiation of asymmetric auxin transport, while PIN2 and auxin transporter (AUX1) were important for 

the maintenance of the asymmetry (van den Berg et al., 2016). In salt-related stress, however, PIN2 

was primarily downregulated on the salt-exposed side of the root. This means that the active export of 

Auxin decreased and a local maxima in auxin concentration occurred (van den Berg et al., 2016). While 

investigating the role of PIN2 proteins in the induction of root curvature under salt stress conditions 

van den Berg et al., used computer models like the one we showed to validate whether PIN2 reduction 

alone can explain the observed root restructuring. It turns out that, in the simple model, PIN2 reduction 

couldn’t induce a local auxin maxima on the side opposite to the salt source. However, upon improving 

the model and taking into account the shape or the root tip, PIN2 reduction did lead to the observed 

phenotype. Additionally, the inclusion of AUX1 into the model further improved its predictive 

capabilities (van den Berg et al., 2016). 

Boundary conditions 
The aforementioned models have had clearly defined edges. Be it in the form of the outer root layer or 

the edge of a leaf. What happens if edges are undesirable in a system? We could simply increase the 

lattice space and set L1 and L2 to be 100 million, the problem there is the exponential growth in 

computational power needed to simulate the system. As the dynamics for each cell have to be 

calculated for each time step. Instead we can be creative about the space of the imaged lattice instead. 

The use of continuous boundary conditions does just that (Gros, 2008). Imagine a sheet of paper 

(lattice) with an ant on it. If the ant walk far enough he will fall off the edge. However, of we fold the 

sides of the paper into a cylinder. The ant can walk in one direction for an antless period of time. The 

same can be done for either end of the paper, by folding them together and creating a donut shape 

(Figure 6). 

 
Figure 6, periodic boundary conditions in a 1D, 2D, and 3D lattice space. The figures show how periodic boundary 

conditions can be achieved for 1D, 2D, and 3D structures. The image was adapted from (Friedli & Velenik, 2017). 

Examples of when to use periodic boundary conditions are with modeling protein structures. When 

modeling a protein containing hydrophobic residues in water, they might cluster in a corner of the 

lattice, as there is the least interaction with water that way. When using periodic boundary conditions 

there would be no corner and the correct folding could occur instead. One more point of consideration 

when working with protein folding in particular is the size of the lattice. This should be at least 2.5 times 

longer than the unfolded protein (Dominguez et al., 2003). Otherwise it is possible for the charged ends 

of the protein to interact with each other over the boundary conditions, leading to unrealistic tension 

in the protein. Extending periodic boundary conditions to a 3D lattice would be shaped like a Klein 

bottle, which you need a 4th dimension for to properly represent (Figure 6) (Kneser, 1924). With this, 

we have established how elements of a model can interact. How a lattice can be used to position 

elements and calculate their proximity to each other. And how we can compute a nearly infinitely large 

space, with finite computing power. Hereafter we focus on coupling our model with reality via the use 

of constants. 
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Parameterisation of the system 
Once we have identified which variables to use in a model, they need to be linked with constants to 

determine their relative contribution to the equation. The value of these constants can be derived 

from experimentally acquired data. Here we show the basis of fitting parameters of mechanistic 

models to experimental data. To guide us, a model for predicting some linear growth curve is 

compared to experimental data showing one free parameter (Figure 7). 

 

 

 

 

Figure 7, Example of calculating the “cost” of a function. The 
graph shows three lines and highlights the area between 
them. The formulas for the experimental data g(x) = a*x (blue) 
and both approximations f(x) (orange) and h(x) (red) are 
given. The area between the approximation and the 
experimental data is highlighted in either red or green. Both 
axes are unitless.  

In this case, the formula describing the experimental data has one constant and one variable 

𝐹(𝑥)  =  𝑎𝑥 

To identify the constant which most closely predicts the experimental data we can take a range of 

values for “a” and calculate their cost. Cost is a measure of the area under the curve between the two 

lines (Kitano, 2002). It follows that the greater the cost/area, the more the model and experimental 

data differ. Therefore, our goal in parameter acquisition is to find a value with minimal cost. Combining 

all the different costs for a value range of one parameter gives you a cost function (Figure 8). For a 

single parameter it is quite easy to see where the local minima in its cost function appears. 

 

Figure 8, Cost function for single variable "a". The graph shows the cost function for a range of values for the variable “a”. 
The cost is expressed as a unitless area under the curve shown in figure 7. 

However, when multiple constants are at play it is more likely some will mask the others, resulting in 

difficult to acquire minima. Note that the number of variables is not limited to one or two, but can be 

any number. In Figure 9, we show a 3D space with two parameters, 4 and 6, and their associated cost 
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function. Finding the local minima in this plane requires the use of optimisation models (Slezak et al., 

2010). Here we present two families of optimisation methods, namely descent methods and sampling 

methods. 

 

Figure 9, 3D representation of cost landscape for 2 parameters. The cost function for two variables is represented for any 
possible combination in a 3D landscape. The colour range indicates areas of low cost in dark green and peaks in cost as 
bright green. The image was adapted from (Slezak et al., 2010). 

Decent models 
In general, decent models assume a position on the cost function plane and calculate direction of the 

force (Meza, 2010). Remember that one can calculate the force by taking the negative derivative of the 

function. In our simple model, there are two components to the function (Figure 8). To the left of the 

minima  F(x) = -x, to the right G(x) = x. Taking the derivative of these functions gives F’(x) = -1 & G’(x) = 

1 respectively. Taking the negative of these results shows the force to the left of the minimum is in the 

positive direction, while to the right it is in the negative direction. From here a step in the direction of 

the force can be taken. This is where different approaches to minimizing in decent models are 

employed. In the simplest form a steepest descent model will take a fixed step size, recalculate the 

force and take the next step (Fliege & Svaiter, 2000). If you are lucky this could find the minima, but 

more often than not, this leads to an oscillation around the minimum of the function. Since if the step 

size is larger than the distance between the starting point and the true minima, you will shoot past it. 

With a fixed step size this keeps happening. The Levenberg-Marquardt (LM) method aims to solve this 

issue by implementing a dampening factor (Choi, 2010; Moré, 1978). Every time a step is taken the step 

size increase if the force at the next step is in the same direction. On the other hand the step size 

decreases when the direction of the force changes. Even though this will more accurately find the 

minima over time. There is a trade of between accuracy and speed when using descending models. 
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Sampling methods 
Sampling methods or random search models such as the Monte Carlo optimization technique asses the 

minima of a cost landscape by sampling (Shapiro, 2003). Instead of spending computational power 

moving towards the possible minima, they repeatedly sample random positions and calculate their cost 

(Choi, 2010; Shapiro, 2003). When all samples have been taken, they are compared and the location 

with the lowest cost is considered the optimum. The upside of these models is their ability to sample 

the whole plane, without getting stuck in local minima. The down side is that you can’t always predict 

the size of the cost function, so knowing how many samples is sufficient can be challenging. 

Evolutionary algorithms are another a subclass of random search models. These use the principles of 

biology by combining the best scoring samples and either crossing or mutating them (Kansal et al., 

2020). Over multiple generations, these models are able to both escape local minima and search 

especially noisy energy landscapes. 

Going back to the previously mentioned article from figure 9 adds some nuance to the use of 

minimization methods (Slezak et al., 2010). In their analysis they took a preexisting model of vasculair 

tumor formation and added additional parameters to more accurately predict its development. The 

model was expended to use 6 constants instead of 3 and multiple minimization techniques were used 

to find the minima of the cost function. In the end even though they were able to fit the model more 

accurately to the training data using the LM method, the overall performance of the model decreased. 

This was due to new found parameters falling outside the range of values observed in experiments 

(Slezak et al., 2010). This “overfitting” of a model can occur when to much weight is placed on the 

training data, resulting in random noise being interpreted as biologically relevant data. This example 

again shows that computational models should be developed in parallel with wet lab experiments. 

conclusion 
Together the discussed properties of biological models should provide enough insight to 

conceptualize your own. Depending on the specific application relevant literature can be sought after. 

These are often accompanied with the code used to run the presented model. From there, identify 

your own components and establish a basic set of interactions between them. To prevent unrealistic 

situations the ODEs should be balanced, meaning any addition to one component subtracts from 

another. Once you have the basis of your model specific problems can be addressed. We did not 

touch upon it in this review, but population dynamics should have restricted growth rates or 

maximum sizes. This can be established using density dependent growth and death rates. As we saw 

with the model for auxin transport, it is sometimes required to add more components to explain 

certain phenomena such as the formation of gradients. Despite this, it is often better to keep the 

model as simple as possible. With regards to parameterisation, in simple acquisition of the specific 

constant values through experiments could be preferable over minimization methods. For more 

complex systems, developments in the area of finance have provided a plethora of techniques for 

efficient and fast derivative based minimization. Overall the most effective way of learning about 

biological modeling is by creating your own. As mentioned before, the onset of advanced AI language 

models has made it easier than ever to translate an idea into usable code and we strongly encourage 

the reader to try setting up a project of their own.   
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