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B.1.2 – Abstract  
In this study, the main objec2ve is to develop a large, pan-cancer mul2modal founda2on 
model that can be used to predict response to neoadjuvant immunotherapy, an unmet need 
in the field of oncology. The past years, neoadjuvant immunotherapy has emerged as a 
groundbreaking paradigm in oncology, transforming treatment strategies by exploi2ng the 
immune system before surgery to enhance therapeu2c efficacy. Ongoing clinical trials 
highlight the poten2al of neoadjuvant immune checkpoint blockade as a promising strategy 
for many different cancer types. Clinical trials and other studies aim to find predic2ve 
biomarkers for neoadjuvant immunotherapy response. Nowadays, increasing amounts of 
biological data are collected as pa2ents are diagnosed and treated in the hospital. Deep 
learning (DL) can be used to unlock the full poten2al of these datasets by learning intrinsic 
pa^erns in the data for cancer diagnosis, prognosis, and many other use cases. However, most 
DL methods are trained on a small amount of labelled data which limits the generaliza2on 
capability of these models. Outside the medical domain, the rise of founda2on models (FM) 
has led to major successes in natural language processing and computer vision. FMs are 
billion-parameter models that are trained on vast amounts of data with self-supervised 
learning, a DL method that allows the FM to develop a general understanding of unlabelled 
data. We aim to develop a large, mul2modal FM that includes both histopathology and 
transcriptomics data from a large pa2ent database. Furthermore, we will exploit our FM to 
predict response to neoadjuvant immunotherapy based on ongoing clinical trials. The 
development of a large, mul2modal FM is unprecedented in oncology and will pave the way 
for personalized medicine.  
 
B.1.3 – Layman’s summary 
Cancer is a disease caused by uncontrolled division of abnormal, tumour cells that can occur 
in different parts of the body. Tradi2onal cancer treatments include surgery, chemotherapy, 
radia2on, or immunotherapy. As the immune system is supressed in cancer cells, the body’s 
natural defence mechanisms are disturbed. Immunotherapy aims to empower the immune 
system to recognize and destroy cancer cells more effec2vely. Recently, it has been found that 
giving immunotherapy prior to surgery even further improves the ability of the body to 



combat the cancer. This is called neoadjuvant immunotherapy. Currently, many clinical trials 
are conducted to properly inves2gate the effect of neoadjuvant immunotherapy in different 
cancer types and so far, promising results have been delivered. However, not every pa2ent 
responds well to this treatment approach, and it is important to decide as early as possible 
what pa2ents can benefit from neoadjuvant therapy and what pa2ents may have more 
benefit from an alterna2ve treatment approach. Response to treatment is dependent on 
many pa2ent characteris2cs. A personalized approach can iden2fy for each pa2ent whether 
he or she will be a responder and lead to more effec2ve treatment decisions. Ar2ficial 
intelligence (AI) methods can learn underlying pa^erns from large, medical datasets and can 
aid in cancer diagnosis, prognosis, and treatment strategies. As more data becomes available, 
AI models become bigger, and the most recent trend are founda2on models (FM). The unique 
strength of founda2on models compared to more tradi2onal AI methods is that they are able 
to leverage the large datasets available in the hospital sebng. Medical founda2on models are 
ocen trained on one data type, for example on microscopic 2ssue images or gene2c data. In 
this proposal, we aim to develop a founda2on model that is trained on mul2ple, 
complementary data types. This mul2modal approach will improve the FM’s understanding of 
the underlying cancer biology. Finally, we will bring our mul2modal FM into prac2ce by 
predic2ng neoadjuvant immunotherapy response, which will ul2mately contribute to a 
treatment approach tailored to each individual pa2ent.  
 
B.1.4 – Keywords  
Founda2on models – mul2modal – neoadjuvant immunotherapy – precision oncology – self-
supervised learning 
 
 
 
 
  



B.2.1.a – Extensive background 
Neoadjuvant immunotherapy 
For pa2ents with cancer, neoadjuvant immunotherapy has revolu2onized the landscape of 
cancer treatment. Neoadjuvant immunotherapy encompasses the administra2on of immune 
checkpoint inhibitors prior to surgery, with the aim of strengthening the body’s immune 
response against cancer cells (1). Compared to adjuvant immunotherapy, neoadjuvant 
immune checkpoint blockade (ICB) is thought to ini2ate a stronger and broader T-cell response 
as the tumour is s2ll fully present. A larger immune response will lead to a reduc2on in tumour 
size which improves resectability (2,3). The field of neoadjuvant immunotherapy has 
progressed rapidly over the past few years and many clinical trials are going on to unlock the 
full poten2al of this novel treatment approach (1). ICB typically targets programmed death 1 
(PD-1), programmed death ligand 1 (PD-L1) and cytotoxic T-lymphocyte an2gen 4 (CTLA-4). 
The efficacy of these drugs in the preopera2ve sebng was first seen in mouse studies and has 
been further validated in transla2onal studies and clinical trials, with promising results for 
improved pa2ent survival in several cancer types (4). Currently, there are two U.S. Food and 
Drug Administra2on (FDA)-approved neoadjuvant ICB treatment regimens for both resectable 
non-small-cell lung cancer (NSCLC) (5) and early triple-nega2ve breast cancer (TNBC) (6), with 
many more on the way. Boydell et al. give a selec2on of ongoing neoadjuvant immunotherapy 
phase III trials (7).   
 
However, not every pa2ent benefits from neoadjuvant immunotherapy. Therefore, the next 
challenge is to iden2fy at baseline what pa2ents are likely to respond and who will likely 
benefit from a different treatment to avoid unnecessary treatment with toxic immunotherapy 
(3). Neoadjuvant immunotherapy is ocen given to treatment naïve pa2ents where the cancer 
is in a resectable stage, so it is important to carefully select eligible pa2ents as to ensure the 
best treatment for each pa2ent. The plethora of clinical trials for neoadjuvant immunotherapy 
provide a goldmine of informa2on about biomarkers that may contribute to a pa2ent being a 
responder or non-responder to neoadjuvant ICB (4,7). The NICHE-1 and NICHE-2 phase II 
clinical trials have named mismatch repair deficiency (dMMR) as a promising biomarker for 
response to neoadjuvant ICB in early stage colon cancer (8,9), although only a small subset of 
pa2ents have dMMR (7). So far, no predic2ve biomarker has been validated for neoadjuvant 
ICB response. Suggested poten2al biomarkers are PD-1/PD-L1 expression, the status of the 
tumour microenvironment (TME), presence of regulatory T cells, high tumour muta2onal 
burden, microsatellite instability, and T cell receptor diversity. It is highly unlikely there will be 
a single predic2ve biomarker for neoadjuvant immunotherapy response, as there are many 
complex interac2ons between the tumour and the immune system. The cancer immunogram 
depicts those interac2ons and states that many components of the immune system play a role 
in the response to cancer (3,4,7,10,11).  
 
 
 



Deep learning for precision oncology 
As cancer pa2ents are diagnosed and treated in the hospital, massive amounts of biological 
informa2on are collected about each pa2ent. The understanding of individual pa2ent’s 
characteris2cs can help advance personalized therapy. Therefore, there lies an important 
opportunity to learn from these different data modali2es, including clinical, radiological, 
histological and omics data, that complement each other. There is a challenge in how to 
effec2vely integrate this high-dimensional pa2ent data, but deep learning (DL) shows 
enormous poten2al to advance clinical and biological understanding by iden2fying pa^erns 
and extrac2ng hidden informa2on in large biomedical datasets. Development of such 
mul2modal DL methods allows for the discovery of data-driven biomarkers and pushes 
forward the rise of precision oncology (7,12–14).  
 
Many unimodal AI models have been developed already to aid in cancer discovery, diagnosis, 
prognosis, and treatment (15). Boehm et al. provide an extensive overview with examples for 
radiology, histopathology, and genomics (12). Only a small number of these algorithms 
eventually gets approved for clinical use. In the field of radiology, many DL methods have been 
approved for clinical use, mainly for cancer detec2on and diagnosis (16). For adjuvant ICB, a 
radiomics-based biomarker was found to be associated with clinical outcome for pan-cancer 
pa2ents treated with an2-PD-1 and PD-L1 (17). Compared to radiology images, H&E-stained 
whole slide images (WSI) provide more informa2on about the tumour microenvironment. As 
these are acquired during rou2ne clinical prac2ce and thus abundantly available, histology 
images provide a promising avenue for DL-based cancer biomarker iden2fica2on (13). 
Microsatellite instability (MSI) status, a possible predic2ve biomarker for response to 
neoadjuvant ICB, can be predicted directly from H&E stained whole slide images (WSI) for 
colorectal cancer (18), and regulatory approved diagnos2c DL methods exist for breast cancer 
(19), colorectal cancer (19,20), and prostate cancer (21,22). In an exploratory study, Chen et 
al. have developed a machine learning method that can predict response to neoadjuvant ICB 
for breast cancer pa2ents based on expression of immunological genes (23).  
 
Mul2modal DL methods provide great poten2al to integrate these different data types and 
develop cancer classifiers based on not one but mul2ple modali2es. Much effort has been put 
into developing such mul2modal DL methods as reviewed in Boehm et al. (12), and recently 
more mul2modal models include histopathology images. In the field of neoadjuvant ICB, a 
recent study proposed a computed tomography (CT) based DL model that could predict 
pathological response to neoadjuvant immunotherapy in NSCLC. Based on a small cohort of 
274 pa2ents, they used both CT images and clinical characteris2cs (24). Vale-Silva et al. 
presented Mul2Surv, a deep learning method that predicts pan-cancer survival based on 
different modali2es including omics, clinical and imaging data from 11,081 pa2ents from the 
publicly available The Cancer Genome Atlas (TCGA, (25)) (26). For each modality a specific 
subnetwork was trained that learns feature representa2ons. Acer fusion of these 
representa2ons, the final model predicts the survival probabili2es for each pa2ent. Best 



performance was achieved when combining clinical data with either gene expression or DNA 
methyla2on data. Mul2Surv is a promising example of how large-scale, high-dimensional, 
mul2modal data can be leveraged to a powerful modelling approach.  
 
The performance of DL methods is dependent on large datasets to properly capture relevant 
underlying pa^erns in the data. DL methods are ocen trained in a supervised manner where 
the model is trained on a labelled dataset to learn the rela2onship between an input (e.g. 
histopathological images) and an output (e.g. tumour subtype classifica2on), to eventually 
predict the output for new, unseen input. The lack of large, publicly available, annotated 
datasets in the medical domain hampers the development of large machine learning models. 
Crea2on of such datasets requires manual annota2on by medical experts which is a 2me-
consuming process. Especially for computa2onal pathology, extensive labelling of WSI on the 
patch level is exhaus2ve and requires exper2se knowledge (27).  
 
Good performance has been reached with supervised classifica2on of breast cancer 
metastasis with a small, pixel-level labelled dataset of 400 WSI (28). However, the small 
sample size may restrain its clinical applicability due to a limited representa2on of clinical 
varia2on. Campanella et al. propose a framework that can train classifica2on models without 
pixel-level labelled WSI (27). They created a large dataset containing 44,732 uncurated WSI 
from different ins2tu2ons, thus represen2ng clinical variability and ar2facts encountered in 
the hospital sebng. Only a small part of their dataset is publicly available. Instead of 
supervised learning as described above, they used the slide-level annota2ons to perform 
mul2ple instance learning (MIL), which is a type of weakly supervised learning (WSL). WSL is 
a DL paradigm where the model is trained using data that is labelled at a less precise level 
than for supervised learning. WSL is ocen used in scenarios where obtaining fully labelled 
datasets is challenging. MIL addresses this issue by giving each 2le of the WSI the same high-
level, weak label (e.g. diseased or healthy). This slide-level diagnosis is readily available from 
diagnos2c reports and easy to come by, in contrast to the pixel- or 2le-level annota2on. The 
MIL classifier is first trained at the 2le level and then aggregates the 2le-level predic2ons to 
give a slide-level classifica2on. This framework showed that pixel-level annotated WSI are not 
necessary to reach clinical grade performance for cancer diagnosis, which allows for the full 
use of biologically available data that carries only slide-level labels. PORPOISE is another WSL 
method, where a pan-cancer DL-based mul2modal fusion algorithm was trained on H&E WSI 
and mul2ple molecular profile features to predict cancer survival on 6,592 WSI slides from 
TCGA (29). 
 
Outside the medical domain there are lots of large, annotated datasets available, for example 
ImageNet (30), a database of currently around 15 million natural images. ImageNet can be 
deployed for DL tasks in the medical domain with transfer learning, a DL method to transfer 
knowledge from a general, pre-trained model (e.g. trained on ImageNet) to a model finetuned 
on a smaller, annotated dataset for a specific downstream medical task (e.g. classifica2on from 



histopathology slides). For example, both Mul2Surv and PORPOISE use an ImageNet 
pretrained model (ResNeXt50 and ResNet50 respec2vely) to extract the feature 
representa2on from WSI for the downstream classifica2on task (26,29). However, there are 
fundamental differences between natural and medical images. Histopathology images are 
very large in size, have no canonical orienta2on, have a different colour scheme, and the 
classifica2on task is ocen dependent on small details instead of larger structures compared 
to natural images. This may restrain knowledge transfer as the features learned by the 
pretrained model may not be applicable to the medical domain (31–33).  
 
Founda2on models 
Recently, founda2on models (FM) have emerged as a new genera2on of AI frameworks that 
can learn to perform diverse tasks using large, unannotated datasets. FMs show amazing 
capacity to obtain general knowledge from extensive datasets that allows them to perform 
many different tasks. FMs are pretrained on large amounts of unlabelled data where the idea 
is to learn the intrinsic representa2ons from datasets without explicit task-specific labels. This 
pretraining phase is crucial to gain a broad understanding of the pa^erns and general features 
of the data. Acer pretraining, FMs can be finetuned for specific tasks, making them adaptable 
for a wide range of downstream applica2ons (34,35).  
 
Examples of well-known FMs include BERT (36) and GPT (37) for natural language, and CLIP 
(38) is a mul2modal FM that integrates natural language and images. Founda2on models are 
built with self-supervised learning (SSL), where the model extracts meaningful 
representa2ons from the input data by automa2cally crea2ng tasks that enable the model to 
generate its own learning signals (34,39). There are mul2ple ways to perform this pretext task 
in SSL, including contras2ve learning, masked modelling, and self-dis2lla2on. Contras2ve 
learning involves training FMs to differen2ate posi2ve and nega2ve pairs and is used in 
methods like SimCLR (40) and MoCov2 (41). Self-dis2lla2on, as seen with DINO (42), relies on 
a teacher-student framework, where a student learns to reconstruct its own perturbed input 
from the teacher. Masked modelling, as seen in BERT, tasks FMs with reconstruc2ng masked 
por2ons of the input data. Masked modelling can also be applied to computer vision, for 
example with iBOT (43). iBOT is a self-supervised framework that uses masked image 
modelling and a vision transformer (ViT) architecture. ViT have shown remarkable 
performance for image understanding and processing compared to convolu2onal neural 
networks (CNN), for example ResNet (34,39).  
 
In the medical domain, self-supervised learning is increasingly u2lised to unlock the full 
poten2al of large-scale, unannotated datasets. FMs trained on biological datasets allows the 
model to learn the underlying pa^erns, thereby poten2ally enhancing diagnos2c capabili2es 
and many other medical tasks, without the need for exhaus2ve manual annota2on of these 
large datasets. There are loads of unannotated medical datasets available (histology slides, 
radiology images, sequencing data, electronic health records, and protein sequences) and self-



supervised learning provides a promising avenue to use these datasets to the fullest extent 
(32). In the field of computa2onal histopathology, much effort has been put towards 
developing self-supervised learning methods to use the large amounts of unlabelled WSI 
available. Using contras2ve SSL, CTransPath is a histopathology FM trained on 30,000 WSI 
from TCGA and PAIP (44), another large publicly available WSI dataset. Based on CTransPath, 
Wagner et al. developed a transformer-based algorithm to predict MSI status from CRC 
histopathology slides (45). They have used CTransPath as the FM and used a MIL method for 
the biomarker predic2on task. However, their method was based on resected slides instead 
of biopsy material which is preferred for a diagnos2c method.   
 
Filiot et al. were the first to develop a histopathology FM, Phikon, with masked image 
modelling using iBOT (31). Phikon was trained using 6,000 unlabelled WSI slides from TCGA. 
For equivalent model architectures (ViT-B), they showed that in-domain pretraining 
outperformed out-of-domain pretraining methods based on ImageNet. They have 
benchmarked several MIIL methods like ABMIL, TransMIL, and Chowder, and used Chowder 
as the MIL method in the final model. On various weakly supervised slide-level classifica2on 
tasks (MSI status, subtype predic2on, metastasis detec2on) evaluated on both TCGA and 
external valida2on cohorts, Phikon outperforms CTransPath and other state-of-the-art 
histopathology SSL methods, both with cohort-specific and pan-cancer pretraining.  
 
As the performance of FMs scales with the size of the dataset, recently focus has shiced 
towards increasing the size of the dataset for pretraining. Most SSL models for histopathology, 
including CTransPath and Phikon, use TCGA as their main data source that includes around 
11,000 diagnos2c WSI. However, data leakage can occur if FMs are pretrained on TCGA data 
and the subsequent downstream, classifica2on tasks are evaluated on TCGA data as well. Last 
year, UNI was released, a ViT-L SSL model pretrained on 100,000 in-house pan-cancer WSI 
using DINOv2 (46). They have shown to outperform CTransPath on all weakly-supervised slide-
level classifica2on tasks on external test cohorts (excluding TCGA tasks that have no external 
test cohort), including tasks like NSCLC subtyping, breast metastasis detec2on, and several 
muta2on predic2on tasks. UNI uses ABMIL as the method to perform weakly supervised slide 
classifica2on acer extrac2ng the features from WSI from the pretrained model.  
 
Recently Virchow was developed, to date the largest histopathology founda2on model trained 
on 1.5 million pan-cancer WSI from Memorial Sloan Ke^ering (MSK) Cancer Center. Virchow 
is based on a ViT-Huge architecture and trained with the DINOv2 SSL algorithm. They state 
that a student-teacher based SSL method like DINOv2 is more suitable for a class-imbalanced 
dataset like WSI than contras2ve learning, as is used in CTransPath. They performed weakly 
supervised slide-level biomarker predic2on (MSI, FGFR, and EGFR) on unseen datasets, using 
AGATA as the MIL method. Virchow outperformed CTransPath on the same task for every 
biomarker. The unprecedented performance of UNI and Virchow emphasizes the importance 
of pretraining FMs on massive pan-cancer histopathology datasets.  



Self-supervised learning is not limited to histopathology but can be applied to different 
modali2es as well. For example, Padegal et al. predicted vital status for colorectal cancer 
pa2ents based on RNA-sequencing data using self-supervised learning (47). As gene 
expression data is of tabular format, they used a pre-exis2ng SSL framework called TabNet 
(48). Their model was pretrained on unlabelled gene expression from TCGA and thereacer 
finetuned on the labelled target dataset (a subset of their train dataset). As gene expression 
is very high-dimensional, they used rigorous feature selec2on beforehand, reducing the 
number of features from 60,660 gene IDs to ~200. They selected the features on the labelled 
dataset and used those features as a filter to perform feature reduc2on on the unlabelled 
dataset, thus using the labelled dataset during the pretraining stage. In this model, clinical and 
copy number varia2on were also included making this a mul2modal tabular founda2on 
model.  
 
Last year, a visual-language founda2on model was developed specifically for histopathology, 
trained on large dataset of 208,414 images and their textual descrip2ons curated from Twi^er 
and other public internet resources (49). The PLIP (pathology language-image pretraining) 
model is trained using contras2ve learning between the language and image modali2es and 
is based on CLIP (contras2ve language-image pretraining). CLIP is a large, well-known visual-
language founda2on model (38) pretrained on a large dataset of images with cap2ons. PLIP is 
evaluated on external valida2on datasets and was shown to outperform the baseline CLIP.  
 
Taking all these developments into account, it can be concluded that the development of a 
large, mul2modal founda2on model for oncology has been unprecedented. Such a model will 
pave the way for tumour classifica2on, clinical response predic2on, and many other 
downstream tasks.  
 
  



B.2.1.b – Overall aim 
Using large-scale unlabelled histopathology and transcriptomic data from cancer pa2ents, we 
aim to develop a pan-cancer mul2modal founda2on model that later can be used for a wide 
range of downstream tasks, including neoadjuvant immunotherapy response predic2on. We 
will use self-supervised learning techniques to develop a founda2on model that learns the 
underlying intrinsic structure of the data, that subsequently can be used for more specific 
downstream tasks with supervised training on a smaller, labelled dataset. Our founda2on 
model will be the first to integrate different medical modali2es on such a large scale. Using 
our FM, we aim to predict pathologic response to neoadjuvant immunotherapy for TNBC, 
NSCLC, and melanoma among others, as there are currently limited biomarkers available, and 
an AI-based decision method can reduce the need for extensive molecular profiling.  
 
B.2.1.c – Objectives 
Objec2ve 1: Develop a pan-cancer mul2modal founda2on model for gene expression and 
histopathology images.  
 
Objec2ve 2: Validate the performance of the mul2modal founda2on model on different 
downstream classifica2on tasks. 
 
Objec2ve 3: Use the mul2modal founda2on model to predict response to neoadjuvant 
therapy for cancer pa2ents.    
 
  



B.2.2.a – Design of the proposed research 
We aim to develop a mul2modal founda2on model based on large amounts of histopathology 
and transcriptomics data. This founda2on model can be used for a wide variety of 
downstream tasks, where we will focus on the predic2on of neoadjuvant immunotherapy 
response for different cancer types. The FM will be trained on a large dataset from both in-
house and publicly available datasets, and will be finetuned on both publicly available datasets 
and in-house clinical trial datasets.  
 
Data collec2on for FM training 
FM training data will be collected from the internal pa2ent database (The Netherlands Cancer 
Ins2tute) where currently 83,000 diagnos2c WSI are available and a subset of TCGA cohorts 
(8,180 diagnos2c WSI). From TCGA, we will use all available cohorts except the ones 
men2oned in table 1. Per pa2ent we will collect gene expression and digital histopathological 
images to build our pan-cancer dataset. We will select unlabelled formalin-fixed paraffin-
embedded (FFPE) haematoxylin and eosin (H&E) stained WSI. The distribu2on of cancer types 
in the internal pa2ent database is unknown but is expected to follow the same trend seen in 
TCGA, where more prevalent cancer types have more entries into the database.   
 
WSI preprocessing 
WSI will be preprocessed as described by Filiot et al. in sec2on 3.2 (31). Filiot et al. have 
downsampled the number of 2les across slides to obtain the same number of 2les for each 
cancer type. We will skip this down sampling step to increase the size of our dataset. Virchow 
did not use down sampling to create their pan-cancer dataset, they have thus used an 
imbalanced dataset with a larger occurrence for more prevalent cancer types to train their 
model. At a later stage, we can explore the effect of balancing the number of 2les per 2ssue 
type in the pretraining dataset.  
 
Gene expression data preprocessing  
Preprocessing of RNA-sequencing data will be performed similar to Padegal et al. (47). They 
have defined the fragments per kilobase of transcripts per million mapped reads upper 
quar2le (FPKM-UQ) as the preferred method to represent the gene expression values. As gene 
expression data is high-dimensional, we will follow a similar feature selec2on strategy where 
first only the protein coding genes are selected. As a second step, Padegal et al. perform 
feature reduc2on on a smaller, labelled dataset to then use these features as a filter on the 
larger unlabelled dataset. This is unfavourable for our situa2on where we want to use the 
gene expression values from an unlabelled dataset without using a labelled dataset. 
Therefore, we will use all 19,962 protein coding genes.  
 
FM training 
To develop a mul2modal founda2on model for histopathology and transcriptomics data, we 
will adapt exis2ng mul2modal founda2on model architectures. PLIP is a mul2modal 



histopathology – language FM that encodes image and text into one embedding using 
contras2ve learning. We will adapt this approach to image and tabular data, and we aim to 
fuse the two modali2es as early as possible. For both modali2es, we will build a transformer 
model specific to that modality. For the histopathology images, we will use a ViT-B 
architecture, based on Huang et al. and Filiot et al. UNI and Virchow implemented a ViT-L 
architecture but also used a larger dataset. The vision transformer takes 2les of 224 x 224 
pixels as input. For the tabular gene expression data, we will use a TabNet architecture. Both 
encoders will output a vector of similar dimension, and during training these vectors will be 
op2mized by minimizing the contras2ve loss between similar pairs. This will ensure the FM 
will learn from both modali2es simultaneously. The FM will be trained on the in-house pan-
cancer dataset. Once trained, the FM returns the learned representa2ons for a given input of 
histopathology and gene expression data.  
 
Evalua2on of the FM on downstream classifica2on tasks 
Next, the pretrained FM can be used to perform downstream, supervised classifica2on tasks. 
We will evaluate our FM on an extensive set of downstream tasks that are either common in 
related studies or fit our research ques2on. These tasks involve publicly available datasets so 
we can compare the performance of our FM to other state-of-the-art SSL methods.  
 
Data collec2on for finetuning tasks 
We collect data from TCGA (25). An exploratory search at the TCGA repository showed 11,765 
available diagnos2c FFPE WSI from 32 different TCGA cohorts with mul2ple digital 
histopathological slides available per case. We will only include pa2ents if they have both WSI 
and RNA-sequencing data available. Preprocessing of WSI and gene expression data will be 
handled similar as described above. 
 
Finetuning tasks 
We have defined a set of downstream tasks to evaluate our mul2modal FM inspired by the 
evalua2on tasks of other histology pretrained FMs like Phikon, Virchow, and UNI. In these 
studies, usually both slide-level and patch-level tasks are evaluated. We will only evaluate 
slide-level classifica2on tasks as patch-level tasks are not directly relevant to our research 
ques2on. Patch-level classifica2on tasks are generally considered easier whereas slide-level 
classifica2on resembles real-world scenarios and our intended research aim (50).  
 
To perform the finetuning, we first extract the features from our pretrained FM to then train 
a MIL model on the downstream classifica2on task using weakly supervised learning. The MIL 
methods discussed in the background sec2on (Chowder, ABMIL, TransMIL) are all aimed at 
weakly supervised learning for just histopathological images and do not enable integra2on 
with tabular data. We will adapt the mul2modal mul2-instance fusion module (M3IF) that was 
developed to perform MIL with a cross-modal representa2on from both histopathological 



images and tabular clinical data (51), where we will use tabular gene expression data instead 
of clinical data.  
 
We have defined a number of downstream classifica2on tasks based on TCGA cohorts, as 
TCGA provides both histopathological images and gene expression data. The histopathology 
FMs also evaluated their performance on other datasets like Camelyon16 and PAIP-CRC but 
they consist of only WSI and are thus not applicable to our FM. Table 1 describes the 
classifica2on tasks, the TCGA cohort they are based on, and if the task is evaluated in one of 
the other histopathology FMs. The number of WSI gives an es2mate of the number of pa2ents 
as it can occur that one pa2ent has mul2ple WSI entries in the database. Also, the TCGA data 
portal does not allow easy filtering to find the exact number of pa2ents that have both WSI 
and gene expression data available. The final number of included pa2ents may therefore be 
lower than the number of WSI stated in this table.  
 

Task Cohort Nr. of WSI Performed in other 
study 

Histological subtype 
predic?on for renal 
cell cancer 

TCGA-KIRC, TCGA-
KIRP, TCGA-KICH 

940 (31) 

Molecular subtype 
predic?on for breast 
cancer 

TCGA-BRCA 1,133 (31) 

Cancer type 
predic?on for NSCLC 

TCGA-LUAD, TCGA-
LUSC 

1,053 (31,46) 

Genomic altera?on 
predic?on (MSI) 

TCGA-COAD 459 (31,46) 

 
Table 1 – Overview of downstream TCGA-based classifica;on tasks, the cohorts that will be used, the number of 
WSI that is available for those cohorts, and from what study the task has been adapted. NSCLC = non-small cell 
lung cancer, MSI = microsatellite instability, WSI = whole slide images, KIRC = kidney renal clear cell carcinoma, 
KIRP = kidney renal papillary cell carcinoma, KICH = kidney chromophobe, BRCA = breast invasive carcinoma, 
LUAD = lung adenocarcinoma, LUSC = lung squamous cell carcinoma, COAD = colon adenocarcinoma.  

 
Predic2on of neoadjuvant immunotherapy response 
Finally, we will evaluate the performance of our founda2on model on our intended 
downstream task: predic2on of neoadjuvant immunotherapy response from histopathological 
images and gene expression data. The downstream classifica2on task will be performed 
similar as the TCGA tasks, first extrac2ng the learned features from the mul2modal FM and 



subsequently performing MIL to classify pa2ents. Table 2 provides an overview of the ongoing 
clinical trial cohorts at the NKI. If other clinical trial studies are available at 2me of this 
research, they will be included in this step as well. For example, the TONIC2 trial is expected 
to finish in 2024. For each trial, we will select the pa2ents that received neoadjuvant 
immunotherapy. The downstream, finetuning tasks is defined as predic2ng pathologic 
complete response (pCR). pCR is achieved when no more tumour cells are found acer ICB. It 
has been shown that pCR is correlated with overall survival, but it s2ll has to be validated as a 
regulatory-approved endpoint for neoadjuvant immunotherapy. As pCR is evaluated shortly 
acer treatment with neoadjuvant ICB, it allows the physician to alter the treatment plan based 
on pCR (3,7).  
 

Trial name Cancer type Trial phase Nr. of pa?ents included (so 
far) that received 
neoadjuvant ICB  

NADINA (52) Stage III melanoma Phase III 210 

OpaCIN(-neo) 
(53) 

Stage III melanoma Phase II 96 

PRADO (54) Stage III melanoma Phase II 99 

NICHE (8) Early-stage colon 
cancer 

Phase II 40 

NICHE2 (9) Early-stage colon 
cancer 

Phase II 112 

NABUCCO (55) Stage III urothelial 
cancer 

Phase I 24 

IMCISION (56) HNSCC Phase Ib/II 32 

 
Table 2 – Overview of clinical trials that will be used to predict neoadjuvant immunotherapy response. All trials 
are performed at the Netherlands Cancer Ins;tute TNBC = triple nega;ve breast cancer, ICB = immune checkpoint 
blockade, HNSCC = head and neck squamous cell carcinoma.  

 
B.2.2.b – Work plan / research lines 
Objec2ve 1: Develop a pan-cancer mul2modal founda2on model for gene expression and 
histopathology images (2 years). 
Deliverables: 

§ Literature review outlining current state-of-the-art approaches and technologies 
related for exis2ng medical FMs, focussing on histopathology, transcriptomics, and 
mul2modal efforts.  



§ Cura2on of a pan-cancer dataset from both in-house (NKI) and publicly available 
(TCGA) data. 

§ Development and evalua2on of a robust, mul2modal FM. 
§ Complete documenta2on of FM training procedure to enhance reproducibility.  

 
Objec2ve 2: Validate the performance of the mul2modal founda2on model on different 
downstream classifica2on tasks (1 year). 
Deliverables: 

§ Cura2on of dataset for different downstream classifica2on tasks from an external 
dataset (TCGA). 

§ Finetuning of the mul2modal FM on these downstream tasks 
§ Rigorous evalua2on of the performance on these downstream tasks, including 

comparison with exis2ng state-of-the-art methods.   
§ Complete documenta2on of FM finetuning procedure to enhance reproducibility.  

 
Objec2ve 3: Use the mul2modal founda2on model to predict response to neoadjuvant 
therapy for cancer pa2ents (1 year). 
Deliverables: 

§ Cura2on of dataset of in-house (NKI) clinical trial data. 
§ Finetuning of the mul2modal FM to predict neoadjuvant immunotherapy response. 
§ Valida2on of the performance on the predic2on task in close collabora2on with 

physicians.  
 
B.2.3 Feasibility & risk assessment 
The prac2cal feasibility of this research proposal is demonstrated by several key factors that 
together will ensure its realiza2on. First, we have robust data availability from both in-house 
and publicly available datasets. The Netherlands Cancer Ins2tute’s extensive collec2on of 
clinical trial and general pa2ent data is directly available to us, and we will use publicly 
available datasets like TCGA. Second, the lab’s prior experience with developing self-
supervised learning methods for histopathology (57) establishes a solid groundwork for the 
proposed research. Third, a poten2al research collabora2on with Memorial Sloan Ke^ering 
(MSK) Cancer Center adds a layer of strength to our research as they have prior experience 
with developing large founda2on models (58). In terms of 2me planning, a 2meline has been 
outlined in the previous sec2on, accoun2ng for dataset cura2on, model development, model 
valida2on, and poten2al refinements.  
 
The greatest poten2al risk lies in the novelty of our proposed research, being that our 
mul2modal founda2on model may encounter difficul2es in capturing interac2ons between 
the different data modali2es. This can lead to model instability or subop2mal performance 
and will be reflected in a low performance on the supervised, downstream tasks compared to 
the benchmark methods. To mi2gate this risk, an alterna2ve approach involves adop2ng a 



modular model design where we will develop a separate founda2on model for each modality. 
The representa2ons learned by each model will then be fused before the inference task. For 
the histopathology data, we will use a similar model architecture and training procedure as 
Phikon (31). For the transcriptomics data, we will use TabNet as the self-supervised learning 
framework as proposed by Padegal et al. (47). For the downstream inference tasks, we will 
use the same approach as in our original proposed research. This modular approach aims to 
tackle the challenges related to integra2on in the founda2on model while making sure the 
strengths of each modality are s2ll effec2vely captured. The downside of this approach is that 
the early integra2on of the different modali2es is sacrificed.  
 
In the event that both the mul2modal founda2on model and the modular approach face 
unsurmountable challenges, we will revert to a more tradi2onal DL approach, similar to the 
design of Mul2Surv (26). As this is a supervised learning method, we will adapt Mul2Surv to 
predict neoadjuvant immunotherapy response from a histopathology and transcriptomic sub 
model. Even though in this case we will no longer develop a large, mul2modal founda2on 
model, there are not many studies yet that aim at predic2ng response to neoadjuvant 
immunotherapy, and the availability of these studies at the NKI s2ll secures the novelty of this 
research.  
 
The proposed research seamlessly integrates with the available resources and exper2se at the 
Netherlands Cancer Ins2tute (NKI), which has been at the forefront of neoadjuvant 
immunotherapy. This treatment paradigm was first pioneered at the NKI and since then many 
clinical trials in the field are hosted by the ins2tute’s research groups. Our proposed research 
benefits from access to extensive clinical trial and general in-house pa2ent data, providing a 
solid founda2on for developing a large DL model for predic2ng neoadjuvant immunotherapy 
response. Furthermore, the NKI has access to a high-performance compu2ng (HPC) cluster 
that aligns with the computa2onal demands of the proposed research, enabling us to 
efficiently process large datasets for the development and finetuning of our mul2modal FM. 
This strategic embedding promises a beneficial collabora2on that can lead to important 
breakthroughs in cancer treatment.  
 
B.2.4.a – Scientific impact 
This research proposal holds considerable scien2fic significance as it describes the first 
mul2modal founda2on model that combines histopathology and genomics data. On one 
hand, effort has been put into developing large founda2on models for histopathology 
(31,46,58) and transcriptomics (47). On the other hand, a few studies have inves2gated the 
poten2al of weakly supervised learning for pan-cancer mul2modal survival predic2on (26,29). 
We are the first to propose a general-purpose founda2on model built on different modali2es 
that can be used for a wide variety of downstream tasks beyond our intended applica2on for 
predic2on of neoadjuvant immunotherapy response. For example, the FM can be used for 
cancer diagnosis, metastasis detec2on, subtype classifica2on, and many other applica2ons.  



Furthermore, our proposed research can help in understanding the workings of neoadjuvant 
immunotherapy by inves2ga2ng the differences between responders and non-responders. 
This reverse transla2on is thought to help with uncovering the therapeu2c targets of 
neoadjuvant immunotherapy as well as define novel predic2ve biomarkers for response (1). 
We currently propose the integra2on of two different modali2es in a founda2on model. The 
poten2al for extension with addi2onal modali2es like clinical informa2on and radiology 
images paves the way for further improvement and adapta2on to an ever-increasing amount 
of available biological data.  
 
Beyond its immediate applica2on, the development of a mul2modal, medical founda2on 
model contributes to the broader impact of ar2ficial intelligence in healthcare. The ability to 
unravel underlying pa^erns across diverse medical datasets not only has implica2ons for 
predic2on of treatment response but sets a precedent for the use of DL in the landscape of 
precision medicine. Lastly, we will release the code and the weights of the model publicly to 
ensure full reproducibility and transparency.  
 
B.2.4.b – Societal impact 
The direct aim of this research, the development of a mul2modal founda2on model for 
predic2ng neoadjuvant immunotherapy response, has the poten2al to revolu2onize cancer 
treatment. By enabling a personalized and precise approach, this research could lead to more 
effec2ve and targeted interven2ons in pa2ent care, avoiding unnecessary treatment-related 
side effects and improving overall pa2ent quality of life. An efficient DL method for predic2ng 
treatment outcomes will reduce the need for extensive molecular profiling and make 
treatment decisions quicker and more cost-effec2ve. 
 
If neoadjuvant immunotherapy becomes the standard of care, such a DL framework may 
become essen2al for predic2ng treatment response in clinical prac2ce. Further development 
and extensive clinical valida2on of both neoadjuvant immunotherapy and such DL methods is 
required before approval for clinical prac2ce, but this research provides a promising first step 
in that direc2on. Our mul2modal approach can be used beyond oncology to enable 
personalized medicine in other diseases as well which will impact the life of many pa2ents.  
 
B.2.5 – Ethical considerations 
In this research proposal, both publicly available and in-house datasets are used. For the 
publicly available data collected from TCGA, the donors are anonymised and ethical approval 
from the pa2ents has been obtained by TCGA. For the internal general pa2ent dataset, 
informed consent is obtained when the pa2ent is admi^ed to the hospital. For the internal 
clinical trial dataset, informed consent is obtained when pa2ents are enrolled to the clinical 
trial by the hospital. For both the general pa2ent and the clinical trial dataset we use 
anonymised data. By taking these measures, we ensure there is no personal informa2on 
present in the datasets our FM is trained on and that it can never expose sensi2ve informa2on.  
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